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Abstract

This paper investigates how innovation responded to and shaped the economic impact of the Amer-
ican Dust Bowl, an environmental catastrophe that led to widespread soil erosion on the US Plains
during the 1930s. Combining data on county-level erosion, the historical geography of crop pro-
duction, and crop-specific innovation, I document that in the wake of the environmental crisis,
agricultural technology development was strongly and persistently re-directed toward more Dust
Bowl-exposed crops and, within crops, toward bio-chemical and planting technologies that could
directly mitigate economic losses from environmental distress. County-level exposure to Dust
Bowl-induced innovation significantly dampened the effect of land erosion on agricultural land
values and revenue. These results highlight the role of crises in spurring innovation and the impor-
tance of endogenous technological progress as an adaptive force in the face of disasters.
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1 Introduction

How does innovation react to catastrophe? Developing new technologies to meet the demands of
environmental, public health, or geopolitical crises is likely an important component of an econ-
omy’s adaptive response. The history of economic growth is rife with examples of technological
progress rising to meet the demands of emergent threats, ranging from massive scientific invest-
ment during the Second World War to the global re-direction of biotechnology research in response
to the coronavirus pandemic (e.g. Rosen, 1994; Ruttan, 2006, Woolliscroft, 2020). The view that
“necessity is the mother of invention” implies that moments of catastrophe could be key for un-
derstanding the direction of technological progress. Moreover, when crises devastate particular
regions, sectors, or groups of people, the extent to which new technology dampens or exacerbates
the impact of the original shock could play an important role shaping its economic consequences.

This paper investigates how innovation reacts to crises and shapes their economic impact by
homing in on the most extreme environmental crisis in US history: the American Dust Bowl, a
catastrophe that led to widespread erosion and topsoil damage on the US Plains during the 1930s.!
Anecdotally, the development and adoption of new technologies helped the agricultural economy
adapt. Breeding and chemical companies actively invested in innovation that would meet the high
demand for technologies to restore productivity on dry and eroded land (e.g. Crabb, 1947; May,
1949). Indeed, it has been a long-standing hypothesis that the early take-off of US agricultural
biotechnology grew from the need to stave off production losses from extreme climatic events, the
Dust Bowl chief among them (Crow, 1998). However, there is little empirical evidence documenting
how innovation reacts to or shapes the economic consequences of environmental crises.

The first goal of this paper is to estimate the response of technology development to the Amer-
ican Dust Bowl and investigate its underlying mechanisms. During and after the Dust Bowl, was
innovation systematically re-directed toward more damage-exposed crops and toward technolo-
gies that would restore crop productivity? The second goal is to investigate whether innovation
mitigated the Dust Bowl’s economic damage. Were places that benefitted from the re-direction of
innovation more economically resilient in response to environmental distress?

Economic theory provides relatively limited guidance about how technological progress should
be expected to react to environmental disaster. Adapting a standard model of directed technolog-
ical change to the present context, I first show that agricultural innovation could either increase or
decrease in response to the Dust Bowl depending on a set of competing forces.In a first case, if new
technology substitutes for favorable land and soil conditions on average, technology development
increases in response to the Dust Bowl. This formalizes the idea, prevalent in historical accounts, that
new biotechnology was directed sharply toward bolstering production on damaged land, where de-
mand for new adaptive technology was high. The extreme climate of the 1930s, according to this
narrative, led to an “explosion of demand” for modern seeds, generating large profits for breeding

10Over 400,000 square kilometers of land in the US Plains fell victim to significant drought and erosion (Hakim, 2012).
The analogy with COVID-19 is not merely circumstantial — Thomas (2020) argues that “COVID-19’s best analog is the
1930s Dust Bowl,” in terms of the severity of the crisis and response to it.



companies that, in turn, invested heavily in innovation (Sutch, 2011, p. 219).

In a second case, however, if technology complements favorable climatic conditions on average,
innovators flee damaged crops and producers, preferring to direct innovation toward crops that
were unscathed by the Dust Bowl and toward increasing productivity on healthy land. This narra-
tive is consistent with the common economic intuition that innovation concentrates in the largest,
most productive markets (e.g. Acemoglu, 2002). In this second case of the model, innovators leave
faltering producers behind, exacerbating the distributional consequences of environmental distress.

It is essential, therefore, to turn to data in order to investigate how technology development
reacted to the Dust Bowl and shaped its economic consequences. The first part of the empirical
analysis compares technology development before and after the Dust Bowl across crops that were
differentially exposed to its environmental harm. I directly measure the extent to which each crop’s
land area was eroded during the Dust Bowl by combining land erosion maps digitized by Hornbeck
(2012a) with information on the geography of production for each crop immediately prior to the
Dust Bowl from the 1930 US Census of Agriculture. I use the share of the national land area devoted
to each crop that experienced high levels of erosion, according to the land survey map, as my main
measure of crop-specific Dust Bowl exposure.?

Next, I use several complementary strategies to measure crop-specific innovation. As the main
measure of technology development, I compile a data set of new biotechnology (i.e. crop variety)
releases from the United States Department of Agriculture’s (USDA) Variety Name List, which was
obtained via Freedom of Information Act (FOIA) Request. This List is maintained in order to pre-
vent fraud in the seed market and its goal is to be a comprehensive database of US seed and variety
development and release.®> This data set makes it possible to track the development of new crop
varieties, which historical accounts suggest were the primary technology used to adapt production
to the changing environment, during a period without systematic patent or intellectual property
protection for biotechnology.*

I supplement the Variety Name List with three additional measures of innovation. These addi-
tional measures both make it possible to corroborate the baseline findings on independent sources
of data, and also help illustrate the key mechanisms driving the relationship between environmen-
tal damage and innovation. First, to investigate the re-direction of innovation across different types
of technology, which might be an important part of the overall shift in research focus, I compile data
on all patent grants related to crop agriculture, and use text analysis to link all patents to individual
crops in the production data.® The additional detail provided by patent records makes it possible to

compare the response of innovation across different types of technology and different types of in-

2This measure treats the initial crop allocation as fixed. In Section 3 and Appendix D, I investigate the potential
importance of crop switching. The main conclusion is that planting patterns across crops were remarkably persistent
throughout the sample period, so treating the initial land allocation as fixed does not appear to be a strong assumption.

3The List is compiled by the USDA from a broad range of sources, including “variety release notices, official journals,
seed catalogs, and seed trade publications, as well as names cleared for use by seed companies.”

4Gee, for example, Crow (1998), Olmstead and Rhode (2008), and Sutch (2011) on the paramount importance of bio-
logical technology for adaptation; this history is discussed in more detail in Section 2.1.

SIn particular, I assign all patents in Cooperative Patent Classification classes related to crop agriculture to a crop if
the crop name appears in the patent title, abstract, or keyword list.



ventors. Moreover, the stricter inclusion criteria in the patent data as well as the ability to proxy the
importance of each technology using citation information make the patent data useful for probing
the robustness of the baseline finding. Second, in order to study the response of science (and not
only technology development) to environmental change, I collect all research publications related
to the agricultural sciences from the Web of Science publication database. Third, in order to directly
investigate the role of government sponsored innovation, I compile data on experiments conducted
at US agricultural research stations (see Kantor and Whalley, 2019).

The first main result is that new biotechnology development for crops that were more exposed
to the Dust Bowl—which shows no differential trend from that of less-exposed crops prior to the
onset of disaster—sharply increased after the crisis began. The baseline estimates suggest that a one
standard deviation increase in Dust Bowl exposure led to a 0.32 standard deviation increase in new
crop variety releases, corresponding to an 18% increase in technology development for the median-
exposed crop in the sample. The positive effect of Dust Bowl exposure on innovation persisted long
after the worst years of the Dust Bowl were over, suggesting that the crisis led to a long-run shift in
the direction of innovation and focus of technology development.

The baseline results are robust to a range of stress tests and alternative specifications. To show
that the results are not driven by any omitted characteristic, I document that the estimates are simi-
lar after controlling flexibly for trends in pre-period research activity, New Deal policy, and a range
of other time varying controls. I also show that the estimates are similar using exogenous extreme
weather patterns, rather than land erosion, as a proxy for extreme environmental conditions dur-
ing the 1930s. These estimates rule out the possibility that the findings are driven by any effect of
human behavior on the extent of Dust Bowl damage. To further build a causal interpretation of the
baseline estimates, I conduct a series of placebo exercises and show that technology development
did not respond to crop-level exposure to low levels of Plains erosion or to exposure to ex ante eroded
land outside the Plains region. Last, to document that the findings are not driven by a small set of
crops in the sample I show that the results are similar after excluding crops at either the top or the
bottom of the market size distribution from the regression sample. I also re-estimate the baseline
regression 1000 times after randomly re-shuffling the Dust Bowl exposure measure across crops;
the true estimate is in the far right tail of the distribution, which is inconsistent with the estimates
being driven by a small set of observations.

Having documented a positive relationship between Dust Bowl exposure and innovation, I next
probe the mechanisms that drive the baseline finding. First, I investigate sources of persistence in
the re-direction of technology. One striking feature of the baseline result is that the re-direction of
innovation persisted long after the worst years of the Dust Bowl were over. I show that the long-run
effect of the Dust Bowl on technology development was driven disproportionately by crops with
less pre-period technology development. This finding, along with qualitative historical evidence, is
consistent with heightened technology demand from the Dust Bowl leading to fixed cost breeding
investment that sustained innovation after the 1930s (Crow, 1998; Sutch, 2011). Next, using data
on scientific research articles during the sample period from the Web of Science citation database, I



show that scientific publishing was also re-directed toward crops that were more damaged by the
Dust Bowl, indicating that the focus of science (and not just technology development) reacted to
environmental distress. This change in “upstream” scientific research may have also contributed to
the persistent effect of the Dust Bowl by reducing the cost of subsequent technology development.

Second, I investigate the types of technology that drive the main result. The model suggests that
the effects should concentrate in the types of technology most likely to “substitute for” favorable en-
vironmental conditions. I show that the relationship between Dust Bowl exposure and innovation
was strongest for crops for which hybrid varieties could be developed, which historical accounts
suggest were particularly effective on distressed land (Crow, 1998). I then document, using the
patent data, that the re-direction of technology toward Dust Bowl-exposed crops was driven by
biological, chemical and planting technologies that directly interact with topsoil; if anything, me-
chanical and post-harvest processing technologies that do not mediate the impact of environmental
change were directed away from more Dust Bowl-exposed crops.® Interpreted via the model, these
results suggest that the main finding is driven by increased demand for technologies that could
mitigate the impact of environmental stress, and not overall terms of trade effects.

Third, I document the types of innovators involved in this shift in technology. Using the identity
of each inventor in the patent data, I find that the re-direction of innovation was driven predomi-
nately by private sector firms and individual breeders. I find weaker effects for public-sector patent-
ing and corroborate this limited response of government research using independently collected
data on all crop experiments at US experiment stations. While public and university researchers
were involved in scientific research and their contributions no doubt important for technology re-
leased during the sample period, the findings do not seem driven by contemporaneous public sector
innovation. This stands in contrast to other episodes of “crisis innovation” (e.g. during World War
IT) in which the government coordinated large research investments (see Gross and Sampat, 2021).

The second part of the paper investigates the extent to which this re-direction of innovation
shaped the Dust Bowl’s economic impact by turning to county-level data on the agricultural sector.
Prior work has proposed identifying adaptation to environmental stress by comparing the short
and long run impact of environmental shocks (e.g. Hornbeck, 2012a; Dell et al., 2012). However,
this strategy does not make it possible to identify the role of technology apart from other produc-
tion adjustments. Moreover, the findings from the first part of the paper suggests that technology
development reacted within a decade of the start of the Dust Bowl and that the adaptive role of
technology should be highly heterogeneous across producers of differentially-exposed crops.

Therefore, I propose an alternative empirical strategy to identify the adaptive role of technology
development. Since innovation responded to aggregate crop-level distress, counties that grew crops

that were more damaged across all other Plains counties were best positioned to adopt new Dust

®While biotechnology development is the focus of most historical accounts, drought and topsoil damage, as well
as pest outbreaks that resulted, also increased demand for fertilizer and chemical technology that would make contin-
ued production possible (Schlebecker, 1953; Baveye et al., 2011, see Section 2.1). Mechanical technology, as opposed to
biotechnology, has long been considered less relevant for relieving environmental and land supply constraints (Hayami
et al,, 1971; Ruttan and Hayami, 1984).



Bowl-induced technologies. Motivated by this logic, I proxy each county’s innovation exposure as
the level of Dust Bowl exposure of the crops that the county cultivates, averaged across all other
Plains counties. Then, I test whether counties that were more exposed to induced innovation were
more resilient to the Dust Bowl shock by estimating the heterogeneous effect of Dust Bowl erosion
on agricultural land value across counties with different levels of innovation exposure.

Innovation exposure substantially reduced the negative effects of the Dust Bowl on agricultural
land values. The difference in the marginal impact of land erosion between counties in the 90th
and the 10th percentile of the innovation exposure distribution is 120% of the median effect, and
counties with the highest in-sample innovation exposure experienced virtually no long run decline
in land value as a result of the Dust Bowl. The results are very similar using in-sample revenue and
productivity, rather than land values, as the dependent variable, and are also virtually unchanged
after controlling directly for crop prices, which could have also responded to aggregate crop-level
distress. The effect of innovation exposure is more pronounced in counties with larger farms, which
may have been better positioned to access and adopt new inputs. Together, the findings indicate
that the re-direction of innovation substantially reduced the economic harm of the Dust Bowl.

To this point, the results have highlighted the role of technology that would increase produc-
tion resilience in counties affected by the Dust Bowl. New technology, however, might have also
increased the productivity of more-exposed crops elsewhere in the country, or allowed for produc-
tion of more-exposed crops to take place outside the Plains region on ex ante less productive land.
However, I find no evidence of these channels. Innovation exposure is not positively correlated
with changes in agricultural land values outside the Plains region, suggesting that Dust Bowl in-
duced technology did not increase crop productivity across the board. Counties outside the Dust
Bowl also did not disproportionately expand cultivation of Dust Bowl-exposed crops, suggesting
a limited role for crop switching as a form of production adjustment. Dovetailing with findings
from the first part of the paper, these results are consistent with a focus on technology develop-
ment that would directly increase productivity on distressed land. This narrative accords with the
tirst case of the model, in which technology substitutes for favorable environmental conditions and
environmental crisis incentivizes the development of new technology to promote climate resilience.

This paper builds on several bodies of work. First, it extends a large body of work studying
adaptation to environmental shocks (e.g. Hornbeck, 2012a,b; Moore and Lobell, 2014; Hsiang and
Jina, 2014; Burke and Emerick, 2016).” This study builds especially on Hornbeck (2012a), who in-
vestigates the short and long run impact of the Dust Bowl on Plains counties, and extends a broader
body of work on the impacts of the American Dust Bowl, a uniquely devastating crisis in US history
(see McLeman et al., 2014, for a review). A central challenge in studies of environmental adapta-
tion is identifying the role of technological progress (Rodima-Taylor et al., 2012; Zilberman et al.,
2018), even though it has often been hypothesized that new technology is a key potential source of
climate resilience. Most related on this topic is contemporaneous work by the author investigating

7 A broader literature studies the direct effect of the climate on US agriculture, including Mendelsohn et al. (1994);
Schlenker et al. (2006); Deschénes and Greenstone (2007); Roberts and Schlenker (2011); and Burke and Emerick (2016).



how agricultural innovation has shifted in response to slow-moving temperature change in recent
decades and, based on those estimates, how innovation might be expected to shape the future eco-
nomic consequences of global warming (Moscona and Sastry, 2023).

Second, this paper extends research investigating the direction of technological change (Hicks,
1963; Habakkuk, 1962; Acemoglu, 2002, 2010, provide the theoretical foundation). There has been a
longstanding interest in the extent to which technological progress is driven by moments of crisis
and how invention reacts at moments of major necessity (Rosen, 1994; Keller et al., 2003; Ruttan,
2006; Miao and Popp, 2014; Hanlon, 2015; Gross and Sampat, 2020, 2021, 2023). This study shows
that innovation responded dramatically and persistently to agricultural crisis, shaping its economic
consequence over the subsequent decades. This took place largely in the absence of direct govern-
ment intervention. Most prior work on directed technological change and the environment focuses
on the development of emission-mitigating technology in response to changing market incentives
(e.g. Newell et al., 1999; Jaffe et al., 2003; Popp, 2002, 2004; Acemoglu et al., 2012; Aghion et al., 2016).
This paper, in contrast, investigates the re-direction and development of adaptation technology, as
well as its underlying mechanisms.

Finally, this study draws on a range of work investigating how innovation has shaped US agri-
cultural production. The early 20th century represented a major turning point in US agricultural
innovation (e.g. Griliches, 1957). It has been argued that the rise of US agricultural biotechnology
during the 20th century originated in part as an effort to adapt to environmental extremes during
the 1930s (e.g. Crabb, 1947; May, 1949; Crow, 1998; Fitzgerald, 1990; Sutch, 2008, 2011). The findings
in this paper support the hypothesis that innovators reacted dramatically to environmental stress,
and document systematically that early 20th century climate extremes had persistent effects on US
agricultural technology development.®

The next section discusses the history of technology development in response to the Dust Bowl
(Section 2.1) and introduces a theoretical framework for analyzing how technological progress re-
acts to environmental crises (Section 2.2). Section 3 introduces the data used in the empirical anal-
ysis. Section 4 presents results on the impact of the Dust Bowl on innovation and Section 5 turns to
the role of innovation in shaping the economic consequences of the Dust Bowl. Section 6 concludes.

2 Innovation and the Dust Bowl

2.1 Historical Evidence

The Dust Bowl was a period of severe drought followed by dust storms that devastated large swaths
of the US Plains during the 1930s. While the most severe droughts were in 1934 and 1936, leading
to widespread crop failure, at least part of the Plains region experienced severe weather in each

8The differential role of mechanical and biochemical technologies in the process of adaptation relates to theories of
induced innovation in agriculture and the proposed role of different technologies in prior work (e.g. Hayami et al., 1971;
Ruttan and Hayami, 1984). Some existing evidence, however, has contradicted the “induced innovation hypothesis”
(Olmstead and Rhode, 1993).



year from 1930-1939. Over 400,000 square kilometers of land were exposed to drought and water or
wind erosion (Hakim, 2012).

Qualitative accounts suggest that new technology was a key source of adaptation to the Dust
Bowl. While the main focus of case study evidence is innovation in biotechnology, fertilizers and
chemicals were also important anecdotally. Private breeding and chemical companies were active in
this wave of technological progress, marking a shift from a research sector that had been dominated
by universities and the government.

Individual breeders and breeding companies reacted dramatically to the Dust Bowl’s environ-
mental distress, developing and marketing technologies that would remain productive even on
damaged land. According to Crow (1998), the Dust Bowl was “possibly the most important” rea-
son for the rapid increase in development and spread of hybrid seeds during the 1930s. Frontier
breeding technology had particularly high returns relative to old technology in times of environ-
mental distress; new hybrid varieties, for example, were “strikingly more resistant to drought than
the open pollinated varieties then in use.” Farmers noted this difference, and demanded new and
more resilient seed varieties.

Sutch (2011) argues that drought and the vulnerability of existing crop varieties to climatic fluc-
tuations drastically increased demand for new varieties, particularly hybrid strains, and breeders
rose to meet these demands (see also May, 1949; Culver and Hyde, 2001; Pruitt, 2016). Breeding
companies quickly noted the profitability of developing crop varieties that would be productive
in areas affected by environmental distress: “The explosion of demand for hybrid corn generated
large profits for the major hybrid seed companies: Pioneer, Funk, and DeKalb. [C]lompanies in-
vested heavily in research with new hybrid strains,” with a focus on “perfecting drought resistance”
(Sutch, 2011, p. 219).

According to Crabb (1947, p. 165-166), who recounts the growth of Pioneer’s breeding program,
early breeding research reacted directly to the dust storms of 1934 and 1936; in 1937, “farmers in
Iowa and elsewhere” bought all the new Pioneer seed, to the point where “the Wallace organization
[Pioneer] was serving [farmers] the full length and breadth of the corn belt.” This narrative is not
restricted to corn: Baumhardt (2003) describes the development of wheat varieties during the 1930s,
as well as new crop rotation and planting practices, that would make production less sensitive to
dry land in Dust Bowl-affected regions.

Pest outbreaks, including widespread grasshopper attacks, also increased as a result of drought
and soil erosion.” In 1936, grasshopper damage to crop production in the most affected states
amounted to over $106 million in farm income losses (Parker, 1939). New pesticides, insecticides,
and agricultural chemicals—like new seed varieties—were developed in response to the unprece-
dented pest outbreaks and to help “in the war against the grasshopper” (Schlebecker, 1953, p. 91).

Soil science research, including the development of fertilizers to bolster damaged topsoil, also grew

9According to one observer writing in 1932, “For any one who has not seen an outbreak of grasshoppers it is very
hard to visualize the damage done. When one is told the crops were all destroyed, one does not quite believe it. Only
when one goes through the country and works with the insect at a given place does a realization of the great destruction
come to him” (Schlebecker, 1953, p. 91).



during the Dust Bowl period; in 1936 the Soil Science Society of America formed in direct response
to drought and erosion in the Plains (Baveye et al., 2011).

While much of the historical narrative focuses on private sector breeding and technology devel-
opment, the public sector represented a large share of agricultural innovation during the sample
period and may have also reacted to farmer distress. Government innovation policy did not change
in response to the Dust Bowl, and the mandate of US agricultural experiment stations remained
to focus on basic scientific advances, rather than applied technology, during the sample period
(Nevins, 1962). Nevertheless, there are some examples of varieties developed on US experiment
stations helping distressed farmers. The Oklahoma Agricultural Experiment Station released the
cotton variety Oklahoma Triumph 44, which proved more resistant to drought and pest outbreaks
(Green, 1990), and the Woodward Field Experiment Station identified sorghum varieties that would
be less sensitive to wind damage and soil blowing (Stephens, 1937).

According to these accounts, agricultural research and development reacted quickly to environ-
mental distress and the adoption of new technologies was an important source of adaptation to
environmental change. The empirical analysis below estimates the average relationship between
environmental distress and technology development, across all crops and technologies, and inves-

tigates whether its underlying mechanisms are consistent with this historical narrative.

2.2 Model

Before turning to the empirical analysis, I formalize the relationship between Dust Bowl exposure
and innovation in a model of directed technological change. The model builds on the theory of
equilibrium technological change developed in Acemoglu (2010) and its more recent application
in Moscona and Sastry (2023). The goal of the model is to convey that the predicted response of
innovation to the Dust Bowl is ambiguous ex ante and to articulate the conditions under which
technology development could increase, or decrease, in response to Dust Bowl damage. This theo-
retical ambiguity makes empirical analysis all the more crucial.

2.2.1 Set-Up

Consider an economy in which a continuum of farmers i € [0, 1] produce a single crop. The pro-
ductivity of the local environment at each location is A; € [A’, A”] with cumulative distribution
F(.) across locations. There is a crop-specific technological input and each farmer uses T; of this
input. The productivity of this input in location i depends on the national technological frontier—

parameterized by 6—and productivity A;. In particular, the production function of farm i is:

Y =a "(1—a)'G(A;0) T (2.1)

where Y; is total output, a=*(1 — a)~?

is a normalization added only to simplify the analysis, and
a € [0,1] captures the relative importance of technology in the production function. Assume that

G(.) is concave and twice continuously differentiable, and that G; > 0 and G, > 0 so that, naturally,



output is increasing in the technological level of the economy and local productivity. Each farmer
maximizes profits taking output price p and input cost g as given.

This simple production technology makes it possible to home in on the economic mechanisms of
interest that drive the relationship between environmental distress and innovation. Taking the first
order condition of the farmer’s maximization problem, it is possible to show that T; = a ™! p%q% G(A;,0)
Thus, use of the technological input is directly increasing in G(A;,0).

The Dust Bowl reduces land productivity differentially across locations. I consider the crop
damaged by the Dust Bowl if the Dust Bowl shifted the productivity distribution from F(.) to FPB(.),
where the former first order stochastic dominates the latter. That is, the Dust Bowl reduced land
productivity across crop planting locations to the point of lowering aggregate production.!’

There is a representative innovator that determines both the price of T; and the aggregate level
of technological progress (f) in order to maximize profits, and faces a marginal cost of technology
development 1 — a and a convex cost C(8) of expanding the technological frontier.!! Substituting for

technology input use from the farmer’s maximization problem, the innovator’s problem becomes:

max(q — (1 - a))a"'piq™ [ G(A;0)dF(A) - C(6) (2.2)
2

The first order condition for g is satisfied for any 8 if g+ — (g — (1 —a)) %q_%_l = 0; thus, the profit
maximizing technology price is ¢ = 1. Plugging this into the original maximand, the innovator’s

problem simplifies to one-dimensional optimization over the technology level 6:
max p* / G(A; 8)dF(A) — C(6) 2.3)

Finally, assume that the price of the crop is determined by an inverse demand function p = D(Y),
where D is continuous and non-increasing and Y is total output in the economy: Y = [ Y;(A;)dF(A).
An equilibrium is defined as price p, output Y, and technology level 6 such that both farmers and
innovators maximize profits and the crop price is on the demand curve.

The theoretical results in the next section examine the relationship between environmental dam-
age from the Dust Bowl and technological progress (0), and identify the economic conditions that
determine technology’s response to environmental distress.

19Since we assume Gp > 0, this definition is indeed sufficient for Dust Bowl damage to reduce total production holding
fixed crop planting locations and technology.

HFocusing on a profit-maximizing innovator builds on existing models of directed technological change; however,
it may fail to capture the motivation behind all sources of innovation, most notably government-sponsored research.
In Section 4.3.3, I investigate the role of public vs. private sector research and find that the results do not seem to be
driven by government-sponsored innovation, suggesting that this simplification is consistent with the present context.
Moreover, government innovation policy and the mandate of the experiment stations did not change in response to the
Dust Bowl (see Nevins, 1962, and Section 4.3.3).



2.2.2 Results

Before presenting the main results, I define two key cases for the role of technology in the farmer’s
production function; the impact of Dust Bowl damage on technological progress hinges crucially
on the relationship between technology and land productivity damage:

Definition 1 Technological progress is a topsoil substitute if Gio < 0 and a topsoil complement if Gio > 0.

New technology is a topsoil substitute if it reduces the marginal impact of the Dust Bowl’s damage
to agricultural land on output. This would be the case if technological progress makes production
less sensitive to soil erosion and drought, which seems consistent with the ways in which new seed
varieties—and hybrids in particular—were anecdotally more resilient in the face of environmental
hardship (Section 2.1).

New technology is a topsoil complement if it increases the marginal impact of the Dust Bowl’s
damage to agricultural land on output. Recent evidence on crop resilience to climate change, for
example, suggests that breeding can increase crop yields at the expense of resilience to drought, in
part because seed varieties can be finely tuned to specific environmental characteristics and, as a
result, are more sensitive to fluctuations (Lobell et al., 2014). Moreover, mechanical technologies
like harvesters may be designed for particular ecological conditions and their marginal impact on
output could decline when the environment changes.

The impact of the Dust Bowl on the direction of innovation depends on this feature of techno-

logical progress:

Proposition 1 Assume that output prices are fixed. If the Dust Bowl damages cropland, 6 weakly increases
if technology is a topsoil substitute and 6 weakly decreases if technology is a topsoil complement.

Proof. See Appendix B.1.

In words, technology development increases in response to Dust Bowl damage if new innova-
tion is most productive in the face of ecological constraints, and declines if it becomes less pro-
ductive in the face of environmental distress. The former case is consistent with the narrative that
variety development increased in response to the Dust Bowl, and the fact that there was a focus
on the development of crop varieties that would be productive damaged land (e.g. Crow, 1998;
Sutch, 2011). The latter case, however, rings truer with the conventional wisdom that innovation is
“pulled forward” when downstream industries thrive and “pushed back” when they falter (Ace-
moglu, 2002).

Allowing for price adjustment increases the return to technology development in damaged
crops for all types of technology. Exposure to the Dust Bowl reduces crop output, thereby increasing
crop scarcity and output prices; this force is analogous to the price effect in the parlance of Acemoglu
(2002). It reinforces the re-direction of technology toward more damaged crops in the topsoil sub-

stitute case, and fights against the re-direction of technology away from more damaged crops in

10



the topsoil complements case, making the overall effect of the Dust Bowl on technology ambiguous.
Since, as discussed below, I do not find strong evidence of price effects driving the technological
response to the Dust Bowl, I only mention them briefly here.!?

While the model focuses on a single crop in order to home in on the key theoretical tension, in
the empirical analysis I exploit the fact that crops were differentially exposed to the Dust Bowl and
investigate whether technological progress was directed toward or away from more exposed crops,
the relevant notion of sectors in the studied context. First, I document the sign of the relationship
between Dust Bowl exposure and crop variety development. Next, I explore several strategies
to examine heterogeneity across crops and technologies that are more (or less) plausibly topsoil-
substituting; this makes it possible to investigate the key mechanism and distinguish between the

“marginal product” effects outlined in Proposition 1 and general equilibrium price effects.

3 Measurement

3.1 Data Sources

County Erosion I measure county-level exposure to the Dust Bowl using maps digitized by Horn-
beck (2012a) on cumulative county-level erosion measured during the mid-1930s, and focus on the
sample of counties identified in that study as those that comprise the contiguous and ecologically
similar Plains region (see United States Department of Agriculture, 1924.). The original maps were
compiled from reconnaissance surveys and divide US land into one of three categories: low erosion
(less than 25% topsoil lost), medium erosion (25-75% topsoil lost), and high erosion (greater than
75% topsoil lost). The sample of counties and erosion distribution are displayed in Figure Al. The
main shortcoming of these data, discussed in Hornbeck (2012a), is that they do not measure erosion
due to the Dust Bowl but rather cumulative erosion prior to 1935. Throughout the paper, I return to

tests of potential bias due to this data feature.

Technology Development I use several complementary sources of data to measure crop-specific
innovation. First, in order to measure crop variety development, I compile data on the release of
novel varieties from the United States Department of Agriculture (USDA) Variety Name List; this is
the main measure of crop-level technology development in the empirical analysis. The List, which
was obtained through a Freedom of Information Act (FOIA) request, is a list of all released crop
varieties known to the USDA and the year in which each was released. It is designed to be com-
prehensive and uses a broad range of sources in order to identify crop varieties, including “variety
release notices, official journals, seed catalogs, and seed trade publications, as well as names cleared
for use by seed companies.” Breeders had an incentive to report new varieties to the USDA for in-
clusion in the list because farmers checked the List to make sure that varieties they purchase were

12See Moscona and Sastry (2023) for an in-depth discussion and proof of the role of price effects in a related context.
With price adjustment, if the Dust Bowl damages cropland, 6 weakly increases if technology is a topsoil substitute and 6
either increases or decreases if technology is a topsoil complement.
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cleared, particularly during the period under investigation when seeds were not patentable subject
matter.!® The key advantage of this data source is that it is possible to track innovation in biotechnol-
ogy, which was anecdotally the most relevant technology for adaptation but cannot be measured
with intellectual property data during the sample period. Moreover, it is straightforward to link
technologies in the List set to individual crops, the units of observation in the empirical analysis.

I supplement the Variety Name List with several additional measures of innovation. These make
it possible both to corroborate the baseline estimates using alternative measurement strategies and
to paint a more complete picture of how technology development reacted to environmental change.

First, I compile data on crop-specific patenting in order to measure crop-level technology de-
velopment across multiple technology classes. Using the database PatSnap, I compute the number of
patents in Cooperative Patent Classification (CPC) classes A01B, A01C, A01D, AO1F, A01G, A0O1H,
and AO1IN (i.e. CPC classes that relate to non-livestock agriculture) that were associated with each
crop. To match patents to crops, I search for the name of each crop in the Variety Name List in all
patent titles, abstracts, and keywords lists. The key advantage of this data set is that, by measuring
innovation in multiple technology classes, it is possible to investigate the re-direction of invention
across technologies (see Section 4.3.2). The patent data are also useful for corroborating a version of
the baseline results with an independent data set with more restrictive inclusion criteria.

Second, I compile data on all research articles in the agricultural sciences from the Institute for
Scientific Information’s Web of Science database. The Web of Science combines article and citation
information from 12,000 high-impact journals and 160,000 conference proceedings; I link all articles
to crops by searching for the name of each crop in article titles.

Third, I use data on crop-specific experiments from US federal experiment stations (1910-1945),
compiled and discussed in detail in Kantor and Whalley (2019). Experiment-level information,
including the crop of focus, were collected from individual reports published by each station during
the sample period. This data set makes it possible to investigate the extent to which US government

research contributes to the main finding.

Agricultural Production Data on county-level outcomes are from the 1910-1959 rounds of the US
Census of Agriculture. Variables constructed from the Census of Agriculture include the value
of land, agricultural revenue, farm size, and measures of land use. I also use the 1930 and 1959
Censuses of Agriculture to measure the land area devoted to each crop in each county immediately
prior to and after the Dust Bowl period.

13The 1930 Plant Patent Law introduced limited IP protection for vegetatively generated varieties, but most crops,
including all seed crops, had no form of protection until 1970 (Kloppenburg, 2005). One shortcoming of the Variety
Name List is that federal reporting requirements from the USDA were strengthened in the Federal Seed Act of 1939.
An important assumption, therefore, is that the stronger reporting requirements, and the extent to which data from
earlier years were retroactively compiled and filled in, did not differ between more- and less-Dust Bowl exposed crops.
The absence of differential innovation trends prior to 1930, as well as the similar effects after 1939 when all data were
reported contemporaneously, makes it seem unlikely that this source of bias affects the results. Nevertheless, I replicate
the baseline findings using two alternative and entirely independent sources of innovation data — scientific articles from
the Web of Science and the universe of agricultural patents—described in the following paragraphs.
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3.2 Measuring Dust Bowl Exposure

I estimate the Dust Bowl exposure of all crops listed in the 1930 Census of Agriculture with at least
one variety release during the period under investigation; in total, this sample consists of 43 crops.
The exposure measure, capturing aggregate crop-level damage from the Dust Bowl, is the share
of land on which a crop was grown prior to 1930 that was eroded during the Dust Bowl. Since
the erosion data measure cumulative erosion and not erosion due to the Dust Bowl, the crop-level
measure captures the share of land on which each crop was grown that was both (i) in the Plains
region, as defined in Section 3.1 and (ii) eroded by the time of the erosion survey. Crop-level Dust
Bowl exposure is:

Exposure, = ) Z'Lifii/c -I{Plains; } - High Erosion, (3.1)

i

i

where i indexes counties and c indexes crops; L;. is the land devoted to crop c in county i, as
measured in the 1930 Census of Agriculture. I{Plains;} is an indicator that equals one if a county is
in the Plains region; I restrict attention to cumulative erosion on the Plains in order to identify the
erosion that took place during the early 1930s. High Erosion; is the share of land in county i that
had experienced high erosion (over 75% topsoil eroded).

Exposure, is the main independent variable in the first part of the empirical analysis and cap-
tures the extent to which each crop’s land area was damaged by Dust Bowl erosion. Appendix C
discusses the underlying data used for this measure in more detail, alongside summary statistics,
and documents that more- and less-erosion exposed crops are balanced across a range of crop-level
characteristics that affect crop breeding. Table A1 reports the full list of crops in the baseline analy-
sis, along with its Dust Bowl exposure ranking and additional summary statistics.

This measurement strategy uses crop planting patterns measured just prior to 1930 to estimate
crop-specific Dust Bowl exposure. The advantage to this strategy is that these planting patterns
were pre-determined with respect to the environmental shock. The potential disadvantage is that,
if crop planting patterns shifted in a major way in response to the Dust Bowl, or for any other
reason during the subsequent decades, crop-specific Dust Bowl exposure could be mis-measured
during the later part of the sample period. However, crop allocations were remarkably persistent
throughout the sample period (see Appendix D); the correlation between crop-by-county planted
area in 1930 and 1960 is very close to one and the relationship is not mediated by county-level
erosion or crop-level aggregate Dust Bowl exposure. This is consistent with narrative accounts of
strong inter-generational persistence in crop specialization on the Plains, as well as the substantial

importance of crop-specific human capital (e.g. Schaper, 2012; Huffman, 2001).
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4 Results: The Direction of Innovation

4.1 Estimation Framework

This section estimates the impact of the Dust Bowl on the direction of innovation. The main esti-
mating equation is:
Yet = & + 7t + B - Exposure, - ]IfOSt 1930 4 X/, +e€i 4.1)

where ¢ indexes crops and t indexes years. The independent variable of interest is an interaction
term between crop-level exposure to the Dust Bowl (Exposure_), and an indicator that equals one
in all years after the start of the Dust Bowl in 1930 (I}°st1930). All specifications also include crop
and year fixed effects, a. and -, and I test the sensitivity of the results to the inclusion of a vector
of time-varying controls, X/,. The outcome variable is the number of new crop variety releases for
crop ¢ in year t.

The coefficient of interest is 8. p > 0 implies that variety innovation was directed toward crops
that were more damaged by the Dust Bowl, whereas B < 0 implies that variety innovation was
directed away from crops that were more damaged by the Dust Bowl. Section 2.2 articulates why
either sign is theoretically possible.

In order to investigate the dynamic relationship between Dust Bowl Exposure and innovation,
as well as explore pre-existing trends in technology development, I also present results from the

following estimating equation:

Yot = ¢ + 0 + Z B+ - Exposure, - ¢ + Z B+ - Exposure, - 67 + € 4.2)

TETPrE TETpost
If differentially exposed crops are on similar trends prior to the Dust Bowl, then when T € 777, B,
should not be statistically distinguishable from zero. When t € 77, the B, identify the effect of

Dust Bowl exposure on innovation in year 7.

4.2 Main Results

Estimates of Equation 4.1 are presented in Table 1. Columns 1-2 report OLS estimates and the out-
come variable is the (inverse hyperbolic since of the) number of new agricultural varieties released
for each crop in each year.!* In column 1, the regression is unweighted, and in column 2, the regres-
sion is weighted by the total area on which each crop was planted in 1929 in order to make sure that
the finding in column 1 is not driven by crops that are a small share of national agricultural produc-

tion.’® Since the dependent variable is a count variable, columns 3-4 report estimates using Poisson

141 use the inverse hyperbolic sine transformation of the outcome instead of the log transformation because there are
several zeroes. The results are very similar if instead I parameterize the outcome as log(1+x).

15The results are also not driven only by “large” crops (that is, crops with a large market size). In Table A5, I repeat the
baseline specification after excluding all crops in the top 25% or crops in the top 50% of the pre-period area distribution,
and find very similar estimates. These findings indicate that the baseline result is not driven by just a handful of large
crops.
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Table 1: Dust Bowl Exposure and New Crop Varieties

(1 (2) (3) 4

Dependent Variable: New Varieties (asinh) New Varieties (count)
Specification: OLS OLS Poisson Neg. Bin.
Exposurecxle " 0.0694%* 0.114%%* 0.0750%** 0.0529**

(0.0244) (0.0278) (0.0283) (0.0230)
Crop Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Weighting None Initial Area None None
Crops 43 43 43 43
Observations 1,720 1,720 1,720 1,720
R-squared 0.663 0.828

Notes: The unit of observation is a crop-year. All specifications include crop and year fixed
effects. In columns 1-2 the outcome variable is the inverse hyperbolic sine of the number of
new varieties in each crop-year and in columns 3-4 it is the number of new varieties.
Columns 1-2 report OLS estimates and columns 3-4 report Poisson and negative binomial
estimates respectively. Standard errors, double clustered by crop and year in columns 1-3
and clustered by crop in column 4, are reported in parentheses. *, **, and *** indicate
significance at the 10%, 5%, and 1% levels.

and negative binomial regression models respectively.!® Across columns, the coefficient of interest
is positive and statistically signifiant, suggesting that the development of new plant varieties was
directed toward crops most affected by the Dust Bowl. Estimates from columns 1 and 2 imply that
a one standard deviation increase in Dust Bowl exposure led to a 0.18 and 0.32 standard deviation
increase in new varieties respectively.

Figure 1a displays coefficient estimates from Equation 4.2. Prior to 1930, more- and less-exposed
crops were on very similar trends—the coefficient estimates are all similar and close to zero. During
the mid-1930s, the coefficient estimates become positive and significant and remain that way for the
subsequent decades. Figure 1b reports the same pattern in the raw data; it displays the number of
new crop varieties released in each year (relative to 1930), plotted separately for crops with above
and below median Dust Bowl exposure. While technology development in all crops was rising
during the sample period, as has been the case for much of the 20th century, during the worst years
of the Dust Bowl innovation in more vs. less exposed crops sharply diverged.

The following paragraphs investigate the robustness of this baseline finding, before turning to

a detailed analysis of underlying mechanisms and sources of persistence.

16Whenever Poisson estimates are reported, I use pseudo-maximum likelihood estimators in order to ensure appropri-
ate standard error coverage; see Wooldridge (1999).
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Figure 1: Figure la reports coefficient estimates from 4.2, and 95% confidence intervals are dis-
played. The dotted gray lines mark the decade during which the Dust Bowl took place. Standard
errors are double-clustered by crop and year. Figure 1b displays new varieties (asinh) released, rel-
ative to 1930, for crops with above median (solid line) and below median (dotted line) Dust Bowl
exposure.

Falsification Tests This section presents two falsification exercises designed to validate the mea-
sure of Dust Bowl exposure and support a causal interpretation of the results. First, I compute a
crop-level measure of erosion exposure outside of the Plains region:

L .
Exposure Outside Plains, = ) | =

-I{Not Plains; } - High Erosion; 4.3)
i Zi’ Li/ c

If the baseline findings are driven by the onset of the Dust Bowl, cumulative erosion outside the
Plains region, which was not as associated with extreme weather from the 1930s, should have no
effect on technology development. In column 1 of Table A4, I control directly for this placebo
measure in the baseline specification; the placebo coefficient is close to zero, while the coefficient
of interest remains positive and significant. The baseline estimates do not capture the effect of
cumulative erosion or poor land management.

Next, I compute a second placebo measure that weights crop land area in each Plains county by
the share of each Plains county that had low levels of erosion:

L:
Low Exposure, = Z L

- I{Plains; } - Low Erosion; (4.4)
i Zi’ Lirc

In column 2 of Table A4, I control directly for this second placebo measure, and again the coefficient
on the placebo measure is close to zero. This finding indicates that the main results do not capture a
re-direction of technology toward Plains crops in general, but rather towards the specific crops that
were more damaged by the environmental distress.

Last, I compare the estimated effect of crop-level exposure to high levels of erosion to the effect
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of crop-level exposure to medium levels of erosion. Crop-level exposure to medium levels of erosion
is estimated as in (4.4), except low erosion is replaced with medium erosion. Table A10 documents
that, while the impact of medium erosion exposure is positive, the estimated impact of high ero-
sion exposure is larger in magnitude and the difference is statistically significant. These findings
further support the argument that the extent of environmental damage was the cause of technology

development.

Sensitivity: Controlling for Observables [ next investigate the robustness of the baseline finding
to controlling for a series of potential confounders; these results are presented in columns 4-8 of Ta-
ble A4. First, I control for “crop-specific trends” in pre-period biotechnology releases, meaning that
I include pre-period biotechnology releases at the crop-level interacted with a full set of year fixed
effects on the right-hand-side of the regression. This set of controls is designed to flexibly account
for potential underlying dynamic effects of pre-period crop-level innovation (column 4). Next, I
investigate the role of New Deal policy. The only program that had a crop-specific component was
the 1933 Agricultural Adjustment Act (AAA), which paid farmers not to plant certain crops; the
program was initiated prior to the worst years of the Dust Bowl and before the extent and distri-
bution of its damage was known. Nevertheless, in column 5 I control for crop-specific trends in an
AAA inclusion indicator. The results are very similar.

The sample period intersects with the Great Depression and World War II; while it is hard to
imagine why the effect of these shocks would differ across crops, in column 6 I control for Dust Bowl
exposure interacted with an indicator that equals one during the years of the Depression (1929-1939)
and an indicator that equals one during the years of US involvement in World War II (1941-1945).
Again, the coefficient estimate remains stable.

A remaining potential confound is the growth in development of hybrid crop varieties during
the early 20th century. This is only an empirical concern if the ex ante ease of hybrid development
were correlated with Dust Bowl exposure. While hybrid seed development is endogenous, follow-
ing Moscona (2021) I identify crops for which hybrid development would have been feasible based
on features of plant flower structure that facilitate hybrid development.!” I then control directly for
this hybrid indicator interacted with a full set of year fixed effects (column 7). Crop-level differences
in potential hybrid development do not drive the results. In column 8, I include all controls men-
tioned thus far on the right hand side. Despite the stringency of the specification with the inclusion
of 176 controls, the result remains similar.

Finally, if certain crops are disproportionately grown in certain states, and those states are on
separate trends, it may also bias the results. To address this, in Table A3, I control directly for the
share of each crop’s planted area located in each of a series of states. The coefficient of interest is

very similar across specifications.

7In particular, if a crop has “perfect flowers”—both the male and female parts of the plant are in the center of the
same flower—it is painstakingly difficult or impossible to generate new hybrids by combining genetic material from
multiple plants. This is not the case if a crop has “imperfect flowers”—when male and female reproductive material are
on different parts of the plant (e.g. Wright, 1980; Butler and Marion, 1985). In Moscona (2021), I collect data on the flower
structure of each crop and use this information to construct the hybrid control variable here.
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Figure 2: Both graphs report histograms of placebo estimates of f from Equation 4.1 after Exposure,
was randomized across crops. The results from 1000 randomizations are reported and the true
estimate of B is marked with a red line. Figure 2a displays results corresponding to the baseline
estimate of (4.1) without any additional controls (Table 1 column 1) while Figure 2b corresponds to
the specification that includes all additional controls (Table A4 column 7).

Sensitivity: Inference and Randomization The main estimates exploit differences in Dust Bowl
exposure across 43 crops. It is important to make sure that the findings are not driven by some small
set of crops in the sample, or by random chance that crops with positive innovation trends happen
to have been more exposed to the Dust Bowl. To investigate these issues systematically, I conduct
a permutation test that randomly re-assigns the Dust Bowl exposure measure across crops and
re-estimates the baseline regression equation (4.1) using these alternative treatment assignments.
If the true coefficient estimate is in the right tail of the placebo coefficient distribution, it would
indicate that the precision of the baseline estimate is not driven by a relatively small set of crops or
by random chance.

The full set of placebo coefficients is reported in Figure 2, where Figure 2a corresponds to the
specification without additional controls (Table 1 column 1) and Figure 2b corresponds to the spec-
ification with all additional controls (Table A4 column 7). The actual coefficient estimates are re-
ported with the red line. In both graphs, the actual coefficient estimate is in the far right rail of
the distribution, implying p-values of 0.004 and 0.006 respectively. This analysis suggests that, de-
spite the relatively small number of crops, the baseline result represents a systematic and precise

relationship between Dust Bowl exposure and innovation.

Instrumental Variables Estimates Next, I show that the results are also very similar using exoge-
nous weather shocks from the 1930s to construct instruments for Dust Bowl exposure. This strategy
isolates the variation in cumulative erosion measured in the reconnaissance surveys that took place
during the 1930s, thereby circumventing the issue that any finding is driven by pre-existing pat-
terns of topsoil damage or topsoil damage due to human behavior. I construct crop-level measures
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of weather severity from the 1930s by aggregating county-level weather data from Vose et al. (2014)
using Equation 3.1. As measures of local weather severity, I use the standard deviation of local
temperature and the Palmer drought index.

Column 1 of Table A9 shows the relationship between these measures of extreme weather ex-
posure and new varieties. The coefficient estimates are positive and significant; the relationship
between environmental extremes and directed innovation is thus similar using this independent
strategy to capture extreme weather events. I then use these measures of crop-level severity as
instruments for topsoil erosion, and generate 2SLS estimates of the impact of erosion on innova-
tion. The 2SLS estimates of Equation 4.1 is reported in column 2 and is very similar in magnitude
to the baseline difference-in-differences estimate; if anything, it is somewhat larger in magnitude.
Together, these results suggest that the main findings are not driven by any specific feature of the
Dust Bowl exposure measure and that the main findings capture a robust relationship between

environmental extremes and technology development.

4.3 Mechanisms
4.3.1 Sources of Persistence

While biotechnology development was directed toward Dust Bowl exposed crops starting at the
height of the Dust Bowl, the effect persisted after the Dust Bowl ended (Figure 1a). There are sev-
eral potential explanations for this. One potential explanation is that, while the period of extreme
weather and dust storms largely concluded in 1939, the effect on land quality persisted. Much of the
land never recovered its topsoil (Worster, 2004, p. 24) because, once damaged, topsoil often takes
over 100 years to re-generate (United States Department of Agriculture, n.d.). Farming on land
exposed to the Dust Bowl thus remained challenging and demand for technologies that increased
resilience could have remained high. However, another possibility is that research spurred by the
Dust Bowl had a lasting impact on the costs of performing R&D. This section explores two mecha-
nisms through which a temporary shock to technology demand might have had lasting effects on
R&D, and finds evidence in favor of both.

Fixed Costs of Research Programs One way that the surge of technology demand during the Dust
Bowl might have reduced the cost of subsequent R&D is by allowing breeders to invest in the fixed
cost of setting up breeding and research programs. Programs that were first financed and set up
during the Dust Bowl continued to operate after the 1930s. In the words of Sutch (2011), “climate
change was a tipping point” and higher sales during the 1930s “financed research at private seed
companies that led to new varieties with significantly improved yields in normal years.” Moreover,
there is growing evidence from other contexts that short-term changes in research investment can
have lasting effects on innovation (e.g. Gross and Sampat, 2020, on investment during WWII).

To investigate this channel, I estimate the short and long run effects of Dust Bowl exposure
separately and examine heterogeneity by the amount of pre-period innovation in each crop. If the

long run effect of the Dust Bowl on innovation is driven by the payment of breeding fixed costs
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Table 2: Dust Bowl Exposure and Scientific Articles
(1 (2) 3)

Dependent Variable Is:

A Citation
Articles .ny Weighted
) Articles ;
(asinh) 0/1 Articles
(0/1) (asinh)
High Exposure, x 1, °*%% 0.0502**  0.0169***  0.0688*

(0.0244)  (0.00408)  (0.0352)

Crop and Year Fixed Effects Yes Yes Yes
All Baseline Controls Yes Yes Yes
Observations 1,548 1,548 1,548
R-squared 0.661 0.517 0.575

Notes: The unit of observation is a crop-year. All specifications include crop and year fixed effects, as well as
all baseline controls. In column 1, the outcome variable is the inverse hyperbolic sine of the number of new
articles; in column 2, it is an indicator that equals one if at least one article was published; and in column 3 it
is the inverse hyperbolic sine of the citation-weighted number of articles. Standard errors, clustered by
crop, are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.

for crops with limited pre-existing innovative infrastructure, then it should be larger for crops with
more limited breeding before 1930. This is exactly what the results presented in Table A7 suggest.
During the 1930s the innovative response is, if anything, more pronounced for crops with more pre-
period innovation; this is intuitive, since these crops have more developed research programs that
could rapidly respond to the onset of environmental distress. However, during the 1940s and 1950s,
the effect of Dust Bowl exposure became stronger for crops with less pre-period innovation. Thus,
the long run effect of the Dust Bowl on variety development is driven by crops with limited pre-
existing innovative activity, consistent with the idea that the Dust Bowl led to fixed cost breeding

investment that had long run consequences.

Scientific Research To this point, the results have focused on technology development, in the
form of new seed varieties and patents. Here, I investigate whether scientific research shifted in
response to the Dust Bowl. A change in the focus of upstream scientific research may have also
reduced the cost (or increased the productivity) of subsequent research by adding to the body of
crop-specific knowledge and techniques. To measure crop-specific scientific production, I turn to
the Institute for Scientific Information’s Web of Science research article and citation database. I use
all articles published from 1925-1960 in the “Agricultural Sciences” research category and match
articles to individual crops by searching for each crop name in all article titles.!® To investigate the
impact of the Dust Bowl on scientific output, I estimate Equation 4.1 with measures of scientific

18 Article abstracts are not available for the vast majority of articles during the sample period, and are not available for
any articles during the pre-period in the difference-in-differences design.
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publication as the dependent variables.

The findings are reported in Table 2. In the first column, the dependent variable is the (inverse
hyperbolic sine transformation of the) number of research articles, and the coefficient of interest is
positive and significant. In the second column, the dependent variable is an indicator that equals
one if any articles were published related to crop c in year t, and again the coefficient of interest is
positive and statistically significant, indicating that the findings are not driven by observations with
an extreme number of articles. Finally, in column 3 the dependent variable is the citation-weighted
number of articles, and the coefficient estimate is similar to column 1, indicating that the main effect
is not driven by low-quality research.

These findings suggest that the Dust Bowl catastrophe shifted not only the development of new
technology, but also the focus of knowledge production “upstream” from technology development.
These results depart from prior work on directed technical change, which focuses on the develop-
ment of new technology rather than the production of new scientific knowledge (e.g. Acemoglu
and Linn, 2004; Hanlon, 2015). Moreover, this shift in scientific research may have contributed to
the long-run effect of the Dust Bowl on innovation and, more generally, may be important part of

the short and long run response of technology to major crises.

4.3.2 Types of Technology

In addition to shifting focus across crops, technology development may have also re-directed to-
ward technologies that are most useful for adapting to environmental change. The theory predicts
that while technology that can serve as a substitute for good land quality (i.e. Gi» < 0) should
increase following the Dust Bowl—and the first set of findings document this pattern in the case of
biotechnology—the effect could differ drastically across technology classes, and even reverse sign
for technology classes that are, on average, complements with good land quality (i.e. Gi2 > 0).

[ use two strategies to investigate how innovation shifted across types of technology and whether
these shifts are consistent with the theory. First, I investigate whether the results are stronger for
crops that could be hybridized since hybrid varieties anecdotally had a higher marginal value on
distressed land (e.g. Crow, 1998). Second, I use the patent data to compare the response of multiple
technology classes that are differentially able to relieve environmental constraints. By comparing
the response of different technologies within each crop, this analysis also makes it possible to fully
control for crop-by-time effects; by absorbing all crop-level dynamics, including price changes, this
specification makes it possible to determine the extent to which price effects drive the baseline rela-

tionship between crop-level damage and innovation.

The Role of Hybrids Qualitative evidence suggests that the innovative response to the Dust Bowl
was driven especially by the development of hybrid crop varieties, and particularly those for corn,
which were more resilient in the face of extreme drought and erosion (e.g. Sutch, 2008; Meyers and
Rhode, 2020, also see Section 2.1). Interpreted through the lens of the model, we would expect a

stronger, positive response of hybrid varieties since they were “strikingly more resistant” in the face
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of drought and environmental degradation (Crow, 1998) and hence a substitute for distressed land
(i.e. G2 < 0). While it would be ideal to be able to measure the number of hybrid and non-hybrid
varieties released for each crop to check whether the main results are driven by hybrid varieties, to
my knowledge these data do not exist. Therefore, I exploit the fact that hybrid penetration was very
heterogeneous across crops.

Hybrid development began with corn during the 1920s and was extended to several other crops
in subsequent years; however, many major crops (e.g. wheat) experienced virtually no hybrid de-
velopment. As described in the “Sensitivity: Controlling for Observables” section above, a key
determinant of crop-level hybrid development was whether the crop has imperfect flowers (e.g.
Wright, 1980; Butler and Marion, 1985). Imperfect flower structure make the development of hy-
brid substantially less costly, since it is possible to separately capture the male and female genetic
material, and therefore serves as a fixed crop-level proxy for the feasibility of hybrid development.
Thus, in order to investigate the role of hybrids, I check whether the baseline results are more pro-
nounced for crops for which hybrid development was feasible.

Table A6 reports estimates of Equation 4.1 that include an interaction term between Dust Bowl
exposure and a crop-level imperfect flower (“hybrid feasibility”) indicator. While there is a positive
and significant coefficient on the un-interacted Dust Bowl exposure measure, suggesting that the
baseline results are not solely driven by hybrid development, the response was significantly larger
for hybrid compatible crops (column 1). The result is similar after adding the full set of baseline
controls (column 2). These findings suggest that hybrid variety development played a particularly
important role in the innovative response, and are consistent with the re-direction of technology
being driven by growing demand for topsoil-substituting technologies (see Proposition 1), rather
than general equilibrium effects, which do not likely differ ex ante across crops that are and are not
amenable to hybrid development.

Effects by Technology Class While variety development is the focus of most analyses of adapta-
tion to the Dust Bowl (e.g. Crabb, 1947; Crow, 1998), damage to soil nutrition and the pest outbreaks
that resulted from drought made chemical, planting, and soil conservation technology potentially
more valuable as well (e.g. Schlebecker, 1953; Baveye et al., 2011). Most harvest and post-harvest
machines, however, do not interact as clearly with the climate or land directly, and likely played a
more limited role in bolstering production resilience. Innovators may have directed attention away
from developing technologies that did not directly compensate for worsening land conditions."

To investigate the effect of the Dust Bowl on innovation across different types of technology, I
turn to the patent data. I use the cooperative patent classification (CPC) of each patent to deter-
mine which relate to biochemical and planting technologies—those that are most plausibly “topsoil
substituting”—and which relate to mechanical harvesting and post-harvest technology—those that
are least likely to interact with the environment.?’

19This is true in the version of the model with fixed prices; if prices are allowed to adjust, then the effect of topsoil
damage on topsoil complementing technology is ambiguous.
201 identify patents in CPC classes AO1H and A01IN as biochemical technologies. AO1H and A0IN include technologies
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I then compare the impact of the Dust Bowl on technology development across different tech-
nology classes using the following specification:

Yxet = &ex + Oty + Yot + 3 - Exposure, - I7*H1P0. 15 + ¢ (4.5)

where x indexes technology classes, c indexes crops, and t indexes years. The independent variable
of interest is a triple interaction between (a) crop-specific Dust Bowl exposure, (b) an indicator that
equals one in all years after 1930, and (c) and indicator that equals one if a technology class is in
the more topsoil-substituting category. The coefficient of interest is 1. If ip > 0, crops that were
more damaged by the Dust Bowl experienced a disproportionate increase in the more plausibly
topsoil-substituting technology class. All specifications include the full set of possible two-way
fixed effects, including crop-by-year fixed effects which capture any crop-level dynamics. Since
these crop-by-year effects fully absorb any crop-level price dynamics, estimates of ¢ > 0 are further
indication that the results are not driven by general equilibrium price changes affecting innovation
incentives.

Table 3 reports estimates of Equation 4.5 for a series of potential cross-technology comparisons.
Column 1 compares variety development to all patented technologies, which does not include any
biotechnology during the sample period, and column 2 compares variety development directly to
harvesting and post-harvest mechanical patents. In both cases, technology development in more
Dust Bowl-exposed crops is directed disproportionately toward crop varieties (1 > 0). Columns
3 and 4 focus on the patent data alone, and compare biochemical and planting patents to harvest-
ing and post-harvest mechanical patents (column 3) or biochemical patents alone to harvesting and
post-harvest mechanical patents (column 4). Again, technology development is directed dispro-
portionately toward the technologies that more plausibly interact with the environment and could
increase resilience. Columns 5-6 are identical to columns 3-4, except new varieties are included
among the topsoil-substituting technologies; the estimates are similar.

These triple-difference results are driven by both an absolute increase in biochemical and plant-
ing patenting in crops more-exposed to the Dust Bowl, and an absolute decline in mechanical har-
vest and post-harvest patenting in crops more-exposed to the Dust Bowl (Table A8). Analogous to
the baseline findings, Table A9 shows that the cross-technology results are similar if crop-level Dust
Bowl exposure is instrumented using contemporaneous weather shocks (column 2). All estimates
using the patent data are also similar using citation-weighted patenting as the dependent variable,
indicating that the findings are not driven by insubstantial discoveries (Table A11).

Finally, Figure 3 presents the results graphically over time, using a dynamic triple-differences

corresponding to: new plants or processes for obtaining them, and plant reproduction by tissue culture techniques; and
biocides e.g. as disinfectants, as pesticides, as pest repellant or attractants, plant growth regulators. I identify patents
in CPC classes A01D, AO1F, and A01G as mechanical harvest and post-harvest technologies. A01D, A01F, and A01G
include technologies corresponding to: harvesting and mowing; processing of harvested produce, hay or straw presses,
devices for storing agricultural or horticultural produce; horticulture, cultivation of vegetables, flowers, rice, fruit, hops,
or seaweed, forestry, watering. Finally, I identify planting patents as those belonging to A01B and A01C. A01B and
A01C include technologies corresponding to: soil working in agriculture or forestry and parts, details, or accessories of
agricultural machines or implements; fertilizing, planting, and sowing.
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Table 3: Dust Bowl Exposure and Innovation Across Crops and Technology Classes

€y ) 3 C)) ) (6)

Dependent Variable is the Number of Innovations in the Crop-Year-Class Bin (asinh)

Bio-Chemical

Bio-Chemical Bio-Chemical  + Planti Bio-Chemical
. _— - _— . io-Chemi ntin
More topsoil-substituting class(es) Varieties Varieties + Planting o-Lhemica anting Patents +
Patents Patents + L
Patents o Varieties
Varieties

Mechanical Mechanical Mechanical Mechanical Mechanical

. , All Patent Harvest + Harvest + Harvest + Harvest + Harvest +
More topsoil-complementing class(es)

Classes Post-Harvest Post-Harvest Post-Harvest Post-Harvest Post-Harvest
Patents Patents Patents Patents Patents
Post1930 S
Exposurec x 1t x 1k 0.0733*** 0.0823*** 0.0187*** 0.0389** 0.0314*** 0.0534**
(0.0264) (0.0283) (0.00673) (0.0183) (0.0105) (0.0210)
Initial area weighted estimates:
Exposurec x ﬂtpﬂmggu X ZlkS 0.138%** 0.148%** 0.0283*** 0.0830*** 0.0523*** 0.105%**
(0.0342) (0.0359) (0.00848) (0.0259) (0.0133) (0.0284)
Crop x Year Fixed Effects Yes Yes Yes Yes Yes Yes
Crop x Technology Class Fixed Effects Yes Yes Yes Yes Yes Yes
Year x Technology Class Fixed Effects Yes Yes Yes Yes Yes Yes
Crops 43 43 43 43 43 43
Observations 15,867 7,052 12,341 8,815 14,104 10,578
R-squared 0.725 0.785 0.682 0.719 0.726 0.752

Notes: The unit of observation is a crop-year-technology class. All specifications include crop-by-year fixed effects, crop-by-
technology class fixed effects, and year-by-technology class fixed effects. The outcome variable is the inverse hyperbolic sine of the
number of new innovations, either patents or new varieties, in a crop-year-class bin. Estimates of the coefficient of interest from
analogous specifications in which the regression is weighted by each crop's initial area are also reported. Standard errors, double
clustered by crop and year, are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.

specification; the two figures correspond to the specifications from columns 4 and 6 of Table 3 re-
spectively. Prior to 1930, there were no differences in innovation trends across crop-by-technology
bins. A stark difference emerged at the height of the Dust Bowl, when technological progress in
more damaged crops shifted toward biochemical and planting technologies. Mirroring the baseline
results, the effect persisted over time, further indicating that the Dust Bowl precipitated a long-run
shift in the focus of innovation.

There are two key conclusions from this set of results. First, methodologically, the significant
findings after the inclusion of crop-by-time fixed effects in all estimates of Equation 4.5 further sug-
gests that the baseline results were not driven by any crop-level unobservable characteristics. Sec-
ond, more conceptually and dovetailing with the findings in the previous section, these estimates
are consistent with a narrative in which the re-direction of innovation was driven by demand for
technology that would directly increase production resilience. The positive response of innovation
is concentrated in technologies that could have directly bolstered production on damaged land, and
innovation shifted away from technologies that do not interact directly with the environment. A
major role for general equilibrium effects is inconsistent with the distinct effects across technology

classes, and especially the absolute decline in mechanical innovation related to crops exposed to the
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Figure 3: Dust Bowl Exposure and Innovation Across Technologies. The outcome variable is the inverse
hyperbolic sine of the number of patents or unique crop varieties in a crop-by-technology class bin. Standard
errors are double-clustered by crop and year. The dashed lines are 95% confidence intervals.

Dust Bowl, which also would have been subject to positive price incentives.

4.3.3 Types of Innovators

This section investigates the source of the re-direction of innovation in response to the Dust Bowl.
While the public sector played—and continues to play—an important role in US agricultural re-
search, the 1930s have been identified as a turning point when private sector firms also began to
play an active role. These emergent firms and private breeders feature prominently in historical
accounts of Dust Bowl induced innovation (see Section 2.1). The Variety Name List does not contain
information on the entity that released each variety, so I turn to the additional data sets to identify
the source of new innovation.

The patent data from the sample period contain assignee information that makes it possible
to identify where each technology comes from. I first classify each patent as belonging to a private
sector firm if the assignee name contained any one of a series of words or word fragments associated
with private sector firms.?! Columns 1-2 of Table A12 report estimates of Equation 4.5 that include
only patents assigned to private sector firms. The coefficient estimate is positive and significant
(column 1), somewhat larger in magnitude when weighted by initial land area (column 2), and
similar in magnitude to the analogous estimate using the full sample of patents (Table 3, column 2).

In columns 3-4, I report analogous specifications except the dependent variable is patents as-

signed to colleges, universities, and government institutions.?> While the coefficient estimates are

21The words are: company, corporation, LTD, INC, CO., industries, limited, CORP,, PLC, and LLC. This procedure
identifies 33% of the patents in the sample; while this likely does not capture all firms, it seems unlikely that this procedure
would falsely identify a patent as belonging to a private firm and thus findings estimated on this sample of patents should
still be an indication of private sector innovative activity.

22 Again, T identify these patents using a keyword search of the patent assignees. The words are: university, college,
institute, government, state, federal, research station, experiment station, usda.

25



both positive, they are smaller in magnitude than the previous estimates and indistinguishable from
zero. This indicates that the main findings do not seem to be driven by public sector patenting. Fi-
nally, many patents were not linked to either private sector firms of the public sector using the text
analysis strategy; these patents are predominately assigned to individual breeders or have missing
assignee information in the patent record. When the dependent variable is constructed from these
patents, I estimate ¢ = 0.29 (p < 0.1), suggesting that individual breeders also played a role.

In order to analyze government research in greater detail, I turn to independently collected data
on experiments conducted on US federal experiment stations during the sample period, originally
compiled by Kantor and Whalley (2019), and identify the crop that was the focus of each exper-
iment. Panel A of Table A13 reports estimates of Equation 4.1 in which the dependent variable
captures the number of experiments related to each crop. In column 1-2 of Panel A, the outcome
is the (inverse hyperbolic sine of the) number of unique experiments, and in columns 3-4 it is an
indicator that equals one if there was at least one experiment. Panel B is identical to Panel A, except
that the outcome variables measure experiments only in stations located in Dust Bowl states (Figure
A1), which might be more likely to shift focus in response to the Dust Bowl. The coefficients of in-
terest are all small and statistically indistinguishable from zero, further indicating that the baseline
result is not driven by government research.

One explanation for the limited response of federal research, even though experiment stations
were aware of production challenges posed by the Dust Bowl, is that federal researchers focused
their attention on documenting the value of production adjustment (Stephens, 1937). Experiment
station researchers published on the benefits of shifting land from cropland to pasture, and on
the resilience of hay production (compared to wheat) on dry and eroded land (Nelson et al., 1940;
Wenger, 1941). However, as documented in Hornbeck (2012a) and Appendix D of the present study,
despite their potential benefits, these types of production adjustments were limited in practice, even
in the most distressed counties. Experiment stations were also instructed to focus on basic, rather
than applied, research, and to “not simply focu[s] research on solving local problems” (Nevins,
1962). While basic research may underly the development of environmentally resistant technology,
and private researchers no doubt built on discoveries first made in experiment stations (Kantor and
Whalley, 2019), basic research may be less responsive to shifting technological demand and operate

over longer time horizons.

5 Results: Adaptation

Did the major shift in the direction of technology in response to the Dust Bowl shape its economic
consequences? This section investigates the role of innovation in mitigating the Dust Bowl’s eco-
nomic harm. I investigate the county-level impact of the Dust Bowl and compare its impact in
counties that were differentially exposed to the re-direction of innovation documented above.
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5.1 Empirical Strategy

Measurement The two key ingredients for this part of the empirical analysis are a measure of lo-
cal exposure to the Dust Bowl and local exposure to induced innovation. To measure local exposure
to the Dust Bowl, I use the share of county-level land exposed to high levels of topsoil erosion. To
measure local exposure to Dust Bowl-induced technology development, I calculate the extent to
which each county’s crop mix was exposed to the Dust Bowl on average across all counties. Coun-
ties that cultivated crops more exposed to the Dust Bowl on average were the beneficiaries of more
induced innovation (Section 4). Therefore, if innovation mitigated the Dust Bowl’s economic harm,
the direct county-level effect of Dust Bowl exposure should be dampened for counties that grew
crops that were more damaged across all other Plains counties, and hence the recipient of more
induced innovation.

For example, consider two counties in Colorado that both experienced the same land erosion
during the Dust Bowl. One of these counties, however, grew predominantly sorghum, which ex-
perienced the highest aggregate damage from the Dust Bowl; the other grew soybeans, which was
much less exposed to the Dust Bowl. Since innovation responded to national crop-level damage,
more sorghum-related innovations than soybean-related innovations were developed in the Dust
Bowl’s aftermath. If new technology increased resilience to the Dust Bowl, the sorghum growing
county should experience a more limited decline in profits following the Dust Bowl than the soy-
bean growing county, even though the direct effect of the Dust Bowl was identical. The reason, put
simply, is that a farmer with eroded land who grew sorghum had a lot of new technology to work
with; a farmer with eroded land who grew soybeans did not.

Following this logic, I proxy the innovation exposure of county i as:

Lic Yji ErodedLand,

InnovationExposure, = —_— 51
p ! ; ( Li 2]751 Areajc ) ( )

where L; is the amount of land devoted to crop c¢ in county 7 in 1929 and ErodedLand;. is de-
fined in Section 3.2. Rather than use the crop-level exposure measure from the previous part of
the paper, I compute a “leave-out” measure that excludes the county in question. Thus, the vari-
able InnovationExposure; captures the extent to which the crops that county i grows were damaged
across all other Plains counties and hence the county’s exposure to Dust Bowl-induced technology.

Estimation To investigate the role of induced innovation in mitigating the economic harm of the

Dust Bowl, I estimate versions of the following equation:

Vit =0 + 05t + B - (Erosionl- SJrpost 1930) + - (InnovationExposurei - Post 1930) +
(5.2)
¢- (Erosioni SJPost 1980, InnovationExposurei> + XL,T + €

where i indexes counties, t indexes census rounds, and s indexes states. The primary dependent

variable is the agricultural land price per acre, measured from the Census of Agriculture for each
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Table 4: Innovation and Adaptation to the Dust Bowl: County-Level Estimates

(D (2) 3 4
log Value of log Value of log Total
. Land and log Total
Dependent Variable: . Land per Revenue per
Buildings Revenue
Acre Acre
per Acre
Panel A: Effects of Dust Bowl and Innovation Exposure
Erosioni x 1t "% 14165 -0.964%**  -1660***  -1.265%*
(0.441) (0.317) (0.530) (0.474)
Erosion: x 1~ >0 x InnovationExposurei 11.99** 7.931** 15.25%* 11.42%*
(5.160) (3.745) (6.231) (5.555)
County Fixed Effects Yes Yes Yes Yes
Census Round x State Fixed Effects Yes Yes Yes Yes
Observations 1,592 1,592 1,592 1,592
R-squared 0.949 0.974 0.881 0.922
Panel B: Pre-trends for Innovation Exposure
Erosion; x InnovationExposure; 0.0925 1.035 1.189 2.287
(3.649) (3.881) (6.111) (4.579)
State Fixed Effects Yes Yes Yes Yes
Observations 796 796 796 796
R-squared 0.469 0.488 0.269 0.365

Notes: The unit of observation is a county-year in Panel A and a couny in Panel B. All estimates are from long
differences specifications. In Panel A, the starting year is either 1920 or 1925 and ending year either 1940 or 1959,
depending on data availability. In Panel B, the dependent variable is the change in each outcome variable between 1910
and 1930. The sample of counties was selected as in Hornbeck (2012). All specifications include county fixed effects
and census round-by-state fixed effects. The dependent variable is listed at the top of each column. Standard errors,
clustered by county, are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.

county i in year t, which captures the net present value of profits from agricultural production;
unlike measures of physical productivity, it incorporates the benefits of new technology alongside
its potentially higher cost. All specifications include county and state-by-census round fixed effects
(«; and Jg; respectively), and I document the robustness of the estimates to the inclusion of a range
of controls, X/,.

The coefficients of interest are  and ¢. P captures the direct effect of Dust Bowl erosion on
county-level land values and other features of production, as documented extensively by Hornbeck
(2012a). The clear hypothesis is that B < 0. ¢ captures the extent to which the economic impact of
Dust Bowl erosion is shaped by exposure to Dust Bowl-induced innovation. If innovation mitigated
damage from the Dust Bowl, we expect ¢ > 0. This would imply that the marginal impact of Dust
Bowl erosion is dampened in counties that were more exposed to induced innovation.

After presenting the main results, I directly investigate and rule out potential alternative mech-
anisms driving the relationship between innovation exposure and local land values or revenue,
including the effect of output prices which might also respond to aggregate crop-level damage. In
Section 5.3, I also present a series of additional results consistent with innovation exposure driving

estimates of ¢.
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Figure 4: Quantitative Impact of Directed Technology. The points display the marginal impact of Dust
Bowl exposure (y-axis) by innovation exposure quantile (x-axis).

5.2 Main Results

Panel A of Table 4 presents long difference estimates of Equation 5.2.2* In column 1, the outcome
variable is (log of) the value of land and buildings per acre. While B is negative and significant, I
find that ¢ > 0, consistent with technology development mitigating the negative effect of the Dust
Bowl on the value of land and buildings. The results are similar in column 2, when the outcome
variable is the (log of the) value of land per acre, or when the outcome variable is (log of) in-sample
agricultural revenue (column 3) or agricultural revenue per acre (column 4).

Panel B of Table 4 shows that there do not seem to be any pre-existing trends in the relationship
between innovation exposure and county-level outcomes. Each column reports the relationship
between Erosion; - InnovationExposure;, the independent variable of interest in Panel A, and the
change in each outcome variable between 1910 and 1930. In all cases, the coefficient estimates are
very small in magnitude and statistically indistinguishable from zero.

Figure 4 illustrates the magnitude of the innovation effect, using the specification from column 1
of Panel A of Table 4. On the vertical axis is the marginal impact of county-level Dust Bowl erosion
on agricultural land values, and on the horizontal axis is the county’s position in the innovation
exposure distribution.?* The marginal impact of land erosion for a county with median innovation
exposure is under half that of a county at the bottom of the innovation exposure distribution. More-
over, counties at the highest part of the innovation exposure distribution experienced no discernible
long run decline in land value as a result of the Dust Bowl (top right). Thus, directed technology
drove substantial heterogeneity in the downstream economic impact of the Dust Bowl.

23The pre-period and post-period year for the long difference estimates switch slightly due to data availability. In
columns 1, 3, and 4, they are 1920 and 1959 respectively and in column 2 they are 1920 and 1940. While the baseline
results report long difference estimates since technology development is a long-term process, full panel estimates are
qualitatively similar and intuitively smaller in magnitude (Table A14).

24In particular, Figure 4 plots the function g(g) = 100 - (8 + ¢ - InnovationExposure(q)), where InnovationExposure(q)
is quantile g of the empirical distribution of InnovationExposure,
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Sensitivity Analysis In Appendix E, I discuss additional results that further probe the sensitivity
of the county-level estimates. These include replicating the findings using the full panel of census
rounds, rather than long difference estimates (Table A14); re-producing all estimates without state-
by-time fixed effects (Table A15); and purging the effect of local spillovers by estimating a version
of innovation exposure that excludes any variation in crop distress that occurs in other counties
in the same state (Table A16). I also document that the results hold comparing the marginal effect
of exposure to medium and high levels of erosion and the corresponding measures for innovation
exposure (Table A17). Dovetailing with the analogous crop-level estimates, this is consistent with a
causal effect of innovation exposure on adaptation.

Finally, I document that the precision of the baseline estimates is very similar after adjusting the
standard errors for spatial correlation. Table A18 reports the t-statistic for ¢ using Hsiang (2010)’s
implementation of Conley (1999) standard errors for a series of spatial kernel cut-off values, ranging
from 200km to 1000km. It also shows that the precision is similar double clustering by state-year

and county or clustering by state.

5.2.1 Dynamics

Figure 5 displays the dynamic relationship between Dust Bowl exposure and the value of agricul-
tural land. Figure 5a reports the effect of Dust Bowl exposure over time, separately for counties in
the top quartile of innovation exposure (“high innovation exposure”) and counties in the bottom
three quartiles of innovation exposure (“low innovation exposure”). Prior to 1930, the two sets of
counties were on similar trends. However, their trends diverge in 1940, a decade after the start of
the Dust Bowl, and diverge even further in 1950 and 1960. The negative effect of Dust Bowl expo-
sure persists in low-innovation exposed countries, while it declines over time in high-innovation
exposed counties. By the 1950s, the effect of Dust Bowl exposure on high-innovation exposed coun-
ties it not statistically distinguishable from zero.

Figure 5b reports the differential effect of the Dust Bowl over time in high- vs. low-innovation
exposed counties. This corresponds exactly to the difference between the two sets of coefficients
from Figure 5a in each decade. Again, it is possible to see that the two sets of counties were on
similar trends prior to the Dust Bowl, which had a substantially weaker effect on high-innovation
exposed counties. The gap between the two sets of counties widened over time, perhaps as more
innovation-exposed counties adopted and incorporated new technology over time.

5.2.2 Potential Threats to Interpretation

This section of the paper argues that estimates of (5.2) can be used to document the downstream
effects of directed innovation on economic resilience. However, to make this argument, it is impor-
tant to rule out any potential alternative interpretations or other mechanisms that could be driving
positive estimates of ¢ in (5.2).

One potential threat to interpretation would be if the innovation exposure measure were spu-

riously correlated with New Deal policy developed in response to the Dust Bowl. However, the
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Figure 5: Innovation Exposure and Land Values: Dynamic Effects. Figure 5a reports the effects of Dust
Bowl exposure in each decade separately for counties in the top quartile and bottom three quartiles of inno-
vation exposure. Figure 5b reports the differential effect of Dust Bowl exposure between these two sets of
counties. That is, it reports coefficient estimates on the interaction between Dust Bowl exposure, an indicator
for being in the top quartile of the innovation exposure distribution, and decade indicators. 95% confidence
intervals are reported for all coefficients.

estimates are very similar after controlling flexibly for local government spending and a range of
New Deal programs, including spending under the Agricultural Adjustment Act (AAA), described
in Section 4.2 (see Appendix E and Table A19).

The main threat to the interpretation of estimates of (5.2), however, is that innovation exposure
may be correlated with changes in crop prices. Since all estimates control for the direct effect of
innovation exposure (captured by ), estimates of ¢ are only biased if price effects have a non-
log-linear effect on agricultural profits. Stated differently, the empirical model captures the direct
effect of innovation exposure on prices; estimates of ¢ are biased only if price effects have a larger
effect on profits in counties that were more exposed to the Dust Bowl. To ameliorate any potential
concerns, I compile data on crop-specific producer prices from the USDA and estimate the output

price bundle in county i in year t:

. L :
Output Price;, = Z L—ZC -log(Producer Price)
o Li
where Producer Price; is the national producer price for crop c in year t.2° I then control directly
for county-level changes in output prices, as well as the interaction between changes in output
prices and Dust Bowl exposure. Estimates with these controls are reported in Table A20 and, if any-
thing, the coefficient estimates are slightly larger than the baseline estimates, making it unlikely that

producer prices drive the relationship between innovation exposure and agricultural production.

ZProducer price information is not available for the full set of crops in the baseline analysis. The crops for which
national producer price data exist during the period of analysis are: wheat, rye, rice, tobacco, sorghum, soybeans, corn,
alfalfa, cotton, sugar beets, oats, oranges, grapefruit, potatoes, lemon, cranberries, peanuts, flax, hay, beans, and hops.
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Table 5: Innovation and Adaptation to the Dust Bowl: Heterogeneity by Farm Size

® ) 3 4
log Value of log Value of log Total
. Land and log Total
Dependent Variable: - Land per Revenue
Buildings Revenue
Acre per Acre
per Acre
Erosion: x1¢ " **" x InnovationExposure: X Above Med. Size; 34.23** 22.38** 10.80 11.19
(13.41) (11.11) (15.84) (15.14)
County Fixed Effects Yes Yes Yes Yes
Round x State Fixed Effects Yes Yes Yes Yes
Relief Controls x Round FE Yes Yes Yes Yes
Observations 1,584 1,584 1,584 1,584
R-squared 0.952 0.977 0.889 0.927

Notes: The unit of observation is a county-year. All estimates are from long differences specifications; the starting year is
either 1920 or 1925 and ending year either 1940 or 1959, depending on data availability. The sample of counties was
selected as in Hornbeck (2012). Above Med. Farm is an indicator that equals one if the average farm size in a county in
1930 (measured as total county revenue divided by the number of farms) is above the within-sample median. Standard
errors, clustered by county, are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.

These make it unlikely that price changes are driving the effects in Table 4.

As noted in the previous paragraph, price effects are only a threat to interpretation if their im-
pact on profits is larger in more Dust Bowl-exposed counties. One reason this might be true is if
credit constraints limited Dust Bowl-exposed farms from adjusting to environmental damage, but
higher output prices relieved some of these constraints and facilitated production adjustment. If
this is true, then estimates of ¢ would be largest for the most constrained farms. If ¢ were cap-
turing the effect of induced innovation, however, we would expect the effects to be largest for the
least constrained farms, which would have been better able to access and afford improved tech-
nologies. While, to my knowledge, there is no direct way to measure credit constraints during the
sample period, Table 5 reports heterogeneous effects based county-level average farm size, where
the assumption is that larger farms are, on average, less constrained. For all outcome variables,
the estimates are larger for counties with larger farms, and in half of the columns the difference is
statistically significant. These results are inconsistent with price effects driving the result since they
suggest that the findings are driven by larger farms, which would have likely been less affected by

price changes but potentially more able to learn about, adapt, and incorporate new technology.

5.3 Mechanism: Resilience on Damaged Land

To this point, the results have focused on the impact of the development of new technology that
directly affected productivity in counties hit by the Dust Bowl. Historical evidence suggests that
the main benefit of new technology was that it increased resilience on damaged land (Section 2.1).

The fact that technology development was focused on hybrids, and was directed away from har-
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Change in log Land Value per Acre
Change in log Land Value per Acre | X

2 -2
-.04 -.02 0 .02 .04 -.04 -.02 0 .02 .04
Innovation Exposure Innovation Exposure | X
coef = -1.4038891, (robust) se = 1.0408969, t = -1.35 coef = .80331893, (robust) se = .82902472, t = .97
(a) Unweighted (b) Weighted by Initial Farm Area

Figure 6: InnovationExposure; vs. A log Land Value per Acre: Non-Plains Counties. The unit of obser-
vation is the county and each graph reports a partial correlation plot with state fixed effects. The sample
includes all non-Plains counties. Coefficient estimates, standard errors, and f-statistics are reported at the
bottom of each graph.

vesting technologies and toward biological, chemical, and planting technologies for more damaged
crops, further suggests that a key goal of technology development was to promote resilience (Sec-
tion 4.3.2). Finally, the previous section (Section 5.2) showed that the marginal impact of Dust
Bowl exposure was mitigated in counties most exposed to induced innovation. Interpreted via the
model, these findings are consistent with technology development targeting producers affected by
environmental change, where demand for new technology was high.

Next, I document direct evidence of this mechanism by comparing production in counties that
were exposed to the Dust Bowl and counties that were not. While the main county-level results
focused on the Plains counties in or around the Dust Bowl, Figure 6 reports a partial correlation
plot between county-level innovation exposure and county-level changes in land value in non-Plains
counties. In Figure 6a, the estimate is un-weighted, and in Figure 6b, the estimate is weighted by
initial farm area in order to make sure the finding is not driven by non-agricultural counties. In
both cases, the coefficient estimate is small and statistically insignificant. Thus, exposure to Dust
Bowl-induced innovation had no discernible impact in counties that were not facing environmental
hardship. This null result makes it unlikely that terms of trade or price effects, which should affect
all counties that grow a given crop, drive the estimates in Table 4.

Another possibility would have been for new technology to expand the land area on which dam-
aged crops could be productively grown. US history is rife with examples of technological progress
expanding the area on which agricultural production could take place, for example as settlers trav-
eled West (Olmstead and Rhode, 2008). Even absent innovation, one adaptive response to the Dust
Bowl might have been a re-allocation of production toward healthier land. This mechanism, how-
ever, also does not seem consistent with the data. I estimate the relationship between Dust Bowl

exposure and cultivated area outside the Dust Bowl by combining data on crop-by-county planted
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areas from the 1929 and 1959 Censuses of Agriculture. Figure A2 displays the relationship between
crop-level damage from the Dust Bowl and the change (1929-1959) in land area devoted to the crop
in non-Plains counties (A2a) and in Plains counties with below-median land erosion (A2b). In both
cases, the coefficient estimate is small in magnitude and indistinguishable from zero, suggesting a
limited role for cross-crop production reallocation.

Together, these findings are consistent with the results from Section 4.3.2, suggesting that tech-
nology development was driven by a rise in demand for specific technologies that would increase
resilience on distressed land. I find no evidence that Dust Bowl-induced innovation exposure raised

productivity on environmentally healthy land, or that it facilitated the re-allocation of production.

6 Conclusion

Innovation is a potentially crucial force driving adaptation in moments of catastrophe. In recent
years, the coronavirus pandemic has thrown into stark relief our economy’s reliance on technologi-
cal progress and ingenuity in the aftermath of major shocks. The idea that technology development
may progress especially quickly during moments of great need has also guided much of the histor-
ical narrative about the growth of US innovation, and agricultural biotechnology in particular.

This paper documents a sharp re-direction of innovation in US agriculture during and in the
aftermath of the Dust Bowl, perhaps the most extreme environmental crisis in American history.
Technology development shifted toward crops that were more exposed to environmental distress
and toward technologies that would be most useful for environmental adaptation. These effects per-
sisted long after the worst years of the Dust Bowl were over, highlighting the fact that temporary
shocks can have long run effects on the rate and direction of technological progress. Finally, coun-
ties that, due to their crop composition, were best positioned to benefit from Dust Bowl-induced
technological progress experienced more muted declines in land value and agricultural revenue,
suggesting that innovation substantially mitigated the economic impacts of environmental distress.

While this paper investigates a historical episode of environmental catastrophe, modern crises
are also accompanied by technological responses that shape their aggregate and distributional con-
sequences. Anthropogenic climate change is characterized not only by slow-moving changes in
climate, but also by an increase in the number and severity of environmental disasters. Future
health crises are also increasingly seen as a likely part of reality, potentially accelerated by envi-
ronmental change. By investigating the response of technology to a historical disaster—as well as
the mechanisms underpinning the technological shift—this paper takes one step toward a more
complete understanding of how invention shapes the human toll of crises.
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Online Appendix

A Supplementary Empirical Results

Low erosion
- Medium erosion
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Figure Al: Main Sample and County-Level Erosion. This figure maps the Plains counties included in the
empirical analysis. Counties are shaded by erosion level, where black corresponds to high erosion (greater
than 75% topsoil eroded), grey corresponds to medium erosion (25-75% topsoil eroded) and white corre-
sponds to low erosion (less than 25% topsoil eroded). This figure is reproduced from Hornbeck (2012a) and
its original source is the US National Archives in College Park, Maryland.
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Figure A2: Crop-Level Damage vs. A Area Planted Outside Dust Bowl. Partial correlation plots at the
crop-level. The dependent variable is the change in log total area harvested (1929-1959) in (a) non-Plains
counties or (b) Plains counties with below-mean land erosion. Coefficient estimates, standard errors, and
t-statistics are reported at the bottom of each graph.



Table Al: List of Crops in Main Sample and Summary Statistics

Dust Bowl , Varieties
Crop Name Exposure log Area in Released  AAA Crop
Ranking 1929 1930-1960
Artichoke 43 8.822175 1 0
Asparagus 30 114592 12 0
Barley 9 16.33745 151 0
Beans 17 1534646 221 0
Broccoli 6 7.286876 26 0
Brussel Sprouts 42 7435438 4 0
Buckwheat 36 13.31806 1 0
Cabbage 27 12.04369 47 0
Carrots 25 9.7475 85 0
Cauliflower 14 9.871119 119 0
Celery 31 10.32551 65 0
Clover 8 1552132 18 0
Collard 41 5.823046 3 0
Corn 2 18.23835 1247 1
Cucumber 23 11.32189 140 0
Eggplant 37 7.620215 38 0
Emmer and Spelt 13 12.63024 12 0
Flax 20 14.72065 47 0
Kale 40 6.617403 25 0
Lettuce 29 11.62355 126 0
Melons 11 11.72523 126 0
Oats 5 17.39564 218 0
Okra 32 8.235095 11 0
Onion 7 1140831 184 0
Other Grasses 4 16.17317 28 0
Parsley 34 6.021023 6 0
Parsnip 35 5817111 9 0
Peanut 15 14.66331 38 1
Peas 33 1249933 188 0
Peppers 22 10.19836 150 0
Radish 24 8.007034 60 0
Rhubarb 28 8.110427 4 0
Rice 39 13.33934 42 1
Rye 16 14.88421 52 0
Sorghum 1 1587801 75 0
Soybean 21 14.86947 17 0
Spinach 19 10.84404 43 0
Squash 12 8920923 94 0
Timothy 18 1697461 14 0
Tobacco 38 14.42538 44 1
Tomato 26 13.00397 514 0
Watermelon 10 12.52267 67 0
Wheat 3 17.87227 427 1

Notes: This table reports the crop name; Dust Bowl exposure ranking; (log of) total area
planted in 1929, as measured in the 1930 Census of Agriculture; the total number of varieties
released between 1930 and 1960; and an indicator that equals one if a crop was covered
under the Agricultural Adjustment Act (AAA), for all crops included in the baseline analysis.



Table A2: Crop-Level Land Erosion: Balance Across Other Crop-Level Features

(€3] () 3 4 (5) (6
Correlation with Correlation with
Variable Name Sample High Erosion Variable Name Sample High Erosion
Mean Mean
Exposure Exposure
Single Stem Plant (0/1) 0.520 0.154** Annual Plant (0/1) 0.535 -0.000950
(0.0719) (0.0388)
Min. Crop Cycle (Days) 82.80 0.386 Max. Crop Cycle (Days) 194.9 4.575
(3.202) (6.407)
Opt. Soil Depth (cm) 2.000 0.0590 Opt. Soil Salinity (dS/m) 1.023 -0.00352
(0.0549) (0.0123)
Temp. Opt. Range, Max. (°C) 26.12 0.610 Temp. Opt. Range, Min. 16.02 0.357
(0.423) (0.249)
Rain Opt. Range, Max. (mm) 1247 7.085 Rain Opt. Range, Min. 720.9 6.643
(31.84) (17.85)
pH Opt. Range, Max. (0-14) 6.895 0.0126 pH Opt. Range, Min. 5.868 0.242
(0.0363) (0.176)
Hybrid Compatible (Imperfect Flowers) 0.140 0.0380 Vegetative Reproduction 0.279 -0.0162
(0.0276) (0.0365)
log Area Harvested (1929) 11.78 0.250 log Crop Varieties Released (pre-1930) 1.711 0.0605
(0.224) (0.150)

Notes: The unit of observation is a crop. Columns 1 and 4 list a series of crop-level characteristics, and columns 2 and 5 report the sample mean
of each corresponding characteristic. Columns 3 and 6 report estimates of the relationship between each characteristic and crop-level exposure
to high levels of erosion. *, ** and *** indicate significance at the 10%, 5%, and 1% levels.

Table A3: Dust Bowl Exposure and New Varieties: Controlling for Trends in State Shares

@ 2 (3) (€] ) (6)
Dependent Variable is New Varieties (asinh)

Exposurec x It >0 0.0727**  0.0859**  0.0912**  0.0558*  0.0564**  0.0744**

(0.0234) (0.0393) (0.0412) (0.0305) (0.0261) (0.0331)
Initial area weighted estimates:
Exposurec x 1% 0.125%% 01279  0.107%*  0.117%**  0.115%*  (.0880*

(0.0222) (0.0311) (0.0326) (0.0328) (0.0300) (0.0451)
Crop Fixed Effects Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes
Texas Share x Year Fixed Effects Yes No No No No No
Oklahoma Share x Year Fixed Effects No Yes No No No No
Kansas Share x Year Fixed Effects No No Yes No No No
New Mexico Share x Year Fixed Effects No No No Yes No No
Colorado Share x Year Fixed Effects No No No No Yes No
Nebraska Share x Year Fixed Effects No No No No No Yes
Crops 43 43 43 43 43 43
Observations 1,720 1,720 1,720 1,720 1,720 1,720
R-squared 0.663 0.663 0.663 0.675 0.675 0.669

Notes: The unit of observation is a crop-year. All specifications include crop and year fixed effects. The outcome variable
is the inverse hyperbolic sine of the number of new varieties in a crop-year. The controls included in each specification are
noted at the bottom of each panel. Each set of controls is the share of the crops national area planted in the listed state
interacted with year fixed effects. Estimates of the coefficient of interest from analogous specifications in which the
regression is weighted by each crop's initial area are also reported. Standard errors, clustered by crop, are reported in
parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.



Table A4: Dust Bowl Exposure and New Varieties: Falsification & Robustness

(1) (2) (3) (4) (5) (6) ()

Dependent Variable is New Varieties (asinh)

Exposure, x 1.9 0.0627** 0.0793* 0.0700%** 0.0661*** 0.0835** 0.0698*** 0.0800**
(0.0254) (0.0408) (0.0235) (0.0231) (0.0338) (0.0251) (0.0328)
Exposure Outside Plains, x 17" -0.00644

(0.00420)

Low Exposure, x 1,713 0.00261
(0.00815)

Initial area weighted estimates:
Exposure, x 17" 0.117%%  0.139%* 0.0941** 0.0616** 0.130*** 0.0924**  0.0674*

(0.0247) (0.0260) (0.0372) (0.0297) (0.0344) (0.0413) (0.0355)
Crop Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Initial Varieties x Year Fixed Effects No No Yes No No No Yes
AAA Inclusion x Year Fixed Effects No No No Yes No No Yes
Exposure, x WWII No No No No Yes No Yes
Exposure, x Depression No No No No Yes No Yes
Hybrid Compat. x Year Fixed Effects No No No No No Yes Yes
Crops 43 43 43 43 43 43 43
Observations 1,720 1,720 1,720 1,720 1,720 1,720 1,720
R-squared 0.663 0.663 0.675 0.675 0.669 0.667 0.699

Notes: The unit of observation is a crop-year. All specifications include crop and year fixed effects. The outcome
variable is the inverse hyperbolic sine of the number of new varieties in a crop-year. The controls included in
each specification are noted at the bottom of each panel. Estimates of the coefficient of interest from analogous
specifications in which the regression is weighted by each crop's initial area are also reported. Standard errors,
clustered by crop, are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.



Table A5: Dust Bowl Exposure and New Varieties: Excluding the Largest Crops

1) (2) (3) (4)

Dependent Variable is New Varieties (asinh)

Excluding 25% Largest Excluding 50% Largest
Crops by Pre-Period Area Crops by Pre-Period Area

Post1930

Exposure, X 1 0.144** 0.191** 0.201** 0.265**
(0.0536) (0.0764) (0.0720) (0.103)
Crop Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
All Additional Controls No Yes No Yes
Observations 1,280 1,280 840 840
R-squared 0.620 0.676 0.572 0.644

Notes: The unit of observation is a crop-year. All specifications include crop and year fixed effects.
The outcome variable is the inverse hyperbolic sine of the number of new varieties in a crop-year.
The controls included in each specification are noted at the bottom of each panel. In columns 1-2,
the sample excludes the 25% of crops with the largest pre-period national land area, and in columns
3-4 the sample excludes crops with above median pre-period area. Standard errors, clustered by
crop, are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.

Table A6: Dust Bowl Exposure and New Varieties: Het. by Hybrid Ease

(1) (2)
Dependent Variable is
New Varieties (asinh)

Post1930

Exposure, x 1 0.0510** 0.0532**
(0.0239)  (0.0242)
Exposure, x 1. %% x Hybrid, 0.0945%%*  (,0831**

(0.0292)  (0.0392)

Crop and Year Fixed Effects Yes Yes
Initial Varieties x Year Fixed Effects No Yes
AAA Inclusion x Year Fixed Effects No Yes
Hybrid Compat. x Year Fixed Effects Yes Yes
Crops 43 43
Observations 1,720 1,720
R-squared 0.669 0.695

Notes: The unit of observation is a crop-year. All specifications include crop and year fixed effects. The outcome
variable is the inverse hyperbolic sine of the number of new varieties in a crop-year. The controls included in
each specification are noted at the bottom of each panel. Standard errors, double-clustered by crop and year, are
reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.



Table A7: Dust Bowl Exposure and New Varieties: Het. by Pre-Period Innovation

1)

(2)

Dependent Variable is New
Varieties (asinh)

Exposure, x 1,'”** x Pre-Period Varieties, 0.000499 0.000808
(0.000339) (0.000810)
Exposure. x 1,'°** x Pre-Period Varieties, -0.000518 0.000698
(0.000629) (0.00108)
Exposure, x 1.%°% x Pre-Period Varieties, -0.00321* -0.00460**
(0.00162) (0.00189)
Crop Fixed Effects Yes Yes
Year Fixed Effects Yes Yes
Controls None All
Observations 1,720 1,720
R-squared 0.680 0.709

Notes: The unit of observation is a crop-year. All specifications include crop and year fixed effects.
The outcome variable is the inverse hyperbolic sine of the number of new varieties in a crop-year.
The controls included in each specification are noted at the bottom of each panel. The three reported
coefficients are the effect of the triple interaction between Dust Bowl exposure, pre-period variety
releases, and indicators for the 1930s, the 1940s, and the 1950s respectively. Standard errors,
double clustered by crop and year, are reported in parentheses. *, **, and *** indicate significance at

the 10%, 5%, and 1% levels.

Table A8: Dust Bowl Exposure and Mechanical vs. Bio-Chemical Patents: Direct Effects

€y (2) 3)

Mechanical Patents (asinh)

C)

) (6)

BioChem Patents (asinh)

Baseline Citation Baseline Citation
Weighted Weighted
Post1930
Exposurec x 1Tt -0.0299%**  -0.0231** -0.0281* 0.0447* 0.0420%* 0.0588**
(0.00856)  (0.00858) (0.0161) (0.0242) (0.0225) (0.0268)
Crop and Year Fixed Effects Yes Yes Yes Yes Yes Yes
All Additional Controls No Yes Yes No Yes Yes
Observations 1,720 1,720 1,720 1,720 1,720 1,720
R-squared 0.714 0.734 0.617 0.567 0.627 0.542

Notes: The unit of observation is a crop-year. All specifications include crop and year fixed effects, as well as the set of
controls listed at the bottom of each column. In columns 1-2 and 4-5, the dependent variable is the (asinh) number of
patents; in 3 and 6 it is the (asinh) citation-weighted number of patents. In columns 1-3, dependent variables are
constructed from all mechanical harvesting and post-harvest patents (A01D,F,G) and in columns 4-6, they are constructed
from all biological and chemical patents (AO1H,N). Standard errors, clustered by crop, are reported in parentheses. *, **,

and *** indicate significance at the 10%, 5%, and 1% levels.



Table A9: Dust Bowl Exposure and Biotechnology Development: Estimates using 1930s Weather

Dependent Variable:

(1)

(2)

New Varieties (asinh)

(3) (4)
Number of Innovations in the Crop-
Year-Class Bin (asinh): BioChem and
Planting Patents vs. Mech Patents

Estimator: 2SLS 2SLS 2SLS 2SLS
Exposure, x ;"% 0.0829**
(0.0403)
Exposure. x ]hPOSt 1930 ]lks 0.0742%**
(0.0186)
Palmer Drought Index, 0.0961***
(0.0285)
Temperature Standard Deviation, 0.433**
(0.184)

Palmer Drouht Index, x ﬂks -0.00321

(0.0672)
Temperature Standard Deviation, x ]1ks 0.0309***

(0.0114)
Exduded Instuments: .Palmer drought _Palmer drought

index; Temp. SD index; Temp. SD

K-P F-Statistic 10.335 7.055
Crop Fixed Effects Yes Yes - -
Year Fixed Effects Yes Yes - -
Crop x Year Fixed Effects - - Yes Yes
Crop x Technology Class Fixed Effects - - Yes Yes
Year x Technology Class Fixed Effects - - Yes Yes
Crops 43 43 43 43
Observations 1,720 1,720 8,815 8,815

Notes: The unitof observation is a crop-year in columns 1-2 and a crop-year-technology class in columns 3-4. Columns 1-2
include crop and year fixed effects and columns 3-4 include all two-way fixed effects. In columns 2 and 4 the excluded are the
average standard deviation in temperature and the average Palmer droughtindex, interacted with the post-period indicator
and both the post-period indicator and land-complementing class indicator respectively. Standard errors, clustered by crop and
year, are reported in parentheses. *, **, and *** indicate significance atthe 10%, 5%, and 1% levels.



Table A10: Comparing Exposure to Medium and High Levels of Erosion
(1) () 3 (4)

Dependent Variable is New Varieties (asinh)

High Exposure, x 1, ° %% 0.0694*** 0.114%**

(0.0243) (0.0274)
Medium Exposure, x 1;7°%*%° 0.0155** 0.0193

(0.00604) (0.0168)

T-statistic of difference 2.152 2.946
Crop Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Weighting None None Initial Area Initial Area
Crops 43 43 43 43
Observations 1,720 1,720 1,720 1,720
R-squared 0.663 0.660 0.828 0.818

Notes: The unit of observation is a crop-year. All specifications include crop and year
fixed effects. The outcome variable is the inverse hyperbolic sine of the number of new
varieties in each crop-year. In columns 1 and 3 the independent variable of interest is
the main independent variable throughout the paper, the share of the crop's land under
high levels of erosion. In columns 2 and 4 the independent variable of interest is the
share ofthe crop's land under medium levels of erosion. In columns 1-2 the regression
is unweighted and in columns 3-4 it is weighted by crops' area harvested during the
pre-period. Standard errors, clustered by crop, are reported in parentheses. *, **, and
*** indicate significance at the 10%, 5%, and 1% levels.

Table A11: Dust Bowl Exposure and Patented Technologies: Citation Weighted

(1) (2)
Citation-Weighted Patents in the Crop-
Year-Class Bin (asinh)

Bio-Chemical Patents vs. Mechanical
Harvest + Post-Harvest Patents

Exposure, x 1, %% x 1, 0.0357* 0.0783***
(0.0178) (0.0205)
Crop x Year Fixed Effects Yes Yes
Crop x Technology Class Fixed Effects Yes Yes
Year x Technology Class Fixed Effects Yes Yes
Weighting None Initial Area
Crops 43 43
Observations 15,867 7,052
R-squared 0.725 0.785

Notes: The unit of observation is a crop-year-technology class. All specifications include crop-by-year
fixed effects, crop-by-technology class fixed effects, and year-by-technology class fixed effects. The
outcome variable is the inverse hyperbolic sine of the number of citation-weighted patents in a crop-
year-class bin. Standard errors, double clustered by crop and year, are reported in parentheses. *, **,
and *** indicate significance at the 10%, 5%, and 1% levels.



Table A12: Dust Bowl Exposure and Patented Technologies: Private vs. Public Sector

(1) (2) (3) 4)
Patent Assignee:
Private Firms Govt. & University
Post 1930 S
Exposure. x 1 X 1k 0.0188* 0.0305*** 0.000232 0.000618

(0.0103) (0.0106)  (0.000380) (0.00101)

Crop x Year Fixed Effects Yes Yes Yes Yes
Crop x Technology Class Fixed Effects Yes Yes Yes Yes
Year x Technology Class Fixed Effects Yes Yes Yes Yes
Weighting None Initial Area None Initial Area
Observations 8,815 8,815 8,815 8,815
R-squared 0.703 0.668 0.273 0.273

Notes: The unit of observation is a crop-year-technology class and all two-way fixed effects are
included in al specifications. In columns 1-2, the dependent variable is all patents assigned to
private-sector firms. In columns 3-4, itis the number of patents assigned to government
organizationsand universities/colleges. Standard errors, clustered by crop, are reported in
parentheses. *, **, and *** indicate significance atthe 10%, 5%, and 1% levels.

Table A13: Dust Bowl Exposure and US Station Experiments

(1) (2) (3) (4)
Experiments (asinh) Any Experiment (0/1)

Panel A: All Experiment Stations

High Exposure, x ;" *%° -0.00775 -0.000547 0.000127 -0.00134
(0.00869) (0.00917) (0.00386) (0.00787)
R-squared 0.705 0.736 0.533 0.571
Panel B: Experiment Stations in Dust Bowl States
High Exposure, x g, 1%%° -0.0146  -0.0148*  -0.00422  -0.00928
(0.0105) (0.00745) (0.00534) (0.00623)
R-squared 0.630 0.714 0.548 0.608
Crop and Year Fixed Effects Yes Yes Yes Yes
All Additional Controls No Yes No Yes
Observations 1,548 1,118 1,548 1,118

Notes: The unit of observation is a crop-year. All specifications include crop and year fixed effects, and
columns 2 and 4 also include all baseline controls. In columns 1-2, the outcome variable is the inverse
hyperbolic sine of the number of experiments and in columns 3-4, it is an indicator that equals one if at least
one experiment was conducted. Standard errors, clustered by crop, arereported in parentheses. *, **, and
*** indicate significance at the 10%, 5%, and 1% levels.
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Table A14: Innovation and Adaptation: Panel Estimates

€)) (2) (3 )
log Value of log Value of log Total
. Land and log Total
Dependent Variable: o1 Land per Revenue per
Buildings Revenue
Acre Acre
per Acre
Erosioni x 1¢ " " -0.736%*%  -0.678%*  -1.068%**  -0.764**
(0.214) (0.217) (0.393) (0.316)
Erosion: x 1~ x InnovationExposurei 5.224** 4.759* 8.663* 5.596
(2.498) (2.525) (4.593) (3.664)
County Fixed Effects Yes Yes Yes Yes
Census Round x State Fixed Effects Yes Yes Yes Yes
Observations 7,959 3,184 7,164 7,164
R-squared 0.960 0.960 0.892 0.923

Notes: The unit of observation is a county-year. All estimates are from panel regressions includingall census rounds
for which each dependent varaible was recorded. The sample of counties was selected as in Hornbeck (2012). All
specifications include county fixed effects and census round-by-state fixed effects. The dependent variable is listed at
the top of each column. Standard errors, clustered by county, are reported in parentheses. *, **, and *** indicate
significance at the 10%, 5%, and 1% levels.

Table A15: Innovation and Adaptation: Excluding State X Round Fixed Effects

(1) (2) (3) (4)
log Value of log Value of log Total
. Land and log Total
Dependent Variable: . Land per Revenue per
Buildings Revenue
Acre Acre
per Acre
Erosion; x 1,719 -2.390%** -1.588%+* -2.448%%* -1.852%+*
(0.531) (0.451) (0.568) (0.527)
Erosion; x 17°'%*° x InnovationExposure, 22.49%%* 16.05%+* 21.85%** 16.11%**
(6.301) (5.285) (6.558) (5.978)
County Fixed Effects Yes Yes Yes Yes
Census Round Fixed Effects Yes Yes Yes Yes
Observations 1,592 1,592 1,592 1,592
R-squared 0.900 0.926 0.865 0.909

Notes: The unit of observation is a county-year. All estimates are from long differences specifications; the starting
year is either 1920 or 1925 and ending year either 1940 or 1959, depending on data availability. The sample of
counties was selected as in Hornbeck (2012). All specifications include county fixed effects and census round fixed
effects. The dependent variable is listed at the top of each column. Standard errors, clustered by county are
reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.
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Table A16: Innovation and Adaptation: “Leave-State-Out” Estimates

(1) (2) (3) (4)
log Value of log Value of log Total
. Land and log Total
Dependent Variable: . Land per Revenue
Buildings Revenue
Acre per Acre
per Acre
Erosion; x 1,193 S1.412% 0.956%  .1.694%  _1,286%**
(0.450) (0.324) (0.536) (0.480)
Erosion; x 1,°'%*" x InnovationExposure; 12.21%* 8.011** 15.97** 11.97**
(5.321) (3.864) (6.361) (5.672)
County Fixed Effects Yes Yes Yes Yes
Census Round x State Fixed Effects Yes Yes Yes Yes
Observations 1,592 1,592 1,592 1,592
R-squared 0.953 0.975 0.885 0.924

Notes: The unit of observation is a county-year. All estimates are from long differences specifications; the starting
year is either 1920 or 1925 and ending year either 1940 or 1959, depending on data availability. The sample of
counties was selected as in Hornbeck (2012). All specifications include county fixed effects and census round-by-
state fixed effects. Innovation exposure is estimated excluding crop-level damage in the county's state. The dependent
variable is listed at the top of each column. Standard errors, clustered by county, are reported in parentheses. *, **,

and *** indicate significance at the 10%, 5%, and 1% levels.

Table A17: Innovation and Adaptation: Comparing High and Medium Levels of Local and Aggre-

gate Exposure

1) (2) (3) 4)
log Value of log Value of log Total
Dependent Variable (Long Difference Estimates): Laf)dland Land per log Total Revenue per
Buildings Revenue
per Acre Acre Acre
High Erosion; x 1,7°°"%%° S1.344%F% _0,909%*  _1.590%** -1.163**
(0.427) (0.308) (0.538) (0.472)
High Erosion; x 17°*%*° x High CropMixDamage; 9.743** 6.470% 12.69%* 9.257*
(4.961) (3.644) (6.232) (5.464)
Medium Erosion, x 1,°1%% 0.140 0.104 0.357 0.446
(0.288) (0.219) (0.353) (0.333)
Medium Erosion; x 17°''%*° x Medium CropMixDamage; -1.760 -1.133 -2.778%* -2.619*
(1.125) (0.851) (1.398) (1.346)
t-statistic of difference between @ and @ ™ 2.261 2.032 2.422 2.110
County Fixed Effects Yes Yes Yes Yes
Census Round x State Fixed Effects Yes Yes Yes Yes
Observations 1,592 1,592 1,592 1,592
R-squared 0.953 0.975 0.888 0.925

Notes: The unit of observation is a county-year. All specifications are long differences estimates between 1920 or 1925 and 1940
or 1959 depending on data availability. The sample of counties was selected as in Hornbeck (2012). All specifications include
county fixed effects and census round-by-state fixed effects. The dependent variable is listed at the top of each column. Standard
errors, clustered by county are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.



Table A18: Standard Error Adjustments for Spatial Correlation

(1) (2) 3) 4) () (6) (7)

Coefficient estimate t-statistic

Kernel distance for spatial correlation (km): State-
Year
d State
200 300 400 500 1000 "

County
t-statistic 2.93 2.70 2.77 3.52 3.98 2.37 2.74
County Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Census Round x State Fixed Effects  Yes Yes Yes Yes Yes Yes Yes

Notes: Coefficient estimate t-statistics from the baseline county-level specification (with log of
agricultural land values as the dependent variable) with alternative standard error clustering
strategies. Columns 1-5 follow Hsiang (2010)'s implementation of Conley (2008) standard errors, for
five different values of the kernel cut off distance (measured in km). In columns 6 and 7, standard
errors are double clustered by state-year and clustered by state respectively.

Table A19: Innovation and Adaptation: Controlling for Policy

® ) 3) (C))
log Value of log Value of log Total
. Land and log Total
Dependent Variable: e Land per Revenue per
Buildings Revenue
Acre Acre
per Acre
. Post1930
Erosioni x 1t -1.398*** -0.947*** -1.505%+* -1.159**
(0.450) (0.322) (0.529) (0.479)
Erosion: x 1¢ " x InnovationExposurei 11.70** 7.740** 13.51** 10.25*
(5.235) (3.787) (6.211) (5.592)
County Fixed Effects Yes Yes Yes Yes
Census Round Fixed Effects Yes Yes Yes Yes
AAA Payments x Round Fixed Effects Yes Yes Yes Yes
Relief Spending x Round Fixed Effects Yes Yes Yes Yes
New Deal Loans x Round Fixed Effects Yes Yes Yes Yes
Observations 1,584 1,584 1,584 1,584
R-squared 0.950 0.975 0.885 0.924

Notes: The unit of observation is a county-year. All estimates are from long differences specifications; the starting year is
either 1920 or 1925 and ending year either 1940 or 1959, depending on data availability. The sample of counties was selected
as in Hornbeck (2012). All specifications include county fixed effects and census round fixed effects. All specifications also
include AAA payments, relief spending, and new deal loans, interacted with a full set of census round fixed effects. The
dependent variable is listed at the top of each column. Standard errors, clustered by county are reported in parentheses. *, **,
and *** indicate significance at the 10%, 5%, and 1% levels.
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Table A20: Innovation and Adaptation: Flexible Output Price Controls

® ) 3 4
log Value of
log Value of log Total
. Land and log Total
Dependent Variable: o Land per Revenue per
Buildings Revenue
Acre Acre
per Acre
Erosioni x 1" -1.330%%F -1.006%%*  -1.735%%  -1.301%%*
(0.415) (0.328) (0.521) (0.466)
Erosioni x 1 "% x InnovationExposure; 13.43%** 9.058** 16.86*** 12.67**
(5.034) (3.839) (6.047) (5.439)
County Fixed Effects Yes Yes Yes Yes
Census Round x State Fixed Effects Yes Yes Yes Yes
Output Price Aggregate Yes Yes Yes Yes
Erosioni x 1¢ ™ "% x Output Price Aggregate Yes Yes Yes Yes
Observations 1,592 1,592 1,592 1,592
R-squared 0.953 0.975 0.885 0.924

Notes: The unit of observation is a county-year. All estimates are from long differences specifications; the starting year is
either 1920 or 1925 and ending year either 1940 or 1959, depending on data availability. The sample of counties was selected
as in Hornbeck (2012). All specifications include county fixed effects and census round-by-state fixed effects. Each
specification also includes the county-by-year level agricultural output price measure and this measure interacted with Dust
Bowl exposure. The dependent variable is listed at the top of each column. Standard errors, clustered by county are reported in
parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels.
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B Omitted Proofs

B.1 Proposition 1

Suppose there is a shift from F(.) to FPB(.) where F first order stochastic dominates FP5(.). Define
0 as the technology level in the equilibrium before the Dust Bowl and §P8 as the technology level in
the equilibrium after the Dust Bowl. We assumed that G(.) is concave and twice continuously dif-
ferentiable and that the cost of innovation C(0) is convex and differentiable. Therefore, a necessary
and sufficient condition that equilibrium technological progress is the solution to the innovator’s

profit maximization problem is satisfied if the following first order conditions hold:

pi /Gz(Ai,G)dF(A) = %C(G)
p% /Gz(Ai,eDB)dFDB(A) = ddGC(GDB)

First, consider the case where Gi» < 0 and suppose that > 0P8, Since F first order stochastic

dominates FPB, it must be true that
[ G2 AL 0)dF(4) < Ga( A, 0)FP ()
Moreover, since 6 > 0P8 and G is concave in 6, it is also the case that
/ Ga(A;, 0)dFPE(A) < Gy(A;, 8PP )dFPE(A)

Combining both expressions with the first order conditions above:

;GC(QDB) — Gy(A;, 8PB)dEPE(A) > /GQ(Ai,G)dFDB(A) > /Gz(Ai,e)dF(A)

d

= 25C(0)

However, by assumption, 6 > 0P® and since C(.) is convex, this implies that

d d . o
~5C(0) > 5C(6°)

This is a contradiction and implies that 6P > 9 as desired.
Now consider the case where Gj; > 0 and suppose that § < 6P5. By analogous arguments to

the first case, it must be true that
/GZ(Ai,G)dF(A) > Go(A;, 0)dFPE(A)

and that
/ Ga(Ai, 0)dFPE(A) > Ga(A;, OPB)dEPE(A)
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Combining these inequalities with the first order conditions:

;9(:(993) — Gy(A;, 8PB)dEPB(A) < /GQ(Ai,G)dFDB(A) < /Gz(Ai,é))dF(A) - ;;C(e)

However, by assumption, 6 < 0P% and since C(.) is convex, this implies that

d d ., o
—5C(0) < 5C(6°)

This is a contradiction and implies that §P8 < 6, as desired. This completes the proof.

C Detailed Data Description and Balance

County-level erosion was measured using data from detailed Reconnaissance Erosion Surveys, dig-
itized in map form by Hornbeck (2012a). These maps were constructed from direct measurement by
specialists sent to each county. The first surveys of this kind were carried out during the mid-1930s;
as a result, the data capture cumulative erosion prior to this point and not the erosion that took
place since the start of the Dust Bowl period. The original map was constructed by the Soil Con-
servation Service (SCS) from the individual soil survey reports; this was then traced and merged
with county boundaries using Geographical Information Systems (GIS) software (Hornbeck, 2012a,
p- 1484). For each county, it is possible to measure the share of land under high, medium, and low
levels of topsoil erosion at the time of the survey. The sample of Dust Bowl counties included in the
analysis also follows the methodology outlined in Hornbeck (2012a, p. 1484) to identify the set of
contiguous and ecologically similar Plains counties.

The county-level erosion data are used to construct a crop-level measure of Dust Bowl exposure,
as outlined in Section 3.2. There is substantial variation across crops in exposure to high levels of
erosion, ranging from zero exposure to 29.2% of national crop land area. The share of national crop
land under high or medium levels of topsoil erosion ranges from zero to 72.51% and the difference
between the 90th and 10th percentile is 31.66% of national land area.

While the main analysis does not require perfect balance across crops that were more or less ex-
posed to erosion, and instead requires a parallel trends assumption, here I investigate in more detail
any cross-sectional differences across crops that were more- or less-exposed to soil erosion during
the Dust Bowl. In particular, I estimate the relationship between crop-level exposure to high levels
of erosion—the main measure of crop-level Dust Bowl exposure—and a range of crop-level char-
acteristics, controlling only for the share of each crops’ land in Plains counties in order to absorb
any mechanical relationship driven by the Dust Bow!’s regional concentration. These estimates are
reported in Table A2. The first six rows rely on crop-level biological and growing characteristics,
compiled from the Food and Agriculture Organization’s ECOCROP database, which contains infor-

mation about plant-specific characteristics and growing conditions for over 2,500 species compiled
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from a range of expert agronomist surveys.?

Physiological characteristics of plants shape the structure, method, and demands of crop breed-
ing; indeed, since much of variety development is designed to adapt plants to different ecological
conditions, a crop’s baseline optimal growing conditions play a major role in shaping the demands
of research. The covariates included are: an indicator that equals one if a plant has a single stem,
an indicator that equals one if a crop is an annual plant, the minimum and maximum crop cycle
length, the optimal soil depth and salinity, and the upper and lower values for the crop’s optimal
temperature, rainfall, and pH range. The relationship is significant for just one variable (the single
stem indicator), and the effect is very small relative to the sample mean. Moreover, while the signif-
icant coefficient could be due to random chance, all baseline estimates are very similar controlling
for the single stem indicator interacted with year fixed effects (not reported).

Next, I investigate the relationship between erosion exposure and a crop level hybrid compati-
bility indicator (as discussed in Section 4.2) and a vegetative reproduction indicator—in both cases,
the correlation is small and insignificant. Finally, I estimate the relationship between erosion expo-
sure and two proxies for pre-determined crop-level market size: (log of) the total land area devoted
to the crop and (log of) total varieties released prior to 1930. Again, in both cases the correlation is
small in magnitude and statistically insignificant. Together, these results suggest that at the crop-
level, exposure to Dust Bowl erosion is not related in any systematic or obvious way to a range of

crop-level characteristics that affect the structure and demands of crop research.

D Crop Planting Patterns and the Dust Bowl

In this section, I investigate planting re-allocation during the study period and whether crop-
specific reallocation might affect the interpretation of the results. First, I investigate the extent to
which crop planting patterns persisted during the sample period. I construct a crop-by-county
data set that reports the area devoted to each crop in each county in 1929—prior to the onset of
disaster—and in 1959—the point I use as the end year for empirical analysis throughout the paper.
I then estimate:

log(Area ™) = & - log(Areals?) + €;c (D.1)

c 1c

if ¢ is close to one, crop-reallocation was limited during the sample period and crop allocations at the
start of the period closely resemble crop allocations throughout. Estimating (D.1) on the full sample
of US counties, weighting each observation by its pre-period area, I find that { = 1.112; estimating
an augmented version of (D.1) that includes crop and county fixed effects, I find ¢ = 0.949. On
average, crop allocations in 1929 closely resembled those in 1959.

Repeating the same two specifications on the sample of Plains counties used in the analysis,
estimates of ¢ are 1.103 and 1.017 respectively. I also find no evidence that the extent of persistence

differed across counties depending on their exposure to land erosion. Including an interaction term

1929

between log(Area; ) and the share of county land area under high levels of erosion, I find that the

26This data source is discussed at greater length in Moscona and Sastry (2023).
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coefficient on the interaction term is —0.008 with a standard error of 0.008. Together, these estimates
suggest that crop planting allocations were strongly persistent during the sample period, and that
the persistence of planting pattern was not different across counties that were more- or less-exposed
to land erosion. This finding is consistent with narrative evidence discussed and referenced in
Section 2.1 on the inter-generational persistence in crop choice and crop-specific expertise during
the sample period (e.g. Schaper, 2012; Huffman, 2001, for a review).

A final concern might be, even if crop switching were limited on average, that the potential for
crop switching were correlated with the baseline measure of crop-specific Dust Bowl exposure. If
the most exposed crops were also the crops for which it is most difficult to shift production across
locations, then this could be a key part of the mechanism and would be important to incorporate
in the theoretical and empirical analysis. To investigate this, I test whether there is any relationship
between crop-specific Dust Bowl exposure and the ease of crop switching. To proxy for the ex
ante ease of crop switching for each crop ¢, I measure average share of cropland in each county
devoted to crop c across all counties where ¢ is grown. Intuitively, for higher values of this proxy,
the locations where production of that crop can take place are more limited, and so it the set of
other crops that require similar environmental conditions. I then estimate the relationship between
crop-specific erosion and crop-specific “switchability,” controlling for log of total planted area in
1930. The relationship is small in magnitude, statistically insignificant, and negative, suggesting
that if anything the more Dust Bowl exposed crops are less geographically constrained. The beta
coefficient is —0.017 and the p-value is 0.886. Moreover, it is more straightforward to shift the
production allocation of annual (as opposed to perennial) plants, and Table A2 (row 1) showed no
evidence that crops more exposed to the Dust Bowl were more likely to be annual. Thus, it does not
appear to be easier to shift the production of more Dust Bowl exposed crops ex ante.

Finally, I investigate the extent to which ex post persistence in crop planting patterns was related
to crop-specific Dust Bowl exposure. I estimate an augmented version of Equation (D.1):

log( Area1959 Z@C (log Area1929) X ]IC) + e+ 0+ €. (D.2)

Now, each ¢, estimates the relationship between pre- and post- period planted areas for crop c. I
then estimate the relationship between crop-specific Dust Bowl exposure and the &.’s

& =m- Exposure, + €. (D.3)

The estimated relationship 7 is statistically indistinguishable from zero (p = 0.71) and very small
in magnitude; a one standard deviation increase in Dust Bowl exposure is associated with a 0.05
standard deviation in increase in ¢. The results are qualitatively similar when the dependent vari-
able in (D.3) is instead |1 — (fc] (p-value = 0.385), further indicating that there is no relationship
between Dust Bowl exposure and the extent of crop switching.

Together, these null results suggest that the ease of crop reallocation and realized persistence of
planting patterns in the data are not correlated with Dust Bowl exposure. This makes it unlikely

18



that crop switching has a major impact on the paper’s empirical estimates of interest and suggests
that, consistent with the general results of Hornbeck (2012a), production re-allocation in response
to the Dust Bowl was limited.

E Sensitivity Analysis of County-Level Estimates

Alternative Specifications While the baseline county-level results report long difference estimates
since technology development is a long-term process, full panel estimates are reported in Table A14.
The coefficient estimates are intuitively smaller in magnitude than the long difference estimates,
consistent with new technology accumulating over time, but the findings are qualitatively very
similar.

There is a debate about the appropriateness of including state-by-time fixed effects in county-
level analyses of US agricultural production (see Deschénes and Greenstone, 2007; Burke and Em-
erick, 2016). In particular, the concern is that state-by-time fixed effects absorb a large share of
the variation in agricultural production and environmental shocks, making the remaining varia-
tion difficult to interpret. Table A15 reproduces the baseline results with only census round and
county fixed effects; the results are very similar and if anything suggest a larger role for innovation

in dampening the effect of the Dust Bowl on agricultural outcomes.

Controlling for New Deal Policy A potential concern is that the result is driven, in part, by gov-
ernment spending. It might be the case that counties that produced crops that were, on average,
more affected, received more federal assistance. Particularly relevant is the AAA, which had a
crop-specific component and might have disproportionately allocated funds toward counties whose
crops were more damaged nationally (see Section 4.2). To address this, I control directly for several
measures of New Deal spending at the county-level—including AAA spending—interacted with
Census round indicators. This set of controls flexibly captures any dynamic impact of New Deal
policy on county-level outcomes. These results are presented in Table A19 and the coefficients of
interest remain similar.

Ruling Out Local Spillovers The innovation exposure measure (5.1) captures national Dust Bowl
damage to each county’s crop mix. Since innovation was re-directed toward more damaged crops,
counties with higher innovation exposure have access to more Dust Bowl induced technology. The
cultivation of certain crops, however, is concentrated in space and thus county-level innovation
exposure may also capture the fact that nearby counties were exposed to the Dust Bowl; this could
have a direct effect on agricultural production via local spillovers. To directly address this, I estimate
a version of innovation exposure after dropping data from all other counties within the same state;
this ensures that innovation exposure does not capture the Dust Bowl exposure of nearby counties.
I replicate all baseline estimates using this alternative innovation exposure measure in Table A16

and the results are very similar.
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Exploiting Variation in Dust Bowl Intensity In Section 4.2, I show that innovation was more
strongly affected by crop-level exposure to areas with high levels of erosion than exposure to areas
with medium levels of erosion. If innovation is driving the estimates of ¢ in Table 4, then the results
should be weaker when the Dust Bowl exposure and innovation exposure are computed in terms

of exposure to medium levels of erosion rather than high levels of erosion.?”

Analogous to the
crop-level estimates, the differential effect of exposure to high and medium levels of Dust Bowl
exposure—both in terms of the direct effect of the Dust Bowl and exposure to innovation—might do
a better job holding other county-level features fixed and comparing more Dust Bowl-exposed and
more innovation-exposed counties to an appropriate control group. To investigate this, I estimate

an augmented version of Equation 5.2:

Vit =&; + 05t + B - (HighErosioni oSt 1930) + - (HighlnnovationExposurei -Jrpost 1930> +

¢ - (Erosioni Spost1930 HighInnovationExposureJ +
(E.1)
5med . (MedErosioni - JPost 1930) 4 ymed . (MedlnnovationExposurei -JPost 1930) +

qued . (MedErosioni . ]IfOSt 1930, MedInnovationExposurei) + €jt

where “MedErosion;” is the share of land in county i under medium levels of erosion from the Dust
Bowl and “MedInnovationExposure;” is analogous to InnovationExposure; except it captures the
aggregate exposure of county i’s crop mix to medium levels of erosion. Since innovative activity
was most responsive to crop-level exposure to high levels of erosion, the exposure of county’s crop
composition to high levels of erosion should have a larger dampening effect on the Dust Bowl’s
impact than the exposure of a county’s crop composition to medium levels of erosion. In the context
of the estimating equation, this would mean that ¢ > ¢™ed.

Table A17 reports estimates of Equation (E.1). Across specifications, I find that ¢ > 0; moreover,
Lalso find that ¢ > ¢™¢d and that this difference is statistically significant across outcome variables.
This more subtle set of results further points toward technology development as the key mechanism

driving the estimates in Table 4.

E.1 Exploiting Variation in Farm Size

Not all farms might benefit equally from new innovation; in particular, larger farms were per-
haps better able to afford, adopt, and incorporate new technology. Table 5 reproduces the baseline
county-level results with the inclusion of an interaction term between the independent variable of
interest—Erosion; - I}°5t1%0 . InnovationExposure,—and an indicator that equals one if a county’s
average farm size was above the within-sample median in 1929. The coefficient on the quadruple
interaction is positive in all specifications and statistically significant in half. This suggests that,

2’Moreover, counties whose crop composition was very exposed to medium levels of erosion during the Dust Bowl
may be a more appropriate comparison group for counties whose crop composition was exposed to high levels of erosion;
this follows from the logic of the identification strategy in Hornbeck (2012a).
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on average, counties with larger farms were better positioned to adapt to the Dust Bowl via the
adoption of new technology.

This finding also supports interpretation of the baseline county-level result as the impact of
induced innovation rather than output price changes. Recall that the concern is that innovation
exposure may also be a shifter of county-level output prices; while I control in all specifications
for the direct effect of innovation exposure, this channel could still bias the estimates if prices had a
non-log-linear relationship with features of agricultural production. A primary reason this could be
the case is if credit constraints limited farmers from adjusting production; farmers producing crops
that were more damaged on average may have then been less constrained due to the increased price
of their output. If this is true, the baseline estimates could be capturing the differential ability of
farmers across counties to afford production adjustments rather than variation in the benefits of
new innovation.

If the credit constraints channel were important, however, the baseline effects should be largest
for counties with the most constrained farms. If, on the other hand, the channel is innovation,
the baseline effect, if anything, would likely be larger for the least constrained farms since they
would be better able to access and afford improved technologies. While ideally one would measure
credit constraints at the county level and investigate whether more or less constrained counties are
driving the result, to my knowledge a direct measure of credit constraints does not exist. Therefore,
the fact that the baseline finding is stronger for counties with larger farms that are less likely to be

constrained is inconsistent with the main results being driven by price effects and credit constraints.
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