# 14.452 Economic Growth: Lecture 7, Neoclassical Endogenous Growth

Daron Acemoglu

MIT

October-December 2024

## First-Generation Models of Endogenous Growth

- Models so far: no sustained long-run growth; relatively little to say about sources of technology differences.
- Models in which technology evolves as a result of firms' and workers' decisions are most attractive in this regard.
- But sustained economic growth is possible in the neoclassical model as well:
  - AK model before: relaxed Assumption 2 and prevented diminishing returns to capital.
  - Capital accumulation could act as the engine of sustained economic growth.
- Neoclassical version of the AK model:
  - Very tractable and applications in many areas.
  - Shortcoming: capital is essentially the only factor of production, asymptotically share of income accruing to it tends to 1.
- Two-sector endogenous growth models behave very similarly to the baseline AK model, but avoid this.

## Demographics, Preferences and Technology I

- Focus on balanced economic growth, i.e. consistent with the Kaldor facts.
- Thus CRRA preferences as in the canonical neoclassical growth model.
- Economy admits an infinitely-lived representative household, household size growing at the exponential rate n.
- Preferences

$$U = \int_0^\infty \exp\left(-\left(\rho - n\right)t\right) \left[\frac{c\left(t\right)^{1-\theta} - 1}{1 - \theta}\right] dt. \tag{1}$$

- Labor is supplied inelastically.
- Flow budget constraint,

$$\dot{a}(t) = (r(t) - n)a(t) + w(t) - c(t),$$
 (2)

## Demographics, Preferences and Technology II

• No-Ponzi game constraint:

$$\lim_{t\to\infty}\left\{a(t)\exp\left[-\int_0^t\left[r(s)-n\right]ds\right]\right\}\geq 0. \tag{3}$$

• Euler equation:

$$\frac{\dot{c}(t)}{c(t)} = \frac{1}{\theta}(r(t) - \rho). \tag{4}$$

Transversality condition,

$$\lim_{t\to\infty}\left\{a(t)\exp\left[-\int_0^t\left[r(s)-n\right]ds\right]\right\}=0. \tag{5}$$

- Problem is concave, solution to these necessary conditions is in fact an optimal plan.
- Final good sector similar to before, but Assumptions 1 and 2 are *not* satisfied.

## Demographics, Preferences and Technology III

More specifically,

$$Y(t) = AK(t)$$
,

with A > 0.

- Does not depend on labor, thus w(t) in (2) will be equal to zero.
- Defining  $k(t) \equiv K(t)/L(t)$  as the capital-labor ratio,

$$y(t) \equiv \frac{Y(t)}{L(t)}$$

$$= Ak(t).$$
(6)

- Notice output is only a function of capital, and there are no diminishing returns
- But introducing diminishing returns to capital does not affect the main results in this section.

## Demographics, Preferences and Technology IV

 More important assumption is that the Inada conditions embedded in Assumption 2 are no longer satisfied,

$$\lim_{k\to\infty}f'\left(k\right)=A>0.$$

- Conditions for profit-maximization are similar to before, and require  $R(t) = r(t) + \delta$ .
- From (6) the marginal product of capital is A, thus R(t) = A for all t,

$$r(t) = r = A - \delta$$
, for all  $t$ . (7)

# Equilibrium I

- A competitive equilibrium of this economy consists of paths  $\left[c\left(t\right),k\left(t\right),w\left(t\right),R\left(t\right)\right]_{t=0}^{\infty}$ , such that the representative household maximizes (1) subject to (2) and (3) given initial capital-labor ratio  $k\left(0\right)$  and  $\left[w\left(t\right),r\left(t\right)\right]_{t=0}^{\infty}$  such that  $w\left(t\right)=0$  for all t, and  $r\left(t\right)$  is given by (7).
- Note that a(t) = k(t).
- Using the fact that  $r = A \delta$  and w = 0, equations (2), (4), and (5) imply

$$\dot{k}(t) = (A - \delta - n)k(t) - c(t) \tag{8}$$

$$\frac{\dot{c}(t)}{c(t)} = \frac{1}{\theta}(A - \delta - \rho),\tag{9}$$

$$\lim_{t\to\infty} k(t) \exp\left(-(A-\delta-n)t\right) = 0. \tag{10}$$

## Equilibrium II

- The important result immediately follows from (9).
  - Since the right-hand side is constant, there must be a constant rate of consumption growth (as long as  $A-\delta-\rho>0$ ).
  - Growth of consumption is independent of the level of capital stock per person,  $k\left(t\right)$ .
  - No transitional dynamics in this model.
- To develop, integrate (9) starting from some c(0), to be determined from the lifetime budget constraint,

$$c(t) = c(0) \exp\left(\frac{1}{\theta}(A - \delta - \rho)t\right).$$
 (11)

• Need to ensure that the transversality condition is satisfied and ensure positive growth  $(A-\delta-\rho>0)$ . Impose:

$$A > \rho + \delta > (1 - \theta)(A - \delta) + \theta n + \delta. \tag{12}$$

## Equilibrium Characterization

• Substitute for c(t) from equation (11) into equation (8),

$$\dot{k}(t) = (A - \delta - n)k(t) - c(0) \exp\left(\frac{1}{\theta}(A - \delta - \rho)t\right), \quad (13)$$

 The solution to this differential equation combined with the transversality condition gives (see book for details):

$$k(t) = \left[ (A - \delta)(\theta - 1)\theta^{-1} + \rho\theta^{-1} - n \right]^{-1}$$

$$\times \left[ c(0) \exp\left(\theta^{-1}(A - \delta - \rho)t\right) \right]$$

$$= k(0) \exp\left(\theta^{-1}(A - \delta - \rho)t\right),$$
(14)

- Second line follows from the fact that the boundary condition has to hold for capital at t = 0.
- Hence capital and output grow at the same rate as consumption.
- This also pins down the initial level of consumption as

$$c(0) = [(A - \delta)(\theta - 1)\theta^{-1} + \rho\theta^{-1} - n] k(0).$$
 (15)

# Equilibrium Savings Rate

- No transitional dynamics: growth rates of consumption, capital and output are constant and given in (9).
- Growth is not only sustained, but also endogenous in the sense of being affected by underlying parameters.
  - ullet E.g., an increase in ho, will reduce the growth rate.
- Saving rate=total investment (increase in capital plus replacement investment) divided by output:

$$s = \frac{\dot{K}(t) + \delta K(t)}{Y(t)}$$

$$= \frac{\dot{k}(t) / k(t) + n + \delta}{A}$$

$$= \frac{A - \rho + \theta n + (\theta - 1)\delta}{\theta A}, \quad (16)$$

• Last equality exploited  $\dot{k}(t)/k(t) = (A - \delta - \rho)/\theta$ .

# Equilibrium Characterization: Summary

- Saving rate, constant and exogenous in the basic Solow model, is again constant.
- But is now a function of parameters, also those that determine the equilibrium growth rate of the economy.

Proposition Consider the above-described AK economy, with a representative household with preferences given by (1), and the production technology given by (6). Suppose that condition (12) holds. Then, there exists a unique equilibrium path in which consumption, capital and output all grow at the same rate  $g^* \equiv (A - \delta - \rho)/\theta > 0$  starting from any initial positive capital stock per worker k (0), and the saving rate is endogenously determined by (16).

## Pareto Optimality

- Since all markets are competitive, there is a representative household, and there are no externalities, the competitive equilibrium will be Pareto optimal.
- Can be proved either using First Welfare Theorem type reasoning, or by directly constructing the optimal growth solution.

Proposition Consider the above-described AK economy, with a representative household with preferences given by (1), and the production technology given by (6). Suppose that condition (12) holds. Then, the unique competitive equilibrium is Pareto optimal.

## The Role of Policy I

• Suppose there is an effective tax rate of  $\tau$  on the rate of return from capital income, so budget constraint becomes:

$$\dot{a}(t) = ((1-\tau)r(t) - n)a(t) + w(t) - c(t). \tag{17}$$

 Repeating the analysis above this will adversely affect the growth rate of the economy, now:

$$g = \frac{(1-\tau)(A-\delta)-\rho}{\theta}.$$
 (18)

Moreover, saving rate will now be

$$s = \frac{(1-\tau)A - \rho + \theta n - (1-\tau-\theta)\delta}{\theta A},\tag{19}$$

which is a decreasing function of  $\tau$  if  $A - \delta > 0$ .

## The Role of Policy II

- In contrast to Solow, constants saving rate responds endogenously to policy.
- Since saving rate is constant, differences in policies will lead to permanent differences in the rate of capital accumulation.
  - In the baseline neoclassical growth model even large differences in distortions could only have limited effects on differences in income per capita.
  - Here even small differences in  $\tau$  can have very large effects.
- Consider two economies, with tax rates on capital income  $\tau$  and  $\tau' > \tau$ , and exactly the same otherwise.
- For any  $\tau' > \tau$ ,

$$\lim_{t\to\infty}\frac{Y\left(\tau',t\right)}{Y\left(\tau,t\right)}=0,$$

## The Role of Policy III

- Why then focus on standard neoclassical if AK model can generate arbitrarily large differences?
  - AK model, with no diminishing returns and the share of capital in national income asymptoting to 1, is not a good approximation to reality.
  - Relative stability of the world income distribution in the post-war era makes it more attractive to focus on models in which there is a stationary world income distribution.

#### The Two-Sector AK Model I

- Model before creates another factor of production that accumulates linearly, so equilibrium is again equivalent to the one-sector AK economy.
- Thus, in some deep sense, the economies of both sections are one-sector models.
- Also, potentially blur key underlying characteristic driving growth.
- What is important is not that production technology is AK, but that the accumulation technology is linear.
- Preference and demographics are the same as in the model of the previous section, (1)-(5) apply as before
- No population growth, i.e., n = 0, and L is supplied inelastically.
- Rather than a single good used for consumption and investment, now two sectors.

#### The Two-Sector AK Model II

Sector 1 produces consumption goods with the following technology

$$C(t) = B(K_C(t))^{\alpha} L_C(t)^{1-\alpha}, \qquad (20)$$

- Cobb-Douglas assumption here is quite important in ensuring that the share of capital in national income is constant
- Capital accumulation equation:

$$\dot{K}(t) = I(t) - \delta K(t)$$
,

 I (t) denotes investment. Investment goods are produced with a different technology,

$$I(t) = AK_I(t). (21)$$

• Extreme version of an assumption often made in two-sector models: investment-good sector is more capital-intensive than the consumption-good sector.

#### The Two-Sector AK Model III

Market clearing implies:

$$K_{C}(t) + K_{I}(t) \leq K(t),$$
 $L_{C}(t) \leq L,$ 

- An equilibrium is defined similarly, but also features an allocation decision of capital between the two sectors.
- Also, there will be a relative price between the two sectors which will adjust endogenously.
- Both market clearing conditions will hold as equalities, so letting  $\kappa\left(t\right)$  denote the share of capital used in the investment sector

$$K_{C}\left(t\right)=\left(1-\kappa\left(t\right)\right)K\left(t\right) \text{ and } K_{I}\left(t\right)=\kappa\left(t\right)K(t).$$

• From profit maximization, the rate of return to capital has to be the same when it is employed in the two sectors.

#### The Two-Sector AK Model IV

• Let the price of the investment good be denoted by  $p_{l}\left(t\right)$  and that of the consumption good by  $p_{C}\left(t\right)$ , then

$$p_{I}(t) A = p_{C}(t) \alpha B \left(\frac{L}{(1 - \kappa(t)) \kappa(t)}\right)^{1 - \alpha}.$$
 (22)

- Define a steady-state (a balanced growth path) as an equilibrium path in which  $\kappa(t)$  is constant and equal to some  $\kappa \in [0, 1]$ .
- Moreover, choose the consumption good as the numeraire, so that  $ho_{\mathcal{C}}\left(t
  ight)=1$  for all t.
- Then differentiating (22) implies that at the steady state:

$$\frac{\dot{p}_{I}\left(t\right)}{p_{I}\left(t\right)} = -\left(1 - \alpha\right) g_{K},\tag{23}$$

•  $g_K$  is the steady-state (BGP) growth rate of capital.

#### The Two-Sector AK Model V

- Euler equation (4) still holds, but interest rate has to be for consumption-denominated loans, r<sub>C</sub> (t).
- I.e., the interest rate that measures how many units of consumption good an individual will receive tomorrow by giving up one unit of consumption today.
- Relative price of consumption goods and investment goods is changing over time, thus:
  - By giving up one dollar, the individual will buy  $1/p_{l}\left(t\right)$  units of capital goods.
  - This will have an instantaneous return of  $r_{l}(t)$ .
  - Individual will get back the one unit of capital, which has experienced a change in its price of  $\dot{p}_{l}\left(t\right)/p_{l}\left(t\right)$ .
  - Finally, he will have to buy consumption goods, whose prices changed by  $\dot{p}_C(t)/p_C(t)$ .

#### The Two-Sector AK Model VI

• Therefore,

$$r_{C}(t) = \frac{r_{I}(t)}{\rho_{I}(t)} + \frac{\dot{p}_{I}(t)}{\rho_{I}(t)} - \frac{\dot{p}_{C}(t)}{\rho_{C}(t)}.$$
 (24)

- Given our choice of numeraire, we have  $\dot{p}_{\mathcal{C}}\left(t\right)/p_{\mathcal{C}}\left(t\right)=0$ .
- Moreover,  $\dot{p}_{l}(t)/p_{l}(t)$  is given by (23).
- Finally,

$$\frac{r_{I}\left(t\right)}{p_{I}\left(t\right)}=A-\delta$$

given the linear technology in (21).

Therefore, we have

$$r_{C}(t) = A - \delta + \frac{\dot{p}_{I}(t)}{p_{I}(t)}.$$

#### The Two-Sector AK Model VII

• In steady state, from (23):

$$r_C = A - \delta - (1 - \alpha) g_K$$
.

• From (4), this implies a consumption growth rate of

$$g_{C} \equiv \frac{C(t)}{C(t)} = \frac{1}{\theta} \left( A - \delta - (1 - \alpha) g_{K} - \rho \right). \tag{25}$$

• Finally, differentiate (20) and use the fact that labor is always constant to obtain

$$\frac{\dot{C}\left(t\right)}{C\left(t\right)} = \alpha \frac{\dot{K}_{C}\left(t\right)}{K_{C}\left(t\right)},$$

• From the constancy of  $\kappa(t)$  in steady state, implies the following steady-state relationship:

$$g_C = \alpha g_K$$
.

#### The Two-Sector AK Model VIII

• Substituting this into (25), we have

$$g_{K}^{*} = \frac{A - \delta - \rho}{1 - \alpha \left(1 - \theta\right)} \tag{26}$$

and

$$g_C^* = \alpha \frac{A - \delta - \rho}{1 - \alpha (1 - \theta)}.$$
 (27)

- Because labor is being used in the consumption good sector, there will be positive wages.
- Since labor markets are competitive,

$$w(t) = (1 - \alpha) p_{C}(t) B\left(\frac{(1 - \kappa(t)) K(t)}{L}\right)^{\alpha}.$$

#### The Two-Sector AK Model IX

• Therefore, in the balanced growth path,

$$\frac{\dot{w}(t)}{w(t)} = \frac{\dot{p}_{C}(t)}{p_{C}(t)} + \alpha \frac{\dot{K}(t)}{K(t)}$$
$$= \alpha g_{K}^{*},$$

• Thus wages also grow at the same rate as consumption.

Proposition In the above-described two-sector neoclassical economy, starting from any  $K\left(0\right)>0$ , consumption and labor income grow at the constant rate given by (27), while the capital stock grows at the constant rate (26).

• Can do policy analysis as before

#### The Two-Sector AK Model X

capital deepening.

Capital grows at a faster rate than consumption and output. Whether

• Different from the neoclassical growth model, there is continuous

- Capital grows at a faster rate than consumption and output. Whether this is a realistic feature is debatable:
  - Kaldor facts include constant capital-output ratio as one of the requirements of balanced growth.
  - For much of the 20th century, capital-output ratio has been constant, but it has been increasing steadily over the past 30 years.
  - Part of the increase is because of relative price adjustments that have only been performed in the recent past.

#### Growth with Externalities I

- Romer (1986): model the process of "knowledge accumulation".
- Difficult in the context of a competitive economy.
- Solution: knowledge accumulation as a byproduct of capital accumulation.
- Technological spillovers: arguably crude, but captures that knowledge is a largely non-rival good.
- Non-rivalry does not imply knowledge is also non-excludable.
- But some of the important characteristics of "knowledge" and its role in the production process can be captured in a reduced-form way by introducing technological spillovers.

## Preferences and Technology I

- No population growth (we will see why this is important).
- Production function with labor-augmenting knowledge (technology) that satisfies Assumptions 1 and 2.
- Instead of working with the aggregate production function, assume that the production side of the economy consists of a set  $\left[0,1\right]$  of firms.
- The production function facing each firm  $i \in [0, 1]$  is

$$Y_{i}(t) = F\left(K_{i}(t), A(t) L_{i}(t)\right), \tag{28}$$

- $K_i(t)$  and  $L_i(t)$  are capital and labor rented by a firm i.
- A(t) is not indexed by i, since it is technology common to all firms.

## Preferences and Technology II

 Normalize the measure of final good producers to 1, so market clearing conditions:

$$\int_{0}^{1} K_{i}\left(t\right) di = K\left(t\right)$$

and

$$\int_0^1 L_i(t) di = L,$$

- L is the constant level of labor (supplied inelastically) in this economy.
- Firms are competitive in all markets, thus all hire the same capital to effective labor ratio, and

$$w(t) = \frac{\partial F(K(t), A(t) L)}{\partial L}$$

$$R(t) = \frac{\partial F(K(t), A(t) L)}{\partial K(t)}.$$

## Preferences and Technology III

- Key assumption: firms take  $A\left(t\right)$  as given, but this stock of technology (knowledge) advances endogenously for the economy as a whole.
- Lucas (1988) develops a similar model, but spillovers work through human capital.
- Extreme assumption of sufficiently strong externalities such that  $A\left(t\right)$  can grow continuously at the economy level. In particular,

$$A(t) = BK(t), (29)$$

- Motivated by "learning-by-doing." Alternatively, could be a function of the cumulative output that the economy has produced up to now.
- Substituting for (29) into (28) and using the fact that all firms are functioning at the same capital-effective labor ratio, production function of the representative firm:

$$Y(t) = F(K(t), BK(t)L).$$

# Preferences and Technology IV

ullet Using the fact that  $F\left(\cdot,\cdot
ight)$  is homogeneous of degree 1, we have

$$\frac{Y(t)}{K(t)} = F(1, BL)$$
$$= \tilde{f}(L).$$

• Output per capita can therefore be written as:

$$y(t) \equiv \frac{Y(t)}{L}$$

$$= \frac{Y(t)}{K(t)} \frac{K(t)}{L}$$

$$= k(t) \tilde{f}(L),$$

• Again  $k\left(t\right)\equiv K\left(t\right)/L$  is the capital-labor ratio in the economy.

# Preferences and Technology V

- Normalized production function, now  $\tilde{f}(L)$ .
- We have

$$w(t) = K(t)\tilde{f}'(L) \tag{30}$$

and

$$R(t) = R = \tilde{f}(L) - L\tilde{f}'(L), \qquad (31)$$

which is constant.

# Equilibrium I

- An equilibrium is defined as a path  $\left[C\left(t\right),K\left(t\right)\right]_{t=0}^{\infty}$  that maximize the utility of the representative household and  $\left[w\left(t\right),R\left(t\right)\right]_{t=0}^{\infty}$  that clear markets.
- Important feature is that because the knowledge spillovers are external to the firm, factor prices are given by (30) and (31).
- I.e., they do not price the role of the capital stock in increasing future productivity.
- Since the market rate of return is  $r\left(t\right)=R\left(t\right)-\delta$ , it is also constant.
- Usual consumer Euler equation (e.g., (4) above) then implies that consumption must grow at the constant rate,

$$g_C^* = \frac{1}{\theta} \left( \tilde{f}(L) - L\tilde{f}'(L) - \delta - \rho \right). \tag{32}$$

# Equilibrium II

- Capital grows exactly at the same rate as consumption, so the rate of capital, output and consumption growth are all  $g_C^*$ .
- Assume that

$$\tilde{f}(L) - L\tilde{f}'(L) - \delta - \rho > 0, \tag{33}$$

so that there is positive growth.

 But also that growth is not fast enough to violate the transversality condition,

$$(1-\theta)\left(\tilde{f}\left(L\right)-L\tilde{f}'\left(L\right)-\delta\right)<\rho. \tag{34}$$

Proposition Consider the above-described Romer model with physical capital externalities. Suppose that conditions (33) and (34) are satisfied. Then, there exists a unique equilibrium path where starting with any level of capital stock  $K\left(0\right)>0$ , capital, output and consumption grow at the constant rate (32).

# Equilibrium III

- Population must be constant in this model because of the scale effect.
- Since  $\tilde{f}(L) L\tilde{f}'(L)$  is always increasing in L (by Assumption 1), a higher population (labor force) L leads to a higher growth rate.
- The scale effect refers to this relationship between population and the equilibrium rate of economic growth.
- If population is growing, the economy will not admit a steady state and the growth rate of the economy will increase over time (output reaching infinity in finite time and violating the transversality condition).

## Pareto Optimal Allocations I

- Given externalities, not surprising that the decentralized equilibrium is not Pareto optimal.
- The per capita accumulation equation for this economy can be written as

$$\dot{k}(t) = \tilde{f}(L) k(t) - c(t) - \delta k(t)$$
.

 The current-value Hamiltonian to maximize utility of the representative household is

$$\hat{H}(k,c,\mu) = \frac{c(t)^{1-\theta}-1}{1-\theta} + \mu \left[ \tilde{f}(L) k(t) - c(t) - \delta k(t) \right],$$

## Pareto Optimal Allocations II

Conditions for a candidate solution

$$\begin{split} \hat{H}_{c}\left(k,c,\mu\right) &= c\left(t\right)^{-\theta} - \mu\left(t\right) = 0 \\ \hat{H}_{k}\left(k,c,\mu\right) &= \mu\left(t\right)\left[\tilde{f}\left(L\right) - \delta\right] = -\dot{\mu}\left(t\right) + \rho\mu\left(t\right), \\ \lim_{t \to \infty}\left[\exp\left(-\rho t\right)\mu\left(t\right)k\left(t\right)\right] &= 0. \end{split}$$

ullet strictly concave, thus these conditions characterize unique solution.

## Pareto Optimal Allocations III

 Social planner's allocation will also have a constant growth rate for consumption (and output) given by

$$g_{\mathcal{C}}^{\mathcal{S}}=rac{1}{ heta}\left( ilde{f}\left(L
ight)-\delta-
ho
ight)$$
 ,

which is always greater than  $g_{C}^{*}$  as given by (32)—since  $\tilde{f}(L) > \tilde{f}(L) - L\tilde{f}'(L)$ .

- Social planner takes into account that by accumulating more capital, she is improving productivity in the future.
- Proposition In the above-described Romer model with physical capital externalities, the decentralized equilibrium is Pareto suboptimal and grows at a slower rate than the allocation that would maximize the utility of the representative household.

#### Conclusions I

- Linearity of the models (most clearly visible in the AK model):
  - Removes transitional dynamics and leads to a more tractable mathematical structure.
  - Essential feature of any model that will exhibit sustained economic growth.
  - With strong concavity, especially consistent with the Inada, sustained growth will not be possible.
- But most models studied in this chapter do not feature technological progress:
  - Debate about whether the observed total factor productivity growth is partly a result of mismeasurement of inputs.
  - Could be that much of what we measure as technological progress is in fact capital deepening, as in AK model and its variants.

#### Conclusions II

- Important tension:
  - neoclassical growth model (or Solow growth model) have difficulty in generating very large income differences
  - models here suffer from the opposite problem.
  - Both a blessing and a curse: also predict an ever expanding world distribution.
- Issues to understand:
  - Era of divergence is not the past 60 years, but the 19th century: important to confront these models with historical data.
  - "Each country as an island" approach is unlikely to be a good approximation, much less so when we endogenize technology.