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Abstract

We study the “common prior”assumption when agents have differential informa-

tion and preferences beyond subjective expected utility (SEU). We consider interim

preferences consistent with respect to the same ex-ante evaluation and characterize

them. Notably, agents are mutually dynamic consistent with respect to the same

ex-ante evaluation if and only if all the limits of higher-order expectations coin-

cide. Within this framework, we characterize the properties of equilibrium prices

in financial beauty contests. Unlike the SEU case, the limit price does not coincide

with the common ex-ante expectation. Moreover, high-coordination motives create

a divergence between the market price and the fundamental value.
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1 Introduction

The common prior assumption is one of the most used and debated concepts in economic

theory (see, e.g., Morris [36]). When the agents are subjective expected utility (SEU)

maximizers, this assumption captures the idea of mutual ex-ante agreement on the pref-

erences over uncertain prospects. However, preferences that do not reduce uncertainty to

a single probability are normatively convincing and consistent with experimental findings.

Notably, these departures are consistent with the rationality of decision makers who ac-

knowledge their ambiguity about an objective probabilistic model and have nonneutral

attitudes toward it. Therefore, it is crucial to understand whether the ex-ante mutual

agreement can be expressed independently of agents’ attitudes toward ambiguity and,

in this case, to study the implications for the agents’ interim preferences and behavior

of this mutual agreement. This paper answers these questions by formalizing increasing

degrees of mutual ex-ante agreement among agents with differential information and ratio-

nal preferences such as maxmin expected utility, Choquet expected utility, and variational

preferences.

We first impose restrictions on the agents’interim preferences that guarantee the ex-

istence of a single ex-ante preference that is jointly “consistent”for all the agents. Next,

we show that, as for the baseline SEU case, all these restrictions can be fully characterized

by properties of the higher-order interim preferences of the agents.

We then embed rational preferences in standard coordination games (e.g., beauty con-

tests and price competitions), and we derive a complete characterization of equilibrium

behavior in the high-coordination limit in terms of the agents’higher-order preferences

without any ex-ante agreement restriction. However, when we impose some ex-ante agree-

ment, we find a striking result: the desire for coordination considerably tames the attitudes

toward uncertainty, and the limit equilibrium behavior in some critical cases is indistin-

guishable from the ones obtained under SEU.

Common ex-ante preferences and beyond First, we generalize the notion of condi-

tional expectation for preferences that are not necessarily SEU but just rational. We start

with a pair of ex-ante and interim expectations, modeling the preferences of the agent

before and after the arrival of information, and require them to be “consistent” in the

sense that they jointly exhibit a reduction/increase in the uncertainty aversion at the in-
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terim stage compared to the ex-ante one. These consistency properties, which are satisfied

by several existing updating rules for non-SEU preferences (e.g., full Bayesian updating

and proxy updating for maxmin preferences), give rise to the notion of lower and upper

conditional expectations respectively. When both consistency properties are satisfied, we

define the notion of nonlinear conditional expectation. This last case fully maintains the

dynamic consistency of conditional SEU while relaxing linearity.

Armed with this novel taxonomy, we analyze a multi-agent setting with differential

information. We extend to rational preferences the notion of (nonlinear) higher-order

expectations, capturing the idea of preferences over acts formed by the evaluations attached

by other agents to an original act. This notion is essential for our analysis and is illustrated

through a simple asset-pricing model where agents care about the willingness to pay of

the other traders rather than the fundamental value of an asset. Our first result shows

that, under a full-support condition and the presence of null public information, the higher-

order expectations over sequences of agents converge to a state-independent limit, provided

that all the agents appear infinitely often in the sequence. This result greatly generalizes

the equivalent result of Samet [42] beyond SEU and lays the foundation of our analysis.

Moreover, it is easily illustrated in our asset pricing example by implying the existence of

a well-defined and state-independent equilibrium price that does not depend on the order

of trades among agents.

Next, we say that agents share a lower (resp. upper) common ex-ante expectation

if their conditional preferences are less (resp. more) uncertainty averse with respect to

the same ex-ante expectation. The interpretation is that, before observing their private

information, the agents share the same perceived ambiguity about the probabilistic model

and the same attitude toward it. Then, in the interim stage, the agents’preferences may

differ, but only insofar as the nature of their private information was different. Therefore,

our consistency properties impose restrictions between periods for each individual as well

as restrictions across all individuals. For every profile of interim expectations, there always

exist a lower and an upper common ex-ante preferences exhibiting the minimal degrees of

changes in the attitudes toward uncertainty between the ex-ante and interim stage.

We characterize these extreme common ex-ante preferences in different ways. First,

under the deterministic convergence property highlighted above, these ex-ante preferences

are characterized by the extreme limits of higher-order expectations of the agents. Sec-
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ond, we make this concept operational by providing an algorithm to recover them from

the agents’interim preferences. Finally, we provide behavioral axioms that identify the

testable conditions that an ex-ante preference needs to satisfy to be the extreme lower

(upper) common ex-ante expectation for a collection of interim preferences.

When all the agents are dynamically consistent with respect to the same unconditional

preference, we say that they share a nonlinear common ex-ante expectation. In other words,

we weaken the assumption of mutual agreement about an objective probabilistic model to

that of mutual dynamic consistency with respect to a common ex-ante rational preference.

We provide a characterization of the existence of a nonlinear common ex-ante expectation

that purely concerns the interim preferences of the agents. There is a nonlinear common

ex-ante expectation if and only if all the interim higher-order (nonlinear) expectations of

the agents converge to the same limit, which coincides with the nonlinear common ex-ante

expectation. On the one hand, this result significantly generalizes the characterization of

the common prior assumption in Samet [42]. On the other hand, it points out that it is the

invariance property of dynamic consistency that allows us to characterize mutual ex-ante

agreement in terms of interim higher-order beliefs, as opposed to the probabilistic nature

of beliefs. However, dynamic consistency with respect to all the information structures

of the agents is very restrictive under ambiguity-averse preferences, as pointed out, for

example, by Ellis [11]. Therefore, our result implies that the order of traders in our asset

pricing example is generally relevant under ambiguity aversion.

Coordination and ambiguity We next move to the implications for coordination

games of the assumptions on an ex-ante agreement under variational preferences, a large

subclass of rational preferences. We first consider an application of our results to beauty

contests in market networks under incomplete information. Here, we show that the (bid)

prices in the unique equilibrium become independent of the state and agent as the coor-

dination motives prevail. Notably, we provide bounds on the equilibrium price dispersion

that only depends on the joint connectivity of the network and information structure.

Next, we analyze the unique equilibrium price in the limit for strong coordination

motives. In general, this limit is characterized by a worst-case weighted average of the

models that are maximally trusted by the agents at the interim stage. With this result, we

can already see that a significant part of the ambiguity aversion of the agents disappears

in the limit equilibrium, as all the probabilistic models that are not maximally trusted
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become irrelevant. Moreover, we provide bounds on the limit evaluation of the asset in

terms of the ex-ante preferences that we presented, thereby assessing the price effect of

interim information.

Our theorem implies that whenever the agents share the same unique ex-ante bench-

mark probability model, the limit equilibrium price collapses to the expected value of

the asset under this unique benchmark. This establishes a strong irrelevance result: as

coordination motives prevail, the limit price is unaffected by the uncertainty attitudes

of the agents. In turn, this has important implications for our financial beauty contest

application. If the common benchmark probability model of the agents is misspecified,

then our result implies mispricing with respect to the true fundamental value of the asset,

despite agents that are concerned about misspecification. Intuitively, the agents attach a

much higher value to coordination than to the fundamental value of the asset; hence, in

equilibrium, they have little reason to reduce their willingness to pay due to the concern

for misspecification of the shared benchmark probability model.

In general, if a nonlinear common ex-ante expectation exists, then the limit price can

lie strictly above the ex-ante preference, pointing out a key difference with the limit result

under SEU of Golub and Morris [18]. However, this wedge exists only if the agents are

ambiguous with respect to each other information structure. Indeed, when agents are

unambiguous about the aggregate information, the standard limit equivalence of the SEU

case is restored. Notably, in this case, agents might still perceive ambiguity about the

fundamental, and their full-coordination limit price decreases in their ambiguity aversion.

The previous results depend only on the best-response structure of the game. In

particular, we can derive the same best-response functions from different games with

strong coordination motives. An example is a price-competition game where firms produce

partially differentiated goods under incomplete information about the demand function.

2 Nonlinear conditional expectations

In this section, we introduce nonlinear conditional expectations. We start by recalling the

usual notion of (linear) conditional expectation. Consider a finite state space Ω endowed

with the power set P (Ω). We let Π be a partition of Ω, and for every ω ∈ Ω, we denote

as Π (ω) the unique element of Π that contains ω.
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2.1 Linear case

Consider a probability µ ∈ ∆ (Ω). If Π is a partition of Ω, then a map pµ : Ω× P (Ω)→
[0, 1] is a regular conditional probability of µ given Π if and only if: (i) For each ω ∈ Ω,

pµ (ω, ·) ∈ ∆ (Ω); (ii) For each F ∈ P (Ω), the function pµ (·, F ) : Ω→ [0, 1] is a conditional

probability of F given Π.

With this, the function Vµ : Ω× RΩ → R, defined by

Vµ (ω, f) = Epµ(ω,·) [f ] ∀ω ∈ Ω,∀f ∈ RΩ,

is a regular conditional expectation and has the following properties:

a. For each ω ∈ Ω the function Vµ (ω, ·) : RΩ → R is normalized, monotone, and linear;1

b. For each f ∈ RΩ the function Vµ (·, f) : Ω→ R is Π-measurable and satisfies

Eµ (f) = Eµ (Vµ (·, f)) and Vµ
(
ω, f1Π(ω) + h1Π(ω)c

)
= Vµ (ω, f) ∀ω ∈ Ω, ∀h ∈ RΩ.

(1)

In words, (1) contains two properties: the law of iterated expectations and that the

update of µ assigns probability one to the realized partition cell.

2.2 Nonlinear case

Mimicking what we discussed above, we consider two functions V̄ : RΩ → R and V :

Ω × RΩ → R. In terms of interpretation, V̄ (f) is the unconditional expectation of f ,

while V (·, f) describes its conditional expectation.

Definition 1. Let V̄ : RΩ → R. We say that V̄ is an ex-ante (generalized) expectation if

and only if V̄ is normalized and monotone.

This definition amounts to saying that the preference % represented by an ex-ante

expectation V̄ is rational (Cerreia-Vioglio et al. [9]). This is a large class of preferences

that includes maxmin expected utility (Gilboa and Schmeidler [16]), Choquet expected

1A functional T : RΩ → R is normalized if and only if T (k1Ω) = k for all k ∈ R.
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utility (Schmeidler [43]), variational preferences (Maccheroni et al. [32]), quantile max-

imization (Rostek [41]), and uncertainty averse preferences (Cerreia-Vioglio et al. [8]).

Monotonicity is a conceptual (although mild) requirement implying that the agents prefer

larger monetary outcomes, whereas normalization requires that the representing V̄ is the

certainty equivalent for the preference.2

Definition 2. Fix a partition Π and V : Ω× RΩ → R. We say that (V,Π) is an interim

(generalized) expectation if and only if for each ω ∈ Ω the function V (ω, ·) : RΩ → R is
normalized, monotone, and continuous and the function V (·, f) : Ω→ R is Π-measurable

and

V
(
ω, f1Π(ω) + h1Π(ω)c

)
= V (ω, f) ∀ω ∈ Ω,∀f, h ∈ RΩ. (2)

A conditional expectation is a pair formed by an ex-ante (generalized) expectation and

an interim (generalized) expectation that satisfies some consistency properties.

Definition 3. Let (V,Π) be an interim expectation.

1. We say that (V◦, V,Π) is a lower conditional expectation if and only if V◦ is an

ex-ante expectation such that

V◦ (f) ≤ V◦ (V (·, f)) ∀f ∈ RΩ. (3)

2. We say that (V ◦, V,Π) is an upper conditional expectation if and only if V ◦ is an

ex-ante expectation such that

V ◦ (f) ≥ V ◦ (V (·, f)) ∀f ∈ RΩ. (4)

3. We say that
(
V̄ , V,Π

)
is a nonlinear conditional expectation if and only if it is both

a lower and an upper conditional expectation.

Compared to standard conditional expectations, a nonlinear conditional expectation

only relaxes the assumption of linearity from both V̄ and V , as point 3 implies that

V̄ (f) = V̄ (V (·, f)) ∀f ∈ RΩ. (5)

2We are implicitly assuming that the utility index u : R → R coincides with the identity function.
In the multi-agent setting of Section 3, this assumption is without loss of generality as long as the risk
preferences of all agents are homogeneous since we can always interpret each f ∈ RΩ as a utility act.
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This is tantamount to weakening the assumption of independence, retaining consequen-

tialism and dynamic consistency. Consequentialism takes care of (2), while dynamic con-

sistency is the main axiom behind the law of iterated expectations in (5). However, it is

well known that full-fledged dynamic consistency is restrictive outside the realm of sub-

jective expected utility, especially with uncertainty-averse preferences (see, for example,

Ghirardato [15] and Siniscalchi [46]). Therefore, in points 1 and 2, we consider ex-ante

expectations that are consistent with the interim expectation yet possibly exhibit a reduc-

tion/increase in the uncertainty aversion as the agent receives information.3

Whenever the agent has a lower conditional expectation V◦, her interim preference

can be rationalized by V◦ provided that receiving the interim information reduces the

uncertainty aversion of the agent. Indeed, evaluating the uncertain act f with V◦ induces

a lower evaluation than first evaluating the uncertainty within the cells of Π with V and

then the residual uncertainty with V◦. Such condition is satisfied by existing updating

rules for preferences under uncertainty, as we show next.

Example 1 (Choquet expected utility with proxy updating). We analyze the class of
preferences and updating rule recently proposed by Gul and Pesendorfer [19]. Consider

a totally monotone capacity ν : 2Ω → [0, 1] and a partition Π.4 In the ex-ante stage,

the agent evaluates every act f ∈ RΩ with the Choquet integral of f with respect to ν,

denoted as V◦ (f). Recall that the core of ν is defined as

core (ν) =
{
µ ∈ ∆ (Ω) : ∀E ∈ 2Ω, µ (E) ≥ ν (E)

}
and that V◦ (f) = minµ∈core(ν) Eµ (f). We let µν ∈ ∆ (Ω) denote the Shapley value corre-

sponding to ν. The interim expectations at state ω are:

V (ω, f) = min
µ∈core◦(ν)

Epµ(ω,·) (f) ∀f ∈ RΩ

3In Online Appendix E, we show that this somewhat informal use of the terms “uncertainty aversion
reduction/increase”is backed by formal axioms linking the ex-ante and interim preferences of the agents.

4A capacity ν is totally monotone if and only if, for all k ≥ 2 and all E1, ..., Ek ∈ 2Ω, ν
(
∪ki=1Ei

)
≥∑

{J:∅6=J⊆{1,...,k}} (−1)
|J|+1

ν (∩j∈JEj).
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where pµ (ω, ·) is the conditional probability of µ given Π and

core◦ (ν) = {µ ∈ core (ν) : ∀E ∈ Π, µ (E) = µν (E)} . (6)

In words, each agent updates her preferences with full Bayesian updating but starting

from the restricted set core◦ (ν). In this case, the results in [19, Axiom C.4 and Theorem

1] imply that (V◦, V,Π) is a lower conditional expectation. N

Instead, an upper conditional expectation rationalizes the interim expectation of the

agent provided that it features less uncertainty aversion than the interim preferences.

Indeed, evaluating the uncertain act f with V ◦ induces a higher evaluation than first

evaluating the uncertainty within the cells of Π with V and then the residual uncertainty

with V ◦. The next example shows that with maxmin expected utility (see Gilboa and

Schmeidler [16]) and full Bayesian updating, we obtain an upper conditional expectation.

Example 2 (Maxmin expected utility with full Bayesian updating). Let C be a compact
and convex set of probabilities over Ω and let Π be a partition. Define

V ◦C (f) = min
µ∈C

Eµ (f) ∀f ∈ RΩ (7)

and

VC (ω, f) = min
p∈Cω

Ep (f) ∀ω ∈ Ω,∀f ∈ RΩ, (8)

where, for all ω ∈ Ω, Cω = {pµ (ω, ·) : µ ∈ C}. Then (V ◦C , VC ,Π) is an upper conditional

expectation. Moreover, it is well known that if C is rectangular for Π (see Epstein and

Schneider [12]), then (V ◦C , VC ,Π) is a nonlinear conditional expectation.5 N

The observation that Bayesian updating induces an upper common ex-ante expectation

also holds for the class of divergence preferences introduced in Maccheroni et al. [32]. We

illustrate this class in Example 5 below, where we consider multiplier preferences a la

Hansen and Sargent [23].

Another class of preferences that induces an upper common ex-ante expectation is the

one that evaluates a random variable with its value at risk (VaR) paired with Bayesian

updating.

5C is rectangular if and only if C =
{∑L

l=1 pµl (El, ·)µ (El) : µ, µ1, ..., µL ∈ C
}
, where Π = {E1, ..., EL}

and we denote the update on the El cell by pµ (El, ·).
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Example 3 (Quantile Maximization). Consider a partitionΠ and a probability µ ∈ ∆ (Ω).

In the ex-ante stage, the agent evaluates every act f ∈ RΩ with the τ -quantile (Rostek

[41]), with τ ∈ (0, 1). That is,

V ◦ (f) = inf {z ∈ R : µ ({ω ∈ Ω : f (ω) ≤ z}) ≥ τ} .

Analogously, the interim expectation V of the agent in state ω evaluates the act with

respect to the τ -quantile but using pµ (ω, ·) in place of µ. Then, for a suffi ciently low
quantile, i.e., for τ suffi ciently close to 0, the pair (V ◦, V,Π) is an upper conditional

expectation.6 Importantly, this means that the widely used VaR, which involves portfolio

evaluation by looking at the left tail quantiles, generally features an increase of uncertainty

aversion as information is received. Similarly, one can link high quantiles with lower

conditional expectations. N

We close this section with a notion of full support for rational preferences. Indeed, as

Samet [42], we mostly focus on the case of full support.7 Given states ω̄, ω ∈ Ω, we say

that ω̄ is V (ω, ·)-essential if and only if there exists an ε > 0 such that for each f ∈ RΩ

and for each δ ≥ 0

V
(
ω, f + δ1{ω̄}

)
− V (ω, f) ≥ εδ. (9)

In the linear case, we clearly have that ω̄ belongs to the support of pµ (ω, ·) if and only if
ω̄ is V (ω, ·)-essential. For the general case, we say that an interim expectation (V,Π) has

full support if and only if for all ω ∈ Ω each ω̄ ∈ Π (ω) is V (ω, ·)-essential.

3 (Un-)common ex-ante preferences

We now consider a finite set of agents I = {1, ..., n}, each endowed with an interim ex-

pectation (Vi,Πi). Given the collection of partitions {Πi}i∈I for the agents, that is, an
information structure, we denote by Πsup and Πinf the meet and the join of the parti-

6In particular, any τ < minω∈Ω pµ (ω, {ω}) would work.
7Corollary 1 does not rely on the full-support assumption per se but rather on a regularity condition

of the sequences of higher-order beliefs (cf. Definition 4). Our full-support condition, paired with the
absence of non-trivial public information, implies that the regularity condition holds. However, this can
be verified directly and independently of the full-support assumption (cf. Example 5).
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tions.8 They respectively correspond to the public information among the agents and the

aggregate information collectively held by the agents.

In a multi-agent setting, it might be convenient to view Vi as an operator from RΩ to

RΩ. In this case, the ω-th component of this operator is Vi (ω, f) for all f ∈ RΩ. This

rewriting turns out to be useful in order to formally discuss higher-order expectations. For

instance, given two agents i, j ∈ I and an act f ∈ RΩ, the expectation of agent i at state

ω about the evaluation of act f by agent j is Vi (ω, Vj (f)). Moreover, if we do not fix a

state ω ∈ Ω, we obtain the second-order evaluation (of i through j) Vi ◦ Vj : RΩ → RΩ.

We next illustrate the relevance of this concept in a stylized asset-pricing model.

Example 4 (Forecasting the forecaster). Consider a state-contingent asset f ∈ RΩ in a

discrete-time economy with t ∈ N periods. Each index i ∈ I represents a continuum of

speculative traders with the same interim expectations (Vi,Πi). Let (i1, ..., it) ∈ I t, with
t ∈ N, be a finite sequence of agents’classes. In period 0, an external agent is endowed

with the asset. In period 1, she has to sell the asset to one of the agents in class i1. The

price is determined by Bertrand competition among the potential buyers. In period 2, the

agent of class i1 holding the asset has to sell it to an agent in class i2 according to the

same procedure as above and then leaves the economy. This scheme proceeds until period

t when the agent of class it holding the asset is paid its realized value.9

We can easily solve for the unique equilibrium by backward induction. In period t, the

willingness to pay for the asset of an agent in class it, and therefore the (state-contingent)

equilibrium price, is exactly Vit (f). Given Bertrand competition among potential buyers,

for an agent in class it−1, the (state-contingent) value of the asset is then Vit−1 ◦ Vit (f).

Iterating this backward reasoning up to period 1, the initial (state-contingent) price of the

asset isVi1 ◦ Vi2 ◦ ... ◦ Vit−1 ◦ Vit (f) ∈ RΩ. This highlights the importance of higher-order

expectations in market interactions.10 N

Following Samet [42], we call a sequence (it)t∈N in I an I-sequence if and only if for

each individual i ∈ I, i = it for infinitely many t indexes.
8That is, Πsup is the finest among all partitions that are coarser than each Πi, and Πinf is the coarsest

among all partitions that are finer than each Πi.
9This model is a variation of classical models of sequential speculative trading such as Harrison and

Kreps [24] and Morris [37], where we also allow for non-SEU preferences of the traders.
10Toward pointing out the direct role of higher-order expectations, we assumed that the agents know

the class of the potential buyers (and hence their interim expectations). In Section 4, we characterize the
equilibrium of the related beauty-contest game where the relevant class of buyers is uncertain.
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Definition 4. We say that a collection {(Vi,Πi)}i∈I of interim expectations exhibits con-

vergence to a deterministic limit if and only if for all I-sequences ι = (it)t∈N and for all

f ∈ RΩ, there exists kf,ι ∈ R such that

lim
t→∞

Vit ◦ Vit−1 ◦ ... ◦ Vi2 ◦ Vi1 (f) = kf,ι1Ω.

In this case, for each I-sequence ι = (it)t∈N ∈ IN define V̄ι : RΩ → R by V̄ι (f) = kf,ι.

If there is convergence to a deterministic limit, then the sequences of higher-order

expectations of the agents converge to a limit whose value, being a constant function of

the state, is trivially common knowledge. Our first result shows that there is convergence

to a deterministic limit, provided that all the interim expectations of the agents have full

support and there is no non-trivial public event. Moreover, the rate of convergence is

quasi-exponential ; that is, it is exponential in the number of times that all the agents have

been repeated in the sequence.

Theorem 1. If {(Vi,Πi)}i∈I is a collection of full support interim expectations such that

Πsup = {Ω}, then {(Vi,Πi)}i∈I exhibits convergence to a deterministic limit. Moreover,
there exist ε ∈ (0, 1) and C ∈ R+ such that for each I-sequence (im)m∈N and for each

τ, t ∈ N, if every i ∈ I appears at least τ times in (i1, ..., it), then∣∣∣∣V̄ι (f) 1Ω − Vit ◦ ... ◦ Vi1 (f)
∣∣∣∣
∞ ≤ Cετ ||f ||∞ ∀f ∈ RΩ.

Quasi-exponential convergence provides a bound on the approximation error for com-

puting the limit higher-order expectation of f given ι using the t-th order expectation.

In particular, the bound improves in t only if additional expectations of all the agents

are involved. This theorem generalizes Proposition 2 of Samet [42] in several dimensions.

Most importantly, it allows for nonlinear expectations. This generality makes it impos-

sible to represent the operator as stochastic matrices, but Proposition 5 shows that, for

the class of rational preferences we consider, it is still possible to extract a useful network

of connections between agent-state pairs from the nonlinear operator. Loosely speaking,

pair (i, ω) is connected to (j, ω′) if agent i believes that while in state ω agent j nonlinear

interim expectation is responsive to the payoff in state ω′. We then show that the full

support of the interim expectations paired with the absence of non-trivial public events
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implies that this network is strongly connected and that iterations of operators with such

underlying strongly connected structures induce convergence to a deterministic limit. In

doing so, we also improve Samet’s original result by adding a rate to this convergence.

We next illustrate the meaning of quasi-exponential convergence to a deterministic

limit in the asset-pricing example.

Example (Forecasting the forecaster continued). Suppose that the assumptions of The-
orem 1 are satisfied. Then, rather than looking at a fixed-length sequence, we consider

an infinite sequence of classes (it)t∈N . We can focus on I-sequences as, if the identity

of classes are iid draws with full support on I, then with probability 1, an I-sequence is

realized. With this, Theorem 1 guarantees that, for a truncation (i1, ..., it̄) of (it)t∈N such

that each agent appears suffi ciently many times, the dependence of the initial equilibrium

price on the realized state of the world is arbitrarily (and exponentially) small. Intuitively,

the willingness to pay of an agent in class i1 does not significantly depend on the state as

she knows that the selling value depends on a large number of subsequent transactions.

This and the assumption Πsup = {Ω} imply that many of the subsequent buyers will care
about the value of the asset also in states that are ruled out by the information of i1. N

3.1 Common ex-ante expectations

A natural question that emerges in this setting is whether the interim preferences of the

agents are consistent with a common ex-ante expectation.

Definition 5. We say that V◦ (resp. V ◦) is a lower (resp. upper) common ex-ante ex-
pectation for {(Vi,Πi)}i∈I if and only if (V◦, Vi,Πi) (resp. (V ◦, Vi,Πi)) is a lower (resp.

upper) conditional expectation for all i ∈ I. When V̄ is both a lower and an upper com-

mon ex-ante expectation for {(Vi,Πi)}i∈I , we say that V̄ is a nonlinear common ex-ante

expectation for {(Vi,Πi)}i∈I .

We let V◦ and V◦ denote the sets of lower and upper common ex-ante expectations
for {(Vi,Πi)}i∈I respectively. Clearly, their intersection is the set of nonlinear common
ex-ante expectations for {(Vi,Πi)}i∈I . It is plain that in the case each Vi (ω, ·) is SEU, the
nonemptiness of this intersection amounts to the existence of a common prior.

The sets V◦ and V◦ might contain multiple elements. However, we focus on two se-
lections: (i) the more optimistic ex-ante expectation that is more uncertainty averse than
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the interim expectations and (ii) the more pessimistic ex-ante expectation that is less

uncertainty averse than the interim expectations. Let

V∗ (f) = sup
V◦∈V◦

V◦ (f) and V ∗ (f) = inf
V ◦∈V◦

V ◦ (f) ∀f ∈ RΩ.

denote the maximal and minimal elements of V◦ and V◦.
We now show that both V∗ and V ∗ are always well-defined and provide a characteriza-

tion of them in terms of the higher-order expectations of the agents.

Proposition 1. Let {(Vi,Πi)}i∈I be a collection of interim expectations. Both V∗ and V ∗

are well-defined and, respectively, a lower and an upper common ex-ante expectation for

{(Vi,Πi)}i∈I . Moreover, if {(Vi,Πi)}i∈I exhibits convergence to a deterministic limit, then,
for every f ∈ RΩ,

V∗ (f) = inf
ι∈IN:ι is an I-sequence

V̄ι (f) and V ∗ (f) = sup
ι∈IN:ι is an I-sequence

V̄ι (f) .

The interpretation is that by looking at the lowest (resp. highest) limit of the iterated

expectations, we exactly identify the minimal changes in uncertainty aversion between

the ex-ante and interim stages needed to jointly rationalize the interim preferences of the

agents. In turn, this implies that V∗ (f) ≤ V ∗ (f) for all f ∈ RΩ, that is, the ex-ante

preferences V∗ and V ∗ are ranked in terms of their uncertainty aversion.

Example (Forecasting the forecaster continued). In the setting of Example 4, fix an I-
sequence ι = (in)n∈N and recall that the initial equilibrium price of asset f , for the game

with length t, is equal to the random variable Vit ◦ Vit−1 ◦ ... ◦ Vi2 ◦ Vi1 (f). In this case, by

Theorem 1, as we let t go to infinity, the limit price is deterministic and equal to V̄ι (f).

Moreover, by Proposition 1, the limit initial price satisfies

V◦ (f) ≤ V̄ι (f) ≤ V ◦ (f) (10)

for all upper and lower common ex-ante expectations V◦ ∈ V◦ and V ◦ ∈ V ◦, and, more

accurately, V̄ι (f) ∈ [V∗ (f) , V ∗ (f)]. For example, equation (10) implies that if the traders

are maxmin agents and share the same set of ex-ante probabilistic models C ⊆ ∆ (Ω),

then, under full Bayesian updating, the initial limit price with private information V̄ι (f)
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is smaller than the common ex-ante evaluation V ◦ (f) = minp∈C
∫
fdp. Indeed, the initial

equilibrium price is the result of a compounded pessimistic evaluation due to full Bayesian

updating and iterated minimization across all the updated probabilistic models. N

Combining our previous results, we get a characterization for the existence of a nonlin-

ear common ex-ante expectation V̄ for {(Vi,Πi)}i∈I : under convergence to a deterministic
limit, there exists a common ex-ante expectation if and only if the deterministic limit of

all the I-sequences of higher-order expectations is the same. This generalizes the main

result of Samet [42] to the class of rational preferences.

Corollary 1. Let {(Vi,Πi)}i∈I be a collection of interim expectations that exhibits conver-
gence to a deterministic limit. The following statements are equivalent:

(i) There exists a nonlinear common ex-ante expectation V̄ for {(Vi,Πi)}i∈I ;

(ii) For each f ∈ RΩ there exists kf ∈ R such that for each I-sequence (it)t∈N

lim
t→∞

Vit ◦ Vit−1 ◦ ... ◦ Vi2 ◦ Vi1 (f) = kf1Ω.

(iii) We have V∗ = V ∗.

In this case, for each f ∈ RΩ, we have V∗ (f) = V ∗ (f) = V̄ (f) = kf .

As an immediate consequence of Theorem 1 and Corollary 1, we get that our character-

ization of the nonlinear common ex-ante expectation holds provided that agents’interim

preferences have full support and there is no public information. Next, we illustrate the

(asset-pricing) equilibrium implications of the existence of a nonlinear common ex-ante

expectation.

Example (Forecasting the forecaster continued). Assume that the agents have a nonlinear
common ex-ante expectation V̄ . For a suffi ciently long truncation of (it)t∈N, the initial

equilibrium price is approximately state-independent and equal to the common ex-ante

evaluation V̄ (f) of the asset. In words, under a nonlinear common ex-ante expectation,

the order of trades does not affect the initial price. Conversely, for any two arbitrary

I-sequences truncated at t̄ ∈ N, we can falsify the existence of a nonlinear common ex-
ante expectation by checking whether the corresponding equilibrium prices are suffi ciently

different. N
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On the one hand, Corollary 1 provides suffi cient conditions for the existence of a

nonlinear common ex-ante expectation, as well as a way to compute it. On the other

hand, mutual dynamic consistency with respect to all the information structures of the

agents is very restrictive under ambiguity-averse preferences, as pointed out by Ellis [11]

and Gumen and Savochkin [20]. Therefore, our corollary implies that the order of trades

in Example 4 is generally relevant for the equilibrium price and more so with ambiguity

aversion. This creates scope for the manipulation of the frequency with which agents

with a given information structure can trade to affect the equilibrium price. In other

words, without SEU, for example, under ambiguity-averse preferences, there is scope for

the optimal design of the sequential trading protocol.

Clearly, whenever the ex-ante preferences of the agents are of the form of Example

1 (resp. 2) and all the agents update with the proxy updating rule (resp. full Bayesian

updating) with respect to their information partitions (Πi)
n
i=1, there is a lower (resp.

upper) common ex-ante expectation. We next provide a last concrete example where

there exists a nonlinear common ex-ante expectation.

Example 5 (Multiplier expectations and misspecification aversion). Here, we consider

multiplier preferences (see Hansen and Sargent [23], axiomatized in Strzalecki [48]). Let

µ ∈ ∆ (Ω) have full support and let Π be a partition. Define

V̄λ,µ (f) = min
µ′∈∆(Ω)

{Eµ′ (f) + λR (µ′||µ)} ∀f ∈ RΩ (11)

and

Vλ,µ (ω, f) = min
p∈∆(Ω)

{Ep (f) + λR (p||pµ (ω, ·))} ∀ω ∈ Ω,∀f ∈ RΩ (12)

where λ > 0 and R (·||·) is the relative entropy. The agent has a probability model

of reference µ, but she does not fully trust it. She is willing to consider other models µ′,

nevertheless the farther they are in terms of relative entropy from µ (resp., its update), the

less plausible they are, and the smaller role they play in the minimization (11) (resp., (12)).

Here, λ is a parameter that captures the agent’s aversion to the potential misspecification

of µ: the lower λ, the more the decision maker considers other probability models p. It

is well known that
(
V̄λ,µ, Vλ,µ,Π

)
is a nonlinear conditional expectation (see Maccheroni

et al. [33, Section 5.2]). Next, assume that each agent has an information partition Πi

and her conditional interim expectations (Vi,λ,µ,Πi) are computed according to (12) with
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respect to Πi. In this case, the common prior µ uniquely defines the nonlinear common

ex-ante expectation V̄λ,µ.

It is possible to generalize multiplier expectation so as to take into account ambiguity

aversion as in Cerreia-Vioglio et al. [10]. Formally, rather than a single model, let us fix a

setM⊆ ∆ (Ω) of probabilities with full support over Ω and a partition Π. In particular,

assume that µ|Π = µ′|Π for all µ, µ
′ ∈M, that is, there is no model uncertainty with respect

to the events that are Π-measurable. Next, define V̄λ,M (f) = minµ∈M V̄λ,µ (f) for all f ∈
RΩ. Similarly as before, assume that each agent has an information partition Πi and her

conditional interim expectation (Vi,Πi) is Vi,λ,M (ω, f) = minµ∈M Vi,λ,µ (ω, f). For every

i ∈ I, if Πi is coarser than Π, then
(
V̄λ,M, Vi,λ,M,Πi

)
is a nonlinear conditional expectation.

The interpretation is that the agents are uncertain about the probabilistic model beyond

their aggregate information Πinf . Moreover, the agents are averse to misspecification about

the model restricted on Πinf . N

3.2 Characterization and computation of extreme ex-ante ex-

pectations

In this section, we explain how extreme ex-ante expectations are characterized axiomati-

cally, and we operationalize them by providing an algorithm to compute them. Readers

chiefly interested in the application to beauty contests can skip this subsection.

3.2.1 Axiomatic characterization

We develop a full-fledged formal axiomatization in Online Appendix E. Here, we sketch our

findings. We start by considering a collection of preference relation
{(
%, {%ω,Πi}ω∈Ω

)}n
i=1

where % is interpreted as the ex-ante preference and each %ω,Πi corresponds to the interim
preferences of agent i in state ω.

Under standard monotonicity, continuity, and weak order axioms, it is easy to show that

these preference relations are represented, respectively, by functions V̄ and Vi (ω, ·) that are
normalized and monotone. We next impose the axioms corresponding to the information

interpretation of these preferences. We first require that for every i ∈ {1, ..., n} and every
ω, ω′ ∈ Ω, Πi (ω) = Πi (ω

′) implies %ω,Πi=%ω′,Πi , consistently with the interpretation that
interim preferences should not reflect more information than the one available to the agent.
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We then require that states outside Πi (ω) are null for preference %ω,Πi , an axiomatic form
of consequentialism.

With this, the key task becomes to provide axioms that link the ex-ante and interim

preferences so that the former is a lower ex-ante expectation for the former. The key

axiom turns out to be dynamic subconsistency (also called weak dynamic consistency in

Gul and Pesendorfer, [19, Axiom C4]): For each f ∈ RΩ and for each g measurable with

respect to the partition Πi,

g %ω,Πi f, ∀ω ∈ Ω =⇒ g % f.

It captures a form of higher uncertainty aversion for the ex-ante preference (for the un-

certainty revealed by Πi). Indeed, it requires that if an act g that is certain conditional

on Πi is interim preferred to an arbitrary act f , then this preference is maintained at

the ex-ante stage. We show that if and only this axiom is satisfied, jointly with the ones

mentioned above, the representing pair V̄ and {Vi (ω, ·)}ω∈Ω,i∈{1,...,n} is a lower common

ex-ante expectation.

Finally, we show that to single out the extreme lower ex-ante expectation, the pair must

be required to have “as much dynamic consistency as possible” in a well-defined sense.

Indeed, we show V∗ represents the unique preference % that satisfies the aforementioned
axioms together with {%ω,Πi}ω∈Ω,i∈{1,...,n} and is such that (i) for every act f ∈ RΩ there

is at least one agent that is dynamically consistent in the evaluation of that act and (ii)

that all the agents are dynamically consistent with respect to the acts measurable with

respect to any of the partitions Πi. Formally, (i) for each f ∈ RΩ there exists i ∈ {1, ..., n}
such that V̄ (f) = V̄ (Vi (·, f)) and (ii) for i, j ∈ {1, ..., n} if h is Πi-measurable, V̄ (h) =

V̄ (Vj (·, h)).11

11The last result that singles out V∗ is proved for the case of two players. It is known that extending
the results about iterated expectations from the two-player to arbitrary many cases involves additional
diffi culties; see Hellman [25]. The reason here is the same as there: with multiple players, I-sequences are
not equivalent to permutation sequences in which players always show up in the same order. Still, the
direction of the result in which axiom implies that the ex-ante expectation is the extreme lower ex-ante
expectation holds for arbitrary players. More generally, a similar analysis can be conducted for (extreme
and non) upper ex-ante expectations.
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3.2.2 Algorithm to construct extreme common ex-ante expectations

In this section, we provide an operational algorithm to compute V∗ starting from an arbi-

trary collection of interim expectations {(Vi,Πi)}i∈I . Differently from the characterization
of V∗ in Proposition 1, this algorithm does not involve a minimization over the infinite set

of I-sequences. Let

V̂ (f) = max
ω∈Ω

f (ω) ∀f ∈ RΩ.

Clearly, V̂ is an ex-ante expectation. Next, define recursively the sequence
{
V̂ τ
}
τ∈N

of

real-valued functions over RΩ by V̂ 1 = V̂ and

V̂ τ+1 (f) = min
i∈I

V̂ τ (Vi (f)) ∀f ∈ RΩ, ∀τ ∈ N.

For example, V̂ 2 (f) = mini∈I maxω∈Ω Vi (ω, f) assigns to each act f its worst most favor-

able interim expectation across all agents. In general, V̂ τ+1 assigns to f its worst most

favorable τ -th order interim expectation across all sequences of τ agents.

Proposition 2. We have that limτ V̂
τ exists and it is equal to V∗.

4 Equilibrium and (un-)common ex-ante preferences

In this section, we consider the equilibrium implications of common ex-ante expectations

for a class of coordination games. In each of the following applications, the equilibrium

σβ =
(
σβi

)
i∈I
∈
(
RΩ
)n
is described by the following fixed-point condition:

σβi (ω) = Vi

(
ω, (1− β) f̂ + β

∑
j∈I

wijσ
β
j

)
∀ω ∈ Ω, ∀i ∈ I. (13)

Here, f̂ ∈ RΩ is a payoff-relevant fundamental, β ∈ (0, 1) parametrizes the relative

importance of coordination with other agents over adaptation to the fundamental, and

W = {wij}i,j∈I ∈ Rn×n is a stochastic matrix where each wij captures the relative impor-
tance of agent j for i.12

12A matrix W ∈ Rn×n is stochastic if and only if wij ≥ 0 for all i, j ∈ I and
∑
j∈I wij = 1 for all i ∈ I.
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The interpretation is that the equilibrium outcome for agent i coincides with her (gen-

eralized) expectation of a combination of the fundamental and the equilibrium outcomes

of the other players. This kind of fixed-point condition is ubiquitous in models of asset

pricing with beauty contests (cf. Morris and Shin [38]), networks of financial institutions

(cf. Jackson and Pernoud [30]), and price competition (cf. Angeletos and Pavan [2]) as

we show in Section 4.4. In the SEU case, the high-coordination limit (β → 1) of the

equilibrium strategies is used to select an equilibrium of the pure-coordination games and

can be related to the common prior expectation of the asset (cf. Shin and Williamson

[45] and Golub and Morris [18]). Analogously, the characterization of this limit and its

relation to the ex-ante preferences we have defined will be the main focus of our analysis.

4.1 Beauty contests: coordination and equilibrium

As a leading application, we consider a beauty-contest model with random matching and

private information (as in Golub and Morris [18]) that generalizes the forecasting the

forecaster example of Section 3. Each i ∈ I represents a continuum of agents sharing

the same information partition Πi. Time is discrete, and there is a random variable

f̂ ∈ RΩ denoting the only asset in this economy that is sequentially traded with random

matching. Let β ∈ (0, 1). At every period t ∈ N, if an agent in class i holds the asset, with
probability (1− β), she has to liquidate the asset and obtain its fundamental (uncertain)

value f̂ . With complementary probability β, she privately has to sell the asset to an agent

from a randomly selected class and then leaves the game. The matching probabilities,

conditional on not liquidating the asset, are described by a stochastic matrix W , where

wij is the probability with which an agent in class i is matched to class j. In particular,

the random matching and liquidation are independent of the state. After the realization

of the matched class j, the agents in j compete a la Bertrand, offering a price to the

asset holder in i, who decides to whom to sell the asset. This mechanism implies that in

equilibrium, the offered price is equal to the (common) willingness to pay for the asset of

the agents in class j. If an agent in class j acquires the asset, then the game continues to

period t+ 1.13

13Observe that there is no relevant learning over time since the past owners of the asset have left the
game. Moreover, conditional on non-liquidation, even if the asset holder would learn something about the
state ω ∈ Ω from the offers of the agents in j, accepting the highest offer is still dominant.
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We study the equilibria of this game for variational preferences (cf. Maccheroni et al.

[32]). A collection of interim expectations {(Vi,Πi)}i∈I is variational if and only if for
every i ∈ I and ω ∈ Ω, there exists a lower semicontinuous, grounded, and convex cost

function ci,ω : ∆ (Ω)→ [0,∞] such that

Vi (ω, f) = min
p∈∆(Ω)

{Ep (f) + ci,ω (p)} (14)

for all f ∈ RΩ.14 Variational interim expectations exhibit violations of subjective expected

utility due to aversion to ambiguity, a widely documented trait. The interpretation is

that each agent considers the evaluation of the act under many probabilistic models, and

ci,ω penalizes more the models (subjectively) deemed less plausible. In particular, the

probabilistic models p for which ci,ω (p) = 0 represent the “benchmark”models that i

trusts the most in state ω. All the examples of preferences we have introduced, except

quantile maximization, are variational.

Assumption 1 The collection of interim expectations {(Vi,Πi)}i∈I has full support,
is such that Πsup = {Ω}, and is variational and W is strongly connected.

A (Markov) strategy for an agent in class i ∈ I is a random variable σi ∈ RΩ that is

measurable with respect to the information structure Πi. In particular, from the point of

view of agents in i, the strategies σj ∈ RΩ of agents in any class j are state-dependent

offers that can be evaluated through their interim preferences. Let Σ denote the set of

profiles of strategies for the n classes of agents, respectively. For every β ∈ (0, 1], if we fix a

profile of strategies σ = (σj)j∈I ∈ Σ, then the corresponding (state-dependent) willingness

to pay for asset f̂ of any agent in class i ∈ I is:

Sβ,i (σ) = Vi

(
(1− β) f̂ + β

∑
j∈I

wijσj

)
∀ω ∈ Ω. (15)

The equilibria of this game correspond to the fixed points of the map Sβ (·) : Σ→ Σ, that

is, σβ ∈ Σ is an equilibrium if and only if it satisfies equation (15).

Proposition 3. For every β ∈ (0, 1), there exists a unique equilibrium σβ ∈ Σ of the

14A cost function c is grounded if and only if minp∈∆(Ω) c (p) = 0.
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game. Moreover, there exists C ∈ R+ such that, for every β ∈ (0, 1),

max
i,j∈I,ω,ω′∈Ω

∣∣∣σβi (ω)− σβj (ω′)
∣∣∣ ≤ (1− β)C max

ω,ω′∈Ω

∣∣∣f̂ (ω)− f̂ (ω′)
∣∣∣ . (16)

The inequality in equation (16) gives a bound on the maximum level of disagreement

among the equilibrium asset evaluations. The RHS is monotonically decreasing in β and

linearly vanishes as we let coordination become more important, that is, β → 1. This

implies that the price of the asset becomes constant across states and agents in the limit.

4.2 Beauty contests: coordination and misspecification neutral-

ity

In this section, we characterize the unique equilibrium σβ as coordination becomes more

and more important, i.e., β → 1. Define the set of interim benchmark beliefs

Q =
{
q ∈ (∆ (Ω))I×Ω : ∀ (i, ω) ∈ I × Ω, ∀ω′ ∈ Πi (ω) , qi,ω′ = qi,ω, ci,ω (qi,ω) = 0

}
.

Each q ∈ Q is a collection of interim beliefs for all the agents and states that are (i)

measurable with respect to the information of the corresponding agents and (ii) most

trusted in the given state. This can be combined with the network structure W to obtain

an interaction structure W q ∈ R(I×Ω)×(I×Ω)
+ among agent-state pairs capturing both the

interim beliefs of the agents as well as the strength of their links. Formally, we let

wq(i,ω)(j,ω′) = wijqi,ω (ω′) ∀i, j ∈ I,∀ω, ω′ ∈ Ω. (17)

Under SEU interim preferences, there is a unique interaction structure (introduced

by Golub and Morris [18]) pinned down by the network W and the posterior beliefs of

the agents. In the present setting, model uncertainty translates into a multiplicity of

relevant interim beliefs, hence into a multiplicity of interaction structures. However, this

multiplicity is disciplined by both the information and the interim preferences of the agents.

Lemma 1. For each q ∈ Q, there exists a unique (row vector) γq ∈ ∆ (I × Ω) such that

γq = γqW q.

This is a consequence of the connectedness properties of each W q implied by Πinf =
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{Ω}, full support of {Vi,Πi}i∈I , and that W is strongly connected. We are now ready to

state the main result of this section.

Theorem 2. For all i ∈ I and ω ∈ Ω,

V∗

(
f̂
)
≤ lim

β→1
σβi (ω) = min

q∈Q

∑
(j,ω′)∈I×Ω

γqj,ω′Eqj,ω′
(
f̂
)
. (18)

Therefore, if there exists a nonlinear common ex-ante expectation V̄ for {(Vi,Πi)}i∈I , then,
for all i ∈ I and ω ∈ Ω,

V̄
(
f̂
)
≤ lim

β→1
σβi (ω) .

First, we observe that, in the limit where the coordination motive prevails, the equi-

librium price is independent of the realized state and the agent’s identity. In particular,

the limit selects an equilibrium of the pure coordination game where the asset is payoff

irrelevant. This generalizes a well-known fact under subjective expected utility (cf. Golub

and Morris [18]).

Second, the constant limit price equals the most cautious average of the benchmark

evaluations of f̂ that are consistent with the network structure. Notably, the cautious

selection of the benchmark models q from Q induced by the market interaction has two

roles. While selecting beliefs that evaluate the asset in a cautious way (i.e., to keep the

first-order evaluations Eqi,ω
(
f̂
)
low), it also determines how the heterogeneous evaluations

are aggregated through the eigenvector centrality γq of the interaction structure.

Third, our formula points out that the strong coordination motives in the market

attenuate the ambiguity concern exhibited by the equilibrium evaluation. Intuitively, the

asymmetric information of the traders combined with their coordination motive implies

that the equilibrium prices are less variable across states than the fundamental itself.

Indeed, when evaluating the asset conditional on private information Πi (ω), the agent

does not only need to take into consideration what f pays in the states in Πi (ω). Indeed,

facing the possibility of trading the asset to those j such that wij > 0, they have to take

into account their evaluation, which will also depend on the asset payment in the states in

∪ω̂∈Πi(ω)Πj (ω̂), i.e., the states that j believes are possible in one of the states i believes to

be possible. It is this dependence on more states that dampens the variability of the asset

price compared to the underlying fundamental, and, of course, this dampening is only
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amplified by the fact that the evaluation of j itself depends on the ones of their neighbors

k such that wjk > 0. Therefore, the uncertainty-averse traders evaluate owning the asset

more favorably than the fundamental.

More formally, we have

lim
β→1

σβi (ω) ≥ Vi

(
ω, f̂

)
∀i ∈ I,∀ω ∈ Ω,

since each collection of beliefs q ∈ Q satisfy ci,ω (qi,ω) = 0 for all i ∈ I and ω ∈ Ω. In turn,

this immediately yields the lower bound in equation (18) and, when there exists a common

ex-ante evaluation, we actually have V∗
(
f̂
)

= V̄
(
f̂
)
, implying that the equilibrium price

is higher than the shared ex-ante evaluation. This is a sharp difference with respect to the

case of SEU interim preferences where, under a common prior, the limit equilibrium price

coincides with the prior expectation.

We next show that in several important cases, this ambiguity reduction completely

mutes the agent’s concern.

Corollary 2. Assume that, for all i ∈ I and ω ∈ Ω, it holds arg minp∈∆(Ω) ci,ω (p) =
{
q∗i,ω
}
.

For all i ∈ I and ω ∈ Ω,

lim
β→1

σβi (ω) =
∑

(i,ω)∈I×Ω

γq
∗

i,ωEq∗i,ω
(
f̂
)
.

Moreover, if the collection
{
q∗i,ω
}
i∈I,ω∈Ω

admits a common prior µ∗ we have

lim
β→1

σβi (ω) = Eµ∗
(
f̂
)
.

This result characterizes an extreme form of ambiguity-aversion reduction. Indeed,

whenever each interim preference has a unique most trusted benchmark model, the limit

equilibrium price is equal to an ex-ante SEU evaluation of the asset, implying that only

the interim benchmark models matter as the importance of coordination grows. This

reduction is particularly stark when the agents’benchmark models are consistent with

a common prior µ∗. In this case, the ex-ante evaluation of the asset according to this

probabilistic model is the limit price equilibrium, and this limit is the same regardless

of the ambiguity attitudes and the network structure. Therefore, whenever µ∗ is highly
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misspecified with respect to the “objective”probability model ν∗, there is a divergence

between the limit market price limβ→1 σ
β
i (ω) and the rational-expectations value Eν∗

(
f̂
)

pair to the full gap Eµ∗
(
f̂
)
−Eν∗

(
f̂
)
, with no attenuation whatsoever despite the shared

concern for misspecification.

In the next example, we illustrate this phenomenon within the class of multiplier

preferences with Bayesian updating from a common prior.

Example 6. Suppose that, in the ex-ante stage, the agents share the same unique bench-
mark model µ∗ ∈ ∆ (Ω), but they are averse to misspecification with possibly different

attitudes: each i ∈ I evaluates f̂ as

min
p∈∆(Ω)

{
Ep
(
f̂
)

+ λiR (p||µ∗)
}

where (λi)i∈I ∈ Rn++ is a profile of misspecification concern indexes. After having observed

their own private information, the agents update the benchmark model to pµ∗,i (ω, ·).
Therefore, the interim evaluation of i at ω is

Vi (ω, f) = min
p∈∆(Ω)

{Ep (f) + λiR (p||pµ∗,i (ω, ·))} ∀f ∈ RΩ.

In this case, Corollary 2 implies that

lim
β→1

σβi (ω) = Eµ∗
(
f̂
)

∀i ∈ I,∀ω ∈ Ω.

That is, the ambiguity is completely washed out, and the price converges to the expected

evaluation of the asset, independently of the attitudes towards misspecification. If these

attitudes are homogeneous, i.e., λi = λ for all i ∈ I, then there exists a common ex-ante
expectation

V̄ (f) = min
p∈∆(Ω)

{Ep (f) + λR (p||µ∗)} ∀f ∈ RΩ

and a wedge between V̄
(
f̂
)
and limβ→1 σ

β
i (ω) arises whenever the asset pays a differ-

ent amount in each state. More generally, this wedge remains present between V∗ and

limβ→1 σ
β
i (ω) even when the misspecification attitudes are heterogeneous. N
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4.3 Beauty contests: unambiguous information structure

Here, we consider an important particular case: the agents are unambiguous with respect

to the information structure while still possibly perceiving ambiguity about the funda-

mental f̂ , i.e., there is no strategic ambiguity. In this case, the first-order expectations of

the agents exhibit perceived ambiguity and ambiguity aversion, whereas the higher-order

expectations do not; that is, they are SEU. Formally, we say that the information structure

is unambiguous if and only if for every i ∈ I, Vi is Πinf-affi ne, that is

Vi (ω, (1− α)h+ αg) = (1− α)Vi (ω, h) + αVi (ω, g)

for all α ∈ (0, 1), for all ω ∈ Ω, and for all g, h ∈ RΩ where g is Πinf-measurable. This

implies that Vi is linear over the vector space of elements g ∈ RΩ that are Πinf-measurable.

This restriction is reasonable, for instance, in games where the agents repeatedly interact

and can observe the actions of the coplayers after each interaction. In this case, if the

agents are correctly specified, then their beliefs will converge to the true distribution on

Πinf .

Proposition 4. If the information structure is unambiguous, then for all i ∈ I and ω ∈ Ω,

lim
β→1

σβi (ω) ∈
[
V∗

(
f̂
)
, V ∗

(
f̂
)]
.

Moreover, if there exists a nonlinear common ex-ante expectation V̄ for {(Vi,Πi)}i∈I , then,
for all i ∈ I and ω ∈ Ω,

lim
β→1

σβi (ω) = V̄
(
f̂
)
.

Whenever the traders are not ambiguous regarding events in their information struc-

tures, the extreme ex-ante preferences give both an upper and lower bound for any possible

equilibrium selection. Next, observe that whenever a nonlinear common ex-ante expecta-

tion exists, the identity V̄ = V∗ = V ∗ implies that the limit equilibrium limβ→1 σ
β is well

defined and equal to the ex-ante evaluation. This is an implication of the common prior

assumption under SEU (cf. Golub and Morris [18]) that we extend to the unambiguous-

information case. Finally, comparing the second parts of Theorem 2 and of Proposition 4,

we observe that the only ambiguity the market interaction can tame is the one about the

information structures of the agents.
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4.4 Additional application: price competition

As mentioned above, the previous analysis only depends on the equilibrium equation

(13) regardless of the specifics of the underlying games. Here, we provide an alternative

foundation of (13) based on a price-competition model. Concretely, n firms are competing

on prices. We fix a random variable f̂ ∈ RΩ representing the state of the economy, and we

let y denote its realization. The interpretation is that there is aggregate uncertainty about

y. Each firm i chooses the price xi ∈ R for its good, has 0 production costs, and its payoff

function ui : Rn × R → R depends on the state y as well as the entire profile of prices
x ∈ Rn: ui (x, y) = Di (x, y)xi where Di : Rn × R → R is the demand function faced by
firm i and is defined as Di (x, y) = β

∑
j∈I wijxj+(1− β) y−xi/2 for some β ∈ (0, 1) and a

stochastic and strongly connected matrixW with wjj = 0 for all j ∈ I. The demand faced
by firm i negatively depends on its own price and positively depends on the state of the

economy and on the prices of the other firms, respectively, with coeffi cients (1− β) and β.

As usual, the interpretation is that the firms compete on the same market with partially

differentiated products, and wij captures the similarity of products i and j. Suppose

also that {(Vi,Πi)}i∈I is a collection of maxmin (cf. Example 2) interim preferences. In

particular, let Ci,ω ⊆ ∆ (Ω) denote the set of interim probabilistic models of agent i at

state ω.

As before, a strategy σi ∈ RΩ of agent i is measurable with respect to Πi. Given

a strategy profile σ−i for the coplayers of i, the problem faced by i given state ω ∈ Ω

is maxxi∈R minp∈Ci,ω Ep
((

(1− β) f̂ + β
∑

j∈I wijσj

)
xi − x2

i

2

)
. With this, the first-order

condition characterizing the equilibrium σβ for every β ∈ (0, 1) is

σβi (ω) = min
p∈Ci,ω

Ep

(
(1− β) f̂ + β

∑
j∈I

wijσ
β
j

)
∀ω ∈ Ω,∀i ∈ I, (19)

which is just a particular case of equation (13), so that, mutatis mutandis, all the previous

analysis applies to this competition game as well.
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5 Related literature

Our work lies at the intersection of several strands of literature, including decision theory,

game theory, and information economics. Our Theorem 1 and Corollary 1 generalize to

rational preferences the common-prior characterization of Samet [42]. In the case of SEU,

the latter has been previously extended to compact spaces of uncertainty in Hellman [25]

and to more general payoff-relevant spaces in Golub and Morris [17].

More recently, the existence of a nonlinear common ex-ante expectation for non-

ambiguity-neutral preferences under both dynamic consistency and consequentialism has

been studied by Ellis [11]. This paper shows that if the agents’information has a product

structure in addition to the previous properties, then their interim preferences cannot ex-

hibit violations of Savage’s sure-thing principle for acts that are measurable with respect

to the aggregate information. However, the following facts limit the implications of this

critical result for our analysis: (i) We also consider and characterize weaker versions of

common dynamic consistency, which allow for violations of Savage’s sure-thing principle

(ii) We never impose a product structure for the information of the agents which in turn

would rule out hard evidence about the interim types of the opponents (e.g., E-mail-game

like information structures have such hard evidence) (iii) For the class of games that we

consider in Section 4, even the residual ambiguity about the fundamental state is relevant

for the equilibrium outcomes.

Our applications generalize the standard beauty-contest settings in Shin andWilliamson

[45], Allen et al. [1], or Golub and Morris [18] by allowing for ambiguity aversion and ob-

taining notable equilibrium implications. In general, our work proposes a viable theory

for games under incomplete information without SEU. In this regard, Epstein and Wang

[13] introduce a universal type space for a class of preferences very similar to the rational

one analyzed in the current paper. We improve on this work by characterizing the col-

lections of finite type spaces that admit some degree of ex-ante mutual agreement within

this universal type space. On the more applied side, we contribute to a recent growing

literature that studies the joint effect of ambiguity aversion and differential information

on equilibrium prices (see Huo et al. [26] and the citations therein).

Relatedly, we improve on the analysis of incomplete-information games under uncer-

tainty of Kajii and Ui [28] by considering variational preferences and deriving equilib-

rium properties for a specific class of coordination games. Moreover, we focus here on
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simultaneous-move games rather than analyzing the effect of ambiguity aversion in multi-

stage games such as Battigalli et al. [3]-[4], and Hanany et al. [22], which in turn provide

a very different set of results.

Our results are complementary to the extended literature on no-trade results without

SEU. On the one hand, Billot et al. [5], Rigotti et al. [40], and Strzalecki and Werner

[49] study effi cient allocations under ambiguity with public information, as opposed to the

private-information setting of the current paper. On the other hand, Kajii and Ui [29]

and Martins-da-Rocha [34] provide no-trade characterizations of the existence of common

ex-ante benchmark beliefs.

Finally, our work is related to the extended literature on updating non-SEU preferences

under (relaxations of) consequentialism and dynamic consistency as in Ghirardato [15],

Epstein and Schneider [12], Maccheroni et al. [33], Hanany and Klibanoff [21], and Gumen

and Savochkin [20]. However, we take an interim approach rather than deriving or studying

a given updating rule, as in the works above. We derive the ex-ante preferences that are

consistent with the given interim ones. This allows us to connect our results to existing

updating rules by comparing the prescribed ex-ante preferences with the ones we obtain

from the interim preferences and derive new insights into their implications in strategic

interactions.

6 Conclusion

The results of this paper can also be used as a stepping stone for further analysis of games

beyond SEU. Here, we highlight some open questions and future research avenues.

First, as already stressed, despite our analysis following an interim approach, our results

can be used in games of incomplete information with general preferences under uncertainty

and a given set of updating rules. Indeed, the disagreement bound in Proposition 3 and

the limit characterization in Theorem 2 did not put any intertemporal restriction on the

agents’preferences. So, for example, if all the agents are maxmin, share the same ex-ante

set of probability models, and update their beliefs with full Bayesian updating, then our

results give tools to study how the equilibrium outcomes change with respect to the agents’

private information. Therefore, our results can be a stepping stone toward an information

design model in beauty contests under non-SEU preferences.
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Second, our framework enables us to revisit some classical results for SEU agents

on incomplete information games to understand whether they carry on with more general

preferences. An example is a result established in Nielsen et al. [39] that if a stochastically

monotone function (often interpreted as the price of an asset) of the beliefs is common

knowledge across the players, their beliefs coincide. The result extends if the information

structure is unambiguous but may fail more generally.

Third, our framework and results are the first steps toward a general analysis of ap-

proximate common knowledge under model uncertainty. The standard analysis based on

p-belief operators of Monderer and Samet [35] can be extended to a setting with multiple

interim beliefs, for example, by requiring that all the interim probability models assign

probability p to an event. In particular, within this richer framework, we can also ask

about the strategic implications of approximate common unambiguity of an event, that

is, for each agent, all the interim belief of that agent assigns the same probability to that

event. Our examples suggest that this might well have significant strategic consequences

such as contagion or taming of ambiguity aversion among agents.

Relatedly, approximate common knowledge has been recently studied in a learning set-

ting under SEU by Frick et al. [14]. Their common-learning results complement Samet’s

convergence result on higher-order expectations by showing that their KL divergence rel-

ative to the prior distribution decreases monotonically along any sequence. On the one

hand, our Theorem 1 offers an alternative distance between higher-order and prior expec-

tations. On the other hand, our setting can be used to analyze common learning in the

presence of ambiguity, for example, by resorting to the learning rules studied in Lanzani

[31].

Finally, our analysis is a stepping stone to obtaining sharper equilibrium refinements

in complete information games. Indeed, in the SEU world, Kajii and Morris [27] pioneered

a robust approach that selects only the subset of equilibria that are limit points of every

sequence of incomplete information games, approximating the original complete informa-

tion game. An even sharper refinement would only select equilibria that are limit points,

including elaborations under incomplete information and non-SEU preferences.
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A Appendix: Mathematical preliminaries

Since Ω is finite, with a small abuse of notation, we equivalently view Ω as the set J =

{1, ..., n̄}. We also denote the elements of the canonical basis of Rn̄ by ej for all j ∈
J . The composition of normalized, monotone, and continuous operators is an operator

which shares the same properties. A normalized and monotone operator T : Rn̄ → Rn̄

is linear if and only if there exists a stochastic n̄ × n̄ matrix M such that T (f) = Mf

for all f ∈ Rn̄. All products of n̄ × n̄ matrices are to be intended backward/left, that is,
Πk+1
l=1 Ml = Mk+1Πk

l=1Ml = Mk+1...M1 for all k ∈ N. Define In̄ to be the n̄ × n̄ identity
matrix. Given j, j′ ∈ J we say that j is strongly monotone with respect to j′ (under T ) if
and only if there exists εjj′ ∈ (0, 1) such that for each f ∈ RΩ and for each δ ≥ 0

Tj

(
f + δej

′
)
− Tj (f) ≥ εjj′δ. (20)

We say that j is constant with respect to j′ if and only if

Tj

(
f + δej

′
)
− Tj (f) = 0 ∀f ∈ RΩ,∀δ ≥ 0. (21)

We say that T is dichotomic if and only if for each j, j′ ∈ J , j is either strongly monotone
with respect to j′ or constant.

Definition 6. Let T be a monotone operator. We say that A (T ) is the indicator matrix

of T if and only if its jj′-th entry is such that

ajj′ =

{
1 j is strongly monotone wrt j′

0 otherwise
∀j, j′ ∈ J.

The indicator matrix A (M) of an n̄ × n̄ nonnegative matrix M is defined to be such

that ajj′ = 1 if and only if mjj′ > 0 and ajj′ = 0 if and only if mjj′ = 0. We say that

A (T ) is nontrivial if and only if for each j ∈ J there exists j′ ∈ J such that ajj′ = 1.

The indicator matrix A (T ) of a monotone operator T induces a natural partition of J .

Recall that given a nonnegative n̄ × n̄ matrix A with nonnull rows, we can partition the
set J = {1, ..., n̄} with the partition {Jl (A)}mA+1

l=1 of essential and inessential indexes of A.

The first mA sets consist of the essential classes while JmA+1 (A) consists of all inessential

indexes and it might be empty. This is the case if A is symmetric, that is, ajj′ = aj′j for all

30



j, j′ ∈ J . Instead, there always exists at least a nonempty class of essential indexes J1 (A),

see, e.g., Seneta [44]. We call Π (A) = {Jl (A)}mA+1

l=1 the partition of A. When A = A (T )

where T is normalized, monotone, and continuous and A (T ) is nontrivial, we denote by

Π (T ) the partition Π (A (T )).

Lemma 2. Let (V,Π) be an interim expectation with full support. The following statements

are equivalent:

(i) ajj′ = 1;

(ii) Π (ωj) = Π (ωj′).

In particular, A (V ) is symmetric, ajj = 1 for all j ∈ J , Π (V ) = Π, and V is dichotomic.

Given a stochastic matrix M , we denote by δ (M) = minj,j′∈J :mjj′>0mjj′ and d (M) =

minj∈J mjj. The next result builds on [6, Proposition 8].

Proposition 5. If T : Rn̄ → Rn̄ is normalized, monotone, continuous, and such that
A (T ) is nontrivial, then there exists a compact and convex setM (T ) of n̄× n̄ stochastic
matrices such that A (M) ≥ A (T ) for all M ∈ M (T ) and for each f ∈ Rn̄ there exists
M (f) ∈M (T ) such that T (f) = M (f) f . Moreover, if T is dichotomic, thenM (T ) can

be chosen to be such that A (M) = A (T ) for all M ∈M (T ).

Theorem 3. Let {Ti}i∈I be a finite collection of normalized, monotone, and continuous
dichotomic operators. If 1) A (Ti) is symmetric for all i ∈ I, 2) ai,jj = 1 for all i ∈ I and
for all j ∈ J , 3) the meet of the partitions {Π (Ti)}i∈I is {Ω}, then for each I-sequence
(im)m∈N and for each f ∈ Rn̄ we have that limm→∞ Tim ◦ ...◦Ti1 (f) exists and is a constant

vector. Moreover, for each I-sequence (im)m∈N and for each τ, t ∈ N, if i appears at least
τ times in (i1, ..., it) for all i ∈ I, then

∣∣∣∣∣∣ lim
m→∞

Tim ◦ ... ◦ Ti1 (f)− Tit ◦ ... ◦ Ti1 (f)
∣∣∣∣∣∣
∞
≤
(

1− δ2n̄
2
n̄2
)τ2−n̄

2−1

||f ||∞ ,

where δ = infi∈I,M∈M(Ti) δ (M) > 0.

31



B Appendix: Section 3

Proof of Theorem 1. By Lemma 2 and since {(Vi,Πi)}i∈I is a finite set of full support
interim expectations, we have that A (Vi) is symmetric, Π (Vi) = Πi, and Vi is dichotomic

for all i ∈ I. Moreover, we have that ai,jj = 1 for all j ∈ J and for all i ∈ I. By Theorem
3 and since the meet of {Π (Vi)}i∈I is {Ω}, we can conclude that for each I-sequence

ι = (it)t∈N and for each f ∈ RΩ we have that limm→∞ Vim ◦ ... ◦ Vi1 (f) = kι,f1Ω for some

kι,f ∈ R. Moreover, there exist δ̂ =
(
infi∈I,M∈M(Vi) δ (M)

)2n̄
2
n̄2

∈ (0, 1) and t̂ = 2n̄
2 ∈ N

such that for each I-sequence (im)m∈N and for each τ, t ∈ N, if i appears at least τ times

in (i1, ..., it) for all i ∈ I, then ||kf,ι1Ω − Vit ◦ ... ◦ Vi1 (f)||∞ ≤
(

1− δ̂
) τ
t̂
−1

||f ||∞. Finally,

the last part of the statement follows setting C = 1

1−δ̂ and ε =
(

1− δ̂
) 1
t̂ . �

Whenever {(Vi,Πi)}i∈I exhibits convergence to a deterministic limit, pick an arbitrary
ω ∈ Ω and define V? : RΩ → R and V ? : RΩ → R by V? (f) = infι∈IN:ι is an I-sequence V̄ι (f) (ω)

and V ? (f) = supι∈IN:ι is an I-sequence V̄ι (f) (ω) for all f ∈ RΩ. Clearly, we have that V? ≤ V ?.

Proof of Proposition 1. The first part of the statement immediately follows by Lemma 8.
Since V? (resp. V ?) is a pointwise infimum (resp. supremum) of normalized and monotone

functionals, so is V? (resp. V ?). Fix f ∈ RΩ and i ∈ I. Consider also an I-sequence

ι′. Since {(Vi,Πi)}i∈I exhibits convergence to a deterministic limit, we have kVi(f),ι′1Ω =

limt→∞ Vi′t ◦Vi′t−1
◦ ...◦Vi′2 ◦Vi′1 (Vi (f)) = limt→∞ Vi′′t ◦Vi′′t−1

◦ ...◦Vi′′2 ◦Vi′′1 (f) = kf,ι′′1Ω where

ι′′ is the I-sequence such that ι′′1 = i and ι′′t = ι′t−1 for all t ∈ N\ {1}. This implies that
kVi(f),ι′ = kf,ι′′ ≥ infι∈IN:ι is an I-sequence kf,ι = infι∈IN:ι is an I-sequence V̄ι (f) = V? (f). Since

ι′ was arbitrarily chosen, this implies that V? (Vi (f)) = infι∈IN:ι is an I-sequence V̄ι (Vi (f)) =

infι∈IN:ι is an I-sequence kVi(f),ι ≥ V? (f) , proving that V? ∈ V◦. Next, consider V ′ ∈ V◦ and
suppose by contradiction that V ′ (g) > V? (g) for some g ∈ RΩ. Since V ′ (g) > V? (g), there

exists an I sequence ι such that V ′ (g) 1Ω > limt→∞ Vit ◦ Vit−1 ◦ ... ◦ Vi2 ◦ Vi1 (g) = kg,ι1Ω.

Since V ′ is normalized and continuous at kg,ι1Ω by Lemma 7, V ′ (g) > V ′ (kg,ι1Ω) =

V ′
(
limt→∞ Vit ◦ Vit−1 ◦ ... ◦ Vi2 ◦ Vi1 (g)

)
≥ V ′ (g), a contradiction. This proves that V? =

V∗. A symmetric argument shows that V ? = V ∗. �
Denote by P the set of permutations of agents, that is, bijections ρ : {1, ..., n} →

{1, ..., n}. Given ρ ∈ P , we denote by Vρ : RΩ → RΩ the operator defined by

Vρ = Vρ(1) ◦ Vρ(2) ◦ ... ◦ Vρ(n). (22)
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As usual, we also denote by V t
ρ the composition Vρ ◦ ... ◦ Vρ︸ ︷︷ ︸

t-times

for all t ∈ N and for all ρ ∈ P .

Proof of Corollary 1. We prove the equivalence between (i) and (ii). The equivalence
between (ii) and (iii) immediately follows by Proposition 1.

(i) implies (ii). By assumption, for each I-sequence ι = (it)t∈N and for each f ∈ RΩ we

have that limm→∞ Vim ◦ ... ◦ Vi1 (f) = kι,f1Ω for some kι,f ∈ R. By Lemma 7 and since V̄
is an ex-ante expectation and

(
V̄ , Vi,Πi

)
is a nonlinear conditional expectation, we have

that kι,f = V̄ (kι,f1Ω) = V̄ (limm→∞ Vim ◦ ... ◦ Vi1 (f)) = limm→∞ V̄ (Vim ◦ ... ◦ Vi1 (f)) =

.... = V̄ (f), proving the implication.

(ii) implies (i). Fix a permutation ρ̄ ∈ P . Define the I-sequence (ik)k∈N by ik =

ρ̄ (kmodn) for all k ∈ N such that kmodn 6= 0 and ik = ρ̄ (n) for all k ∈ N such

that kmodn = 0. Define V̂ : RΩ → RΩ by V̂ (f) = limτ→∞ V
τ
ρ̄ (f) for all f ∈ RΩ.

By assumption, we have that V̂ is well defined and V̂ (f) is a constant function for all

f ∈ RΩ. Since Vρ̄ is the composition of normalized, monotone, and continuous operators,

so is V τ
ρ̄ for all τ ∈ N and, by passing to the limit, V̂ is normalized and monotone. By

assumption, we also have that V̂ (f) = limτ→∞ V
τ
ρ (f) for all f ∈ RΩ and for all ρ ∈ P .

Since V̂ is normalized and monotone and V̂ (f) is a constant function for all f ∈ RΩ,

we also have that V̂
(
V̂ (f)

)
= V̂ (f) for all f ∈ RΩ, that is, V̂ ◦ V̂ = V̂ . Define also

V̄ : RΩ → R by V̄ (f) = V̂1 (f) for all f ∈ RΩ. Since V̂ ◦ V̂ = V̂ , it is immediate to see

that V̄ is an ex-ante expectation such that V̄ ◦ V̂ = V̄ . This implies that for each f ∈ RΩ

and for each ρ ∈ P

V̄ (Vρ (f)) = V̄
(
V̂ (Vρ (f))

)
= V̄

(
lim
τ→∞

V τ
ρ (Vρ (f))

)
= V̄

(
lim
τ→∞

V τ+1
ρ (f)

)
= V̄ (f) . (23)

Consider i ∈ I. Consider any permutation such that ρ̃ (1) = i. By (23), we have that

V̄ ◦ Vρ̃ ◦ Vi = V̄ ◦ Vi. Consider the permutation ρ̂ such that ρ̂ (i′) = ρ̃ (i′ + 1) for all

i′ ∈ {1, ..., n− 1} and ρ̂ (n) = i. Define also Ṽ = V̄ ◦ Vi. It follows that Ṽ is an ex-ante

expectation. Since V̄ ◦ Vρ̃ ◦ Vi = V̄ ◦ Vi, we can conclude that Ṽ ◦ Vρ̂ = V̄ ◦ Vi ◦ Vρ̂ =

V̄ ◦ Vρ̃ ◦ Vi = V̄ ◦ Vi = Ṽ . By induction, this implies that Ṽ ◦ V τ
ρ̂ = V̄ ◦ Vi = Ṽ for

all τ ∈ N. By (23) and Lemma 7 and since Ṽ is an ex-ante expectation, V̄ ◦ V̂ = V̄ ,

and Ṽ ◦ V τ
ρ̂ = V̄ ◦ Vi = Ṽ for all τ ∈ N, we can conclude that V̄ (f) = V̄

(
V̂ (f)

)
=

V̄
(
Vi

(
V̂ (f)

))
= Ṽ

(
limτ→∞ V

τ
ρ̂ (f)

)
= V̄ (Vi (f)) for all f ∈ RΩ, yielding that V̄ ◦Vi = V̄ .

Since i was arbitrarily chosen, the statement follows. �
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Proof of Proposition 2. By induction, we have that each V̂ τ is an ex-ante expecta-

tion. Fix f ∈ RΩ. Since each Vi is an interim expectation, if τ ≥ 2, then we have that

V̂ τ+1 (f) = mini∈I V̂
τ (Vi (f)) = mini∈I mini′∈I V̂

τ−1 (Vi′ (Vi (f))) ≤ mini∈I V̂
τ−1 (Vi (f)) =

V̂ τ (f). Since f was arbitrarily chosen, this implies that V̂ τ+1 ≤ V̂ τ for all τ ∈ N\ {1}.
Define V̂ ∞ : RΩ → R by V̂ (f) = limτ V̂

τ (f) for all f ∈ RΩ. Since
{
V̂ τ (f)

}
τ∈N

is an

eventually decreasing sequence bounded from below by minω∈Ω f (ω), V̂ ∞ is a well defined

ex-ante expectation. By construction, we have that V̂ τ+1 (f) ≤ V̂ τ (Vi (f)) for all f ∈ RΩ

and i ∈ I. By passing to the limit, we obtain that V̂ ∞ (f) ≤ V̂ ∞ (Vi (f)) for all f ∈ RΩ and

for all i ∈ I, which in turn yields that V̂ ∞ ≤ V∗ by definition of V∗. By induction assume

that V̂ τ ≥ V∗. It follows that V̂ τ+1 (f) = mini∈I V̂
τ (Vi (f)) ≥ mini∈I V∗ (Vi (f)) ≥ V∗ (f)

for all f ∈ RΩ, proving the inductive step. This yields that V̂ ∞ ≥ V∗ and, in particular,

V̂ ∞ = V∗. �

C Appendix: Section 4

The elements of
(
RΩ
)n
are vectors of n components, f , where each component i, fi, is

an element of RΩ. We endow
(
RΩ
)n
with the norm ‖ ‖∗ :

(
RΩ
)n → [0,∞) defined by

‖f‖∗ = supi∈I ‖fi‖∞ for all f ∈
(
RΩ
)n
. Define f̂ ∈

(
RΩ
)n
as f̂i = f̂ for all i ∈ I.

For every monotone operator R :
(
RΩ
)n → (

RΩ
)n
define the adjacency matrix Ā (R) ∈

{0, 1}(n×n̄)×(n×n̄) as follows. For every i, j ∈ I we set ā(i,ω)(j,ω′) (R) = 1 if and only if there

exist f ∈
(
RΩ
)n
and δ ≥ 0 such that Ri,ω

(
f + δej,ω

′) − Ri,ω (f) > 0. Moreover, we say

that a class of indices Z, ∅ 6= Z ⊆ I × Ω, is closed and strongly connected with respect

to a matrix A ∈ {0, 1}(n×n̄)×(n×n̄) if and only if (i) for each z, z′ ∈ Z there exists a path

{zl}Kl=1 ⊆ Z such that azlzl+1
= 1 for all l ∈ {1, ..., K − 1}, z1 = z and zK = z′; (ii) for

each z ∈ Z, azz′ = 1 implies z′ ∈ Z.
Proof of Proposition 3. By Lemma 14, it follows that, for every β ∈ (0, 1), Sβ is a

contraction with respect to the supnorm and it admits a unique fixed point σβ ∈ Σ. With

this, the result follows by Lemma 12 and applying [7, Theorem 2] with T = S1. �
Next, letW ⊆ R(n×n̄)×(n×n̄)

+ denote the set of stochastic matrices over I×Ω and define

∂S1 (0) =
{
Ŵ ∈ W : ∀ (i, ω) ∈ I × Ω, wi,ω ∈ ∂S1,i,ω (0)

}
, where ∂S1,i,ω (0) ⊆ ∆ (I × Ω) is

the superdifferential of the concave functional S1,i,ω at 0. Let s ∈ int (∆ (I)) denote the

unique probability vector that satisfies s = sW , where uniqueness and strict positivity
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follow from the fact that W is strongly connected.

Proof of Lemma 1. By Lemma 12, there exists a unique class of indices Z, ∅ 6= Z ⊆ I×Ω,

that is closed and strongly connected with respect to A (S1) and, in addition, every row of

A (S1) is not null. Given that S1 is concave, it follows easily from the definition of ∂S1 (0)

that, for each Ŵ ∈ ∂S1 (0), Z is the unique closed and strongly connected class of indices

with respect to A
(
Ŵ
)
. Fix q ∈ Q. By Lemma 13, W q ∈ ∂S1 (0), so that Z is the unique

closed and strongly connected class of indices with respect to A (W q). Next, observe that,

for each γ ∈ ∆ (I × Ω), we have γ = 1
2
γI + 1

2
γW q = γ

(
I+W q

2

)
if and only if γ = γW q. In

addition, given that A
(
I+W q

2

)
≥ A (W q), it follows by [6, Corollaries 8.1 and 8.2] and [47,

Theorem 2.2.5] that there exists a unique γq ∈ ∆ (I × Ω) such that γq = γq
(
I+W q

2

)
. By

the previous claim, γq is also the unique probability vector such that γq = γqW q. Given

that q ∈ Q was arbitrarily chosen, the statement follows. �
Proof of Theorem 2. First, recall that S1 is normalized, monotone, translation invariant,

concave and, by Lemma 10, S1 (f) = f if and only if there exists m ∈ R such that

fi = fi′ = m1Ω for all i, i′ ∈ I. With this, for all (i, ω̃) ∈ I × Ω, limβ→1 σ
β
i (ω̃) =

min{η∈∆(I×Ω):∃q∈Q,η=ηW q}
∑

(i,ω)∈I×Ω ηi,ωf̂ (ω) = minq∈Q
∑

(i,ω)∈I×Ω γ
q
i,ωf̂ (ω), where the first

equality follows by [7, Lemma 4 and Proposition 14] and the second equality follows by

Lemma 1. Next, fix q ∈ Q and observe that

∑
(i,ω)∈I×Ω

γqi,ωEqi,ω
(
f̂
)

=
∑

(i,ω)∈I×Ω

γqi,ω

 ∑
(j,ω′)∈I×Ω

qi,ω (ω′)wij f̂ (ω′)

 =
∑

(i,ω)∈I×Ω

γqi,ωf̂ (ω) .

This proves the equality in (18).

We now prove the left inequality in (18). Fix ı̄ ∈ I. By the previous part, we know that
there exists m ∈ R such that limβ→1 σ

β
i (ω) = m for all (i, ω) ∈ I × Ω. By contradiction,

assume that V∗
(
f̂
)
> m. By Lemmas 7 and 15, we can conclude that m = V∗ (m1Ω) =

limβ→1 V∗

(
σβi

)
≥ V∗

(
f̂
)
> m yielding a contradiction.

The second part of the statement directly follows by the first part and by Theorem 1

and Corollary 1. �
Proof of Corollary 2. The first part of the statement follows from Theorem 2 and from
the fact that, by assumption, Q = {q∗}. By Lemma 1, there exists a unique probability
vector γq

∗ ∈ ∆ (I × Ω) such that γq
∗

= γq
∗
W q∗ . Now, for each (i, ω) ∈ I × Ω, define
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γµ
∗ ∈ ∆ (I × Ω) as γµ

∗

i,ω = siµ
∗ (ω) and observe that∑

(j,ω′)∈I×Ω

γµ
∗

i,ωw
q∗

(j,ω′)(i,ω) =
∑

(j,ω′)∈I×Ω

sjµ
∗ (ω′)wjiq

∗
j,ω′ (ω) =

∑
j∈I

sjwji
∑
ω′∈Ω

µ∗ (ω′) pµ∗,j (ω′, ω)

= µ∗ (ω)
∑
j∈I

sjwji = µ∗ (ω) si = γµ
∗

i,ω.

This show that γµ
∗

= γµ
∗
W q∗, proving that γq

∗
= γµ

∗
. Finally, we have

∑
(i,ω)∈I×Ω γ

q∗

i,ωEq∗i,ω
(
f̂
)

=∑
(i,ω)∈I×Ω γ

µ∗

i,ωEq∗i,ω
(
f̂
)

=
∑

(i,ω)∈I×Ω siµ
∗ (ω)Epµ∗,i(ω,·)

(
f̂
)

= Eµ∗
(
f̂
)
, proving the second

part of the statement. �
Proof of Proposition 4. Fix β ∈ (0, 1). By Lemma 14, we have that σβi = Sβ,i

(
σβ
)

=

Vi

(
(1− β) f̂ + β

∑n
l=1 wilσ

β
l

)
for all i ∈ I. This implies that σβi is Πi-measurable and, in

particular, Πinf-measurable for all i ∈ I. Since Vi is Πinf-affi ne, this implies that

σβi = Vi

(
(1− β) f̂ + β

n∑
l=1

wilσ
β
l

)
= (1− β)Vi

(
f̂
)

+ β
n∑
l=1

wilVi

(
σβl

)
∀i ∈ I. (24)

By Lemma 9, since Vi is Πinf-affi ne for every i ∈ I, we have that V∗ is such that

V∗ ((1− α)h+ αg) ≥ (1− α)V∗ (h) + αV∗ (g) (25)

and V ∗ is such that

V ∗ ((1− α)h+ αg) ≤ (1− α)V ∗ (h) + αV ∗ (g) (26)

for all α ∈ (0, 1) and for all g, h ∈ RΩ where g is Πinf-measurable. By (24), (25), (26) and

since each Vi
(
f̂
)
is Πi-measurable, hence Πinf-measurable, we have that, for each i ∈ I,

V∗

(
σβi

)
= V∗

(
(1− β)Vi

(
f̂
)

+ β
∑n

l=1 wilVi

(
σβl

))
≥ (1− β)V∗

(
f̂
)

+β
∑n

l=1 wilV∗

(
σβl

)
,

and V ∗
(
σβi

)
= V ∗

(
(1− β)Vi

(
f̂
)

+ β
∑n

l=1wilVi

(
σβl

))
≤ (1− β)V ∗

(
f̂
)

+β
∑n

l=1wilV
∗
(
σβl

)
.

Define x∗ ∈ Rn to be such that x∗i = V∗

(
σβi

)
−V∗

(
f̂
)
for all i ∈ I. We can conclude that

x∗ ≥ βWx∗. Assume by contradiction that x∗i′ = mini∈I x∗i < 0. Since W is a stochastic

matrix, we have x∗i′ ≤ (Wx∗)i′ . Since β ∈ (0, 1) was arbitrarily chosen, it follows that

x∗i′ < β (Wx∗)i′ , yielding the contradiction x∗i′ < β (Wx∗)i′ ≤ x∗i′ . Therefore, we must
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have V∗
(
σβi

)
≥ V∗

(
f̂
)
for all i ∈ I and for all β ∈ (0, 1). By taking the limit for β → 1 in

the previous inequality and by Lemma 7 and Theorem 2, we get limβ→1 σ
β
i (ω) ≥ V∗

(
f̂
)

for all ω ∈ Ω and for all i ∈ I. Analogous steps yield that limβ→1 σ
β
i (ω) ≤ V ∗

(
f̂
)
for

all ω ∈ Ω and for all i ∈ I. The second part of the statement follows from the first part,

Theorem 1, and Corollary 1. �
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D Online appendix: Omitted proofs

Lemma 3. Let S, T : Rn̄ → Rn̄ be monotone and define Â = A (T ◦ S), Ã = A (S), and

A = A (T ). If there exists k ∈ J such that ajk > 0 and ãkj′ > 0, then âjj′ > 0. In

particular, we have that:

1. If {Th}h∈{1,...,H} is a collection of monotone operators from Rn̄ to Rn̄ and the jj′-th
entry of ΠH

h=1A (Th) is strictly positive, then the jj′-th of A (TH ◦ ... ◦ T1) is strictly

positive.

2. If t ∈ N and the jj′-th entry of A (T )t is strictly positive, then the jj′-th of A (T t) is

strictly positive.

Proof. By assumption, there exists k ∈ {1, ..., n̄} such that ajk, ãkj′ > 0, that is, there exist

εjk, εkj′ ∈ (0, 1) such that for each f ∈ Rn̄ and for each δ ≥ 0, Sk
(
f + δej

′)−Sk (f) ≥ εkj′δ

and Tj
(
f + δek

)
− Tj (f) ≥ εjkδ. Since S is monotone, this implies that S

(
f + δej

′) ≥
S (f)+εkj′δe

k for all f ∈ Rn̄ and for all δ ≥ 0. Since T is monotone, this yields that for each

f ∈ Rn̄ and for each δ ≥ 0, Tj
(
S
(
f + δej

′)) ≥ Tj
(
S (f) + εkj′δe

k
)
≥ Tj (S (f)) + εjkεkj′δ.

Since εjkεkj′ ∈ (0, 1), this proves that, under T ◦ S, j is strongly monotone with respect
to j′, proving that âjj′ > 0 and the main part of the statement.

1. Consider a collection of H monotone operators from Rn̄ to Rn̄: {Th}h∈{1,...,H}. We
prove by finite induction the statement that, for each l ∈ {1, ..., H}, if the jj′-th entry of
Πl
h=1A (Th) is strictly positive, then the jj′-th of A (Tl ◦ ... ◦ T1) is strictly positive.

Initial step. Assume l = 1. In this case, we trivially have that A (T1) = Πl
h=1A (Th).

Inductive step. Assume the statement is true for l. We prove it is true for l + 1. Define

S = Tl ◦ ... ◦ T1 and T = Tl+1. As before, set Ã = A (S), A = A (T ), and Â = A (T ◦ S) =

A (Tl+1 ◦ ... ◦ T1). Finally, define by a(l)
jj′ (resp., a

(1)
jj′ and a

(l+1)
jj′ ) the generic jj

′-th entry of

Πl
h=1A (Th) (resp., A (Tl+1) and Πl+1

h=1A (Th)). Observe that a
(l+1)
jj′ =

∑n̄
k=1 a

(1)
jk a

(l)
kj′ . If the

jj′-th entry of Πl+1
h=1A (Th) is strictly positive, then a

(l+1)
jj′ > 0, yielding that a(1)

jk , a
(l)
kj′ > 0

for some k ∈ J . By inductive hypothesis, we have that a(l)
kj′ > 0 implies that ãkj′ > 0 as

well as ajk > 0. By the main part of the statement, we can conclude that âjj′ > 0, proving

the inductive step.

The statement follows by finite induction.

2. By point 1, the statement trivially follows. �
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Lemma 4. Let {Bk}k∈{1,...,K} be a finite collection of n̄ × n̄ nonnegative matrices such

that bk,jj > 0 for all k ∈ {1, ..., K} and for all j ∈ J . If A (Bk) is symmetric for all

k ∈ {1, ..., K}, then A (BK ...B1) ≥ A (Bk) for all k ∈ {1, ..., K} and Π (A (BK ...B1)) is

coarser than Π (Bk) for all k ∈ {1, ..., K}.

Proof. Define B = ΠK
k=1Bk. By induction, we prove that A (Πm

k=1Bk) ≥ A (Bk) ≥ In̄ for

all k ∈ {1, ...,m} and for allm ∈ {1, ..., K}. By definition and since b1,jj > 0 for all j ∈ J , if
m = 1, then A (Π1

k=1Bk) = A (B1) ≥ In̄. By point 1 of Lemma 3 and inductive hypothesis

and since bk,jj > 0 for all k ∈ {1, ..., K} and for all j ∈ J , if m,m + 1 ∈ {1, ..., K},
then A (Bm+1)A (Πm

k=1Bk) ≥ In̄A (Bk) and A
(
Πm+1
k=1 Bk

)
≥ A (A (Bm+1)A (Πm

k=1Bk)) ≥
A (In̄A (Bk)) = A (Bk) ≥ In̄ for all k ∈ {1, ...,m}. By point 1 of Lemma 3 and inductive
hypothesis, we also have that A (Bm+1)A (Πm

k=1Bk) ≥ A (Bm+1) In̄ and A
(
Πm+1
k=1 Bk

)
≥

A (A (Bm+1)A (Πm
k=1Bk)) ≥ A (A (Bm+1) In̄) = A (Bm+1) ≥ In̄. The statement follows

by finite induction. In particular, this yields that A (BK ...B1) ≥ A (Bk) ≥ In̄ for all

k ∈ {1, ..., K}. Consider k ∈ {1, ..., K}. Since A (Bk) is symmetric, any index j ∈ J is
essential under Bk. Let l ∈ {1, ...,mBk} and j ∈ Jl (Bk). We have two cases:

1. j ∈ Jl′ (A (B)) for some l′ ∈
{

1, ...,mA(B)

}
. Consider j′ ∈ Jl (Bk). It follows that

j
Bk←→ j′. Since A (B) ≥ A (Bk), we have that j

A(B)←→ j′, yielding that j′ ∈ Jl′ (A (B)).

This implies that Jl (Bk) ⊆ Jl′ (A (B)).

2. j ∈ JmB+1 (A (B)). Consider j′ ∈ Jl (Bk). It follows that j
Bk←→ j′. Since A (B) ≥

A (Bk), we have that j
A(B)←→ j′, yielding that j′ ∈ JmB+1

(A (B)). Otherwise, since

j
A(B)←→ j′, if j′ 6∈ JmB+1

(B), then j′ would be essential under A (B) and so would be

j, a contradiction. This implies that Jl (Bk) ⊆ JmB+1 (A (B)). �

Lemma 5. If T : Rn̄ → Rn̄ is normalized, monotone, and continuous, then there exists
a compact and convex set M (T ) of n̄ × n̄ stochastic matrices such that for each f ∈ Rn̄

there exists M (f) ∈ M (T ) such that T (f) = M (f) f . Moreover, if j is constant with

respect to j′, then mjj′ = 0 for all M ∈M (T ).

Proof. Let j ∈ J . Define the binary relation %∗j on RΩ by f %∗j g if and only if

Tj (λf + (1− λ)h) ≥ Tj (λg + (1− λ)h) for all λ ∈ (0, 1] and h ∈ Rn̄. By [2] and since Tj
is normalized, monotone, and continuous, we have that there exists a compact and convex

2



set Cj of ∆ ({1, ..., n̄}) such that

f %∗j g ⇐⇒ 〈f, p〉 ≥ 〈g, p〉 ∀p ∈ Cj (27)

and

Tj (f) = αj (f) min
p∈Cj
〈f, p〉+ (1− αj (f)) max

p∈Cj
〈f, p〉 ∀f ∈ Rn̄ (28)

where αj : Rn̄ → [0, 1]. Observe also that if j is constant with respect to j′, then ej
′ ∼∗j 0.

By (27), it follows that

pj′ = 0 ∀p ∈ Cj. (29)

Since Cj is compact, for each f ∈ Rn̄ define pmin,f , pmax,f ∈ Cj such that 〈f, pmin,f〉 =

minp∈Cj 〈f, p〉 and 〈f, pmax,f〉 = maxp∈Cj 〈f, p〉. By (28) and since Cj is convex, it follows
that pj,f = αj (f) pmin,f+(1− αj (f)) pmax,f ∈ Cj such that Tj (f) = 〈f, pj,f〉 for all f ∈ Rn̄.
Fix f ∈ Rn̄. Since j was arbitrarily chosen, define M (f) to be the matrix whose j-th row

entries correspond to the entries of pj,f . It follows that T (f) = M (f) f . Moreover, M (f)

belongs to the setM (T ) of matricesM whose j-th row belongs to Cj. Since each of these

sets is compact and convex, so is M (T ). Since f was arbitrarily chosen, the statement

follows. By construction ofM (T ) and (29), it follows that if j is constant with respect to

j′, then mjj′ = 0 for all M ∈M (T ). �
Proof of Proposition 5. For each j, j′ ∈ J if j is strongly monotone with respect

to j′, consider εjj′ ∈ (0, 1) as in (20) otherwise let εjj′ = 1/2. Define M̃ to be such

that m̃jj′ = ajj′εjj′ for all j, j′ ∈ J where ajj′ is the jj′-th entry of A (T ). Since each

row of A (T ) is not null, for each j ∈ J there exists j′ ∈ J such that ajj′ = 1 and,

in particular, m̃jj′ > 0. This implies that
∑n̄

l=1 m̃jl > 0 for all j ∈ J . Define also

ε = min
{

minj∈J
∑n̄

l=1 m̃jl, 1/2
}
∈ (0, 1). Define the stochastic matrix M̄ to be such that

m̄jj′ = m̃jj′/
∑n̄

l=1 m̃jl for all j, j′ ∈ J . Clearly, we have that for each j, j′ ∈ J , m̄jj′ > 0

if and only if m̃jj′ > 0 if and only if ajj′ = 1. This yields that A
(
M̄
)

= A (T ). Next,

consider f, g ∈ Rn̄ such that f ≥ g. Define g0 = g. For each j′ ∈ {1, ..., n̄− 1} define
gj
′ ∈ Rn̄ to be such that gj

′

j = fj for all j ≤ j′ and gj
′

j = gj for all j ≥ j′ + 1. Define

3



gn̄ = f . Note that f = gn̄ ≥ ... ≥ g1 ≥ g0 = g. It follows that

Tj (f)− Tj (g) =

n̄∑
j′=1

[
Tj

(
gj
′
)
− Tj

(
gj
′−1
)]
≥

n̄∑
j′=1

ajj′εjj′
(
gj
′

j′ − g
j′−1
j′

)
=

n̄∑
j′=1

m̃jj′ (fj′ − gj′)

=

(
n̄∑
l=1

m̃jl

)(
n̄∑

j′=1

m̄jj′ (fj′ − gj′)
)
≥ ε

n̄∑
j′=1

m̄jj′ (fj′ − gj′) ∀j ∈ J.

This implies that

f ≥ g =⇒ T (f)− T (g) ≥ εM̄ (f − g) = ε
(
M̄f − M̄g

)
. (30)

Define S : Rn̄ → Rn̄ by S (f) = T (f)−εM̄f
1−ε for all f ∈ Rn̄. By definition of S and (30)

and since M̄ is a stochastic matrix and T is normalized, monotone, and continuous, it is

immediate to see that S is normalized, monotone, and continuous. We can rewrite T to

be such that

T (f) = εM̄f + (1− ε)S (f) ∀f ∈ Rn̄. (31)

Consider the setM (S) of Lemma 5. DefineM (T ) = εM̄ + (1− ε)M (S). SinceM (S)

is compact and convex, A (T ) = A
(
M̄
)
, and ε ∈ (0, 1), it follows thatM (T ) is compact

and convex and A (M) ≥ A
(
M̄
)

= A (T ) for all M ∈ M (T ). By (31) and since for each

f ∈ Rn̄ there exists M̂ (f) ∈ M (S) such that S (f) = M̂ (f) f , for each f ∈ Rn̄ we have
that T (f) = M (f) f where M (f) = εM̄ + (1− ε) M̂ (f) ∈M (T ).

Finally, consider j, j′ ∈ J . Since A (M) ≥ A (T ), if the jj′-entry of A (T ) is 1 so is

the one of A (M) for all M ∈ M (T ). Assume that the jj′-entry of A (T ) is 0. Since

A (T ) = A
(
M̄
)
, the jj′-entry of A

(
M̄
)
is 0 too. Since T is dichotomic, it follows that for

each f ∈ Rn̄ and for each δ ≥ 0

ε

n̄∑
l=1

m̄jlfl + (1− ε)Sj
(
f + δej

′
)

= ε
n̄∑
l=1

m̄jl

(
fl + δej

′

l

)
+ (1− ε)Sj

(
f + δej

′
)

= Tj

(
f + δej

′
)

= Tj (f) = ε

n̄∑
l=1

m̄jlfl + (1− ε)Sj (f) .

Since ε ∈ (0, 1), we can conclude that Sj
(
f + δej

′)
= Sj (f) for all f ∈ Rn̄ and for all

δ ≥ 0, that is, j is constant with respect to j′ under S. By Lemma 5, we have thatmjj′ = 0
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for all M ∈ M (S). SinceM (T ) = εM̄ + (1− ε)M (S) and m̄jj′ = 0, we can conclude

that the jj′-entry of A (M) is 0 for allM ∈M (T ). Since j and j′ were arbitrarily chosen,

we can conclude that A (M) = A (T ) for all M ∈M (T ). �

Lemma 6. Let M and M̄ be two n̄ × n̄ stochastic matrices. If A
(
M̄
)
is symmetric and

0 < d
(
M̄
)
, then we have that A

(
M̄M

)
≥ A (M) and

1. δ
(
M̄M

)
≥ δ (M), provided A

(
M̄M

)
= A (M).

2. δ
(
M̄M

)
≥ δ (M) δ

(
M̄
)
, provided A

(
M̄M

)
> A (M).

Moreover, if {Mk}∞k=1 is a sequence of n̄ × n̄ stochastic matrices such that A (Mk) is

symmetric, δ (Mk) ≥ δ > 0, and d (Mk) > 0 for all k ∈ N, then

δ

(
m∏
k=1

Mk

)
≥ δn̄

2 ∀m ∈ N. (32)

Proof. Since d
(
M̄
)
> 0, it follows that m̄jj > 0 for all j ∈ J . This implies that the

jj-th entry of A
(
M̄
)
is 1 for all j ∈ J , and, in particular, if the jj′-th entry of A (M) is

strictly positive, so is the one of A
(
M̄
)
A (M). By point 1 of Lemma 3, we can conclude

that A
(
M̄M

)
≥ A (M). We have two cases:

1. A
(
M̄M

)
= A (M). Set M̂ = M̄M and consider m̂jj′ > 0. We next prove that for

each l ∈ {1, ..., n̄}
mlj′ = 0 =⇒ m̄jl = 0. (33)

By contradiction, assume that there exists l̄ ∈ {1, ..., n̄} such that ml̄j′ = 0 and

m̄jl̄ > 0. Since A
(
M̂
)

= A
(
M̄M

)
= A (M) and m̂jj′ > 0 and ml̄j′ = 0, we would

have that mjj′ > 0 and m̂l̄j′ = 0. Since A
(
M̄
)
is symmetric, we would also have

that m̄l̄j > 0, yielding that m̂l̄j′ ≥ m̄l̄jmjj′ > 0, a contradiction with m̂l̄j′ = 0. By

(33), we can conclude that m̂jj′ =
∑n̄

l=1 m̄jlmlj′ ≥
∑n̄

l=1 m̄jlδ (M) = δ (M), proving

the statement.

2. A
(
M̄M

)
> A (M). Set M̂ = M̄M . In this case, if m̂jj′ > 0, then m̄jl̄ml̄j′ > 0

for some l̄ ∈ {1, ..., n̄} and, in particular, m̄jl̄,ml̄j′ > 0. It follows that m̂jj′ =∑n̄
l=1 m̄jlmlj′ ≥ m̄jl̄ml̄j′ ≥ δ

(
M̄
)
δ (M), proving the statement.
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Consider a sequence {Mk}∞k=1 of n̄ × n̄ stochastic matrices such that A (Mk) is sym-

metric, δ (Mk) ≥ δ > 0, and d (Mk) > 0 for all k ∈ N. By induction and the previous

part, we have that A

(
m+1∏
k=1

Mk

)
= A

(
Mm+1

m∏
k=1

Mk

)
≥ A

(
m∏
k=1

Mk

)
for all m ∈ N. Define

f : N→ {0, 1} by f (1) = 1 and

f (m+ 1) =


1 if A

(
m+1∏
k=1

Mk

)
> A

(
m∏
k=1

Mk

)

0 if A

(
m+1∏
k=1

Mk

)
= A

(
m∏
k=1

Mk

) ∀m ∈ N.

By induction, we prove that

δ

(
m∏
k=1

Mk

)
≥ δ

∑m
k=1 f(k) ∀m ∈ N. (34)

Initial step. Assume m = 1. Since f (1) = 1, δ

(
m∏
k=1

Mk

)
= δ (M1) ≥ δ = δ

∑m
k=1 f(k).

Inductive step. Assume the statement is true for m ∈ N. We prove it is true for m + 1.

Since A

(
m+1∏
k=1

Mk

)
≥ A

(
m∏
k=1

Mk

)
, we have two cases:

1. A

(
m+1∏
k=1

Mk

)
> A

(
m∏
k=1

Mk

)
. In this case, we have that f (m+ 1) = 1. By the first

part of the statement and inductive hypothesis, we have that

δ

(
m+1∏
k=1

Mk

)
= δ

(
Mm+1

m∏
k=1

Mk

)
≥ δ (Mm+1) δ

(
m∏
k=1

Mk

)
≥ δδ

∑m
k=1 f(k) = δ

∑m+1
k=1 f(k).

2. A

(
m+1∏
k=1

Mk

)
= A

(
m∏
k=1

Mk

)
. In this case, we have that f (m+ 1) = 0. By the first

part of the statement and inductive hypothesis, we have that

δ

(
m+1∏
k=1

Mk

)
= δ

(
Mm+1

m∏
k=1

Mk

)
≥ δ

(
m∏
k=1

Mk

)
≥ δ

∑m
k=1 f(k) = δ

∑m+1
k=1 f(k).
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Thus, (34) follows by induction. Since

{
A

(
m∏
k=1

Mk

)}
m∈N

is an increasing sequence

with upper bound the n̄ × n̄ square matrix whose entries are all 1s, we observe that

f (k) = 1 for at most n̄2 indices, yielding that
∑m

k=1 f (k) ≤ n̄2 for all m ∈ N, proving
(32). �

Lemma 7. If V̄ : RΩ → R is an ex-ante expectation, then it is continuous at constant

functions.

Proof. Consider k ∈ R and a sequence of functions {fm}m∈N ⊆ RΩ such that fm →
k1Ω. Since fm → k1Ω and Ω is finite, we have that limm→∞minω∈Ω fm (ω) = k =

limm→∞maxω∈Ω fm (ω). Since V̄ is normalized and monotone, we also have thatminω∈Ω fm (ω) ≤
V̄ (fm) ≤ maxω∈Ω fm (ω) for all m ∈ N. By passing to the limit and since V̄ is normalized,
we have that limm→∞ V̄ (fm) = k = V̄ (k1Ω), proving continuity at k1Ω. �
Proof of Lemma 2. (i) implies (ii). Let j, j′ ∈ J . Since ajj′ = 1, we have that j is strongly

monotone with respect to j′. By contradiction, assume that Π (ωj) 6= Π (ωj′). Since Π is

a partition, it follows that Π (ωj)∩Π (ωj′) = ∅. Since (V,Π) is an interim expectation and

j is strongly monotone with respect to j′, we thus have that there exists εjj′ ∈ (0, 1) such

that 0 = V
(
ωj, 01Π(ωj) + 1{ωj′}1Π(ωj)

c

)
−V (ωj, 0) = V

(
ωj, 1{ωj′}

)
−V (ωj, 0) ≥ εjj′ > 0,

a contradiction.

(ii) implies (i). Note that Π (ωj) = Π (ωj′) only if ωj′ ∈ Π (ωj). Since (V,Π) is an

interim expectation with full support, we have that each ω̄ ∈ Π (ωj) is V (ωj, ·)-essential
and, in particular, so is ωj′ , yielding that ajj′ = 1.

By the previous part of the proof and since Π (ωj) = Π (ωj) for all j ∈ J and A (V ) is

{0, 1}-valued, we thus have that both ajj′ = 1 and aj′j = 1 hold if and only if Π (ωj) =

Π (ωj′), proving that A (V ) is symmetric, ajj = 1 for all j ∈ J , and Π (V ) = Π. Finally,

for all j, j′ ∈ J , if j is not strongly monotone with respect to j′, we can conclude that

ajj′ = 0 and ωj′ 6∈ Π (ωj). Since V
(
ω, f1Π(ω) + h1Π(ω)c

)
= V (ω, f) for all ω ∈ Ω and for

all f, h ∈ RΩ, this implies that

V
(
ωj, f + δ1{ωj′}

)
= V

(
ωj, f1Π(ωj) + δ1{ωj′}1Π(ωj) + 01Π(ωj)

c

)
= V (ωj, f)

for all f ∈ RΩ and for all δ ≥ 0, yielding that j is constant with respect to j′. This implies

that V is dichotomic. �
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Proof of Theorem 3. Define
t̂ : = 2n̄

2

.

By Proposition 5, we have that In̄ ≤ A (Ti) = A (M) for allM ∈M (Ti) and for all i ∈ I.
SinceM (Ti) is compact for all i ∈ I and I is finite, this implies that

δ : = inf
i∈I,M∈M(Ti)

δ (M) > 0.

Define also

δ̂ : = δt̂n̄
2

> 0.

Consider f ∈ Rn̄ and an I-sequence (it)t∈N. Define ft = Tit ◦ ...◦Ti1 (f) ∈ Rn̄ for all t ∈ N
and set f0 = f . By Proposition 5, there exists a sequence {Mt}t∈N of n̄ × n̄ stochastic

matrices such that Mt ∈ M (Tit) and Tit (ft−1) = Mtft−1 for all t ∈ N. Set t0 = 0.

Define recursively the following subsequence th+1 = min {m > th : {ith+1, ..., im} ⊇ I}, for
all h ≥ 0. We next proceed by steps.

Step 1 : A
(

Π
th+1

t=th+1Mt

)
≥ In̄ and Π

(
A
(

Π
th+1

t=th+1Mt

))
= {Ω} for all h ∈ N0.

Proof of the Step. Fix h ∈ N0. Since In̄ ≤ A (Tit) = A (Mt) for all t ∈ {th + 1, ..., th+1},
we have that A (Mt) has a strictly positive diagonal and it is symmetric for all t ∈
{th + 1, ..., th+1}. By Lemma 4 and since {th + 1, ..., th+1} ⊇ I and the meet of the par-

titions {Π (Ti)}i∈I is {Ω}, so is the meet of the partitions {Π (Mt)}th+1
t=th+1, yielding that

Π
(
A
(
Mth+1

...Mth+1

))
= {Ω}. By Lemma 4, we also have that A

(
Π
th+1

t=th+1Mt

)
≥ A (Mt) ≥

In̄ for all t ∈ {th + 1, ..., th+1}. �
Step 2 : δ

(
Π
th+1

t=th+1Mt

)
≥ δn̄

2
for all h ∈ N0.

Proof of the Step. Fix h ∈ N0. By Lemma 6 and since A (Mt) = A (Tit) is symmetric,

δ (Mt) ≥ δ > 0, and d (Mt) > 0 for all t ∈ N, the statement follows. �
Define M̄h = Π

th+1

t=th+1Mt for all h ∈ N0. By Steps 1 and 2 and [7, Lemma 4.8 and

Theorem 4.19], we have that Πm
h=0M̄h converges to a stochastic matrix M whose rows

coincide to each other and, in particular, that
∣∣∣∣M − Πτ−1

h=0M̄h

∣∣∣∣
∞ ≤

(
1− δ̂

) τ
t̂
−1

for all

τ ∈ N. This implies thatΠm
l=1Ml →M and, in particular, that for each τ, t ∈ N, if i appears

at least τ times in (i1, ..., it) for all i ∈ I, then ||M − Πt
l=1Mt||∞ ≤

∣∣∣∣M − Πτ−1
h=0M̄h

∣∣∣∣
∞ ≤(

1− δ̂
) τ
t̂
−1

. Finally, it follows that limm→∞ Tim ◦ ... ◦ Ti1 (f) = limm→∞Πm
l=1Mlf = Mf,

and, in particular, that for each τ, t ∈ N, if i appears at least τ times in (i1, ..., it) for
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all i ∈ I, then ||limm→∞ Tim ◦ ... ◦ Ti1 (f)− Tit ◦ ... ◦ Ti1 (f)||∞ = ||Mf − (Πt
l=1Mt) f ||∞ ≤(

1− δ2n̄
2
n̄2
)τ2−n̄

2−1

||f ||∞ proving the statement. �

Lemma 8. The sets V◦ and V◦ are nonempty and V∗ and V ∗ are well defined and respec-
tively a lower and an upper common ex-ante expectation for {(Vi,Πi)}i∈I .

Proof of Lemma 8. Define V◦ (f) = minω∈Ω f (ω) and V ◦ (f) = maxω∈Ω f (ω) for all

f ∈ RΩ. It is immediate to see that both V◦ and V ◦ are ex-ante expectations. Next, fix

f ∈ RΩ, and observe that since

Vi (ω, f) ∈
[

min
ω′∈Ω

f (ω′) ,max
ω′∈Ω

f (ω′)

]
∀ω ∈ Ω,∀i ∈ I,

we have that V◦ (Vi (f)) = minω∈Ω Vi (ω, f) ≥ minω′∈Ω f (ω′) = V◦ (f) and V ◦ (Vi (f)) =

maxω∈Ω Vi (ω, f) ≤ maxω′∈Ω f (ω′) = V ◦ (f) for all i ∈ I. This proves that V◦ and V ◦ are
respectively lower and upper common ex-ante expectations for {(Vi,Πi)}i∈I , hence that
V◦ and V ◦ are nonempty. We next show that V∗ and V ∗ are well defined lower and upper

common ex-ante expectations for {(Vi,Πi)}i∈I . First, observe that

V∗ (k1Ω) = sup
V◦∈V◦

V◦ (k1Ω) = sup
V◦∈V◦

k = k ∀k ∈ R

and that, for all f, g ∈ RΩ with f ≥ g, we have V∗ (f) = supV◦∈V◦ V◦ (f) ≥ supV◦∈V◦ V◦ (g) =

V∗ (g), where the inequality follows from monotonicity of each V◦ ∈ V◦. With this, V∗
is an ex-ante expectation. Next, fix f ∈ RΩ and V◦ ∈ V◦. For each i ∈ I, we have

V◦ (f) ≤ V◦ (Vi (f)) ≤ supV ′◦∈V◦ V
′
◦ (Vi (f)) = V∗ (Vi (f)). Given that V◦ ∈ V◦ was arbitrarily

chosen, it follows that V∗ (f) = supV◦∈V◦ V◦ (f) ≤ V∗ (Vi (f)) proving that V∗ is a lower

common ex-ante expectation. With exactly the same steps we can show that V ∗ is an

upper common ex-ante expectation. �

Lemma 9. Let {(Vi,Πi)}i∈I be a collection of interim expectations that exhibits conver-

gence to a deterministic limit. The following facts are true

1. If Vi is concave for all i ∈ I, then V∗ is concave. If in addition Vi is positive homo-
geneous (resp. translation invariant) for all i ∈ I, then V∗ is positive homogeneous
(resp. translation invariant).
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2. If Vi is Πinf-affi ne for all i ∈ I, then V∗ ((1− λ) f + λg) = (1− λ)V∗ (f) + λV∗ (g)

for all λ ∈ (0, 1) and for all f, g ∈ RΩ where g is Πinf-measurable.

Proof. 1. Consider an I-sequence ι = (ik)k∈N ∈ IN. Consider f, g ∈ RΩ and λ ∈ (0, 1).

Since each Vi1 is concave, we have that Vi1 (λf + (1− λ) g) ≥ λVi1 (f)+(1− λ)Vi1 (g). By

induction, assume that Vik ◦ Vik−1
◦ ... ◦ Vi2 ◦ Vi1 (λf + (1− λ) g) ≥ λVik ◦ Vik−1

◦ ... ◦ Vi2 ◦
Vi1 (f) + (1− λ)Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (g). Since Vik+1
is a concave interim expectation,

we have that

Vik+1
◦ Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (λf + (1− λ) g)

≥ λVik+1
◦ Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (f) + (1− λ)Vik+1
◦ Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (g) .

By passing to the limit, we obtain that V̄ι (λf + (1− λ) g) 1Ω ≥ λV̄ι (f) 1Ω+(1− λ) V̄ι (g) 1Ω,

proving that V̄ι is concave. Since ι was arbitrarily chosen, we have that V̄ι is con-

cave for every I-sequence ι. Finally, given that, by Proposition 1, we have V∗ (f) =

infι∈IN:ι is an I-sequence V̄ι (f) for all f ∈ RΩ, it follows that V∗ is concave. With similar steps

we can prove the second part of the first item.

2. Consider an I-sequence ι = (ik)k∈N ∈ IN. Consider f, g ∈ RΩ where g is Πinf-

measurable, and λ ∈ (0, 1). Since each Vi is Πinf-affi ne, we have that Vi1 (λf + (1− λ) g) =

λVi1 (f)+(1− λ)Vi1 (g). By induction, assume that Vik◦Vik−1
◦...◦Vi2◦Vi1 (λf + (1− λ) g) =

λVik ◦Vik−1
◦ ... ◦Vi2 ◦Vi1 (f) + (1− λ)Vik ◦Vik−1

◦ ... ◦Vi2 ◦Vi1 (g). Since Vik+1
is Πinf-affi ne

and Vik ◦ Vik−1
◦ ... ◦ Vi2 ◦ Vi1 (g) is Πinf-measurable, we have that

Vik+1
◦ Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (λf + (1− λ) g) = Vik+1

(
Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (λf + (1− λ) g)
)

= λVik+1
◦ Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (f) + (1− λ)Vik+1
◦ Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (g) .

By Theorem 1 we can pass to the limit and obtain that V̄ι (λf + (1− λ) g) 1Ω = λV̄ι (f) 1Ω+

(1− λ) V̄ι (g) 1Ω, proving that V̄ι is Πinf-affi ne. Since ι was arbitrarily chosen, we have that

V̄ι is Πinf-affi ne for every I-sequence ι. Finally, given that, by Proposition 1, we have

V∗ (f) = infι∈IN:ι is an I-sequence V̄ι (f) for all f ∈ RΩ, it follows that

V∗ ((1− λ) f + λg) ≥ λ inf
ι∈IN:ι is an I-sequence

V̄ι (f) + (1− λ) inf
ι∈IN:ι is an I-sequence

V̄ι (g)

= (1− λ)V∗ (f) + λV∗ (g)
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for all λ ∈ (0, 1) and for all f, h ∈ RΩ where g is Πinf-measurable. The statement for V ∗

follows from completely symmetric steps. �

Lemma 10. Let f ∈
(
RΩ
)n
. The following statements are equivalent:

(i) S1 (f) = f ;

(ii) There exists m ∈ R such that fi = fi′ = m1Ω for all i, i′ ∈ I.

Proof. (i) implies (ii). By assumption, we have that fi = Vi (
∑n

l=1 wilfl) for all i ∈ I. By
Proposition 5 and Lemma 2, for each i ∈ I there exists an n̄ × n̄ stochastic matrix Mi

whose diagonal is strictly positive and it is such that: 1) A (Vi) = A (Mi) is symmetric, 2)

Π (Mi) = Πi, and 3) Vi (
∑n

l=1wilfl) = Mi (
∑n

l=1 wilfl) =
∑n

l=1wilMifl. It follows that f is

also a fixed point of the operator S̃ :
(
RΩ
)n → (

RΩ
)n
where S̃i (g) =

∑n
l=1wilMigl for all

i ∈ I. We next show that S̃ (f) = f only if there exists m ∈ R such that fi = fi′ = m1Ω

for all i, i′ ∈ I. By contradiction, assume that there exist ı̄, ı̄′ ∈ I and ωj̄, ωj̄′ ∈ Ω such

that fı̄
(
ωj̄
)

= maxi∈I maxj∈J fi (ωj) > mini∈I minj∈J fi (ω) = fı̄′
(
ωj̄′
)
. By induction, note

that for each t ∈ N

S̃ti (g) =
∑

i∈It+1:i1=i

wi1i2 ...witit+1Mi1 ...Mitgit+1 ∀g ∈
(
RΩ
)n

and
∑

i∈It+1:i1=iwi1i2 ...witit+1 = 1. Since W is strongly connected, there exists a sequence

of agents (̄ı1, ..., ı̄t̄+1) such that t̄ ∈ N, {ı̄1, ..., ı̄t̄} ⊇ I, and ı̄1 = ı̄t̄+1 = ı̄ with wı̄l ı̄l+1
> 0

for all l ∈ {1, ..., t̄}. By Lemma 4 and since {ı̄1, ..., ı̄t̄} ⊇ I, we have that Π (A (Mı̄1 ...Mı̄t̄))

is coarser than Π (Mi) = Πi for all i ∈ I. Since Πsup = {Ω}, we can conclude that
Π (A (Mı̄1 ...Mı̄t̄)) = {Ω}, yielding that Mı̄1 ...Mı̄t̄ is strongly connected. By Lemma 4

and since the diagonal of each Mı̄l is strictly positive, we also have that Mı̄1 ...Mı̄t̄ has

a strictly positive diagonal. This implies that Mı̄1 ...Mı̄t̄ is primitive, that is, there ex-

ists τ ∈ N such that each entry of (Mı̄1 ...Mı̄t̄)
τ is strictly positive. Since W is strongly

connected there exists a sequence of agents
(
ı̂1, ..., ı̂t̂+1

)
such that t̂ ∈ N, ı̂1 = ı̄, and

ı̂t̂+1 = ı̄′ with wı̂l ı̂l+1
> 0 for all l ∈

{
1, ..., t̂

}
. Next, recall that by Euclid’s algorithm

for each l ∈ {1, ...., τ t̄+ 1} there exists unique ql ∈ N0 and r′l ∈ {0, ...., t̄− 1} such
that l = qlt̄ + r′l. We define rl = r′l if r

′
l ∈ {1, ...., t̄− 1} and rl = t̄ if r′l = 0. Con-

sider the sequence of agents
(
ı̃1, ..., ı̃τ t̄+t̂+1

)
where ı̃l = ı̄rl for all l ∈ {1, ...., τ t̄+ 1} and
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ı̃l = ı̂l−τ t̄ for all l ∈
{
τ t̄+ 1, ..., τ t̄+ 1 + t̂

}
. By construction, we have that wı̃l ı̃l+1

> 0

for all l ∈
{

1, ..., τ t̄+ 1 + t̂
}
. Since f is a fixed point of S̃, note that S̃τ (f) = f for all

τ ∈ N and fı̄ = S̃τ t̄+t̂ı̄ (f) =
∑

i∈Iτt̄+t̂+1:i1=ı̄wi1i2 ...wiτt̄+t̂iτt̄+t̂+1
Mi1 ...Miτt̄+t̂

fiτt̄+t̂+1
. Define

f i = Mi1 ...Miτt̄+t̂
fiτt̄+t̂+1

for all i ∈ Iτ t̄+t̂+1 such that i1 = ı̄. We have that

fı̄ =
∑

i∈Iτt̄+t̂+1:i1=ı̄

wi1i2 ...wiτt̄+t̂iτt̄+t̂+1
f i. (35)

Since each Mi is an n̄× n̄ stochastic matrix and maxj∈J fi (ωj) ≤ fı̄
(
ωj̄
)
for all i ∈ I, we

have that maxj∈J f
i (ωj) ≤ fı̄

(
ωj̄
)
for all i ∈ Iτ t̄+t̂+1 such that i1 = ı̄. We focus on the

summand wı̃1 ı̃2 ...wı̃τt̄+t̂ ı̃τt̄+t̂+1
Mı̃1 ...Mı̃τt̄+t̂

fı̃τt̄+t̂+1
= wı̃1 ı̃2 ...wı̃τt̄+t̂ ı̃τt̄+t̂+1

f ı̃. By construction, we

have that wı̃1 ı̃2 ...wı̃τt̄+t̂ ı̃τt̄+t̂+1
> 0 and Mı̃1 ...Mı̃τt̄+t̂

fı̃τt̄+t̂+1
= (Mı̄1 ...Mı̄t̄)

τ Mı̂1 ...Mı̂t̂
fı̂t̂+1

. Set

g = Mı̂1 ...Mı̂t̂
fı̂t̂+1

= Mı̂1 ...Mı̂t̂
fı̄′ . Since eachMı̂l is an n̄× n̄ stochastic matrix with strictly

positive diagonal, so is Mı̂1 ...Mı̂t̂
. Since maxj∈J fı̄′ (ωj) ≤ fı̄

(
ωj̄
)
and fı̄′

(
ωj̄′
)
< fı̄

(
ωj̄
)
,

this implies that minω∈Ω g (ω) ≤ g
(
ωj̄′
)
< fı̄

(
ωj̄
)
and maxω∈Ω g (ω) ≤ fı̄

(
ωj̄
)
. Since

each entry of (Mı̄1 ...Mı̄t̄)
τ is strictly positive and f ı̃ = (Mı̄1 ...Mı̄t̄)

τ g, we can conclude

that f ı̃ (ω) < fı̄
(
ωj̄
)
for all ω ∈ Ω. By (35) and since wı̃1 ı̃2 ...wı̃τt̄+t̂ ı̃τt̄+t̂+1

> 0 and

maxj∈J f
i (ωj) ≤ fı̄

(
ωj̄
)
for all i ∈ Iτ t̄+t̂+1, this implies that

0 =
∑

i∈Iτt̄+t̂+1:i1=ı̄

wi1i2 ...wiτt̄+t̂iτt̄+t̂+1

[
f i
(
ωj̄
)
− fı̄

(
ωj̄
)]
≤ wı̃1 ı̃2 ...wı̃τt̄+t̂ ı̃τt̄+t̂+1

[
f ı̃
(
ωj̄
)
− fı̄

(
ωj̄
)]
< 0,

a contradiction.

(ii) implies (i). Since each Vi is normalized andW is a stochastic matrix, the statement

is trivial. �

Lemma 11. Fix i, j ∈ I and ω, ω′ ∈ Ω. The following are equivalent:

(i) wij > 0 and ω′ ∈ Πi (ω);

(ii) a(i,ω)(j,ω′) (S1) = 1;

(iii) ā(i,ω)(j,ω′) (S1) = 1.

Proof. (i) implies (ii). By Lemma 2, there exists ε > 0 such that

Vi

(
ω, f + δeω

′
)
− Vi (ω, f) ≥ εδ ∀f ∈ RΩ,∀δ ≥ 0.
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Next, fix f = (fl)
n
l=1 ∈

(
RΩ
)n
and δ ≥ 0, and observe that

S1,i,ω

(
f + δej,ω

′
)
− S1,i,ω (f) = Vi

(
ω,

n∑
l=1

wilfl + wijδe
ω′

)
− Vi

(
ω,

n∑
l=1

wilfl

)
≥ εwijδ

proving the statement by setting ε(i,ω)(j,ω′) = εwij.

(ii) implies (iii). Immediate.

(iii) implies (i). We prove the statement by contradiction. Fix f = (fl)
n
l=1 ∈

(
RΩ
)n

and δ ≥ 0 and observe that S1,i,ω

(
f + δej,ω

′) − S1,i,ω (f) = Vi
(
ω,
∑n

l=1wilfl + wijδe
ω′
)
−

Vi (ω,
∑n

l=1wilfl). Therefore, if either wij = 0 or ω′ 6∈ Πi (ω), then S1,i,ω

(
f + δej,ω

′)
=

S1,i,ω (f). Given that f and δ were arbitrarily chosen, we obtain a contradiction. �

Lemma 12. There exists a unique class of indices Z, ∅ 6= Z ⊆ I × Ω, that is closed and

strongly connected with respect to A (S1) and, in addition, every row of A (S1) is not null.

Proof. We have that Sβ (f) = S1

(
(1− β) f̂ + βf

)
for all β ∈ (0, 1). Fix λ ∈ (0, 1) and

define Sλ1 = λI + (1− λ)S1. Clearly, we have that, for each f ∈
(
RΩ
)n
, Sλ1 (f) = f if and

only if S1 (f) = f . Therefore, by Lemma 10, Sλ1 (f) = f if and only if there exists m ∈ R
such that fi = fi′ = m1Ω for all i, i′ ∈ I. By [1, Corollary 1 and part 2 of Proposition 1],
it follows that there exists a unique class of indices Z ′, ∅ 6= Z ′ ⊆ I ×Ω, that is closed and

strongly connected with respect to Ā
(
Sλ1
)
. It is easy to see that every row of Ā (S1) is not

null and that Z ′ is also closed and strongly connected with respect to Ā (S1). In addition,

by Lemma 11, every row of A (S1) is not null and Z ′ is closed and strongly connected with

respect to A (S1). Finally, the statement follows by setting Z = Z ′. �

Lemma 13. We have {W q ∈ W : q ∈ Q} ⊆ ∂S1 (0).

Proof. For every (i, ω) ∈ I × Ω, by [5, Theorem 2.3.9], we have that ∂S1,i,ω (0) =

{ρ ∈ ∆ (I × Ω) : ∃q̃i,ω ∈ ∂Vi (ω, 0) , ρ (j, ω′) = wij q̃i,ω (ω′)} where ∂Vi (ω, 0) denotes the su-

perdifferential of the concave functional Vi (ω, ·) evaluated at 0 ∈ RΩ. With this, the

statement follows by the definition of ∂S1 (0), the definition of each W q in equation (17),

and by [32, Theorem 18]. �

Lemma 14. If β ∈ (0, 1], then Sβ is a β-contraction. In particular, there exists a unique

σβ ∈
(
RΩ
)n
such that Sτβ

(
f̂
) ‖ ‖∗→ σβ, Sβ

(
σβ
)

= σβ, and
∥∥σβ∥∥∗ ≤ ∥∥∥f̂∥∥∥∞.
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Proof. Given that {(Vi,Πi)}i∈I is a variational collection of interim expectations, it follows
that Vi (ω, ·) is concave and translation invariant for all i ∈ I and for all ω ∈ Ω. Therefore,

by [4, p. 346], we have that

‖Sβ,i (f)− Sβ,i (g)‖∞ =

∥∥∥∥∥Vi
(

(1− β) f̂ + β
n∑
l=1

wilfl

)
− Vi

(
(1− β) f̂ + β

n∑
l=1

wilgl

)∥∥∥∥∥
∞

≤
∥∥∥∥∥(1− β) f̂ + β

n∑
l=1

wilfl − (1− β) f̂ − β
n∑
l=1

wilgl

∥∥∥∥∥
∞

=

∥∥∥∥∥β
n∑
l=1

wil (fl − gl)
∥∥∥∥∥
∞

≤ β

n∑
l=1

wil ‖fl − gl‖∞ ≤ β ‖f − g‖∗ ∀i ∈ I,∀f ,g ∈
(
RΩ
)n
,

proving that ‖Sβ (f)− Sβ (g)‖∗ = supi∈I ‖Sβ,i (f)− Sβ,i (g)‖∞ ≤ β ‖f − g‖∗ for all f ,g ∈(
RΩ
)n
. By the Banach contraction principle, for each β ∈ (0, 1) we have that Sτβ

(
f̂
) ‖ ‖∗→ σβ

as well as Sβ
(
σβ
)

= σβ where σβ is the unique fixed point of Sβ for all β ∈ (0, 1). Finally,

by [4, p. 346] and since Vi is normalized, we have that

‖Sβ,i (f)‖∞ =

∥∥∥∥∥Vi
(

(1− β) f̂ + β
n∑
l=1

wilfl

)∥∥∥∥∥
∞

≤ (1− β)
∥∥∥f̂∥∥∥

∞
+β

n∑
l=1

wil ‖fl‖∞ ∀i ∈ I,∀f ∈
(
RΩ
)n
.

By induction, this implies that
∥∥∥Sτβ (f̂)∥∥∥∗ ≤ ∥∥∥f̂∥∥∥∞ for all τ ∈ N. By passing to the limit,

the statement follows. �

Lemma 15. We have V∗
(
Sτβ,i

(
f̂
))
≥ V∗

(
f̂
)
for all i ∈ I, for all β ∈ (0, 1), and

for all τ ∈ N where f̂ ∈
(
RΩ
)n
is such that f̂i = f̂ for all i ∈ I. Moreover, we have

V∗

(
σβi

)
≥ V∗

(
f̂
)
for all i ∈ I and for all β ∈ (0, 1).

Proof. Fix β ∈ (0, 1). By Theorem 1, {(Vi,Πi)}i∈I exhibits convergence to a deterministic
limit, hence, by Lemma 9, V∗ is concave. This implies that for each i ∈ I, and for each
f ∈

(
RΩ
)n

V∗ (Sβ,i (f)) = V∗

(
Vi

(
(1− β) f̂ + β

n∑
l=1

wilfl

))
≥ (1− β)V∗

(
f̂
)

+ β

n∑
l=1

wilV∗ (fl)

We now prove the statement for τ = 1. We have that for each i ∈ I, V∗
(
S1
β,i

(
f̂
))

=
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V∗

(
Sβ,i

(
f̂
))
≥ (1− β)V∗

(
f̂
)

+β
∑n

l=1wilV∗

(
f̂l

)
= V∗

(
f̂
)
. Assume that the statement

is true for τ ∈ N. Observe that for each i ∈ I, V∗
(
Sτ+1
β,i

(
f̂
))

= V∗

(
Sβ,i

(
Sτβ

(
f̂
)))

≥

(1− β)V∗

(
f̂
)

+ β
∑n

l=1wilV∗

(
Sτβ,l

(
f̂
))
≥ V∗

(
f̂
)
. The statement follows by induction.

By Lemma 14, the previous part of the proof, and since by Lemma 9 V∗ is a continuous

ex-ante expectation, we have that V∗
(
σβi

)
= V∗

(
limτ S

τ
β,i

(
f̂
))

= limτ V∗

(
Sτβ,i

(
f̂
))
≥

V∗

(
f̂
)
for all i ∈ I and β ∈ (0, 1) proving the statement. �

E Online appendix: An axiomatic foundation

In this section, we consider a single decision maker with preferences over monetary acts or

utility profiles, that is, RΩ. We model the decision maker preferences via a binary relation

% on RΩ. We next list four important properties:

A 1 (Weak order). The binary relation % is complete and transitive.

A 2 (Certainty equivalent). For each f ∈ RΩ there exists k ∈ R such that f ∼ k1Ω.

A 3 (Continuity). For each f, g, h ∈ RΩ the sets {λ ∈ [0, 1] : λf + (1− λ) g % h} and
{λ ∈ [0, 1] : h % λf + (1− λ) g} are closed.

A 4 (Monotonicity). For each f, g ∈ RΩ and for each h, k ∈ R

f ≥ g =⇒ f % g and h > k =⇒ h1Ω � k1Ω.

On the one hand, transitivity and monotonicity are common assumptions of rationality

while completeness reflects the burden of choice the decision maker faces. On the other

hand, continuity is a technical assumption which will allow us to represent preferences

through a continuous utility function. The assumption of certainty equivalent shares both

features. It allows us to show that preferences admit a utility function, possibly not

continuous, yet it takes a clear behavioral interpretation: the decision maker for each

random variable admits an equivalent amount which received with certainty makes her

indifferent to the random prospect. The above axioms define the following two nested

class of preferences.
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Definition 7. Let % be a binary relation on RΩ. We say that % is a rational preference
if and only if it satisfies weak order, certainty equivalent, and monotonicity. We say that

% is a continuous rational preference if and only if it satisfies weak order, continuity, and
monotonicity.

It is easy to show that continuous rational preferences are rational preferences. Contin-

uous rational preferences were studied by Cerreia-Vioglio, Ghirardato, Maccheroni, Mari-

nacci, and Siniscalchi [2]. The next result is a version of their Proposition 1.

Proposition 6. Let % be a binary relation on RΩ. The following statements are equiva-

lent:

(i) % is a rational preference;

(ii) There exists a normalized and monotone functional Ṽ : RΩ → R such that

f % g ⇐⇒ Ṽ (f) ≥ Ṽ (g) . (36)

Moreover, we have that:

1. The functional Ṽ is continuous if and only if % is a continuous rational preference.

2. The functional Ṽ is the unique normalized functional satisfying (36).

Proof. (ii) implies (i). It is routine.

(i) implies (ii). Since % satisfies certainty equivalent, for each f ∈ RΩ define kf to be

such that kf1Ω ∼ f . Since % satisfies weak order and monotonicity, we have that kf is
unique. Define Ṽ : RΩ → R by Ṽ (f) = kf for all f ∈ RΩ. Since % satisfies weak order
and monotonicity, we have that

f % g ⇐⇒ kf1Ω % kg1Ω ⇐⇒ kf ≥ kg ⇐⇒ Ṽ (f) ≥ Ṽ (g) ,

proving (36). Clearly, if f = k1Ω for some k ∈ R, we have that Ṽ (k1Ω) = Ṽ (f) = kf = k,

proving that Ṽ is normalized. Finally, since % satisfies monotonicity, if f ≥ g, then f % g

and Ṽ (f) ≥ Ṽ (g), proving that Ṽ is monotone.
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1. The “Only if” is routine. “If”. Since % satisfies weak order, continuity, and

monotonicity, we have that % satisfies certainty equivalent. It follows that Ṽ as defined

above represents %. Since % satisfies continuity, it follows that for each f, g ∈ RΩ and for

each c ∈ R{
λ ∈ [0, 1] : Ṽ (λf + (1− λ) g) ≤ c

}
= {λ ∈ [0, 1] : c1Ω % λf + (1− λ) g}

where the latter set is closed. By [3, Lemma 42], we have that Ṽ is lower semicontinuous.

By [3, Appendix A.3], upper semicontinuity follows similarly.

2. Assume that V̂ is normalized and satisfies (36). We have that for each f ∈ RΩ

V̂ (f) = V̂
(
V̂ (f) 1Ω

)
=⇒ f ∼ V̂ (f) 1Ω =⇒ Ṽ (f) = Ṽ

(
V̂ (f) 1Ω

)
= V̂ (f) ,

proving that V̂ = Ṽ . �
We can now discuss conditional preferences. We assume that there are two periods 0

and 1. At 0, the decision maker has no information and has also preferences over RΩ. At

time 1, the decision maker observes an event E from a partition Π of Ω and updates her

preferences. We model this by a pair
(
%, {%ω}ω∈Ω

)
.

A 5 (Rationality). The binary relation % is a rational preference and %ω is a continuous
rational preference for all ω ∈ Ω.

A 6 (Conditional preferences). For each ω, ω′ ∈ Ω

Π (ω) = Π (ω′) =⇒ %ω=%ω′ .

We thus assume that original and updated preferences are rational, where the latter

are also assumed to be continuous. At the same time, we assume that if two states

belong to the same event, then the corresponding updated preferences must be the same,

incorporating exactly nothing more than the information embedded in Π.

For each partition Π we define by B (Π) the subset of elements of RΩ which are Π-

measurable.

A 7 (Consequentialism). For each f, h ∈ RΩ and for each ω ∈ Ω, f1Π(ω) + h1Π(ω)c ∼ω f .
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A 8 (Dynamic subconsistency). For each f ∈ RΩ and for each g ∈ B (Π), g %ω f for all
ω ∈ Ω implies g % f .

On the one hand, consequentialism imposes that updated preferences are only influ-

enced by the states that are still relevant/possible. On the other hand, dynamic subcon-

sistency is a form of monotonicity and it states that if interim f is weakly worse than a

Π-measurable act g, no matter which event realized in Π, then g is weakly better than f

also at time 0. By switching the order of f and g, we can define symmetrically dynamic

superconsistency. The usual assumption of dynamic consistency is equivalent to assume

dynamic sub and superconsistency.

Definition 8. Let
(
%, {%ω}ω∈Ω

)
be a collection of binary relations on RΩ. We say that(

%, {%ω}ω∈Ω

)
is a dynamic subconsistent rational preference if and only if it satisfies the

properties of rationality, conditional preferences, consequentialism, and dynamic subcon-

sistency.

The next result provides a behavioral foundation for nonlinear conditional expecta-

tions.

Proposition 7. Let
(
%, {%ω}ω∈Ω

)
be a collection of binary relations on RΩ. The following

statements are equivalent:

(i)
(
%, {%ω}ω∈Ω

)
is a dynamic subconsistent rational preference;

(ii) There exist two functions V̄ : RΩ → R and V : Ω × RΩ → R such that
(
V̄ , V,Π

)
is

a lower conditional expectation and for each ω ∈ Ω

f %ω g ⇐⇒ V (ω, f) ≥ V (ω, g) and f % g ⇐⇒ V̄ (f) ≥ V̄ (g) .

Proof. (ii) implies (i). It is routine.

(i) implies (ii). By Proposition 6 and since
(
%, {%ω}ω∈Ω

)
satisfies rationality, we have

that there exists a normalized and monotone function V̄ : RΩ → R and a collection

of normalized, monotone, and continuous functions {Vω}ω∈Ω from RΩ to R such that V̄
represents % and Vω represents %ω for all ω ∈ Ω. Define V : Ω × RΩ → R by V (ω, f) =
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Vω (f) for all (ω, f) ∈ Ω×RΩ. By point 2 of Proposition 6 and since
(
%, {%ω}ω∈Ω

)
satisfies

conditional preferences, we have that for each ω, ω′ ∈ Ω

Π (ω) = Π (ω′) =⇒ %ω=%ω′ =⇒ V (ω, ·) = V (ω′, ·) ,

proving that V (·, f) is Π-measurable for all f ∈ RΩ. Since
(
%, {%ω}ω∈Ω

)
satisfies conse-

quentialism, we have that for each ω ∈ Ω and for each f, h ∈ RΩ

f1Π(ω) + h1Π(ω)c ∼ω f =⇒ V
(
ω, f1Π(ω) + h1Π(ω)c

)
= V (ω, f) .

Finally, for each f ∈ RΩ define g ∈ RΩ by g (ω) = V (ω, f) for all ω ∈ Ω. It follows that

g ∼ω g1Π(ω) ∼ω f for all ω ∈ Ω and for all f ∈ RΩ. Since
(
%, {%ω}ω∈Ω

)
satisfies dynamic

subconsistency, we can conclude that g % f and, in particular, V̄ (f) ≤ V̄ (g) = V̄ (V (·, f))

for all f ∈ RΩ. �

If
(
%, {%ω}ω∈Ω

)
were to satisfy dynamic superconsistency in place of subconsistency,

the result above would yield a foundation for upper conditional expectations. Finally,

by assuming both, we would obtain a foundation for nonlinear conditional expectations.

Clearly, in Proposition 7, linear conditional expectations are obtained by requiring in

(i) % and each %ω to satisfy the axiom of independence. Similarly, maxmin conditional

expectations, as in Example 2, are obtained by imposing c-independence.

E.1 Different information structures

We now consider different information structures, that is, partitions {Πi}ni=1. Conse-

quently, we consider the collection
{(
%, {%ω,Πi}ω∈Ω

)}n
i=1
.

Corollary 3. Let
{(
%, {%ω,Πi}ω∈Ω

)}n
i=1

be a collection of binary relations on RΩ. The

following statements are equivalent:

(i)
(
%, {%ω,Πi}ω∈Ω

)
is a dynamic subconsistent rational preference for all i ∈ {1, ..., n};

(ii) There exist n+ 1 functions V̄ : RΩ → R and Vi : Ω× RΩ → R such that
(
V̄ , Vi,Πi

)
is a lower conditional expectation for all i ∈ {1, ..., n}, for each ω ∈ Ω and for each
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i ∈ {1, ..., n}

f %ω,Πi g ⇐⇒ Vi (ω, f) ≥ Vi (ω, g) and f % g ⇐⇒ V̄ (f) ≥ V̄ (g) .

Proof. By Proposition 7 and the uniqueness part of Proposition 6, the statement imme-
diately follows. �

Proposition 8. Let
{(
%, {%ω,Πi}ω∈Ω

)}n
i=1

be a collection of dynamic subconsistent ratio-

nal preferences on RΩ. The following statements are equivalent:

(i) For each i ∈ {1, ..., n} and for each h ∈ B (Πi) if g ∈ B (Πj) for some j ∈ {1, ..., n}
is such that g ∼ω,Πj h for all ω ∈ Ω, then g ∼ h;

(ii) V̄ (h) = V̄ (Vj (·, h)) for all h ∈ B (Πi) and for all i, j ∈ {1, ..., n}.

Proof. (ii) implies (i). It is routine.

(i) implies (ii). Consider i ∈ {1, ..., n} and h ∈ B (Πi). Define g ∈ RΩ by g (ω) =

Vj (ω, f) for all ω ∈ Ω. Clearly, g ∈ B (Πj). Moreover, it follows that g ∼ω,Πj g1Π(ω) ∼ω,Πj
h for all ω ∈ Ω. We can conclude that g ∼ h and, in particular, V̄ (h) = V̄ (g) =

V̄ (Vj (·, h)). Since h as well as i and j were arbitrarily chosen, the statement follows. �

We call the assumption of point (i) above: dynamic consistency for Π-measurable acts.

Proposition 9. Let
{(
%, {%ω,Πi}ω∈Ω

)}n
i=1

be a collection of dynamic subconsistent ratio-

nal preferences on RΩ. The following statements are equivalent:

(i) For each f ∈ RΩ there exists i ∈ {1, ..., n} such that if g ∈ B (Πi) and g ∼ω,Πi f for
all ω ∈ Ω, then g ∼ f ;

(ii) For each f ∈ RΩ there exists i ∈ {1, ..., n} such that V̄ (f) = V̄ (Vi (·, f)).

Proof. (ii) implies (i). It is routine.

(i) implies (ii). Consider f ∈ RΩ and i as in point (i). Define g ∈ RΩ by g (ω) = Vi (ω, f)

for all ω ∈ Ω. Clearly, g ∈ B (Πi) and g ∼ω,Πi f for all ω ∈ Ω, yielding that g ∼ f and,
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in particular, V̄ (f) = V̄ (g) = V̄ (Vi (·, f)). Since f was arbitrarily chosen, the statement

follows. �
We call the assumption of point (i) above: “always some dynamic consistent”.

Proposition 10. Let
{(
%, {%ω,Πi}ω∈Ω

)}2

i=1
be a collection of dynamic subconsistent ra-

tional preferences on RΩ with Πsup = {Ω} and full-support interim expectations. The

following statements are equivalent:

(i) The collection satisfies dynamic consistency for Π-measurable acts and always some

dynamic consistent;

(ii) V̄ = V∗.

Proof. With the usual notation, recall that (V1 ◦ V2)t and (V2 ◦ V1)t converge to a deter-

ministic limit. Denote the corresponding limiting functionals by V̄12 and V̄21. Moreover,

V∗ (f) = min
{
V̄12 (f) , V̄21 (f)

}
for all f ∈ RΩ and V̄ ≤ V∗.

(ii) implies (i). By the previous two propositions, it is routine.

(i) implies (ii). By the first proposition, we have that

V̄ (V1 (h)) = V̄ (V2 (V1 (h))) and V̄ (V2 (h)) = V̄ (V1 (V2 (h))) ∀h ∈ RΩ. (37)

Consider f ∈ RΩ. By the second proposition, we have that either V̄ (f) = V̄ (V1 (f)) or

V̄ (f) = V̄ (V2 (f)). In the first case, we are going to show that

V̄ (f) = V̄
(
(V2 ◦ V1)t (f)

)
.

By (37) and since V̄ (f) = V̄ (V1 (f)), the statement follows for t = 1. If the statement

holds for t, since (V2 ◦ V1)t (f) ∈ B (Π2), we have that

V̄
(
(V2 ◦ V1)t (f)

)
= V

(
V1 (V2 ◦ V1)t (f)

)
= V

(
V2

(
V1 (V2 ◦ V1)t

)
(f)
)

= V
(
(V2 ◦ V1)t+1 (f)

)
,

proving the inductive step. The statement holds by induction, by passing to the limit, we

obtain that V̄ (f) = V̄21 (f) ≥ V∗ (f) and V̄ (f) = V∗ (f). In the case V̄ (f) = V̄ (V2 (f)),

a similar argument yields that V̄ (f) = V∗ (f). �
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