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Abstract

In various contexts, institutions allocate resources using rules that determine se-

lections given the set of candidates. Many of these rules feature affirmative action,

accounting for both identity and (match) quality of individuals. This paper studies

the relationship between these rules and the preferences underlying them. I map the

standard setting of market design to the revealed preference framework, interpreting

choice rules as observed choices made across different situations. I provide a condition

that characterizes when a rule can be rationalized by preferences based on identities

and qualities. I apply tests based on this condition to evaluate real-world mechanisms,

including India’s main affirmative action policy for allocating government jobs, and

find that it cannot be rationalized. When identities are multidimensional, I show that

non-intersectional views of diversity can be exploited by dominant groups to increase

their representation and cause the choice rules to violate the substitutes condition, a

key requirement for the use of stable matching mechanisms. I also characterize rules

that can be rationalized by preferences separable in diversity and quality, demonstrat-

ing that they lead to a unique selection within the broader set of policies that reserve

places based on individuals’ identities.

∗Department of Economics, Stanford University, 579 Jane Stanford Way, Stanford, CA 94305. Email:
ocelebi@stanford.edu

I am grateful to Daron Acemoglu, Nick Arnosti, Yunus Aybas, Roberto Corrao, Federico Echenique,
Glenn Ellison, Joel Flynn, Stephen Morris, Michael Ostrovsky, Parag Pathak, Alvin Roth, Tayfun Sönmez,
Bumin Yenmez, Alexander Wolitzky and participants in the MIT Theory Lunch, Stanford Market Design
Workshop, EC’24, and UC Davis for helpful discussions and comments. This paper was previously circulated
under the name “Diversity Preferences, Affirmative Action and Choice Rules.”

1

https://drive.google.com/file/d/1CyKre8D95-cPfDwXAsAOpPeLGpGQcL7l/view


1. Introduction

Institutions in charge of allocating resources or hiring individuals make their decisions

based on multiple criteria, such as the quality of the candidates, the benefits they receive from

the allocated resource, and their socioeconomic characteristics. School districts in Chicago

(Dur, Kominers, Pathak, and Sönmez, 2018) and Boston (Dur, Pathak, and Sönmez, 2020),

and universities in Brazil (Aygun and Bó, 2021) prefer schools to have a diverse student

body, medical authorities prefer the allocation of scarce treatments to consider equity and

diversity (Pathak, Sönmez, Ünver, and Yenmez, 2021; Akbarpour, Budish, Dworczak, and

Kominers, 2021; Grigoryan, 2021) and the Indian government uses protections for histori-

cally discriminated groups when allocating government positions (Aygün and Turhan, 2017;

Sönmez and Yenmez, 2022). In these settings, individuals are heterogeneous in two domains.

The first is their identity, which might include socioeconomic status for students, healthcare

worker status for patients, or caste for government position applicants. The second is their

score, such as exam scores in student assignment and government job allocation, or indices

of clinical need in medical resource allocation. These scores may reflect match quality, al-

locating a medical resource to a sicker individual or a government job to a higher-achieving

candidate could yield greater benefits; or represent individuals’ property rights, for example,

students with higher scores might deserve places in selective public schools more than others.

The affirmative action programs implemented by these institutions, where an individual’s

selection depends not only on their score but also on their identity and the composition

of the identities of other selected individuals, demonstrate a commitment to diversity and

equity, along with a preference for allocating resources to those with the highest scores.

This paper studies the relationship between (i) how institutions evaluate the composi-

tion of selected individuals, particularly with respect to their socioeconomic characteristics

and diversity considerations; (ii) how they assess the trade-offs between diversity and scores;

and (iii) how they establish their choice rules, which determine the set of chosen individ-

uals from each pool of candidates. First, I adapt revealed preference analysis to market

design by interpreting the choice rules as the choices an agent is observed to make from

various feasible sets. I characterize the class of rules that can be designed by a decision

maker with well-defined preferences, and further show when these preferences satisfy certain

additional conditions, similar to the standard analysis of rationality of an agent based on

their observed choice behavior. Applying these results, I identify shortcomings in various

rules used in practice, including the main affirmative action rule used to allocate government

jobs in India. Second, I explore the relationship between the evaluation of diversity under

multidimensional identities and the properties of choice rules. When diversity is evaluated
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without considering intersectionality of identities, that is, when different dimensions such

as race and gender are assessed separately, the resulting choices exhibit complementarities

among individuals belonging to different groups across dimensions.1 I demonstrate that this

results in the failure of a key property of choice rules, the substitutes condition, which is

crucial for the existence of competitive equilibria and the use of stable matching mechanisms.

Moreover, I show that dominant groups can increase their representation significantly while

appearing maximally diverse under non-intersectional views of diversity. Third, I study the

class of choice rules rationalized by preferences that treat score and diversity domains in

an additively separable way, a structure commonly assumed in applied theoretical work on

affirmative action. I demonstrate that this class is defined by three well-known properties

and encompasses many of the choice rules used in practice. However, additive separability

imposes a unique processing order for quotas, providing evidence that the implementation

details of such policies could have significant effects, contributing to the literature on quota

policies.

Rationality of Choice Rules. I begin by establishing a connection between the standard

model in market design, where a choice rule selects a subset from a set of applicants, and the

framework of revealed preference/choice theory, where an agent makes choices from different

feasible sets, known as a choice environment. The choice rules used in practice and studied

in the market design literature induce a specific choice environment, enabling the application

of results from choice theory. I characterize the class of choice rules that can be rationalized

by preferences based on the identities and scores of individuals in an unrestricted way, and

when these preferences satisfy certain additional conditions. Rationality is characterized by

an acyclicity condition based on the congruence axiom of Richter (1966) and its generalization

which incorporates an exogenous preorder, as provided by Nishimura, Ok, and Quah (2016).

On the theoretical side, these results complement the earlier literature by focusing on the

preferences driving the choice rules instead of their axiomatic properties (e.g., incentive

compatibility). This analysis helps us understand the preferences behind the choice rules

adopted by the institutions and assess whether such preferences exist. Moreover, in many

practical settings, including those studied in this paper, the choice rules are known to the

analyst and can be directly evaluated, unlike the settings in revealed preference theory, where

the evaluation often relies on the observation of potentially limited data from agents. This

means that my results can be used to assess the rationality of a rule without requiring any

data, and this assessment can even be performed before the rule is implemented.

1For example, an institution focused on racial (Black or white) and gender (male or female) diversity
might evaluate gender diversity by the number of men and women, and evaluate racial diversity by the
number of white and Black individuals, without accounting for the intersection of these identities.
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On the applied side, these results are valuable in two distinct ways. First, by constructing

cycles, I demonstrate that certain rules used in practice cannot be rationalized. Specifically,

I evaluate the affirmative action mechanisms in India and Brazil, as studied in Sönmez and

Yenmez (2022) and Aygun and Bó (2021). In both cases, affirmative action involves multiple

overlapping dimensions: caste and gender in Indian government job allocations, and race and

income in Brazilian college admissions. Both mechanisms exhibit similar shortcomings. For

instance, in both cases an individual may lose a position due to belonging to a target group

for affirmative action (e.g., underrepresented caste, or a low-income family), even though

they would have secured the same position had they not belonged to those groups. As a

result, declaring affirmative action status becomes a strategic choice, causing a failure of

incentive compatibility.

I begin by examining the primary choice rule used in India from 1995 to 2020 for assigning

candidates to government positions, a mechanism that resulted in hundreds of court cases

and was eventually rescinded due to its flaws. This rule operated through an opaque process,

initially assigning candidates to open positions (available to all applicants) and caste-reserve

positions (restricted to underrepresented castes) based on caste membership and scores,

followed by adjustments to ensure compliance with gender quotas. The rule encountered is-

sues because it’s ad-hoc and complicated structure partially restricted caste-reserve-eligible

women from being considered for open positions reserved for women during the adjustment

phase. As a result, men’s scores influenced the consideration of caste-reserve-eligible women

at open positions reserved for women. Applying tests derived from my characterizations, I

demonstrate that this rule causes cycles in the induced preferences and therefore cannot be

rationalized, further highlighting its deficiencies and underscoring the practical relevance of

my characterization. Next, I examine the rule used in Brazilian college admissions. Although

this rule is rationalizable, the preferences that rationalize it fail to satisfy an essential crite-

rion: affirmative action monotonicity. Affirmative action monotonicity stipulates that indi-

viduals eligible for affirmative action in more dimensions should be (weakly) more preferred,

reflecting the core principles of affirmative action. By identifying the shortcomings in both

systems, these findings clarify the similarities and differences between the two mechanisms,

providing insights for policymakers to design rules that better align with their preferences

of the stakeholders.

Second, my characterizations are useful for determining the rationalizability of choice

rules. This is because one can prove that a rule does not admit any cycles even when

the preferences that rationalize it are not tractable. I study slot-specific priorities, a well-

known class of rules that encompasses many practical mechanisms. Different members in this

class are rationalized by different underlying preferences. I show that the entire class of slot-
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specific priorities is rationalizable, without needing to identify the specific preferences behind

each distinct rule. Finally, I study the Multidimensional Privileges Choice Rule proposed

by Aygun and Bó (2021), and later replaced the initial flawed rule, which ensures that a

student is never disadvantaged by declaring affirmative action eligibility. I show that this

rule is the unique choice rule rationalizable by preferences that are monotonic in affirmative

action, offering further justification for its adoption.

Intersectionality, Substitutes and Representation. Next, I study the relationship

between diversity preferences and the substitutes condition, an important theoretical prop-

erty of choice rules necessary for the existence of competitive equilibria and stable matching

(Kelso and Crawford, 1982; Roth, 1984; Hatfield and Milgrom, 2005). When identities are

multidimensional, institutions can evaluate diversity in multiple ways. For instance, suppose

that a company is focused on racial (Black or white) and gender (male or female) diversity.

The company considers intersectionality if it evaluates the representation of all four cross-

sectional groups when assessing the diversity of the workforce. In contrast, if the company

evaluates the two dimensions separately, assessing gender diversity by the number of female

workers and racial diversity by the number of Black workers, it fails to account for intersec-

tionality, because the same level of “diversity” could be achieved with significantly different

levels of representation of any given group.

Institutions and companies often highly value diversity, incorporating it explicitly into

their allocation mechanisms and hiring practices, and even publish reports that evaluate

the diversity of their workforce. However, reports from many institutions include only the

marginal (and not cross-sectional) distribution of their workforce.2 Similarly, many affirma-

tive action programs in legislatures have quotas for women and minorities, but these policies

have typically evolved separately and operate independently (Hughes, 2018). The litera-

ture on the diversity of legislative assemblies emphasizes the presence and consequences of

complementarities by noting that “new candidates who maximally complement incumbents

can be preferred by the incumbent elites” (Celis, Erzeel, Mügge, and Damstra, 2014) and

“provide a visible cue to voters that politics is diversifying, while minimising the disruption

to white male incumbents” (Murray, 2016).3

2Apple (Apple Inclusion & Diversity) and Microsoft (Microsoft Global Diversity & Inclusion Report 2020)
report the fraction of employees who belong to different races and genders, while MIT does the same for
its student body (MIT Diversity Dashboard). Exceptions include Google (Google Diversity Annual Report
2020), where the cross-sectional distribution of identities is reported in the intersectional hiring section and
Stanford University (Stanford Diversity Report). See Figure 1 for examples of different diversity reporting
practices.

3This issue is the focus of the literature on intersectionality that studies how different identities combine
to create various forms of discrimination and privilege, with a particular focus on the experience of Black
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Motivated by this, I study the relationship between how an institution evaluates multi-

dimensional identities and its implications for its allocation and hiring decisions (i.e., choice

rules). When diversity is evaluated considering intersectionality, there is a unique repre-

sentative outcome that matches the population shares. However, many other outcomes

can result in the same marginal distribution of characteristics (e.g., the same number of

women and minority individuals) while significantly differing in the representation of certain

cross-sectional groups. I show that when diversity is evaluated without considering the in-

tersectionality of identities, a dominant group (e.g., incumbent members of a parliament or

a company board that form a majority and share similar socioeconomic characteristics) can

increase its representation significantly compared to their the population share while still

appearing maximally diverse according to a non-intersectional view of diversity. Moreover, I

formalize the connection between intersectionality and complementarities by showing that if

an institution values diversity without considering intersectionality, the choice rule induced

by their preferences fails to satisfy the substitutes condition, a widely studied condition in

the market design literature which is crucial for the use of stable matching mechanisms and

the existence of competitive equilibrium. These results demonstrate that intersectionality is

not only important from an equity perspective but also crucial for ensuring that selection or

allocation procedures satisfy the substitutes condition.

Separability in Match Quality and Diversity. Finally, I characterize the choice rules

that treat diversity and score domains separately, as these preferences are both natural

starting points and commonly used in the analysis of affirmative action policies (see e.g.,

Chan and Eyster, 2003; Ellison and Pathak, 2021; Çelebi and Flynn, 2024; Passaro, Kojima,

and Pakzad-Hurson, 2023). Moreover, policies that subsidize firms and schools based on

the identities of their workers or students result in additively separable preferences when

these institutions’ preferences are quasi-linear in money. Specifically, I analyze when an

institution’s preferences can be represented by a utility function that is additively separable

into two components, one that depends on the scores of chosen individuals and the other on

the number of chosen individuals from each socioeconomic group. Under this representation,

the preference over two individuals can depend on their scores and the representation of

their groups, but not on the scores of others or the representation of other groups. Perhaps

surprisingly, these rules are characterized by adaptations of three well-known properties: a

choice rule is rationalizable by a utility function that is additively separable in the score

and diversity domains (with utility increasing in scores and concave in the representation of

each group) if and only if it satisfies (within-group) responsiveness (Roth, 1985), substitutes

women in the United States (Crenshaw (2013)).
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(Roth, 1984), and the acyclicity condition of Tversky (1964). Then I map existing choice

rules, such as quotas and reserves, to this framework and show that additive separability in

the score and diversity domains leads to a unique selection within the broader set of policies

that reserve places based on individuals’ identities.

Related Literature. A large body of literature on matching with affirmative action and

diversity concerns was initiated by Abdulkadiroğlu and Sönmez (2003) and Abdulkadiroğlu

(2005). Kojima (2012) studies quota policies, Hafalir, Yenmez, and Yildirim (2013) intro-

duces alternative and more efficient minority reserves, and Ehlers, Hafalir, Yenmez, and

Yildirim (2014) generalize reserves to accommodate policies with floors and ceilings. Dur

et al. (2018) and Dur et al. (2020) study reserves in public schools in Boston and Chicago,

while Kamada and Kojima (2017), Kamada and Kojima (2018), and Goto, Kojima, Kurata,

Tamura, and Yokoo (2017) study stability and efficiency in more general matching-with-

constraints models. This paper contributes to this literature, which focuses on characteriz-

ing rules through desirable axioms, by employing the preference-based approach of revealed

preference theory. This approach enables us to study the rationality of these rules (and

their designers) in the same way as the revealed preference theory studies the rationality

of an agent based on observed choices, a central question in economics, as well as various

properties of preferences that rationalize the choice rules used in practice.

This paper is also related to the literature on revealed preference theory, building on the

results of Richter (1966) and Nishimura et al. (2016). A similar preference-based approach

is explored by Echenique and Yenmez (2015), who characterize the preferences that induce

choice rules that maximize scores conditional on achieving (or minimizing the distance from)

an ideal distribution of characteristics. This paper complements theirs by considering diver-

sity preferences that can freely depend on the distribution of characteristics (without any

restrictions or reference to an ideal point) and allowing for flexible trade-offs between scores

of individuals and the distribution of characteristics, thereby encompassing a broader class

of rules applied in practice.

This paper is also connected to the extensive literature on the substitutes condition

in matching markets (Hatfield and Milgrom, 2005; Hatfield and Kojima, 2010; Aygün and

Sönmez, 2013). Kojima, Sun, and Yu (2020a) characterize all feasibility constraints that

preserve substitutability and Kojima, Sun, and Yu (2020b) complement the analysis of their

earlier paper by characterizing when softer pecuniary transfer policies preserve substitutabil-

ity, building on the theory of discrete convex analysis (Murota, 1998; Murota et al., 2016).

Yokote, Hafalir, Kojima, and Yenmez (2024) studies path-independent rules, a stronger

version of the substitutes property, and Alva (2018) studies path independence and ratio-

7



nalizability in a combinatorial choice setting.4 My results complement theirs by explicitly

considering the multidimensional and overlapping structure of types of individuals, focusing

on underlying preferences instead of constraints. This approach establishes a novel connec-

tion between the substitutes condition and the seemingly unrelated issue of intersectionality

in the evaluation of diversity.

Moreover, this paper builds on the literature addressing affirmative action with multi-

dimensional and overlapping identities, both by extending the theoretical framework and

by examining the practical applications explored in previous studies. Kurata, Hamada,

Iwasaki, and Yokoo (2017) propose a mechanism that is strategy-proof and implements

student-optimal matching. Aygun and Bó (2021) study affirmative action policies in which

students can qualify for affirmative action in two different dimensions and show that the

treatment of overlapping identities in Brazilian university admissions can cause unfairness

and incentive compatibility issues. Sönmez and Yenmez (2022) demonstrate the shortcom-

ings of the main mechanism used to assign government positions in India, where protections

for overlapping domains play an important role, and propose alternative mechanisms. By

showing that the mechanism used in Brazilian college admissions can only be rationalized by

preferences that violate the spirit of affirmative action, while the mechanism used in India

is not rationalizable at all, my results shed light on the similarities and differences in the de-

ficiencies of these two mechanisms. Finally, Carvalho, Pradelski, and Williams (2024) study

the representativeness of affirmative action policies that do not take into account. Although

the models differ, the results in this paper complement theirs by focusing on the properties

of non-intersectional policies and consequences of non-intersectional views of diversity.

Chan and Eyster (2003), Ellison and Pathak (2021), Çelebi and Flynn (2022), and Çelebi

and Flynn (2024) consider a designer with an additively separable utility function in the qual-

ity and diversity domains.5 The analysis in Section 5 complements these papers by analyzing

when the choice rules adopted by institutions are rationalizable by a utility function that is

additively separable in the quality and diversity domains. Arnosti, Bonet, and Sethuraman

(2024) define explainable affirmative action rules and show that they induce the same unique

processing order that additive separability induces over reserve policies.

4My setting and results are not directly comparable to Alva (2018) as in his setting, substitutes, ratio-
nalizability, and weak axiom of revealed preference are equivalent, whereas I demonstrate that these three
properties differ in a significant and practically relevant way within standard revealed preference and market
design settings.

5In two recent papers, Passaro et al. (2023) and Dessein, Frankel, and Kartik (2023) analyze affirmative
action motives in decentralized markets and study utility functions separable in these two domains.
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2. Model

Identities and Scores. There are N dimensions that represent the identities of individ-

uals. For each l ∈ {1, . . . , N}, Θl denotes the finite set of possible groups to which an

individual might belong in dimension l. I assume that there are at least two groups in each

dimension, |Θl| ≥ 2, and use Θ = Θ1 × . . .×ΘN to denote the set of all possible identities.

Example 1. Θ1 denotes race where Θ1 = {Asian, Black, Hispanic, White} and Θ2 denotes

income where Θ2 = {Rich, Middle class, Poor}. 4

Each individual has a score s ∈ S, where S ⊂ R is a finite set of possible scores.

T = Θ×S denotes all possible types of individuals. For individual i, θl(i) denotes the group

of i in dimension l, while θ(i) = (θ1(i), . . . , θN(i)) denotes the identity of i. The function s(i)

denotes the score of i and t(i) = (θ(i), s(i)) denotes the type of i. For a set of individuals I,

Nθ(I) denotes the number of individuals with identity θ at I.

Example 1 (continued). To simplify notation, I use the first letter of each group to denote

its name. Let S = {0, 1}. Then, θ(i) = (H, R) denotes the identity of i, s(i) = 1 denotes

the score of i, while t(i) = ((H, R), 1) denotes the type of i, a rich Hispanic individual with

score 1. If θ(j) = (W, M), then for I = {i, j}, we have N(H, R)(I) = 1 and N(H, P)(I) = 0 as

the set I has one rich Hispanic individual and zero poor Hispanic individuals. 4

Choice Rules. An institution chooses q individuals from a given set of individuals I ⊆ I,

where I denotes the set of individuals available for selection and I denotes the set of all

individuals.6 Formally, a choice rule is a correspondence C : 2I → 22I such that if I ∈ C(I ′),

then

(i) I ⊆ I ′, i.e., I was available for selection at I ′

(ii) |I| ≥ min{q, |I ′|}, i.e., the capacity is filled whenever there are enough individuals

Let T denote all possible type distributions for q or fewer individuals. Formally,

T =
⋃

q′∈{1,...,q}

T × . . .× T︸ ︷︷ ︸
q′ times

For I with |I| ≤ q, let τ(I) ∈ T denote the types of individuals in I. Formally,

τ(I) = {t(i1), . . . , t(iq′)}, for q′ ≤ q

6As I assume in Assumption 1 that only identities and scores (and not the names) of individuals matter
for choices, and the institution can choose at most q individuals, we can take I as any finite set that includes
at least q individuals with each type.
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As is common in all applications considered in this paper, I will assume that institu-

tion’s choices are anonymous, meaning that they only depend on the scores and identities of

individuals, and not on their names.

Assumption 1. Suppose that τ(I) = τ(J) and τ(Î) = τ(Ĵ), where I ⊆ Î and J ⊆ Ĵ . Then,

I ∈ C(Î) ⇐⇒ J ∈ C(Ĵ)

Preferences. The preferences of the institution are represented by complete preorder �
(with the asymmetric part � and symmetric part ∼) on T .7 I will slightly abuse the notation

and write I � I ′ instead of τ(I) � τ(I ′). A preference relation � rationalizes C if C always

chooses the �-maximal sets of individuals, that is, C(I) = {I ′ : I ′ � I ′′ for all I ′′ ⊆ I}.
Similarly, a choice rule C is induced by � if it returns the set of �-maximal subsets of I.

This representation is very flexible and can incorporate various forms of diversity pref-

erences. It can account for both the scores and identities of individuals, as well as the

distribution of identities within the set. Most importantly, the preference relation � does

not need to satisfy responsiveness (Roth, 1985).8 For example, if I has more individuals with

identity θ(i) and I ′ has more individuals with identity θ(i′), the institution may prefer i to

i′ when they are evaluated together with I ′, that is i ∪ I ′ � i′ ∪ I ′. This preference may be

reversed when they are evaluated together with I, that is, i′ ∪ I � i∪ I. Thus, the identities

of other chosen individuals can affect how the institution compares i and i′, allowing the

institutions’ preferences to depend on the overall distribution of identities.

Before moving on to the results, I will explain how the standard model in market design,

which involves selecting a subset of individuals from a given set, can be mapped to the

framework of revealed preference theory.

Choice Environments. A choice environment is an ordered pair ((X, .),A), where (X, .)

is a preordered set and A is a collection of subsets of X. Here, X represents the consumption

set, comprising all possible alternatives, while A denotes the feasible sets from which the

decision maker is observed to make a choice. The observed choice correspondence maps A
to X and encodes the information collected by the observer on the agent’s choice behavior.

Since a central question in economics is whether choices reflect an underlying preference

relation, revealed preference theory studies the properties of choices that are consistent with

7Since T is finite, there is an equivalent utility representation.
8Responsive preferences require that the preference between any two individuals does not depend on the

rest of the group, that is, for all I with I ∩ {i, i′} = ∅, i � i′ =⇒ i ∪ I � i′ ∪ I. Here, � restricted to
singleton sets represents the primitive preference (e.g., priority order of a school) and preferences over sets
of individuals are derived from this order.
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this behavior. . is an exogenous dominance relation on X. A preference relation � extends

. if dominance with respect to . implies the preference, that is, if (i) I � J whenever I . J ,

and (ii) I � J whenever I . J .

Definition 1. A choice rule is .-rationalizable if there exists a preference relation that ra-

tionalizes the choice rule and extends ..

The exogenous dominance relation is useful because we typically care not only about the

existence of underlying preferences (which is recovered by setting . as the empty relation) but

also about their specific properties. A natural example is domination with respect to scores.

We can define .S as the score domination relation where I .S J whenever I is obtained by

increasing the scores of some individuals in J without changing their identities. If a choice

rule is .S-rationalizable, then it can be rationalized by a preference relation that prefers

higher scoring individuals to lower scoring ones, all else equal.

Mapping to Choice Environments. I will now map the standard setting in market

design, where a choice rule encodes a complete plan for determining the selected applicants

given the set of applicants, to a specific choice environment, (X∗,A∗). Let 2Ix to denote all

x-element subsets of I. Then

X∗ = ∪k=1,...,q2
I
k (1)

corresponds to the set of all sets of individuals that has fewer than q elements, denoting

all possible alternatives the decision-maker can choose from. A special case of the model

focuses on environments without ties, where the choice rule is defined over subsets of I in

which all individuals have different scores. Specifically, instead of X∗, we consider X̃ = {I :

I ∈ X∗ and s(i) 6= s(j) for all {i, j} ⊆ I}. This can be interpreted as using scores obtained

after tie-breaking, in cases where ties in scores are possible.

As the choice rule specifies the set of selected individuals for any given set of individuals,

it is reasonable to expect that A∗ includes all possible alternatives and is equal to 2X
∗
.

However, even though the choice rule has enough information to determine the set of chosen

individuals in all instances, it imposes a specific structure on feasible sets and induces a

choice environment that is not complete. To illustrate, for any A ∈ A∗, if I ∈ A and I ′ ∈ A,

then all sets with q or fewer elements that can be formed from I ∪ I ′ must also be in A.

Example 2. Suppose that |S| = 1, q = 3, Θ = {a, b, c}. The letters denote the groups

of individuals, the subscripts denote different individuals from the same group, e.g., I =

{a1, a2, b1}. Let A = {{a1, a2, a3}, {b1, b2, b3}, {c1, c2, c3}}. The choice rule does not encode

any information about what the choice would be from the three possible outcomes in A, since
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whenever these sets are available, all three element subsets of {a1, a2, a3, b1, b2, b3, c1, c2, c3}
are also available for selection. 4

The next Proposition characterizes the choice environment induced by choice rules. This

allows us to use results from revealed preference theory to study the rationality of rules that

allocates resources, and also shows that the standard model in market design can be mapped

to a particular choice environment.

Proposition 1. A∗ is the largest subset of 2X
∗

such that for any A ∈ A∗, if I ∈ A and

I ′ ∈ A, then all subsets of I ∪ I ′ that have q or fewer elements are also in A.

3. Rationality of Choice Rules

I now characterize choice rules that can be rationalized by preferences that satisfy certain

conditions, as this provides a clearer understanding of the relationship between choice rules

and preferences. To this end, I define a .-cycle, the key property that determines rationality.

Definition 2. A collection of distinct sets I1, . . . , In is a .-cycle if

• for each k < n, either there exists an Îk such that Ik ∈ C(Îk) and Ik+1 ⊂ Îk, or

Ik . Ik+1;

• either there exists În such that In ∈ C(În), I1 ⊂ În and I1 6∈ C(În), or In . I1.

An important special case of .-cycle is obtained by setting . as the empty relation.

Definition 3. A collection of distinct sets I1, . . . , In is a choice cycle if

• for each k < n, there exists an Îk such that Ik ∈ C(Îk) and Ik+1 ⊂ Îk,

• there exists În such that In ∈ C(În), I1 ⊂ În and I1 6∈ C(În).

The existence of a choice cycle corresponds to a violation of the congruence axiom of

Richter (1966). If there is a choice cycle under C, then the institution has chosen I1 when I2

was available, . . ., In−1 when In is available. Therefore, I1 is indirectly (weakly) revealed to

be preferred to In. The fact that In is chosen when I1 is available and is not chosen means

that In is directly (strictly) revealed to be preferred to I1.

A .-cycle has the additional requirement that the choices do not violate the exogenous

relation .. The concept of .-cycle is adapted from Nishimura et al. (2016), who generalize

the characterization of Richter (1966) to settings with an exogenous order. Applying their

result, we can characterize the choice rules that are rationalizable by a preference relation.
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Theorem 1. There exists a preference relation � that rationalizes C and extends . if and

only if C does not admit a .-cycle.

Moreover, by setting . as the empty relation, we obtain the following corollary.

Corollary 1. There exists a preference relation � that rationalizes C if and only if C does

not admit a choice cycle.

In the next sections, I will apply Theorem 1 and Corollary 1 in two different ways. First,

by establishing cycles, we can deduce that certain choice rules used in practice cannot be

rationalized by preferences. Consequently, Corollary 1 acts as a minimal requirement that a

choice rule must satisfy. For rationalizable rules, Theorem 1 helps us determine whether the

preferences behind those rules satisfy other desirable properties. Second, I use these results

to prove which (classes of) choice rules can be rationalized by showing that they could never

induce a choice cycle. This is useful because many choice rules consist of large classes of

rules that are rationalized by different preferences, and constructing these preferences is not

straightforward.

Properties of the Choice Environment and the Weak Axiom. Before moving to the

applications, I describe why weaker axioms, such as the weak axiom of revealed preference

(WARP) do not characterize rationalizability for choice rules.9 Example 2 demonstrated

that even though the choice rule determines the chosen individuals from each set of candi-

dates, the choice environment it induces is far from complete. In fact, if the induced choice

environment was complete, then rationality would be characterized by the weak axiom of

revealed preference.10 The following example illustrates how choice rules can satisfy the

weak axiom without being rationalizable.

Example 2 (continued). Consider following choice rule

• If there is at least one individual from each group, choose exactly one individual from

each group.

• If choosing one individual from each group is not possible, then at least one group is

not represented in the set of available individuals.

(i) If there are no c individuals, choose as many a individuals as possible.

(ii) If there are no a individuals, choose as many b individuals as possible.

9Weak axiom requires that if a ∈ C(A) where a′ ∈ A, then a ∈ C(A′) for all A′ such that a′ ∈ C(A′).
10Caradonna (2020) introduces the property of well-coveredness, characterizes the choice environments for

which the weak axiom does characterize rationalizability, and shows that this class includes not only the
complete choice environment, but also other considerably smaller environments.
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(iii) If there are no b individuals, choose as many c individuals as possible.

Note that (i) implies C(a1, a2, a3, b1, b2, b3) = {a1, a2, a3}, (ii) implies C(b1, b2, b3, c1, c2, c3) =

{b1, b2, b3} and (iii) implies C(a1, a2, a3, c1, c2, c3) = {c1, c2, c3}. In Appendix B.1, I prove that

C does not fail the weak axiom. This is because the choice environment induced by the choice

rule does not include A = {{a1, a2, a3}, {b1, b2, b3}, {c1, c2, c3}}, which would have created a

violation of weak axiom regardless of the choice made from it. In fact, we did not even need

to specify what the choice rule would do in this case, since A 6∈ A∗.
Moreover, the preference relation that “rationalizes” C must have {a1, a2, a3} � {b1, b2, b3} �

{c1, c2, c3} � {a1, a2, a3}, which means that C is not rationalizable even though it does not

fail the weak axiom. 4

3.1. Application: Rationalizability and The Supreme Court Mandated Choice

Rule in India.

Indian government operates one of the largest affirmative action systems in the world to

promote the representation of historically discriminated groups in various areas, including

government jobs and universities. Affirmative action is enshrined in the Indian constitution,

and its implementation procedure in the allocation of government jobs was outlined in the

important Supreme Court judgment, Anil Kumar Gupta v. State of U.P. (1995).11 The two

main classes of reservations are based on caste, to promote the representation of historically

underrepresented groups such as Scheduled Castes, Scheduled Tribes, and Other Backward

Classes, and on gender, to enhance the representation of women.

The procedure devised by the Supreme Court suffered from significant shortcomings,

causing hundreds of court cases at various levels of the Indian judiciary and resulting in

its demise in 2020 after over 25 years of use. Most notably, its poor design caused some

individuals to lose their gender-based protections if they claimed caste-based protections,

even if the caste-based protection did not secure them a position. The procedure involved a

complex set of reserved positions for different groups. Affirmative action based on caste sets

aside a certain number of positions for individuals belonging to specific castes. Affirmative

action based on gender requires that within each caste reservation, as well as for the open

positions that are not reserved for any caste, certain number of women to be chosen.

The problem with this rule stems from the fact that candidates eligible for caste reser-

vations are only considered for the open positions if they rank high enough in the general

population. In particular, if the number of open positions is n, then they must have one of

11See Sönmez and Yenmez (2022) for more details on this judgment and background on affirmative action
in India, as well as detailed description and analysis of the setting.
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the n highest scores to be considered for the open positions. This would not create a problem

if caste and gender were not overlapping identities, since candidates outside the top n would

not be selected for the open positions regardless. However, when caste-based set-asides are

combined with gender-based minimum guarantees, the choice rule produces outcomes that

conflict with the intent of affirmative action.

I will now demonstrate that this issue prevents the choice rule from being rationalizable.

To this end, I will define the setting and the choice rule mandated by the Supreme Court of

India (CS) in a context involving two groups and two dimensions.12 Let Θ1 = {g, r} where

g denotes the general population and r denotes the reserve eligible population (individuals

belonging to underrepresented castes). Let Θ2 = {m,w} denote the gender of the individuals,

with m representing men and w representing women. For x ∈ {g, r,m,w}, Ix denotes the

set of individuals in a given category. In this setting, CS is characterized by 4 integers, r:

the number of reserved positions, o: the number of positions open to everyone, rw ≤ r: the

number of reserved positions protected for women, ow ≤ o: the number of open positions

protected for women, where rw > 0 and ow > 0. The choice rule CS proceeds as follows:

Supreme Court Mandated Choice Rule CS

Step 1: DefineM as the set of reserve-eligible candidates who are among the o

highest scoring individuals in the population.

Step 2: Assign ow positions to ow highest scoring women in Ig ∪M.13

Step 3: Assign remaining o− ow positions to o− ow highest scoring previously

unassigned individuals in Ig ∪M.

Step 4: Assign rw positions to rw highest scoring previously unassigned woman

in Ir.

Step 5: Assign r − rw positions to highest scoring previously unassigned indi-

viduals in Ir.

M is referred to as the meritorious reserve candidates. As noted, CS has some important

shortcomings. It does not satisfy no justified envy ; a reserve eligible individual can score

higher than a general category individual and yet fail to receive a position, while the general

category individual receives one. This outcome contradicts the philosophy of affirmative

action. Moreover, this situation leads the reserve eligible individual to obtain the position

by not disclosing their reserve eligibility, thereby violating incentive compatibility.

12This definition follows the choice rule Sönmez and Yenmez (2022) defines, which is much simpler than
the more complicated mechanism used in practice to define, but produces the same outcomes.

13If there are fewer than ow or rw women considered at Steps 2 or 4, then remaining positions are assigned
to highest scoring men who are considered at that stage.
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Example 3. There are three positions (q = 3), two of them are open (o = 2) with one

protected for women (ow = 1) and the remaining caste-reserve position is also protected for

women (r = rw = 1). The table below shows the applicants’ identities and scores, where the

first letter denotes gender and the second denotes reserve eligibility. Checkmarks denote the

individual is selected for the corresponding position.

Applicants Score Meritorious Reserve Selected Individuals

Open (Woman) Open Reserve (Woman)

mg 6 X
wr 4 X X
mr 3
wr 2 X
wg 1

First, the only caste reserve eligible candidate considered for open positions is (wr, 4),

as she is among the top o = 2 in the score distribution. Then (wr, 4) is chosen for the

open position protected for women. The other open position is assigned to the highest

scoring candidate that is considered at this point, (mg, 6). Finally, (wr, 2) is assigned the

reserved position as the highest scoring reserve eligible woman. Therefore, the set I1 ≡
{(mg, 6), (wr, 4), (wr, 2)} is chosen, while I2 ≡ {(mg, 6), (wr, 4), (wg, 1)} was available and

but not chosen. We will now consider an alternative case where the score of (mr, 3) is

increased to (mr, 5).

Applicants Score Meritorious Reserve Selected Individuals

Open (Woman) Open Reserve (Woman)

mg 6 X
wr 4 X
mr 5 X
wr 2
wg 1 X

After this change, (mr, 5) becomes the meritorious reserve candidate and is the only

reserve eligible candidate considered for open positions. Then (wg, 1) is chosen for the open

position protected for women, as she is the only woman considered at this stage. The other

open position is assigned to the highest scoring candidate that is considered at this point,

(mg, 6). Finally, (wr, 4) is assigned the reserve position as the highest scoring reserve eligible
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women. However, since {(mg, 6), (wr, 4), (wg, 1)} is chosen while {(mg, 6), (wr, 4), (wr, 2)}
was available but not chosen, the sets I1 and I2 constitute a choice cycle. 4

Example 3 illustrates how CS fails to be rationalizable in a simple setting with 3 positions.

The next propositions shows that this problem persists regardless of the number of positions

of different types.

Proposition 2. The Supreme Court Mandated Choice Rule is not rationalizable.

Therefore, the choice rule mandated by the Supreme Court not only suffers from the

issues identified in prior literature, could not have been designed by a rational decision maker

with well-defined preferences. The lack of rationality stems from the fact that the court’s

guidance outlines a complex allocation rule that combines multiple considerations in an ad-

hoc fashion. In fact, the actual rule described in the court decision first allocates resources

based on caste and then adjusts the allocation to meet gender quotas. This results in a more

intricate rule than the one presented here, even though both are outcome-equivalent.

3.2. Slot-Specific Priorities and Reserve Rules are Rationalizable

The previous section demonstrated that focusing on preferences rather than specific rules

will increase transparency and result in more sensible and effective allocation mechanisms. In

this section, I show that a very general and widely used class of rules, slot-specific priorities

(Kominers and Sönmez, 2016), is rationalizable. Slot specific priority rules are defined by

q slots σ = σ1, . . . , σq such that each slot is assigned to one individual. For each slot σl,

there is a priority order over individuals ≥σl such that higher priority individuals are chosen

before lower priority ones, where ≥σ= {≥σ1 , . . . ,≥σq}, with >σl denoting the strict part of

this order. The priorities in each slot can depend on the scores of individuals as well as

their identities. Following Kominers and Sönmez (2016), I focus on strict priorities. To this

end, I assume that the choice environment is without ties, and ≥σ ranks any two individuals

strictly whenever they do not have the same score.14

The slots are processed according to a precedence order which orders slots from the first

to the last. At each step, the slot is assigned to the highest priority individual who has not

already assigned a preceding slot. As the priority orders are unrestricted, it is without loss

of generality to assume that the precedence order is given by the subscript.

14This can be interpreted as the scores being obtained after breaking any ties. In this setting, the highest
score can be attained by individuals with different identities, but not simultaneously. An alternative approach
to model strict priorities is to restrict attention to strict scores, but this requires adapting definitions and
introducing further notation.
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Definition 4. A choice rule C is generated by slot-specific priorities (σ,≥σ) if given I, the

chosen individuals are determined in q steps as follows. Set I1 = I

• In Step k, choose the individual with the highest priority according to >σk from Ik.

• Let ik denote the individual chosen in step k. Set Ik+1 = Ik \ ik and move to step k+1.

Different slot-specific priorities are rationalized by different preferences. Indeed, in Sec-

tion 5, I will show that the some slot-specific rules could be rationalized by preferences that

are additively separable in score and diversity domains, while some cannot be rationalized

by such preferences. Applying Theorem 1, we can directly show that slot-specific priorities

are rationalizable without tackling the task of recovering preferences underlying infinitely

many members of this class.

Proposition 3. If C is generated by slot-specific priorities, then it is rationalizable.

To prove Proposition 3, I first assume that there is a choice cycle I1, . . . , In. I then

identify the individuals assigned to each slot at each step of the cycle. Given this, for each

step of the cycle, I show that at each slot, either the same individual is selected, or the

invidual selected in the preceding step has higher priority than the individual assigned in

the next step. Using an induction argument, we conclude that this is also true for I1 and

In. Therefore, it is not possible for the set In to be chosen when I1 was available but not

chosen, contradicting the last step of the cycle.

I now define a special case of slot specific priorities, generalized reserves, which are widely

used in practice. A choice rule is generated by generalized reserves if each slot is either set

aside for a particular set of groups, where individuals who belong to those groups have higher

priority than those who do not, or is an open slot where priority is equal to the score.

Definition 5. A generalized reserve rule is given by slots σ and a function h : σ → 2Θ that

assigns each slot σl to a set of identities (including the ∅, which means that no identity is

favored at that slot). Given σ, h, the at each slot, i >σl j if

1. θ(i) ∈ h(σs) and θ(j) 6∈ h(σs), that is, i qualifies for the reserve while j does not.

2. θ(i) ∈ h(σs), θ(j) ∈ h(σs) and s(i) > s(j), that is, both qualify for the reserve and i

has a higher score.

3. θ(i) 6∈ h(σs), θ(j) 6∈ h(σs) and s(i) > s(j), that is, both do not qualify for the reserve

and i has a higher score.

A generalized reserve rule is a reserve rule if each h(σs) is either a singleton or the empty

set, meaning that, each slot is reserved for at most one identity. Since generalized reserves

are special cases of slot specific priorities, we have the following corollary.

Corollary 2. Choice rules generated by generalized reserve policies are rationalizable.
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3.3. Application: Affirmative Action Monotonicity and Brazilian College

Admissions

Corollary 1 considers the identities of individuals without making affirmative action mo-

tives explicit. However, rationalizability is only a first step towards effective choice rules.

I now illustrate how Theorem 1 allows for incorporating additional considerations to the

preferences. For instance, the main goal of affirmative action is to provide advantages to

certain underrepresented groups, thereby increasing their representation.

To study preferences that depend on affirmative action motives explicitly, I focus on a

special case of my model where each dimension corresponds to a dimension of affirmative

action, and has two groups, the individuals who are eligible for affirmative action in that

dimension and those who are not eligible.15 Formally, each Θl corresponds to a dimension

of affirmative action and Θl = {θAl , θNl }. θAl denotes the target group of affirmative action in

dimension l, while θNl denotes the individuals who do not belong to the target group. Aygun

and Bó (2021) define a key property (that they call privilege monotonicity) that require that

if a student is not chosen, then she would not be chosen if she were eligible for affirmative

action in fewer domains. If the choice rule does not satisfy this property, lower achieving

students who do not qualify for affirmative action could be chosen instead of higher achieving

students who do. Consequently, it may be optimal for some students to not declare their

affirmative action status, making it a strategic choice.

Motivated by this, a reasonable criterion for preferences is affirmative action monotonic-

ity: keeping everything constant, increasing affirmative action eligibility of a set of individuals

makes the set more desirable.

Definition 6. I .A I
′ if there exists a bijection ρ : I → I ′ such that for all i ∈ I, s(i) = s(ρ(i))

and θl(ρ(i)) = θAl =⇒ θl(i) = θAl .

A choice rule C is rationalizable by an affirmative action monotonic preference relation

if there exists a preference relation � that rationalizes C and extends .A.

Multidimensional Identities in Brazilian College Admissions. Brazilian public uni-

versities are mandated to use affirmative action policies for candidates from racial and income

minorities by a federal law enacted by the Brazilian Congress in 2012.16 Mapping this set-

ting to the model, the two dimensions ΘR = {RA, RN} denote students who are and are not

15This framework is previously formulated by Aygun and Bó (2021) to study affirmative action in Brazilian
College Admissions.

16To qualify for these positions, students also need to attend a public high school in Brazil. For simplicity,
I abstract away from this issue, which does not affect any of the results and conclusions. See Aygun and Bó
(2021) for a more detailed description of this setting.
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eligible for affirmative action in race, and ΘI = {IA, IN} denote students who are and are not

eligible for affirmative action in income. This affirmative action mandate was implemented

by a reserve policy called Brazil Reserves, which reserves seats for three types of students,

those who are eligible in both dimensions, (RA, IA), those eligible only in race dimension,

(RA, IN), and those only eligible only in income dimension (RN , IA).17

Example 4. There is one reserve slot for each identity in {(RA, IA), (RA, IN), (RN , IA), ∅}
and q = 4. The applicants’ identities and scores are given in the following table, where

the first letter denotes eligibility in dimension one (race), while the second letter denotes

eligibility in dimension two (income). The processing order of the slots is from left to right.

Applicants Score Admission

Open A,A A,N N,A

N,N 5 X
A,N 4 X
A,A 3 X
N,A 2 X
N,A 1

This implies that {(N,N, 5), (A,N, 4), (A,A, 3), (N,A, 2)} ≡ I2 is chosen when the al-

ternative set {(N,N, 5), (A,N, 4), (A,A, 3), (N,A, 1)} ≡ I3 was available. Now, consider a

slightly modified version of this where (N,A, 2) is also eligible in dimension one.

Applicants Score Admission

Open A,A A,N N,A

N,N 5 X
A,N 4 X
A,A 3 X
A,A 2
N,A 1 X

First, let {(N,N, 5), (A,N, 4), (A,A, 3), (A,A, 2)} ≡ I1 and note that I1 .A I2 as one

individual is eligible in more dimensions at I1. Second, I3 was chosen when I1 was available

and not chosen. Therefore, the Brazil Reserves choice rule induces the following .A-cycle:

I1, I2, I3. 4
17This is a slot-specific priority where h(σ) ∈ {(RA, IA), (RA, IN ), (RN , IA), ∅} for all σ and slots that do

not map to ∅ have the same (strictly positive) number for the three groups.
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The cycle in Example 4 is caused by the fact that Brazil Reserves does not allow for

(A,A, 2), an individual who is eligible in both dimensions to obtain the position that only

has protections for one dimension. The next proposition shows that Brazil reserves cannot be

rationalized by an affirmative action monotonic preference relation regardless of the number

of reserved seats and the processing order.

Proposition 4. The Brazil Reserves choice rule cannot be rationalized by a affirmative

action monotonic preference relation.

Comparing Affirmative Action Mechanisms in India and Brazil. Proposition 2 and

Proposition 4 shed light on an important difference between the problems in the affirmative

action rules implemented in India and Brazil. While both settings appear to suffer from

the same issues of failures of affirmative action monotonicity and incentive compatibility,

the choice rule mandated by the Indian Supreme Court is not rationalizable, and therefore

cannot be designed by a utility maximizing decision maker with well defined preferences.

The choice rule in Brazil is a generalized reserve rule, and therefore is rationalizable. The

problem with that rule is that the preferences that rationalize that rule are not affirmative

action monotonic.

Multidimensional Privileges Choice Rule. To remedy the problems in the Brazil Re-

serves rule, Aygun and Bó (2021) formulates another class of choice rules, multidimensional

privileges choice rules. An identity θ dominates θ′ if θ′l = θAl implies θl = θAl . Multidimen-

sional privileges choice rules are generalized reserve rules that satisfy the following property:

whenever a slot is reserved for an identity θ, it is also reserved by any other identity θ′ that

dominates it.

Definition 7. A generalized reserve rule is a multidimensional privileges choice rule if when-

ever θ ∈ h(σ) and θ′ dominates θ, then θ′ ∈ h(σ).

The following result shows that if the designer values individuals who are eligible for

affirmative action in more dimensions, the multidimensional privileges choice rule emerges

as the unique rule within the class of generalized reserve rules.

Proposition 5. Multidimensional privileges choice rule is the unique generalized reserve

rule that can be rationalized by affirmative action monotonic preferences.
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Fig. 1. Diversity Reporting Practices of Apple and Google. Apple (left pane) provides a
breakdown of marginal distribution of workers in race and gender without any information on the
cross-sectional distribution. Google (right pane) reports the percentages of men and women for
each race.

4. Intersectionality, Substitutes and Representation

When identities are one dimensional, the number of individuals from each group in that

single dimension determines diversity. However, when identities are multidimensional, eval-

uating diversity is a more complex issue. For instance, if an institution aims to consider

diversity in terms of both gender (where the groups are men and women) and race (where

the groups are majority and minority), it can assess its diversity by counting the number of

men and women for gender diversity, and the number of majority and minority individuals

for racial diversity. This approach which focuses on the marginal distribution of characteris-

tics overlooks the intersectionality of identities, as it lacks information on the cross-sectional

distribution of characteristics.

4.1. Background and Motivation

Moreover, both marginal and intersectional evaluations of diversity are prevalent in prac-

tice. Figure 1 presents the diversity reporting practices of Apple (which reports only marginal

distributions in gender and race) and Google (which reports the gender breakdown for each

race) to illustrate the difference between preferences that depend on marginal and cross-

sectional distributions of identities.18 Policies designed to advance the representation of

women and/or minority groups are also prevalent in politics. A large literature in political

science studies the effect of these policies, emphasizing that these policies have typically

evolved separately and operate independently Hughes (2018). Relatedly, Celis et al. (2014)

18See Footnote 2 for more examples of intersectional and non-intersectional diversity reporting practices.
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discusses the complementarity advantage, where new candidates who “maximally” comple-

ment incumbents can be preferred by the incumbent elites. In particular, they discuss the

example of younger minority women as complementing incumbent white male majority, al-

lowing for maximal representativeness of the list (with respect to non-intersectional views

of diversity) while including a limited number of newcomers and maximizing the power of

incumbent elites.19

Results. Motivated by these observations, the next section examines the relationship be-

tween diversity evaluation and the properties of choice rules. When intersectionality is not

considered in diversity evaluation, a given level of “marginal” diversity can be achieved

through various cross-sectional distributions of identities, and the choices display comple-

mentarities among individuals from different groups across dimensions.

To formally establish the impact of intersectionality, I first show that when preferences

do not account for intersectionality, the resulting choice rules violate the substitutes con-

dition—a widely studied property crucial for the existence of stable allocations and the

application of stable matching mechanisms (Hatfield and Milgrom, 2005), which requires

institutions to treat individuals as substitutes rather than complements. I then show that

how these complementarities can be exploited by the dominant group to increase their rep-

resentation without compromising the perception of (marginal) diversity, characterize the

extent of this over-representation, and demonstrate that this arises from a particular, non-

intersectional view of diversity.

4.2. Analysis with Homogeneous Scores

I start the analysis with individuals who are homogeneous in terms of quality, assuming

|S| = 1 and suppressing scores. Appendix B.2 allows |S| > 1, and extends the results using

the gross substitutes property of Kelso and Crawford (1982).20

Given a type profile τ ∈ T , Ml(τ) returns the number of individuals in each group in

dimension l and M(τ) = (M1(τ), . . . ,MN(τ)). I will write M(I) instead of M(τ(I)) to

simplify the notation. M(I) is the marginal distribution of I, as it returns the number of

individuals that belong to each group in each dimension, but does not have any information

19Other works that emphasize this mechanism include Hughes (2011), who notes “. . . adding minority
women to the national legislature helps to satisfy both gender and minority quotas; their election unseats
fewer majority men,” Murray (2016), who writes “. . . providing a visible cue to voters that politics is diver-
sifying, while minimising the disruption to white male incumbents,” and Celis and Erzeel (2017) who notes
“the complementarity of newcomers does not only leave the position of incumbents unharmed, but even
reinforces and re-establishes the latter’s power.”

20In that setting, scores can be interpreted as qualities of the individuals, as well as (inverse) salaries for
individuals of homogeneous quality.
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about the cross-sectional distribution of groups.21 A preference relation � does not consider

intersectionality if it uses the marginal distribution of identities to evaluate the diversity of

each set of individuals.

Definition 8. � does not consider intersectionality if for all I and I ′ with M(I) = M(I ′),

I ∼ I ′.

Observe that if the identity is one dimensional (|N | = 1), the marginal distribution is

sufficient to determine the composition of identities in a group. Therefore, intersectionality

matters when identity is multidimensional, that is, |N | ≥ 2.

Definition 9. Let Ĩ ⊆ I ′ ⊂ I. C satisfies the substitutes condition if for all Ĩ with Ĩ ⊆ Î ∈
C(I), there exists Ī such that Ī ∈ C(I ′) and Ĩ ⊆ Ī.

This condition is the generalization of the substitutes condition of Roth (1984) to choice

correspondences.22 Substitutes condition states that whenever Ĩ is chosen from I, then Ĩ

is also chosen from any set I ′ ⊂ I that includes it. The following example illustrates the

relationship between intersectionality and the substitutes condition.

Example 5. There are two dimensions, gender denoted by Θ1 = {M,W} and race denoted

by Θ2 = {u, o}, where u stands for individuals from underrepresented groups and o stands

for individuals from overrepresented groups. Let q = 4 and suppose that the institution has

preferences � that does not consider intersectionality and strictly prefers to have exactly

two individuals from all four groups to any other distribution, attaining equal share of all

“marginal” characteristics. First, suppose that I = {uM1, uM2, uW, oM, oW1, oW2}, where

the first letter denotes the race and second letter denotes the gender. The most preferred

distribution of characteristics can be achieved in two ways, as shown in the below table,

where boxed individuals are chosen.

M W

u uM1 , uM2 uW

o oM oW1 , oW2

M W

u uM1 , uM2 uW

o oM oW1 , oW2

21For example, if the gender dimension consists of men and women, and the racial dimension consists
of white and black individuals, the vector M(I) includes the numbers of men, women, white and black
individuals in I, but does not include, for example, white men in I.

22When C is a choice function (i.e., C(I) is singleton for all I), this condition is equivalent to the following:
If i ∈ C(I) and I ′ ⊆ I, then i ∈ C(I ′). A similar generalization is employed by Kojima et al. (2020b) for a
model with salaries.
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Now suppose that oM does not apply and consider I ′ = {uM1, uM2, uW, oW1, oW2}. In

this case, The most preferred distribution of characteristics can be achieved in only one way,

which does not include uW .

M W

u uM1 , uM2 uW

o oW1 , oW2

As uW is chosen from I but not from I ′ ⊂ I, the choice rule induced by these preferences

does not satisfy the substitutes condition. 4

In Example 5, the institution evaluates diversity by marginal distributions which cause

uW and oM to become complements : when uW is chosen, individuals who belong to opposite

groups in both dimensions become more desirable. Therefore, when oM is not available,

choosing uW cannot be optimal, since no two individuals from I ′ can complement uW to

achieve the preferred distribution.23

Intersectionality and Substitutes Condition. First, I make a minimal assumption

that makes diversity preferences nontrivial and assume that the most preferred distribution

does not completely exclude a group from being chosen.24 Formally, M(I) is at boundary

if I has no individual from some group, i.e., there exists l and θ̂l ∈ Θl such that θl(i) 6= θ̂l

for all i ∈ I. Conversely, M(I) is interior if it is not at boundary, i.e., if I has at least one

individual from each group.

Definition 10. � values diversity if there is no I such that M(I) is at boundary and I � I ′

for all I ′.

This is a reasonable assumption for diversity preferences; it requires that the institution

values diversity and prefers to choose at least one individual from each group, but puts

no other restrictions on how it values different compositions of individuals. The following

proposition shows that not considering intersectionality when evaluating diversity causes

failure of the substitutes condition.
23Even if there are enough individuals from each group, this phenomenon will arise when there are het-

erogeneity in scores and can be replicated by a decrease in the score of oM instead of his unavailability.
24If the preferences does not depend on the identities of individuals, then in this setting the institution

is indifferent between all individuals, while in the setting with heterogeneous scores (see Appendix B.2) it
prefers the individuals with highest scores regardless of their identity. Clearly in those cases, the induced
choice rule does not exhibit complementarities based on identities and satisfy the substitutes condition.
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Theorem 2. Suppose that |N | ≥ 2, � values diversity, does not consider intersectionality,

and induces C�. Then C� does not satisfy the substitutes condition.

Theorem 2 shows that the logic of Example 5 is indeed much more general. Evaluating

diversity with the marginal distributions creates complementarities between certain types,

and considering intersectionality is not only crucial from an equity standpoint but also nec-

essary to satisfy the substitutes condition. The proof of this result starts with an arbitrary

�. It then proceeds to determine a particular distribution of groups, similar to the “most”

diverse outcome in Example 5 and two individuals that complement each other the way uW

and oM complement each other in Example 5 to construct a violation of the substitutes

condition.

Intersectionality and Representation of Incumbent Groups. Motivated by the ev-

idence and discussion on how non-intersectional views of diversity can contribute to over-

representation of dominant incumbent groups in legislative assemblies, I study how much a

group can increase its representation compared to its population share in a representative

allocation when diversity is evaluated without taking intersectionality into account.

For this section, I will focus on identity/type distribution of sets of q individuals, denoted

by T q ⊂ T . I use τ ∈ T q to denote a generic element of this set and τθ to denote the number of

individuals with identity θ at distribution τ . Let τ ∗ ∈ T q denote the representative identity

distribution. For example, τ ∗ may reflect the allocation that matches the percentages of

each cross-sectional group in the population, or any other target distribution.25 Although τ ∗

uniquely determines the representative distribution of identities, there are many allocations

that induce the same level of diversity in the marginal distribution of characteristics.

Example 5 (continued). Suppose that the institution still prefers to have equal repre-

sentation, but this time considers intersectionality. Then the representative distribution

has one individual from all 4 identities, {uM, uW, oM, oW} and pins down the allocation.

However, there are other distributions with different representation of different groups, such

as {uM1, uM2, oW1, oW2}, that induce the same marginal distribution as the representative

distribution. 4

A distribution of identities τ is marginally representative if M(τ) = M(τ ∗). A marginally

representative distribution is as representative as the representative distribution when pref-

erences does not take intersectionality into account. Let θl denote the group of identity θ

at dimension l. Given the representative distribution τ ∗ and an identity θ, marginal repre-

sentation of θ at dimension l is equal to the total representation of all identities that belong

25For simplicity, I abstract from issues related to integer constraints.
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to the same group as θ in dimension l, that is, µl(θ, τ
∗) =

∑
θ′:θ′l=θl

τθ′ . For instance, in the

setting of Example 5, the marginal representation of oM in gender dimension is given by the

sum of the representation of all identities who belong to group M in dimension two, that is,

µ1(oM, τ ∗) = τ ∗oM + τ ∗uM . Given τ ∗, define the minimal marginal representation of θ at τ ∗ as

minl∈{1...,n} µl(θ, τ
∗).

Proposition 6. Given the representative distribution τ ∗ and an identity θ, there exists an

alternative, marginally representative distribution τ ′ that increases the representation of θ

from τ ∗θ to its minimal marginal representation, minl∈{1...,n} µl(θ, τ
∗).

Proposition 6 characterizes the upper bound for the representation of a group in a dis-

tribution that looks as diverse as the representative population under a non-intersectional

view of diversity.

Corollary 3. Suppose that there are two dimensions with two groups each and the represen-

tative distribution have equal representation of all groups. The representation of a group in

the representative distribution is 1/4, whereas its minimal marginal representation is 1/2.

Proposition 6 and Corollary 3 show that when preferences does not take intersectionality

account, then powerful incumbent group can increase its representation significantly while

still matching the diversity in the representative distribution. Of course, in practice, other

factors such as institutional constraints, political frictions, and external pressures prevent

a perfect alignment with this theoretical result. Nevertheless, Proposition 6 and Corollary

3 formalizes the relationship between evaluation of diversity and complementarities across

individuals, and characterizes the extent of over representation dominant groups can achieve

when diversity is evaluated in a non-intersectional way, providing a formal framework to

analyze the observations made by researchers studying diversity in legislative assemblies.

5. Separable Utility Representation

The analysis in the previous sections does not impose any structure on the trade-offs

between quality and diversity. This section characterizes the choice rules that can be ratio-

nalized by preferences additively separable in score and identity domains. These preferences

are represented by a utility function where the utility from each set of individuals is equal

to the sum of two terms. The first term depends only on the scores of the individuals, while

the second term depends only on (the distribution of) their identities. I study this class for

three main reasons.

First, in many contexts, the domains of score (match quality) and identity (diversity)

are not intrinsically connected. Institutions tend to value workforce diversity primarily for
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equity reasons, not because an individual’s contribution to productivity is closely linked to

their identity.26 Moreover, government policies that subsidize firms and schools based on

the identity of their workers or students lead to preferences that are additively separable in

scores and diversity when their utility function is quasi linear in money and has no inherent

preference for diversity.27

Second, it provides a highly tractable approach to considering trade-offs between diversity

and quality, and studies on affirmative action rely on additively separable preferences when

modeling preference for the representation of particular groups. For instance, in Chan and

Eyster (2003), the utility of the school is the sum of the average score of admitted students

and the number of minority students. Ellison and Pathak (2021) include a term that penalizes

the utility as the distribution of characteristics deviates from an ideal point. Çelebi and

Flynn (2024) consider preferences additively separable in the average score and identity

composition of admitted agents.28 My characterization sheds light on the implications of

additive separability on the resulting choice rules.

Third, many choice rules that are used in practice can be mapped to this setting and

rationalized by additively separable preferences. This approach enables us to quantify the

impact of different policies, as well as the effects of varying the strength of these policies

within a given class. Additionally, for reserve rules, separability induces a specific processing

order, ensuring that all open slots are filled only after the reserve slots have been processed.

In what follows, I will show that three well-known properties adapted to my setting

26In some settings, these domains may as well be connected. For example, if the identities are front-end
and back-end developers, a firm might want to have enough high quality employees in both sets. Thus, the
model is a better fit when identities do not affect how the scores of individuals contribute to the preferences.
Moreover, additive separability can still account for preferences that condition the choice of individuals from
one group to the relative performance of the other group. For example, it could admit minority students
only if they score high enough relative to majority students.

27Examples of such policies for firms include Work Opportunity Tax Credit for groups such as veterans
and long-term unemployed individuals, and Empowerment Zone Employment Credit for individuals who
live and work in Empowerment Zones, which are economically distressed areas identified by the government.
For schools, the guidance of Magnet Schools Assistance Program (MSAP) emphasized the importance of
the diversity and equity for awarding these subsidies “These competitive preference priorities address a local
educational agencies’ (LEA) need for MSAP funding, the evidence base undergirding the LEA’s program
design for new or significantly revitalized magnet schools, the means of student selection for admission
including use of lotteries and other non-academic means, and attention to socioeconomic factors in promoting
diversity.” See Applications for New Awards; Magnet Schools Assistance Program, Office of Elementary
and Secondary Education, Department of Education for the full guideline.

28Other recent papers that consider additively separable preferences for affirmative action include Dessein
et al. (2023), who studies an extension where a college’s utility function provides an additive bonus to
students who belong to a particular group, and Passaro et al. (2023), who explores an extension where a
firm incurs a constant per-worker disutility for hiring minority workers.

28

https://www.federalregister.gov/documents/2024/03/14/2024-05420/applications-for-new-awards-magnet-schools-assistance-program
https://www.federalregister.gov/documents/2024/03/14/2024-05420/applications-for-new-awards-magnet-schools-assistance-program


characterize the choice rules that can be rationalized by the following utility function

U(I) =
∑
i∈I

u(s(i)) +
∑
θ∈Θ

hθ(Nθ(I)) (2)

where u(s(i)) is the benefit the institution receives from allocating the resource to an indi-

vidual with score s(i), while hθ(Nθ(I)) is the benefit the institution receives from choosing

Nθ(I) individuals with each identity θ. The utility from the score domain is obtained by

summing the u(s(i)) over all chosen individuals, the diversity utility is obtained by summing

hθ(Nθ(I)) over all identities and the utility of the institution is the sum of these two terms.

5.1. Preliminaries

For this section, I assume that if I ′ ∈ C(I) and I ′′ ∈ C(I), then I ′ is equivalent to I ′′,

that is, τ(I) = τ(I ′). This means that although C is still a choice correspondence since there

can be many individuals with the same type, it is actually a choice function if we restrict

attention to equivalence classes T .

Given C, I construct the following binary relation >C :

I ∪ {j} ∈ C(I ∪ {j, k}) and I ∪ {k} 6∈ C(I ∪ {j, k})

=⇒ (s(j), θ(j), Nθ(j)(I ∪ {j})) >C (s(k), θ(k), Nθ(k)(I ∪ {k}))

>C is the revealed preference relation over pairs of individuals induced by C. (s, θ, n) >C

(s′, θ′, n′) indicates that a θ individual with score s is chosen with n− 1 other θ individuals

instead of a θ′ individual with score s′ with n′ − 1 other θ′ individuals.

Example 6. Suppose that C({i, j, k}) = {i, j}, where all three individuals have different

identities. Since i and j are chosen instead of k, we have

(s(i), θ(i), 1) >C (s(k), θ(k), 1) and (s(j), θ(j), 1) >C (s(k), θ(k), 1)

4

Let Q = {1, . . . , q} and D = Θ × Q denote the set of all (θ, n) with generic element

d ∈ D. I use d = (θ, n) to denote the representation of group θ when it has n individuals in

a given set.
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Definition 11. Given a binary relation >, a collection

(s1, d1) > (s′1, d
′
1)

(s2, d2) > (s′2, d
′
2)

...

(sm, dm) > (s′m, d
′
m)

is a cycle if (s′1, . . . , s
′
m) is a permutation of (s1, . . . , sm) and (d′1, . . . , d

′
m) is a permutation

of (d1, . . . , dm).

This definition is due to Tversky (1964) (see also Scott (1964); Adams (1965)) and is

used to characterize preferences that admit an additively separable utility representation.

The existence of a cycle under >C means that the evaluation of the diversity and quality

domains are connected, since {(si, di)}i≤m and {(s′i, d′i)}i≤m are formed from the same scores

and diversity levels, but {(si, di)}i≤m are revealed strictly preferred to {(s′i, d′i)}i≤m for all i.

Definition 12. C satisfies acyclicity if there are no cycles under >C.

Acyclicity of >C rules out any connection between the diversity and score domains. The

next property ensures that the choice rule is responsive to scores in the sense that higher

scoring individuals are chosen before lower scoring individuals, conditional on their identities.

Definition 13. C satisfies within-group responsiveness if for all i and j with θ(i) = θ(j)

and s(i) > s(j), there does not exist Î ⊆ I such that Î ∩ {i, j} = ∅, Î ∪ {j} ∈ C(I) and

Î ∪ {i} 6∈ C(I).

Within-group responsiveness is the restriction of responsiveness (Roth, 1985) to individ-

uals with the same identity, as individuals with exactly same identity are comparable in

isolation, while comparison between individuals with different identities may depend on the

identities of other chosen individuals.

5.2. Analysis

The following result characterizes the class of choice rules that can be induced by a utility

function that is separable in the diversity and quality domains.

Theorem 3. C satisfies substitutes, within-group responsiveness and acyclity if and only if

there exist increasing u and concave {hθ}θ∈Θ such that

U(I) =
∑
i∈I

u(s(i)) +
∑
θ∈Θ

hθ(Nθ(I)) (3)
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where U rationalizes C.

Theorem 3 demonstrates that a choice rule can be represented by a utility function

given in Equation 3 if and only if it satisfies the substitutes condition (Roth, 1984), within-

group responsiveness (Roth, 1985) and acyclicity (Tversky, 1964). In addition to additive

separability, U incorporates a preference for diversity through the concavity of the functions

hθ. This concavity implies that the marginal benefit of selecting an individual with a given

identity decreases (weakly) as the number of such individuals increases, reflecting a preference

for avoiding an over representation of any single identity.

To prove Theorem 3, I first show that the incomplete binary relation >C can be repre-

sented by an additively separable utility function of the form u(s) + h(θ, n), where u(s) is

an increasing function of the score s, and h(θ, n) captures the benefit of adding the n’th

individual with identity θ. This yields a representation, u and {h(θ, n)}θ∈Θ, that rationalizes

C for decisions between pairs of individuals, but not for decisions over sets of individuals.

Then I demonstrate that, when the substitutes condition is satisfied, we can construct con-

cave functions hθ from h(θ, n), where hθ(n) represents the benefit of allocating the resource

to n individuals with identity θ such that the utility function obtained by summing the

score utilities across all individuals and diversity utility across all identities represents the

preferences over sets of individuals, yielding representation in the theorem.

Many commonly used choice rules can be mapped to this framework, facilitating an

understanding of the preferences underlying these rules.

Quota Policies. A quota policy restricts admission of individuals of each type θ by some

kθ ≥ 0 (Kojima, 2012). Given {kθ}θ∈Θ, a quota policy can be rationalized by any u(s) = s

and {hθ}θ∈Θ given by

hθ(Nθ(I)) =

0 if Nθ(I) ≤ kθ

−qū if Nθ(I) > kθ

where ū > ŝ ≡ maxs,s′∈S s − s′. Thus, a quota policy is rationalized by preferences where

failing to meet the quota, which costs qū, can never be remedied by improvements in score

domain, which are capped by qŝ.

Reserve Policies. Reserve policies (see Hafalir et al. (2013) and Dur et al. (2020)) is a

special case of generalized reserves where each slot is assigned to at most a single identity.29

rθ ≥ 0 denotes the number of positions reserved for individuals with each identity θ. When

the number of individuals with each identity is higher than the number of reserve positions

29This corresponds to h(σ) being either ∅ or a singleton.
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for that identity, and open positions are processed after all reserve positions, reserve policies

can be rationalized by u(s) = s and {hθ}θ∈Θ given by

hθ(Nθ(I)) =

Nθ(I)ū if Nθ(I) ≤ kθ

kθū if Nθ(I) > kθ

for ū > ŝ. This indicates that the diversity utility is increasing and more important than

any gains in the score dimension until the reserve is met and is constant after the reserve

requirements are satisfied. However, as the following example shows, if open positions are

processed before reserves, the choice rule may fail acyclicity and cannot be represented by

an additively separable utility function.

Example 7. There are two groups in one dimension, Θ = {a, b} and q = 3. There is one

reserve position for each of the groups. The processing order is open positions, group a

reserve and group b reserve. Let I = {a3, b2, a1, b0} and I ′ = {a2, b3, a1, b0}, where letters

denote groups and subscripts denote scores.

Applicants Admission

Open Reserve a Reserve b

a3 X
b2 X
a1 X
b0

Applicants Admission

Open Reserve a Reserve b

a2 X
b3 X
a1

b0 X

Under I, a3 receives the open position, allowing a1 to receive the position reserved for group

a. Now consider I ′ = {a2, b3, a1, b0}. Under I ′, b3 receives the open position, allowing b0 to

receive the position reserved for group b. Therefore, C(I) = {a3, b2, a1}, implying (1, a, 2) >C

(1, b, 2) and C(I ′) = {a2, b3, b0}, implying (1, b, 2) >C (1, a, 2). This violates acyclicity and

shows that this choice rule cannot be rationalized by a separable utility function, even though

it is rationalizable as it belongs to the slot specific priority class. 4

The intuition behind Example 7 can be explained as follows: In both cases, exactly one

individual from each group is chosen before a1 and b0, so their contributions to the diversity

domain should be identical. Additionally, since both individuals have the same score, their

contributions to the score domain should also be equivalent. Nevertheless, a1 is selected

in the first case, while b0 is selected in the second. This discrepancy indicates that the

evaluation of these domains must be interconnected; under additive separability, the same

32



individuals should have been chosen in both cases. The following proposition demonstrates

that any choice rule that processes an open position before a reserve position suffers from

the same issue.

Proposition 7. A reserve rule satisfies acyclicity if and only if it processes open positions

after reserve positions.

This result contributes to the discussion on the processing order of the positions, which

is important for the distribution of positions among individuals from different groups. For

example, Dur et al. (2020) shows that processing reserve positions of a group earlier is advan-

tageous for that group and can serve as an additional lever in affirmative action programs.

Arnosti et al. (2024) defines outcome-based affirmative action rules, which fix a set of feasible

allocations and maximize scores conditional on selecting a feasible allocation. They show

that reserve rules are outcome-based if and only if open slots are processed at the end. Propo-

sition 7 shows that if an institution adopts a processing order that processes open positions

before reserve positions, this indicates a fundamental difference in preferences compared to

the case where open positions are processed last.

Ideal Point Policies. An ideal point is a distribution of characteristics z∗ = {z∗θ}θ∈Θ,

where z∗θ is the most preferred number of chosen individuals with identity θ. A choice rule is

generated by ideal point z∗ if it first chooses a distribution of students that is as close to z∗ as

possible in Euclidean distance, and then admits the highest scoring students of each identity

(Echenique and Yenmez, 2015).30 An ideal point policy can be rationalized by u(s) = s and

{hθ}θ∈Θ given by

hθ(Nθ(I)) = ū(zθ −Nθ(I))2

for ū > ŝ. Similarly to quota policies, the preferences that rationalize ideal point priorities

first make sure that any step away from the ideal point cannot be compensated by gains in

the score domain, and then there is a convex penalty for moving away from the ideal point,

due to the Euclidean distance.

Priority Policies. The policies we have studied so far put the composition of charac-

teristics first in the sense that they maximize scores only conditional on achieving certain

distributional objectives and do not allow for flexible trade-off between diversity and score

domains. An exception to this is the priority policies, which are defined by a vector of bonus

points {bθ}θ∈Θ. A priority policy transforms the scores by increasing the score of each indi-

vidual with identity θ by bθ, and chooses the individuals with the highest transformed scores

30z∗ must satisfy the following: z∗θ is a positive an integer for all θ and
∑
θ∈Θ ≤ q.
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(Çelebi and Flynn, 2024). A priority policy with {bθ}θ∈Θ can be rationalized by u(s) = s

and {hθ}θ∈Θ given by

hθ(Nθ(I)) = bθNθ(I)

Priority policies are used in many real world markets. For example, in the centralized high

school admission system of Taiwan, schools prefer higher scoring students, but deduct points

from each student’s scores based on the school’s ranking in the student’s preference list (Dur,

Pathak, Song, and Sönmez, 2022).31 In this setting, Θ = {1, . . . , n} where n is the length

of the preference lists and {bθ}Θ determines how the school views the trade-off between

admitting students with higher scores and students who prefer the school more.

6. Conclusion

This paper contributes to the study of affirmative action and diversity concerns in market

design. On the theoretical side, I adapt revealed preference analysis to market design by

interpreting choice rules as an agent’s observed choices from various feasible sets. This

allows me to characterize choice rules that can be rationalized (with preferences that satisfy

certain desirable properties, like affirmative action monotonicity and additive separability)

and study how certain features of diversity preferences (such as intersectionality) affect the

properties of choice rules and the outcomes.

Applying my results on the of rationality and properties of underlying preferences, I

demonstrate the deficiencies of two allocation rules used in practice: the affirmative action

policies in Indian government job allocation and Brazilian college admissions, while also

highlighting the advantages of the general class of slot-specific priorities and the recently

adopted multidimensional privileges rule in Brazil. This preference-based framework offers a

valuable tool for discerning the underlying motives behind allocation rules, which can aid in

interpreting and assessing them within legal contexts where understanding intentions is crit-

ical. Additionally, this approach—particularly the additively separable setting, which can

be shaped by government policies involving diversity-based transfers—can support empiri-

cal research aimed at estimating and understanding preferences, particularly the trade-offs

between match quality and diversity.

My analysis on diversity under multidimensional identities underscores the importance

of intersectionality in shaping both the theoretical properties of allocation rules and their

outcomes. I establish a connection between the substitutes condition—central to the ex-

istence of general equilibrium and the applicability of stable matching mechanisms—and

31For example, bθ = 2(θ − 1) deducts two points from student’s exam score for school ranked above.
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the role of intersectionality in diversity evaluation. Moreover, by characterizing the extent

of over representation that dominant groups can achieve in allocations deemed representa-

tive under non-intersectional views of diversity, I provide a formal framework to understand

observations made by researchers studying diversity in legislative assemblies.
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Appendices

A. Proofs

A.1. Proof of Proposition 1

I first state the condition in the result: For all I ∈ A and I ′ ∈ A, all q-or fewer element

subsets of I ∪ I ′ are in A. I will refer as condition C. I will first show that if A satisfies

condition C, then A ∈ A∗. Take an arbitrary A that satisfies this condition. Define I∗ =

{i : ∃I ∈ A such that i ∈ I}. Let Â denote all q-or fewer element subsets of I∗, that is,

Â = ∪k=1,...,q2
I∗

k . We observe the choice rule to make a choice from the feasible set Â when

the applicant set is I∗, thus Â ∈ A. I will now show that Â = A, which proves that A ∈ A∗.

Claim 1. Â = A

Proof. I will first show that Â ⊆ A. To see why, take any I ∈ Â. Enumerate the elements

in I as I = {i1, . . . , it}, where t ≤ q. From definition of I∗, for any ij ∈ I, there exists

Ij ∈ A such that ij ∈ Ij. Define K2 = {i1, i2}, where K2 ∈ A as it has (weakly) fewer than

q elements, K2 ⊂ I1 ∪ I2, I1 ⊆ A, I2 ⊆ A and A satisfies condition C. Define the following

sets inductively: Kn = {i1, i2, . . . , in−1, in} where Kn ∈ A as it has (weakly) fewer than q

elements, Kn ⊂ Kn−1∪ In, Kn−1 ∈ A, In ∈ A and A satisfies condition C. Then Kt = I ∈ A,

proving the result. To show A ⊆ Â, suppose that there exists J ∈ A with J 6∈ Â. As the

institution can choose at most q elements, |J | ≤ q. As J ∈ A, J ⊆ I∗. As |J | ≤ q, J ∈ Â
which proves A ⊆ Â, and therefore Â = A.

Conversely, take an arbitrary A that fails condition C. Then there exists I and I ′ in A

with I ′′ ⊆ I ∪ I ′, |I ′′| ≤ q and I ′′ 6∈ A. Let Î denote the set of applicants that induced A.

Then I ∪ I ′ ⊆ Î. Then the choice rule can also select I ′′ as I ′′ ⊆ Î and |I ′′| ≤ q. As I ′′ 6∈ A,

this implies that A 6∈ A.

A.2. Proof of Theorem 1

Define the relation ≥C as follows: I ≥C I ′ if I ∈ C(Î) and I ′ ⊂ Î. Let ≥C ∪ . denote the

union of ≥C and . and tran(≥C ∪ .) denote the transitive closure of this relation.
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C satisfies .-congruence if (i) I tran(≥C ∪ .)I ′ and I ′ ∈ C(Î) imply I ∈ C(Î) for every

Î that contains I and (ii) I tran(≥C ∪ .)I ′ imply that we do not have I ′ . I. The following

lemma follows from the finiteness of I.

Lemma 1. C satisfies .-congruence if and only if C does not admit a .-cycle.

Proof. Suppose that C admits .-cycle I1, . . . , In. Then for each i ≤ n− 1, either Ii ≥C Ii+1

or Ii . Ii+1. Thus, I1 tran(≥C ∪ .)In. Moreover, as either In . I1 or In ∈ C(Î), In 6∈ C(Î)

and I1 ⊂ Î for some Î, .-congruence fails.

Conversely, suppose that C does not satisfy .-congruence and let I1, . . . , In denote the

sets that cause the violation, where I2, . . . , In−1 are the sets used to obtain the transitive

closure in I1 tran(≥C ∪ .)In. Then I1 tran(≥C ∪ .)In. Then for each i < n, either (i) there

exists an Îi such that Ii ∈ C(Îi) and Ii+1 ⊂ Îi or (ii) Ii . Ii+1. Moreover, we also have

either (i) there exists În such that In ∈ C(În), I1 ⊂ În and I1 6∈ C(În) or (ii) In . I1, which

completes the proof.

The result then follows from Theorem 7 in Nishimura et al. (2016), who shows that a

choice rule C is rationalizable by a preference relation � that extends . if and only if it

satisfies .-congruence.

A.3. Proof of Corollary 1

Define . as the empty relation. The result follows then from Theorem 1.

A.4. Proof of Proposition 2

Fix r, rw, o and ow such that rw > 0 and ow > 0. I will now define 4 sets of in-

dividuals of each group with increasing integer scores. As in the examples, let (ab, s)

denote an invidiual with gender a ∈ {m,w}, reserve eligibility b ∈ {g, r} and score s.

Iwr = {(wr, 1), (wr, 2), . . . , (wr, rw)} are rw reserve eligible women. If r−rw = 0 then Imr = ∅,
while if r−rw > 0 then Imr = {(mr, rw+1), (mr, rw+2), . . . , (wr, r)} are r−rw reserve eligible

men. Iwg = {(wg, r+4), (wr, r+5), . . . , (wr, r+ow +2)} are ow−1 general category women.

If o−ow = 0 then Img = ∅, while if o−ow > 0 then Img = {(mg, r+ow+2), . . . , (mg, r+o+1)}
are o − ow general category men. Let I = Iwr ∪ Imr ∪ Iwg ∪ Img. I will define three more

individuals. iwr = (wr, r + 2), iwg = (wg, r + 1) and im = (mg, r + 3).

First, consider C(I ∪ {iwr, iwg}). Note thatM = {iwr} The first ow slots are assigned to

Iwg ∪{iwr}. Next o− ow slots are assigned to Img. The next rw slots are assigned to Iwr and

the remaining r − rw slots are assigned to Imr. This means that I ∪ {iwr} is chosen when

I \ {(wr, 1)} ∪ {iwr, iwg} was available.
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Next, consider C(I ∪ {iwr, iwg, im}), Note that M = ∅ as the top scoring o candidates

now all belong to the general category. Then the first ow slots are assigned to Iwg ∪ {iwg}.
Next o−ow slots are assigned to Img. The next rw slots are assigned to Iwr∪{iwr}\{(wr, 1)}
and the remaining r− rw slots are assigned to Imr. This means that I ∪{iwr, iwg} \ {(wr, 1)}
is chosen when I ∪ {iwr} was available and not chosen, which creates the choice cycle.

A.5. Proof of Proposition 3

For a contradiction, suppose that there is a choice cycle I1, . . . , In. Note that In has at

least q elements as I1 6= In was not chosen at the last step of the cycle. Thus, all sets in

the choice cycle have at least q elements, as In−1 was chosen when In was available, In−2

was chosen when In−1 was available, and so on. Take any two consecutive sets in the choice

cycle, Ik and Ik+1. Without loss of generality, rename individuals in Il as ilj if ilj was assigned

to slot σj at the cycle step Il was chosen.

Lemma 2. For all j, either ikj = ik+1
j or ikj >σl i

k+1
j

Proof. The proof is by induction. First, note that since when Ik was chosen, for σ1 all

individuals in Ik∪ Ik+1 were considered, and ik1 was assigned to slot σ1 as the individual with

the highest priority at that slot. Therefore, ik1 >σ1 j for all j ∈ Ik ∪ Ik+1 such that j 6= ik1,

implying either ik1 = ik+1
1 , or ik1 >σ1 i

k+1
1 .

Now take any slot m, and suppose that the induction hypothesis holds, in other words,

ikj has a weakly higher priority at slot σj than ik+1
j for all j < m. If ikm = ik+1

m , then we are

done. Otherwise, I will first show that ik+1
m is not assigned to any σl with l < m at the cycle

step Ik was chosen. Suppose for a contradiction, that is the case for slot l. Then by the

induction hypothesis, ik+1
m = ikl 6= ik+1

l and therefore ik+1
m >σl i

k+1
l , which contradicts that

ik+1
l is chosen for the slot σl at the cycle step Ik+1 was chosen. Therefore, ik+1

m was available

when ikm was chosen, which implies that ikm >σm ik+1
m .

Repeatedly applying Lemma 2, starting with I1 and iterating until In, we obtain that for

all slots j, either i1j >σj i
n
j or i1j = inj . However, as I1 6= In, there exists inj such that inj 6= i1j .

Moreover, as In was selected when I1 was available, it must be that inj >σj i
1
j , which is a

contradiction.

A.6. Proof of Proposition 4

In Brazil Reserves, any slot reserved for (RA, IN) and ((RN , IA)) satisfies the following

criterion: there exists θ̂ dominates θ′, θ′ ∈ h(σ) and θ̂ 6∈ h(σ). Let σk denote the final slot

41



that satisfies this criterion. Consider the following set of individuals I = {i1, . . . , iq} such

that

• For each l < k, θ(il) ∈ h(σl).

• For each l ∈ {k, . . . , q}, θj(il) = θ̂ for all j.

• For each l ∈ {1, . . . , q}, s(il) = q − l + 1.

Moreover, define i′ where θ(i′) = θ′ and s(i′) = 1, and î where θ(̂i) = θ′ and s(̂i) = 0.

First, note that I .A I \ {iq} ∪ {i′}. This is the first step of the cycle.

Second, C(I \ {iq} ∪ {i′, î}) = I \ {iq} ∪ {i′}. This is because, first k − 1 slots are

assigned to individuals {i1, . . . , ik−1}, σk is assigned to i′ as the only remaining individual

with an identity in h(σk) and the remaining slots, which are reserved for θ̂ whenever they are

reserved for θ′, are assigned to individuals in {ik, . . . , iq−1} as the highest scoring remaining

individuals. Thus, I \ {iq}∪{i′} is chosen when I \ {iq}∪ {̂i} is available. This is the second

step in the cycle.

Third, C(I ∪ {̂i}) = I \ {iq} ∪ {̂i}. This is because, first k − 1 slots are assigned to

individuals {i1, . . . , ik−1}, σk is assigned to î as the only remaining individual with an identity

in h(σk) and the remaining slots are assigned to individuals in {ik, . . . , iq−1} as the highest

scoring remaining individuals with the same identity. Thus, I \{iq}∪ {̂i} is chosen when I is

available. This is the third step in the cycle, and completes the cycle and proves the result.

A.7. Proof of Proposition 5

I first show that the multidimensional privileges choice rule can be rationalized by pref-

erences that extend .A. For a contradiction, suppose this is not the case. Then there is a

.A-cycle I1, . . . , In. As .A is defined to be an empty relation, at least one step of the cycle

includes a (strict) choice step, that is, Ik was chosen when Ik+1 is available and not chosen.

Without loss of generality, let the first step I1, I2 denote one of those steps.32

Now suppose that, Ik and Ik+1 are two consecutive sets in the cycle. Without loss of

generality, rename individuals in Il as ilj if ilj was assigned to slot σj when the choice rule

is used on Il only. As multidimensional privileges choice rule is a slot specific rule, we will

consider the induced priorities at each slot. I use σj(i) to denote the ranking of individual i

at slot j.

Lemma 3. Suppose that k’th step corresponds to a choice step. Let σj denote the first

(lowest indice) slot such that σj(i
k
j ) 6= σj(i

k+1
j ). Such a slot exists and ikj >σj i

k+1
j .

32This removes the requirement that final step corresponds to a strict choice step.
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Proof. I first show the existence of such a slot. First, note that as Ik 6= Ik+1, there exists

ikt such that ikt 6∈ Ik+1. Moreover, as both individuals are available at the same time and

the choice environment is assumed to be without ties, s(ikt ) 6= s(ik+1
t ), which implies that

σt(i
k
t ) 6= σt(i

k+1
t ). Let j denote the first such slot.

As the k’th step in the cycle corresponds to choice, in other words, Ik was chosen when

Ik+1 was available, and the same individuals are chosen in all slots processed before j, ikj was

chosen at slot σj while ik+1
j 6= ikj was available to choose, and the result follows.

Lemma 4. Suppose that k’th step corresponds to .A. Let σj denote the first slot such that

σj(i
k
j ) 6= σj(i

k+1
j ), if such a slot exists. Then ikj ≥σj ik+1

j .

Proof. As all individuals were same until slot j, and Ik .A I
k+1, then there is an individual,

say i∗, remaining at slot j in Ik who has the same score and is eligible in more dimensions

than ik+1
j , which implies that under the multidimensional privileges choice rule, i∗ ≥σj ik+1

j .

Then either ikj = i∗, which implies that ikj ≥σj ik+1
j , or ikj 6= i∗ and ikj was chosen in σj when

i∗ was available ikj >σj i
∗ ≥σj ik+1

j , proving the result.

Let m denote the first slot such that inm 6= i1m. As In and I1 constitute the final step of the

cycle, Lemmas 3 and 4 imply that inm ≥σm i1m. The following lemma creates a contradiction

and proves the if part of the result.

Lemma 5. i1m >σm inm

Proof. I first introduce a piece of notation. Given r ∈ {1, . . . , n}, let σpr denote the earliest

(lowest subscript) slot such that σpr(i
1
pr) 6= σpr(i

r
pr), that is, the earliest slot such that the

individuals assigned to that slot at I1 and Ir have different priorities at that slot. As the

first step in the cycle corresponds to choice, by Lemma 3, i1p2 >σp2
i2p2 . Now suppose that for

all l < k + 1, i1pl >σpl
ilpl .

Consider the first slot such that σj(i
k
j ) 6= σj(i

k+1
j ). If such a slot does not exist, then

pk = pk+1 and i1pk+1
>σpk+1

ik+1
pk+1

, as Ik and Ik+1 are identical in slot priorities. If such a

slot exists, then by Lemmas 3 and 4, ikj ≥σj ik+1
j . We will consider two cases. If j ≥ pk,

then as all slots with indices lower than pk the types of individuals are same, pk = pk+1 and

i1pk+1
>σpk+1

ik+1
pk+1

. If j < pk, then j = pk+1 and again, i1pk+1
≥σpk+1

ikpk+1
>σpk+1

ik+1
pk+1

. The

result then follows by induction.

To prove the converse, take any generalized reserve rule that is not in the multidimen-

sional privileges choice rules class. Then there exists at least one slot σ such that θ̂ dominates

θ′, θ′ ∈ h(σ) and θ̂ 6∈ h(σ). Let σk denote the final slot that satisfies this criterion. Consider

the following set of individuals I = {i1, . . . , iq} such that
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• For each l < k, θ(il) ∈ h(σl).

• For each l ∈ {k, . . . , q}, θj(il) = θ̂ for all j.

• For each l ∈ {1, . . . , q}, s(il) = q − l + 1.

Moreover, define i′ where θ(i′) = θ′ and s(i′) = 0. Note that C(I ∪{i′}) = I \ {iq}∪ {i′},
as first k − 1 slots are assigned to individuals {i1, . . . , ik−1}, σk is assigned to i′ as the

only remaining individual with an identity in h(σk) and the remaining slots are assigned

to individuals in {ik, . . . , iq−1} as the highest scoring individuals with the same identity.

Therefore, I \ {iq} ∪ {i′} was chosen when I was available.

Let i1q denote an individual with identity θ′ and score 1 (which is same as iq). Note that

C(I \ {iq} ∪ {i′, i1q}) = I \ {iq} ∪ i1q, as i1q is assigned to slot k and all slots after that are

assigned according to score, according to which i′ ranks last. Then we have the following

relations

• I .A I \ {iq} ∪ i1q
• I \ {iq} ∪ i1q is chosen when I \ {iq} ∪ {i′} is available.

• I \ {iq} ∪ {i′} was chosen when I was available and not chosen

These form a .A-cycle, proving the only if part of Proposition 5.

A.8. Proof of Theorem 2

Suppose that J includes q individuals from each θ ∈ Θ and � does not consider inter-

sectionality. I will use interegers to denote groups in each dimension. Therefore, the groups

in dimension j is given by Θj = {1, . . . , |Θj|}. I say that i is a (j, k) individual if θj(i) = k.

Let D∗ denote the set of all optimal marginal distributions. Formally, d ∈ D∗ if there

exists I ′ such that I ′ ∈ C(J ) and M(I ′) = d. Let d1 denote an element of D∗ with the

highest number of (1, 1) individuals. m11 denotes the number of (1, 1) individuals at d1. D∗1

denotes the set of all optimal group distributions where the number of (1, 1) individuals is

m11. Let d∗11 be a group distribution in D∗1 with the highest number of (2, 1) individuals.

m21 denotes the number of (2, 1) individuals at d∗11. Note that as � values diversity, m11 > 0

and m21 > 0.

A set of individuals I is compatible with marginal distributions d∗ if there exists I ′ such

that M(I ∪ I ′) = d∗. I say that I ′ is a complement of I for d∗. Let Mij(I) (Mij(d)) denote

the number of group i individuals in dimension j in I (d).

Lemma 6. If Mij(I) ≤Mij(d) for all i and j, then I is compatible with d.
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Proof. If Mij(I) ≤ Mij(d) for all ij, the either Mij(I) = Mij(d) for all ij, or for each

dimension i′, there exists a group j′ such that Mi′j′(I) < Mi′j′(d). Let t denote an individual

who belongs to group j′ at each dimension i′. Then the set I ∪ {t} still satisfies Mij(I) ≤
Mij(d) and repeating this procedure yields a Ĩ such that Mij(Ĩ) = Mij(d) and I is compatible

with d.

Case 1: m11 ≤ m21.

Claim 2. There exists I11 = {i11
1 , . . . , i

11
m11
} compatible with d∗11 where all i ∈ I11 are (1, 1)

and (2, 1) individuals.

Proof. Since groups (1, 1) and (2, 1) have (weakly) more individuals at d∗11, one can choose

the groups of individuals in I11 in other dimensions to satisfy Mij(I11) ≤ Mij(d
∗
11) for all i

and j. Then the result follows from Lemma 6.

Let I ′ denote a complement of I11 at d∗11. Take j ∈ I11 and k ∈ I ′, where k is not a (1, 1)

or (2, 1) individual.33 Define j̃ and k̃ as

θ1(j̃) = θ1(j), θ`(̃i) = θ`(k) for all ` 6= 1

θ1(k̃) = θ1(k), θ`(k̃) = θ`(j) for all ` 6= 1

Let Ĩ11 = I11 \ {j} ∪ j̃ and I ′′ = I ′ \ {k} ∪ k̃. Note that I ′′ is a complement of Ĩ11 at d∗11.

The following claim holds by construction.

Claim 3. I ′ and I ′′ does not have any (1, 1) individuals. Moreover, I ′′ has m21 −m11 + 1

group (2, 1) individuals.

Let Ī = I11 ∪ I ′ ∪ {j̃, k̃}. As M(I11 ∪ I ′) = d∗11, I11 ∪ I ′ ∈ C(Ī).

Lemma 7. There does not exist an I∗ ∈ C(Ī \ {k}) such that I11 ⊂ I∗

Proof. Suppose that there is such an I∗. Then it must be that, j̃ 6∈ I∗, since otherwise there

will be more than m11 (1, 1) individuals at I∗, which is a contradiction. However, this means

that I∗ = I11∪I ′′. But then I∗ has m21+1 (2, 1) individuals and m11 (1, 1) individuals, which

contradicts the optimality of I∗ as d∗11 is a group distribution in D∗1 with the highest number

of (2, 1) individuals. Since Ĩ11 ∪ I ′′ is available and optimal, this is a contradiction.

The result then follows from the fact that I11 is chosen from Ī, but not from Ī \ {k}.

Case 2: m11 > m21. Let n = m11 −m21.

33This is possible since the preferences value diversity and all individuals in I11 are both (1, 1) and (2, 1)
indviduals.
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Claim 4. There exists I12 = {i11
1 , . . . , i

11
m21

, i11, . . . , i
1
n} where the first m21 elements are (1, 1)

and (2, 1) individuals, rest are (1, 1) individuals and I12 is compatible with d∗11.

Proof. Since groups (1, 1) and (2, 1) have (weakly) more individuals at d∗11, one can choose

the groups of individuals in I12 to satisfy Mij(I12) ≤Mij(d
∗
11) for all i and j. Then the result

follows from Lemma 6.

Let I ′ denote a complement of I12 at d∗11. Take j ∈ I12 and k ∈ I ′, where k is not a (1, 1)

or (2, 1) individual.34 Define j̃ and k̃ as

θ2(j̃) = θ2(j), θ`(j̃) = θ`(k) for all ` 6= 1

θ2(k̃) = θ2(k), θ`(k̃) = θ`(j) for all ` 6= 1

Let Ĩ12 = I12 \ {j} ∪ j̃ and I ′′ = I ′ \ {k} ∪ k̃. Note that I ′′ is a complement of Ĩ12 at d∗11.

The following claim holds by construction.

Claim 5. I ′ and I ′′ does not have any (2, 1) individuals. Moreover, I ′′ has 1 group (1, 1)

individual.

Let Ī = I12 ∪ I ′ ∪ {j̃, k̃}. First, note that I12 ∪ I ′ ∈ C(Ī) and Ĩ12 ∪ I ′′ ∈ C(Ī), since

M(I12 ∪ I ′) = M(Ĩ12 ∪ I ′′) = d∗11.

Lemma 8. There does not exist an I∗ ∈ C(Ī \ {k}) such that I12 ⊂ I∗.

Proof. Since Ĩ12 ∪ I ′′ is available and optimal, I∗ must also be optimal. For a contradiction,

suppose that such an I∗ exists. Then it must be that, j̃ 6∈ I∗, as otherwise I∗ would have

m11 (1, 1) individuals and m21 + 1 (2, 1) individuals. However, this means that I∗ = I11∪ I ′′.
But then I∗ has m11 + 1 (1, 1) individuals, which contradicts the optimality of I∗.

As I11 is chosen from Ī, but not from Ī \ {k}, the result follows.

A.9. Proof of Proposition 6

Fix τ ∗ and let I denote a set of individuals with minl(θ, τ) individuals of identity θ. As

in the proof of Theorem 2, let Mij denote the number of group i individuals in dimension j

in I.

Note that M(τ ∗) is the unique optimal marginal distribution. Moreover, Mij(I) ≤
Mij(M(τ ∗)) for all i and j by construction. By Lemma 6, I is compatible with M(τ ∗),

proving that there exists I ′ such that |I ∪ I ′| = q, M(I ∪ I ′) = M(τ ∗). This proves the result

as I ∪ I ′ has minl µl(θ, τ
∗) individuals of identity θ.

34This is possible since the preferences value diversity and all individuals in I12 are both (1, 1) and (2, 1)
individuals.
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A.10. Proof of Theorem 3

Suppose that C satisfies substitutes, within-group responsiveness and acyclicity. Observe

that (s, θ, n) >C (s′, θ′, n′) implies that (s, θ, n) 6= (s′, θ′, n′). Label the scores in increasing

order as S = {s0, . . . , sK}, that is, sk < sk+1. Let H(s, θ, n) denote a set formed by n

individuals of type (s, θ). The following lemma shows that the relation >C includes at

least one instance for each consecutive score pairs, which will show that the induced utility

function is increasing in scores.

Lemma 9. For each i > 0, there exist θ and n such that (si, θ, n) >C (si−1, θ, n).

Proof. Consider I = H(si, θ, q) ∪ H(si−1, θ, 1). By within-group responsiveness, C(I) =

H(si, θ, q), which implies that (si, θ, q) >C (si−1, θ, q), proving the result.

For each θ, I will compute the number of θ individuals who are guaranteed to be chosen,

if they are available. To this end, let

Iθ =

( ⋃
θ′ 6=θ,s∈S

H(s, θ′, q)

)
∪H(s0, θ, q) (4)

Take a J ∈ C(Iθ) and let nθ = Nθ(J). The next lemma shows that >C includes at least one

instance for each n, n+ 1 and θ as long as n is above nθ.

Lemma 10. For each integer n ∈ [nθ, q − 1] and θ, (s0, θ, n) >C (s0, θ, n+ 1).

Proof. Let Î = H(s0, θ, q). As J ∈ C(Iθ), by substitutes, J ∈ C(J ∪ Î). Remove n− nθ non

θ individuals from J to define J̃ . By substitutes, there exists I ′ ∈ C(J̃ ∪ Î) such that all

i ∈ J̃ and θ(i) 6= θ are in I ′. Thus, Nθ(I
′) = n, proving (s0, θ, n) >C (s0, θ, n+ 1).

The next lemma shows that whenever there are less than nθ identity θ individuals in the

set of candidates, all of them are selected.

Lemma 11. Suppose that J∗ ∈ C(J) and Nθ(J
∗) < nθ. Then all identity θ agents in J are

in J∗.

Proof. Suppose that this does not hold. Then there exists J and j ∈ J such that J∗ ∈ C(J),

n̂ = Nθ(J
∗) < nθ, θ(j) = θ and j 6∈ J∗. Let J∗θ denote identity θ individuals in J∗ and

J∗−θ denote individuals with identities other than θ in J∗. By substitutes, J∗ ∈ C(J∗ ∪ {j}).
Note that we can select J∗−θ ⊂ Iθ (see Equation 4).

We now also include H(s0, θ, nθ) in the available set. Take any Ĵ ∈ C(J∗ ∪H(s0, θ, nθ)∪
{j}). Suppose that Ĵ has more than n̂ identity θ individuals. Then as all individuals in

47



H(s0, θ, nθ) has the minimum score, by within-group responsiveness there exists Ĵ ′ ∈ C(J∗∪
H(s0, θ, nθ)∪{j}) such that J∗θ ∪{j} ⊆ Ĵ ′, which contradicts substitutes as J∗θ ∪{j} was not

selected from the smaller set J∗∪{j}. Thus Ĵ has at most n̂ identity θ individuals. Therefore,

J∗−θ is chosen from J∗ ∪ H(s0, θ, nθ) ∪ {j}, and by substitutes, also from J∗ ∪ H(s0, θ, nθ),

that is, there exists J̃ ∈ C(J∗ ∪ H(s0, θ, nθ)) such that J∗−θ ⊆ J̃ . However, as J∗−θ has no

θ individuals and the type profile of chosen individuals are same in all chosen sets, this

implies that there does not exist any K ∈ C(J∗ ∪ H(s0, θ, nθ)) such that H(s0, θ, nθ) ⊆
K, which contradicts substitutes as nθ identity θ individuals were selected from Iθ where

J∗ ∪H(s0, θ, nθ) ⊂ Iθ.

The next lemma shows that when >C satisfies acyclicity, there exists an additively utility

function that represents the choices over pairs of individuals.

Lemma 12. There exist u and h such that s, d >C s
′, d′ implies u(s) + h(d) > u(s′) + h(d′).

Proof. Follows from Theorem 4.1 in Fishburn (1970).

By Lemma 9 u is strictly increasing. To ensure concavity, I will modify h without

changing the sets of chosen individuals. Let ū = maxθ,n h(θ, n) + u(sk) as the largest utility

contribution an individual can have under u and h. Define h̃ as follows:

h̃(θ, n) =

h(θ, n) if n > nθ

ū if n ≤ nθ
(5)

Let h̃θ(n) =
∑n

i=1 h̃(θ, n). By Lemma 10, h̃θ is concave. We are now ready to show that

whenever the three conditions in the theorem are satisfied, the constructed utility function

rationalizes the choices rule.

Lemma 13. U(I) where

U(I) =
∑
i∈I

u(s(i)) +
∑
θ∈Θ

h̃θ(Nθ(I))

rationalizes C.

Proof. For a contradiction, assume it does not rationalize C. Then there exists q−element

subsets I and I ′ such that U(I) > U(I ′), I ′ ∈ C(Î) for some Î that includes I. Moreover, we

can take I to be a maximizer of U(τ(I)) = maxĨ∈2Îq
U(τ(Ĩ)), which exists by the finiteness

of Î.
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First, if there exists i ∈ I \ I ′ and j ∈ I ′ \ I such that t(i) = t(j), let Ĩ = I ′ \ {j} ∪ {i}.
Note that the statement τ(I) 6= τ(Ĩ), U(I) > U(Ĩ), Ĩ ∈ C(Î) for some Î that includes I still

holds. We can repeat this until there does not exist any i ∈ I \ Ĩ and j ∈ Ĩ \ I such that

t(i) = t(j).

Choose an arbitrary i ∈ Ĩ \ I. Since C satisfies substitutes, there exists IC such that

IC ∈ C(I ∪ {i}) and i ∈ IC . Thus, there exists j ∈ I such that j 6∈ IC . As t(i) 6= t(j), if

θ(i) = θ(j), within-group responsiveness of C implies s(i) > s(j), which implies U(I \ {i} ∪
{j}) > U(I), which contradicts that I is a maximizer of U . Thus, θ(i) 6= θ(j), which implies

IC \ {i}∪ {j} 6∈ C(I ∪{i}), which implies (s(i), θ(i), Nθ(i)(IC)) >C (s(j), θ(j), Nθ(j)(IC) + 1).

Then

u(s(i)) + h(θ(i), Nθ(i)(IC)) > u(s(j)) + h(θ(j), Nθ(j)(IC) + 1)

Moreover, by Lemma 11, and as j 6∈ IC , we have Nθ(j)(IC) + 1 > nθ(j). Thus, as moving

from h to h̃ (weakly) increases the LHS and does not affect RHS of the equation, the above

equation implie the following:

u(s(i)) + h̃(θ(i), Nθ(i)(IC)) > u(s(j)) + h̃(θ(j), Nθ(j)(IC) + 1)

However, above equation indicates U(I ∪ {i} \ {j}) > U(I), which is a contradiction as I

maximizes utility in Î, which includes I ∪ {i} \ {j}.

To prove the second part let C denote the induced choice function. Given hθ(n), define

h(θ, n) = hθ(n) − hθ(n − 1), which are concave in n as hθ(n) are concave. Assume for

a contradiction there exists a cycle at >C . This means that for each (si, di) and (s′i, d
′
i),

u(si)+h(di) > u(s′i)+h(d′i), which implies
∑

i(s
′
i, d
′
i), u(si)+h(di) >

∑
i u(s′i)+h(d′i), which

is a contradiction (s′i, d
′
i) is a permutation of (si, di). Within-group responsiveness of C is

immediate as u is strictly increasing.

To show that CU satisfies substitutes, suppose that I ′1 ⊆ I1 ∈ C(Î1) and Î2 ⊆ Î1. Take

any I ′2 ⊆ I ′1 ∩ Î2. I will show that there exists Ĩ ∈ C(Î2) such that I ′2 ⊆ Ĩ. Take I2 ∈ C(Î2)

and suppose that i ∈ I ′2 but i 6∈ I2.

Claim 6. There exists j ∈ I2, j 6∈ I ′2 and I2 \ {j} ∪ {i} ∈ C(Î2).

Proof. Let θ(i) = θ̂. First, if Nθ̂(I1) ≤ Nθ̂(I2), then there exists j ∈ I2, j 6∈ I1 θ(j) = θ̂.

Moreover, as i ∈ I ′2 ⊆ I1 ∈ C(Î1) and j 6∈ I1, s(i) ≥ s(j), as otherwise this would be a

contradiction that u is increasing in s. Then U(I2 \ {j} ∪ {i}) ≥ U(I2), which proves the

result.

Second, if Nθ̂(I1) > Nθ̂(I2), then there exists j ∈ I2, j 6∈ I1, θ(j) = θ′ 6= θ̂ such that
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Nθ′(I2) > Nθ′(I1). As j 6∈ I1

s(i) + h(θ̂, Nθ̂(I1)) ≥ s(j) + h(θ′, Nθ′(I1)) (6)

As hθ are concave for all θ, we have

s(i) + h(θ̂, Nθ̂(I2)) ≥ s(j) + h(θ′, Nθ′(I2)) (7)

which implies that U(I2 \ {j} ∪ {i}) ≥ U(I2) and proves the result.

Repeatedly applying Claim 6, starting with any I2 ∈ C(Î2), we arrive at a Ĩ ∈ C(Î2)

such that I ′2 ⊆ Ĩ, which shows that C satisfies substitutes.

A.11. Proof of Proposition 7

Let Θ = {θ1, . . . , θn} and without loss of generality let θ1 denote a group with a reserve

position that is processed after the final open position that precedes reserve positions. Let

I denote a set of individuals that have q individuals from θ1 and θ2, where all θ1 individuals

have scores s0 and all θ2 individuals have scores sK−1 and for all j ≥ 3, rj individuals from θj

with scores s1. Let r1 and r2 denote the number of reserve positions for θ1 and θ2 and o denote

the number of open positions. Under I all rj reserve positions are assigned to θj individuals,

while open positions are assigned to θ2 individuals, giving (sK1 , θ2, r2 + o) >C (s0, θ1, r1 + 1).

Let n denote the number of θ1 reserve positions before the first open position. Define Î

by increasing the scores of n + 1 θ1 individuals to sK . At Î, one open position is assigned

to a θ1 individual, while all other open positions are assigned to θ2 individuals. Thus there

are r1 + 1 θ1 such individuals and r2 + o− 1 θ2 individuals in C(Î). Thus, (s0, θ1, r1 + 1) >C

(sK1 , θ2, r2 + o), violating acyclicity.

B. Extensions and Additional Results

B.1. Example 2 Satisfies WARP

Suppose that A ∈ C(Â) and A′ ∈ Â. I will show there does not exist Ã such that

A′ ∈ C(Ã), A ⊆ Ã and A 6∈ C(Ã). We will consider two cases.

First, if τ(A) = τ(A′), then A′ ∈ C(Ã) implies A ∈ C(Ã) for all Ã with A ⊆ Ã and the

result follows.

Second, if τ(A) 6= τ(A′), there are two subcases. A has one individual from each group,

then whenever A ∈ Ã, then A will be one of the sets that is chosen, and we are done. If
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A ∈ C(Â) and A does not have one individual from each group, there are either no a, b or c

individuals at Â. I will prove the result for the case where there are no c individuals at Â,

the other cases are symmetric. If there are no c individuals at Â, then that there are no c

individuals at A and A′. Then A has more a individuals than A′. Moreover, as τ(A) 6= τ(A′),

A′ has at least one b individual, thus Â includes both a and b individuals. Now suppose that

A′ ∈ C(Ã) such that A ⊆ Ã. As A′ is chosen at Ã, this implies that Ã has both a and b

individuals. Moreover, it also implies that Ã does not have any c individual, as otherwise a

set that includes one individual from each group would be selected. Which is a contradiction

as A has more a individuals than A′ and there are no c individuals at Ã, so A should have

been selected instead of A′.

B.2. Heterogeneous Qualities and Gross Substitutes

This section extends the analysis to the setting where |S| > 1. When � is increasing

in scores (or equivalently, satisfies within-group responsiveness), the scores in this model

are analogous to (inverse) salaries in Kelso and Crawford (1982), where a higher salary is

worse for the institution. Therefore, I adopt the following gross substitutes definition given

in Kelso and Crawford (1982). I use s(I) to denote the vector of scores of individuals in I.

Definition 14. Let Ĩ ⊆ Î ∈ C(I). Define I ′ by (weakly) decreasing the scores of all I \ Ĩ.

If C satisfies gross substitutes, then there exists Ī such that Ĩ ⊂ Ī and Ī ∈ C(I ′).

Gross substitutes condition requires that if a set of individuals are chosen, and the scores

of other individuals decrease, then that set of individuals must still be chosen. I also extend

the definition of preferences that do not consider intersectionality to settings with heteroge-

neous qualities.

Definition 15. � does not consider intersectionality if {s(I),M(I)} = {s(I ′),M(Ĩ ′)} im-

plies I ∼ I ′.

With heterogeneous qualities, an institution does not consider intersectionality is indiffer-

ent between two sets of individuals whenever they have the same cross-sectional distribution

of groups and the same scores. The following proposition shows that the the relationship

between intersectionality and the substitutes condition generalizes to this setting.

Proposition 8. Suppose that C� is induced by � that does not consider intersectionality,

satisfies within-group responsiveness and values diversity. Then C� does not satisfy gross

substitutes.
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Proof. The proof closely follows the proof of Theorem 2 with minor modifications, and

included for completeness. Let S = {s0, . . . , sK} denote the ordered set of scores.

Suppose that J includes q individuals from each θ ∈ Θ with scores sK and � does not

consider intersectionality. I say that i is a (j, k) individual if θj(i) = k.

Let D∗ denote the set of all optimal marginal distributions when all individuals have

maximum score sK . Formally, d ∈ D∗ if there exists I ′ such that I ′ ∈ C(J ) and M(I ′) = d.

Let d1 denote an element of D∗ with the highest number of (1, 1) individuals. m11 denotes

the number of (1, 1) individuals at d1. D∗1 denotes the set of all optimal group distributions

where the number of (1, 1) individuals is m11. Let d∗11 be a group distribution in D∗1 with the

highest number of (2, 1) individuals. m21 denotes the number of (2, 1) individuals at d∗11.

A set of individuals I is compatible with marginal distributions d∗ if there exists I ′ such

that M(I ∪ I ′) = d∗ and I ′ is a complement of I for d∗. Let Mij(I) (Mij(d)) denote the

number of group i individuals in dimension j in I (d).

Lemma 14. If Mij(I) ≤Mij(d) for all i and j, then I is compatible with d.

Proof. If Mij(I) < Mij(d) for some ij, then for each dimension i′, there exists a group j′

such that Mi′j′(I) < Mi′j′(d). Let t denote an individual who belongs to group j′ at each

dimension i′. Then the set I∪{t} still satisfies Mij(I) ≤Mij(d) and repeating this procedure

yields a Ĩ such that Mij(Ĩ) = Mij(d) and I is compatible with d.

Case 1: m11 ≤ m21.

Claim 7. There exists I11 = {i11
1 , . . . , i

11
m11
} compatible with d∗11 where all i ∈ I11 are (1, 1)

and (2, 1) individuals.

Proof. Since groups (1, 1) and (2, 1) have (weakly) more individuals at d∗11, one can choose

the groups of individuals in I11 in other dimensions to satisfy Mij(I11) ≤ Mij(d
∗
11) for all i

and j. Then the result follows from Lemma 14.

Let I ′ denote a complement of I11 at d∗11. Take j ∈ I11 and k ∈ I ′, where k is not a (1, 1)

or (2, 1) individual.35 Define j̃ and k̃ as

θ1(j̃) = θ1(j), θ`(̃i) = θ`(k) for all ` 6= 1

θ1(k̃) = θ1(k), θ`(k̃) = θ`(j) for all ` 6= 1

Let Ĩ11 = I11 \ {j} ∪ j̃ and I ′′ = I ′ \ {k} ∪ k̃. Note that I ′′ is a complement of Ĩ11 at d∗11.

The following claim holds by construction.

35This is possible since the preferences value diversity and all individuals in I11 are both (1, 1) and (2, 1)
indviduals.
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Claim 8. I ′ and I ′′ does not have any (1, 1) individuals. Moreover, I ′′ has m21 −m11 + 1

group (2, 1) individuals.

Let Ī = I11 ∪ I ′ ∪ {j̃, k̃}. As M(I11 ∪ I ′) = d∗11, I11 ∪ I ′ ∈ C(Ī). Moreover, let k̂ denote

an individual with θ(k̂) = θ(k) and s(k̂) < sK . Let Īk̂ = Ī ∪ {k̂} \ {k}.

Lemma 15. There does not exist an I∗ ∈ C(Īk̂) such that I11 ⊂ I∗

Proof. Suppose that there is such an I∗. First, note that k̂ 6∈ I∗, as Ĩ11 ∪ I ′′ � J for all J

that includes k̂ by within-group responsiveness.

Moreover, it must be that, j̃ 6∈ I∗, since otherwise there will be more than m11 (1, 1)

individuals at I∗, which is a contradiction. However, this means that either I∗ = I11 ∪ I ′′.
But then, I∗ has m21 + 1 (2, 1) individuals and m11 (1, 1) individuals, which contradicts

the optimality of I∗ as d∗11 is a group distribution in D∗1 with the highest number of (2, 1)

individuals and has m21 such individuals. Since Ĩ11 ∪ I ′′ is available and optimal, this is a

contradiction.

The result then follows from the fact that I11 is chosen from Ī, but not from Īk̂.

Case 2: m11 > m21. Let n = m11 −m21.

Claim 9. There exists I12 = {i11
1 , . . . , i

11
m21

, i11, . . . , i
1
n} where the first m21 elements are (1, 1)

and (2, 1) individuals, rest are (1, 1) individuals and I12 is compatible with d∗11.

Proof. Since groups (1, 1) and (2, 1) have (weakly) more individuals at d∗11, one can choose

the groups of individuals in I12 to satisfy Mij(I12) ≤Mij(d
∗
11) for all i and j. Then the result

follows from Lemma 14.

Let I ′ denote a complement of I12 at d∗11. Take j ∈ I12 and k ∈ I ′, where k is not a (1, 1)

or (2, 1) individual.36 Define j̃ and k̃ as

θ2(j̃) = θ2(j), θ`(j̃) = θ`(k) for all ` 6= 1

θ2(k̃) = θ2(k), θ`(k̃) = θ`(j) for all ` 6= 1

Let Ĩ12 = I12 \ {j} ∪ j̃ and I ′′ = I ′ \ {k} ∪ k̃. Note that I ′′ is a complement of Ĩ12 at d∗11.

The following claim holds by construction.

Claim 10. I ′ and I ′′ does not have any (2, 1) individuals. Moreover, I ′′ has 1 group (1, 1)

individual.

36This is possible since the preferences value diversity and all individuals in I12 are both (1, 1) and (2, 1)
individuals.
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Let Ī = I12 ∪ I ′ ∪ {j̃, k̃}. First, note that I12 ∪ I ′ ∈ C(Ī) and Ĩ12 ∪ I ′′ ∈ C(Ī), since

M(I12 ∪ I ′) = M(Ĩ12 ∪ I ′′) = d∗11. Moreover, let k̂ denote an individual with θ(k̂) = θ(k) and

s(k̂) < sK . Let Īk̂ = Ī ∪ {k̂} \ {k}

Lemma 16. There does not exist an I∗ ∈ C(Īk̂) such that I12 ⊂ I∗.

Proof. Since Ĩ12 ∪ I ′′ is available and optimal, I∗ must also be optimal. For a contradiction,

suppose that such an I∗ exists. First, note that k̂ 6∈ I∗, as Ĩ11∪I ′′ � J for all J that includes

k̂ by within-group responsiveness.

Moreover, j̃ 6∈ I∗, as otherwise I∗ would have m11 (1, 1) individuals and m21 + 1 (2, 1)

individuals. However, this means that I∗ = I11∪I ′′. But then I∗ has m11+1 (1, 1) individuals,

which contradicts the optimality of I∗.

As I11 is chosen from Ī, but not from Īk̂, the result follows.

Proposition 8 is proved by making the appropriate adjustments to the proof of Theorem

2, where decreasing the scores of a set of individuals mirrors the effect of removing those

individuals. It shows that whenever the institutions values higher scoring individuals and

has a non-trivial preference for diversity, not considering intersectionality when evaluating

diversity will cause failure of the gross substitutes condition.
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