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Solow Growth Model Solow Growth Model

Solow Growth Model

Develop a simple framework for the proximate causes and the
mechanics of economic growth and cross-country income differences.

Solow-Swan model named after Robert (Bob) Solow and Trevor
Swan, or simply the Solow model

Before Solow growth model, the most common approach to economic
growth built on the Harrod-Domar model.

Harrod-Domar mdel emphasized potential dysfunctional aspects of
growth: e.g, how growth could go hand-in-hand with increasing
unemployment.

Solow model demonstrated why the Harrod-Domar model was not an
attractive place to start.

At the center of the Solow growth model is the neoclassical aggregate
production function.
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Solow Growth Model Households and Production

Households and Production I

Closed economy, with a unique final good.
Discrete time running to an infinite horizon, time is indexed by
t = 0, 1, 2, ....
Households save a constant exogenous fraction s of disposable income
(no explicit optimization, as in basic Keynesian models).
All firms have access to the same production function: economy
admits a representative firm, with a representative (or aggregate)
production function.
Aggregate production function for the unique final good is

Y (t) = F [K (t) , L (t) ,A (t)] (1)

Assume capital is the same as the final good of the economy, but
used in the production process of more goods.
A (t) is a technological shifter of the production function (1).
Major assumption: technology is free; it is publicly available as a
non-excludable, non-rival good.
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Solow Growth Model Households and Production

Some Assumptions

Assumption 1 (Continuity, Differentiability, Positive and Diminishing
Marginal Products, and Constant Returns to Scale) The
production function F : R3

+ → R+ is twice continuously
differentiable in K and L, and satisfies

FK (K , L,A) ≡
∂F (·)

∂K
> 0, FL(K , L,A) ≡

∂F (·)
∂L

> 0,

FKK (K , L,A) ≡
∂2F (·)

∂K 2
< 0, FLL(K , L,A) ≡

∂2F (·)
∂L2

< 0.

Moreover, F exhibits constant returns to scale in K and L.

Assume F exhibits constant returns to scale in K and L. I.e., it is
linearly homogeneous (homogeneous of degree 1) in these two
variables.
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Solow Growth Model Households and Production

Review

Definition Let K be an integer. The function g : RK+2 → R is
homogeneous of degree m in x ∈ R and y ∈ R if and only if

g (λx ,λy , z) = λmg (x , y , z) for all λ ∈ R+ and z ∈ RK .

Theorem (Euler’s Theorem) Suppose that g : RK+2 → R is
continuously differentiable in x ∈ R and y ∈ R, with partial
derivatives denoted by gx and gy and is homogeneous of
degree m in x and y . Then

mg (x , y , z) = gx (x , y , z) x + gy (x , y , z) y

for all x ∈ R, y ∈ R and z ∈ RK .

Moreover, gx (x , y , z) and gy (x , y , z) are themselves
homogeneous of degree m− 1 in x and y .
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Solow Growth Model Market Structure, Endowments and Market Clearing

Market Structure, Endowments and Market Clearing I

We will assume that markets are competitive, so ours will be a
prototypical competitive general equilibrium model.
Households own all of the labor, which they supply inelastically.
Endowment of labor in the economy, L̄ (t), and all of this will be
supplied regardless of the price.
The labor market clearing condition can then be expressed as:

L (t) = L̄ (t)

for all t, where L (t) denotes the demand for labor (and also the level
of employment).
More generally, should be written in complementary slackness form.
In particular, let the wage rate at time t be w (t), then the labor
market clearing condition takes the form

L (t) ≤ L̄ (t) ,w (t) ≥ 0 and (L (t)− L̄ (t))w (t) = 0
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Solow Growth Model Market Structure, Endowments and Market Clearing

Market Structure, Endowments and Market Clearing II

But Assumption 1 and competitive labor markets make sure that
wages have to be strictly positive.

Households also own the capital stock of the economy and rent it to
firms. Take initial holdings, K (0), as given

Denote the rental price of capital at time t be R (t).

Capital market clearing condition:

K s (t) = K d (t)

Assume capital depreciates, with “exponential form,”at the rate δ:
out of 1 unit of capital this period, only 1− δ is left for next period.

Then, the interest rate faced by the household will be
r (t) = R (t)− δ.

Why is it enough to keep track of the interest rate rather than other
intertemporal prices?
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Solow Growth Model Firm Optimization

Firm Optimization I

Only need to consider the problem of a representative firm:

max
L(t)≥0,K (t)≥0

F [K (t), L(t),A(t)]− w (t) L (t)− R (t)K (t) .

Since there are no irreversible investments or costs of adjustments, the
production side can be represented as a static maximization problem.

Equivalently, cost minimization problem.

Features worth noting:
1 Problem is set up in terms of aggregate variables.
2 Nothing multiplying the F term, price of the final good has normalized
to 1.

3 Already imposes competitive factor markets: firm is taking as given
w (t) and R (t).

4 Concave problem, since F is concave.
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Solow Growth Model Firm Optimization

Firm Optimization II

Since F is differentiable, first-order necessary conditions imply:

w (t) = FL[K (t), L(t),A(t)], (2)

and
R (t) = FK [K (t), L(t),A(t)]. (3)

Note also that in (2) and (3), we used K (t) and L (t), the amount of
capital and labor used by firms.

In fact, solving for K (t) and L (t), we can derive the capital and labor
demands of firms in this economy at rental prices R (t) and w (t).

Thus we could have used K d (t) instead of K (t), but this additional
notation is not necessary.
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Solow Growth Model Firm Optimization

Firm Optimization III

Proposition Suppose Assumption 1 holds. Then in the equilibrium of the
Solow growth model, firms make no profits, and in particular,

Y (t) = w (t) L (t) + R (t)K (t) .

Proof: Follows immediately from Euler Theorem for the case of
m = 1, i.e., constant returns to scale.

Thus firms make no profits, so ownership of firms does not need to be
specified.
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Solow Growth Model Firm Optimization

Second Key Assumption

Assumption 2 (Inada conditions) F satisfies the Inada conditions

lim
K→0

FK (·) = ∞ and lim
K→∞

FK (·) = 0 for all L > 0 all A

lim
L→0

FL (·) = ∞ and lim
L→∞

FL (·) = 0 for all K > 0 all A.

Important in ensuring the existence of interior equilibria.

It can be relaxed quite a bit, though useful to get us started.
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Solow Growth Model Firm Optimization

Production Functions

F(K, L, A)

K
0

K
0

Panel A Panel B

F(K, L, A)

Figure: Production functions and the marginal product of capital. The example in
Panel A satisfies the Inada conditions in Assumption 2, while the example in
Panel B does not.
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The Solow Model in Discrete Time Fundamental Law of Motion of the Solow Model

Fundamental Law of Motion of the Solow Model I

Recall that K depreciates exponentially at the rate δ, so

K (t + 1) = (1− δ)K (t) + I (t) , (4)

where I (t) is investment at time t.

From national income accounting for a closed economy,

Y (t) = C (t) + I (t) , (5)

Behavioral rule of the constant saving rate simplifies the structure of
equilibrium considerably.

Note not derived from the maximization of utility function: welfare
comparisons have to be taken with a grain of salt.
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The Solow Model in Discrete Time Fundamental Law of Motion of the Solow Model

Fundamental Law of Motion of the Solow Model II

Since the economy is closed (and there is no government spending),

S (t) = I (t) = Y (t)− C (t) .

Individuals are assumed to save a constant fraction s of their income,

S (t) = sY (t) , (6)

C (t) = (1− s)Y (t) (7)

Implies that the supply of capital resulting from households’behavior
can be expressed as

K s (t) = (1− δ)K (t) + S (t) = (1− δ)K (t) + sY (t) .
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The Solow Model in Discrete Time Fundamental Law of Motion of the Solow Model

Fundamental Law of Motion of the Solow Model III

Setting supply and demand equal to each other, this implies
K s (t) = K (t).

We also have L (t) = L̄ (t).

Combining these market clearing conditions with (1) and (4), we
obtain the fundamental law of motion the Solow growth model:

K (t + 1) = sF [K (t) , L (t) ,A (t)] + (1− δ)K (t) . (8)

Nonlinear difference equation.

Equilibrium of the Solow growth model is described by this equation
together with laws of motion for L (t) (or L̄ (t)) and A (t).
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The Solow Model in Discrete Time Definition of Equilibrium

Definition of Equilibrium I

Definition In the basic Solow model for a given sequence of
{L (t) ,A (t)}∞

t=0 and an initial capital stock K (0), an
equilibrium path is a sequence of capital stocks, output
levels, consumption levels, wages and rental rates
{K (t) ,Y (t) ,C (t) ,w (t) ,R (t)}∞

t=0 such that K (t)
satisfies (8), Y (t) is given by (1), C (t) is given by (7), and
w (t) and R (t) are given by (2) and (3).

Note an equilibrium is defined as an entire path of allocations and
prices: not a static object.

Make some further assumptions, which will be relaxed later:
1 There is no population growth; total population is constant at some
level L > 0. Since individuals supply labor inelastically, L (t) = L.

2 No technological progress, so that A (t) = A.
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The Solow Model in Discrete Time Equilibrium

Preliminaries

Define the capital-labor ratio of the economy as

k (t) ≡ K (t)
L

, (9)

Using the constant returns to scale assumption, we can express
output (income) per capita, y (t) ≡ Y (t) /L, as

y (t) = F
[
K (t)
L

, 1,A
]

≡ f (k (t)) . (10)

Note that f (k) here depends on A, so I could have written f (k,A);
but A is constant and can be normalized to A = 1.
From Euler Theorem,

R (t) = f ′ (k (t)) > 0 and

w (t) = f (k (t))− k (t) f ′ (k (t)) > 0. (11)

Both are positive from Assumption 1.
Daron Acemoglu (MIT) Economic Growth Lectures 2-3 October-December 2024 17 / 106



The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological
Progress

The per capita representation of the aggregate production function
enables us to divide both sides of (8) by L to obtain:

k (t + 1) = sf (k (t)) + (1− δ) k (t) . (12)

Since it is derived from (8), it also can be referred to as the
equilibrium difference equation of the Solow model
The other equilibrium quantities can be obtained from the
capital-labor ratio k (t).

Definition A steady-state equilibrium without technological progress
and population growth is an equilibrium path in which
k (t) = k∗ for all t.

The economy will tend to this steady state equilibrium over time (but
never reach it in finite time).
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The Solow Model in Discrete Time Equilibrium

Steady-State Capital-Labor Ratio

k(t+1)

k(t)

45°

sf(k(t))+(1–δ)k(t)
k*

k*0

Figure: Determination of the steady-state capital-labor ratio in the Solow model
without population growth and technological change.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological
Progress II

Thick curve represents (12) and the dashed line corresponds to the
45◦ line.

Their (positive) intersection gives the steady-state value of the
capital-labor ratio k∗,

f (k∗)
k∗

=
δ

s
. (13)

There is another intersection at k = 0, because the figure assumes
that f (0) = 0.

Will ignore this intersection throughout:
1 If capital is not essential, f (0) will be positive and k = 0 will cease to
be a steady state equilibrium

2 This intersection, even when it exists, is an unstable point
3 It has no economic interest for us.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological
Progress III

k(t+1)

k(t)

45°

k*

k*

ε

sf(k(t))+(1−δ)k(t)

0

Figure: Unique steady state in the basic Solow model when f (0) = ε > 0.
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The Solow Model in Discrete Time Equilibrium

Consumption and Investment in Steady State

Alternative visual representation: intersection between δk and the
function sf (k), which shows consumption and investment:

output

k(t)

f(k*)

k*

δk(t)

f(k(t))

sf(k*)
sf(k(t))

consumption

investment

0

Figure: Investment and consumption in steady state
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological
Progress V

Proposition Consider the basic Solow growth model and suppose that
Assumptions 1 and 2 hold. Then there exists a unique steady
state equilibrium where the capital-labor ratio k∗ ∈ (0,∞) is
given by (13), per capita output is given by

y ∗ = f (k∗) (14)

and per capita consumption is given by

c∗ = (1− s) f (k∗) . (15)
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The Solow Model in Discrete Time Equilibrium

Proof

The preceding argument establishes that any k∗ that satisfies (13) is
a steady state.

To establish existence, note that from Assumption 2 (and from
L’Hospital’s rule), limk→0 f (k) /k = ∞ and limk→∞ f (k) /k = 0.
Moreover, f (k) /k is continuous from Assumption 1, so by the
Intermediate Value Theorem there exists k∗ such that (13) is satisfied.

To see uniqueness, differentiate f (k) /k with respect to k, which
gives

∂ [f (k) /k ]
∂k

=
f ′ (k) k − f (k)

k2
= − w

k2
< 0, (16)

where the last equality uses (11).

Since f (k) /k is everywhere (strictly) decreasing, there can only exist
a unique value k∗ that satisfies (13).

Equations (14) and (15) then follow by definition.
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The Solow Model in Discrete Time Equilibrium

Non-Existence and Non-Uniqueness

k(t+1)

k(t)

45°

sf(k(t))+(1–δ)k(t)

0

k(t+1)

k(t)

45°

sf(k(t))+(1–δ)k(t)

0

k(t+1)

k(t)

45°

sf(k(t))+(1–δ)k(t)

0

0
Panel A Panel B Panel C

Figure: Examples of nonexistence and nonuniqueness of interior steady states
when Assumptions 1 and 2 are not satisfied.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological
Progress VI

Comparative statics with respect to s, a and δ straightforward for k∗

and y ∗.
But c∗ will not be monotone in the saving rate (think, for example, of
s = 1).
In fact, there will exist a specific level of the saving rate, sgold ,
referred to as the “golden rule” saving rate, which maximizes c∗.
But cannot say whether the golden rule saving rate is “better” than
some other saving rate.
Write the steady state relationship between c∗ and s and suppress the
other parameters:

c∗ (s) = (1− s) f (k∗ (s)) ,
= f (k∗ (s))− δk∗ (s) ,

The second equality exploits that in steady state sf (k) = δk.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological
Progress X

Differentiating with respect to s,

∂c∗ (s)
∂s

=
[
f ′ (k∗ (s))− δ

] ∂k∗

∂s
. (17)

sgold is such that ∂c∗ (sgold ) /∂s = 0. The corresponding steady-state
golden rule capital stock is defined as k∗gold .

Proposition In the basic Solow growth model, the highest level of
steady-state consumption is reached for sgold , with the
corresponding steady state capital level k∗gold such that

f ′
(
k∗gold

)
= δ. (18)
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The Solow Model in Discrete Time Equilibrium

The Golden Rule

consumption

savings rate

(1–s)f(k*gold)

s*gold 10

Figure: The “golden rule” level of savings rate, which maximizes steady-state
consumption.
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The Solow Model in Discrete Time Equilibrium

Dynamic Ineffi ciency

When the economy is below k∗gold , higher saving will increase
consumption; when it is above k∗gold , steady-state consumption can be
increased by saving less.

In the latter case, capital-labor ratio is too high so that individuals are
investing too much and not consuming enough (dynamic ineffi ciency).

But no utility function, so statements about “ineffi ciency”have to be
considered with caution.

Such dynamic ineffi ciency will not arise once we endogenize
consumption-saving decisions.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Discrete-Time Solow Model Redux

Per capita capital stock evolves according to

k (t + 1) = sf (k (t)) + (1− δ) k (t) .

The steady-state value of the capital-labor ratio k∗ is given by

f (k∗)
k∗

=
δ

s
.

Consumption is given by

C (t) = (1− s)Y (t)

And factor prices are given by

R (t) = f ′ (k (t)) > 0 and

w (t) = f (k (t))− k (t) f ′ (k (t)) > 0.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Transitional Dynamics

Equilibrium path: not simply steady state, but entire path of capital
stock, output, consumption and factor prices.

In engineering and physical sciences, equilibrium is point of rest of
dynamical system, thus the steady state equilibrium.
In economics, non-steady-state behavior also governed by optimizing
behavior of households and firms and market clearing.

Need to study the “transitional dynamics”of the equilibrium
difference equation (12) starting from an arbitrary initial capital-labor
ratio k (0) > 0.

Key question: whether economy will tend to steady state and how it
will behave along the transition path.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Transitional Dynamics: Reminder

Simple Result About Stability

Let x (t) , a, b ∈ R, then the unique steady state of the linear
difference equation x (t + 1) = ax (t) + b is globally asymptotically
stable (in the sense that x (t)→ x∗ = b/ (1− a)) if |a| < 1.
Suppose that g : R→ R is differentiable at the steady state x∗,
defined by g (x∗) = x∗. Then, the steady state of the nonlinear
difference equation x (t + 1) = g (x (t)), x∗, is locally asymptotically
stable if |g ′ (x∗)| < 1. Moreover, if |g ′ (x)| < 1 for all x ∈ R, then
x∗ is globally asymptotically stable.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Transitional Dynamics in the Discrete Time Solow Model

Proposition Suppose that Assumptions 1 and 2 hold, then the
steady-state equilibrium of the Solow growth model
described by the difference equation (12) is globally
asymptotically stable, and starting from any k (0) > 0, k (t)
monotonically converges to k∗.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Proof of Proposition: Transitional Dyamics I

Let g (k) ≡ sf (k) + (1− δ) k. First observe that g ′ (k) > 0 for all k.

Next, from (12),
k (t + 1) = g (k (t)) , (19)

with a unique steady state at k∗.

From (13), the steady-state capital k∗ satisfies δk∗ = sf (k∗), or

k∗ = g (k∗) . (20)

Recall that f (·) is concave and differentiable from Assumption 1 and
satisfies f (0) ≥ 0 from Assumption 2.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Proof of Proposition: Transitional Dyamics II

For any strictly concave differentiable function,

f (k) > f (0) + kf ′ (k) ≥ kf ′ (k) , (21)

The second inequality uses the fact that f (0) ≥ 0.
Since (21) implies that δ = sf (k∗) /k∗ > sf ′ (k∗), we have
g ′ (k∗) = sf ′ (k∗) + 1− δ < 1. Therefore,

g ′ (k∗) ∈ (0, 1) .

The Simple Result then establishes local asymptotic stability.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Proof of Proposition: Transitional Dyamics III

To prove global stability, note that for all k (t) ∈ (0, k∗),

k (t + 1)− k∗ = g (k (t))− g (k∗)

= −
∫ k ∗

k (t)
g ′ (k) dk,

< 0

First line follows by subtracting (20) from (19), second line uses the
fundamental theorem of calculus, and third line follows from the
observation that g ′ (k) > 0 for all k.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Proof of Proposition: Transitional Dyamics IV

Next, (12) also implies

k (t + 1)− k (t)
k (t)

= s
f (k (t))
k (t)

− δ

> s
f (k∗)
k∗

− δ

= 0.

Moreover, for any k (t) ∈ (0, k∗ − ε), this is uniformly so.
Second line uses the fact that f (k) /k is decreasing in k (from (21)
above) andlast line uses the definition of k∗.
These two arguments together establish that for all k (t) ∈ (0, k∗),
k (t + 1) ∈ (k (t) , k∗).
An identical argument implies that for all k (t) > k∗,
k (t + 1) ∈ (k∗, k (t)).
Therefore, {k (t)}∞

t=0 monotonically converges to k
∗ and is globally

stable.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Transitional Dynamics III

Stability result can be seen diagrammatically in the Figure:

Starting from initial capital stock k (0) < k∗, economy grows towards
k∗, capital deepening and growth of per capita income.
If economy were to start with k ′ (0) > k∗, reach the steady state by
decumulating capital and contracting.

As a consequence:

Proposition Suppose that Assumptions 1 and 2 hold, and k (0) < k∗,
then {w (t)}∞

t=0 is an increasing sequence and {R (t)}
∞
t=0 is

a decreasing sequence. If k (0) > k∗, the opposite results
apply.

Thus far Solow growth model has a number of nice properties, but no
growth, except when the economy starts with k (0) < k∗.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Transitional Dynamics in Figure

45°

k*

k*k(0) k’(0)0

k(t+1)

k(t)

Figure: Transitional dynamics in the basic Solow model.
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The Solow Model in Continuous Time Towards Continuous Time

From Difference to Differential Equations I

Start with a simple difference equation

x (t + 1)− x (t) = g (x (t)) . (22)

Now consider the following approximation for any ∆t ∈ [0, 1] ,

x (t + ∆t)− x (t) ' ∆t · g (x (t)) ,

When ∆t = 0, this equation is just an identity. When ∆t = 1, it gives
(22).

In-between it is a linear approximation, not too bad if
g (x) ' g (x (t)) for all x ∈ [x (t) , x (t + 1)]
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The Solow Model in Continuous Time Towards Continuous Time

From Difference to Differential Equations II

Divide both sides of this equation by ∆t, and take limits

lim
∆t→0

x (t + ∆t)− x (t)
∆t

= ẋ (t) ' g (x (t)) , (23)

where

ẋ (t) ≡ dx (t)
dt

Equation (23) is a differential equation representing (22) for the case
in which t and t + 1 is “small”.
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The Solow Model in Continuous Time Steady State in Continuous Time

The Fundamental Equation of the Solow Model in
Continuous Time I

Nothing has changed on the production side, so (11) still give the
factor prices, now interpreted as instantaneous wage and rental rates.

Savings are again
S (t) = sY (t) ,

Consumption is given by (7) above.

Introduce population growth,

L (t) = exp (nt) L (0) . (24)

Recall

k (t) ≡ K (t)
L (t)

,
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The Solow Model in Continuous Time Steady State in Continuous Time

The Fundamental Equation of the Solow Model in
Continuous Time II

Implies

k̇ (t)
k (t)

=
K̇ (t)
K (t)

− L̇ (t)
L (t)

,

=
K̇ (t)
K (t)

− n.

From the limiting argument leading to equation (23),

K̇ (t) = sF [K (t) , L (t) ,A(t)]− δK (t) .

Using the definition of k (t) and the constant returns to scale
properties of the production function,

k̇ (t)
k (t)

= s
f (k (t))
k (t)

− (n+ δ) , (25)
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The Solow Model in Continuous Time Steady State in Continuous Time

The Fundamental Equation of the Solow Model in
Continuous Time III

Definition In the basic Solow model in continuous time with population
growth at the rate n, no technological progress and an initial
capital stock K (0), an equilibrium path is a sequence of
capital stocks, labor, output levels, consumption levels,
wages and rental rates
[K (t) , L (t) ,Y (t) ,C (t) ,w (t) ,R (t)]∞t=0 such that L (t)
satisfies (24), k (t) ≡ K (t) /L (t) satisfies (25), Y (t) is
given by the aggregate production function, C (t) is given by
(7), and w (t) and R (t) are given by (11).

As before, steady-state equilibrium involves k (t) remaining constant
at some level k∗.
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The Solow Model in Continuous Time Steady State in Continuous Time

Steady State With Population Growth

output

k(t)

f(k*)

k*

f(k(t))

sf(k*)
sf(k(t))

consumption

investment

0

(δ+n)k(t)

Figure: Investment and consumption in the steady-state equilibrium with
population growth.
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The Solow Model in Continuous Time Steady State in Continuous Time

Steady State of the Solow Model in Continuous Time

Equilibrium path (25) has a unique steady state at k∗, which is given
by a slight modification of (13) above:

f (k∗)
k∗

=
n+ δ

s
. (26)

Proposition Consider the basic Solow growth model in continuous time
and suppose that Assumptions 1 and 2 hold. Then there
exists a unique steady state equilibrium where the
capital-labor ratio is equal to k∗ ∈ (0,∞) and is given by
(26), per capita output is given by

y ∗ = f (k∗)

and per capita consumption is given by

c∗ = (1− s) f (k∗) .

Similar comparative statics to the discrete time model.
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Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time

Transitional Dynamics in the Continuous Time Solow
Model I

Simple Result about Stability In Continuous Time Model

Let g : R→ R be a differentiable function and suppose that there
exists a unique x∗ such that g (x∗) = 0. Moreover, suppose g (x) < 0
for all x > x∗ and g (x) > 0 for all x < x∗. Then the steady state of
the nonlinear differential equation ẋ (t) = g (x (t)), x∗, is globally
asymptotically stable, i.e., starting with any x (0), x (t)→ x∗.
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Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time

Simple Result in Figure

k(t)

f(k(t))

k(t)

k(t)
s –(δ+g+n)

k*
0 k(t)

Figure: Dynamics of the capital-labor ratio in the basic Solow model.Daron Acemoglu (MIT) Economic Growth Lectures 2-3 October-December 2024 48 / 106



Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time

Transitional Dynamics in the Continuous Time Solow
Model II

Proposition Suppose that Assumptions 1 and 2 hold, then the basic
Solow growth model in continuous time with constant
population growth and no technological change is globally
asymptotically stable, and starting from any k (0) > 0,
k (t)→ k∗.

Proof: Follows immediately from the Theorem above by noting
whenever k < k∗, sf (k)− (n+ δ) k > 0 and whenever k > k∗,
sf (k)− (n+ δ) k < 0.

Figure: plots the right-hand side of (25) and makes it clear that
whenever k < k∗, k̇ > 0 and whenever k > k∗, k̇ < 0, so k
monotonically converges to k∗.
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A First Look at Sustained Growth Sustained Growth

A First Look at Sustained Growth I

Cobb-Douglas already showed that when α is close to 1, adjustment
to steady-state level can be very slow.

Simplest model of sustained growth essentially takes α = 1 in terms
of the Cobb-Douglas production function above.

Relax Assumptions 1 and 2 and suppose

F [K (t) , L (t) ,A (t)] = AK (t) , (27)

where A > 0 is a constant.

So-called “AK”model, and in its simplest form output does not even
depend on labor.

Results we would like to highlight apply with more general constant
returns to scale production functions,

F [K (t) , L (t) ,A (t)] = AK (t) + BL (t) , (28)
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A First Look at Sustained Growth Sustained Growth

A First Look at Sustained Growth II

Assume population grows at n as before (cfr. equation (24)).

Combining with the production function (27),

k̇ (t)
k (t)

= sA− δ− n.

Therefore, if sA− δ− n > 0, there will be sustained growth in the
capital-labor ratio.

From (27), this implies that there will be sustained growth in output
per capita as well.
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A First Look at Sustained Growth Sustained Growth

A First Look at Sustained Growth III

Proposition Consider the Solow growth model with the production
function (27) and suppose that sA− δ− n > 0. Then in
equilibrium, there is sustained growth of output per capita at
the rate sA− δ− n. In particular, starting with a
capital-labor ratio k (0) > 0, the economy has

k (t) = exp ((sA− δ− n) t) k (0) , and
y (t) = exp ((sA− δ− n) t)Ak (0) .

Note no transitional dynamics.
Unattractive features:

1 Knife-edge case, requires the production function to be ultimately
linear in the capital stock.

2 Implies that as time goes by the share of national income accruing to
capital will reach 1.

3 Technological progress seems to be a major (perhaps the most major)
factor in long-run economic growth.

Daron Acemoglu (MIT) Economic Growth Lectures 2-3 October-December 2024 52 / 106



A First Look at Sustained Growth Sustained Growth

Sustained Growth in Figure

45°

(A−δ−n)k(t)
k(t+1)

k(0)0
k(t)

Figure: Sustained growth with the linear AK technology with sA− δ− n > 0.
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Solow Model with Technological Progress Balanced Growth

Balanced Growth I

Production function F [K (t) , L (t) ,A (t)] is too general.

May not have balanced growth, i.e. a path of the economy consistent
with the Kaldor facts (Kaldor, 1963).

Kaldor facts:

while output per capita increases, the capital-output ratio, the interest
rate, and the distribution of income between capital and labor remain
roughly constant.

We know that the capital share of national income is not really
constant, and has been increasing over the last 30 years or so.
Nevertheless, its “relative constancy” for almost a century might be
an argument for sticking to Kaldor facts.

More importantly, balanced growth is a very simple starting point.
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Solow Model with Technological Progress Balanced Growth

Balanced Growth II

Note capital share in national income is about 1/3, while the labor
share is about 2/3.

Ignoring land, not a major factor of production.

But in poor countries land is a major factor of production.

This pattern often makes economists choose AK 1/3L2/3.

Main advantage from our point of view is that balanced growth is the
same as a steady-state in transformed variables

i.e., we will again have k̇ = 0, but the definition of k will change.

But important to bear in mind that growth has many non-balanced
features.

e.g., the share of different sectors changes systematically.
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Solow Model with Technological Progress Balanced Growth

Types of Neutral Technological Progress I

For some constant returns to scale function F̃ :
Hicks-neutral technological progress:

F̃ [K (t) , L (t) ,A (t)] = A (t) F [K (t) , L (t)] ,

Relabeling of the isoquants (without any change in their shape) of the
function F̃ [K (t) , L (t) ,A (t)] in the L-K space.

Solow-neutral technological progress,

F̃ [K (t) , L (t) ,A (t)] = F [A (t)K (t) , L (t)] .

Capital-augmenting progress: isoquants shifting with technological
progress in a way that they have constant slope at a given labor-output
ratio.

Harrod-neutral technological progress,

F̃ [K (t) , L (t) ,A (t)] = F [K (t) ,A (t) L (t)] .

Increases output as if the economy had more labor: slope of the
isoquants are constant along rays with constant capital-output ratio.
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Solow Model with Technological Progress Balanced Growth

Isoquants with Neutral Technological Progress

K

0 L

Y

Y

K

0 L

Y

Y

0 L

Y

Y

K

Figure: Hicks-neutral, Solow-neutral and Harrod-neutral shifts in isoquants.
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Solow Model with Technological Progress Balanced Growth

Types of Neutral Technological Progress II

Could also have a vector valued index of technology
A (t) = (AH (t) ,AK (t) ,AL (t)) and a production function

F̃ [K (t) , L (t) ,A (t)] = AH (t) F [AK (t)K (t) ,AL (t) L (t)] ,

Nests the constant elasticity of substitution production function
introduced in the Example above.

But even this is a restriction on the form of technological progress,
A (t) could modify the entire production function.

Balanced growth necessitates that all technological progress be labor
augmenting or Harrod-neutral.
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Solow Model with Technological Progress Uzawa’s Theorem

Preliminaries

Focus on continuous time models.

Key elements of balanced growth: constancy of factor shares and of
the capital-output ratio, K (t) /Y (t).
By factor shares, we mean

αL (t) ≡
w (t) L (t)
Y (t)

and αK (t) ≡
R (t)K (t)
Y (t)

.

By Assumption 1 and Euler Theorem αL (t) + αK (t) = 1.
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Solow Model with Technological Progress Uzawa’s Theorem

Uzawa’s Theorem

Theorem

(Uzawa I) Suppose L (t) = exp (nt) L (0),

Y (t) = F̃ (K (t) , L (t) , Ã (t)),

K̇ (t) = Y (t)− C (t)− δK (t), and F̃ is CRS in K and L.
Suppose for τ < ∞, Ẏ (t) /Y (t) = gY > 0, K̇ (t) /K (t) = gK > 0 and
Ċ (t) /C (t) = gC > 0. Then,

1 gY = gK = gC ; and
2 for any t ≥ τ, F̃ can be represented as

Y (t) = F (K (t) ,A (t) L (t)) ,

where A (t) ∈ R+, F : R2
+ → R+ is homogeneous of degree 1, and

Ȧ (t) /A (t) = g = gY − n.
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Solow Model with Technological Progress Uzawa’s Theorem

Intuition

From the aggregate resource constraint, gK > 0 is only possible if
output and capital grow at the same rate.
Either this growth rate is equal to n and there is no technological
change (i.e., proposition applies with g = 0), or the economy exhibits
growth of per capita income and capital-labor ratio.
The latter case creates an asymmetry between capital and labor:
capital is accumulating faster than labor. Constancy of growth
requires technological change to make up for this asymmetry.

Corollary Under the assumptions of Uzawa Theorem, after time τ
technological progress can be represented as Harrod neutral
(purely labor augmenting).

Also, contrary to Uzawa’s original theorem, not stated for equilibrium
or a balanced growth path, but only for an asymptotic feasible path
with constant rates of output, capital and consumption growth. But,
the theorem gives only one representation.
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Solow Model with Technological Progress Uzawa’s Theorem

Further Intuition

Suppose the production function takes the special form
F [AK (t)K (t) ,AL (t) L (t)].
The stronger theorem implies that factor shares will be constant.
Given constant returns to scale, this can only be the case when
AK (t)K (t) and AL (t) L (t) grow at the same rate.
The fact that the capital-output ratio is constant in steady state (or
the fact that capital accumulates) implies that K (t) must grow at
the same rate as AL (t) L (t).
Balanced growth possible only if AK (t) is asymptotically constant.
Allows one important exception. If,

Y (t) = [AK (t)K (t)]
α [AL(t)L(t)]

1−α ,

then both AK (t) and AL (t) could grow asymptotically, while
maintaining balanced growth. This is where the fact that
Harrod-neutral technological change is just one representation is
important.
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Solow Model with Technological Progress Uzawa’s Theorem

Implications for Factor Shares

Suppose the labor-augmenting representation of the aggregate
production function applies.

Then note that with competitive factor markets, as t ≥ τ,

αK (t) ≡
R (t)K (t)
Y (t)

=
K (t)
Y (t)

∂F [K (t) ,A (t) L (t)]
∂K (t)

= α∗K ,

Second line uses the definition of the rental rate of capital in a
competitive market

Third line uses that gY = gK and gK = g + n from Uzawa Theorem
and that F exhibits constant returns to scale so its derivative is
homogeneous of degree 0.
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Solow Model with Technological Progress Solow Growth Model with Technological Progress

Technological Progress in the Solow Model

Uzawa Theorem’s theorem is a distressing result.

But it simplifies basic growth models considerably: production
function must admit representation of the form

Y (t) = F [K (t) ,A (t) L (t)] ,

Moreover, suppose
Ȧ (t)
A (t)

= g , (29)

L̇ (t)
L (t)

= n.

Again using the constant saving rate

K̇ (t) = sF [K (t) ,A (t) L (t)]− δK (t) . (30)
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Solow Model with Technological Progress Solow Growth Model with Technological Progress

The Solow Growth Model with Technological Progress:
Continuous Time II

Now define k (t) as the effective capital-labor ratio, i.e.,

k (t) ≡ K (t)
A (t) L (t)

. (31)

Slight but useful abuse of notation.
Differentiating this expression with respect to time,

k̇ (t)
k (t)

=
K̇ (t)
K (t)

− g − n. (32)

Output per unit of effective labor can be written as

ŷ (t) ≡ Y (t)
A (t) L (t)

= F
[

K (t)
A (t) L (t)

, 1
]

≡ f (k (t)) .
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Solow Model with Technological Progress Solow Growth Model with Technological Progress

The Solow Growth Model with Technological Progress:
Continuous Time III

Income per capita is y (t) ≡ Y (t) /L (t), i.e.,

y (t) = A (t) ŷ (t) (33)

= A (t) f (k (t)) .

Clearly if ŷ (t) is constant, income per capita, y (t), will grow over
time, since A (t) is growing.

Thus should not look for “steady states”where income per capita is
constant, but for balanced growth paths, where income per capita
grows at a constant rate.

Some transformed variables such as ŷ (t) or k (t) in (32) remain
constant.

Thus balanced growth paths can be thought of as steady states of a
transformed model.
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Solow Model with Technological Progress Solow Growth Model with Technological Progress

The Solow Growth Model with Technological Progress:
Continuous Time IV

Hence use the terms “steady state”and balanced growth path
interchangeably.

Substituting for K̇ (t) from (30) into (32):

k̇ (t)
k (t)

=
sF [K (t) ,A (t) L (t)]

K (t)
− (δ+ g + n) .

Now using (31),

k̇ (t)
k (t)

=
sf (k (t))
k (t)

− (δ+ g + n) , (34)

Only difference is the presence of g : k is no longer the capital-labor
ratio but the effective capital-labor ratio.
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Solow Model with Technological Progress Solow Growth Model with Technological Progress

The Solow Growth Model with Technological Progress:
Continuous Time V

Proposition Consider the basic Solow growth model in continuous time,
with Harrod-neutral technological progress at the rate g and
population growth at the rate n. Suppose that Assumptions
1 and 2 hold, and define the effective capital-labor ratio as in
(31). Then there exists a unique steady state (balanced
growth path) equilibrium where the effective capital-labor
ratio is equal to k∗ ∈ (0,∞) and is given by

f (k∗)
k∗

=
δ+ g + n

s
. (35)

Per capita output and consumption grow at the rate g .
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Solow Model with Technological Progress Solow Growth Model with Technological Progress

The Solow Growth Model with Technological Progress:
Continuous Time VI

Equation (35), emphasizes that now total savings, sf (k), are used for
replenishing the capital stock for three distinct reasons:

1 depreciation at the rate δ.
2 population growth at the rate n, which reduces capital per worker.
3 Harrod-neutral technological progress at the rate g .

Now replenishment of effective capital-labor ratio requires
investments to be equal to (δ+ g + n) k .
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Solow Model with Technological Progress Solow Growth Model with Technological Progress

The Solow Growth Model with Technological Progress:
Continuous Time VII

Proposition Suppose that Assumptions 1 and 2 hold, then the Solow
growth model with Harrod-neutral technological progress and
population growth in continuous time is asymptotically
stable, i.e., starting from any k (0) > 0, the effective
capital-labor ratio converges to a steady-state value k∗

(k (t)→ k∗).

Now model generates growth in output per capita, but entirely
exogenously.
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Comparative Dynamics Comparative Dynamics

Comparative Dynamics I

Comparative dynamics: dynamic response of an economy to a change
in its parameters or to shocks.

Different from comparative statics in Propositions above in that we
are interested in the entire path of adjustment of the economy
following the shock or changing parameter.

For brevity we will focus on the continuous time economy.

Recall
k̇ (t) /k (t) = sf (k (t)) /k (t)− (δ+ g + n)
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Comparative Dynamics Comparative Dynamics

Comparative Dynamics in Figure

0

k(t)

f(k(t))

k(t)

k(t)
s

k*
k(t)

k**

f(k(t))
k(t)

s’ –(δ+g+n)

–(δ+g+n)

Figure: Dynamics following an increase in the savings rate from s to s ′. The solid
arrows show the dynamics for the initial steady state, while the dashed arrows
show the dynamics for the new steady state.
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Comparative Dynamics Comparative Dynamics

Comparative Dynamics II

One-time, unanticipated, permanent increase in the saving rate from
s to s ′.

Shifts curve to the right as shown by the dotted line, with a new
intersection with the horizontal axis, k∗∗.
Arrows on the horizontal axis show how the effective capital-labor ratio
adjusts gradually to k∗∗.
Immediately, the capital stock remains unchanged (since it is a state
variable).
After this point, it follows the dashed arrows on the horizontal axis.

s changes in unanticipated manner at t = t ′ , but will be reversed
back to its original value at some known future date t = t ′′ > t ′.

Starting at t ′, the economy follows the rightwards arrows until t ′.
After t ′′, the original steady state of the differential equation applies
and leftwards arrows become effective.
From t ′′ onwards, economy gradually returns back to its original
balanced growth equilibrium, k∗.
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Mapping the Model to Data Growth Accounting

Growth Accounting I

Aggregate production function in its general form:

Y (t) = F [K (t) , L (t) ,A (t)] .

Combined with competitive factor markets, gives Solow (1957)
growth accounting framework.

Continuous-time economy and differentiate the aggregate production
function with respect to time.

Dropping time dependence,

Ẏ
Y
=
FAA
Y

Ȧ
A
+
FKK
Y

K̇
K
+
FLL
Y
L̇
L
. (36)
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Mapping the Model to Data Growth Accounting

Growth Accounting II

Denote growth rates of output, capital stock and labor by g ≡ Ẏ /Y ,
gK ≡ K̇/K and gL ≡ L̇/L.
Define the contribution of technology to growth as

x ≡ FAA
Y

Ȧ
A

Recall with competitive factor markets, w = FL and R = FK .
Define factor shares as αK ≡ RK/Y and αL ≡ wL/Y .
Putting all these together, (36) the fundamental growth accounting
equation

x = g − αK gK − αLgL. (37)

Gives estimate of contribution of technological progress, Total Factor
Productivity (TFP) or Multi Factor Productivity as

x̂ (t) = g (t)− αK (t) gK (t)− αL (t) gL (t) . (38)

All terms on right-hand side are “estimates”obtained with a range of
assumptions from national accounts and other data sources.
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Mapping the Model to Data Growth Accounting

Growth Accounting III

In continuous time, equation (38) is exact.

With discrete time, potential problem in using (38): over the time
horizon factor shares can change.

Use beginning-of-period or end-of-period values of αK and αL?

Either might lead to seriously biased estimates.
Best way of avoiding such biases is to use as high-frequency data as
possible.
Typically use factor shares calculated as the average of the beginning
and end of period values.

In discrete time, the analog of equation (38) becomes

x̂t ,t+1 = gt ,t+1 − ᾱK ,t ,t+1gK ,t ,t+1 − ᾱL,t ,t+1gL,t ,t+1, (39)

gt ,t+1 is the growth rate of output between t and t + 1; other growth
rates defined analogously.
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Mapping the Model to Data Growth Accounting

Growth Accounting IV

Moreover,

ᾱK ,t ,t+1 ≡
αK (t) + αK (t + 1)

2

and ᾱL,t ,t+1 ≡
αL (t) + αL (t + 1)

2

Equation (39) would be a fairly good approximation to (38) when the
difference between t and t + 1 is small and the capital-labor ratio
does not change much during this time interval.

Solow’s (1957) applied this framework to US data: a large part of the
growth was due to technological progress.

From early days, however, a number of pitfalls were recognized.

Moses Abramovitz (1956): dubbed the x̂ term “the measure of our
ignorance”.
If we mismeasure gL and gK we will arrive at inflated estimates of x̂ .
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Mapping the Model to Data Growth Accounting

Growth Accounting Results

Example from Barro and Sala-i-Martin’s textbook
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Mapping the Model to Data Growth Accounting

Growth Accounting Results (continued)
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Mapping the Model to Data Growth Accounting

Interpreting the Results

Reasons for mismeasurement:

what matters is not labor hours, but effective labor hours

important– though diffi cult– to make adjustments for changes in the
human capital of workers.

measurement of capital inputs:

in the theoretical model, capital corresponds to the final good used as
input to produce more goods.
in practice, capital is machinery, need assumptions about how relative
prices of machinery change over time.
typical assumption was to use capital expenditures but if machines
become cheaper would severely underestimate gK

Daron Acemoglu (MIT) Economic Growth Lectures 2-3 October-December 2024 80 / 106



Regression Analysis A World of Augmented Solow Economies

A World of Augmented Solow Economies I

Mankiw, Romer and Weil (1992) used regression analysis to take the
augmented Solow model, with human capital, to data.

Use the Cobb-Douglas model and envisage a world consisting of
j = 1, ...,N countries.

“Each country is an island”: countries do not interact (perhaps
except for sharing some common technology growth).

Country j = 1, ...,N has the aggregate production function:

Yj (t) = Kj (t)
α Hj (t)

β (Aj (t) Lj (t))
1−α−β .

Nests the basic Solow model without human capital when α = 0.

Countries differ in terms of their saving rates, sk ,j and sh,j , population
growth rates, nj , and technology growth rates Ȧj (t) /Aj (t) = gj .
Define kj ≡ Kj/AjLj and hj ≡ Hj/AjLj .
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Regression Analysis A World of Augmented Solow Economies

A World of Augmented Solow Economies II

Focus on a world in which each country is in their steady state
Assuming that human capital also has depreciation, at the rate δh,
and it is accumulated with the saving rate sh, steady state values for
country j would be (to be derived in recitation):

k∗j =

((
sk ,j

nj + gj + δk

)1−β ( sh,j
nj + gj + δh

)β
) 1

1−α−β

h∗j =

((
sk ,j

nj + gj + δk

)α ( sh,j
nj + gj + δh

)1−α
) 1

1−α−β

.

Consequently:

y ∗j (t) ≡
Y (t)
L (t)

(40)

= Aj (t)
(

sk ,j
nj + gj + δk

) α
1−α−β

(
sh,j

nj + gj + δh

) β
1−α−β

.
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Regression Analysis A World of Augmented Solow Economies

A World of Augmented Solow Economies II

Here y ∗j (t) stands for output per capita of country j along the
balanced growth path.

Note if gj’s are not equal across countries, income per capita will
diverge.

Mankiw, Romer and Weil (1992) make the following assumption:

Aj (t) = Āj exp (gt) .

Countries differ according to technology level, (initial level Āj ) but
they share the same common technology growth rate, g .
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Regression Analysis A World of Augmented Solow Economies

A World of Augmented Solow Economies III

Using this together with (40) and taking logs, equation for the
balanced growth path of income for country j = 1, ...,N:

ln y ∗j (t) = ln Āj + gt +
α

1− α− β
ln
(

sk ,j
nj + g + δk

)
(41)

+
β

1− α− β
ln
(

sh,j
nj + g + δh

)
.

Mankiw, Romer and Weil (1992) take:

δk = δh = δ and δ+ g = 0.05.
sk ,j=average investment rates (investments/GDP).
sh,j=fraction of the school-age population that is enrolled in secondary
school.
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Regression Analysis A World of Augmented Solow Economies

A World of Augmented Solow Economies IV

Even with all of these assumptions, (41) can still not be estimated
consistently.

ln Āj is unobserved (at least to the econometrician) and thus will be
captured by the error term.

Most reasonable models would suggest ln Āj’s should be correlated
with investment rates.

Thus an estimation of (41) would lead to omitted variable bias and
inconsistent estimates.

Implicitly, MRW make another crucial assumption, the orthogonal
technology assumption:

Āj = εjA, with εj orthogonal to all other variables.
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Regression Analysis A World of Augmented Solow Economies

Cross-Country Income Differences: Regressions I

MRW first estimate equation (41) without the human capital term for
the cross-sectional sample of non-oil producing countries

ln y ∗j = constant+
α

1− α
ln (sk ,j )−

α

1− α
ln (nj + g + δk ) + εj .
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Regression Analysis A World of Augmented Solow Economies

Cross-Country Income Differences: Regressions II

Estimates of the Basic Solow Model
MRW Updated data
1985 1985 2000

ln(sk ) 1.42 1.01 1.22
(.14) (.11) (.13)

ln(n+ g + δ) -1.97 -1.12 -1.31
(.56) (.55) (.36)

Adj R2 .59 .49 .49

Implied α .59 .50 .55

No. of observations 98 98 107
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Regression Analysis A World of Augmented Solow Economies

Cross-Country Income Differences: Regressions III

Their estimates for α/ (1− α), implies that α must be around 2/3,
but should be around 1/3.

The most natural reason for the high implied values of α is that εj is
correlated with ln (sk ,j ), either because:

1 the orthogonal technology assumption is not a good approximation to
reality or

2 there are also human capital differences correlated with ln
(
sk ,j
)
.

Mankiw, Romer and Weil favor the second interpretation and
estimate the augmented model,

ln y ∗j = cst+
α

1− α− β
ln (sk ,j )−

α

1− α− β
ln (nj + g + δk )(42)

+
β

1− α− β
ln (sh,j )−

β

1− α− β
ln (nj + g + δh) + εj .

Daron Acemoglu (MIT) Economic Growth Lectures 2-3 October-December 2024 88 / 106



Regression Analysis A World of Augmented Solow Economies

Estimates of the Augmented Solow Model
MRW Updated data
1985 1985 2000

ln(sk ) .69 .65 .96
(.13) (.11) (.13)

ln(n+ g + δ) -1.73 -1.02 -1.06
(.41) (.45) (.33)

ln(sh) .66 .47 .70
(.07) (.07) (.13)

Adj R2 .78 .65 .60

Implied α .30 .31 .36
Implied β .28 .22 .26

No. of observations 98 98 107

Daron Acemoglu (MIT) Economic Growth Lectures 2-3 October-December 2024 89 / 106



Regression Analysis A World of Augmented Solow Economies

Cross-Country Income Differences: Regressions IV

If these regression results are reliable, they give a big boost to the
augmented Solow model.

Adjusted R2 suggests that three quarters of income per capita
differences across countries can be explained by differences in their
physical and human capital investment.

Immediate implication is technology (TFP) differences have a
somewhat limited role.

But this conclusion should not be accepted without further
investigation.
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Regression Analysis Challenges to Regression Analyses

Challenges to Regression Analyses I

Technology differences across countries are not orthogonal to
all other variables.
Āj is correlated with measures of shj and s

k
j for two reasons.

1 omitted variable bias: societies with high Āj will be those that have
invested more in technology for various reasons; same reasons likely to
induce greater investment in physical and human capital as well.

2 reverse causality: complementarity between technology and physical or
human capital imply that countries with high Āj will find it more
beneficial to increase their stock of human and physical capital.

In terms of (42), implies that key right-hand side variables are
correlated with the error term, εj .

OLS estimates of α and β and R2 are biased upwards.
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Regression Analysis Challenges to Regression Analyses

Challenges to Regression Analyses II

β is too large relative to what we should expect on the basis of
microeconometric evidence.
The working age population enrolled in school ranges from 0.4% to
over 12% in the sample of countries.

Predicted log difference in incomes between these two countries is

β

1− α− β
(ln 12− ln (0.4)) = 0.66× (ln 12− ln (0.4)) ≈ 2.24.

Thus a country with schooling investment of over 12 should be about
exp (2.24)− 1 ≈ 8.5 times richer than one with investment of around
0.4.
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Regression Analysis Challenges to Regression Analyses

Challenges to Regression Analyses III

Take Mincer regressions of the form:

lnwi = X′iγ+ φSi , (43)

Microeconometrics literature suggests that φ is between 0.06 and
0.10.

Can deduce how much richer a country with 12 if we assume:
1 That the micro-level relationship as captured by (43) applies identically
to all countries.

2 That there are no human capital externalities.

Then: a country with 12 more years of average schooling should have
between exp (0.10× 12) ' 3.3 and exp (0.06× 12) ' 2.05 times the
stock of human capital of a county with fewer years of schooling.
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Regression Analysis Challenges to Regression Analyses

Challenges to Regression Analyses IV

Thus holding other factors constant, this country should be about 2-3
times as rich as the country with zero years of average schooling.

Much less than the 8.5 fold difference implied by the
Mankiw-Romer-Weil analysis.

Thus β in MRW is too high relative to the estimates implied by the
microeconometric evidence and thus likely upwardly biased.

Overestimation of β is, in turn, most likely related to correlation
between the error term εj and the key right-hand side regressors in
(42).

We have so far discussed cross-country “levels” regressions, similar
issues apply to “growth regressions”but we have also seen in the first
lecture how one might make partial progress here.
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Regression Analysis Calibrating Productivity Differences

Calibrating Productivity Differences I

The problems with regression analysis with cross-country data have
motivated some macroeconomists to turn to “calibration”-type
exercises.

Suppose each country has access to the Cobb-Douglas aggregate
production function:

Yj = K α
j (AjHj )

1−α , (44)

Each worker in country j has Sj years of schooling.

Then using the Mincer equation (43) ignoring the other covariates
and taking exponents, Hj can be estimated as

Hj = exp (φSj ) Lj ,

Does not take into account differences in other “human capital”
factors, such as experience.
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Regression Analysis Calibrating Productivity Differences

Calibrating Productivity Differences II

Let the rate of return to acquiring the Sth year of schooling be φ (S).

A better estimate of the stock of human capital can be constructed as

Hj = ∑
S

exp {φ (S) S} Lj (S)

Lj (S) now refers to the total employment of workers with S years of
schooling in country j .

Series for Kj can be constructed from Summers-Heston dataset using
investment data and the perpetual inventory method.

Kj (t + 1) = (1− δ)Kj (t) + Ij (t) ,

Assume, following Hall and Jones that δ = 0.06.

With same arguments as before, choose a value of 1/3 for α.
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Regression Analysis Calibrating Productivity Differences

Calibrating Productivity Differences III

Given series for Hj and Kj and a value for α, construct “predicted”
incomes at a point in time using

Ŷj = K
1/3
j (AUSHj )

2/3

AUS is computed so that YUS = K
1/3
US (AUSHUS )

2/3.

Once a series for Ŷj has been constructed, it can be compared to the
actual output series.

Gap between the two series represents the contribution of technology.

Alternatively, could back out country-specific technology terms
(relative to the United States) as

Aj
AUS

=

(
Yj
YUS

)3/2 (KUS
Kj

)1/2 (HUS
Hj

)
.
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Regression Analysis Calibrating Productivity Differences

Calibrating Productivity Differences IV
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Figure: Calibrated technology levels relative to the US technology (from the
Solow growth model with human capital) versus log GDP per worker, 1980, 1990
and 2000.
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Calibrating Productivity Differences V
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Figure: Calibrated technology levels relative to the US technology (from the
Solow growth model with human capital) versus log GDP per worker, 1980, 1990
and 2000.
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Regression Analysis Calibrating Productivity Differences

Calibrating Productivity Differences VI

The following features are noteworthy:

1 Differences in physical and human capital still matter a lot.
2 However, differently from the regression analysis, this exercise also
shows significant technology (productivity) differences.

3 Same pattern visible in the next three figures for the estimates of the
technology differences, Aj/AUS , against log GDP per capita in the
corresponding year.

4 Also interesting is the pattern that the empirical fit of the neoclassical
growth model seems to deteriorate over time.

Daron Acemoglu (MIT) Economic Growth Lectures 2-3 October-December 2024 100 / 106



Regression Analysis Challenges to Callibration

Challenges to Callibration I

In addition to the standard assumptions of competitive factor
markets, we had to assume :

no human capital externalities, a Cobb-Douglas production function,
and a range of approximations to measure cross-country differences in
the stocks of physical and human capital.

The calibration approach is in fact a close cousin of the
growth-accounting exercise (sometimes referred to as “levels
accounting”).

Imagine that the production function that applies to all countries in
the world is

F (Kj ,Hj ,Aj ) ,

Assume countries differ according to their physical and human capital
as well as technology– but not according to F .
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Regression Analysis Challenges to Callibration

Challenges to Callibration II

Rank countries in descending order according to their physical capital
to human capital ratios, Kj/Hj Then

x̂j ,j+1 = gj ,j+1 − ᾱK ,j ,j+1gK ,j ,j+1 − ᾱLj ,j+1gH ,j ,j+1, (45)

where:

gj ,j+1: proportional difference in output between countries j and j + 1,
gK ,j ,j+1: proportional difference in capital stock between these
countries and
gH ,j ,j+1: proportional difference in human capital stocks.
ᾱK ,j ,j+1 and ᾱLj ,j+1: average capital and labor shares between the two
countries.

The estimate x̂j ,j+1 is then the proportional TFP difference between
the two countries.
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Regression Analysis Challenges to Callibration

Challenges to Callibration III

Levels-accounting faces two challenges.
1 Data on capital and labor shares across countries are not widely
available. Almost all exercises use the Cobb-Douglas approach (i.e., a
constant value of αK equal to 1/3).

2 The differences in factor proportions, e.g., differences in Kj/Hj , across
countries are large. An equation like (45) is a good approximation
when we consider small (infinitesimal) changes.
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Regression Analysis Challenges to Callibration

What Does All This Mean?

There is also a sense perhaps that these are all “weak tests”.

They impose the structure of the Solow model on the data or exploit
the quasi-balanced growth properties.

These tests do not shed much light on any of the following questions:
1 To what extent the equilibrium is effi cient or “inside the production
possibilities frontier”?

2 Is technology driven by market and other incentives or mostly evolving
exogenously?

3 Is the way that these neoclassical models frame the effects of
technology appropriate?

4 What about recent tectonic shifts?
5 And what is a proximate cause and what is a fundamental cause?
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Regression Analysis Challenges to Callibration

From Correlates to Fundamental Causes

In this lecture, the focus has been on proximate causes– importance
of human capital, physical capital and technology.

Let us now return to the list of potential fundamental causes
discussed in the first lecture:

1 luck (or multiple equilibria)
2 geographic differences
3 institutional differences
4 cultural differences

Do we need to worry about the relationship between these
fundamental causes and the correlates of growth? In what way?
Where is theory useful?
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Conclusions Conclusions

Conclusions

Message is somewhat mixed.

On the positive side, despite its simplicity, the Solow model has enough
substance that we can take it to data in various different forms,
including TFP accounting, regression analysis and calibration.
On the negative side, however, no single approach is entirely
convincing.

Complete agreement is not possible, but safe to say that consensus
favors the interpretation that cross-country differences in income per
capita cannot be understood solely on the basis of differences in
physical and human capital

Differences in TFP are not necessarily due to technology in the
narrow sense.

It is also useful and important to think about fundamental causes,
what lies behind the factors taken as given either Solow model.
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