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Abstract

This paper proposes a model of non-Bayesian social learning in networks that accounts for

heuristics and biases in opinion aggregation. The updating rules are represented by nonlinear

opinion aggregators from which we extract two extreme networks capturing strong and weak links.

We provide graph-theoretic conditions on these networks that characterize opinions�convergence,

consensus formation, and e¢ cient or biased information aggregation. Under these updating rules,

agents may ignore some of their neighbors�opinions, reducing the number of e¤ective connections

and inducing long-run disagreement for �nite populations. For the wisdom of the crowd in large

populations, we highlight a trade-o¤ between how connected the society is and the nonlinearity of

the opinion aggregator. Our framework bridges several models and phenomena in the non-Bayesian

social learning literature, thereby providing a unifying approach to the �eld.
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1 Introduction

The rise in social media use and the parallel formation of global social networks have given more

importance to studying how people change and in�uence their opinions over time. One approach,

classical in economics, is to model agents as statisticians who try to estimate a fundamental parameter

based on their neighbors� opinions. An alternative approach models agents who repeatedly take

weighted averages of the opinions they observe, i.e., DeGroot�s learning. However, in many real-life

situations, individuals fail to adjust their opinions according to either of the procedures described.1

Indeed, they rely on simpler heuristics, but they are often in�uenced by documented biases, such

as attraction to extreme or intermediate opinions, making them incompatible with simple repeated

averaging. Moreover, often the set of people that actually in�uence a person depends on their current

stances and is not represented by a �xed network of connections as in the existing models.

Robust opinion aggregators This paper proposes a unifying and functional-form-free social learn-

ing model based on intuitive properties that account for robustness to the uncertainty in social networks

and heuristics and biases in opinion aggregation. The initial opinions equal a common fundamental

parameter plus some agent-speci�c noise. Agents observe their neighbors�opinions and repeatedly

incorporate them to update their own through robust opinion aggregators. These aggregators map the

last-period opinions of the neighbors of each agent into her current stance and satisfy the following

properties:

1. Normalization: If the agents have reached a consensus, then none of them further updates her

opinion.

2. Monotonicity: If two opinion pro�les are such that the �rst coordinatewise dominates the
second, then this relation is preserved after aggregation.

3. Translation invariance: If each agent�s opinion is shifted by the same constant, then the
updates are shifted accordingly.

The �rst two properties have a straightforward interpretation as a minimal trust in the neighbors�

opinions. Translation invariance is equivalent to assuming that agents only care about the opinions�

di¤erences rather than their intrinsic levels and rules out explosive/chaotic dynamics. This property

is a natural consequence of a robust loss-minimization procedure that provides a foundation and an

interpretation of the updating rule proposed (cf. Section 5).

The properties of robust opinion aggregators imply that the in�uence among agents depends

on their current opinions. This simple feature makes our model the �rst unifying framework to

capture many documented descriptive phenomena that we illustrate in Section 3.2 Indeed, the recent

�eld studies that compare Bayesian to non-Bayesian social learning models have obtained evidence

consistent with our properties. For instance, Chandrasekhar et al. [20] �nd that if the sampled

1See the empirical evidence in Breza et al. [13], Chandrasekhar et al. [20], and the references therein. In addition,
when modeling Bayesian updating in a network, tractability is easily lost, see Breza et al. [12]. Notable exceptions are
Mossel et al. [57] and Mueller-Frank [58].

2We postpone the comparison with the existing models to the related literature.
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subjects reach a consensus, they remain stuck on their beliefs even when such behavior is objectively

suboptimal: this is consistent with normalization. Similarly, they also �nd that the overwhelming

majority of subjects respond monotonically to changes in their neighbors�opinions.

Our main results deal with the long-run stability of opinions across two complementary dimen-

sions. We �rst provide graph-theoretic conditions on robust opinion aggregators for di¤erent forms of

convergence of opinions in �nite populations. Having established the existence of limit opinions for

every population size, we then derive structural properties of robust opinion aggregators that either

guarantee or prevent the identi�cation of the fundamental parameter as the population grows.

The dynamics of robust opinion aggregation We �rst show that the opinions� time averages

induced by any robust opinion aggregator uniformly converge so that a pro�le of long-run opinions

always exists. This �rst benchmark result implies that an external agent can test the long-run learning

properties of the updating procedure by computing time averages, a feature that we exploit in our

results on large networks. Moreover, this is the stepping stone for deriving proper convergence and

consensus formation from the opinion aggregators�network properties.

We say that an agent is strongly in�uenced by another if the former always reacts to variations in

the latter�s opinion, regardless of the current opinion pro�le in the society. With this, we show that

if each agent has at least one strong link and the induced strong network is aperiodic, then opinions

converge. This result is powerful for two reasons. First, it guarantees that, in a comprehensive class of

models, the sole iteration of the aggregation procedure always leads to a stable distribution of opinions

in the population (i.e., a Nash equilibrium under a best-response dynamics interpretation). Second,

it highlights the critical role of strong ties in society to stabilize opinions in the long run.3

Alternatively, we say that an agent is weakly in�uenced by another if the former reacts to variations

in the latter�s opinion for at least one opinion pro�le, and we show that opinions always converge

only if the weak network is aperiodic. Therefore, whenever these two extreme networks coincide

(for example, in DeGroot�s model), opinions� convergence is characterized by network aperiodicity.

However, whenever behavioral biases or robustness concerns in the updating rules induce a wedge

between the two extreme networks, we cannot dispense from studying both to have a complete picture

of the opinions�long-run behavior.

Di¤erently, our contribution to convergence to consensus is more conceptual rather than technical.

It exempli�es how the strong and weak networks are the novel, and necessary objects for nonlinear

opinion aggregation since extra conditions on them buy extra convergence properties. We show that if

the strong network has a unique, strongly connected, and closed group, which is aperiodic, convergence

to consensus always obtains. Moreover, a necessary condition for forming consensus, regardless of the

initial opinions, is that the weak network has a unique, strongly connected, and closed group, which is

aperiodic. Whenever the two networks coincide, convergence to consensus is fully characterized by the

previous property. However, if they di¤er, then, even in societies where every two agents share some

form of connection, we might observe persistent disagreement in the long run due to the weakness

3We follow one of the two interpretations that Granovetter [39] assigned to the adjectives �strong� and �weak�
for social ties. Indeed, as also argued by Centola and Macy [17], there is a dual meaning behind the �strong-weak�
classi�cation of ties: one is relational, and the other is structural. We adhere to the former, whereby �strong ties connect
close friends or kin whose interactions are frequent, a¤ectively charged, and highly salient to each other�, [17, pp. 703].
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of these connections. Compared to the existing literature on convergence to consensus, we are the

�rst to link a network structure derived from a given normalized, monotone, and translation invariant

aggregator to convergence to consensus. However, several important works, such as Moreau [55],

provide su¢ cient and necessary conditions given a �xed vector of initial opinions that can be used

as part of an alternative route to our result about consensus. We postpone to Section 6 a detailed

comparison with these works.

Vox populi, vox Dei? We next study the information-aggregation properties of the long-run opin-

ions emerging from robust opinion aggregators in large networks.4 This question is critical to under-

stand to what extent the phenomenon of the wisdom of the crowd, whereby agents�opinions coincide

with the fundamental parameter (cf. Golub and Jackson [35]), is robust to a broader class of opinion

aggregators. Toward this goal, we de�ne the strong and the weak long-run in�uence vector of a given

robust opinion aggregator. These objects respectively capture the minimal and maximal in�uences

among agents in the long run and give us a tool to study the limit opinions�variability.

If the long-run weak in�uence of every agent vanishes su¢ ciently fast as the population grows, then

the variance of their opinions vanishes as well. Conversely, if the long-run strong in�uence of at least

one agent remains positive, then the aggregation procedure does not wash out all the idiosyncratic

variability. Vanishing variability together with symmetry of the robust opinion aggregator and the

errors guarantees that the long-run opinions coincide with the true parameter in the large population

limit. Instead, without this symmetry, we obtain the bias of the crowd : the long-run opinions coincide

with a constant that can be bounded away from the true fundamental parameter and the bias�s

magnitude depends on the original information sources�noisiness as well as the �curvature� of the

opinion aggregator.

Notably, our analysis of the large-population limit, does not presume either convergence or consen-

sus. Therefore, the previous �nite-population conclusions determine how the opinions concentration

in the large-population limit should be understood. When only convergence of time averages obtains,

these results should be interpreted in terms of wisdom from the crowd; an external observer can iden-

tify the parameter by computing time averages of opinions. If, instead, standard convergence obtains,

then we have the usual wisdom of the crowd interpretation. In particular, even if consensus does

not obtain for �nite population sizes, a typical outcome in our model, our results still yield a form of

�stochastic�consensus for large populations.

Even if the conditions above are interpretable, they might be computationally challenging to

verify since they are expressed in terms of long-run in�uence. Therefore, we combine graph-theoretic

conditions on the weak networks and a nonlinearity index of the aggregators into more primitive

su¢ cient conditions for the wisdom of the crowd under the maintained symmetry assumptions. First,

the aggregators are wise when the nonlinearity index is bounded across population sizes and the

degrees in the weak network are growing su¢ ciently fast. Second, even if the degrees are bounded,

but their distribution is balanced, and the connectivity of the weak network (measured by its second-

4Vox populi, vox Dei is Latin for: the voice of the people is the voice of God. It is often shortened to just �Vox
populi�as in the original paper of Galton [33] on the wisdom of the crowd. In that paper, Galton �aggregated�opinions
using the empirical median, a robust opinion aggregator.
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largest eigenvalue in modulus) is high relative to the nonlinearity index, wisdom obtains. The former

condition is satis�ed, for example, in an Erd½os�Rényi model with (su¢ ciently) slowly decreasing linking

probability. The latter condition is, in turn, satis�ed by expander graphs with a su¢ ciently high (�nite)

degree or by the island model of Golub and Jackson [36] with a moderate level of homophily.

Foundation of robust opinion aggregators The properties of robust opinion aggregators arise

from the natural generalization of two foundations for non-Bayesian opinions� dynamics: repeated

estimation of the underlying parameter with naive agents (cf. DeMarzo et al. [25]) and best-response

dynamics in coordination games (cf. Golub and Jackson [36]). In particular, an opinion aggregator is

robust if and only if there is a pro�le of distance-based loss functions with positive complementaries

whose unique solution map coincides with the aggregator itself. Moreover, natural convexity and

smoothness properties of the loss functions yield robust opinion aggregators with the su¢ cient (and

necessary) conditions for convergence and consensus obtained in our main results. Therefore, it is

possible to reinterpret these results in terms of convergence to Nash equilibria and the consistency of

robust estimators induced by opinion aggregation.

Finally, our foundation highlights that robust opinion aggregators bridge two network phenom-

ena usually modeled with very di¤erent methods: aggregation of continuous opinions and di¤u-

sion/contagion of a binary behavior such as adopting a new technology. Indeed, when we focus

on a subclass of robust opinion aggregators that we call discrete, we obtain a generalization of the

threshold models of Morris [56], Kempe et al. [46], and Centola and Macy [17].

2 The model

This section introduces our model of opinion aggregation in social networks which captures either a

heuristic process of information acquisition or an intrinsic preference to conform. Let N = f1; :::; ng,
with n 2 N, denote a �nite set of agents and let I be an arbitrary closed interval of R with nonempty
interior denoting the set of possible opinions. Let B = In � Rn denote the set of opinion pro�les
x = (xi)

n
i=1. For example, the opinion pro�le may be the agents�subjective probability assessments

of an event, and in this case, I = [0; 1]. In this paper, we consider di¤erent (directed) networks. We

identify them with an n�n adjacency matrix A0, that is, a0ij = 1 if there is a directed link from agent

i to agent j, and a0ij = 0 otherwise.

Time is discrete, t 2 N, and the initial opinion of agent i 2 N at period 0 is given by a signal

X0
i = �+ "i, where � 2 R is an underlying fundamental parameter and each "i : 
! R is a random

variable de�ned over a common probability space (
;F ; P ).5 Let A denote the observation network
with Ni = fj 2 N : aij = 1g denoting the neighborhood of agent i. The interpretation is that agent i
can only observe the current opinions of her neighbors j 2 Ni.

Let x0i denote the realization of the period-0 opinion of agent i. We model the evolution of opinions

in the following periods through an opinion aggregator T : B ! B that for each pro�le of period-t

opinions xt 2 B returns the pro�le of period-(t+ 1) updates xt+1 = T
�
xt
�
. We let Ti : B ! I

5For completeness, we present the stochastic structure of initial opinions here. However, this does not have a relevant
role in the analysis until Section 4 on the wisdom of the crowd.
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denote the i-th component of T , the updating rule of agent i.6 Let e 2 Rn denote the vector whose
components are all 1s.

De�nition 1 Let T be an opinion aggregator. We say that:

1. T is normalized if and only if T (ke) = ke for all k 2 I.

2. T is monotone if and only if for each x; y 2 B

x � y =) T (x) � T (y) .

3. T is translation invariant if and only if

T (x+ ke) = T (x) + ke 8x 2 B;8k 2 R s.t. x+ ke 2 B:

We say that T is robust if and only if T is normalized, monotone, and translation invariant.

Normalization requires that whenever all the agents share the same opinion, each of the next-

period updates coincides with that opinion. Monotonicity embodies a form of trust of the agents in

the opinions observed by others. Translation invariance naturally arises when agents only care about

their opinions�di¤erences, as we show in Section 5. In our related work [19], we provide a game-

theoretic foundation that relaxes this property to translation subinvariance, that is, agents react less

than proportionally to uniform shifts. All our main convergence results continue to hold.7

Robust opinion aggregators are rich enough to describe several behavioral phenomena that we

illustrate below: aversion/attraction to extreme opinions, rank-dependent social in�uence, con�rma-

tory bias, and pure right/left bias. Moreover, they nest the widely studied DeGroot�s model, where

T is also linear: T (x) = Wx, for all x 2 B. Here, W 2 W is the matrix collecting the vectors

of weights, and W denotes the collection of stochastic matrices. This simple aggregation rule arises

from either best-response dynamics in coordination games with quadratic payo¤s or naive repeated

maximum-likelihood estimation of a location parameter under Gaussian signal.8 In both cases, each

Ti (x) is the minimizer over c 2 R of the loss function

nX
j=1

wij (xj � c)2 , (1)

6The network structure (N;A) can be re�ected in the opinion aggregator T by assuming that for each i 2 N and for
each x; x0 2 B

xj = x
0
j 8j 2 Ni =) Ti (x) = Ti

�
x0
�
:

It is a natural assumption satis�ed by all our illustrations, but it can be dispensed with for the general analysis.
7A careful inspection of the proofs shows that our convergence result will continue to hold for opinion aggregators

which are normalized, monotone, and Lipschitz continuous of order 1. Under normalization and monotonicity, this
latter property is equivalent to translation subinvariance. A natural concern is that for some opinion domains, the shift
from, e.g., 1

4
and 1

2
is perceived as larger than the shift from 1

2
and 3

4
. If all the agents share this perception, all our

results continue to hold after rescaling I according to the perceived di¤erences. We thank an anonymous referee for this
observation.

8For the former see, among others, Ballester et al. [6], Calvó-Armengol et al. [16], Elliott and Golub [28], Golub and
Jackson [36], and Golub and Morris [37]. For the latter see DeMarzo et al. [25] and Golub and Jackson [35].
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where, wi 2 � =
n
p 2 Rn+ :

Pn
j=1 pj = 1

o
is the i-th row of W . In Section 5.1, we derive robust

opinion aggregators from a more general robust loss-minimization problem that removes the quadratic

and Gaussian assumptions. For this reason and the unifying role of the properties in De�nition 1,

we have called robust the aggregators we analyze. Although natural, these properties exclude some

extremely discontinuous behavior patterns, such as agents listening to each other only when their

opinions are closer than some threshold (cf. Krause [48]). They also exclude updating rules where

agents always give some weight to an exogenously �xed opinion, as in Friedkin and Johnsen [29].

Turning to the analysis of opinions�dynamics, we deal with two kinds of limit of
�
T t (x)

	
t2N, the

standard one induced by the supnorm k k1 and the one of Cesaro (i.e., time-average limit):

C-lim
t

T t (x) = lim
�

1

�

�X
t=1

T t (x)

where the limit on the right-hand side of the de�nition is the standard one.

De�nition 2 Let T be an opinion aggregator. We say that T is Cesaro convergent if and only if

C-limt T
t (x) exists for all x 2 B. We say that T is convergent if and only if limt T t (x) exists for all

x 2 B.

Given the initial opinions x0, if the updates converge, then it is well known that Cesaro convergence

obtains, and the time-average and the standard limit coincide. When T is Cesaro convergent, we de�ne

the long-run opinion aggregator �T : B ! Rn by

�T (x) = C-lim
t

T t (x) 8x 2 B: (2)

If convergence obtains, we study whether the pro�le of long-run opinions is represented by a unique

consensus across all agents or by several coexisting conventions, i.e., long-run disagreement. We denote

by D � B the consensus subset, that is, x 2 D if and only if xi = xj for all i; j 2 N .

De�nition 3 Let T be an opinion aggregator. We say that convergence to consensus always obtains
under T if and only if T is convergent and �T (x) 2 D for all x 2 B.

3 The dynamics of robust opinion aggregation

This section studies the long-run properties of opinions for a given population size.

3.1 Convergence of the time averages

Our �rst result shows that even if the updates of a robust opinion aggregator might not converge,

their time averages always stabilize in the long run.

Theorem 1 If T is a robust opinion aggregator, then T is Cesaro convergent. Moreover, the long-run
opinion aggregator �T is a robust opinion aggregator such that �T �T = �T , and if B̂ is a bounded subset
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of B, then

lim
�

 
sup
x2B̂

1�
�X
t=1

T t (x)� �T (x)


1

!
= 0: (3)

The Cesaro limit is described by the long-run opinion aggregator �T that, for each initial pro�le

of stances x 2 B, returns the long-run average opinion of each agent. In particular, �T is robust and
satis�es the �xed point equation �T � T = �T , hence generalizing the well-known notion of eigenvector

centrality of DeGroot�s model. Finally, whenever the initial opinions of the agents are known to belong

to a bounded set, the initial realizations of their signals do not a¤ect the rate of convergence of the

time averages.

Median aggregator We now illustrate the content of Theorem 1 with a natural alternative to

opinion aggregation via weighted means: the median aggregator. Assume that the agents best respond

to the previous opponents�opinions, but instead of minimizing a weighted quadratic loss function (1),

they minimize the weighted absolute deviations:

nX
j=1

wij jxj � cj 8x 2 B;8c 2 I (4)

where the values wij are the entries of a stochastic matrix W . It is well known that the solution

correspondence admits as a selection the robust opinion aggregator T ,

Ti (x) = min

8<:c 2 R : X
j:xj�c

wij � 0:5

9=; 8x 2 B;8i 2 N; (5)

that is, Ti (x) is the (weighted) median of x.

Example 1 A group of agents N = f1; 2; 3; 4g share their opinions x0 2 B = [0; 1]4. The weights

assigned to the other agents are represented by the matrix

W =

0BBBB@
0:4 0:3 0:3 0

0:3 0:4 0:3 0

0:1 0:1 0:2 0:6

0 0 0:6 0:4

1CCCCA .

Aggregation through weighted averages would achieve consensus in the limit (see, e.g., [35, Proposition

1]). However, the dynamics induced by using the median are qualitatively di¤erent.

If x0 =
�
x01; 1; 1; 1

�
, then the block of agents agreeing on the higher opinion is su¢ ciently large

to attract agent 1 to the same opinion, and the limit (consensus) opinion of (1; 1; 1; 1) is reached in

one round of updating. Note that the initial opinion of agent 1 is irrelevant given the agreement

of the other agents. Similarly, the same limit consensus obtains if agent 2 disagrees with the initial

consensus, that is if x0 =
�
1; x02; 1; 1

�
.

Instead, convergence to consensus fails if the initial opinions of both agents 1 and 2 fall. If x0 =

(0; 1=2; 1; 1), then the �rst round of updating is x1 = (1=2; 1=2; 1; 1), and this opinion segregation
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will be the limit outcome: a strongly connected society fails to reach consensus without a su¢ ciently

large block of initial agreement. This highlights how with median aggregation, a joint deviation from

consensus by a group of agents might be necessary to destabilize an initial consensus.9

If x0 = (0; 1=2; 0; 1), then the agents��rst update is x1 = (0; 0; 1; 0) and agents 1 and 2 never

change their opinions again, whereas agents 3 and 4 keep on reciprocally switching their opinions.

This shows that even convergence may not be guaranteed. However, given Theorem 1, we obtain that
�T
�
x0
�
= (0; 0; 1=2; 1=2). N

On the one hand, the robust opinion aggregator de�ned in equation (5), with wii = 0 for all i 2 N ,
yields a natural process of best-response dynamics under the payo¤s of equation (4). In this case,

Theorem 1 always guarantees that actions are going to stabilize on average over time, even when they

do not converge.10 On the other hand, there is no compelling reason to assume that each agent has

the same attraction for relatively central opinions.

For example, assume that the agents best respond to the previous opponents�opinions by com-

puting a convex linear combination of an optimistic and a pessimistic aggregation. Formally, for each

i 2 N , consider a convex and closed set of probability weights Ci � �, a weight �i 2 [0; 1], and let

Ti (x) = �i min
wi2Ci

nX
j=1

wijxj + (1� �i) max
wi2Ci

nX
j=1

wijxj 8x 2 B: (6)

In words, agent i is uncertain about the relative importance of the opinions of the other agents and

this subjective uncertainty is represented by the set of possible weights Ci, while �i measures the

relative attractiveness toward lower stances. This opinion aggregator is robust. Thus, Theorem 1

still guarantees convergence of time averages. To obtain standard convergence, as for the linear case,

we need extra graph-based conditions. But, di¤erently from DeGroot�s model, given the nonlinearity

of T , there is no obvious notion of graph associated with it. In the next section, we show that two

natural graphs A and �A associated with T determine the long-run behavior of the agents�opinions.

Indeed, for the aggregator in (6), we could either say that i is in�uenced by j if wij > 0 for all wi 2 Ci
or if wij > 0 for some wi 2 Ci. Intuitively, the resulting graphs A and �A collect the links relevant

under every scenario and those relevant under some scenario. In stark contrast with the linear case,

T is not always convergent to consensus even if every two agents are directly connected under �A, that

is, aij = 1 for all i; j 2 N . Nevertheless, Theorem 2 provides necessary and su¢ cient conditions for

convergence in terms of �A and A.

3.2 Stable long-run opinions

In the standard DeGroot�s model, convergence is tied to the properties of an underlying network

structure. The latter can either be implicit and given by the indicator matrix A (W ) of W (e.g.,

Golub and Jackson [35]) or be explicit and given by a primitive observation network (e.g., DeMarzo

9Note that in the corresponding DeGroot�s model with matrix W , both an individual and a joint deviation would
still lead to a consensus but on a di¤erent opinion.
10 In Proposition 6, we characterize convergence for a class of robust opinion aggregators which includes the median.
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et al. [25]).11 Here, we follow the �rst approach and derive di¤erent network structures from a robust

opinion aggregator T . The generalization of the second approach is postponed to Section 5.2.

We recall some common terminology from the network literature �rst. Consider an arbitrary

network A0 and let ; 6= M � N denote an arbitrary group. The network A0 is nontrivial if and only

if for each i 2 N there exists j 2 N such that a0ij = 1. A path in M is a �nite sequence of agents

i1; i2; :::; iK 2 M with K � 2, not necessarily distinct, such that a0ikik+1 = 1 for all k 2 f1; :::;K � 1g.
In this case, the length of the path is K � 1. A cycle in M is a path in M such that i1 = iK . A cycle

is simple if and only if the only repeated index in the sequence is the starting (and ending) one.12 We

say that M is strongly connected if and only if for each i; j 2 M there exists a path in M such that

i1 = i and iK = j. We say that M is closed if and only if for each i 2M , a0ij = 1 implies j 2M . We
say that M is aperiodic if and only if the greatest common divisor of the lengths of its simple cycles

is 1. Finally, we say that A0 is aperiodic if and only if each closed group M is aperiodic.13

In principle, there are multiple networks corresponding to the same robust aggregator T . We now

give two natural de�nitions that formalize two extreme networks among agents induced by T . A piece

of notation: ej 2 Rn denotes the j-th vector of the canonical basis.

De�nition 4 Let T be an opinion aggregator. We say that j strongly in�uences i if and only if there
exists "ij 2 (0; 1) such that for each x 2 B and for each h > 0 with x+ hej 2 B

Ti
�
x+ hej

�
� Ti (x) � "ijh: (7)

We say that A (T ) is the network of strong ties of T if and only if for each i; j 2 N the ij-th entry is

such that

aij =

(
1 if j strongly in�uences i

0 otherwise
:

We say that j weakly in�uences i if and only if there exist x 2 B and h > 0 such that x + hej 2 B
and

Ti
�
x+ hej

�
� Ti (x) > 0:

We say that �A (T ) is the network of weak ties of T if and only if for each i; j 2 N the ij-th entry is

such that

�aij =

(
1 if j weakly in�uences i

0 otherwise
:

Equation (7) re�ects uniform responsiveness of i to j: no matter what is the current opinion pro�le,

the update of i increases at least linearly in the opinion of j. In actual social networks, strong links

characterize only a subset of all the connections: close friends, own past opinions (anchoring e¤ect),

or an extremely reliable source (more generally, the relational �strong ties�as in Granovetter [39] and

Centola and Macy [17]).

11Formally, the indicator matrix A (W ) of an arbitrary W 2 W is such that its ij-th entry is equal to 1 if wij is strictly
positive and 0 otherwise.
12More formally, a cycle (of length K � 1) is simple if and only if for each k; k0 2 f1; :::;K � 1g: ik = ik0 =) k = k0.
13Our de�nition of an aperiodic network coincides with the de�nition of a strongly aperiodic network proposed by

Golub and Jackson [35, De�nition 7].
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In principle, there might be additional links (i.e., relational �weak ties�) not in A (T ) that are

active only under particular circumstances. For instance, a person can completely discard a distant

friend�s opinion when this is too extreme compared to the ones of the rest of her neighbors. In contrast,

for topics involving potential high stakes risks (e.g., vaccinations), a person may well be in�uenced by

the opinion of someone outside her personal network, especially when the latter reports an extremely

negative stance (e.g., isolated serious adverse reactions to vaccines). These examples motivate the

second part of De�nition 4. Intuitively, i is weakly in�uenced by j if there are circumstances under

which a change in j�s opinion a¤ects her update.

It is plain to see that A (T ) � �A (T ), and if T is linear with matrixW , then A (W ) = A (T ) = �A (T ).

Therefore, it is impossible to separate these two extreme networks in DeGroot�s model. For a general

robust opinion aggregator T , the strong directed network A (T ) is the minimal network underlying T ,

while the weak directed network �A (T ) is the maximal. As such, they are instrumental in providing

respectively su¢ cient and necessary conditions for convergence.

Theorem 2 Let T be a robust opinion aggregator. The following statements are true:

1. If the network of strong ties A (T ) is aperiodic and nontrivial, then T is convergent.

2. If T is convergent, then the network of weak ties �A (T ) is aperiodic and nontrivial.

Therefore, if A (T ) = �A (T ), then T is convergent if and only if A (T ) is aperiodic and nontrivial.

The �rst part of the result builds on the uniform convergence of the time averages of T updates to

obtain standard convergence. Speci�cally, we need to use a Tauberian condition for T that turns uni-

form Cesaro convergence into standard convergence. We show that such a condition can be expressed

in terms of the network of strong ties, and in particular, it requires that it is aperiodic and nontrivial.

We postpone to Section 6 a more detailed sketch of the proof that also elaborates on the technical

contributions of each step of the proof.

Even if an agent does not strongly in�uence another, this does not always prevent communication

between the two. Coherently, the second part of Theorem 2 states that if there exists a cyclic behavior

in a group that is closed with respect to weak ties, then there exists a pro�le of initial opinions such

that the updates of this group will not stabilize. Indeed, since the agents in this group are never

a¤ected by outsiders, the cycle cannot be broken.

The third part of the result signi�cantly generalizes Golub and Jackson [35, Theorem 2], which

states that aperiodicity of A (W ) characterizes convergence for linear aggregators. The class of robust

opinion aggregators such that A (T ) = �A (T ) is much larger (see Proposition 5), but, as we illustrate

with rank-dependent aggregators right below, in general, there exists a wedge between the two extreme

networks A (T ) and �A (T ).

Theorem 2 has important implications for our game-theoretic interpretation. Even if multiple

closed groups do not strongly in�uence each other, simple best-response dynamics converge to a Nash

equilibrium, provided that these groups are aperiodic under A (T ). Instead, when T captures a process

of pure information aggregation, it is natural to assume that information gathered in the past is not

entirely dismissed in light of new evidence. This translates into the property that each agent strongly
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in�uences herself, a condition that guarantees convergence. Notably, in the empirical social learning

literature, Chandrasekhar et al. [20] �nd that most subjects�behavior is consistent with a form of

own-history dependence, even when it is objectively suboptimal.

Corollary 1 Let T be a robust opinion aggregator. If T is self-in�uential, that is aii = 1 for all i 2 N ,
then T is convergent.

We next introduce a general class of robust opinion aggregators which illustrates both the �exibility

of our model and our convergence results. Their distinctive feature is rank-dependent in�uence across

agents: a property that we have already encountered with the median aggregator.

Rank-dependent in�uence Consider a stochastic matrixW whose positive entries implicitly de�ne

the observation network. Formally, we say that T f is a rank-dependent aggregator if and only if for

each i 2 N

T fi (x) =
nX
j=1

x�(j)

"
fi

 
jX
l=1

wi�(l)

!
� fi

 
j�1X
l=1

wi�(l)

!#
8x 2 B; (8)

where � is a permutation of N such that x�(1) � ::: � x�(n) and fi : [0; 1]! [0; 1] is a weakly increasing

distortion function such that fi (0) = 0 and fi (1) = 1.14

In Figure 1 we illustrate some natural distortions. The �rst graph shows two distortion functions

where the red and blue agents are respectively attracted by extreme and moderate stances. The second

graph shows two distortions that truncate part of the observed sample. The third graph shows pure

directional biases: convex (resp. concave) distortion functions capture overweighting of higher (resp.

lower) opinions.

Figure 1

14The map T fi : B ! I is a Choquet integral against the capacity obtained by distorting the probability vector wi 2 �
with respect to the conjugated distortion �fi (�) = 1 � fi (1� �) (see [52, Example 4.6]), hence, T f is robust. Note in
particular that the functional form of T fi is analogous to the decision criterion in rank-dependent utility theory.
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A �exible parametric distortion function is given by

fi (s) = q

�
ln s
ln qi

��i
i 8s 2 (0; 1] (9)

where qi 2 (0; 1) and �i 2 R++.15 The parameter �i captures the attitudes of agent i with respect to
extreme opinions: (relative to qi) attraction (�i 2 (0; 1)) or aversion (�i 2 (1;1)). The parameter
qi captures the relative concern of agent i for stating an opinion that is higher (qi 2 (0; 1=2)) or

lower (qi 2 (1=2; 1)) than the opinions of her neighbors. To see why the parameter qi captures

the asymmetric concerns for disagreement of agent i, note that, as the aversion to extreme opinions

increases (�i !1), under a mild assumption, the corresponding rank-dependent aggregator converges
pointwise to

T qii (x) = min

8<:c 2 R : X
j:xj�c

wij � qi

9=; 8x 2 B; (10)

that is, the weighted qi-quantile.16 In particular, we get back to the weighted median in (5) when

qi = 0:5. The qi-quantiles capture the idea of an extreme truncation of the sample of opinions e¤ectively

taken into account. Indeed, the essential feature of these particular rank-dependent aggregators is the

extreme �atness of the corresponding weight distortion function fi (s) = 1[qi;1] (s) for all s 2 [0; 1].
With this, for each opinion pro�le x 2 B, agent i is only in�uenced by the neighbor with the opinion
corresponding to the qi-quantile of the distribution of opinions induced by the pro�le x and the weights

wi 2 �. In the case of continuous opinions, a less extreme form of truncation might be desirable. For

example, agent i aggregates opinions with a trimmed mean with thresholds q
i
; �qi 2 [0; 1], qi < �qi, if

her distortion function is

fi (s) =

8>><>>:
0 if s < q

i
s�q

i
�qi�qi

if q
i
� s � �qi

1 if s > �qi

8s 2 [0; 1] : (11)

The qi-quantile is the limit case in which both qi and �qi converge to qi 2 (0; 1). Notice that �at regions
of fi imply that agent i disregards the opinions of some of her neighbors depending on the current

ranking of opinions. For example, suppose that the opinion of j is currently the lowest among the

opinions of the neighbors of agent i. If the weight that agent i puts on j�s opinion is not too high, that

is wij < qi, then i completely ignores j�s opinion. Di¤erently, whenever the weight on the opinion of

j is high enough, that is wij > max
n
q
i
; 1� �qi

o
, agent i will always be in�uenced by j regardless of

the current opinion pro�le. We illustrate this point in a particular example.

15Clearly, fi is de�ned only on (0; 1], but it also admits a unique continuous extension to [0; 1]. The extension takes
value 0 in 0. In particular, we obtain Prelec�s probability weighting function [62] when qi = 1ne. More generally, using
an fi di¤erent from the identity map is a way to introduce a perception bias a la Banerjee and Fudenberg [8] in a model
of naive and nonequilibrium learning.
16 It is well known that, given a probability vector wi 2 � and x 2 B, the qi-quantile of x is not uniquely de�ned, but

rather it can be any value in an interval
�
q�i (x) ; q

+
i (x)

�
. In the paper, we always consider q�i (x) which corresponds to

(10). As �i !1, T fi (x) converges to a value which belongs to
�
q�i (x) ; q

+
i (x)

�
. Finally,

�
q�i (x) ; q

+
i (x)

�
collapses to a

singleton, whenever there does not exist a subset M of N such that
P

l2M wil = qi. A similar observation holds for (11).
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Example 2 (The islands model) Suppose that the agents are partitioned in m groups fMpgmp=1,
that is, N = [p2GMp, where Mp \ Mp0 = ; for all p; p0 2 G = f1; :::;mg such that p 6= p0. For

example, these groups might capture the agents�similar cultural or social backgrounds. Also, consider

a strongly connected observation network A with aii = 1 for all i 2 N . So far, there is no relation
between the neighborhood Ni of an agent i and the only group she belongs to, denoted Mpi . In order

to relate these two objects, let us de�ne the internal linking fraction of i 2 N as

`i =
jfj 2Mpi : aij = 1gj � 1

jNij
.

According to our interpretation of the groups, the `is capture the degree of homophily in the given

network structure: agents with a high `i are connected with many neighbors belonging to their own

groupMpi . A stylized picture of real-world networks that has been fruitfully used in the literature (cf.

Golub and Jackson [36]) is the islands structure with a large internal linking fraction for each agent.

Let each Ni be such that jNij � 3. Consider the stochastic matrix W such that wii = � 2
(1= jNij ; 1=2), wij = 1��

jNij�1 if j 2 Nin fig, and wij = 0 otherwise, for all i 2 N . Suppose that each
agent i 2 N aggregates the opinions she observes in her neighborhood using a trimmed mean Ti with

weights given by W and q
i
= 1 � �qi = �=2 where � 2 [0; 2�). In words, every agent computes the

weighted average of the opinions she observes, discarding both the �=2 highest and lowest opinions

and never fully discarding her own previous opinion, that is, A (T ) � I. Therefore, T is convergent

by Corollary 1. DeGroot�s model, obtained as a particular case by setting � = 0, would still predict

convergence to consensus in the long run. However, if there is su¢ ciently high homophily, that is,

`i > 1��=2 for all i 2 N , then disagreement is a typical outcome for the long-run dynamics. We next
illustrate this point by studying the opinions�evolution in the society when, starting from a consensus

ke 2 B, the stances of a nonempty subset M � N of agents are shifted upwards, that is,

x0i =

(
k + � if i 2M
k otherwise,

8i 2 N

with � > 0 such that k+ � 2 I. For example, we can interpret this shock as follows: a subset of agents
M is targeted by a marketing campaign and persuaded to increase the use of a certain technology (as

in Sadler [63]). Crucially, the extent of opinion segregation in the new long-run dynamics will depend

on the agents� identities in the subgroup in relation to the islands structure. If the shock is local,

that is, M = Mp for some p 2 G, then the long-run limit will be such that limt T ti
�
x0
�
> k if i 2 M ,

and limt T ti
�
x0
�
= k if instead i 62 M . Di¤erently, if the shock is dispersed, that is jM \Mpj � 1

for all p 2 G, and the self-in�uentiality � is low enough, then the long-run limit will be such that

limt T
t
i

�
x0
�
= k for all i 2 N .

If the number of islands m is much greater than the size of each island jMpj, then the dispersed
shock involves a much larger subgroup of agents. Nevertheless, the deviation of each subgroup member

is washed out within each island, and the original consensus is restored. Instead, the original consensus

is broken if the targeted set of agents M is smaller but more inward-looking, as in the �rst case. This

phenomenon resembles the so-called �complex contagion�theory of Centola and Macy [17], whereby

a few �long ties� are not su¢ cient to spread an increased opinion globally. It is supported by the
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evidence on technology adoption in developing countries, see Beaman et al. [9]. In contrast, in

DeGroot�s model, both shocks lead to the formation of a new higher consensus. N

Even if the observation network is strongly connected, there is no global convergence to consensus

due to the wedge between the observation and the strong network. It is easy to see that whenever

`i � 1 � �=2 for each i 2 N , no agent strongly in�uences any agent, apart for herself. In general,
the strong and the weak networks for rank-dependent aggregators are completely characterized by

the distortion functions (fi)
n
i=1 and the matrix of weights W . Agent j strongly in�uences i if and

only if her incremental weight, fi
�P

l2M[fjgwil
�
� fi

�P
l2M wil

�
, with respect to any baseline group

M � Nn fjg of agents is strictly positive. Similarly, agent j weakly in�uences i if and only if her
incremental weight with respect to some baseline group of agents is strictly positive. This shows

that convergence of opinions to disagreement is a much more natural outcome for robust opinion

aggregators even in completely connected societies.

Remark 1 Suppose that the agents use a rank-dependent aggregator T f with matrix of weights
W 2 W . Consider two disjoint groups N;N � N . If the members of both groups distort su¢ ciently
toward zero the total weights of the outsiders, that is,

fi

0@ X
j2NnN

wij

1A = 0 8i 2 N and fl

0@X
j2N

wlj

1A = 1 8l 2 N , (12)

then convergence to consensus does not always obtain under T f . For example, long-run disagreement

arises whenever there is initial agreement within �N on b 2 I, initial agreement within N on a < b, and

all the other agents have intermediate opinions xi 2 [a; b]. In particular, equation (12) is compatible
with an observation and a weak network, A (W ) and �A

�
T f
�
, that are both strongly connected. N

The remark shows that it is not possible to resort to known results on convergence to consensus for

nonlinear opinion aggregation models to analyze this kind of long-run behavior (e.g., [55]). In turn,

Theorem 2 gives easy-to-check su¢ cient conditions, in terms of strong links, to assess convergence of

opinions. Finally, as we can easily see in Example 2, the exact composition of these groups is �exible

and might change depending on their initial stances.

3.3 Long-run consensus

Our following result shows that if we cannot partition the strong network in multiple strongly connected

and closed groups, then convergence to consensus always obtains. Conversely, convergence to consensus

implies that the weak network does not admit such partition.

Proposition 1 Let T be a robust opinion aggregator. The following statements are true:

1. If the network of strong ties A (T ) is nontrivial, has a unique strongly connected and closed group

M , and M is aperiodic under A (T ), then convergence to consensus always obtains.
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2. If convergence to consensus always obtains, then the network of weak ties �A (T ) is nontrivial,

has a unique strongly connected and closed group M , and M is aperiodic under �A (T ).

Therefore, if A (T ) = �A (T ), then convergence to consensus always obtains if and only if A (T ) is

nontrivial, has a unique strongly connected and closed group M , and M is aperiodic.

Point 1 states that if there exists a unique strongly connected set of agents in the society that

do not have strong connections with the outsiders, then all the agents will eventually conform to this

group. Instead, if even the weak ties are not su¢ cient to connect two disjoint subgroups, then long-run

disagreement can occur. It is then critical to identify strong and weak ties in the society to understand

whether an intervention might generate a global consensus or just a localized one. However, the last

part of the result con�rms a general principle for robust opinion aggregators: if weak and strong ties

coincide, then the results for convergence and consensus of DeGroot�s model extend plainly. We next

completely characterize the long-run opinion aggregator for a case with this property.

Quasi-arithmetic biased aggregation and opinions� dispersion Consider agents that best

respond to the previous opinions of the opponents at each period. Within this interpretation of our

dynamics, a restriction imposed by the quadratic loss in (1) is that upward and downward discrepancies

are felt as equally harming by every agent. It might be the case that (some) agents are more concerned

with one or the other. A smooth and tractable robust opinion aggregator that takes into account these

asymmetries is obtained by minimizing

��i (x� ce) =
nX
j=1

wij [exp (� (xj � c))� � (xj � c)] 8x 2 Rn;8c 2 R (13)

where � 6= 0 and the values wij are the entries of a stochastic matrix W . In particular, whenever

� > 0, upward deviations from i�s current opinion are more penalized than downward deviations and

vice versa whenever � < 0.

We next show that there exists a unique solution function T �i for each minimization problem

induced by ��i . In particular, for this parametric class, we derive an explicit formula for the induced

robust long-run opinion aggregator.

Proposition 2 Let I be bounded and let � be the pro�le of loss functions
�
��i : Rn ! R+

�n
i=1

as in

(13) with W 2 W and � 2 Rn f0g. The following statements are true:

1. For each i 2 N we have that

T �i (x) = argminc2R �
�
i (x� ce) =

1

�
ln

0@ nX
j=1

wij exp (�xj)

1A 8x 2 B (14)

and T � is a robust opinion aggregator with A
�
T �
�
= �A

�
T �
�
= A (W ).
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2. For each i 2 N we have that

lim
�!�̂

T �i (x) =

8><>:
maxj:wij>0 xj if �̂ =1Pn

j=1wijxj if �̂ = 0

minj:wij>0 xj if �̂ = �1
8x 2 B:

3. If there exists a vector s 2 � such that

lim
t
W tx =

 
nX
i=1

sixi

!
e 8x 2 Rn; (15)

then convergence to consensus always obtains under T � and

�T � (x) =
1

�
ln

 
nX
i=1

si exp (�xi)

!
e 8x 2 B:

Point 1 gives an explicit functional form for the opinion aggregator. Point 2 shows that this

functional form encompasses the linear case as a limit and allows for nonneutral behaviors toward

the direction of disagreement. Equation (15) in point 3 is satis�ed if and only if A (W ) has a unique

strongly connected and closed group M and M is aperiodic under A (W ). In this case, we see how not

just the network structure determines the limit in�uence of each agent, but the initial opinion also plays

a key role. Indeed, the marginal contribution to the limit of agent i�s initial opinion is proportional to

si exp (�xi). Therefore, when � > 0, the higher the initial signal realization of an individual, the higher

her marginal contribution to the limit is. This fact has extremely relevant consequences. For example,

consider one of the classical applications of non-Bayesian learning, technology adoption in a village of

a developing country, with an opinion vector representing how much the agents have invested in the

new technology (e.g., the share of land cultivated with the new technology). There, � > 0 captures the

idea that the most innovative members of the society have a disproportionate in�uence on the others,

maybe because their performance attracts relatively more attention. If resources are limited, i.e., if

the external actor can only increase adoption for an agent directly, relying on the network aggregation

for the rest, the policy prescription is qualitatively di¤erent. Indeed, she should choose the agent j for

which sj exp (�xj) is maximized, combining the standard eigenvector centrality sj with a distortion

increasing in the initial opinion xj of agent j.17

4 Vox populi, vox Dei?

In the previous section, we considered a given deterministic pro�le of initial opinions and studied the

corresponding evolution of opinions. However, for any given population size, the stochastic nature of

the vector of initial opinions X = � + " implies that the long-run outcome �T (X) will be stochastic

17More generally, in our model the in�uence among agents depends on their current opinions. This feature has
immediate and relevant implications for designing network intervention policies. These policy interventions can assume
di¤erent forms such as incentive distortions (Galeotti et al. [30]) or information design (Galperti and Perego [32]). We
leave this important aspect for future research.
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as well. This section considers large networks to study the aggregate variability and the accuracy of

opinions under robust opinion aggregation.

Formally, we keep the same setup of Sections 2 and 3, with the caveat that here everything is

parametrized by the size n of the population.

Assumptions In this section, we maintain the following assumptions:

1. I = R.

2. For each n 2 N we assume that Xi (n) = �+"i (n) for all i 2 N , where f"i (n)gi2N;n2N is an array
of uniformly bounded and independent random variables such that infi2N;n2NVar ("i (n)) � �2 >
0.

Some additional notation is helpful for the following analysis.

Notation With Î, we denote a bounded open interval such that Xi (n) (!) 2 Î for all ! 2 
, i 2 N ,
and n 2 N. We denote by ` def= sup Î � inf Î the length of Î. Moreover, we denote the collection of
probability vectors in Rn by �n.

We are interested in whether a growing society becomes wise (cf. Golub and Jackson [35]), that

is, whether there is an e¢ cient aggregation of the information available in the network in the limit.

De�nition 5 Let fT (n)gn2N be a sequence of robust opinion aggregators. The sequence fT (n)gn2N
has vanishing variance if and only if, for each � 2 N,18

Var
�
�T� (n) (X1 (n) ; :::; Xn (n))

�
! 0: (16)

The sequence fT (n)gn2N is wise if and only if, for each � 2 N,

�T� (n) (X1 (n) ; :::; Xn (n))
P! �: (17)

When equation (16) holds, the aggregation procedure neutralizes the idiosyncratic variability of

the agents�opinions. If, in addition, the agents� limit opinions are unbiased, then they concentrate

around �, and equation (17) holds. If T (n) is linear with strongly connected matrixW (n), then �T (n)

is linear and represented by a matrix �W (n) whose rows all coincide with the left Perron-Frobenius

eigenvector s (T (n)) 2 �n of W (n): a standard measure of network centrality. DeMarzo et al. [25] as

well as Golub and Jackson [35] call s (T (n)) the in�uence vector and the latter show that fT (n)gn2N
is wise if and only if limnmaxk2N sk (T (n)) = 0, provided the errors "i (n) have 0 mean. In this case,

the vector s (n) coincides with the gradient of �Ti (n), thereby capturing the idea of the �marginal

contributions�of the agents to the limit opinion of i.

As suggested by Theorem 1, for robust opinion aggregators, the marginal contributions to the limit

opinion are captured by the partial derivatives of �Ti (n). Even if our opinion aggregators might not

18Note the following innocuous abuse of notation (given our interest in limit results): for each � 2 N, the sequences in
equations (16) and (17) are well de�ned only starting from n � �. In fact, an agent with position � can only belong to
a society with size n greater than or equal to �. A similar observation applies throughout the section, in particular, in
Theorem 3.
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be (Frechet) di¤erentiable, they are Lipschitz continuous,19 hence almost everywhere di¤erentiable by

Rademacher�s Theorem. Let D
�
�T (n)

�
� În be the subset of În where �T (n) is di¤erentiable.

De�nition 6 Let T (n) : Rn ! Rn be a robust opinion aggregator and i 2 N . We say that si (T (n)) 2
Rn is the strong in�uence vector for i given T (n) if and only if

sij (T (n)) = inf
x2D( �T (n))

@ �Ti (n)

@xj
(x) 8j 2 N .

We say that �si (T (n)) 2 Rn is the weak in�uence vector for i given T (n) if and only if

�sij (T (n)) = sup
x2D( �T (n))

@ �Ti (n)

@xj
(x) 8j 2 N .

As for the notions of networks associated with a robust opinion aggregator, there are two natural

de�nitions of in�uence vector. The values sij (T (n)) and �sij (T (n)) are respectively the minimal

and maximal in�uence that the initial opinion of j exerts on the limit opinion of i. Observe that,

whenever T (n) is a robust opinion aggregator that satis�es 1 of Proposition 1, for each i; l 2 N ,

we have si (T (n)) = sl (T (n)) and �si (T (n)) = �sl (T (n)), since �Ti = �Tl. Moreover, both de�nitions

of in�uence vector above coincide with the one of Golub and Jackson whenever T (n) is linear and

strongly connected since si (T (n)) = �si (T (n)) = s (T (n)) for all i 2 N .
These objects are crucial to provide su¢ cient and necessary conditions for vanishing variance. To

obtain also the wisdom of the crowd, the following additional symmetry assumptions are needed. We

say that the array f"i (n)gi2N;n2N is symmetric if and only if for each i 2 N and for each n 2 N, "i (n)
and �"i (n) have the same distribution under P . Moreover, we say that the sequence fT (n)gn2N is
odd if and only if T (n) (�x) = �T (n) (x) for all x 2 Rn and for all n 2 N.20

Theorem 3 Let fT (n)gn2N be a sequence of robust opinion aggregators. The following statements
are true:

1. If limn
Pn
j=1 �s�j (T (n))

2 = 0 for all � 2 N, then fT (n)gn2N has vanishing variance. If in addition
fT (n)gn2N is odd and f"i (n)gi2N;n2N is symmetric, then fT (n)gn2N is wise.

2. If lim supnmaxj2N s�j (T (n)) > 0 for some � 2 N, then fT (n)gn2N does not have vanishing
variance. In particular, fT (n)gn2N is not wise.

Given � 2 N, the quantity
Pn
j=1 �s�j (T (n))

2 is an upper bound for the sensitivity of �T� (n) to changes

in the initial opinions of small subsets of agents. As long as this measure vanishes, the variance of

the limit opinion of � is going to 0. In particular, it is easy to show that this condition is implied

by maxj2N �s�j (T (n)) = o
�
1p
n

�
, that is, the maximum weak in�uence on � is vanishing fast enough.

Conversely, if the maximum strong in�uence on some agent � is not vanishing, then the variability

19See Lemma 2 in Appendix A.
20 In the foundation of robust opinion aggregators that we propose in Section 5.1, loss functions that are symmetric

with respect to opinions�deviations (i.e., even) induce odd opinion aggregators.
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of her limit opinion does not disappear, preventing agent � to learn �. Therefore, the wisdom of the

crowd is achieved only if limnmaxj2N s�j (T (n)) = 0 for all � 2 N, paralleling the linear case.
Observe that, whenever each T (n) is linear and strongly connected, the su¢ cient and necessary

conditions for the wisdom of the crowd in points 1 and 2 are equivalent to limnmaxj2N sj (T (n)) =

0: the condition of Golub and Jackson [35] which characterizes the wisdom of the crowd for the

DeGroot model.21 Thus, we obtain their characterization as a particular case of our result. In general,

there are two other conceptual di¤erences between the previous results (e.g., Golub and Jackson [35]

and Levy and Razin [50]) about the wisdom of the crowd and ours. First, we neither impose any

parametric structure on the opinion aggregators nor assume that agents aggregate opinions according

to functionals belonging to the same subclass (e.g., the median, quantiles, rank-dependent, quasi-

arithmetic). Second, our results encompass the case of nonconvergent robust opinion aggregators. In

such a case, �T (n) is the limit of the updates�time averages. This extra layer of generality is helpful

for the following question: can an external observer learn � by observing only part of the updating

dynamics of a subset of the agents, i.e., can she achieve the wisdom from the crowd? We have a

positive answer under the conditions of point 1: the external observer can use �T� (n) as a consistent

estimator of the underlying parameter, even if the agents�opinions are not converging. In addition,

when T (n) is also convergent for all n 2 N, we have the wisdom of the crowd : all agents learn the

true parameter. Finally, we note that, as the proof of Theorem 3 will clarify, our results are not only

qualitative, but also quantitative. For example, in point 1, not only we prove that there is vanishing

variance, but we provide an estimate of the variance, given a �xed population of size n.

The proof of Theorem 3 has the following steps. For point 1, using Lebourg�s Mean Value Theorem,

we �rst show that each �sij (T (n)) bounds the changes of �Ti (n) as Xj varies. We then use McDiarmid�s

concentration inequality to bound the variance of �Ti (n) as a function of
Pn
j=1 �sij (T (n))

2 and the range

of initial realizations `. Next, we show that if both the errors and the opinion aggregator are symmetric,

then �Ti (n) is an unbiased estimator, and so it converges in probability to �. For point 2, we begin by

observing that, given n 2 N and i; j 2 N , there exists a monotone functional Rij (n) : În ! R such
that

�Ti (n) (x) = sij (T (n))xj +
�
1� sij (T (n))

�
Rij (n) (x) 8x 2 În: (18)

Given the assumption lim supnmaxj2N s�j (T (n)) > 0 for some � 2 N, we can focus on a subsequence
such that s�jm (T (nm)) � � for all m 2 N where � > 0. By Harris�inequality and since R�jm (nm) is
monotone, the covariance between R�jm (nm) and Xjm (nm) is nonnegative, proving that

Var
�
�T� (nm) (X1 (nm) ; :::; Xnm (nm))

�
� �2Var (Xjm (nm)) � �2�2 8m 2 N:

To sum up, given that the weight on the initial opinion of at least one agent does not converge to 0,

the variance of �T� (n) does not vanish either.

21 Indeed, given n 2 N and i 2 N , if �si (T (n)) 2 �n (as in [35]), then
Pn

j=1 �sij (T (n))
2 � maxj2N �sij (T (n)).
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4.1 Weak networks and the wisdom of the crowd

Point 1 of Theorem 3 provides an easy-to-interpret su¢ cient condition on the sequence of long-run

opinion aggregators for both absence of aggregate variability and wisdom. However, it is important to

have properties of the primitive sequence of robust opinion aggregators that induce long-run wisdom.

To address this point via Theorem 3, we need to control the derivatives of the sequence of robust

opinion aggregators fT (n)gn2N with their weak networks
�
�A (n)

	
n2N. For each n 2 N and i 2 N ,

we denote the degree of i in �A (n) by �di (n) =
P
j2N �aij (n). We de�ne the maximum and minimum

degrees by �dmax (n) = maxi2N �di (n) and �dmin (n) = mini2N �di (n), respectively. Similar to before, we

denote by D (T (n)) � În the subset of În where T (n) is di¤erentiable.

De�nition 7 Let fT (n)gn2N be a sequence of robust opinion aggregators and � � 1. The sequence

fT (n)gn2N is �-dominated if and only if

@Ti (n)

@xj
(x) � �

�di (n)
8x 2 D (T (n)) (19)

for all i; j 2 N and for all n 2 N.

For a �xed n 2 N, since each T (n) is Lipschitz continuous, we can always satisfy the inequality in
(19) by choosing � (n) = �dmax (n).22 Therefore, a su¢ cient condition for the sequence fT (n)gn2N to
be �-dominated for some � � 1 is that supn2N �dmax (n) <1. Here, � measures the deviation of T (n)
from the uniform linear aggregation of the opinions of the weak neighbors. This deviation can take

two forms: i) some neighbors may be more important than others; and ii) the relative weights may

depend on the current opinion. The �rst form is already present in the linear model with nonuniform

weights, while the second one is speci�c to robust opinion aggregators, as we next illustrate.

Example 3 Let
�
T f (n)

	
n2N denote the sequence of rank-dependent aggregators with matrices of

weights fW (n)gn2N and distortions ff�g�2N, with each f� continuous and locally Lipschitz on (0; 1).23

This implies that there exists a set F � (0; 1) of measure 1 where each f� is di¤erentiable. We assume
that the weights are uniform over the (nontrivial) observation network, that is, for each n 2 N and
i; j 2 N , it holds wij (n) 2 f0; 1= jNi (n)jg. In this case, we have that the inequality in (19) holds with
� = sup�2N supx2F f

0
� (x). If � < 1, then the sequence

�
T f (n)

	
n2N is �-dominated. For example, if

all agents use the same distortion f� = f̂ which belongs to any of the cases in Figure 1, except for

quantiles, then � is �nite. Alternatively, if all agents are using trimmed means with symmetric, but

potentially heterogenous trimming cuto¤s
�
q
�
; 1� q

�

�
�2N

such that sup�2N q� < 1=2, then
�
T f (n)

	
n2N

is �-dominated with � = 1=
�
1� 2 sup�2N q�

�
and each T f (n) is odd. N

22 In general, we can choose a much smaller � (n) (cf. Example 3). That said, since T (n) is monotone and translation
invariant, observe that the gradient rTi (n) (x) is a probability vector for all i 2 N and for all x 2 D (T (n)). This implies
that � (n) can never be chosen to be smaller than 1. Moreover, it can be chosen to be 1 if and only if T (n) (x) =W (n)x
for all x 2 Rn, where W (n) is the stochastic matrix of uniform weights associated with �A (n). Intuitively, the less the
derivative of T can change, the closer T is to being linear, and the smaller � can be chosen. For these reasons, we
interpret � as an index of nonlinearity.
23For example, this is the case if each f� is continuous on [0; 1] and either convex or concave.
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The following result shows that a sequence of odd robust opinion aggregators which is �-dominated

is wise, provided that the weak degree of each agent is increasing fast enough.

Proposition 3 Let fT (n)gn2N be a �-dominated sequence of odd robust opinion aggregators and

f"i (n)gi2N;n2N be symmetric. If limn
p
n

�dmin(n)
= 0, then fT (n)gn2N is wise.

On the one hand, the degree-growth condition in this statement is satis�ed with high probability

in standard random graph models such as the Erd½os�Rényi model with (su¢ ciently) slowly decreasing

linking probability. On the other hand, many real-world networks exhibit bounded degrees, even when

the population size grows. In these cases, we can still obtain the wisdom of the crowd at the cost

of requiring a high level of connectivity in the weak networks. Formally, for each n 2 N, if �A (n) is
strongly connected and undirected, the stochastic matrix of uniform weights associated with �A (n)

(i.e., the matrix whose ij-th entry is �aij (n) = �di (n)) has n real eigenvalues. We denote by �2 (n)

the second largest eigenvalue in modulus of this matrix (henceforth, SLEM): a standard measure of

connectivity.

Proposition 4 Let fT (n)gn2N be a �-dominated sequence of odd robust opinion aggregators and

f"i (n)gi2N;n2N be symmetric. If the weak networks
�
�A (n)

	
n2N are undirected and strongly connected,

supn2N
�dmax(n)
�dmin(n)

<1, and supn2N �2 (n) < 1
�2
, then fT (n)gn2N is wise.

Wisdom is achieved when the weak degree distribution is balanced if the connectivity (measured

by the SLEM) is su¢ ciently high compared to the nonlinearity index �. We now observe that this

joint condition is satis�ed by multiple graph models. For example, within the class of the �d (n)-regular

graphs, where each agent has exactly �d (n) links, Ramanujan graphs have particularly high connec-

tivity, with �2 (n) � 2=
p
�d (n). Importantly, for �xed �d 2 N, random graphs that are uniformly

distributed over �d-regular graphs are �almost Ramanujan�, in the sense that, with probability con-

verging to 1, their SLEM will be lower than 2=
p
�d, as n grows. Therefore, under this graph model, the

connectivity condition reduces to �d > 4�4. In the context of Example 3 with agents using trimmed

means with symmetric cuto¤s, this condition amounts to �d > 4
�

1
1�2 sup�2N q�

�4
, which is satis�ed with

reasonable parameters such as sup�2N q� � 1=8 and �d � 13.
Even if regular graphs constitute a benchmark structure given their balancedness properties, they

still fail to capture the clustering of many real-world networks. The multi-type random graph model

of Golub and Jackson [36, De�nition 3] is an example that overcomes this limitation allowing for

homophily between agents of the same type. Notably, the realized degrees distribution is balanced,

and the SLEM of the realized network is close to the SLEM of the associated deterministic network of

types.24 Therefore, in order to guarantee the wisdom of the crowd, we need that the SLEM of the type

network generating the weak networks of fT (n)gn2N is small enough compared to their coe¢ cient of
nonlinearity 1=�2. Moreover, in their leading case of an island model, this condition is always satis�ed

when the homophily index is low enough.

24The second statement is the content of their Theorem 2, while the balance condition is implied by their Lemma A.4.
Golub and Jackson [36] also point out that a small SLEM guarantees that convergence speed to � does not explode as
the population size increases.
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In Example 5 in Section 5, we illustrate how to use the su¢ cient conditions of Propositions 3 and

4 to obtain the wisdom of the crowd in a model where agents repeatedly solve an estimation problem

for the fundamental parameter �.

4.2 Failure of the wisdom of the crowd

In the previous sections, we have established that the opinions�limit variability disappears, provided

that no single agent is excessively in�uential. Without additional symmetry properties on the opinion

aggregators and the errors, the long-run opinions will concentrate around a biased estimate of the

fundamental parameter �. In the following example, this bias is strictly increasing in the noisiness of

the agents�initial information, while this noisiness is completely irrelevant in the linear model.

Example 4 (Bias and noise) For each n 2 N consider a quasi-arithmetic opinion aggregator T � (n),
as de�ned in equation (14), with respect to a strongly connected and aperiodic stochastic matrixW (n)

and � 6= 0. In this case, by Proposition 2, there exists c 2 R+ such that �sij
�
�T � (n)

�
� csj (n) for all

i; j 2 N and for all n 2 N where s (n) is the left Perron-Frobenius eigenvector of W (n). By point 1

of Theorem 3 and point 3 of Proposition 2, if limnmaxj2N sj (n) = 0, then we have

�T �� (n) (X1 (n) ; :::; Xn (n))
P! �+

1

�
ln (E (exp (�"))) 8� 2 N;

where "i (n)
d� " for all i 2 N and for all n 2 N. The right-hand side explicitly characterizes the �bias

of the crowd� as a function of � and the distribution of ". Notably, the magnitude of the limit bias

increases in the absolute value of the corresponding �, provided � does not change sign. Moreover,

whenever "0 is a mean-preserving spread of ", then the bias of the crowd is larger under "0 than under

". N

Besides the failures due to the bias of the crowd, point 2 of Theorem 3 establishes that the persistent

limit in�uence, of at least an individual, is su¢ cient to preserve the opinions�variability, even for large

populations. Here, instead, we provide a more structural su¢ cient condition for persistent in�uence

in terms of prominent families as in Golub and Jackson [35, De�nitions 5 and 6 and Proposition 3].

In order to do so, we �rst discuss when a group, and not just a single agent, in�uences the agents in

the society. We denote by eM the vector whose i-th component is 1 if i 2M and 0 otherwise.

De�nition 8 Let T be an opinion aggregator. We say that a group M � N is prominent in t steps if

and only if there exists � 2 (0; 1) such that for each x 2 B and for each h > 0 with x+ heM 2 B

T ti
�
x+ heM

�
� T ti (x) � �h 8i 2 N: (20)

Moreover, we denote by �M (T; t) the supremum of all �s that satisfy (20).

Given i 2 N , the above de�nition generalizes the notion of strong tie (cf. De�nition 4) in two
ways. First, it describes uniform responsiveness of i to a change of opinions of an entire group and not

just a single agent. Second, this responsiveness is not forced to happen at the �rst round of updating,
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but it can happen after t periods. The presence of a prominent group will thus provide a lower bound

for the variance of �T (n) (X (n)) which is only function of �2, �M (T (n) ; t (n)), and the size of M (n)

and most importantly is independent on the size of society. To this extent, we say that a sequence of

groups fM (n)gn2N is a family if and only if M (n) � f1; :::; ng for all n 2 N.

De�nition 9 Let fT (n)gn2N be a sequence of opinion aggregators. We say that a family fM (n)gn2N
is �nite and uniformly prominent if and only if there exists ft (n)gn2N � N such that infn �M(n) (T (n) ; t (n)) >

0 and supn jM (n)j <1.

A family fM (n)gn2N is �nite and uniformly prominent if each group M (n) contains at most

supn jM (n)j agents and is prominent in t (n) steps with similar strength (i.e., infn �M(n) (T (n) ; t (n)))

across societies. Compared to the original de�nition, ours di¤ers only in the fact that a group which

is prominent in t steps in�uences the entire population after t periods, while in [35, De�nitions 5 and

6 and Proposition 3] it has only to in�uence the agents outside the group.

Corollary 2 Let fT (n)gn2N be a sequence of robust opinion aggregators. If there exists a �nite and
uniformly prominent family, then fT (n)gn2N is not wise.

5 Discussion: foundation and discrete opinions

This section discusses two essential points: a microfoundation of robust opinion aggregators and the

relation with models of di¤usion/contagion in networks.

5.1 A characterization of robust opinion aggregators

Here, we characterize robust opinion aggregators as the solution to a distance minimization problem.

Formally, we endow each agent i with a loss function �i : Rn ! R+ and we assume that at each period
the agent solves

min
c2R

�i (x� ce) (21)

where x 2 B is the opinion pro�le of the previous period. Intuitively, in choosing her current opinion

c, agent i minimizes a loss function that penalizes the disagreement (i.e., di¤erences of opinions) with

the last-period opinions of her neighbors. We next impose two minimal restrictions on the pro�le of

loss functions � = (�i)
n
i=1.

De�nition 10 The pro�le of loss functions � is sensitive if and only if �i (he) > �i (0) for all i 2 N
and for all h 2 Rn f0g.

If agent i observes a unanimous opinion (including herself), then her loss is minimized by declaring

that same opinion. In particular, under a best-response dynamics interpretation, sensitivity implies

that all the constant pro�les of actions are Nash equilibria of the induced game.
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De�nition 11 The pro�le of loss functions � has increasing shifts if and only if for each i 2 N ,
z; v 2 Rn, and h 2 R++

z � v =) �i (z + he)� �i (z) � �i (v + he)� �i (v) :

It has strictly increasing shifts if and only if the above inequality is strict whenever z � v.

The property of increasing shifts is a form of complementarity in disagreeing with two or more

agents from the same side. It is implied by stronger properties usually required on supermodular

games played on networks, such as degree complementarity (see, e.g., Galeotti et al. [31]).

We call robust a pro�le of loss functions that is sensitive and has increasing shifts. The collection

of all these pro�les is denoted by �R. Given a robust pro�le of loss functions �, we denote with

T � : B ! B an arbitrary selection of the argmin correspondence

T � (x) 2
nY
i=1

argminc2R �i (x� ce) 8x 2 B. (22)

The selfmap T � is an opinion aggregator and describes one possible updating rule induced by �. The

next theorem shows that our loss-function-based updating procedure naturally generalizes the one of

DeGroot�s model (cf. Golub and Sadler [38]) without committing to any speci�c functional form (e.g.,

quadratic) of the loss function.25

Theorem 4 Let T be an opinion aggregator. The following statements are equivalent:

(i) There exists � 2 �R which has strictly increasing shifts and is such that T = T �, that is, for

each i 2 N
Ti (x) = argminc2R �i (x� ce) 8x 2 B; (23)

(ii) T is a robust opinion aggregator.

The property of strictly increasing shifts guarantees that argminc2R �i (x� ce) is a singleton. How-
ever, it is violated in some interesting speci�cations of � (see, e.g., equation (4)). In Proposition 11

in Appendix C, we show that the solution correspondence of problem (21) always admits a selection

which is a robust opinion aggregator.

This theorem also suggests that, as in DeMarzo et al. [25], we can interpret the induced opinion

dynamics as repeated estimation of � given the last-period neighbors�opinions. In particular, [25] only

studied the case of maximum likelihood updating with Gaussian initial signals. Instead, we follow the

general robust statistics approach: the agents minimize a loss function (see, for example the seminal

contribution by Huber [42]) such as the absolute loss, the p-loss where the quadratic function in (1)

is replaced by a general power p � 1 function, and the Huber loss. This approach is natural when the
complexity of the network structure does not allow the agents to attach probabilistic beliefs to the

data generating process (see Breza et al. [13]).

25 In particular, it is always possible to derive a DeGroot�s aggregator via the loss function (1).
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5.2 Loss functions and long-run dynamics

Next, we illustrate how our foundation is linked to the convergence and wisdom results for robust

opinion aggregators. We focus on the familiar and particularly tractable class of loss functions given

by

�i (z) =
nX
j=1

wij�i (zj) 8z 2 Rn;8i 2 N

where W 2 W is a stochastic matrix whose positive entries implicitly de�ne the observation network,

and � = (�i : R! R+)ni=1 is a pro�le of positive functions. The weight wij captures the relative
importance of the opinion of j as perceived by i. We call such a pro�le additively separable and

write � = (W;�). We denote the set of robust and additively separable pro�les of loss functions with

�A. Easy computations yield that (W;�) 2 �A if and only if each �i is convex, strictly decreasing
on R�, and strictly increasing on R+. Additionally, if each �i is strictly convex, then there exists a
unique robust opinion aggregator T � that satis�es (22). Three relevant examples of robust opinion

aggregators stemming from additively separable loss functions are DeGroot�s aggregators, the quantile

aggregators, and the opinion aggregator of Proposition 2.

Natural conditions on the pro�le of loss functions � = (W;�) yield that both the strong network

A
�
T �
�
and the weak network �A

�
T �
�
coincide with the observation network given by W .26

Proposition 5 Let � = (W;�) 2 �A. If I is compact and �i is twice continuously di¤erentiable and
strongly convex for all i 2 N , then there exists a unique T � that satis�es (22) and A

�
T �
�
= �A

�
T �
�
=

A (W ).

Note that Proposition 5, paired with Theorem 2 and Proposition 1, characterizes convergence

and convergence to consensus in terms of the observation network A (W ), provided that each �i is

su¢ ciently smooth and convex.

Finally, we illustrate how Propositions 3 and 4 can be applied to check the wisdom of the crowd

in terms of the pro�le of loss functions. As a by-product, we obtain that, under Assumptions 1-3 of

Section 4, the wisdom of the crowd can be achieved as long as the minimum degree of connections

gets larger as the population size increases.

Example 5 Consider a sequence fT (n)gn2N of odd robust opinion aggregators as in Section 4 such
that:

Ti (n) (x) 2 argminc2R
X

j2Ni(n)

�i (n) (xj � c)
jNi (n)j

8x 2 Rn

where the pro�le of loss functions � (n) = (W (n) ; � (n)) 2 �A used by the agents satis�es the as-
sumptions in Proposition 5 and is such that �i (n) (�z) = �i (n) (z) for all z 2 R, for all i 2 N , and
for all n 2 N.27 In this case, the weights wij (n) of each W (n) are uniform over their (nonempty)

26 In general, we can prove a similar result for pro�les of loss functions which are not additively separable. In this case,
the assumptions of di¤erentiability and strong convexity can also be weakened and replaced with a coercivity condition
and a Lipschitz property of the di¤erence quotients.
27 In this case, I is the closure of Î.
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neighborhoods Ni (n). Moreover, let f"i (n)gi2N;n2N be symmetric and assume that there exists � 2 R
such that

�00i (n) (z)

�00i (n) (z
0)
� � 8i 2 N;8n 2 N;8z; z0 2 [�`; `] :

In particular, this condition is satis�ed if �i (n) = �� for all i 2 N and for all n 2 N. By the Implicit
Function Theorem, we have that T (n) is di¤erentiable and

@Ti (n)

@xj
(x) � �

jNi (n) j
� �

mink2N jNk (n) j
8i; j 2 N;8x 2 În;8n 2 N:

In words, the uniform bound on the sensitivity of the loss functions implies that the reciprocal weak

in�uence among the agents can be bounded using the size of the minimal neighborhood in the growing

network. By Proposition 5, we have that fT (n)gn2N is �-dominated.
By Proposition 3, wisdom is reached if the minimal degree in the society is growing su¢ ciently

fast, that is,
1

mink2N jNk (n) j
= o

�
1p
n

�
. (24)

Alternatively, if each A (W (n)) is undirected and strongly connected, supn2N
maxk2N jNk(n)j
mink2N jNk(n)j < 1,

and supn2N �2 (n) <
1
�2
, then fT (n)gn2N is wise, by Proposition 4. For example, when ` = 1 and

�� (z) = �z4+(1� �) z2 for some � 2 (0; 1), the SLEM condition becomes supn2N �2 (n) <
�
1��
5�+1

�2
.N

5.3 Discrete robust opinion aggregators and contagion

We next show how our framework can deal with discrete opinions. Even if we considered continuous

opinions that belong to an interval, the properties de�ning robust opinion aggregators do not strictly

rely on these assumptions and allow us to consider di¤usion models with binary opinions. A set

function � : 2N ! f0; 1g is a f0; 1g-valued capacity if � (;) = 0, � (N) = 1, and � (M) � � (M 0) for all

M;M 0 2 2N such that M � M 0. We say that T is a discrete robust opinion aggregator if and only if

there exists a pro�le (�i)i2N of f0; 1g-valued capacities such that

Ti (x) = min fc 2 R : �i (fj 2 N : xj � cg) = 1g 8x 2 B;8i 2 N .

It is immediate to see that these aggregators satisfy the properties in De�nition 1, thereby falling

within the class of robust opinion aggregators. We call them �discrete�because they satisfy Ti (x) 2
fx1; :::; xng for all x 2 B and i 2 N . Next, let B = [0; 1]n and consider an initial opinion pro�le such
that x0 2 f0; 1gn. The interpretation is that an opinion equal to 1 corresponds to the adoption of
a certain technology/behavior or the contagion of an idea, and all the agents i with x0i = 1 are the

initial seeds. With this, we can keep track of the evolution of adopters/infected in the society just by

considering the set of agents whose opinions at a given period are equal to 1.

Note that this is a generalization of the q-threshold contagion models in Morris [56], Kempe et al.

[46], and Centola and Macy [17]. In particular, we obtain the aforementioned models whenever each

Ti is a qi-quantile. In general, by restricting a discrete robust opinion aggregator T over f0; 1gn, we
obtain an updating system ~T : f0; 1gn ! f0; 1gn as the ones analyzed by Muller-Frank and Neri [60].
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Di¤erently from our paper, they derive an updating system from a quasi-Bayesian learning model.

Although weak, the su¢ cient conditions of Theorem 2 do not apply to discrete robust opinion

aggregators, other than trivial cases. Our �nal result characterizes convergence for these aggregators.

Proposition 6 Let T be a discrete robust opinion aggregator. If x 2 B and m is the number of

distinct values of x, then either
�
T t (x)

	
t2N converges or it is eventually periodic, that is, there exist

�t; p � mn such that

T t+p (x) = T t (x) 8t � �t:

Moreover,
�
T t (x)

	
t2N converges if and only if T

mn
(x) = Tm

n+1 (x).

For discrete robust opinion aggregators, there is a �nite number of opinion pro�les that can be

reached, each corresponding to an assignment of the agents to the stances that were present in the

initial vector of opinions. Therefore, either one of these con�gurations is a �xed point of the operator

and it is reached in a �nite time, or the system alternates forever between di¤erent opinion pro�les.

6 Related literature

The linear model This paper belongs to the literature on non-Bayesian opinion aggregation. In

particular, we nest the benchmark DeGroot�s model [24].28 Within this model, Golub and Jackson [35]

fully characterize convergence, convergence to consensus, and the wisdom of the crowd in terms of the

network structure. For convergence, we signi�cantly extend the scope of the conditions of [35, Theorem

2]. We show that in our nonlinear model they are still su¢ cient for convergence and convergence to

consensus when imposed on the strong network, while they are necessary when imposed on the weak

network. For the wisdom of the crowd, we derive a general law of large numbers for robust opinion

aggregators specializing to the one of [35] for the linear case. Here the three main novelties are that: i)

the maximal in�uence in the network, which generalizes the notion of maximal eigenvector centrality,

has to vanish su¢ ciently fast ; ii) both the noise distribution and the opinion aggregators must satisfy

a symmetry property without which we only obtain the bias of the crowd; and iii) the necessary and

su¢ cient conditions for the wisdom of the crowd must be expressed respectively in terms of the strong

and the weak network, possibly creating a wedge that is not present in the linear model.

Convergence and the mathematics literature Our most novel contribution in terms of con-

vergence is Theorem 2. Compared to the opinion aggregation literature in computer science and

economics, our techniques are completely functional analytic. This is natural since our aggregators

are nonlinear. Formally, this creates an immediate overlap with the literature of maps iteration and

�xed point theory where the iterates
�
T t (x)

	
t2N and their convergence are studied in order to �nd

the �xed points of T . Using functional analysis in place of linear algebra comes at a cost. On the one

hand, it is a language that is richer but not immediately amenable to graph-theoretic notions which

are better expressed in terms of matrices. On the other hand, graph-theoretic properties are instead

28For comprehensive surveys of this literature see Acemoglu and Ozdaglar [2] and Golub and Sadler [38]. Banerjee et
al. [7] consider an asynchronous departure from DeGroot�s model.
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primitive within our framework. Thus, as a general contribution, our notions of networks of weak and

strong ties build an e¤ective and fruitful link between nonlinear analysis and graph theory.

More in detail, the proof of point 1 of Theorem 2 relies on �ve major steps, where each of them

is far from yielding the result. We next comment on each step in relation to the literature. Given

uniform Cesaro convergence of Theorem 1 and using Lorentz�s Theorem, the �rst step (Lemma 4)

observes that convergence of T is equivalent to asymptotic regularity. This technique seems to have

�rst appeared in Bruck [15], who applied it to the case of nonexpansive maps in Hilbert spaces.29

Because of this observation, showing that T is asymptotically regular is important. Conceptually,

it poses the issue of what asymptotic regularity might mean at a graph-theoretic level. The second

step moves to address these points. Proposition 7 is a quite simple yet new observation: if A (T )

is nontrivial, then T admits a decomposition T (x) = "Wx + (1� ")S (x) where " 2 (0; 1), W is a

stochastic matrix such that A (W ) = A (T ), and S is a robust opinion aggregator. This " grain of

linearity is what allows us to bridge graph notions to the convergence properties of the operator T .

Indeed, the third step (Lemma 5 and Proposition 8) shows that when W is a f0; 1g-valued stochastic
matrix that partitions the agents in m classes of agents that share the only individual in the class they

observe (see De�nition 12), then T is asymptotically regular. The third step thus o¤ers an example

of a graph-theoretic property encoded by W , which yields asymptotic regularity. In proving this step,

we generalize the techniques of Edelstein and O�Brien [27, Lemma 1].30 The decomposition used in

the third step yields convergence, but it is a very special one. This concern is partially tamed by

the fourth step (Lemma 6): if A (T ) is aperiodic and nontrivial, then there exists t 2 N such that

T t and T t+1 possess such a special decomposition, making T t and T t+1 convergent. In proving this

step, we apply to the matrix W the convergence result found by Golub and Jackson [35]. This is

the only overlap with the linear case and its techniques. That said, we apply their result to further

decompose W t and so T t, not to prove convergence. In general, for robust opinion aggregators, it is

not possible to partition the society into blocks and apply the consensus results to each of them. In

fact, the network of weak ties makes this decomposition dependent on the vector of current opinions.

In the �nal step (proof of point 1 of Theorem 2), we prove that if T t and T t+1 are convergent, so is

T . To our knowledge, the second point of Theorem 2 does not have a counterpart in the literature.31

Convergence to consensus and the computer science literature The multidisciplinary lit-

erature on repeated averaging procedures is mostly focused on convergence to consensus: a relevant

question which we study in Section 3.3. We now discuss the most important contributions to this

issue. The closest paper to our functional approach is Moreau [55], who considers the iteration of a

nonlinear and time-varying operator on a Euclidean space. Neither our results nor the ones in [55]

29Recall that we endow Rn with the supnorm. Hence T might fail to be nonexpansive with respect to the Euclidean
norm (see also Remark 2). Moreover, proving that asymptotic regularity is equivalent to convergence can also be obtained
using the techniques of Browder and Petryshyn [14, Theorem 2].
30Their case is more general in terms of the domain of T in that B can be any convex subset of a normed vector space.

However, their generality comes at a cost. In our jargon, they are only studying the case in which T is self-in�uential,
which in our case would only yield the intermediate step needed to derive Corollary 1.
31Of course, there is also a vast literature on monotone dynamical systems in continuous time. This literature analyzes

the limit set of the corresponding di¤erential equation�s solution by using completely di¤erent methods, we refer to [66]
for a textbook treatment.
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nest the others. We restrict ourselves to time-homogeneous operators on a one-dimensional space

and impose the additional condition of translation invariance (both papers assume normalization and

monotonicity). While the �rst two restrictions are substantial, and make our approach less useful for

some engineering applications considered in [55], the second only boils down to di¤erent continuity

assumptions between the two papers. Indeed, as we mentioned in the text, the only implication of

translation invariance used in our convergence result is Lipschitz continuity of order 1. Assumption

1.4 of [55] imposes a di¤erent continuity condition on an ancillary function that controls the shrinking

rate of the operator. More generally, [55] (as well as a similar result by Krause [48, Theorem 8.3.4])

can only be used, after some additional steps, to derive point 1 of Proposition 1, which we obtain

from Theorem 2.32 However, [55] does not address issues which are relevant to us such as convergence

without consensus and the wisdom of the crowd. These questions signi�cantly complicate the analysis

and we need to resort to completely di¤erent techniques coming from functional analysis as discussed

above.33

In addition, since our opinion aggregators are microfounded, under mild conditions, they inherit the

primitive observation network structure of the foundation (see Proposition 5). In turn, this imposes a

strong discipline on the averaging process that allows us to provide bounds on the rate of convergence

to consensus which are function of the underlying network. Indeed, we could obtain these results via

a nonlinear version of a well-known fact: in DeGroot�s model, convergence to consensus happens if

there exists t̂ 2 N such that some column k of W t̂ is strictly positive (see, e.g., Jackson [43, Corollary

8.2]). In our model, this condition generalizes as follows: there exist t̂ 2 N and k 2 N such that agent

k strongly in�uences every other agent in the population under the network of strong ties A
�
T t̂
�
.

If this condition holds, which is implied by point 1 in Proposition 1, not only we would have that

convergence to consensus always obtains, but we could also derive bounds on the rate of convergence.

Namely, there exists " 2 (0; 1) such that:34 �T (x)� T t (x)1 � 2 (1� ")b
t
t̂
c kxk1 8t 2 N;8x 2 B:

In particular, if T satis�es point 1 of Proposition 1 with M = N , then t̂ can be chosen to be the

smallest integer such that each entry of A (T )t̂ is strictly positive, i.e., t̂ is the smallest integer such

that for each i; j 2 N there exists a path of length t̂ from i to j. This allows us to provide several

bounds, for example, it is known that t̂ � d2 + 1 where d is the diameter of the network A (T ) (see,
e.g., Neufeld [61]) or t̂ � n+ s (n� 2), provided the shortest (simple) cycle has length s � 1 (see, e.g.,
Horn and Johnson [41, Theorem 8.5.7]).

Wisdom of the crowd and asymptotic learning Among the recent papers, the one closest to our

wisdom of the crowd results is Molavi et al. [54]. However, both the questions and the methodology

32 Importantly, a similar internality condition is linked to the underlying network structure by Mueller-Frank [59].
33Other important papers that give di¤erent but related conditions for convergence to consensus include Angeli and

Bliman [3], Cortes [23], that also shares with us the use of Clarke�s di¤erential (although in a completely di¤erent way),
and Chen et al. [21], that generalize Moreau�s model by allowing for delays in the transmission of opinions between
neighbors.
34Recall that, given s 2 (0;1), bsc is the integer part of s, that is, the greatest integer l 2 N0 such that s � l. See the

working paper version [18] for a proof of this claim.
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are rather di¤erent. First, they follow Jadbabaie et al. [44] in considering social learning when agents

both repeatedly receive external signals about an underlying state of the world and naively combine

the beliefs of their neighbors. Instead, we follow the wisdom of the crowd approach of [35], and we

study the long-run opinions as the size of the society grows to in�nity. Therefore, we single out the

role of the network structure and the opinion aggregator in e¢ ciently combining the agents� initial

information as the network�s size increases. For the questions we explore, log-linear aggregators a

la [54] can be studied in an equivalent linear system, thus making use of the results developed for

DeGroot�s model and its time-varying versions. So, our results cover their aggregators too after an

opportune transformation.

Other related contributions Both Mueller-Frank [59] and Arieli et al. [4] address di¤erent ro-

bustness concerns in a social learning setting: in [59] it is with respect to external manipulation of the

initial opinions, while in [4] it is with respect to the initial information structure of the agents. Further

a�eld Holme and Newman [40] and the subsequent literature study a model of opinion dynamics in

which some of the links of the underlying network are broken and obtain polarization, as it happens

in our trimmed means example. Di¤erently from us, they consider the case in which the broken links

are random and independent of the current opinion (while the ones that replace them must share the

same opinion) and only provide numerical results.

Finally, our results also make use of some techniques coming from decision theory, and in particular

Ghirardato et al. [34], Maccheroni et al. [51], and Schmeidler [65]. The papers [34] and [51] are the

�rst to study functionals that satisfy normalization, monotonicity, and translation invariance, using

nonstandard di¤erential techniques. These techniques turn out to be particularly useful when we

discuss the wisdom of the crowd. The third paper introduces the class of comonotonic additive

functionals that include rank-dependent aggregators.

7 Conclusion

We see our results on the wisdom of the crowd as a natural starting point for further work. In Section

4.1, we considered a sequence of robust opinion aggregators fT (n)gn2N and a derived sequence of
(uniform) DeGroot�s aggregators fW (n)gn2N. Each W (n) was constructed over the networks of weak

ties �A (n) which we assumed to be undirected. In a nutshell, we showed that if the Jacobian of each

T (n), whenever de�ned, is uniformly dominated by the corresponding W (n), then the wisdom of the

crowd holds, provided the dominating graphs exhibit enough connectivity. A careful inspection of the

proof shows that W (n) does not have to be necessarily induced by the network of weak ties. For

example, it can be induced by any undirected multigraph and still the result would hold. In both

cases, connectivity is measured by the second largest eigenvalue in modulus, which can be computed

thanks to the graphs being undirected. It remains an open question if the same type of result holds

true when the graph is not assumed to be undirected, for example, by replacing the eigenvalue measure

with another coe¢ cient of ergodicity.

On a more applied side, our results can be important tools for studying the transmission of idio-

syncratic shocks to aggregate �uctuations in large economies. Even if we derived �T as the operator
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mapping initial opinions to long-run opinions, our Theorem 3 would apply to any nonlinear opera-

tor with the same properties. For example, we might consider a standard macroeconomic model of

production networks and derive the equilibrium output and prices as functions of the idiosyncratic

shocks of the �rms. In their seminal paper, Acemoglu et al. [1] obtain linear equilibrium maps and

provide su¢ cient conditions for the persistence of aggregate �uctuations in large economies. In our

language, this means a non-zero asymptotic variance as n ! 1. Under more general speci�cations
of the production functions or, perhaps more interestingly, under endogenous network formation (see,

e.g., Kopytov et al. [47]), the equilibrium maps might well be nonlinear, but still satisfy our properties.

Therefore, our results would be the �rst step to extend and test the results of [1] in these more general

and realistic settings. In all these cases, it would be interesting to derive the su¢ cient and necessary

conditions for persistent aggregate �uctuations on the equilibrium operators from properties of the

primitives, in the spirit of our Propositions 3 and 4 and Corollary 2. This is the subject of current

investigation.

A Appendix: convergence

All the missing proofs are in the Online Appendix (see Section D.1). The next three ancillary lemmas

highlight the properties of T and the limiting operator �T , whenever it exists. Their proofs are based

on routine arguments.

Lemma 1 Let T be an opinion aggregator. The following statements are true:

1. If T is robust, then it admits an extension S : Rn ! Rn which is also robust.

2. If T is normalized and monotone, then
T t (x)1 � kxk1 for all x 2 B and for all t 2 N.

Lemma 2 If T is a robust opinion aggregator, then T t is nonexpansive (i.e., Lipschitz continuous of
order 1) for all t 2 N. In particular, T is nonexpansive.

Despite being easy to derive, the property of nonexpansivity plays an important role in what

follows and it also rules out the presence of chaotic behavior. The proof of next lemma instead relies

on the property of �being a limit�. It thus shows that the properties of T are often inherited by �T ,

provided the latter exists.

Lemma 3 Let T be an opinion aggregator. If T is Cesaro convergent, then �T : B ! B, as de�ned in

equation (2), is well de�ned and �T � T = �T . Moreover,

1. If T is nonexpansive, so is �T . In particular, �T is continuous.

2. If T is normalized and monotone, so is �T .

3. If T is robust, so is �T .

4. If T is odd, so is �T , provided I is a symmetric interval, that is, k 2 I if and only if �k 2 I.
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We can now prove that any sequence of updates of a robust opinion aggregator converges a la

Cesaro and this convergence is uniform on bounded subsets of B.

Proof of Theorem 1. Consider x 2 B. By point 2 of Lemma 1, we have that
�
T t (x)

	
t2N is a

bounded sequence and, in particular, relatively compact. By Lemma 2, T is nonexpansive. By Baillon

et al. [5, Theorem 3.2 and Corollary 3.1], we can conclude that C-limt T t (x) exists for all x 2 B. By
Lemma 3, �T is a robust opinion aggregator such that �T � T = �T . Next, consider a bounded subset B̂

of B. De�ne by ~B the closed convex hull of B̂. Since B̂ is bounded and B is closed and convex, ~B is

a closed and bounded subset of B and, in particular, compact. For each � 2 N de�ne S� : ~B ! Rn by

S� (x) =
1

�

�X
t=1

T t (x) 8x 2 ~B:

By Lemma 2, S� is well de�ned and nonexpansive for all � 2 N. The collection fS�g�2N belongs to the
space C

�
~B;Rn

�
of continuous functions from ~B to Rn. This space is a Banach space once endowed

with the supnorm: kfk� = supx2 ~B kf (x)k1 for all f 2 C
�
~B;Rn

�
. By [26, pp. 135�136] and since

fS�g�2N is a collection of nonexpansive maps, this implies that the sequence fS�g�2N � C
�
~B;Rn

�
is equicontinuous. By contradiction, assume that S�

k k�
6! �Tj ~B . This would imply that there exist

" > 0 and a subsequence fS�mgm2N � fS�g�2N such that
S�m � �Tj ~B


�
� " for all m 2 N. By

the Arzela-Ascoli Theorem (see, e.g., [26, Theorem 7.5.7]) and since fS�mgm2N is equicontinuous and
fS�m (x)gm2N � Rn is bounded for all x 2 ~B, this would imply that there exists a subsequencen
S�m(l)

o
l2N

and a function Ŝ 2 C
�
~B;Rn

�
such that liml

S�m(l) � Ŝ� = 0. By the previous part

of the proof, recall that lim� S� (x) = �T (x) for all x 2 ~B. By de�nition of k k�, it would follow
that �T (x) = liml S�m(l) (x) = Ŝ (x) for all x 2 ~B, that is, �T = Ŝ on ~B. This would imply that

0 < " � liml
S�m(l) � �Tj ~B


�
= 0, a contradiction. We can conclude that

0 � lim
�
sup
x2B̂

1�
�X
t=1

T t (x)� �T (x)


1

� lim
�
sup
x2 ~B

1�
�X
t=1

T t (x)� �T (x)


1

= lim
�

S� � �Tj ~B

�
= 0;

proving the last part of the statement. �

Remark 2 Theorem 1 could be seen as a version of the classic nonlinear ergodic theorem of Baillon

(see, e.g., Krengel [49, Section 9.3]). The generalization we are relying upon is the one contained in

Baillon et al. [5, Theorem 3.2 and Corollary 3.1]. Compared to our version, the part that would be

missing is the one contained in (3). Observe that (3), not only guarantees uniform Cesaro convergence

of
�
T t (x)

	
t2N, but also the independence from the initial condition of the rate of such convergence.

This latter property might play an important role in applications and is missing in the aforementioned

works. Finally, in the working paper version of this manuscript, exploiting the �nite dimensionality

of our framework, we provide a self-contained proof. N

We next prove our �rst result on standard convergence: Theorem 2. We begin by presenting few

facts which are useful for proving point 1. First, we identify a technical property, termed asymptotic
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regularity, which characterizes convergence. Second, we show how A (T ) being nontrivial is equivalent

to T having a useful decomposition. Finally, via this decomposition, we show that aperiodicity of

A (T ) yields asymptotic regularity, hence convergence. We then prove point 2 of Theorem 2 for an

important special case: N strongly connected under �A (T ). The general case then follows by observing

that a robust opinion aggregator can be restricted to any strongly connected component of �A (T ) and

retain its properties, including convergence.

Lemma 4 Let T be a robust opinion aggregator. The following statements are equivalent:

(i) T is asymptotically regular, that is, limt
T t+1 (x)� T t (x)1 = 0 for all x 2 B;

(ii) T is convergent.

Proposition 7 Let T be a robust opinion aggregator. The following statements are equivalent:

(i) A (T ) is nontrivial;

(ii) There exist W 2 W and " 2 (0; 1) such that

T (x) = "Wx+ (1� ")S (x) 8x 2 B (25)

where S is a robust opinion aggregator.

Moreover, we have that W in (ii) can be chosen to be such that A (W ) = A (T ).

Proof. (i) implies (ii). For each i; j 2 N if j strongly in�uences i, consider "ij 2 (0; 1) as in (7)
otherwise let "ij = 1=2. De�ne ~W to be such that ~wij = aij"ij for all i; j 2 N where aij is the

ij-th entry of A (T ). Since each row of A (T ) is not null, for each i 2 N there exists j 2 N such

that aij = 1 and, in particular, ~wij > 0. This implies that
Pn
l=1 ~wil > 0 for all i 2 N . De�ne also

" = min fmini2N
Pn
l=1 ~wil; 1=2g 2 (0; 1). De�ne W 2 W to be such that wij = ~wij=

Pn
l=1 ~wil for all

i; j 2 N . Clearly, we have that for each i; j 2 N

wij > 0 () ~wij > 0 () aij = 1: (26)

This yields that A (W ) = A (T ). Next, consider x; y 2 B such that x � y. De�ne y0 = y. For each
t 2 f1; :::; n� 1g de�ne yt 2 B to be such that yti = xi for all i � t and yti = yi for all i � t+1. De�ne
yn = x. Note that x = yn � ::: � y1 � y0 = y. It follows that for each i 2 N

Ti (x)� Ti (y) =
nX
j=1

�
Ti
�
yj
�
� Ti

�
yj�1

��
�

nX
j=1

aij"ij

�
yjj � y

j�1
j

�
=

nX
j=1

~wij (xj � yj)

=

 
nX
l=1

~wil

!0@ nX
j=1

~wijPn
l=1 ~wil

(xj � yj)

1A =

 
nX
l=1

~wil

!0@ nX
j=1

wij (xj � yj)

1A � "
nX
j=1

wij (xj � yj) :

It follows that

x � y =) T (x)� T (y) � "W (x� y) = " (Wx�Wy) : (27)
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De�ne S : B ! Rn by

S (x) =
T (x)� "Wx

1� " 8x 2 B: (28)

By de�nition of S and since W 2 W and T is normalized and translation invariant, it is immediate to

see that S (ke) = ke for all k 2 I and that S is translation invariant. Since (27) holds and " 2 (0; 1),
routine computations yield that S is monotone. Since S is normalized and monotone, then S (B) � B,
that is, S is a selfmap and, in particular, S is a robust opinion aggregator. By rearranging (28), (25)

follows.

(ii) implies (i). Consider i 2 N . Since W is a stochastic matrix, there exists j 2 N such that

wij > 0. Let x 2 B and h > 0 be such that x + hej 2 B. By (25) and since S is monotone, we
have that Ti

�
x+ hej

�
� Ti (x) = "wijh + (1� ")Si

�
x+ hej

�
� (1� ")Si (x) � "wijh, proving that

j strongly in�uences i and aij = 1. It follows that the i-th row of A (T ) is not null. Since i was

arbitrarily chosen, the statement follows.

Finally, by (26), note that W in (ii) can be chosen to be such that A (W ) = A (T ). �
Point 1 of Theorem 2 builds on two assumptions: i) the matrix of strong ties A (T ) has no null

row; ii) each closed group of A (T ) is aperiodic. The �rst assumption allows for a decomposition of T

into a convex linear combination of a linear opinion aggregator with matrix W and a robust opinion

aggregator S (cf. Proposition 7). We next show that if W takes a very particular form, which we

dub partition matrix, then T is asymptotically regular and, in particular, convergent (Lemma 5 and

Proposition 8 below). The second assumption yields that W can be always chosen such that W t

eventually �contains�a partition matrix. This will prove point 1 of Theorem 2.

De�nition 12 Let J : B ! B be an opinion aggregator. We say that J is a partition operator/matrix

if and only if there exists a family of disjoint nonempty subsets
n
N̂l

om
l=1

of N such that [ml=1N̂l = N
and for each l 2 f1; :::;mg there exists kl 2 N̂l such that Ji (x) = xkl for all i 2 N̂l.

Note that a partition operator is linear. With a small abuse of notation, we will denote the matrix

and the operator by the same symbol.

Lemma 5 Let T be a robust opinion aggregator such that T = "J + (1� ")S where " 2 (0; 1), J is a
partition operator, and S : B ! B is a robust opinion aggregator. Let C be a nonempty subset of B

such that there exists k > 0 satisfying

kT (x)� xk1 < k 8x 2 C: (29)

If there exists � > 0 such that for each t 2 N0 there exists x 2 C satisfyingT t+1 (x)� T t (x)1 � �; (30)

then
�
T t (x) : x 2 C and t 2 N0

	
is unbounded.

Proposition 8 Let T be a robust opinion aggregator. If T is such that T = "J + (1� ")S where
" 2 (0; 1), J is a partition operator, and S is a robust opinion aggregator, then T is asymptotically

regular and, in particular, convergent.
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Proof. Fix x 2 B. In Lemma 5, set C = fxg. Clearly, there exists k > 0 that satis�es kT (x)� xk1 <

k. By point 2 of Lemma 1 and since T is a robust opinion aggregator, it follows that
�
T t (x)

	
t2N0 is

bounded. By Lemma 5, we have that for each � > 0 there exists �t 2 N0 such thatT �t+1 (x)� T �t (x)
1
< �: (31)

Since T is nonexpansive,
�T t+1 (x)� T t (x)1	t2N0 is a decreasing sequence. By (31) and since�T t+1 (x)� T t (x)1	t2N0 is a decreasing sequence, we have that for each � > 0 there exists �t 2 N

such that
T t+1 (x)� T t (x)1 < � for all t � �t, that is, limt

T t+1 (x)� T t (x)1 = 0. Since x was

arbitrarily chosen, it follows that T is asymptotically regular. By Lemma 4, this implies that T is

convergent. �
Lemma 6 below shows that if A (T ) is aperiodic and nontrivial, then there exists �t 2 N such that

T �t = J + (1� )S (resp. T �t+1 = J + (1� )S) where J is a partition operator,  2 (0; 1), and S
is a robust opinion aggregator. The operator J only depends on A (T ) while  and S both depend on
�t (resp. �t + 1). In turn, Proposition 8 yields that T �t and T �t+1 are convergent. This will be su¢ cient

to imply the convergence of T .

Lemma 6 Let T be a robust opinion aggregator. If A (T ) is aperiodic and nontrivial, then there exists
�t 2 N such that T �t and T �t+1 are convergent.

Proof. By Proposition 7 and since A (T ) is nontrivial, we have that there exists W 2 W, " 2 (0; 1),
and a robust opinion aggregator S : B ! B such that

T (x) = "Wx+ (1� ")S (x) 8x 2 B: (32)

Moreover, W can be chosen to be such that A (W ) = A (T ). By [35, Theorems 2 and 3] and since

A (T ) is aperiodic, this implies that there exist �t 2 N and a partition
n
N̂l

om
l=1

of N such that for each

l 2 f1; :::;mg there exists kl 2 N̂l satisfying w(
�t)
ikl
; w

(�t+1)
ikl

> 0 for all i 2 N̂l.35 It follows that

W
�t = ��tJ + (1� ��t) ~W�t and W

�t+1 = ��t+1J + (1� ��t+1) ~W�t+1 (33)

where ��t; ��t+1 2 (0; 1), J is a partition operator/matrix,36 and ~W�t as well as ~W�t+1 are stochastic

matrices. By (32) and induction, we also have that T �t (x) = "�tW �tx +
�
1� "�t

�
~S�t (x) and T

�t+1 (x) =

"�t+1W �t+1x +
�
1� "�t+1

�
~S�t+1 (x) for all x 2 B, where ~S�t and ~S�t+1 are robust opinion aggregators.

By (33), it follows that T �t = �tJ + (1� �t) Ŝ�t and T
�t+1 = �t+1J + (1� �t+1) Ŝ�t+1 where �t = "�t��t

(resp. �t+1 = "
�t+1��t+1) and Ŝ�t (x) =

"�t(1���t)
1�"�t��t

~W�tx +
1�"�t
1�"�t��t

~S�t (x) (resp. Ŝ�t+1 (x) =
"�t+1(1���t+1)
1�"�t+1��t+1

~W�t+1x +

1�"�t+1
1�"�t+1��t+1

~S�t+1 (x)) for all x 2 B. It follows that �t; �t+1 2 (0; 1) and Ŝ�t as well as Ŝ�t+1 are robust
opinion aggregators. By Proposition 8, this implies that T �t and T �t+1 are convergent. �

We next present two results which are instrumental to prove point 2 of Theorem 2. To this end,

we focus on the network of weak ties �A (T ). Assume that
�
C[r]
	
r2f0;:::;d�1g is a family of disjoint

35As usual, we denote by w(
�t)
ikl
(resp. w(

�t+1)
ikl

) the entry in the i-th row and kl-th column of the matrix W
�t (resp. W �t+1).

36That is, Ji (x) = xkl for all i 2 N̂l and for all l 2 f1; :::;mg where
n
N̂l

om
l=1

and fklgml=1 have been de�ned above.
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nonempty subsets of N such that [d�1r=0C[r] = N with d � 1. Given
�
x[r]
	
r2f0;:::;d�1g � B, we denote

by x =
Pd�1
r=0 x

[r]1C[r] 2 B the vector whose i-th generic component is such that xi = x
[r0]
i when

i 2 C[r0] and C[r0] is the only element in
�
C[r]
	
r2f0;:::;d�1g containing i.

Lemma 7 Let T be an opinion aggregator and
�
C[r]
	
r2f0;:::;d�1g a family of disjoint nonempty subsets

of N such that [d�1r=0C[r] = N with d � 1. If T is normalized and monotone, then �A (T ) is nontrivial.

Moreover, if �{ 2 N and fj 2 N : �a�{j = 1g � C[r�{] for some r�{ 2 f0; :::; d� 1g, then

x =

d�1X
r=0

x[r]1C[r] =) T�{ (x) = T�{

�
x[r�{]

�
: (34)

Proposition 9 Let T be a robust opinion aggregator such that N is strongly connected under �A (T ).

If T is convergent, then the network of weak ties �A (T ) is aperiodic and nontrivial.

Proof. By Lemma 7 and since T is normalized and monotone, �A (T ) is nontrivial. By contradiction,
assume that �A (T ) is not aperiodic, that is, there exists a closed group M which is not aperiodic

under �A (T ). Since N is strongly connected under �A (T ), we have that N is the only closed group,

yielding that the greatest common divisor of the lengths of the simple cycles in N is d � 2. For each
i 2 N de�ne �Ni = fj 2 N : �aij = 1g. It follows that there exists a partition of N in cyclic classes�
C[r]
	
r2f0;:::;d�1g such that [i2C[r] �Ni � C[r]�[1] for all r 2 f0; :::; d� 1g where [r] are the elements of

Zd and � is the standard sum in Zd.37 Since I has nonempty interior, there exist a; b 2 I such that
a > b. De�ne the vector x 2 B to be such that x =

Pd�1
r=0

�
k[r]e

�
1C[r] , where k[0] = a and k[r] = b for

all r 2 f1; :::; d� 1g. By Lemma 7 and induction and since [i2C[r] �Ni � C[r]�[1] for all r 2 f0; :::; d� 1g,
we have that

T t (x) =
d�1X
r=0

�
k[r]�t[1]e

�
1C[r] 8t 2 N:

This implies that
T t+1 (x)� T t (x)1 � a� b > 0 for all t 2 N, a contradiction with Lemma 4 and

T being convergent. �
Proof of Theorem 2. 1. We adopt the usual convention T 0 (x) = x for all x 2 B. By Lemma 6 and
since A (T ) is aperiodic and nontrivial, there exists �t 2 N such that T �t and T �t+1 are convergent. We
next show that this implies that T is convergent. Fix x 2 B. Since T �t is convergent, we can conclude
that limk T k

�t (x) exists. Denote �x = limk T k
�t (x). Since T is continuous and so is T �t, it is plain that

T �t (�x) = �x. This implies that

T
�t (T s (�x)) = T

�t+s (�x) = T s+
�t (�x) = T s

�
T
�t (�x)

�
= T s (�x) 8s 2 N0:

37See Seneta [64, Section 1.3] and Kemeni and Snell [45, Section 1.4]. There is a minor caveat. The de�nition of
aperiodic used in these works, and more in general in the Markov chains literature, is formally di¤erent from the one
of Golub and Jackson [35], which we also adopt. Yet, when N is strongly connected, they are equivalent. Formally, N
is aperiodic according to our current formulation if and only if the greatest common divisor of the lengths of all cycles,
starting and ending at any node i 2 N , is 1 (cf. Seneta [64, De�nition 1.6]).
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By induction on k, this yields that for each s 2 N0

T (k+1)
�t (T s (�x)) = T k

�t
�
T
�t (T s (�x))

�
= T k

�t (T s (�x)) = T s (�x) 8k 2 N:

In particular, by setting k = s, we obtain that for each s 2 N

T s(
�t+1) (�x) = T s

�t (T s (�x)) = T s (�x) : (35)

Since T �t+1 is convergent, we have that lims T s(
�t+1) (�x) exists. By (35), this implies that lims T s (�x)

exists. Denote x̂ = lims T s (�x). Since T is continuous, it is plain that T (x̂) = x̂. Since
n
T k�t (�x)

o
k2N

�
fT s (�x)gs2N and T k

�t (�x) = �x for all k 2 N, we have that

�x = lim
k
T k

�t (�x) = lim
s
T s (�x) = x̂ and T (x̂) = x̂: (36)

We can now prove that
�
T t (x)

	
t2N converges too. By (36) and since T is nonexpansive, we have that�x� T t+1 (x)1 =
T (�x)� T �T t (x)�1 �

�x� T t (x)1 8t 2 N;

yielding that
��x� T t (x)1	t2N is a decreasing sequence. Moreover, since �x = limk T k�t (x), we have

that the subsequence
n�x� T k�t (x)

1

o
k2N

�
��x� T t (x)1	t2N converges to 0. This implies that

limt T
t (x) = �x. Since x was arbitrarily chosen, the statement follows.

2. By Lemma 7 and since T is normalized and monotone, �A (T ) is nontrivial. Next, we consider a

family of disjoint subsets
n
N̂l

om+1
l=1

of N such that [m+1l=1 N̂l = N where m � 1 and the �rst m sets are

nonempty. Given [64, Section 1.2], we choose the �rst m elements of
n
N̂l

om+1
l=1

to be the classes (the

partition) of essential indexes of �A (T ) and we collect all the possible inessential indexes of �A (T ) in

N̂m+1. If l 2 f1; :::;mg, then N̂l is closed and strongly connected and �aij = 0 for all i 2 N̂l and for all
j 2 N̂ c

l . The set N̂m+1 might be empty. If m = 1 and N̂m+1 = ;, then N is strongly connected under
�A (T ). In this case, by Proposition 9, �A (T ) is aperiodic. Assume that either m > 1 or m = 1 and

N̂m+1 6= ;. By contradiction, assume that �A (T ) is not aperiodic. This implies that there exists a closed
group M which is not aperiodic under �A (T ). It is immediate to see that there exists l 2 f1; :::;mg
such that N̂l � M . Since N̂l has (simple) cycles and the simple cycles of N̂l are simple cycles of M
and M is not aperiodic, the greatest common divisor of the lengths of the cycles of N̂l is greater than

the one of the cycles of M and, in particular, � 2. Set N̂l = fi1; :::; irg. Clearly, r � 2. We introduce
two maps P : Rr ! Rn and � : Rn ! Rr. The �rst is de�ned by x = P (~x) where xi = minh2f1;:::;rg ~xh
if i 62 N̂l and xih = ~xh for all h 2 f1; :::; rg. The second one is de�ned by ~x = � (x) where ~xh = xih
for all h 2 f1; :::; rg. It is immediate to check that P (� (z)) = z1N̂l +

�
minh2f1;:::;rg zihe

�
1N̂c

l
for all

z 2 Rn. Note that P
�
~B
�
� B and � (B) � ~B where ~B = Ir. Next, we de�ne S : ~B ! ~B by

S (~x) = � (T (P (~x))) for all ~x 2 ~B. It is routine to check that S is a robust opinion aggregator.

Moreover, by construction and since N̂l is strongly connected and not aperiodic, we also have that

the restricted set of agents ~N = f1; :::; rg is strongly connected and not aperiodic under �A (S). Note
that St (~x) = �

�
T t (P (~x))

�
for all ~x 2 ~B. Indeed, by Lemma 7 and induction and since �aij = 0 for
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all i 2 N̂l and for all j 2 N̂ c
l , we have that for each t 2 N and for each ~x 2 ~B

St+1 (~x) = �
�
T
�
P
�
�
�
T t (P (~x))

����
= �

�
T

�
T t (P (~x)) 1N̂l +

�
min

h2f1;:::;rg
T tih (P (~x)) e

�
1N̂c

l

��
= �

�
T
�
T t (P (~x))

��
= �

�
T t+1 (P (~x))

�
:

Since T is convergent and � is continuous, this implies that S is convergent. By Proposition 9 and

since S is a convergent robust opinion aggregator such that ~N is strongly connected under �A (S), this

is a contradiction with ~N not being aperiodic. �
Proof of Corollary 1. Since T is self-in�uential, it follows that each row of A (T ) is not null, yielding
that A (T ) is nontrivial. Moreover, since there is a simple cycle of length 1 from i to i for all i 2 N ,
each closed group is aperiodic. By Theorem 2, the statement follows. �

In order to prove Proposition 1, we begin by making two simple observations about convergence

and �xed points of the opinion aggregator T : i) convergence is always toward a �xed point of T ;

ii) simple properties on the network A (T ) yield that those �xed points are constant vectors. We

denote by E (T ) the set of �xed points/equilibria of T . Recall that D is the consensus subset, that is,

x 2 D � B if and only if xi = xj for all i; j 2 N .

Proposition 10 Let T be a robust opinion aggregator. If A (T ) is nontrivial, has a unique strongly
connected and closed group M , and M is aperiodic under A (T ), then E (T ) = D.

Proof of Proposition 1. 1. Since A (T ) is nontrivial, has a unique strongly connected and closed
group M , and M is aperiodic under A (T ), we have that any other closed group M 0 is a superset of

M , yielding that M 0 is aperiodic under A (T ). By Theorem 2 and Proposition 10 and since standard

convergence implies Cesaro convergence and T is continuous, it is immediate to see that T is convergent

and �T (x) = limt T t (x) 2 E (T ) = D for all x 2 B, proving the statement.
2. Consider the same family of disjoint subsets

n
N̂l

om+1
l=1

of N , as in the proof of point 2 of

Theorem 2. Recall that if l 2 f1; :::;mg, then N̂l is closed and strongly connected and �aij = 0 for

all i 2 N̂l and for all j 2 N̂ c
l . Recall also that N̂m+1 might be empty. By Theorem 2 and since T

is convergent (to consensus), �A (T ) is aperiodic and nontrivial. By contradiction and since �A (T ) is

nontrivial and each closed group is aperiodic under �A (T ), assume that T does not have a unique

strongly connected and closed group. Since �A (T ) is nontrivial, this implies that there are at least

two distinct strongly connected and closed groups and, in particular, m � 2. Since I has nonempty
interior, consider a; b 2 I such that a > b. Consider a vector x 2 B such that xi = a for all i 2 N̂1,
xi = b for all i 2 N̂l and for all l 2 f2; :::;mg. Since T is convergent, de�ne �x = limt T t (x). By Lemma
7 and induction and since �aij = 0 for all i 2 N̂l, for all j 2 N̂ c

l , and for all l 2 f1; :::;mg, we have that

T ti (x) = xi 8i 2 N̂l;8l 2 f1; :::;mg ;8t 2 N;

proving that �xi = xi for all i 2 N̂l and for all l 2 f1; :::;mg. Since a 6= b, we have that �x is not a

constant vector, a contradiction with convergence to consensus. �
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B Appendix: vox populi, vox Dei?

All the missing proofs are in the Online Appendix (see Section D.2).

Proof of Theorem 3. Given n 2 N, for notational convenience, we de�ne B̂ = În. We �rst make

a few observations. Since the random variables fXi (n)gi2N;n2N are uniformly bounded and �Ti (n) is
continuous for all i 2 N and for all n 2 N, it follows that ! 7! �Ti (n) (X1 (n) (!) ; :::; Xn (n) (!)) is

integrable for all i 2 N and for all n 2 N.
Fix n 2 N and i 2 N . By Rademacher�s Theorem and since �T (n) is nonexpansive, this implies

that �T (n) is almost everywhere di¤erentiable. Let D
�
�T (n)

�
� B̂ be the subset of B̂ where �T (n) is

di¤erentiable. Clearly, �Ti (n) is di¤erentiable on D
�
�T (n)

�
and, in particular, Clarke di¤erentiable.

Since �Ti (n) is monotone and translation invariant, note that r �Ti (n) (x) 2 �n for all x 2 D
�
�T (n)

�
.

Consider �x 2 B̂. Recall that Clarke�s di¤erential is the set (see, e.g., [22, Theorem 2.5.1]):

@ �Ti (n) (�x) = co

�
p 2 �n : p = lim

k
r �Ti (n)

�
xk
�
s.t. xk ! �x and xk 2 D

�
�T (n)

��
: (37)

By De�nition 6 and (37) and since i and n were arbitrarily chosen, note that

0 � sij (T (n)) � pj � �sij (T (n)) 8i; j 2 N;8p 2 @ �Ti (n) (x) ;8x 2 B̂;8n 2 N: (38)

1. We start the proof of point 1 with an ancillary claim.

Claim. For each i; j 2 N and for each n 2 N

sup
f(x;t)2B̂�R:x+tej2B̂g

�� �Ti (n) �x+ tej�� �Ti (n) (x)
�� � `�sij (T (n)) :

Proof of the Claim. Fix i 2 N and n 2 N and consider j 2 N , x 2 B̂, and t 2 R such that x+ tej 2 B̂.
De�ne y = x + tej . By Lebourg�s Mean Value Theorem, we have that there exist � 2 (0; 1) and
�p 2 @ �Ti (n) (z) where z = �y + (1� �)x 2 B̂ such that

�Ti (n)
�
x+ tej

�
� �Ti (n) (x) = �Ti (n) (y)� �Ti (n) (x) =

nX
l=1

�pl (yl � xl) :

By (38), this implies that�� �Ti (n) �x+ tej�� �Ti (n) (x)
�� = j�pj (yj � xj)j = �pj jyj � xj j � `�pj � `�sij (T (n)) :

Since x and t were arbitrarily chosen, it follows that

sup
f(x;t)2B̂�R:x+tej2B̂g

�� �Ti (n) �x+ tej�� �Ti (n) (x)
�� � `�sij (T (n)) :

Since i, n, and j were also arbitrarily chosen, the statement follows. �
Consider now n 2 N and i 2 N . By McDiarmid�s inequality as well as the previous claim, we can
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conclude that for each � > 0

P
�n
! 2 
 :

�� �Ti (n) (X1 (n) (!) ; :::; Xn (n) (!))� E � �Ti (n) (X1 (n) ; :::; Xn (n))���2 � �o�
= P

�n
! 2 
 :

�� �Ti (n) (X1 (n) (!) ; :::; Xn (n) (!))� E � �Ti (n) (X1 (n) ; :::; Xn (n))��� � p�o�

� 2 exp
 
� 2�Pn

j=1 (`�sij (T (n)))
2

!
= 2 exp

 
� 2�

`2
Pn
j=1 �sij (T (n))

2

!
:

Next, by [10, Equation 21.9] and since i and n were arbitrarily chosen, observe that

Var
�
�Ti (n) (X1 (n) ; :::; Xn (n))

�
= E

��
�Ti (n) (X1 (n) ; :::; Xn (n))� E

�
�Ti (n) (X1 (n) ; :::; Xn (n))

��2�
=

Z 1

0
P
�n
! 2 
 :

�
�Ti (n) (X1 (n) (!) ; :::; Xn (n) (!))� E

�
�Ti (n) (X1 (n) ; :::; Xn (n))

��2 � to� dt
=

Z `2

0
P
�n
! 2 
 :

�� �Ti (n) (X1 (n) (!) ; :::; Xn (n) (!))� E � �Ti (n) (X1 (n) ; :::; Xn (n))���2 � to� dt
�
Z `2

0
2 exp

 
� 2t

`2
Pn
j=1 �sij (T (n))

2

!
dt

= `2

0@ nX
j=1

�sij (T (n))
2

1A"1� exp � 2Pn
j=1 �sij (T (n))

2

!#
8i 2 N;8n 2 N:

If we consider � 2 N and n � �, this implies that Var
�
�T� (n) (X1 (n) ; :::; Xn (n))

�
! 0, proving (16).

For the second statement of point 1, assume that f"i (n)gi2N;n2N is symmetric and that fT (n)gn2N
is odd. It is enough to show that �Ti (n) is an unbiased estimator of � for all i 2 N and for all n 2 N.
By Theorem 1 as well as points 3 and 4 of Lemma 3 and since I = R and T (n) is an odd robust

opinion aggregator for all n 2 N, we have that �T (n) is a well-de�ned odd robust opinion aggregator
for all n 2 N. Since �T (n) is odd for all n 2 N and f"i (n)gi2N;n2N is symmetric, this implies that for
each i 2 N and for each n 2 NZ



�Ti (n) ("1 (n) ; :::; "n (n)) dP =

Z



�Ti (n) (�"1 (n) ; :::;�"n (n)) dP = �
Z



�Ti (n) ("1 (n) ; :::; "n (n)) dP:

It follows that 2
R


�Ti (n) ("1 (n) ; :::; "n (n)) dP = 0 for all i 2 N and for all n 2 N. Since �T (n) is

translation invariant, we can conclude that for each i 2 N and for each n 2 N

E
�
�Ti (n) (X1 (n) ; :::; Xn (n))

�
=

Z



�Ti (n) (X1 (n) ; :::; Xn (n)) dP

=

Z



�Ti (n) (�+ "1 (n) ; :::; �+ "n (n)) dP = �+

Z



�Ti (n) ("1 (n) ; :::; "n (n)) dP = �;

proving that �Ti (n) is an unbiased estimator of � and thus concluding the proof of point 1.

2. Fix n 2 N and i; j 2 N . Consider x; y 2 B̂ such that x � y. By Lebourg�s Mean Value Theorem
and (38), we have that there exist � 2 (0; 1) and p 2 @ �Ti (n) (z) where z = �x + (1� �) y 2 B̂ such
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that �Ti (n) (x)� �Ti (n) (y) =
Pn
l=1 pl (xl � yl) � pj (xj � yj) � sij (T (n)) (xj � yj). Since x and y were

arbitrarily chosen, we have that

�Ti (n) (x)� �Ti (n) (y) � sij (T (n)) (xj � yj) 8x; y 2 B̂ s.t. x � y: (39)

By de�nition and since �T (n) is a robust opinion aggregator, we have that sij (T (n)) 2 [0; 1]. If

sij (T (n)) < 1, de�ne Rij (n) : B̂ ! R by Rij (n) (x) =
�
�Ti (n) (x)� sij (T (n))xj

�
=
�
1� sij (T (n))

�
for all x 2 B̂. By (39), it is immediate to see that Rij (n) is monotone and

�Ti (n) (x) = sij (T (n))xj +
�
1� sij (T (n))

�
Rij (n) (x) 8x 2 B̂: (40)

If sij (T (n)) = 1, then �Ti (n) (x) = xj for all x 2 B̂ and we can choose Rij (n) : B̂ ! R to be any
monotone functional and obtain (40). Since n, i, and j were arbitrarily chosen, it follows that (40)

holds for all i; j 2 N and for all n 2 N.
By assumption, there exists � 2 N such that � = lim supnmaxj2N s�j (T (n)) =2 > 0. It follows that

there exist a subsequence fT (nm)gm2N and a sequence fjmgm2N � N such that s�jm (T (nm)) � � and
jm � nm for all m 2 N. Fix m 2 N. By (40) and Harris�inequality (see, e.g., [11, Theorem 2.15]) and

since fXi (nm)gi2N is a collection of independent random variables, we have that

Var
�
�T� (nm) (X1 (nm) ; :::; Xnm (nm))

�
=
�
1� s�jm (T (nm))

�2
Var (R�jm (nm) (X1 (nm) ; :::; Xnm (nm))) + s�jm (T (nm))

2Var (Xjm (nm))

+ 2
�
1� s�jm (T (nm))

�
s�jm (T (nm))Cov (R�jm (nm) (X1 (nm) ; :::; Xnm (nm)) ; Xjm (nm))

� �2Var (Xjm (nm)) = �2Var ("jm (nm)) � �2�2 > 0:

Since m was arbitrarily chosen, we can conclude that fT (n)gn2N does not have vanishing variance.
Moreover, since fXi (n)gi2N;n2N is an array of uniformly bounded random variables, so is the ar-

ray
�
�Ti (n) (X1 (n) ; :::; Xn (n))

	
i2N;n2N. This implies that

�T� (n) (X1 (n) ; :::; Xn (n)) cannot converge

in probability to a constant (otherwise, fT (n)gn2N would have vanishing variance), proving that
fT (n)gn2N is not wise. �

C Appendix: discussion

All the missing proofs are in the Online Appendix (see Section D.3). Given the pro�le of loss functions

� = (�i)
n
i=1, de�ne T

� : B � B as

T� (x) =
nY
i=1

argminc2R �i (x� ce) 8x 2 B: (41)

The next two ancillary lemmas are instrumental in showing that T� is well de�ned and behaved.
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Lemma 8 Let � be a pro�le of loss functions. If � 2 �R, then for each i 2 N and ~z 2 Rn

~z � 0 =) �i (~z) > �i

�
~z �min

j2N
~zje

�
;

and

0� ~z =) �i (~z) > �i

�
~z �max

j2N
~zje

�
:

Lemma 9 Let � be a pro�le of loss functions. If � 2 �R, then for each i 2 N and for each x 2 Rn

the function fi;x : R ! R+, de�ned by fi;x (c) = �i (x� ce) for all c 2 R, is continuous and convex.
Moreover, if � has strictly increasing shifts, then fi;x is strictly convex for all i 2 N and for all x 2 Rn.

To prove (i) implies (ii) of Theorem 4, we prove a more general result, namely, that the solution

correspondence (41) of problem (21), always admits a selection which is a robust opinion aggregator.

Proposition 11 Let � be a pro�le of loss functions. If � 2 �R, then the correspondence T� is well
de�ned and admits a selection T � which is a robust opinion aggregator. Moreover, if � has strictly

increasing shifts, then T� = T � is single-valued and, in particular, is a robust opinion aggregator.

Proof. Fix i 2 N . We begin by considering the correspondence T�i : B � I de�ned by T�i (x) =

argminc2R �i (x� ce) for all x 2 B. We next show that T
�
i is well de�ned, nonempty-, convex-, and

compact-valued, and such that for each x; y 2 B

x � y =) T�i (x) �SSO T
�
i (y) (42)

where �SSO is the strong set order. Fix x 2 B. We next show that

8d 62
�
min
j2N

xj ;max
j2N

xj

�
;9c 2

�
min
j2N

xj ;max
j2N

xj

�
s.t. �i (x� ce) < �i (x� de) : (43)

Consider d as above. We have two cases either d < minj2N xj or d > maxj2N xj . In the �rst case, we

have that x�de� 0, in the second case, we have that 0� x�de. By Lemma 8 and since � 2 �R, if we
set ~c = minj2N xj�d (resp. maxj2N xj�d), we obtain that �i (x� de) > �i (x� de� ~ce) = �i (x� ce)
where c = minj2N xj 2 [minj2N xj ;maxj2N xj ] (resp. c = maxj2N xj 2 [minj2N xj ;maxj2N xj ]),

proving (43). By (43), we can conclude that

min
c2R

�i (x� ce) = min
c2I

�i (x� ce) = min
c2[minj2N xj ;maxj2N xj]

�i (x� ce) (44)

as well as argminc2R �i (x� ce) = argminc2I �i (x� ce) = argminc2[minj2N xj ;maxj2N xj] �i (x� ce). By
Weierstrass�Theorem and since, by Lemma 9, the map c 7! �i (x� ce) is continuous and convex,
it follows that the above minimization problems admit solution and each argmin is a compact and

convex set. Since x was arbitrarily chosen, this implies that T�i is well de�ned, nonempty-, convex-,

and compact-valued and, in particular,

; 6= T�i (x) �
�
min
j2N

xj ;max
j2N

xj

�
� I 8x 2 B: (45)
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We next prove (42). In order to do so, we rewrite explicitly (44) as a problem of parametric opti-

mization/monotone comparative statics. Next, de�ne f : I �B ! R by f (c; x) = ��i (x� ce) for all
(c; x) 2 I � B. It is immediate to see that T�i (x) = argmaxc2I f (c; x) for all x 2 B. We next show
that f has increasing di¤erences in (c; x). Consider x; y 2 B as well as c; d 2 I such that c � d and
x � y. De�ne z = x� ce, v = y � ce, and h = c� d. Note that z � v and h 2 R+. Since � 2 �R, it
follows that

f (c; x)� f (d; x) = �i (x� de)� �i (x� ce) = �i (z + he)� �i (z)
� �i (v + he)� �i (v) = �i (y � de)� �i (y � ce) = f (c; y)� f (d; y) :

This shows that f satis�es the property of increasing di¤erences in (c; x). By [53, Theorem 5], T�i
satis�es (42). We �nally show that T�i is such that for each x 2 B and for each k 2 R such that

x+ ke 2 B
c? 2 T�i (x) () c? + k 2 T�i (x+ ke) : (46)

Fix x 2 B. Consider k 2 R such that x + ke 2 B. Consider c? 2 T�i (x). By de�nition, it

follows that �i (x� c?e) � �i (x� ce) for all c 2 R. This implies that �i (x+ ke� (c? + k) e) =
�i (x� c?e) � �i (x� (d� k) e) = �i (x+ ke� de) for all d 2 R. By de�nition of T�i , this implies that
c?+k 2 T�i (x+ ke). Vice versa, if c?+k 2 T

�
i (x+ ke), then �i (x+ ke� (c? + k) e) � �i (x+ ke� de)

for all d 2 R, yielding that �i (x� c?e) = �i (x+ ke� (c? + k) e) � �i (x� ce) for all c 2 R, proving
that c? 2 T�i (x).

To sum up, since i 2 N was arbitrarily chosen, we proved that, for each i 2 N , T�i is well

de�ned, nonempty-, convex-, and compact-valued, and satis�es (42) as well as (46). Observe also

that T� : B � B is the product correspondence T�=
Qn
i=1T

�
i . We are ready to show that T�

admits a selection T � which is a robust opinion aggregator. De�ne T � : B ! B to be such that

T �i (x) = minT
�
i (x) for all x 2 B, and for all i 2 N . Since T

�
i (x) is nonempty and compact for all

x 2 B and for all i 2 N , it follows that T �i (x) is well de�ned and, in particular, T
�
i (x) 2 T

�
i (x) for all

x 2 B and for all i 2 N , proving that T � is a selection of T�. By (45), it follows that T�i (ke) = fkg
for all k 2 I and for all i 2 N , proving that T �i (ke) = k for all k 2 I and for all i 2 N , that is, that
T � is normalized. Next, consider x; y 2 B such that x � y. By (42), we have that T �i (x) � T �i (y)

for all i 2 N , proving monotonicity of T �i for all i 2 N and so of T �. Finally, consider x 2 B and

k 2 R such that x + ke 2 B. By (46) and de�nition of T �i (x) as well as T
�
i (x+ ke), we have that

T �i (x) 2 T
�
i (x) for all i 2 N , yielding that T

�
i (x) + k 2 T

�
i (x+ ke) for all i 2 N and, in particular,

T �i (x) + k � T �i (x+ ke) for all i 2 N . This implies that T
�
i (x+ ke) = T �i (x) + k for all i 2 N ,

proving translation invariance.38

Finally, by Lemma 9, if � has strictly increasing shifts, then the map c 7! �i (x� ce) is strictly
convex, yielding that each T�i is single-valued and so is T

�. �
Proof of Theorem 4. (i) implies (ii). By Proposition 11 and since � 2 �R and has strictly increasing
shifts, the implication follows.

38Fix i 2 N . By the previous part of the proof, for each x 2 B and for each k 2 R such that x + ke 2 B, we have
that T�i (x+ ke) � T�i (x) + k. Next, note that if x 2 B and x + ke 2 B, then (x+ ke) � ke = x 2 B. It follows that
T�i (x) = T

�
i ((x+ ke)� ke) � T

�
i (x+ ke)� k, proving the opposite inequality.
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(ii) implies (i). Let T : B ! B be a robust opinion aggregator. By point 1 of Lemma 1, there

exists an extension from Rn to Rn. With a small abuse of notation, we denote it by the same symbol
T . Fix i 2 N . De�ne �Ti : Rn ! R+ by �Ti (z) = (Ti (z))

2 for all z 2 Rn. Next, consider h 2 Rn f0g.
Since T is normalized, it follows that �Ti (he) = (Ti (he))

2 = h2 > 0 = (Ti (0))
2 = �Ti (0). Since i and

h were arbitrarily chosen, this implies that � =
�
�Ti
�n
i=1

is sensitive. Since T is translation invariant,

we have that

�Ti (z + he) = (Ti (z + he))
2 = (Ti (z) + h)

2 = (Ti (z))
2 + 2hTi (z) + h

2 8h 2 R;8z 2 Rn: (47)

Consider z; v 2 Rn and h 2 R++. By (47) and since T is monotone, we can conclude that

z � v =) �Ti (z + he)� �Ti (z) = 2hTi (z) + h2 � 2hTi (v) + h2 = �Ti (v + he)� �Ti (v) :

Since i was arbitrarily chosen, it follows that � =
�
�Ti
�n
i=1

has increasing shifts and, in particular,

� 2 �R. Next, consider z; v 2 Rn such that z � v. Set k = minj2N (zj � vj). It follows that k > 0
and z � v + ke. Since T is monotone and translation invariant and k > 0, we can conclude that

T (z) � T (v + ke) = T (v) + ke � T (v). Since z; v 2 Rn were arbitrarily chosen, it follows that
z � v =) T (z)� T (v). By (47), this implies that if z; v 2 Rn and h 2 R++, then

z � v =) �Ti (z + he)� �Ti (z) = 2hTi (z) + h2 > 2hTi (v) + h2 = �Ti (v + he)� �Ti (v) :

Since i was arbitrarily chosen, it follows that � =
�
�Ti
�n
i=1

has strictly increasing shifts. We next

prove (23). By Proposition 11 and since � =
�
�Ti
�n
i=1

2 �R has strictly increasing shifts, we have
that T�i (x) = argminc2R �

T
i (x� ce) is well de�ned and single-valued for all x 2 B and for all i 2 N .

Finally, �x i 2 N and x 2 B. By (47), we have that �Ti (x� ce) = (Ti (x))
2 � 2cTi (x) + c2 for all

c 2 R, which, as a function of c, is quadratic and minimized at c = Ti (x), proving the statement. �
Proof of Proposition 6. Let x 2 B. Call V the set of values the components of x take: V =

fx1; :::; xng. De�ne U to be the subset of vectors y in B such that each component of y coincides

with the value of some component of x, formally, U = fy 2 B : yi 2 V;8i 2 f1; :::; ngg. Note that the
cardinality of U is mn. Since T is a discrete robust opinion aggregator, note that Ti (y) 2 V for all

y 2 U and for all i 2 f1; :::; ng. This implies that T (x) 2 U . By induction, it follows that T t (x) 2 U
for all t 2 N. This implies that the sequence

�
T t (x)

	
t2N can take at most a �nite number of values.

We have two cases:

1.
�
T t (x)

	
t2N converges. If

�
T t (x)

	
t2N converges, then the previous part implies that

�
T t (x)

	
t2N

becomes constant, that is, there exists ~t 2 N such that

T t (x) = T
~t (x) 2 U 8t � ~t: (48)

Call �x the limit of
�
T t (x)

	
t2N. Note that �x = T

~t (x) and T t (�x) = �x for all t 2 N. In particular,
we have that

T (�x) = �x: (49)
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De�ne now �t 2 N to be such that �t = min
�
t 2 N : T t (x) = �x

	
. By (48), �t is well de�ned. By

(49), we have that T t (x) = �x for all t � �t. If �t = 1, then
�
T t (x)

	
t2N is constant to begin

with and so it becomes constant after at most mn periods. Assume �t > 1. We next show that

T t (x) 6= T l (x) for all l; t < �t such that l 6= t. By contradiction, assume that there exist l; t < �t
such that l 6= t and T t (x) = T l (x). Without loss of generality, we assume that l > t. This

would imply that T t+n (x) = Tn
�
T t (x)

�
= Tn

�
T l (x)

�
= T l+n (x) for all n 2 N. In particular,

by setting n = �t � l > 0, we would have that T t+n (x) = T l+n (x) = T �t (x) = �x. Note that

t̂ = t + n < l + n = �t. Thus, this would imply that T t̂ (x) = �x and t̂ < �t, a contradiction with

the minimality of �t. By de�nition of �t, we can also conclude that T t (x) 6= �x for all t < �t. This

implies that
�
T t (x)

	�t�1
t=1

is contained in Un f�xg. Since U contains mn elements and the elements

of
�
T t (x)

	�t�1
t=1

are pairwise distinct, it follows that �t � 1 � mn � 1, proving that
�
T t (x)

	
t2N

converges only if it becomes constant after at most mn periods.

2.
�
T t (x)

	
t2N does not converge. De�ne ~n = m

n. Recall that
�
T t (x)

	~n+1
t=1

� U where the latter

set has cardinality ~n. This implies that there exist m̂; t̂ � ~n + 1 such that T m̂ (x) = T t̂ (x)

and m̂ 6= t̂. Without loss of generality, we assume that m̂ > t̂. It follows that T t̂+n (x) =

Tn
�
T t̂ (x)

�
= Tn

�
T m̂ (x)

�
= T m̂+n (x) for all n 2 N0. De�ne p = m̂ � t̂ > 0. Since t̂ � 1 and

m̂ � ~n+ 1, note that m̂� t̂ � ~n and t̂ � ~n. We have that T t̂+n (x) = T t̂+n+p (x) for all n 2 N0,
proving that T t (x) = T t+p (x) for all t � t̂.

Points 1 and 2 prove the �rst part of the statement as well as the �only if� of the second part.

The �if�part is trivial. �
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D Online Appendix

In this section, we con�ne all the missing proofs. They appear in the order in which the corresponding
statements appear in the text, unless they are new ancillary results.

D.1 Convergence

Proof of Lemma 1. 1. Since T is robust, we have that Ti : B ! R is monotone and translation
invariant for all i 2 N .39 By [6, Theorem 4], Ti is a niveloid for all i 2 N . By [6, Theorem 1], Ti admits
an extension Si : Rn ! R which is a niveloid for all i 2 N . By [6, Theorem 4], Si is monotone and
translation invariant for all i 2 N . De�ne S : Rn ! Rn to be such that the i-th component of S (x)
is Si (x) for all i 2 N and for all x 2 Rn. It is immediate to see that S is monotone and translation
invariant. Fix k0 2 I. Since S is translation invariant and T is normalized, it follows that for each
k 2 R

S (ke) = S
�
k0e+

�
k � k0

�
e
�
= S

�
k0e
�
+
�
k � k0

�
e = T

�
k0e
�
+
�
k � k0

�
e = k0e+

�
k � k0

�
e = ke;

proving that S is normalized and, in particular, that S is robust.

2. By induction, if T is normalized and monotone, then T t is normalized and monotone for
all t 2 N. Consider x 2 B and t 2 N. De�ne k? = mini2N xi and k? = maxi2N xi. Note that
kxk1 = max fjk?j ; jk?jg, k?; k? 2 I, and k?e � x � k?e. Since T t is normalized and monotone, we
have that

k?e = T
t (k?e) � T t (x) � T t (k?e) = k?e;

yielding that
��T t (x)�� � max fjk?j ; jk?jg e and

T t (x)1 � kxk1. Since t and x were arbitrarily
chosen, the statement follows. �
Proof of Lemma 2. Since T is a robust opinion aggregator, Ti is normalized, monotone, and
translation invariant for all i 2 N . By [6, Theorem 4], it follows that Ti is a niveloid for all i 2 N . By
[6, p. 346], it follows that jTi (x)� Ti (y)j � kx� yk1 for all x; y 2 B and for all i 2 N . This implies
that

kT (x)� T (y)k1 = max
i2N

jTi (x)� Ti (y)j � kx� yk1 8x; y 2 B;

proving that T is nonexpansive.
By induction, we next show that T t is nonexpansive for all t 2 N. Since we have shown that T

is nonexpansive, T t is nonexpansive for t = 1, proving the initial step. By the induction hypothesis,
assume that T t is nonexpansive, we have that for each x; y 2 BT t+1 (x)� T t+1 (y)1 =

T �T t (x)�� T �T t (y)�1 �
T t (x)� T t (y)1 � kx� yk ;

39With a small abuse of terminology, we use the same name for similar properties that pertain to functionals and
operators.
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proving the inductive step. The statement follows by induction. �
Proof of Lemma 3. Let x 2 B. Since T is a selfmap, we have that

�
T t (x)

	
t2N � B. Since B is

convex, we have that 1
�

P�
t=1 T

t (x) 2 B for all � 2 N. Since x was arbitrarily chosen, this implies
that A� : B ! B, de�ned by A� (x) =

P�
t=1 T

t (x) =� for all x 2 B, is well de�ned for all � 2 N. Since
B is closed, we have that �T (x) = lim� A� (x) = lim� 1�

P�
t=1 T

t (x) 2 B for all x 2 B, proving that �T
is well de�ned. By the same computations contained in [1, Lemma 20.12], despite T being nonlinear,
one has

A� (T (x)) =
� + 1

�
A�+1 (x)�

1

�
T (x) 8x 2 B;8� 2 N:

This implies that

�T (T (x)) = lim
�
A� (T (x)) = lim

�

� + 1

�
lim
�
A�+1 (x)� lim

�

1

�
T (x) = �T (x) 8x 2 B;

proving that �T � T = �T .

1. By the same inductive argument contained in the proof of Lemma 2, we have that for each
t 2 N the map T t : B ! B is nonexpansive. Since the convex linear combination of nonexpansive
maps is nonexpansive, the map A� : B ! B is nonexpansive for all � 2 N. We can conclude that for
each x; y 2 B �T (x)� �T (y)


1 =

lim
�
A� (x)� lim

�
A� (y)


1
= lim

�
kA� (x)�A� (y)k1 � kx� yk1 ;

proving that �T is nonexpansive. Continuity of �T trivially follows.

2. By induction, we have that for each t 2 N the map T t : B ! B is normalized and monotone.
Since the convex linear combination of normalized and monotone operators is normalized and monotone,
the map A� : B ! B is normalized and monotone for all � 2 N. We can conclude that �T (ke) =
lim� A� (ke) = ke for all k 2 I as well as

x � y =) �T (x) = lim
�
A� (x) � lim

�
A� (y) = �T (y) ;

proving that �T is normalized and monotone.

3. Since T is robust, T is normalized, monotone, and translation invariant. By the previous point,
�T is normalized and monotone. By induction, we have that for each t 2 N the map T t : B ! B
is translation invariant. Since the convex linear combination of translation invariant operators is
translation invariant, the map A� : B ! B is translation invariant for all � 2 N. We can conclude
that for each x 2 B and for each k 2 R such that x+ ke 2 B

�T (x+ ke) = lim
�
A� (x+ ke) = lim

�
[A� (x) + ke] = �T (x) + ke;

proving that �T is translation invariant and, in particular, robust.

4. By induction, we have that for each t 2 N the map T t : B ! B is odd. Since the convex linear
combination of odd maps is odd, the map A� : B ! B is odd for all � 2 N. We can conclude that

�T (�x) = lim
�
A� (�x) = lim

�
[�A� (x)] = � �T (x) 8x 2 B;

proving that �T is odd. �
In order to prove Lemma 4, we are going to rely upon Lorentz�s Theorem.
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Theorem 5 (Lorentz) Let
�
xt
	
t2N � R

n be a bounded sequence. The following statements are equiv-
alent:

(i) There exists �x 2 Rn such that

8" > 0 9�� 2 N 8m 2 N s.t.
1�

�X
t=1

xm+t � �x

1

< " 8� � ��

and limt
xt+1 � xt1 = 0;

(ii) limt xt = �x.

Proof of Lemma 4. By Theorem 1 and since T is robust, we have that if B̂ is a bounded subset of
B, then

lim
�

 
sup
x2B̂

1�
�X
t=1

T t (x)� �T (x)


1

!
= 0 (50)

where �T : B ! B is a robust opinion aggregator such that �T � T = �T . Since �T (T (x)) = �T (x) for all
x 2 B, by induction, we have that �T (Tm (x)) = �T (x) for all m 2 N and for all x 2 B.

(i) implies (ii). Fix x 2 B. De�ne the sequence xt = T t (x) for all t 2 N. By point 2 of Lemma 1,
we have that

�
xt
	
t2N is bounded. Set B̂ =

�
xt
	
t2N. Note that for each � 2 N and for each m 2 N

1

�

�X
t=1

xm+t =
1

�

�X
t=1

Tm+t (x) =
1

�

�X
t=1

T t (Tm (x)) :

Since (50) holds, if we de�ne �x = �T (x), then we have that for each m 2 N

lim
�

1

�

�X
t=1

xm+t = lim
�

1

�

�X
t=1

T t (Tm (x)) = �T (Tm (x)) = �T (x) = �x:

It follows that

sup
m2N

1�
�X
t=1

xm+t � �x

1

= sup
m2N

1�
�X
t=1

T t (Tm (x))� �T (Tm (x))


1

� sup
x2B̂

1�
�X
t=1

T t (x)� �T (x)


1

:

Since (50) holds and T is asymptotically regular, we have that
�
xt
	
t2N satis�es point (i) of Theorem 5.

By Theorem 5, we have that limt T t (x) = limt xt exists. Since x was arbitrarily chosen, the implication
follows.

(ii) implies (i). Fix x 2 B. De�ne xt = T t (x) for all t 2 N. Since T is convergent, we have that�
xt
	
t2N converges and, in particular, is bounded. By Theorem 5, we have that limt

T t+1 (x)� T t (x)1 =

limt
xt+1 � xt1 = 0. Since x was arbitrarily chosen, the implication follows. �

Proof of Lemma 5. We �rst o¤er two de�nitions and make two observations. De�ne the diameter
of
�
T t (x) : x 2 C and t 2 N0

	
by �D.40 Given x 2 B, de�ne xt = T t (x) as well as yt = S

�
xt
�
for all

t 2 N0. Since T is nonexpansive, recall that
�xt � xt�11	t2N is a decreasing sequence for all x 2 B.

Note that this implies that kT (x)� xk1 �
T t+1 (x)� T t (x)1 for all t 2 N0 and for all x 2 B,

yielding that k > �.

40Recall that the diameter of a subset Â of B is the quantity sup
n
kx� yk1 : x; y 2 Â

o
.
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By contradiction, assume that
�
T t (x) : x 2 C and t 2 N0

	
is bounded. This implies that �D <1.

Consider M 2 Nn f1g and P 2 N to be such that M� > �D + � + 1 and
�
P
M

�
> max

n
1; k
(1�")"M

o
.

By (30) and since P 2 N, there exists x 2 C such that
xP+1 � xP1 =

TP+1 (x)� TP (x)1 � �.
Now, we list seven useful facts:

1. By (29) and since
�xt � xt�11	t2N is a decreasing sequence, it follows that k � xi+1 � xi1 �

� for all i 2 f1; :::; Pg.

2. By de�nition of
�
yt
	
t2N0 and since S is nonexpansive, we have that

yt � yt�11 �
xt � xt�11

for all t 2 N.

3. By de�nition of
�
xt
	
t2N0 and since T = "J+(1� ")S, we have that x

t = T
�
xt�1

�
= "J

�
xt�1

�
+

(1� ") yt�1 for all t 2 N, that is,

yt�1 =
1

1� "x
t � "

1� "J
�
xt�1

�
8t 2 N:

By point 2, this yields that
 1
1�"

�
xt+1 � xt

�
� "

1�"
�
J
�
xt
�
� J

�
xt�1

��
1
=
yt � yt�11 �xt � xt�11 for all t 2 N.

4. Let L be an integer in N such that
L >

k

(1� ") "M : (51)

De�ne bm = � + m (1� ") "M for all m 2 f0; :::; Lg. It follows that the collection of intervals
f[bm; bm+1]gL�1m=0 contains L elements whose union is a superset of [�; k].

5. Note that "M�1 1�"i
"i = "M�i�1 � "M�1 � "M�i�1 for all i 2 f1; :::;M � 1g. Since " 2 (0; 1), this

implies that

(1� ") "M
M�1X
i=1

1� "i
"i

� (1� ") "
M�1X
i=1

"M�i�1 = (1� ") "
M�2X
i=0

"i � (1� ") " 1

1� " � " < 1:

6. Let t 2 N, j 2 N , and b; �; c � 0. If xt+1j � xtj � b� c and
xt � xt�11 � b+ �, then (by point

3): b�c1�" �
"
1�"

�
xtkl � x

t�1
kl

�
= b�c

1�" �
"
1�"

�
Jj
�
xt
�
� Jj

�
xt�1

��
� b+� where l is such that j 2 N̂l.

This yields that

xtkl � x
t�1
kl

� b� c

"
� 1� "

"
�: (52)

7. Let t 2 N, j 2 N , and b; �; c � 0. If xtj � xt+1j � b� c and
xt � xt�11 � b+ �, then (by point

3): b�c1�" �
"
1�"

�
xt�1kl

� xtkl
�
= b�c

1�" �
"
1�"

�
Jj
�
xt�1

�
� Jj

�
xt
��
� b+� where l is such that j 2 N̂l.

This yields that

xt�1kl
� xtkl � b�

c

"
� 1� "

"
�: (53)

By de�nition of P , we have that bP=Mc satis�es (51). By point 4, there exists a collection of
intervals f[bm; bm+1]gbP=Mc�1

m=0 which covers [�; k]. By point 1, [�; k] contains
�xi+1 � xi1	Pi=1. Since

we have bP=Mc intervals and the �rst P elements (of the sequence
�xt+1 � xt1	t2N) belong to these

intervals, we have that there exists one of them, Î = [b �m; b �m+1], which contains at least M elements
of
�xi+1 � xi1	Pi=1. Since �xt � xt�11	t2N is decreasing, we have that there exists K 2 N0 such
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that
xK+i+1 � xK+i1 2 Î for all i 2 f1; :::;Mg. This implies that there exists j 2 f1; :::; ng such

that
���xK+M+1
j � xK+Mj

��� � b �m and jjxK+M � xK+M�1jj1 � b �m+1 = b �m + (1� ") "M . We have two
cases:

a. xK+M+1
j � xK+Mj � b �m. Set b = b �m, c = 0, and � = (1� ") "M . By (52), we can conclude that

xK+Mkl
� xK+M�1

kl
� b �m � (1� ") "M

(1� ")
"

: (54)

By (�nite) induction, we next prove that

xK+M+1�i
kl

� xK+M�i
kl

� b �m � (1� ") "M
�
1� "i

�
"i

8i 2 f1; :::;M � 1g : (55)

By (54), the statement is true for i = 1. Next, we assume it is true for i 2 f1; :::;M � 1g and
prove it is still true for i + 1 when i + 1 2 f1; :::;M � 1g. This implies that i � M � 2. De�ne
t = K +M � i. By the induction hypothesis, we have that

xt+1kl
� xtkl = x

K+M+1�i
kl

� xK+M�i
kl

� b �m � (1� ") "M
�
1� "i

�
"i

:

Moreover, we also have that
xt � xt�11 =

xK+M�i � xK+M�i�1
1 � b �m + (1� ") "M . Set

b = b �m, c = (1� ") "M (1�"i)
"i , and � = (1� ") "M . By (52), we can conclude that

x
K+M+1�(i+1)
kl

� xK+M�(i+1)
kl

= xK+M�i
kl

� xK+M�i�1
kl

= xtkl � x
t�1
kl

� b �m � (1� ") "M
�
1� "i

�
"i

1

"
� 1� "

"
(1� ") "M

= b �m � (1� ") "M
�
1� "i+1

�
"i+1

;

proving (55). By (55) and summation as well as point 5, this implies that

xK+Mkl
� xK+1kl

� (M � 1) b �m � (1� ") "M
M�1X
i=1

1� "i
"i

� (M � 1) b �m � 1;

that is,
xK+M � xK+1


1 � xK+Mkl

� xK+1kl
� (M � 1) b �m � 1. Since b �m � � > 0, we have

that (M � 1) b �m � (M � 1) � > �D + 1. We can conclude that �D �
xK+M � xK+1


1 �

(M � 1) b �m � 1 > �D, a contradiction.

b. xK+Mj � xK+M+1
j � b �m. Set b = b �m, c = 0, and � = (1� ") "M . By (53), we can conclude that

xK+M�1
kl

� xK+Mkl
� b �m � (1� ") "M

1� "
"
: (56)

By (�nite) induction, we next prove that

xK+M�i
kl

� xK+M+1�i
kl

� b �m � (1� ") "M
�
1� "i

�
"i

8i 2 f1; :::;M � 1g : (57)

By (56), the statement is true for i = 1. Next, we assume it is true for i 2 f1; :::;M � 1g and
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prove it is still true for i + 1 when i + 1 2 f1; :::;M � 1g. This implies that i � M � 2. De�ne
t = K +M � i. By the induction hypothesis, we have that

xtkl � x
t+1
kl

= xK+M�i
kl

� xK+M+1�i
kl

� b �m � (1� ") "M
�
1� "i

�
"i

:

Moreover, we also have that
xt � xt�11 =

xK+M�i � xK+M�i�1
1 � b �m + (1� ") "M . Set

b = b �m, c = (1� ") "M (1�"i)
"i , and � = (1� ") "M . By (53), we can conclude that

x
K+M�(i+1)
kl

� xK+M+1�(i+1)
kl

= xK+M�i�1
kl

� xK+M�i
kl

= xt�1kl
� xtkl

� b �m � (1� ") "M
�
1� "i

�
"i

1

"
� 1� "

"
(1� ") "M

= b �m � (1� ") "M
�
1� "i+1

�
"i+1

;

proving (57). By (57) and summation as well as point 5, this implies that

xK+1kl
� xK+Mkl

� (M � 1) b �m � (1� ") "M
M�1X
i=1

1� "i
"i

� (M � 1) b �m � 1;

that is,
xK+1 � xK+M1 � xK+1kl

� xK+Mkl
� (M � 1) b �m � 1. Since b �m � � > 0, we have

that (M � 1) b �m � (M � 1) � > �D + 1. We can conclude that �D �
xK+1 � xK+M1 �

(M � 1) b �m � 1 > �D, a contradiction.

Points a and b prove the statement. �
Proof of Lemma 7. Consider generic x; y 2 B and l 2 N . De�ne y0 = y. For each t 2 f1; :::; n� 1g
de�ne yt 2 B to be such that yti = xi for all i � t and yti = yi for all i � t + 1. De�ne yn = x. Note
that yj � yj�1 = (xj � yj) ej for all j 2 f1; :::; ng. We also have that

Tl (x)� Tl (y) = Tl (yn)� Tl
�
y0
�
=

nX
j=1

�
Tl
�
yj
�
� Tl

�
yj�1

��
: (58)

Since I has nonempty interior, we have that there exist a; b 2 I such that a > b. By contradiction,
assume that �A (T ) is not nontrivial, that is, there exists i 2 N such that �aij = 0 for all j 2 N , yielding
that Ti

�
z + hej

�
= Ti (z) for all h 2 R and for all z 2 B such that z+hej 2 B. Set x = ae and y = be.

By (58) and since T is normalized, it follows that 0 < a � b = Ti (ae) � Ti (be) = 0, a contradiction,
proving the �rst part of the statement. Next, consider �{ 2 N and de�ne �N�{ = fj 2 N : �a�{j = 1g. By
assumption, we have that �N�{ � C[r�{]. Let x be as in (34) and y = x[r�{]. By de�nition of �A (T ), it is
immediate to see that �a�{j = 0 only if T�{

�
z + hej

�
= T�{ (z) for all h 2 R and for all z 2 B such that

z + hej 2 B. Consider j 2 f1; :::; ng. We have two cases: either j 2 �N�{ or j 62 �N�{. In the �rst case,

since �N�{ � C[r�{], we have that y
j � yj�1 =

�
x
[r�{]
j � x[r�{]j

�
ej = 0 and T�{

�
yj
�
� T�{

�
yj�1

�
= 0. In the

second case, since �a�{j = 0, we have that T�{
�
yj
�
= T�{

�
yj�1 +

�
xj � x[r�{]j

�
ej
�
= T�{

�
yj�1

�
, yielding

that T�{
�
yj
�
� T�{

�
yj�1

�
= 0. By (58), it follows that T�{ (x)� T�{

�
x[r�{]

�
= 0. �

Proof of Proposition 10. By Proposition 7, since A (T ) is nontrivial, there exist W 2 W and
" 2 (0; 1) such that

T (x) = "Wx+ (1� ")S (x) 8x 2 B (59)

where S : B ! B is a robust opinion aggregator. Moreover, W can be chosen to be such that
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A (W ) = A (T ). By induction and (59), we have that if t 2 N, then there exist  2 (0; 1) and a robust
opinion aggregator ~S : B ! B (which both depend on t) such that

T t (x) = W tx+ (1� ) ~S (x) 8x 2 B: (60)

As usual, we denote the ij-th entry of W t by w(t)ij . Since T is normalized, observe that E (T ) � D.
By induction, if t 2 N, then D � E (T ) � E

�
T t
�
. Since A (W ) = A (T ), it follows that A (W ) has a

unique strongly connected and closed group M , and M is aperiodic under A (W ). By [7, Corollaries
8.1 and 8.2], W is such that there exist �t 2 N and k 2 N such that w(

�t)
ik > 0 for all i 2 N . Let ~S

denote the robust opinion aggregator for �t in equation (60). We next show that E
�
T �t
�
= D. By

contradiction, assume that there exists x 2 BnD such that T �t (x) = x. De�ne xi = minl2N xl and
xj = maxl2N xl. It follows that xj > xi and i 6= j. We have two cases:

1. xk < xj . It follows that

0 =
T �t (x)� x

1
�
���T �tj (x)� xj��� =

�����
nX
l=1

w
(�t)
jl xl + (1� ) ~Sj (x)� xj

�����
= 

nX
l=1

w
(�t)
jl (xj � xl) + (1� )

�
xj � ~Sj (x)

�
� w(�t)jk (xj � xk) > 0;

a contradiction.

2. xk > xi. It follows that

0 =
T �t (x)� x

1
�
���T �ti (x)� xi��� =

�����
nX
l=1

w
(�t)
il xl + (1� ) ~Si (x)� xi

�����
= 

nX
l=1

w
(�t)
il (xl � xi) + (1� )

�
~Si (x)� xi

�
� w(�t)ik (xk � xi) > 0;

a contradiction.

Cases 1 and 2 prove that E
�
T �t
�
= D, and hence that E (T ) = D. �

Proof of Proposition 2. We omit the proof of point 2 which follows from well-known facts.41

1. Consider � 2 Rn f0g and � : R ! R+ de�ned by � (~s) = e�~s � �~s for all ~s 2 R. It is easy to
see that � is strictly convex and di¤erentiable. Given x 2 B and i 2 N , consider also the function
c 7! ��i (x� ce) =

Pn
j=1wij� (xj � c). Since � is strictly convex and di¤erentiable, so is c 7! ��i (x� ce).

Given x 2 B and i 2 N , this implies that the minimizer of the function c 7! ��i (x� ce) is then
uniquely pinned down by the �rst order conditions. Moreover, as we will immediately see, minimizing
c 7! ��i (x� ce) over I is equivalent to minimize it over R. We compute the �rst order conditions
where c? is the optimal value:

�
nX
j=1

wij [� exp (� (xj � c?))� �] = 0 =)
nX
j=1

wij exp (�xj) = exp (�c
?) =) c? =

1

�
ln

0@ nX
j=1

wij exp (�xj)

1A 2 I:

41The result for �̂ =1 is also known as Laplace�s method (see, e.g., [5, Theorem 4.1]). The case for �̂ = �1 is instead
obtained from the previous one and by observing that �xj = �� (�xj) and that � ! �1 yields �� ! 1. The case of
�̂ = 0 is a standard result in risk theory.
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Since i and x were arbitrarily chosen, equation (14) is satis�ed. It is routine to show that T � is a
robust opinion aggregator. As for the second part, �x i; j 2 N . Observe that T �i is continuously
di¤erentiable in the interior of B. Moreover, @T

�
i

@xj
(x) > 0 for some x 2 intB if and only if there exists

" 2 (0; 1) such that @T
�
i

@xj
(x) � " for all x 2 intB if and only if wij > 0. By the Mean Value Theorem

and since i and j were arbitrarily chosen, this implies that A
�
T �
�
= �A

�
T �
�
= A (W ).

3. Let S : Rn ! Rn++ be de�ned by Si (x) = exp (�xi) for all i 2 N and for all x 2 Rn. De�ne
T̂ : Rn ! Rn by T̂ (x) =Wx for all x 2 Rn. We next show that�

T �
�t
= S�1T̂ tS 8t 2 N: (61)

By de�nition of T �, if t = 1, then T � (x) = S�1 (WS (x)) for all x 2 B, yielding (61). Next, assume
that (61) holds for t. We have that

�
T �
�t+1

= T �
�
T �
�t
= S�1T̂ SS�1T̂ tS = S�1T̂ t+1S, proving

that (61) holds for t + 1. By induction, (61) follows. Consider x 2 B. By (15), it follows that
limt T̂

t (S (x)) = limtW
tS (x) = (

Pn
i=1 si exp (�xi)) e 2 Rn++. By (61) and since S�1 is continuous,

we have that limt
�
T �
�t
(x) =

�
1
� ln (

Pn
i=1 si exp (�xi))

�
e = �T � (x). Since x was arbitrarily chosen, the

statement follows. �

D.2 Vox populi, vox Dei?

Proof of Proposition 3. Fix n 2 N and de�ne B̂ = În. Since T (n) is a robust opinion aggregator, we
have that T (n) is Lipschitz continuous. By Rademacher�s Theorem, this implies that T (n) is almost
everywhere di¤erentiable on B̂ and, in particular, Clarke di¤erentiable. Since Tj (n) is monotone and
translation invariant for all j 2 N , note that rTj (n) (x) 2 �n for all x 2 D (T (n)) and for all j 2 N .
Recall that the Clarke�s di¤erential is the set (see, e.g., [4, Theorem 2.5.1]):

@Tj (n) (�x) = co

�
p 2 �n : p = lim

k
rTj (n)

�
xk
�
s.t. xk ! �x and xk 2 D (T (n))

�
8�x 2 B̂;8j 2 N:

(62)
By Theorem 1, recall that �T (n) � T (n) = �T (n). Fix �x 2 B̂. De�ne by �nj=1@Tj (n) (�x) the collection
of all n � n square matrices whose j-th row is an element of @Tj (n) (�x). From the previous part of
the proof, we have that �nj=1@Tj (n) (�x) � W. For each i 2 N , de�ne

@ �Ti (n) (T (n) (�x))�
n
j=1@Tj (n) (�x)

=
�
~w 2 �n : 9p 2 @ �Ti (n) (T (n) (�x)) ;9W 2 �nj=1@Tj (n) (�x) s.t. pTW = ~wT

	
:

By the Chain Rule (see, e.g., [4, Theorem 2.6.6 and point e of Proposition 2.6.2]), we have that for
each i 2 N

@ �Ti (n) (�x) � co
�
@ �Ti (n) (T (n) (�x))�

n
j=1@Tj (n) (�x)

	
: (63)

By assumption, we have that for each i; j 2 N

sup
x2D(T (n))

@Ti (n)

@xj
(x) � �

�di (n)
� �
�dmin (n)

: (64)

By (62) and (64), we have that 0 � pj � �
�dmin(n)

for all p 2 @Ti (n) (�x) and for all i; j 2 N . By (63),
0 � pj � �

�dmin(n)
for all p 2 @ �Ti (n) (�x) and for all i; j 2 N . Finally, observe that if x 2 D

�
�T (n)

�
, we

have that r �Ti (n) (x) 2 @ �Ti (n) (x) and, in particular, @
�Ti(n)
@xj

(x) � �
�dmin(n)

for all i; j 2 N . This yields

55



that

�sij (T (n)) = sup
x2D( �T (n))

@ �Ti (n)

@xj
(x) � �

�dmin (n)
8i; j 2 N:

Therefore, since limn
p
n

�dmin(n)
= 0 and n was arbitrarily chosen, we have that for each � 2 N

lim
n

nX
j=1

(�s�j (T (n)))
2 � lim

n

nX
j=1

�
�

�dmin (n)

�2
= lim

n

n�2�
�dmin (n)

�2 = 0.
By point 1 of Theorem 3, this implies the statement. �

To ease notation, we discuss the next ancillary result by dropping the n indexing. Let Wun denote
the subset of W such that W 2 Wun if and only if there exists an undirected and strongly connected
graph with an n � n adjacency matrix A such that wij = aij

di
for all i; j 2 N where di =

Pn
l=1 ail. It

is well known that if W 2 Wun, then W is reversible and there exists a unique left Perron-Frobenius
eigenvector �w 2 �, that is �wTW = �wT, and

�wi =
diPn
j=1 dj

8i 2 N:

In particular, note that

0 � �wk �
1

n

maxi2N di
mini2N di

8k 2 N: (65)

Finally, recall that if W 2 Wun and n � 2, then the eigenvalues of W are real and, accounting for

multiplicity, such that 1 = ~�1 � ~�2 � ::: � ~�n � �1. We denote by �2 (= maxi=2;:::;n
���~�i���) the second

largest eigenvalue in modulus (SLEM).

Lemma 10 Let T be a robust opinion aggregator and n � 2. If there exist � � 1 and W 2 Wun such
that

@Ti
@xj

(x) � �wij 8x 2 D (T ) ;8i; j 2 N; (66)

then

�sij (T ) � �t �wj +

s
maxi2N di
mini2N di

�t�t2 8i; j 2 N;8t 2 N;

where �2 2 R+ is the SLEM of W .

Proof. De�ne B̂ = În. Before starting, we introduce an useful object: the Clarke di¤erential of
T . By Rademacher�s Theorem and since T is robust, T is Lipschitz continuous and, in particular,
almost everywhere di¤erentiable on Rn. Recall that D (T ) denotes the set of points of B̂ where T
is di¤erentiable. We denote the Jacobian of T at x 2 D (T ) by JT (x). Since T is a robust opinion
aggregator, we have that JT (x) 2 W for all x 2 D (T ). Finally, given x 2 B̂, we denote the Clarke
di¤erential of T at x by @T (x) (see, e.g., [4, De�nition 2.6.1]) where

@T (x) = co

�
W 2 W :W = lim

k
JT

�
xk
�
s.t. xk ! x and xk 2 D (T )

�
:

By Theorem 1, recall that �T � T = �T , yielding that �Ti � T = �Ti for all i 2 N . By the Chain rule (see,
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e.g., [4, Theorem 2.6.6]), we have that

@ �Ti (x) � co
�
@ �Ti (T (x)) @T (x)

	
8i 2 N;8x 2 B̂ (67)

where @ �Ti (T (x)) @T (x) is the set of probability vectors p 2 � such that pT = qT ~W where q 2
@ �Ti (T (x)) and ~W 2 @T (x). By de�nition of @T (x) and since T satis�es (66), we have that

~W � �W 8 ~W 2 @T (x) ;8x 2 B̂: (68)

We next prove by induction that for each x 2 B̂, for each i 2 N , for each p 2 @ �Ti (x), and for each
t 2 N there exists q 2 � such that

pT � qT
�
�tW t

�
: (69)

By (68), we have that qT ~W � qT (�W ) for all q 2 @ �Ti (T (x)), for all ~W 2 @T (x), for all x 2 B̂,
and for all i 2 N . By (67) and since @ �Ti (T (x)) � � for all i 2 N , this implies that (69) holds for
t = 1. Next, we assume that the statement holds for t and we show it holds for t+1. Consider x 2 B̂,
i 2 N , and p 2 @ �Ti (x). By (67), we have that there exist

�
~qk
	m
k=1

� @ �Ti (T (x)),
n
~Wk

om
k=1

� @T (x),

and f�kgmk=1 � [0; 1] such that
Pm
k=1 �k = 1 and pT =

Pm
k=1 �k

�
~qk
�T ~Wk. By inductive hypothesis

and since
�
~qk
	m
k=1

� @ �Ti (T (x)) and T (x) 2 B̂, for each k 2 f1; :::;mg we have that
�
~qk
�T
�W ��

q̂k
�T �

�tW t
�
�W =

�
q̂k
�T �

�t+1W t+1
�
for some q̂k 2 �. By (68), this yields that

pT =
mX
k=1

�k

�
~qk
�T

~Wk �
mX
k=1

�k

�
~qk
�T
(�W ) �

 
mX
k=1

�k

�
q̂k
�T!�

�t+1W t+1
�
:

Since
Pm
k=1 �kq̂

k 2 � and x, i, as well as p were arbitrarily chosen, the inductive step follows. By
induction, (69) holds.

By [3, Theorem 20.1.5] and since W 2 Wun, we have that

max
i;j2N

���w(t)ij � �wj

��� �smaxi2N di
mini2N di

�t2 8t 2 N:

Consider �x 2 B̂, p 2 @ �Ti (�x), i 2 N , and t 2 N. By (69), this implies that pT � qT
�
�tW t

�
= �tqTW t

for some q 2 �, yielding that

pj � �t
nX
i=1

qiw
(t)
ij = �

t �wj + �
t
nX
i=1

qi

�
w
(t)
ij � �wj

�
� �t �wj + �t

nX
i=1

qi

���w(t)ij � �wj

��� � �t �wj + �t
s
maxi2N di
mini2N di

�t2 8j 2 N:

Since �x, p, and t were arbitrarily chosen, and r �Ti (x) 2 @ �Ti (x) for all x 2 D
�
�T
�
, we have that

�sij (T ) = sup
x2D( �T)

@ �Ti
@xj

(x) � �t �wj + �t
s
maxi2N di
mini2N di

�t2 8j 2 N;8t 2 N :

Since i was arbitrarily chosen, the statement follows. �
Proof of Proposition 4. For each n 2 N denote by W (n) 2 W the stochastic matrix whose ij-th
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entry is �aij (n) = �di (n). By assumption, each W (n) is in Wun and has a unique left Perron-Frobenius
eigenvector that we denote �w (n) 2 �n. By assumption, it follows that there exists �� > 1 and " > 0
such that fT (n)gn2N is ��-dominated and supn2N �2 (n) < 1

��2+" . Set �m = supn2N

q
�dmax(n)
�dmin(n)

2 R+ and
tn = max

�
1;
�
log��2 (maxk2N �wk (n))

���	 for all n 2 N where � = 1+�
1+" with � 2 (0; "). Note that

� 2 (0; 1) and (1 + ")� = 1+ �. By (65), we have that 0 � maxk2N �wk (n) � �m2=n for all n 2 N and,
in particular, limnmaxk2N �wk (n) = 0. By Lemma 10, recall that

0 � �sij (T (n)) � ��tn �wj (n) + �m��tn�tn2 (n) 8i; j 2 N;8n 2 Nn f1g :

It follows that

�sij (T (n))
2 � ��2tn �wj (n)2 + 2��tn �wj (n) �m��tn�tn2 (n) + �m2��2tn�2tn2 (n) 8i; j 2 N;8n 2 Nn f1g

and
nX
j=1

�sij (T (n))
2 � an + bn + cn 8i 2 N;8n 2 Nn f1g (70)

where an =
Pn
j=1 ��

2tn �wj (n)
2, bn =

Pn
j=1 2 �m��

2tn�tn2 (n) �wj (n), and cn =
Pn
j=1 �m

2��2tn�2tn2 (n) for
all n 2 Nn f1g. Note that these three sequences only depend on n and not on i; j 2 N . We
next show that limn an = limn bn = limn cn = 0. Since limnmaxk2N �wk (n) = 0 and �� > 1, ob-
serve that limn (maxk2N �wk (n))

�� = 1 and limn log��2 (maxk2N �wk (n))
�� = 1. This implies that

limn tn = 1. Moreover, there exists �n 2 Nn f1g such that log��2 (maxk2N �wk (n))
�� � 1 � tn =�

log��2 (maxk2N �wk (n))
��� � log��2 (maxk2N �wk (n))

�� for all n � �n.

- Since 1� � 2 (0; 1), �� > 1, and limnmaxk2N �wk (n) = 0, observe that for each n � �n

0 � an = ��2tn
nX
j=1

�wj (n)
2 � ��2tn max

k2N
�wk (n)

nX
j=1

�wj (n)

= ��2tn max
k2N

�wk (n) �
�
��2
�log��2 (maxk2N �wk(n))

��

max
k2N

�wk (n) =

�
max
k2N

�wk (n)

�1��
! 0 as n!1:

- Since �� > 1, we have that 0 � supn2N ��
2�2 (n) � 1

��" < 1. Since tn 2 N for all n 2 N and
limn tn =1, this implies that

0 � bn = 2 �m��2tn�tn2 (n)
nX
j=1

�wj (n) = 2 �m
�
��2�2 (n)

�tn � 2 �m�sup
n2N

��2�2 (n)

�tn
! 0 as n!1:

- Since supn2N �2 (n) � 1
��2+" , we have that supn2N �

2
2 (n) � 1

��4+2" , that is, 0 � supn2N ��
2�22 (n) �

1
��2+2" . Since tn 2 N for all n 2 N, this implies that

�
supn2N ��

2�22 (n)
�tn � � 1

��2+2"

�tn for all n 2 N.
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Since (1 + ")� = 1 + � and � > 0, we obtain that for each n � �n

0 � cn = �m2n��2tn�2tn2 (n) = �m2n
�
��2�22 (n)

�tn � �m2n

�
1

��2+2"

�tn
= �m2n

�
1

��2(1+")

�tn
� �m2n

�
��2
��(1+")(log��2 (maxk2N �wk(n))

���1)
= �m2n��2(1+")

�
��2
��(1+") log��2 (maxk2N �wk(n))

��

= �m2��2(1+")n

�
max
k2N

�wk (n)

�(1+")�
� �m2��2(1+")n

�
�m2

n

�(1+")�
= �m4+2���2(1+")n�� ! 0 as n!1:

By (70), we have limn
Pn
j=1 s�j (T (n))

2 = 0 for all � 2 N. By point 1 of Theorem 3 and since
fT (n)gn2N is a sequence of odd robust opinion aggregators and f"i (n)gi2N;n2N is symmetric, the
statement follows. �

In order to prove Corollary 2, we need two ancillary facts. The �rst shows that if a group M is
prominent in t steps, the prominence ofM is inherited by �T . The second instead is a simple probability
fact. It shows that if a symmetric random variable is bounded with second moment bounded away
from zero, then we can bound from below its tail probability.

Lemma 11 Let T be a robust opinion aggregator. If M is prominent in t steps, then for each x 2 B
and for each h > 0 such that x+ heM 2 B

�Ti
�
x+ heM

�
� �Ti (x) � �M (T; t)h 8i 2 N: (71)

Moreover, for each x 2 B and for each z 2 Rn+ such that zj = 0 for all j 62M and x+ z 2 B we have
that

�Ti (x+ z)� �Ti (x) � �M (T; t)min
j2M

zj 8i 2 N: (72)

Proof. Fix x 2 B and h > 0 such that x+ heM 2 B. Since M is prominent in t steps, we have that
T t
�
x+ heM

�
� �M (T; t)he + T t (x). By Theorem 1 and since T is a robust opinion aggregator, we

have that �T is a robust opinion aggregator and �T � T t = �T . Since �T is a robust opinion aggregator,
this implies that

�T
�
x+ heM

�
= �T

�
T t
�
x+ heM

��
� �T

�
�M (T; t)he+ T

t (x)
�

= �M (T; t)he+ �T
�
T t (x)

�
= �M (T; t)he+ �T (x) :

Since x and h were arbitrarily chosen, (71) follows. Next, consider x 2 B and z 2 Rn+ such that zj = 0
for all j 62 M and x + z 2 B. It follows that h = minj2M zj � 0 and x + heM 2 B. Since �T is
monotone, if h = 0, then (72) trivially follows. By (71) and since �T is monotone, if h > 0, then we
have that �Ti (x+ z)� �Ti (x) � �Ti

�
x+ heM

�
� �Ti (x) � �M (T; t)h = �M (T; t)minj2M zj for all i 2 N .

�

Lemma 12 Let (
;F ; P ) be a probability space and � > 0. If Z is a symmetric random variable such

that P -a.s. jZj � k and E
�
Z2
�
� �2, then P

�
Z > �p

2

�
� �2

4k2�2�2 > 0.

Proof. Since P -a.s. jZj � k and E
�
Z2
�
� �2 > 0, we have that 0 < �2 � E

�
Z2
�
= E

�
jZj2

�
� k2,

proving that �2=
�
4k2 � 2�2

�
> 0. By [2, Equation 21.9], observe that �2 � E

�
Z2
�
=
R1
0 P

�
Z2 > t

�
dt =R k2

0 P
�
Z2 > t

�
dt. Since t 7! P

�
Z2 > t

�
is decreasing and bounded above by 1, this implies that �

2

2 +
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P
�
Z2 > �2

2

��
k2 � �2

2

�
�
R �2

2

0 P
�
Z2 > t

�
dt +

R k2
�2

2

P
�
Z2 > t

�
dt � �2, yielding that P

�
jZj > �p

2

�
=

P
�
jZj2 > �2

2

�
= P

�
Z2 > �2

2

�
� �2=

�
2k2 � �2

�
. Since Z is symmetric, we also have that P

�
�Z > �=

p
2
�
=

P
�
Z > �=

p
2
�
and, in particular, 2P

�
Z > �=

p
2
�
= P

�
jZj > �=

p
2
�
� �2=

�
2k2 � �2

�
, proving the

statement. �
Proof of Corollary 2. De�ne �� = infn �M(n) (T (n) ; t (n)) > 0 and k = supn jM (n)j. Fix n 2 N
and consider fXi (n)gi2N . Recall that fXi (n)gi2N is a family of independent random variables. De-
�ne m = jM (n)j so that M (n) = fi1; :::; img � N . Without loss of generality, we can assume
that the probability space (
;F ; P ) admits another collection of random variables fYlgl2f1;:::;mg such
that fXil (n)gl2f1;:::;mg [ fYlgl2f1;:::;mg is a collection of 2m independent random variables and, given
l 2 f1; :::;mg, Xil (n) and Yl have the same distribution. We denote for short the random vector
(X1 (n) ; :::; Xn (n)) by X (n). We denote by Y (n) the random vector whose il-th component is Yl for
all l 2 f1; :::;mg and its i-th component is Xi (n) if i 62 M (n). We denote by G the sub-�-algebra
generated by fXi (n)gi62M(n). Fix h 2 N . Since T (n) is a robust opinion aggregator, so is �T (n) and it
is immediate to see that �Th (n) (X (n)) and �Th (n) (Y (n)) are two independent random variables condi-
tional on G. This implies that 2VarG

�
�Th (n) (X (n))

�
= 2EG

�
�Th (n) (X (n))� EG

�
�Th (n) (X (n))

��2
=

EG
�
�Th (n) (X (n))� �Th (n) (Y (n))

�2. Given t > 0, de�ne Et = \i2M(n) f! 2 
 : Xi (n) (!) > t+ Yi (n) (!)g.
By (72), we have that

EG
�
�Th (n) (X (n))� �Th (n) (Y (n))

�2 � EG �1Et

�
�Th (n) (X (n))� �Th (n) (Y (n))

��2
� EG

�
1Et

�� min
i2M(n)

(Xi (n)� Yi (n))
�2
� EG (1Et

��t)2

� P (Et) ��2t2 P -a.s.

Since 2VarG
�
�Th (n) (X (n))

�
= EG

�
�Th (n) (X (n))� �Th (n) (Y (n))

�2 and
Var

�
�Th (n) (X (n))

�
� E

�
VarG

�
�Th (n) (X (n))

��
, we can conclude that

Var
�
�Th (n) (X (n))

�
� P (Et) ��

2t2

2
=
�i2M(n)P (f! 2 
 : Xi (n) (!) > t+ Yi (n) (!)g) ��2t2

2
:

Fix i 2 M (n). De�ne Z = Xi (n) � Yi (n). Note that Z is symmetric and P -a.s. jZj � `. Since
2Var (Xi (n)) = E (Xi (n)� Yi (n))2 and Var (Xi (n)) � �2, we have that E

�
Z2
�
� 2�2 =

�p
2�
�2
. By

Lemma 12, we can conclude that 1 � P (Xi (n)� Yi (n) > �) = P (Z > �) � �2

2(`2��2) > 0. Since i was
arbitrarily chosen and m = jM (n)j � k, we can conclude that

Var
�
�Th (n) (X (n))

�
�
�

�2

2 (`2 � �2)

�jM(n)j
��2�2

2
�
�

�2

2 (`2 � �2)

�k
��2�2

2
> 0:

Since h and n were arbitrarily chosen, the inequality above holds for all h 2 N and for all n 2 N,
proving that lim infnVar

�
�T� (n) (X (n))

�
> 0 for all � 2 N and, in particular, the statement. �

D.3 Discussion

Proof of Lemma 8. Fix i 2 N . Consider ~z 2 Rn such that ~z � 0. De�ne z = ~z�minj2N ~zje, v = 0,
and h = minj2N ~zj . Note that z � v as well as h 2 R++. Since � has increasing shifts and is sensitive,
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we obtain that

�i (~z)� �i
�
~z �min

j2N
~zje

�
= �i (z + he)� �i (z) � �i (v + he)� �i (v) = �i

�
min
j2N

~zje

�
� �i (0) > 0;

proving the �rst inequality. A symmetric argument yields the second inequality. �
Proof of Lemma 9. Fix i 2 N and x 2 Rn. De�ne gi;x : R ! R+ by gi;x (c) = �i (x+ ce) for all
c 2 R. Consider c1; c2 2 R such that c1 > c2 and h > 0. Since � 2 �R and x+ c1e � x+ c2e, it follows
that

gi;x (c1 + h)� gi;x (c1) = �i ((x+ c1e) + he)� �i (x+ c1e)
� �i ((x+ c2e) + he)� �i (x+ c2e) = gi;x (c2 + h)� gi;x (c2) :

By [9, Problem N, pp. 223�224], it follows that gi;x is midconvex. Next, �x c 2 R and c0 2 (c� 1; c+ 1).
Set c1 = 2c� c0, c2 = c� 1, and h = c0 � (c� 1). Since c1 > c2, h > 0, and �i � 0, we have that

gi;x
�
c0
�
� gi;x (c� 1) � gi;x (c+ 1)� gi;x

�
2c� c0

�
=) 0 � gi;x

�
c0
�
� gi;x (c� 1) + gi;x (c+ 1) .

Since c0 was arbitrarily chosen, we have that gi;x is bounded on (c� 1; c+ 1). By [9, Theorem C, p.
215], it follows that gi;x is continuous and convex. Finally, observe that fi;x = gi;x �h where h (c) = �c
for all c 2 R, yielding that fi;x is convex and continuous being the composition of a convex and
continuous function with an a¢ ne and continuous function. Next, assume that � has also strictly
increasing shifts and, in particular, has increasing shifts. By the previous part of the proof, gi;x is
convex. By contradiction, assume that gi;x is not strictly convex. This implies that there exists an
interval [d2; d1], with d2 < d1, where gi;x is a¢ ne. De�ne c1 = 1

2d1+
1
2d2, c2 = d2, and h = (d1 � d2) =2.

Note that c1 > c2 and h > 0. Since � has strictly increasing shifts, by the same computations of the
previous part of the proof, we have that

gi;x (d1)� gi;x
�
1

2
d1 +

1

2
d2

�
= gi;x (c1 + h)� gi;x (c1)

> gi;x (c2 + h)� gi;x (c2) = gi;x
�
1

2
d1 +

1

2
d2

�
� gi;x (d2) ;

yielding that gi;x
�
1
2d1 +

1
2d2
�
< 1

2gi;x (d1)+
1
2gi;x (d2), a contradiction with a¢ nity. Since gi;x is strictly

convex, so is fi;x = gi;x � h. �
Proof of Proposition 5. Before starting, we make few observations about strong convexity (see,
e.g., [9, p. 268]). Since each �i is strongly convex and twice continuously di¤erentiable, we have that
for each i 2 N there exists �i > 0 such that �00i (s) � �i for all s 2 R. Moreover, we have that for each
i 2 N �

�0i (s1)� �0i (s2)
�
(s1 � s2) � �i (s1 � s2)2 8s1; s2 2 R: (73)

Finally, since each �i is twice continuously di¤erentiable and I is compact, for each i 2 N we have
that there exists Li > 0 such that���0i (s1)� �0i (s2)�� � Li js1 � s2j 8s1; s2 2 [min I �max I;max I �min I] : (74)

Recall that �i : Rn ! R+ is de�ned by �i (z) =
Pn
j=1wij�i (zj) for all z 2 Rn and for all i 2 N . By

assumption, � 2 �A � �R. Since �00i � �i > 0 for all i 2 N , this implies that �i is strictly convex for
all i 2 N . Standard computations yield that � has strictly increasing shifts. By Proposition 11, we
have that T� = T � is single-valued and a robust opinion aggregator from B to B. Moreover, T �i (x)
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is the unique solution of

min
c2R

�i (x� ce) = min
c2I

�i (x� ce) 8i 2 N;8x 2 B: (75)

Fix i 2 N . Since �i is di¤erentiable and convex, so is the map c 7! �i (x� ce) for all x 2 B. The
solution of (75) is then given by the �rst order condition

Pn
j=1wij�

0
i

�
xj � T �i (x)

�
= 0 for all x 2 B.

Consider x 2 B, h > 0, and l 2 N such that x+ hel 2 B. We have that

nX
j=1

wij�
0
i

�
xj � T �i (x)

�
= 0 and

nX
j=1

wij�
0
i

�
xj + he

l
j � T

�
i

�
x+ hel

��
= 0: (76)

Note that if wil = 0, then
Pn
j=1wij�

0
i

�
xj + he

l
j � c

�
=
Pn
j=1wij�

0
i (xj � c) for all c 2 R, proving that

T �i
�
x+ hel

�
= T �i (x). Since x and h were arbitrarily chosen, we have that wil = 0 implies �ail = 0. In

particular, since i and l were arbitrarily chosen, we have that A (W ) � �A
�
T �
�
.

Next, assume that wil > 0. By (74), (76), and (73) and since T � is monotone and h > 0, we can
conclude that

Li

�
T �i

�
x+ hel

�
� T �i (x)

�
�

nX
j=1

wij�
0
i

�
xj + he

l
j � T

�
i (x)

�
�

nX
j=1

wij�
0
i

�
xj + he

l
j � T

�
i

�
x+ hel

��
=

nX
j=1

wij�
0
i

�
xj + he

l
j � T

�
i (x)

�
�

nX
j=1

wij�
0
i

�
xj � T �i (x)

�
= wil

h
�0i

�
xl + h� T �i (x)

�
� �0i

�
xl � T �i (x)

�i
� wil�ih;

proving that T �i
�
x+ hel

�
� T �i (x) � "ilh where "il = L�1i wil�i=2 2 (0; 1). Since x and h were

arbitrarily chosen, we have that wil > 0 implies ail = 1. In particular, since i and l were arbitrarily
chosen, we have that A

�
T �
�
� A (W ). Since �A

�
T �
�
� A

�
T �
�
, we can conclude that A (W ) =

�A
�
T �
�
= A

�
T �
�
, proving the statement. �
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