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A Renewable resource depletion under sole ownership

We assume that forest property owners are price-takers in the market for forest products.1 The
owner’s payoff in period t is pyt− c(yt, Xt), where p is the market price of timber, yt is the quantity
extracted, Xt is the current size of the forest (i.e., the timber stock), and c(yt, Xt) is the cost to
the owner of extracting yt given current stock Xt.

2 The owner’s problem, then, is to choose a
path of extraction {yt}, given some initial forest stock X0, that maximizes the net present value of
extracted timber:

max
{yt}

∫ ∞

0
[pyt − c(yt, Xt)]e

−rt dt

subject to
dXt

dt
= g(Xt)− yt

where g(·) is known as the natural growth law of the forest. Typically, g(·) is assumed to be
strictly concave—most commonly using a quadratic function in Xt, which yields the familiar logistic
evolution of stock over time.3 We assume for simplicity that the interest rate r is constant and
that extraction costs c(·, Xt) are convex in yt.
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1To fix ideas, we simply use “timber” to capture a potentially broader category of products in what follows.
2The payoff can be equivalently represented by substituting in place of c(yt, Xt) a term equal to the total wage paid

for extraction effort (as in Peterson and Fisher, 1977). In other words, the process of extraction can be represented
using a production function with labor as an input rather than using a cost function. We choose to present the cost
function formulation here as it will allow us more clearly to highlight the role of external social costs of deforestation.

3Bioeconomic models sometimes assume a growth law that depends on other factors such as inter-species compe-
tition and age structure of the resource stock. For the sake of simplicity, we abstract from such forces here.

4Note that the problems facing the owner of an exhaustible natural resource and the owner of a renewable resource
are quite similar: their objective functions are identical, and in the former case, the owner’s flow constraint instead
reflects the purely exhaustible nature of the resource. In particular, their flow constraint is simply dXt

dt
= −yt. They

also face the constraint that
∫∞
0

yt dt ≤ X0.
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In most expositions of the owner’s renewable resource extraction problem, the optimal path of
extraction is derived using the Pontryagin maximum principle. The Hamiltonian for the owner’s
maximization problem is:

H = pyt − c(yt, Xt) + qt[g(Xt)− yt]

where the co-state variable qt represents the shadow price of timber: it is the amount by which
the net present value of the forest decreases when one unit of timber is extracted today. Peterson
and Fisher call this co-state variable the “marginal user cost” of resource extraction. As we will
discuss below, a key distinction between sole-ownership and common-property depletion is that in
the latter case, agents do not take this marginal user cost into account.

The Hamiltonian above yields the necessary conditions:

∂H

∂yt
= 0

=⇒ p =
∂c(yt, Xt)

∂yt
+ qt (1)

dqt
dt

= rqt −
∂H

∂X

=⇒ dqt
dt

= rqt +
∂c(yt, Xt)

∂X
− qt

dg(Xt)

dX
(2)

Equation (1) indicates that the optimal extraction path equates price with the marginal cost
of extraction plus the marginal user cost of timber in each period. One insight that emerges from
this analysis is that, even in the absence of any market imperfection (e.g., market power on the
part of the timber-extracting agent), price does not equal marginal cost—the wedge between the
two reflects the rivalrous nature of natural resource consumption, where rivalry in the single-agent
case refers to consumption of the resource at different points in time.

Figure A1 presents this optimality condition graphically and illustrates how price changes for
timber affect a sole owner’s extraction decision within a given period. The convex curve represents
the owner’s extraction cost as a function of extraction levels y, assuming a given forest stock X.
The solid straight line represents the owner’s zero-profit curve along which revenues given a price
p1 are exactly equal to extraction costs. Given price p1, the owner will extract an amount y1 such
that the marginal cost of extraction is equal to the price of output minus the marginal user cost
qt, which is assumed here to be small. Holding qt constant, increasing the price of output from p1
to p2 (and moving from the solid to the dashed zero-profit line) leads the sole owner to extract a
greater amount y2 within that period.
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Extraction y

Cost c c = p1y
c = p2y c(y,X)

y1 y2

∂c(y,X)
∂y

= p1 − qt

∂c(y,X)
∂y

= p2 − qt

Appendix Figure A1. Sole owner’s single-period extraction decision

Equations (1) and (2) define the dynamics of optimal extraction y given any current stock X,
and specifying the initial stock X0 pins down the level of extraction and the size of remaining
forest in each period along the equilibrium path. These conditions allow us to analyze the resulting
steady state and conduct comparative statics. Let y∗, X∗, and q∗ denote the steady-state levels of
extraction, forest stock, and marginal user cost, respectively. In this model, a steady state is such
that equation (1) and the following additional conditions hold:

dqt
dt

= rq∗ +
∂c(y∗, X∗)

∂X
− q∗

dg(X∗)

dX
= 0 (3)

dXt

dt
= g(X∗)− y∗ = 0 (4)

Note that Equation (1) implies that y∗, the steady-state level of extraction, will be such that
the marginal cost of extraction equals p − q∗. Clearly, higher timber prices will lead to a higher
steady-state level of extraction, as examined graphically above. Furthermore, given the convexity
of c(·, Xt) in yt, a negative level shift in marginal extraction costs will lead to higher y∗.

We first examine the case in which an interior solution (a steady state in which y∗ > 0 and
hence X∗ > 0) exists. Equation (3) then illustrates an important conclusion emerging from the
theoretical literature on forest management: the economically optimal path of extraction generically
does not coincide with the notion of “maximum sustained yield,” i.e., the maximum growth rate
of the renewable resource—and hence the maximum rate of extraction—that can be sustained in
equilibrium. Given a positive interest rate, dg(X∗)

dX = 0 may not be be optimal, i.e., the point of
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maximum forest growth may be below or above the owner’s optimal level of extraction. If we
further assume that ∂c

∂X = 0 (the cost of cutting a given number of trees does not depend on the
size of the remaining forest), then maximum sustained yield cannot be optimal from the standpoint
of the owner; instead the steady-state optimum lies below the point of maximum sustained yield.
Samuelson (1976) and Peterson and Fisher (1977), in particular, highlight this divergence, which
is important because many ecologists and environmental policymakers at the time had tended to
advocate for the maximum sustained yield notion by default.5 However, only with an effective
interest rate of zero will the “economists’ optimum” coincide with the “foresters’ optimum” of
maximum sustained yield. Intuitively, economic discounting implies that the agent prefers to cut
more trees today rather than to wait for the forest to grow further; the higher the discount rate,
the higher the steady-state level of extraction and hence the larger the divergence from maximum
sustained yield. In the specific context of tropical forests, agents’ discount rates may be especially
high (Barbier et al., 1991), due in part to insecure property rights and regulatory uncertainty (we
return to this point below).6

Figure A2 illustrates one possible steady-state of the model graphically. The natural growth
law g(X) is depicted as the inverted parabola in bold. The line labeled ySO(X) represents the locus
of single-owner optimal extraction levels as a function of the forest stock. This locus can be traced
out by varying the forest stock X (and hence shifting the cost curve c(y,X) outward) in Figure A1.
For each stock level X, the optimal level of extraction ySO(X) can be determined according to the
optimality condition in equation (1). A steady state X∗

SO then occurs when the level of extraction
ySO(X

∗
SO) exactly balances the forest’s natural rate of growth g(X∗

SO).

5Indeed, Peterson and Fisher (1977) and Goundrey (1960) note that the concept of maximum sustained yield was,
at the time of writing, codified in US and Canadian forestry policies.

6For the purposes of considering social optimality, Samuelson (1976) relates his analysis to several other works
(e.g., Ramsey, 1928; Diamond and Mirrlees, 1971) on the appropriate social discount rate.
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Forest stock X

Growth Rate g(X) /
Extraction y yEXT (X)

ySO(X)

yCP (X)

X∗
EXTX∗

SOX∗
CP

g(X)

Appendix Figure A2. Steady-state extraction and forest stocks

Equations (1) and (4) yield another important insight: if the price of timber is very high, or if
the level of extraction costs are very low, then there may exist no positive X∗ such that g(X∗) = y∗:
the forest cannot grow at a rate that compensates for the high economic returns to extraction that
the agent faces today. In this case, the only steady state is complete extinction of the forest:
y∗ = X∗ = g(X∗) = 0. An analogous insight arises from Equation (3): if the interest rate r is

very high, then again there may be no positive X∗ such that dg(X∗)
dX is large enough to sustain

an equilibrium. As Peterson and Fisher (1977) note, forest stocks in this case “do not grow fast
enough to justify waiting around for them.” Extinction can occur even under sole ownership of the
forest, a point developed rigorously in the work of Smith (1968), Clark (1973), and Neher (1974),
among others. In Figure A2, such a scenario would be represented by an extraction locus ySO(X)
that is shifted so far leftward that it intersects the growth curve only at X = 0. This insight has
important implications for policy solutions to common-property resource issues we discuss below.

Similarly, if timber is valued at a very low price or if costs of extraction are high, then there
may exist no stock X∗ such that a positive level of extraction y∗ > 0 is optimal: in this case,
y∗ = g(X∗) = 0, while the equilibrium stock equals the “carrying capacity” of the forest, i.e.,
X∗ = Xmax such that g(Xmax) = 0 and g(Xt) < 0 for any Xt > Xmax. Timber production is not
lucrative, so there will be no extraction whatsoever, and the forest will remain at the maximum
size that natural growth constraints allow.

A.1 Alternative land uses

Directly incorporating alternative uses for forested land into the above model of resource depletion
complicates the analysis substantially. One parsimonious approach taken by Bohn and Deacon
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(2000) is to assume that demand for alternative land uses (e.g., agriculture) is perfectly inelastic
and exogenously determined by food needs. Permanent shifts in demand for agricultural land can
then be reflected in shifts in the carrying capacity of a given forest: greater food demand reduces
the amount of forest land by re-designating a portion for agricultural production. In order to relax
this assumption, one can additionally incorporate the quantity of cleared forest land (i.e., land that
has been converted for agricultural use) as another state variable in the above dynamic system.

B Optimal resource depletion with deforestation externalities

There are several possible avenues through which the externalities of deforestation may be in-
corporated into our simple theoretical framework of resource extraction. Insofar as externalities
arise from static misallocation in each period, the external costs of deforestation can simply be
incorporated into the term c(yt, Xt) representing the costs of extraction (Fisher, 1981).7

To see how the presence of externalities can shift the socially optimal steady-state level of de-
forestation, we return to the set of equilibrium conditions derived in Section 4.1. Assume that, in
addition to the private cost of extracting yt units in period t, the owner also considers a static exter-
nal cost E(yt) that does not depend on the current forest stock Xt.

8 The sole owner’s maximization
problem is then:

max
{yt}

∫ ∞

0
[pyt − c(yt, Xt)− E(yt)]e

−rt dt

subject to
dXt

dt
= g(Xt)− yt

Equations (3) and (4) governing the resulting steady state are unchanged from above, but equation
(1) now becomes

p =
∂c(yt, Xt)

∂yt
+

dE(yt)

dyt
+ qt (5)

As long as the external cost of extraction is not decreasing in the amount extracted, the presence
of deforestation externalities widens the wedge between the price of timber and the marginal cost
of extraction. In the case of constant marginal external costs (such as when invoking the social
cost of carbon), externalities represent a level shift upward in the marginal costs of extraction.
The higher these external costs, the farther will be the socially optimal extraction level below the
sole-ownership steady state level.

The influence of externalities on the socially optimal deforestation level is depicted graphically
in Figure B1. The upward level shift in marginal costs of extraction are depicted as a shift from
cost curve c1(y,X) (the cost curve faced by a sole owner depicted in Figure A1) to c2(y,X), drawn

7Alternatively, other models have explicitly accounted for the dynamics of waste accumulation as a byproduct
of natural resource extraction (e.g., D’Arge and Kogiku, 1973; Rausser and Lapan, 1979) and have considered the
optimal intertemporal control of pollution (e.g., Plourde, 1972; Keeler et al., 1971). Many of these models consider
extractive natural resources as inputs into production of both goods and bads (e.g., factories use coal as an input
and produce local pollutants in addition to consumer goods). To the extent that the main externalities of tropical
deforestation are byproducts of the extraction process per se, rather than of production from forest resources, the
“static” approach of incorporating external social costs in c(yt, Xt) captures the principal forces of interest while
retaining tractability.

8Of course, a social planner might also consider the dynamics of carbon accumulation in the atmosphere and other
environmental harm resulting from a given amount of extraction today. The assumption of static external costs,
however, captures the qualitative insights of our model in a more straightforward fashion.
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in blue. The optimal level of extraction within each period decreases accordingly, from y1 to y2.

Extraction y

Cost c c = py

y1y2

c1(y,X)

c2(y,X)

Appendix Figure B1. Optimal extraction with externalities

C Resource depletion with common-property access

To illustrate how the free-entry equilibrium leads to over-exploitation relative to sole ownership,
we revisit the model of renewable resource extraction developed in Appendix A. The zero-profit
condition discussed in the previous paragraph requires that pyCP

t − c(yCP
t , Xt) = 0, where yCP

t

denotes the agent’s level of extraction in period t under the common-property regime. Note that
extraction y and costs c are now aggregate quantities due to the free entry of foresting firms. The
increase in aggregate deforestation is seen easily in Figure C1, as the common-property equilibrium
occurs where the aggregate cost curve intersects the line c = py.
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Extraction y

Cost c c = py

ySO yCP

c(y,X)

Appendix Figure C1. Common-property levels of aggregate extraction

A useful comparison arises from differentiating the zero-profit condition with respect to y,
yielding:

∂c(yCP
t , Xt)

∂y
= p (6)

Under a common property regime, deforesting firms enter until the marginal cost of extraction for
any agent exactly offsets the economic return to extraction. By contrast, the single-agent condition

(1) yields
∂c(ySA

t ,Xt)
∂y = p − qt, where ySAt denotes the sole-agent optimal extraction level. Because

qt > 0 unless the supply of the resource is truly unlimited, we have
∂c(ySA

t ,Xt)
∂y <

∂c(yCP
t ,Xt)
∂y , which,

given the assumption of convex extraction costs, implies that ySAt < yCP
t . Not only is aggregate

extraction greater than under the sole-agent optimum, each individual agent also extracts more per
period under a common property regime than they would under sole ownership of the forest.

Unlike “uni-directional” externalities studied in the previous section, common-property re-
sources feature “reciprocal” externalities in which each agent’s actions affect all other agents’ yields,
including their own. Such externalities arise because agents do not account for the marginal user
cost qt of extraction nor for their effect on the growth rate of a renewable resource through a de-
pletion in stock. Compounding the fact that extraction in each period t is greater under common
property than under sole ownership given a particular stock Xt, this higher level of extraction
will lower the forest stock in the following period, making extinction even more likely than in the
single-agent case (Smith, 1968; Peterson and Fisher, 1977).
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