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Abstract

The first chapter of this thesis considers an agent who posits a set of probabilistic
models for the payoff-relevant outcomes. The agent has a prior over this set but
fears the actual model is omitted and hedges against this possibility. The concern for
misspecification is endogenous: If a model explains the previous observations well,
the concern attenuates. We show that different static preferences under uncertainty
(subjective expected utility, maxmin, robust control) arise in the long run, depending
on how quickly the agent becomes unsatisfied with unexplained evidence and whether
they are misspecified. The misspecification concern’s endogeneity naturally induces
behavior cycles, and we characterize the limit action frequency. This model is con-
sistent with the empirical evidence on monetary policy cycles and choices in the face
of complex tax schedules. Finally, we axiomatize in terms of observable choices this
decision criterion and how quickly the agent adjusts their misspecification concern.

The second chapter offers an axiomatization of risk models where the choices of
the decision maker are correlation sensitive. By extending the techniques of conjoint
measurement to the nondeterministic case, we show that transitivity is the vN-M
axiom that has to be relaxed to allow for these richer patterns of behavior. To
illustrate the advantages of our modeling choice, we provide a simple axiomatization
for the salience theory model within our general framework. This approach leads
to a clear comparison to popular preexisting models, such as regret and reference
dependence, and lets us single out the ordering property as the feature that brings
salience theory outside the prospect theory realm. This chapter is published in the
Quarterly Journal of Economics, vol 137.

The third chapter proposes a model of non-Bayesian social learning in networks
that accounts for heuristics and biases in opinion aggregation. The updating rules
are represented by nonlinear opinion aggregators from which we extract two extreme
networks capturing strong and weak links. We provide graph-theoretic conditions
on these networks that characterize opinions’ convergence, consensus formation, and
efficient or biased information aggregation. Under these updating rules, agents may
ignore some of their neighbors’ opinions, reducing the number of effective connec-
tions and inducing long-run disagreement for finite populations. For the wisdom of
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the crowd in large populations, we highlight a trade-off between how connected the
society is and the nonlinearity of the opinion aggregator. Our framework bridges
several models and phenomena in the non-Bayesian social learning literature, thereby
providing a unifying approach to the field. This chapter is the result of joint work
with Simone Cerreia-Vioglio and Roberto Corrao.
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Chapter 1

Dynamic Concern for Misspecification

1.1 Introduction

Bayesian rationality requires that an agent uncertain about the data-generating pro-

cess postulates multiple probabilistic descriptions of the environment and uses Bayes

rule to adjust their relative weights. However, even rational agents may fear that

they are misspecified and that none of these descriptions is correct. This concern

is remarkably natural in complex and high-dimensional settings, where uncertainty

needs to be simplified to obtain well-behaved optimization and learning procedures.

For example, none of the model economies considered by a central bank perfectly

describes the underlying data-generating process for output and inflation. Similarly,

the consumer response models that a firm uses to set prices and qualities are unlikely

to include one that considers all relevant decision factors. Moreover, the diffusion of

complex and not explicitly described machine learning algorithms naturally creates

new reasons for misspecification. Indeed, consumers increasingly rely on automated

recommendations. Although they may have some conjecture on how the alternative’s

features translate into a score or a “match quality” with their profile, they certainly

do not consider the specific algorithm used by these recommendation systems. Mis-

specification is even more relevant when dealing with entirely novel issues, such as

those faced by a regulatory body that tries to mitigate the effect of climate change

using theoretical models that take into account human impacts never experienced in
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history.

Misspecification has been analyzed from two distinct perspectives. On the one

hand, several papers have studied the long-run implications of subjective expected

utility (SEU) maximizers learning with misspecified beliefs (see, e.g., Esponda and

Pouzo, 2016, Fudenberg, Lanzani, and Strack, 2021, Frick, Iijima, and Ishii, 2023, and

the references therein). These works assume that the agents have no concern about

being misspecified. Here we show that the absence of such concern is normatively

unappealing, as it can induce long-run average payoffs lower than a safe guarantee. It

also seems descriptively unrealistic, as the widely documented ambiguity-averse be-

havior may be seen as a way to hedge against the incorrect specification of the model.

On the other hand, the robust control literature in macroeconomics pioneered by

Hansen and Sargent (2001) considers agents who fear model misspecification. In

particular, the first axioms-based decision criterion that accounts for model misspeci-

fication was proposed in Cerreia-Vioglio, Hansen, Maccheroni, and Marinacci (2022).1

This work reconciles these approaches and shows how popular decision criteria

such as maxmin expected utility, robust control preferences, and subjective expected

utility arise as the limit behavior of an agent concerned about misspecification and

learning about the actual data-generating process (DGP). We consider an agent that

repeatedly chooses among actions whose payoffs have an unknown distribution. This

choice is taken using an average of robust control assessments, where each assessment

takes a different structured model as the benchmark. We introduce endogeneity in

the misspecification concern: the better the structured models explain the past, the

less concerned the agent is.

There are two critical determinants for the long-run dynamics: whether the agent

is correctly specified and how demanding they are in evaluating their models’ perfor-

mance. First, we consider the case of a correctly specified agent. In that case, the

behavior converges to a self-confirming equilibrium, regardless of how demanding the

agent is in evaluating their model. A self-confirming equilibrium means that they

1It has as a particular case the robust control model of Hansen and Sargent (2001) axiomatized by
Strzalecki (2011). Since in Strzalecki (2011) the reference probability is subjective, it can also be
interpreted as an axiomatization of robust prior analysis, see Hansen and Sargent (2022).
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play an SEU best reply to a belief supported over the data-generating processes that

are observationally equivalent to the true one given the chosen action.

Instead, to characterize the limit behavior under misspecification, a taxonomy of

how demanding the agent is turns out to be crucial. In particular, a “statistically

sophisticated” agent performs a likelihood ratio evaluation of their model that keeps

the concern form misspecification informative about the model’s fitness. To support

the identification of these statistically sophisticated types with rationality, we show

that the achievement of two desirable properties uniquely characterizes them: safety

under misspecification (i.e., guaranteeing at least the minmax payoff) and consistency

under almost correct specification (i.e., no regret with small misspecification).2

We allow departures from this normative benchmark to obtain descriptive pre-

dictions on the effect of an endogenous misspecification concern. We consider agents

that are too demanding in evaluating the models’ performance (this case includes

believers in the Law of Small Numbers, LSN, Tversky and Kahneman, 1971, that

treat failures in explaining early realizations as a statistician treats long-run failures).

Similarly, we allow the opposite case in which the agent is too lenient in evaluating

their model and attributes too much unexplained evidence to sampling variability.

We then characterize the long-run behavior of these different types of misspecified

agents. The actions of the lenient type converge to a Berk-Nash equilibrium, i.e., to

an SEU best reply to beliefs supported on the models closest in relative entropy to

the actual data-generating process. Instead, overemphasis on the model’s failures in

explaining the data by the demanding type induces convergence to a maxmin best

reply to the models that are absolutely continuous with respect to the true one.

In contrast, a statistically sophisticated type maintains a non-trivial concern for

misspecification. If their behavior converges, it converges to a robust control best

reply to the models closest in relative entropy to the actual data-generating process.

Moreover, the misspecification concern is endogenously determined by how well the

best models fit the evidence generated by the limit action.

2Moreover, we observe that SEU maximization and the original robust control of Hansen and Sargent
(2001) fail to jointly satisfy these requirements.
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Therefore, our learning results provide several novel predictions about the rela-

tion between uncertainty attitudes and other individual traits.3 First, the extent of

long-run uncertainty aversion positively correlates with the agent being initially mis-

specified and their belief in the LSN. Second, these correlations are causal: repeated

failures to explain the data (misspecification) and demanding evaluation of these fail-

ures induce the agent to shift to cautious behavior. Third, even keeping constant

the misspecification and understanding of probability rules, the limit uncertainty at-

titudes are stochastic. Initial realizations leading to a limit action with consequences

poorly explained by the agent’s models induce a long-run uncertainty aversion higher

than realizations leading to a limit action whose consequences are well explained.

We thus use the equilibrium behavior predicted by an endogenous concern for

misspecification to rationalize the labor supply in the face of complex tax schedules

documented in Rees-Jones and Taubinsky (2020). In particular, they show that

around 40% of the agents have beliefs corresponding to a heuristic that simplifies

the tax schedule to a linear one but that 20% fewer agents act accordingly to this

heuristic. This is predicted by an endogenous concern for misspecification, as agents

with an incorrect model are less prone to base their decisions on the conclusions they

reach within the model.

In general, the behavior of a statistically sophisticated type is not guaranteed to

converge. Indeed, it is possible that their behavior cycles between phases of differ-

ent misspecification concerns. Still, we characterize the limit action frequency and

concern for misspecification. We apply this result to revisit the cyclical behavior of

monetary policies documented in Sargent (1999) and Sargent (2008). Intuitively, the

cycles have the following structure. The agent plays an action whose consequences

are well explained by one of their structured models (a conservative monetary policy

in the application). Playing this action lowers the concern for misspecification and

eventually leads to a more misspecification-vulnerable action (a more aggressive mon-

etary policy). Failures to explain the distribution of outcomes observed under this

3The empirical study of the correlation between behavioral biases is an active area of recent devel-
opment. See, e.g., Dean and Ortoleva (2019) and the references therein.
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action lead to a return to the more misspecification robust action.

We also obtain two results that provide a testable foundation to the model em-

ployed in the learning part of the chapter: An axiomatization of the static average

robust control criterion and testable axioms for when the agent is of the lenient, sta-

tistically sophisticated, or demanding type. Two primary axioms pin down the static

decision criterion. The first is a weaker form of the Sure-Thing Principle imposed only

on bets on the data-generating process (e.g., bets on the urn composition) and bets

conditional on the data-generating process (e.g., bets on the ball color conditional on

having been told the urn composition). The second requires that conditional on be-

ing told the best-fitting model, the agent is equally concerned about misspecification

regardless of which one it is.

For the dynamic representation, a dynamic consistency axiom on the acts that bet

on the data-generating process is shown to guarantee Bayesian updating over models.

More interestingly, the preference adjustment of a statistically sophisticated type is

pinned down by a novel Asymptotic Frequentism axiom, requiring arbitrarily similar

preferences conditional to sufficiently long histories with the same outcome frequency.

The rest of the chapter is structured as follows. Section 1.2 introduces the average

robust control decision criterion and how preferences are adjusted. Section 1.3 studies

what attitudes toward model failures induce good payoff performance and provides

a learning foundation for the different uncertainty attitudes. Section 1.4 character-

izes the limit frequency of time spent using the different actions when the behavior

does not converge and applies the result to a central banking problem. Section 1.5

provides the axiomatization to the static decision criterion and how preferences are

updated. Section 1.6 discusses the related literature and possible extensions. Section

1.7 concludes. All proofs are collected in the Appendix.
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1.2 Decision Criterion

1.2.1 Static Decision Criterion

We describe the criterion used in the repeated decision problem and defer its axioma-

tization to Section 1.5. We consider an agent who evaluates a finite number of actions

𝑎 ∈ 𝐴 and let 𝑌 be a compact metric space representing the set of possible outcomes.

The agent has a continuous utility index 𝑢 : 𝐴×𝑌 → R over the action-outcome pairs

that captures their preference when the subjective uncertainty is resolved. However,

the realized outcome is stochastic and endogenous as each action 𝑎 ∈ 𝐴 induces an

objective probability measure 𝑝*𝑎 ∈ ∆(𝑌 ) over outcomes.4

Subjective Beliefs The agent correctly believes that the map from actions to

probability distributions over outcomes is fixed and depends only on their current

action. Still, they do not know 𝑝* = (𝑝*𝑎)𝑎∈𝐴 and deal with this uncertainty in a

quasi-Bayesian way. The agent postulates a set 𝑄 ⊆ ∆(𝑌 )𝐴 of structured models,

i.e., action-dependent probability measures over outcomes 𝑞 = (𝑞𝑎)𝑎∈𝐴. They have a

prior belief 𝜇 ∈ ∆(𝑄) with support 𝑄 that describes the relative likelihood assigned

to these models. For example, the agent may be a central bank that considers a Key-

nesian Samuelson-Solow model where the monetary policy affects the unemployment

rate or a new classical Lucas-Sargent model with no systematic effect of inflation on

unemployment.5

We must impose a few regularity conditions.

Assumption 1. 𝑄 is compact and for every 𝑎 ∈ 𝐴: (i) For all 𝑞 ∈ 𝑄, 𝑝*𝑎 ∼ 𝑞𝑎 and

the density of 𝑞𝑎 with respect to 𝑝*𝑎, denoted as 𝑞𝑎, is continuous and 𝑝*𝑎-a.s. bounded

4For every subset 𝐶 of a metric space, we denote as Δ(𝐶) the Borel probability measures on 𝐶,
endowed with the topology of weak convergence of measures.

5This formulation follows the recent literature on misspecified learning in assuming that both the true
data-generating process and the subjective models the agent considers are i.i.d. conditionally on
the agent’s behavior. This makes the true extent of misspecification time-invariant and “learnable”.
It is important to notice that this time invariance is often relaxed in the literature on dynamic
decisions with robust control preferences that follows Hansen and Sargent (2001).
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away from 0, uniformly in 𝑄,6 (ii) For 𝑝*𝑎-almost every 𝑦 ∈ 𝑌 the map 𝑞 ↦→ 𝑞𝑎 (𝑦) is

continuous.

Condition (i) allows us to compute the relevant expectations while allowing for

both discrete and continuous outcome spaces and guarantees that no subjective model

of the agent is ruled out in finite time.7 Continuity of the map from models to outcome

distributions is a standard requirement for parametric models.

A Bayesian agent with complete trust in their models evaluates action 𝑎 according

to its subjective expected utility (see, e.g., Cerreia-Vioglio, Maccheroni, Marinacci,

and Montrucchio, 2013b): ∫︁
𝑄

E𝑞𝑎 [𝑢 (𝑎, 𝑦)] d𝜇 (𝑞) .

That is, they compute a two-stage expectation of the utility function: they evaluate

the utility of the action given the candidate model 𝑞, E𝑞𝑎 [𝑢 (𝑎, 𝑦)], and then they

average over the models with weights given by their subjective belief 𝜇.

However, we are interested in agents concerned with the possibility that none of

these models is the exact description of the data-generating process but only a valid

approximation, i.e., that are concerned that there is no 𝑞 ∈ 𝑄 with 𝑞 = 𝑝*. Therefore,

in the spirit of the robustness criterion advocated by Hansen and Sargent (2001), they

penalize actions that perform poorly under alternative distributions that are close in

relative entropy 𝑅 (·||·) to some of the structured models.8

With this, an agent evaluates each action 𝑎 ∈ 𝐴 accordingly to the average robust

control criterion:

∫︁
𝑄

min
𝑝𝑎∈Δ(𝑌 )

(︂
E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +

1

𝜆
𝑅 (𝑝𝑎||𝑞𝑎)

)︂
d𝜇 (𝑞) (1.1)

6For every 𝑝, 𝑞 ∈ Δ(𝑌 ), 𝑝 ≫ 𝑞 means that 𝑞 is absolutely continuous with respect to 𝑝, and 𝑝 ∼ 𝑞
means that they are mutually absolutely continuous.

7Part (i) also plays a technical role in guaranteeing the existence of the equilibrium concepts we
consider. It is known it can be relaxed, see Anderson, Duanmu, Ghosh, and Khan (2022), but
this relaxation comes at the cost of requiring nonstandard analysis techniques (where nonstandard
means using infinitesimal numbers), something beyond this chapter’s scope.

8Recall that for every 𝑝, 𝑝′ ∈ Δ(𝑌 ), 𝑅 (𝑝||𝑝′) =
∫︀
𝑌
log
(︁

d𝑝
d𝑝′

)︁
d𝑝 if 𝑝′ ≫ 𝑝 and 𝑅 (𝑝||𝑝′) = ∞ otherwise.

Appendix .1.3 explains under what other distances between probability distributions our results
continue to hold.
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where 𝜆 > 0 is a parameter that trade-offs between decision robustness and perfor-

mance under the structured models.9

The original robust control model introduced by Hansen and Sargent (2001) is

the case in which 𝜇 is a Dirac measure (that in macroeconomics applications is of-

ten assumed to satisfy rational expectations, i.e., to be degenerate on the actual

data-generating process). As described in Hansen, Sargent, Turmuhambetova, and

Williams (2006), this case corresponds to when “[...] a maximizing player (‘the deci-

sion maker’) chooses a best response to a malevolent player (‘nature’) who can alter

the stochastic process within prescribed limits. The minimizing player’s malevolence

is the maximizing player’s tool for analyzing the fragility of alternative decision rules.”

Equation (1.1) follows Hansen and Sargent (2007) and Cerreia-Vioglio, Hansen, Mac-

cheroni, and Marinacci (2022) in extending this interpretation to a situation in which

the agent is still uncertain about the best-approximating model (i.e., 𝜇 is nonde-

generate), allowing the malevolent nature to alter each of the candidate structured

models.

The representation adopts the distinction between two levels of uncertainty. At the

first level, given a probabilistic model 𝑞, the uncertainty about the exact specification

of the model is captured by minimizing the expected utility for probabilities that

are not too far away from 𝑞. At a higher level, the agent is also uncertain about

the identity of the best structured model and posits a prior probability 𝜇 over them.

While the higher level of uncertainty is already present under subjective expected

utility, the lower level captures the agent’s concern for misspecification.

1.2.2 Preference Evolution

The average robust control criterion of equation (1.1) describes how the agent chooses

for a given belief and level of misspecification concern. However, the behavior re-

sponds to the received information. Formally, time is discrete, and a history is a

finite vector of past actions and outcomes. In particular, the set of histories of finite

length 𝑡 ∈ N is ℋ𝑡 = (𝐴× 𝑌 )𝑡, and the set of all finite histories is ℋ =
⋃︀∞

𝑡=0 ℋ𝑡.
9Lemma 1 justifies the use of a min rather than an inf in equation (1.1) and throughout the chapter.
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We will denote with a𝑡,y𝑡, and h𝑡 the random variables corresponding to the action,

outcome, and history at time 𝑡, and we use the non-bold version for their realizations.

On the one hand, we stick to the classical dynamic treatment of tastes over certain

alternatives and beliefs about the possible data-generating processes. We let the

utility index 𝑢 be constant over time, and the belief be updated through standard

Bayesian updating. That is, for every measurable subset 𝐶 of 𝑄, we denote by

𝜇(𝐶 | (𝑎𝑡, 𝑦𝑡)) =
∫︀
𝑞∈𝐶
∏︀𝑡

𝜏=1 𝑞𝑎𝜏 (𝑦𝜏 )d𝜇0(𝑞)∫︀
𝑞∈𝑄
∏︀𝑡

𝜏=1 𝑞𝑎𝜏 (𝑦𝜏 )d𝜇0(𝑞)
(Bayes Rule)

the subjective belief the agent obtains using Bayes rule after history (𝑎𝑡, 𝑦𝑡) ∈ ℋ𝑡.10

On the other hand, we introduce an endogenous and time-evolving concern for

misspecification, i.e., 𝜆 depends on the realized history. In particular, we want the

concern for misspecification to be a function of how well the structured models explain

the current history, i.e., to be determined by a function Λ : ℋ →R+.

Likelihood Ratio Test In statistics, the most standard measure of fit of a set

of distributions 𝑄 against a set of unstructured alternatives 𝑁 (𝑄) ⊆ ∆(𝑌 )𝐴 is the

log-likelihood ratio:11

𝐿𝐿𝑅((𝑎𝑡, 𝑦𝑡), 𝑄) = − log

(︃
max𝑞∈𝑄

∏︀𝑡
𝜏=1 𝑞𝑎𝜏 (𝑦𝜏 )

max𝑝∈𝑁(𝑄)

∏︀𝑡
𝜏=1 𝑝𝑎𝜏 (𝑦𝜏 )

)︃
∀𝑡 ∈ N,∀(𝑎𝑡, 𝑦𝑡) ∈ ℋ𝑡.

Here we want to take a conservative approach and not impose structure over the

set of alternative unstructured distributions 𝑁 (𝑄) used to evaluate the model’s fit.

If 𝑌 is finite (or, under some regularity conditions, countable) and all outcomes have

positive probability, there is a natural way to do so, i.e., to consider as the set of

10By Assumption 1 (ii), the posterior is well-defined after every positive probability history. We
allow for arbitrary belief revisions after events with zero ex-ante subjective probability.

11The Neyman-Pearson Lemma establishes the performance of the log-likelihood ratio test under
correct specification. At the same time, Foutz and Srivastava (1977) and Vuong (1989) contain
the classical results about the informativeness of the LRT under misspecification. Schwartzstein
and Sunderam (2021) is a recent paper that models agents in a persuasion problem who perform
model selection using this statistic. Lemma 1 justifies the use of max in the definition of the LRT
under Assumption 2.
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alternatives unstructured distributions the entire (action-indexed) simplex ∆(𝑌 )𝐴.

However, considering a completely unrestricted set of distributions with a continuum

of outcomes leads to an utterly uninformative test of the model, as the (discrete)

empirical distribution is an infinitely better fit to itself than any continuous distribu-

tion, i.e., the log-likelihood ratio always returns +∞. To maintain informativeness,

𝑁 (𝑄) must then include only distributions that are mutually absolutely continuous

with respect to the ones in 𝑄. In particular, all our results are invariant to the 𝑁 (𝑄)

choice as long as the following assumption is satisfied.

Assumption 2. (i) 𝑁 (𝑄) ⊇ 𝑄 is closed and 𝑝* ∈ 𝑁 (𝑄). (ii) For every 𝑎 ∈ 𝐴, the

family of densities {𝑝𝑎 : 𝑝 ∈ 𝑁 (𝑄)} is equicontinuous.

We require that the unstructured set is a relaxation of the parametric structure

sufficiently large to include the actual distribution and a continuity condition that

rules out a 𝑄 that only contains continuous distributions and an 𝑁(𝑄) that includes

discrete distributions. With this, an important role will be played by the rule

Λ (ℎ𝑡) =
LRT(ℎ𝑡,𝑄)

𝑐𝑡
∀𝑡 ∈ N,∀ℎ𝑡 ∈ ℋ𝑡 (1.2)

where 𝑐 ∈ R.

Beyond the log-likelihood ratio, a key role is played by averaging over periods.

Indeed, if the agent is misspecified, the expected one-period increase in the LRT is

strictly positive, regardless of the distance between the actual DGP and the models

in 𝑄. For this reason, the average log likelihood ratio is used to measure the extent

of model misspecification.12 Motivated by these results, we often informally refer to

an agent who uses such rule as a “statistically sophisticated type”. Of course, the

objective of a statistician can be very different from that of an agent involved in

12This use of the LLR complements its classical role in deciding whether to reject or accept a model.
In particular, Wilks’ Theorem (see, e.g., Theorem 10.3.3 in Casella and Berger, 2021) shows
that under correct specification, the likelihood ratio test statistic converges to a 𝜒2 distribution.
However, it says nothing about the distribution of the LLR if the model is misspecified. See
Hausman (1978) and the subsequent literature for a complementary approach to the measurement
of model misspecification when the statistician can compute a consistent quasi-maximum-likelihood
estimator.

20



a decision problem under uncertainty. Proposition 1 confirms that this rule is also

a rationality benchmark in repeated decision problems, as it uniquely identifies the

behavior that induces no regret when the agent is correctly specified and is always

maxmin safe.

1.3 Long-run Payoffs and Actions

In this section, we study the long-run consequences of using the decision criterion

above. Our primary interest is in what attitudes towards unexplained evidence, i.e.,

what Λ, induce good payoff performance across environments and what are the limit

actions and preferences under uncertainty attitudes that arise given a specific attitude.

Let 𝐵𝑅𝜆 (𝜈) denote the set of average robust control best replies to belief 𝜈 when

the concern for misspecification is 𝜆, i.e.,13

𝐵𝑅𝜆 (𝜈) = argmax
𝑎∈𝐴

∫︁
𝑄

min
𝑝𝑎∈Δ(𝑌 )

(︂
E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +

𝑅 (𝑝𝑎||𝑞𝑎)
𝜆

)︂
d𝜈 (𝑞) ∀𝜆 ≥ 0,∀𝜈 ∈ ∆(𝑄) .

Also let

𝐵𝑅𝑆𝑒𝑢 (𝜈) = argmax
𝑎∈𝐴

∫︁
𝑄

E𝑞𝑎 [𝑢 (𝑎, 𝑦)] d𝜈 (𝑞) ∀𝜈 ∈ ∆(𝑄)

denote the actions that maximize the (classical) subjective expected utility of an

agent with belief 𝜈 and

𝐵𝑅𝑀𝑒𝑢 (𝐶) = argmax
𝑎∈𝐴

inf
𝑝∈𝐶

E𝑝𝑎 [𝑢 (𝑎, 𝑦)]

denote the actions preferred by a maxmin agent a la Gilboa and Schmeidler (1989)

with models 𝐶 ⊆ ∆(𝑌 )𝐴.

A (pure) policy is a measurable Π : ℋ → 𝐴 that specifies an action for every

history. The objective action-contingent probability distribution and a policy Π in-

duce a probability measure PΠ on (𝐴× 𝑌 )N.14 Our interest is in policies derived from

maximizing the value in equation (1.1) for some rule Λ determining how the concern

13Throughout the chapter, we use the convention 0 · ∞ = 0.
14We spell out the PΠ derivation in Appendix .1.1.
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for misspecification is adjusted.

Definition 1. Policy Π is Λ-optimal if for all ℎ𝑡 ∈ ℋ, Π(ℎ𝑡) ∈ 𝐵𝑅Λ(ℎ𝑡) (𝜇 (·|ℎ𝑡)) .

1.3.1 Safety and Consistency

We have mentioned that using the rule in equation (1.2) has the good statistical

property of keeping Λ asymptotically informative about the fit of the model. Now,

we provide a normative justification for considering it the relevant benchmark of

rationality, showing that it satisfies the desirable properties of safety and consistency

(cf. Fudenberg and Levine, 1995) across all possible decision problems the agent can

face.

Definition 2. Let 𝜀 > 0. Λ is 𝜀-safe for the decision problem (𝑢,𝐴, 𝑌 ) if for every

Λ-optimal policy Π and DGP 𝑝* ∈ ∆(𝑌 )𝐴

lim inf
𝑡→∞

∑︀𝑡
𝑖=1 𝑢 (a𝑖,y𝑖)

𝑡
≥ max

𝑎∈𝐴
min
𝑦∈𝑌

𝑢 (𝑎, 𝑦)− 𝜀 PΠ-a.s. (1.3)

This is a very mild condition that only requires the agent to obtain an average

payoff at least 𝜀 close to what they can guarantee against every possible outcome.

However, when paired with misspecification, 𝜀-safety has a significant bite: a Bayesian

SEU agent fails it in many decision problems. Indeed, such failures have been the

basis of many critiques of learning under misspecification with Bayesian SEU agents.

Example 1 (Unsafe SEU). Suppose 𝐴 = {Bet Heads, Bet Tails, Out} and 𝑌 =

{Heads, Tails}. Utility is 0 if Out, 1 if action matches the outcome, −1 if mis-

match. Each agent’s model is an action-independent probability of Heads. So identify

𝑄 = {0.9, 0.4}, and let 𝑝*𝑎 (Heads) = 0.6, and 𝜇 (0.9) = 1
2
= 𝜇 (0.4). The actions

of a Bayesian SEU maximizer converge to Bet Tails with average performance −0.2

versus a safe payoff of 0 under action Out. This is the simplest possible example,

but safety also fail in the more economically motivated case of overconfidence, the key

aspect being that good statistical fit does not necessarily induces good decisions.
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Definition 3. Let 𝜀 > 0. Λ is 𝜀-consistent under almost correct specification for the

decision problem (𝑢,𝐴, 𝑌 ) if there exists 𝛿 > 0 such that for every Λ-optimal policy

Π and DGP 𝑝* ∈ ∆(𝑌 )

min
𝑞∈𝑄

max
𝑎∈𝐴

𝑅 (𝑝*𝑎||𝑞𝑎) < 𝛿 =⇒ lim inf
𝑡→∞

∑︀𝑡
𝑖=1 𝑢 (a𝑖,y𝑖)

𝑡
≥ max

𝑎∈𝐴
E𝑝* [𝑢 (𝑎, 𝑦)]−𝜀 PΠ-a.s.

𝜀-consistency under almost correct specification requires that sufficiently low levels

of misspecification (i.e., the existence of a model 𝑞 with distance less than 𝛿 from the

true data generating process) cannot induce considerable ex-post regret (i.e., a limit

average payoff more than 𝜀 lower than the expected payoff of the objectively optimal

action). Intuitively, we want that if the misspecification is minor, in the long run, the

agent approximately identifies the actual model and starts best replying to it.15

Proposition 1. 1. For every decision problem with {𝑞*} = argmin𝑞∈𝑄𝑄 (𝑎) for all

𝑎 ∈ 𝐴 and 𝜀 > 0 there exists 𝑐 > 0 such that if

Λ (ℎ𝑡) =
𝐿𝐿𝑅 (ℎ𝑡, 𝑄)

𝑐𝑡
∀𝑡 ∈ N, ∀ℎ𝑡 ∈ ℋ𝑡,

Λ is both 𝜀-safe and 𝜀-consistent under correct specification.

2. There exists a decision problem with {𝑞*} = argmin𝑞∈𝑄𝑄 (𝑎) and 𝜀 > 0 for

which there is no 𝜀-safe and 𝜀-consistent under almost correct specification Λ

with either

Λ (ℎ𝑡) = 𝑜

(︂
𝐿𝐿𝑅 (ℎ𝑡, 𝑄)

𝑡

)︂
∀ (ℎ𝑡)𝑡∈N ∈ ×𝑡∈Nℋ𝑡.

or

𝑜 (Λ (ℎ𝑡)) =
𝐿𝐿𝑅 (ℎ𝑡, 𝑄)

𝑡
∀ (ℎ𝑡)𝑡∈N ∈ ×𝑡∈Nℋ𝑡.

The safety and consistency conditions we require are weak but are enough to

15Recall that given two sequences (𝑥𝑛)𝑛∈N , (𝑥
′
𝑛)𝑛∈N of real numbers, 𝑥𝑛 = 𝑜 (𝑥′𝑛) means that

lim𝑛→∞
𝑥𝑛

𝑥𝑛
= 0. Here we use the convention that 0

0 = 0, making the definition of 𝑜 more per-
missive. Since 𝑜 will always appear as a requirement for a sequence in the hypothesis of our
statements, such convention makes our results stronger and able to cover a larger range of cases.
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single out the statistically sophisticated type. When the concern for misspecification

is adjusted accordingly to equation (1.2), the combination of Bayesian updating over

parameters and dynamically adjusted concern for misspecification is consistent with

Savage’s distinction between small and large worlds (see pages 82-91 in Savage, 1954).

Indeed, Savage advocates reducing the large-world uncertainty to small worlds (for us,

the structured 𝑄) where Bayesian updating has appealing properties, but being aware

that this description is incomplete and that the agent should evaluate the fit of that

simplification (for us, using a test that can measure the failures of this description).

In terms of performance, this result in a behavior that is safe and consistent under

correct specification.

At the same time, some less normatively appealing but descriptively relevant phe-

nomena are captured by other rules. On the one hand, a rule such that lim𝑡→∞
Λ(ℎ𝑡)

LRT(ℎ𝑡,𝑄)/𝑡 =

∞, e.g., Λ (ℎ𝑡) = LRT(ℎ𝑡,𝑄)√
𝑡

, overly penalizes minor imperfections of the model, ex-

pecting that the frequency quickly converges to its theoretical value, as in the fal-

lacy called the Law of Small Numbers. On the other hand, an agent for which

lim𝑡→∞
Λ(ℎ𝑡)

LRT(ℎ𝑡,𝑄)/𝑡 = 0 applies an excessively lenient adjustment to the likelihood ratio

statistic and attributes too much of the unexplained evidence to sampling variability.

In this regard, Proposition 1 tells us that there are decision problems where any way

to adjust the concern for misspecification that is globally more demanding or lenient

than the average LRT violates either 𝜀-safety or 𝜀-consistency under almost correct

specification. In contrast, standard SEU maximization is not safe, while always using

a maxmin best reply to 𝑄 induces a behavior that is not consistent under almost

correct specification.16

1.3.2 Long-run Behavior

We are interested in the actions that can arise as the long-run behavior of agents

with an evolving concern for misspecification. The main results of this section show

16This observation about the inconsistency of a misspecified single agent complements the results
of Fudenberg and Kreps (1993) and Fudenberg and Levine (1995) about the inconsistency of a
correctly specified SEU player in games.
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that we can describe this limit behavior through fixed point conditions involving the

agent’s action, belief, and concern for misspecification. To this end, let 𝑄 (𝑎) =

argmin𝑞∈𝑄𝑅 (𝑝*𝑎||𝑞𝑎) be the structured models that best fit the actual data-generating

process when action 𝑎 is played.

Definition 4. Action 𝑎* is a:

1. Self-confirming equilibrium (SCE) if there exists 𝜈 ∈ ∆(𝑄) with

supp𝜈 ⊆ {𝑞 ∈ 𝑄 : 𝑞𝑎* = 𝑝*𝑎*} and 𝑎* ∈ 𝐵𝑅𝑆𝑒𝑢 (𝜈) .

2. Berk-Nash equilibrium (B-NE) if there exists 𝜈 ∈ ∆(𝑄) with

supp𝜈 ⊆ 𝑄 (𝑎*) and 𝑎* ∈ 𝐵𝑅𝑆𝑒𝑢 (𝜈) .

3. Maxmin equilibrium if

𝑎* ∈ 𝐵𝑅𝑀𝑒𝑢
(︁{︁
𝑝 ∈ ∆(𝑌 )𝐴 : ∃𝑞 ∈ 𝑄, ∀𝑎 ∈ 𝐴, 𝑞𝑎 ≫ 𝑝𝑎

}︁)︁
.

4. 𝑐-robust equilibrium if there exists 𝜈 ∈ ∆(𝑄) with

supp𝜈 ⊆ 𝑄 (𝑎*) , 𝑎* ∈ 𝐵𝑅𝜆 (𝜈) , and 𝜆 = min
𝑞∈𝑄

𝑅 (𝑝*𝑎*||𝑞
𝑞
𝑎*) /𝑐.

Self-confirming equilibrium (Battigalli, 1987 and Fudenberg and Levine, 1993)

describes a stable situation where the agent’s action is a best reply to a belief that

is on-path confirmed, in the sense of being concentrated over models that perfectly

match the distribution over outcomes induced by the equilibrium action.

Berk-Nash equilibrium (Esponda and Pouzo, 2016) relaxes the confirmed beliefs

condition of SCE by only requiring that the supporting beliefs are concentrated on

the models that provide the best fit to the outcome distribution induced by the

equilibrium action. Importantly, this fit is not required to be perfect.
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In a maxmin equilibrium, the agent evaluates each action under the worst-case

scenario that is minimally consistent with their structured descriptions of the environ-

ment (i.e., those scenarios that do not assign positive probability to events impossible

for the structured models).

𝑐-robust equilibrium is similar to Berk-Nash in requiring best reply to the best-

fitting models. However, the best reply is the average robust control, with mis-

specification concern that decreases in how well the models fit the true DGP at the

equilibrium.

We are interested in what actions have a positive probability of becoming the

long-run behavior of the agent. The following definition captures this requirement.

Definition 5. Action 𝑎 is a Λ-limit action if there is a Λ-optimal policy Π such that

PΠ [sup{t : at ̸= 𝑎} <∞] > 0.

Our first limit result is a consistency check: Concern for misspecification is ir-

relevant in environments with a finite number of outcomes if the agent is correctly

specified about the consequences induced by the limit action.

Proposition 2. If 𝑌 is finite, 𝑎* is a Λ-limit action with 𝑝*𝑎* ∈ int {𝑞𝑎*}𝑞∈𝑄, and for

every history sequence (ℎ𝑡)𝑡∈N ∈ ×𝑡∈Nℋ𝑡

lim
𝑡→∞

𝐿𝐿𝑅 (ℎ𝑡, 𝑄)

𝑡
= 0 =⇒ lim

𝑡→∞
Λ (ℎ𝑡) = 0

then 𝑎* is a self-confirming equilibrium.

Instead, how quickly the agent becomes unsatisfied with their model plays a key

role when misspecified.

Theorem 1. Let 𝑎* be a Λ-limit action with 𝑝*𝑎* /∈ {𝑞𝑎*}𝑞∈𝑄. We have:

1. If

Λ (ℎ𝑡) = 𝑜

(︂
𝐿𝐿𝑅 (ℎ𝑡, 𝑄)

𝑡

)︂
∀ (ℎ𝑡)𝑡∈N ∈ ×𝑡∈Nℋ𝑡, (1.4)

then 𝑎* is a Berk-Nash equilibrium.
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2. If

𝑜 (Λ (ℎ𝑡)) =
𝐿𝐿𝑅 (ℎ𝑡, 𝑄)

𝑡
∀ (ℎ𝑡)𝑡∈N ∈ ×𝑡∈Nℋ𝑡, (1.5)

then 𝑎* is a maxmin equilibrium.

3. If

Λ (ℎ𝑡) =
𝐿𝐿𝑅 (ℎ𝑡, 𝑄)

𝑐𝑡
∀𝑡 ∈ N, ∀ℎ𝑡 ∈ ℋ𝑡,

then 𝑎* is a 𝑐-robust equilibrium.

The theorem characterizes the possible limit actions of all types of agents. At one

extreme, the concept of Berk-Nash equilibrium, introduced for subjective expected

utility maximizers, is still sufficient to describe the long-run behavior of lenient types.

At the other extreme, the repeated failures in explaining the observed data lead de-

manding agents to a highly pessimistic behavior and consider the worst-case scenario

among all the DGPs that are minimally consistent with the structured models.

Finally, if the behavior of the statistically sophisticated type converges, the limit

action 𝑎* is a best reply to beliefs that are supported on the relative entropy minimiz-

ers. Here the misspecification concern is determined by the relative entropy between

the actual DGP and the best-fitting model.

1.3.3 Equilibrium Illustrations

In this section, we revisit two of the main biases that have been justified as a conse-

quence of misspecified learning (see Esponda and Pouzo, 2016). Within each example,

adding an endogenous concern for misspecification predicts a change in a clear direc-

tion. However, one bias is reduced while the other is enhanced. Both changes are

broadly consistent with the documented evidence. The first example shows how the

endogenous misspecification concern moderates the Berk-Nash equilibrium’s predic-

tion that a more complicated tax schedule induces a higher labor supply.

Example 2 (Bias Reduction under Misperceived Taxation, Sobel, 1984 and Esponda

and Pouzo, 2016). An agent chooses effort 𝑎 ∈ 𝐴 at cost 𝑐(𝑎) and obtains income
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𝑧 = 𝑎+ 𝜔𝑎, where 𝜔𝑎 is a stochastic term with E𝑝*𝑎 [𝜔𝑎] = 0 for all 𝑎 ∈ 𝐴. The agent

pays taxes 𝑡 = 𝜏(𝑧) + 𝑙𝜀1, where 𝜏 : R → R is a convex tax schedule. Here 𝑦 = (𝑧, 𝑡),

and the payoff is 𝑢 (𝑎, 𝑦) = 𝑧 − 𝑡 − 𝑐 (𝑎). The agent believes in a random coefficient

model, 𝑡 = (𝜃 + 𝜀2) 𝑧, in which the marginal and average tax rates are both equal to

𝜃 + 𝜀2 and Θ ⊆ R. The stochastic terms 𝜀1, 𝜀2 ∼ 𝑁 (0, 1) measure respectively actual

and conjectured uncertain aspects of the tax schedule, and the (𝜔𝑎)𝑎∈𝐴 , 𝜀1, and 𝜀2 are

independent.17 See Liebman and Zeckhauser (2004) and Rees-Jones and Taubinsky

(2020) for the empirical evidence supporting this “schmeduling” bias.

Simple computations show that 𝑄 (𝑎) ∼
{︁
E𝑝*𝑎

[︁
𝜏(𝑎+𝜔𝑎)
𝑎+𝜔𝑎

]︁}︁
for 𝑙 small, i.e., the best

fitting marginal taxation is equal to the (lower) average taxation.18 Therefore, as

pointed out by Esponda and Pouzo (2016), in any Berk-Nash equilibrium, the agent

ends up exerting higher effort than the optimal. Moreover, the more complex (i.e.,

convex) the tax code is, the more significant the gap between the average and marginal

rate and the higher the excess effort of the agent.

In every 𝑐-robust equilibrium, this bias is reduced. To see this observe that since the

agent is not perfectly able to explain the equilibrium data, i.e., min𝜃∈Θ𝑅
(︀
𝑝*𝑎||𝑞𝜃𝑎

)︀
> 0,

they maintain a positive level of concern for misspecification. However, higher efforts

are perceived as more exposed to the uncertainty in the marginal rate (as the stochastic

term 𝜃 + 𝜀 gets multiplied by an, on average, higher 𝑧).

Therefore, 𝑐-robust equilibrium provides a natural force that reduces the counter-

intuitive prediction that complicated nonlinear taxation codes induce more effort: fail-

ures to rationalize the received tax bill reduce effort. Moreover, the more complicated

the tax code is, i.e., the more nonlinear 𝜏 is, the larger the correction size. This set

of predictions is consistent with Rees-Jones and Taubinsky (2020), where it is shown

that around 40% of the agents have beliefs (elicited in an incentive-compatible way)

corresponding with the schmeduling heuristic but that there are 20% fewer agents who

act accordingly to the heuristic.19

17Formally, 𝜀 normally distributed implies that 𝑌 is not compact, in contrast with the primary analy-
sis of the chapter. Still, the conclusions below are unaffected by considering 𝜀 with a symmetrically
truncated normal distribution that allows remaining in our main framework.

18See Appendix .1.4 for the computations supporting the claims of the examples.
19In this discussion we followed Rees-Jones and Taubinsky (2020) preferred interpretation in terms
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The second example shows that an endogenous concern for misspecification can

enhance some biases. In particular, this is the case for Correlation Neglect, a bias that

is indeed widely documented (see Enke and Zimmermann, 2019 and the references

therein).

Example 3 (Bias Increase under Correlation Neglect, Esponda, 2008). A buyer with

valuation 𝑣 ∈ 𝑉 and a seller submit a (bid) price 𝑎 ∈ 𝐴, and an ask price 𝑠 ∈ 𝑆 ⊆ R+,

respectively. They play a double auction with price at the buyer’s bid, so the seller

sets their ask 𝑠 equal to their value, and a sale occurs if the buyer’s bid 𝑎 is at least

𝑠. The payoff for the buyer is

𝑢 (𝑎, 𝑣, 𝑠) =

⎧⎨⎩ 𝑣 − 𝑎 𝑎 ≥ 𝑠

0 otherwise.

The buyer mistakenly believes that the ask price and valuation are independent: 𝑄 =

∆(𝑉 )×∆(𝑆). Easy computations show that for every 𝑎* ∈ 𝐴,

𝑄 (𝑎*) = {𝑞 ∈ 𝑄 : ∀𝑎 ∈ 𝐴, ∀𝑠 ∈ 𝑆, 𝑞𝑎 (𝑠) = 𝑝*𝑎 (𝑠) , 𝑞𝑎 (𝑣) = 𝑝*𝑎 (𝑣)} .

Therefore, in the Berk-Nash equilibrium, the agent makes a bid 𝑎* lower than the

optimal one, not realizing that higher successful bids are, on average, associated with

higher quality goods. In this case, the bias is reinforced in a 𝑐-robust equilibrium: a

complete unraveling of the market where the buyer bids 0 is easier to achieve with

an endogenous concern for misspecification. The correlation between valuations and

prices results in a positive min𝑞∈𝑄𝑅 (𝑝*𝑎*||𝑞𝑎*) > 0 and makes the agent less confident

in their model. Since offering 0 gives a certain payoff, it is less sensitive to the mis-

specification concern, and, therefore, this positive concern makes market participation

less desirable.

of an heterogeneous population. They observe that their data are also compatible with all the
agents having beliefs induced by the schmeduling heuristic but under-responding to this biased
estimation of the marginal tax rate. This explanation is consistent with a c-robust equilibrium
and inconsistent with a Berk-Nash equilibrium, too.
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1.4 Cycles

Part 3 of Theorem 1 provides a necessary condition for the limit actions of the sta-

tistically sophisticated type. However, as momentarily illustrated by the monetary

policy application of Section 1.4.1, there is no guarantee that such an action exists.

In these cases, we know by Theorem 1 that the agent behavior cannot stabilize. We

now propose a generalization of 𝑐-robust equilibrium, show that it always exists, and

prove that it characterizes a weaker form of behavior convergence. Formally, for every

𝛼 ∈ ∆(𝐴), let

𝑄 (𝛼) = argmin𝑞∈𝑄

∑︁
𝑎∈𝐴

𝛼 (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎)

be the set of parameters with the lowest average relative entropy from the actual

data-generating process, where the average is computed using 𝛼.

Definition 6. A mixed action 𝛼* ∈ ∆(𝐴) is a mixed 𝑐-robust equilibrium if there

exists 𝜈 ∈ ∆(𝑄) with

supp𝜈 ⊆ 𝑄 (𝛼*) , 𝛼* ∈ ∆
(︀
𝐵𝑅𝜆 (𝜈)

)︀
, and 𝜆 = min

𝑞∈𝑄

∑︁
𝑎∈𝐴

𝛼* (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) /𝑐.

A mixed robust equilibrium allows multiple actions to be played but requires that

the beliefs and the concern for misspecification are determined by the probability

assigned to each action. Intuitively, suppose actions for which the models in 𝑄 do

not satisfactorily explain the consequences are played more often. In that case, the

mixed action 𝛼* must best reply to a more significant misspecification concern.

Proposition 3. For every 𝑐 > 0 there exists a mixed 𝑐-robust equilibrium.

Existence is established by proving that the conditions characterizing a mixed

𝑐-robust (single-agent) equilibrium are equivalent to the ones of a Nash equilibrium

in a game among the agent and two adversarial Nature players. The result is then

obtained by showing that this game satisfies the conditions that guarantee existence

in Reny (1999).
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Theorem 1 assumes convergence and characterizes the possible limit actions. How-

ever, there are natural environments where the action process almost surely does not

converge. In that case, it is important to study a weaker form of behavior stabiliza-

tion, i.e., the convergence of the empirical distribution over actions, that allows for

persistent changes in actions and misspecification concerns. Let 𝛼𝑡 (ℎ𝑡) ∈ ∆(𝐴) be

the empirical action frequency in history ℎ𝑡, defined as

𝛼𝑡 (ℎ𝑡) (𝑎) =

∑︀𝑡
𝜏=1 I{𝑎} (𝑎𝜏 )

𝑡
∀𝑎 ∈ 𝐴,∀𝑡 ∈ N,∀ℎ𝑡 ∈ ℋ𝑡.

Definition 7. A mixed action 𝛼 ∈ ∆(𝐴) is a Λ-limit frequency if there is a Λ-optimal

policy Π such that PΠ [lim𝑡→∞ 𝛼𝑡 (h𝑡) = 𝛼] > 0.

The following result shows that mixed robust equilibria are the relevant equilib-

rium concept to capture the long-run stabilization of the average time spent playing

each action.

Theorem 2. If

Λ (ℎ𝑡) =
𝐿𝐿𝑅 (ℎ𝑡, 𝑄)

𝑐𝑡
∀𝑡 ∈ N,∀ℎ𝑡 ∈ ℋ𝑡

and 𝛼* is a Λ-limit frequency, then 𝛼* is a mixed 𝑐-robust equilibrium.

To interpret Theorem 2, consider the case where 𝛼* is supported over two actions

𝑎, 𝑎′ such that 𝑄 explains very well the consequences of 𝑎, —i.e., min𝑞∈𝑄𝑅 (𝑝*𝑎||𝑞𝑎) is

low— but it explains poorly the consequences of 𝑎′ —i.e., min𝑞∈𝑄𝑅 (𝑝*𝑎′ ||𝑞𝑎′) is high.

Suppose also that 𝑎 is a best reply to a high misspecification concern, while 𝑎′ is a best

reply to a low misspecification concern. Then, the agent oscillates between periods

with great concern for misspecification, when they play 𝑎, and phases in which the

excellent data fit leads them to experiment with action 𝑎′.

Whenever cycles are involved, a natural concern is whether the agent can predict

them and whether they have the incentive to break them.20 This is not the case in

this model for two orders of reasons. First, the oscillations in behavior are stochastic,

and the agent cannot predict and anticipate the changes perfectly. Second and more
20For example, this is what happens under fictitious play.
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important, although the agent behavior does not converge, whenever 𝑄 (𝛼) is a single-

ton, the agent’s preferences converge.21 They are approaching indifference between

all the actions with positive frequency. This asymptotic indifference dramatically

reduces the incentives to try to detect the probabilistic cycle and break them.

1.4.1 Application: Monetary Policy Cycles

Here we consider a monetary policy model taken from Sargent (1999), Cogley and

Sargent (2005), and Sargent (2008) and in particular its adaptation in Battigalli,

Cerreia-Vioglio, Maccheroni, Marinacci, and Sargent (2022).22 A central bank is

trying to control a two-dimensional consequence, 𝑌 ⊆ R2, where the 𝑦𝑈 component

is unemployment and the 𝑦𝜋 component is inflation. The policy is aggressive 𝑎 = 1

or conservative 𝑎 = 0.23 The central bank models are parametrized by the vector 𝜃,

with the following specification:

𝑦𝑈 = 𝜃0 + 𝜃1𝜋𝑦𝜋 + 𝜃1𝑎𝑎+ 𝜃2𝜀𝑈

𝑦𝜋 = 𝑎+ 𝜃3𝜀𝜋

where 𝜀𝑈 and 𝜀𝜋 are independent, zero-mean random shocks normalized to have the

same support [−1, 1]. Here 𝜃0 > 0 is the natural unemployment level, 𝜃1𝜋 < 0 is

the impact of the actual inflation on unemployment, and 𝜃1𝑎 > 0 is the impact of

the planned inflation on unemployment, a reduced form of the fact that the mar-

ket participants (partially) incorporate the central bank actions in their inflation

expectations. In particular, if 𝜃1𝜋 + 𝜃1𝑎 = 0, this is a Lucas-Sargent model with

no (structural) exploitable employment-inflation trade-off. If 𝜃1𝜋 + 𝜃1𝑎 is negative,

this is a Samuelson-Solow model with a structural exploitable employment-inflation

trade-off.

21A singleton 𝑄(𝛼) is a mild requirement satisfied in many cases. See Fudenberg, Lanzani, and
Strack (2021) for a discussion.

22Spiegler (2020) also considers the effect of a misspecified simpler model in the context of Philipps
curve estimation, with the difference being that the misspecification is on the side of the market
rather than the central bank.

23Two actions are assumed for simplicity, but a finite 𝐴 is needed to apply our results.
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The agent’s model is misspecified in that it misses the fact that an aggressive mon-

etary policy, beyond raising its baseline level, also increases the inflation variability:

𝑦𝑈 = 𝜃*0 + 𝜃*1𝜋𝑦𝜋 + 𝜃*1𝑎𝑎+ 𝜃*2𝜀𝑈

𝑦𝜋 = 𝑎+ 𝜃*3𝑓𝑎 (𝜀𝜋)

where 𝑓0 is the identity function, while 𝑓1 is a continuous, strictly increasing, and

odd function with 𝑓1 (1) = 1 that is strictly concave on R++, i.e., that amplifies the

inflation-specific shocks.24 This form of misspecification is motivated by the findings

in Primiceri (2005) and Sims and Zha (2006) and recent inflation consequences of an

aggressive monetary policy.

The central bank is endowed with standard quadratic preferences:

𝑢(𝑎, (𝑦𝑈 , 𝑦𝜋)) = −𝑦2𝑈 − 𝑦2𝜋.

Assumption 3. i) Some trade-off is present: (𝜃*1𝜋 + 𝜃*1𝑎 + 𝜃*0)
2 + 1 < (𝜃*0)

2. ii) In-

flation is more volatile than unemployment under the aggressive monetary policy:

essinf𝑝*1𝑢 (1, 𝑦) < essinf𝑝*0𝑢 (0, 𝑦). iii) Θ is a product set that includes 𝜃* and for all

𝜃 ∈ Θ, (𝜃1𝑎, 𝜃2, 𝜃3) = (𝜃*1𝑎, 𝜃
*
2, 𝜃

*
3).

Observe that the exploitable trade-off required by (i) may be so small that the

reduced inflation variability under a conservative policy makes the latter optimal.

Condition (ii) requires that the additional inflation volatility induced by the aggressive

policy is enough to have the worst tail payoffs. Condition (iii) allows us to focus on

the cycles induced by the oscillation in the concern for misspecification. Without

that, one would get the same insights with other oscillations of beliefs that push even
24An alternative, more parametric specification would have

𝑦𝑈 = 𝜃*0 + 𝜃*1𝜋𝑦𝜋 + 𝜃*1𝑎𝑎+ 𝜃*2𝜀𝑈

𝑦𝜋 =
(︀
1 + 𝜎2

𝜋𝑎𝜀𝜋𝑎
)︀
𝑎+ 𝜃*3𝜀𝜋

where 𝜀𝜋𝑎 is an independent error and 𝜎2
𝜋𝑎 > 0. If we let the support of 𝜀𝑈 and 𝜀𝜋 be unbounded,

nothing in the analysis below would be affected by a shift to this alternative specification. However,
that change would bring us outside the compact 𝑌 setting study in the rest of the chapter, so we
opted for preserving the consistency.
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more towards cycles, a channel pointed out by Nyarko (1991) in a monopoly pricing

setting.

Corollary 1. There is 𝑐 > 0 such that for all 𝑐 ≤ 𝑐

1. There is no 𝑐-robust equilibrium.

2. There exists a mixed 𝑐-robust equilibrium.

3. The maximal and minimal equilibria are such that 𝛼* (0) is increasing in 𝜃*1𝜋 +

𝜃*1𝑎.

Playing the conservative policy is the best reply to a high misspecification concern

and 𝜃* but induces a low concern as its consequences are well explained. In contrast,

the aggressive policy is a best reply to a low misspecification concern and 𝜃* but

induces a severe concern. Therefore, the policy cannot stabilize, consistently with the

cyclical behavior of monetary policies documented in Sargent (1999), Clarida, Gali,

and Gertler (2000), and Sargent (2008). We also have some natural comparative

statics in the extremal robust equilibria, as a more significant exploitable trade-off

between inflation and unemployment induces more time spent using an aggressive

monetary policy.25

In this application, we purposefully chose one of the most straightforward macroe-

conomic frameworks to isolate and illustrate the effect of an endogenous concern for

misspecification. However, incorporating an endogenous concern for misspecification

in more elaborate models is a valuable enterprise. For example, the fact that evi-

dence impacts the trust in the model may be used to explain the observed pattern

of initial underreaction to information when only beliefs within a model are adjusted

and medium-run overreaction when the belief adjustment compounds with a change

in model trust (see Angeletos, Huo, and Sastry, 2021 and the references therein for a

discussion of this pattern).

25It is well-known that non-extremal equilibria are less well-behaved in terms of comparative statics.
See Diamond (1982) for a very early example. A supermodularity condition between the concern
for misspecification and the conservative policy payoff guarantees equilibrium uniqueness.
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1.5 Representation

We next move to characterize the average robust control model in terms of observable

choices in an Anscombe-Aumann framework. In line with the literature on decision

theory under uncertainty, our goal is to associate the decision criterion in equation

(1.1) with axioms on a binary preference relation over acts.

Before jumping into the details of the axiomatization, we provide a high-level

description of the steps involved and the intuitive meaning of the axioms we link to the

representation. In terms of observability requirements, we allow the analyst to elicit

preferences for bets both on the data-generating process, e.g., the urn composition,

and on the actual realization, e.g., the color of the drawn ball.26 The analysis then

has two nested levels: 1) An axiomatization of the static decision criterion, 2) An

axiomatization of the changes of the preference parameters, and in particular the

speed of adjustment of the concern for misspecification.

The static decision criterion belongs to the variational class of Maccheroni, Mari-

nacci, and Rustichini (2006a). More importantly, within this class, it is identified by

a relaxed Sure-Thing Principle: the agent satisfies it for bets that involve the identity

of the model (e.g., bets on an urn composition) and for bets on events conditional

on the model (e.g., bets on the color after having revealed the urn composition).

However, failures of the Sure-Thing principle can realize for acts that involve the

realization of the outcome without conditioning on the model (e.g., bets on the color

without knowing the urn composition, which are the ones involved in the classical

Ellsberg’s paradox). The final conceptual axiom involved in the representation of

equation (1.1) is a notion of uniform conditional misspecification concern. It requires

that conditional on being told the identity of their best-fitting model, the agent is

equally concerned about it not being exact regardless of which one it is.

We consider a collection of binary relations indexed by the observed history to

characterize the agent’s dynamic preferences. Three other axioms identify the qual-

26This is standard when dealing with multiple sources of uncertainty, see for example Klibanoff,
Marinacci, and Mukerji (2005) and Gul and Pesendorfer (2014), and Cerreia-Vioglio, Maccheroni,
Marinacci, and Montrucchio (2013a) for a general framework and results. We discuss how to relax
this requirement in Section 1.6.4.
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itative changes of the preference parameters 𝑢, 𝜆, 𝜇. Constant Preference Invariance

guarantees that the taste 𝑢 for uncertain alternatives is stable over time. Dynamic

Consistency over Models guarantees that the probability distribution over models

is updated in a Bayesian fashion. Finally, we axiomatize the asymptotic speed of

adjustment of the misspecification concern. To do so, we need a quantitative no-

tion of how similar two preference relations are, which is defined using an event 𝐸

and two deterministic and strictly ranked outcomes, 𝑥 and 𝑦, as measuring rods.

Loosely speaking, two relations are (𝑥, 𝑦, 𝐸, 𝜀) similar if their certain equivalents for

the binary act that pays 𝑥 if 𝐸 realizes and 𝑦 otherwise are 𝜀 close. With this, an

Asymptotic Frequentism axiom singles out the statistically sophisticated type: for

every (𝑥, 𝑦, 𝐸, 𝜀), the conditional preferences after sufficiently long sequences of out-

comes sharing the same empirical frequency must be (𝑥, 𝑦, 𝐸, 𝜀)-similar. Conversely,

a lenient type asymptotically becomes similar to those SEU preferences that are less

misspecification concerned than the initial preference. The demanding type must

approach the preferences of a maxmin agent, thus confirming in a decision-theoretic

setting the insights of Theorem 1.

1.5.1 Notation and Preliminaries

The agent evaluates simple acts, i.e., measurable and finite ranged maps from a

nonempty state space 𝑆 into a convex set of outcomes 𝑋, where 𝑆 is endowed with

a 𝜎-algebra of events Σ. The set of those acts is denoted as ℱ . Given any 𝑥 ∈ 𝑋,

𝑥 ∈ ℱ is the act that delivers 𝑥 in every state, and in this way, we identify 𝑋 as

the subset of constant acts in ℱ . If 𝑓, 𝑔 ∈ ℱ , and 𝐸 ∈ Σ, we denote as 𝑔𝐸𝑓 the

simple act that yields 𝑔 (𝑠) if 𝑠 ∈ 𝐸 and 𝑓 (𝑠) if 𝑠 /∈ 𝐸. Since 𝑋 is convex, for every

𝑓, 𝑔 ∈ ℱ , and 𝛾 ∈ (0, 1), we denote as 𝛾𝑓 + (1− 𝛾) 𝑔 ∈ ℱ the simple act that pays

𝛾𝑓 (𝑠) + (1− 𝛾) 𝑔 (𝑠) for all 𝑠 ∈ 𝑆.

We model the agent’s preference with a binary relation ≿ on ℱ . As usual ≻ and ∼

denote the asymmetric and symmetric parts of ≿. An event 𝐸 is null if 𝑓𝐸ℎ ∼ 𝑔𝐸ℎ

for every 𝑓, 𝑔, ℎ ∈ ℱ . An event is nonnull if it is not null. For every 𝐸 ∈ Σ, the

conditional preference relation ≿𝐸 is defined by 𝑓 ≿𝐸 𝑔 if 𝑓𝐸ℎ ≿ 𝑔𝐸ℎ for some
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ℎ ∈ ℱ .

A key concept to understand the concern for misspecification evolution is a notion

of being more misspecification concerned from Ghirardato and Marinacci (2002).

Definition 8. Given two preferences ≿1 and ≿2 on ℱ , we say that ≿1 is more

concerned with misspecification than ≿2 if, for each 𝑓 ∈ ℱ and each 𝑥 ∈ 𝑋, 𝑓 ≿1 𝑥

implies 𝑓 ≿2 𝑥.

1.5.2 Decision Criterion

When formalized in terms of a binary relation, the average robust control decision

criterion reads as follows.

Definition 9. A tuple (𝑢,𝑄, 𝜇, 𝜆) is an average robust control representation of the

preference relation ≿ if 𝑢 : 𝑋 → R is a nonconstant affine function, 𝑄⊆∆(𝑆) is a

nonempty set, 𝜇 ∈ ∆(𝑄), 𝜆 ≥ 0, and for all 𝑓, 𝑔 ∈ ℱ

𝑓 ≿ 𝑔 ⇐⇒ E𝜇

[︂
min

𝑝∈Δ(𝑆)

(︂∫︁
𝑆

𝑢 (𝑓) d𝑝+
𝑅 (𝑝||𝑞)

𝜆

)︂]︂
≥ E𝜇

[︂
min

𝑝∈Δ(𝑆)

(︂∫︁
𝑆

𝑢 (𝑔) d𝑝+
𝑅 (𝑝||𝑞)

𝜆

)︂]︂
.

(1.6)

The average robust control representation is the counterpart of (1.1) when ex-

pressed over acts. An apparent difference is that 𝑢 here takes as input only outcomes

instead of pair of actions and consequences. However, this discrepancy is inconsequen-

tial, as in Section 1.2 we can define a larger space of consequences 𝑌 = 𝐴 × 𝑌 that

includes both actions and outcomes and transforming each model 𝑝 ∈ ∆(𝑌 )𝐴 into

an element of 𝑝 ∈ ∆
(︁
𝑌
)︁𝐴

such that 𝑝𝑎 (𝑎′, 𝑦) = 0 if 𝑎′ ̸= 𝑎 and 𝑝𝑎 (𝑎, 𝑦) = 𝑝𝑎 (𝑦) for

all 𝑦 ∈ 𝑌 . Still, this embedding of actions into outcomes muddles the interpretation

of the learning results significantly. Therefore we opted to maintain the distinction

explicit at the cost of some visual discrepancy between equations (1.1) and (1.6).27

27See Fishburn (1970) Chapter 12.1 for a more detailed discussion of the equivalence of a formulation
with exogenously given states and one where states are maps from actions into consequences.
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1.5.3 Static Axioms

Our first axiomatic step is a static one. We characterize in terms of behavioral axioms

an agent that evaluates accordingly to equation (1.6) the acts whose consequences

are obtained in the same period and before any new information is received.

Axiom 1 (Variational Axiom). Weak Order.

Weak Certainty Independence. If 𝑓, 𝑔 ∈ ℱ , 𝑥, 𝑥′ ∈ 𝑋, 𝛾 ∈ (0, 1), and 𝛾𝑓 +

(1− 𝛾)𝑥 ≿ 𝛾𝑔 + (1− 𝛾)𝑥, then 𝛾𝑓 + (1− 𝛾)𝑥′ ≿ 𝛾𝑔 + (1− 𝛾)𝑥′.

Continuity. If 𝑓, 𝑔, ℎ ∈ ℱ the sets {𝛾 ∈ [0, 1] : 𝛾𝑓 + (1− 𝛾) 𝑔 ≿ ℎ} and

{𝛾 ∈ [0, 1] : ℎ ≿ 𝛾𝑓 + (1− 𝛾) 𝑔} are closed.

Monotonicity. If 𝑓, 𝑔 ∈ ℱ , and 𝑓 (𝑠) ≿ 𝑔 (𝑠) for all 𝑠 ∈ 𝑆, then 𝑓 ≿ 𝑔.

Uncertainty Aversion. If 𝑓, 𝑔 ∈ ℱ , 𝛾 ∈ (0, 1), and 𝑓 ∼ 𝑔, then 𝑔+𝛾(𝑓−𝑔) ≿ 𝑓 .

Nondegeneracy. 𝑓 ≻ 𝑔 for some 𝑓, 𝑔 ∈ ℱ .

Weak Monotone Continuity. If 𝑓, 𝑔 ∈ ℱ , 𝑥 ∈ 𝑋, (𝐸𝑛)𝑛∈N ∈ ΣN with 𝑓 ≻ 𝑔,

𝐸1 ⊇ 𝐸2 ⊇ ... and ∩𝑛∈N𝐸𝑛 = ∅, then there exists 𝑛0 ∈ N such that 𝑥𝐸𝑛0𝑓 ≻ 𝑔.

Maccheroni, Marinacci, and Rustichini (2006a) shows that Axiom 1 characterizes

the class of variational preferences. Weak Order, Continuity, and Nondegeneracy

are standard technical requirements. Weak Monotone Continuity guarantees that

the probabilistic scenarios considered by the agent are countably additive. Weak

Certainty Independence allows the agent to perceive some advantage in hedging,

but this cannot come from mixing with different constants using the same weights.

Monotonicity requires that the preference over acts is minimally consistent with the

preference over the outcomes they induce. Uncertainty Aversion leads to aversion for

the acts that perform well for a postulated model but poorly for its perturbations.

Structured Preferences

We are considering agents who face two levels of uncertainty: the uncertainty on the

best structured description of the data-generating process and whether each descrip-

tion is exact. A representation is structured if it allows separating these two layers.
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In particular, to achieve this separation, we consider a state space 𝑆 that admits the

decomposition 𝑆 = Ω×∆(Ω) for some finite Ω endowed with its Borel sigma-algebra.

Definition 10. An average robust control representation (𝑢,𝑄, 𝜇, 𝜆) is structured if

𝜇 has finite support and there exists a map

𝑄 → ∆(Ω)

𝑞 ↦→ 𝜌𝑞

such that for every 𝑞 ∈ 𝑄 and 𝜔 ∈ Ω, 𝑞 ({𝜔, 𝜌𝑞}) = 𝜌𝑞 (𝜔).

The interpretation of a structured representation is that the state space can be

factored in two components, the realization of the single period consequence 𝜔 ∈ Ω

and a component 𝜌 ∈ ∆(Ω) that pins down the distribution over states each period.

An event 𝐸 is structured if 𝐸 = Ω × 𝐵 for some 𝐵 ∈ ℬ (∆ (Ω)). The sigma-algebra

generated by the structured events is denoted as Σ𝑠.28

We say that an event 𝐸 ⊆ 𝑆 satisfies the sure-thing principle if, for all 𝑓, 𝑔, ℎ, ℎ′ ∈

ℱ we have that 𝑓𝐸ℎ ≿ 𝑔𝐸ℎ implies 𝑓𝐸ℎ′ ≿ 𝑔𝐸ℎ′. We denote by Σ𝑠𝑡 the set of events

that satisfy the sure-thing principle.

Axiom 2 (Structured Savage). i) There is a finite set 𝐸 ⊆ 𝑆 such that 𝑆 ∖𝐸 is null.

ii) P2. Σ𝑠 ⊆ Σ𝑠𝑡. iii) P4. If 𝐸,𝐸 ′ ∈ Σ𝑠 and 𝑥, 𝑦, 𝑤, 𝑧 ∈ 𝑋 are such that 𝑥 ≻ 𝑦 and

𝑤 ≻ 𝑧, then

𝑥𝐸𝑦 ≻ 𝑥𝐸 ′𝑦 ⇒ 𝑤𝐸𝑧 ≻ 𝑤𝐸 ′𝑧.

Structured Savage requires that (i) the agent posits a finite number of models

and (ii) guarantees that when evaluating acts that only depend on the identity of

the structured model, the agent satisfies the Sure-Thing Principle.29 It also (iii)

guarantees that when an agent faces alternatives whose outcomes depend only on
28With a slight abuse of notation for every 𝐵 ∈ ℬ (Δ (Ω)) and 𝑊 ⊆ Ω we denote as ≿𝐵 and
≿𝑊 the binary relations ≿Ω×𝐵 and ≿𝑊×Δ(Ω) and we write 𝑓𝐵𝑔 and 𝑓𝑊𝑔 for 𝑓 (Ω×𝐵) 𝑔 and
𝑓 (𝑊 ×Δ(Ω)) 𝑔.

29The extension to infinitely many models does not provide additional conceptual difficulties but
makes the conditioning involved in the dynamic axioms much more cumbersome. Gul and Pe-
sendorfer (2014) introduces the idea of sources of uncertainty for which the decision maker can
quantify uncertainty and connects it with the Sure-Thing Principle.
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whether the DGP belongs to two sets of models, their choices consistently reveal the

one deemed more likely.

Axiom 3 (Intramodel Sure-Thing Principle). For every 𝑓, 𝑔, ℎ, ℎ′ ∈ ℱ ,

𝑓𝑊ℎ ≿𝜌 𝑔𝑊ℎ =⇒ 𝑓𝑊ℎ′ ≿𝜌 𝑔𝑊ℎ′ ∀𝑊 ⊆ Ω,∀𝜌 ∈ ∆(Ω) .

Structured Savage’s P2 and the Intramodel STP imply that bets between models

and preference over acts within a model satisfy the STP. However, they admit viola-

tions of the STP for acts whose payoff depends on both the model’s identity and the

outcome realization within the model, as the ones of the original Ellsberg’s paradox.

The case we study is when the relative likelihood of the structured models is only

captured by the belief 𝜇. In particular, the agent is equally concerned about how

much each model departs from the actual data-generating process.

Axiom 4 (Uniform Misspecification Concern). For every 𝜌, 𝜌′ ∈ ∆(Ω) and 𝑓, 𝑔 ∈ ℱ

such that

𝜌 ({𝜔 : 𝑓 (𝜔, 𝜌) = 𝑦}) = 𝜌′ ({𝜔 : 𝑔 (𝜔, 𝜌′) = 𝑦}) ∀𝑦 ∈ 𝑋

and Ω× {𝜌}, Ω× {𝜌′} are nonnull we have

𝑓 ≿𝜌 𝑥⇐⇒ 𝑔 ≿𝜌′ 𝑥 ∀𝑥 ∈ 𝑋.

This axiom requires that if acts 𝑓 and 𝑔 induce identical outcome distributions

under 𝜌 and 𝜌′, they are compared with a safe alternative in the same way conditional

on the best fitting model being revealed to be 𝜌 or 𝜌′.

Definition 11. The state space is adequate if: (i) there exist 𝑘 ∈ (0, 1) and (𝑊𝜌)𝜌∈Δ(𝜌) ∈(︀
2Ω
)︀Δ(𝜌) such that for all 𝜌 ∈ ∆(Ω) such that Ω × {𝜌} is nonnull, 𝜌 (𝑊𝜌) = 𝑘, (ii)

for every 𝜔, 𝜔′ ∈ Ω, and 𝜌 ∈ ∆(Ω) such that {𝜔} × {𝜌} and {𝜔′} × {𝜌} are nonnull,

𝜌 (𝜔) = 𝜌 (𝜔′).

All the agent’s structured models have an event with the same probability and are

uniform over a model-specific set of outcomes. It is well-known that equal probability
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requirements are essential for probabilistic sophistication with respect to a finite mea-

sure over states to have a bite (see, e.g., Chew and Sagi, 2006). They can be relaxed

if we allow for a continuum Ω. The only role of (i) for us is to obtain a concern for

misspecification 𝜆 that is not model dependent (i.e., not to have (𝜆𝑞)𝑞∈𝑄 in the rep-

resentation) from Uniform Misspecification Concern, an axiom with an unmistakable

flavor of probabilistic sophistication.

Axiom 5 (Uncertainty Neutrality Over Models). Let 𝑥, 𝑦, 𝑤, 𝑧 ∈ 𝑋, 𝜌 ∈ ∆(Ω), and

𝛾 ∈ (0, 1). Then [𝛾𝑥+ (1− 𝛾) 𝑦]𝜌𝑤 ∼ 𝑦𝜌𝑧 if and only if 𝑥𝜌𝑤 ∼ [(1− 𝛾)𝑥+ 𝛾𝑦]𝜌 𝑧.

Uncertainty Neutrality over Models guarantees that at the level of bets over mod-

els, the agent is “risk-neutral”, as changing the performance under 𝜌 by (𝑥− 𝑦) 𝛾

has an impact that does not depend on the level of utility under that model. It is

immediate from the proof of Theorem 3 that if dropped, it leads to a more general

representation with a nonlinear utility index 𝑈 over the performance of each robust

control model.

Theorem 3. Suppose that 𝑆 is adequate, there at least three disjoint nonnull events

in Σ𝑠, and every nonnull 𝐸 ∈ Σ𝑠 contains at least three disjoint nonnull events. The

following are equivalent:

1. ≿ admits a structured average robust control representation (𝑢,𝑄, 𝜇, 𝜆);

2. ≿ satisfies Variational Axiom, Structured Savage, Uniform Misspecification

Concern, Intramodel Sure-Thing Principle, and Uncertainty Neutrality over

Models.

Moreover, in this case, every two structured average robust control representations

share the same 𝜇.

The theorem characterizes the representation (𝑢,𝑄, 𝜇, 𝜆) with probabilistic uncer-

tainty about the model (Structured Savage), probabilistic sophistication given a model

(Intramodel Sure-Thing Principle), and incomplete trust in any model (Uncertainty

Aversion).
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Corollary 2. Suppose that ≿ admits a structured average robust control representa-

tion (𝑢,𝑄, 𝜇, 𝜆). Then ≿ is more misspecification concerned than the subjective utility

preference with utility index 𝑢 and belief
∫︀
𝑄
𝑞d𝜇 (𝑞).

1.5.4 Dynamic Axioms

We next provide axioms that characterize the dynamic adjustment of preferences in

the face of information. In particular, we look at joint axioms on a collection of

history-dependent binary relations
(︀
≿ℎ
)︀
ℎ∈ℋ indexed by the realized history. Recall

that the relevant set of length 𝑡 ∈ N histories for structured preferences is Ω𝑡.

Axiom 6 (Constant Preference Invariance). For every 𝑥, 𝑥′ ∈ 𝑋 and ℎ ∈ ℋ,

𝑥 ≿ℎ 𝑥′ ⇔ 𝑥 ≿∅ 𝑥′.

This axiom captures the fact that we are not considering the problem of an agent

discovering their taste. The preferences over uncertain alternatives are fixed and do

not react to new information.

Axiom 7 (Dynamic Consistency over Models). Let 𝑓, 𝑔 ∈ ℱ be Σ𝑠-measurable, 𝑡 ∈ N,

(𝜔1, ..., 𝜔𝑡) ∈ Ω𝑡 and 𝑧, 𝑧 ∈ 𝑋 be such that 𝑧 ≿ 𝑓 (𝑠) ≿ 𝑧 and 𝑧 ≿ 𝑔 (𝑠) ≿ 𝑧 for all

𝑠 ∈ 𝑆. Define ℎ0 as

ℎ0 (𝜔, 𝜌) = 𝛾ℎ(𝜔,𝜌)

𝑡∏︁
𝑖=1

𝜌 (𝜔𝑖) 𝑧 +

(︃
1− 𝛾ℎ(𝜔,𝜌)

𝑡∏︁
𝑖=1

𝜌 (𝜔𝑖)

)︃
𝑧 ∀ (𝜔, 𝜌) ∈ 𝑆,∀ℎ ∈ {𝑓, 𝑔}

where 𝛾ℎ(𝜔,𝜌) satisfies ℎ (𝜔, 𝜌) ∼ 𝑧𝛾ℎ(𝜔,𝜌) +
(︀
1− 𝛾ℎ(𝜔,𝜌)

)︀
𝑧. Then, we have

𝑓 ≿(𝜔1,...,𝜔𝑡) 𝑔 ⇐⇒ 𝑓 0 ≿ 𝑔0.

The second dynamic axiom requires Bayesian rationality when considering acts

whose consequences only depend on the structured model. Formally, it requires that

when comparing acts that only bet on the identity of the model, at a given history, we

can reduce the comparison to acts evaluated ex-ante. To do so, the payoff conditional
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to each model must be scaled proportionally to the amount of evidence that has been

generated in favor of that model.30

To single out the quantitative speed at which the concern for misspecification is

adjusted, we need a quantitative measure of similarity. For every 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≻ 𝑦

and 𝐸 ∈ Σ let 𝛾𝑥𝐸𝑦
≿ be defined by

𝛾𝑥𝐸𝑦
≿ 𝑥+

(︁
1− 𝛾𝑥𝐸𝑦

≿

)︁
𝑦 ∼ 𝑥𝐸𝑦.

That is, 𝛾𝑥𝐸𝑦
≿ is the weight to alternative 𝑥 in the certain equivalent to act 𝑥𝐸𝑦. It

captures both the confidence in event 𝐸 and the attitudes towards uncertainty. It is

easy to see that under the Variational Axiom 𝛾𝑥𝐸𝑦
≿ always exists and is unique.

For every 𝑥, 𝑦 ∈ 𝑋, 𝐸 ∈ Σ, 𝜀 ∈ (0, 1), and ≿ and ≿′ that satisfy the Variational

Axiom, we say that ≿ is (𝑥, 𝑦, 𝐸, 𝜀)-similar to ≿′ if

⃒⃒⃒
𝛾𝑥𝐸𝑦
≿ − 𝛾𝑥𝐸𝑦

≿′

⃒⃒⃒
≤ 𝜀.

That is, the certain equivalent of the binary act 𝑥𝐸𝑦 is 𝜀 close under preferences

≿ and ≿′.

Axiom 8 (Asymptotic Frequentism). For every 𝜌 ∈ ∆(Ω), 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≻∅ 𝑦,

𝜀 ∈ (0, 1), and 𝐸 ∈ Σ there is 𝜏 ∈ N such that if 𝑡, 𝑡′ ≥ 𝜏 and ℎ𝑡, ℎ𝑡′ have outcome

frequency 𝜌 then ≿ℎ𝑡 is (𝑥, 𝑦, 𝐸, 𝜀)-similar to ≿ℎ𝑡′ .

The axiom requires that for every binary act 𝑥𝐸𝑦, a sufficiently long sequence of

outcomes with the same empirical frequency stabilize the certain equivalent.

Proposition 4. Let
(︀
≿ℎ
)︀
ℎ∈ℋ be such that

1. For every ℎ ∈ ℋ, ≿ℎ satisfies the axioms of Theorem 3,

30This axiom can lead to fruitful implications beyond our average robust control decision criterion,
as it implies Bayesian updating for each decision criteria that performs an average of model-
specific evaluations (that could, for example, take the form of other divergence preferences or rank-
dependent utility evaluations). In this way, it would complement the elegant theory of subjective
learning developed in Dillenberger, Lleras, Sadowski, and Takeoka (2014), which does not require
that the analyst observes the same information as the agent.

43



2.
(︀
≿ℎ
)︀
ℎ∈ℋ satisfies Constant Preference Invariance, Dynamic Consistency over

Models, and Asymptotic Frequentism.

Then for every sequence (ℎ𝑡𝑛)𝑛∈N with a constant outcome frequency not in {𝜌𝑞 : 𝑞 ∈ 𝑄},

lim
𝑛→∞

𝜆ℎ𝑡𝑛
/

(︂
𝐿𝐿𝑅 (ℎ𝑡𝑛 , 𝑄)

𝑡𝑛

)︂
(1.7)

exists. Moreover, if for some 𝑞 ∈ 𝑄, 𝑥 ≻∅ 𝑦, and 𝐸 ⊆ Ω with 𝜌𝑞 (𝐸) > 0

lim inf
𝑛→∞

𝛾
𝑥(𝐸×{𝜌𝑞})𝑦
≿ℎ𝑡𝑛

> 0,

the limit is finite, and if

lim sup
𝑛→∞

𝛾
𝑥(𝐸×{𝜌𝑞})𝑦
≿ℎ𝑡𝑛

< 𝜌𝑞 (𝐸)𝜇 (𝑞) ,

it is strictly positive.

The proof of the result has two main steps. First, we show that the likelihood

ratio statistic of the models 𝑄 is growing linearly in 𝑡𝑛 along the sequence of histories

(ℎ𝑡𝑛)𝑛∈N, so that the denominator in equation (1.7) converges.31 Because the outcome

frequency does not correspond to a model in 𝑄, this limit is not 0. With this, the proof

amounts to showing that the revealed concern for misspecification also converges.

The second step rules out the existence of different finite limit points for (𝜆𝑡𝑛)𝑛∈N by

contradiction. If these points exist, then for every pair of strictly ranked outcomes

𝑥 ≻ 𝑦, we construct an event 𝐸 for which the DM does not satisfy the Sure-Thing

Principle such that the preference with the high concern for misspecification has a

strictly higher certain equivalent than the one with the low concern.

Axiom 9 (Asymptotic Concern). Let 𝑓 ∈ ℱ , 𝑥 ∈ 𝑋, and 𝜌, 𝜌 ∈ ∆(Ω) be such that

Ω×{𝜌} is ≿∅-null, Ω×{𝜌} is ≿∅-nonnull, and 𝜌≫ 𝜌. If 𝜌 ({𝜔 ∈ Ω : 𝑥 ≻ 𝑓 (𝜔, 𝜌)}) >
31Given the finiteness of Ω, we can focus on the case in which the alternative set of models 𝑁 (𝑄) =

Δ (Ω), discussed in Section 1.2, i.e., 𝐿𝐿𝑅 (ℎ𝑡, 𝑄) = − log
(︁

max𝑞∈𝑄

∏︀𝑡
𝜏=1 𝜌𝑞(𝜔𝜏 )

max𝜌∈Δ(Ω)

∏︀𝑡
𝜏=1 𝜌(𝜔𝜏 )

)︁
. The extension to

general sets of alternative models is straightforward.
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0, then there exists 𝜏 ∈ N such that for all 𝑡 ≥ 𝜏 and all ℎ𝑡 with outcome frequency

𝜌, 𝑥 ≿ℎ𝑡
𝜌 𝑓 .

Asymptotic Concern requires that long-run failures in explaining the data (i.e.,

an empirical frequency 𝜌 that is not among the agent’s structured models) increase

the concern so that every certain outcome is preferable to an act with worse payoffs

under a relevant model 𝜌.

Proposition 5. Let
(︀
≿ℎ
)︀
ℎ∈ℋ be such that

1. For every ℎ ∈ ℋ, ≿ℎ satisfies the axioms of Theorem 3,

2.
(︀
≿ℎ
)︀
ℎ∈ℋ satisfies Constant Preference Invariance, Dynamic Consistency over

Models, and Asymptotic Concern.

Then for every sequence (ℎ𝑡𝑛)𝑛∈N with a constant outcome frequency that is not in

{𝜌𝑞 : 𝑞 ∈ 𝑄} we have

lim
𝑡→∞

𝐿𝐿𝑅 (ℎ𝑡𝑛 , 𝑄)

𝜆ℎ𝑡𝑛
𝑡𝑛

= 0.

This result shows that Asymptotic Concern characterizes agents who apply an

excessively demanding time discount to the likelihood ratio test statistic (see equation

(1.2)). Indeed, the elicited ratio between the LRT and the concern for misspecification

revealed by the choices grows sublinearly time, the condition that defines demanding

agents.

Axiom 10 (Asymptotic Leniency). Let 𝑥, 𝑦 ∈ 𝑋, 𝐸 ∈ Σ, 𝜌 ∈ ∆(Ω), 𝜀 ∈ (0, 1), be

such that 𝑥 ≻ 𝑦. For every Bayesian SEU preferences
(︀
⪰ℎ
)︀
ℎ∈ℋ such that ⪰∅ is less

misspecification averse than ≿∅, there exists 𝜏 ∈ N such that for every 𝑡 ≥ 𝜏 and ℎ𝑡

with outcome frequency 𝜌, ≿ℎ𝑡 is (𝑥, 𝑦, 𝐸, 𝜀)-similar to ⪰ℎ𝑡.

Asymptotic Leniency requires that if the empirical distribution converges to some

𝜌 ∈ ∆(Ω), the preferences of the agents approximate, i.e., are eventually (𝑥, 𝑦, 𝐸, 𝜀)-

similar to the updated preferences of an SEU whose model contingent preferences

were initially less misspecification averse than the agent.
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Proposition 6. Let
(︀
≿ℎ
)︀
ℎ∈ℋ be such that

1. For every ℎ ∈ ℋ, ≿ℎ satisfies the axioms of Theorem 3,

2.
(︀
≿ℎ
)︀
ℎ∈ℋ satisfies Constant Preference Invariance, Dynamic Consistency over

Models, and Asymptotic Leniency.

Then for every sequence (ℎ𝑡𝑛)𝑛∈N with constant outcome frequency not in {𝜌𝑞 : 𝑞 ∈ 𝑄}

lim
𝑡→∞

𝐿𝐿𝑅 (ℎ𝑡𝑛 , 𝑄)

𝑡𝑛𝜆ℎ𝑡𝑛

= ∞.

This proposition shows that convergence to subjective expected utility maximiza-

tion (in the form of Asymptotic Leniency) characterizes excessively lenient time nor-

malizations.

1.6 Discussion

1.6.1 Related Literature

A few papers allow the agents to realize that they are misspecified. In particular,

in He and Libgober (2022), Ba (2022), Fudenberg and Lanzani (2022), and Gagnon-

Bartsch, Rabin, and Schwartzstein (2022) misspecification can be eliminated either

by “light bulb realizations” or evolutionary pressure. The key difference with our

approach is that in these papers, as well in the earlier Foster and Young (2003),

Cho and Kasa (2015), and Giacomini, Skreta, and Turén (2015), where agents switch

between models on the basis of a specification test, the agents act as if they have

complete trust in the set of models currently entertained and are never concerned

about being misspecified. Still, there is a tight connection between the robust control

decision criterion and a maxmin decision criterion where the set of models expands as

the penalization term in the robust control increases (see Hansen and Sargent, 2011,

for a textbook treatment). In light of this, compared to the previous set of papers,

our work can additionally be interpreted as providing the first smooth framework for

46



expanding (or restricting) the set of considered models as a function of the evidence.

Farther afield, Ortoleva (2012) proposes and axiomatizes a model where a decision

maker can reject their model in favor of a backup one when faced with events with

sufficiently low probability. Karni and Vierø (2013) proposes and axiomatizes a model

where the agent becomes progressively aware of more states and acts. However, their

decision maker trusts their probability over states completely when making decisions.

Banerjee, Chassang, Montero, and Snowberg (2020) studies a Wald problem where the

agent trade-offs between robustness and the subjective expected utility performance

of the experiment. Differently from us, the concern in this model does not evolve,

and the agent makes a single decision. Epstein and Ji (2022) characterizes optimal

stopping with a concern for robustness captured by maxmin preferences, showing that

the robustness concern, in general, induces earlier stopping.

There is fast-growing literature on learning under misspecification with subjec-

tive expected utility preferences. Arrow and Green (1973) gives the first general

framework for this problem, and Nyarko (1991) points out that the combination of

misspecification and endogenous data can lead to cycles. This literature has been re-

vived by the more recent Esponda and Pouzo (2016); see Bohren and Hauser (2021),

Esponda, Pouzo, and Yamamoto (2021a), Fudenberg, Lanzani, and Strack (2021),

and Frick, Iijima, and Ishii (2023) for analyses of more closely related settings.

The identification of an agent who is disappointed with minor discrepancies be-

tween the empirical and the theoretical distributions as a believer in the Law of Small

Numbers follows the formalization of this bias proposed by Rabin (2002). The nor-

mative role of the likelihood ratio that makes it proportional to the relative entropy

(cf. Proposition 1 and Theorem 1) is somewhat reminiscent of the normative role of

(absolute) entropy as a measure of informativeness found by Cabrales, Gossner, and

Serrano (2013).

Hansen and Sargent (2007) mention a time-varying penalization parameter as a

way to maintain dynamic consistency in the robust control model. Maenhout (2004)

also uses a time-varying penalization parameter in a portfolio selection problem to

keep the recursive discounted preferences homothetic at any history. See Pathak et al.
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(2002) for a critical perspective on the latter paper and the subsequent literature. In

both cases, the parameter evolution does not capture the fit of the models to the

observed data. Anderson, Hansen, and Sargent (2003) and Barillas, Hansen, and

Sargent (2009) pioneer a literature that calibrates the (time-invariant) concern for

misspecification from the acceptable error probability in likelihood ratio test between

the unperturbed model and the worst-case model (that does not depend on the action

there). See Hansen and Sargent (2011) for a textbook treatment.

In the evolutionary game theory literature studying preferences formation, the

closer papers are Dekel, Ely, and Yilankaya (2007) and Robatto and Szentes (2017).

In the former, players may be “misspecified” in the sense of having a vN-M utility

different from the one determining reproductive finiteness. In the latter, the evolu-

tionary pressure determines the risk attitudes of the players.

On the axiomatic side, the static decision criterion considered here is due to

Cerreia-Vioglio, Hansen, Maccheroni, and Marinacci (2022).32 The explicit use of

a state space where every state describes both the single-period outcome realiza-

tion and the probability distribution over outcomes follows the approach introduced

in Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2013a) as a two-stage

“statistical” interpretation and axiomatization of some of the decision criteria under

ambiguity, in particular the smooth ambiguity one. For this criterion, this approach

has been recently extended by Denti and Pomatto (2022). They allow for a fully

revealed-preference elicitation of the relevant probability distributions, viewed as sub-

jective statistical models. See also Dean and Ortoleva (2017) for a less related decision

criterion where the agent has a prior over multiple data-generating processes and eval-

uates each of them with rank-dependent utility and Gilboa, Minardi, and Samuelson

(2020) for a different quasi-Bayesian criterion that combines Bayesian updating with

case-reasoning rather than misspecification considerations.

32Given the Donsker–Varadhan variational formula, our decision criterion can also be seen as the
average of CARA certain equivalents, an object studied and characterized from a statistical per-
spective in Mu, Pomatto, Strack, and Tamuz (2021).

48



1.6.2 Experimental Evidence

We are unaware of experiments that explicitly test the positive relation between

misspecification and the belief in the Law of Small Numbers with uncertainty aversion.

However, the findings in Esponda, Vespa, and Yuksel (2022) suggest that a mechanism

similar to the one outlined in this chapter is actually at play. The paper studies the

repeated behavior of two groups of agents, one with an agnostic (full support) belief

about the possible data-generating process faced and one that is misspecified because

of base rate neglect. The long-run average play of the misspecified agents is in between

the best reply to the misspecified model and the uniform distribution over outcomes.

Notably, this behavior is not the best reply to the observed empirical frequency,

which suggests that, as in our model, even in the medium run (200 repetitions in the

experiment above), the agents do not altogether drop their models; they rely less on

it to make their choices. Instead, the correctly specified agents converge to making

choices that are optimal only under the actual data-generating process, i.e., they

behave as a subjective expected utility maximizer with a belief concentrated on the

true DGP. More indirectly De Filippis, Guarino, Jehiel, and Kitagawa (2022) show

that there is an overreaction of beliefs to consistent signal than to inconsistent signal,

suggesting that agents who find a model consistently validated may rely more on it

to make decisions.

1.6.3 Forward-looking Agents

One key generalization to our model would be to allow for forward-looking agents.

Of course, as for many decision criteria that depart from SEU, the main compli-

cation is dealing with the fact that the most immediate extension of the criterion

to forward-looking agents would induce dynamic inconsistencies under some infor-

mation structures (see Appendix .1.4 for simple explicit example). One approach

would be to directly impose a recursive formulation for the preferences, as in Mac-

cheroni, Marinacci, and Rustichini (2006b) and Klibanoff, Marinacci, and Mukerji

(2009). Since the decision criterion belongs to the variational class, we know from the
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first reference that a recursive formulation can be obtained. A complementary ap-

proach does not impose recursivity and allows for dynamic inconsistency. Preliminary

analysis suggests that if we consider agents who do not anticipate their future taste

variations, little is changed. However, analyzing an uncommitted, forward-looking,

and sophisticated agent playing an intra-personal equilibrium with their future selves

would require combining the insights of this chapter with the approach developed in

Battigalli, Francetich, Lanzani, and Marinacci (2019). Analogously, to extend the

axiomatic exercise to sophisticated agents, the techniques of this chapter should be

combined with the consistent planning approach of Siniscalchi (2011).

1.6.4 Endogenous Structured Models

The more natural extension for the decision-theoretic part of the chapter involves

using axioms that do not explicitly allow the agent to bet on the identity of the

structured model. Allowing such bets is relatively standard when dealing with two

levels of uncertainty for which the agent has different attitudes (Klibanoff, Marinacci,

and Mukerji, 2005 being the most prominent example). However, Denti and Pomatto

(2022) proposed an identifiability condition that avoids the need for explicit bets on

the structured models. Identifiability requires a way to partition 𝑆 that singles out

the probabilistic model. In particular, each probabilistic model assigns probability

one to its corresponding partition element.

When considering a structured environment, we required that this identification

is spelled out in the description of the states, with the second component being

the distribution 𝜌. Although in light of the results of Denti and Pomatto (2022),

the axiomatization of this static criterion without this restriction does not generate

conceptual complications, the dynamic characterization becomes significantly more

involved. In particular, the challenge is created by the conditioning with respect to

the endogenously identified model. This substantial extension is left for future work.
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1.7 Conclusion

In this work, we propose a novel model of agents actively learning about the envi-

ronment and dynamically adjusting their concern for misspecification based on the

evidence they face. We show that the agents develop different long-run uncertainty

attitudes depending on their understanding of how quickly evidence in favor or against

a model is accumulated. Statistically sophisticated agents converge to robust control

preferences a la Hansen and Sargent (2001), with the misspecification concern endoge-

nously determined by their models fit with the true DGP at the equilibrium action.

In contrast, an agent who is too demanding in evaluating their model converges to

behave as a maxmin agent a la Gilboa and Schmeidler (1989), while a lenient agent

eventually becomes a standard subjective expected utility maximizer. These results

provide the first learning foundation for nonstandard decision criteria.

We then point out that in natural environments, the behavior of the statistically

sophisticated type need not converge, and we characterize the limit frequency of time

spent playing each action. We apply this result to a simple macroeconomic model

and obtain a new rationale for the periodic switches in monetary policies.

We also provide an axiomatization of the proposed decision criterion and its evo-

lution in the face of evidence. We introduce a new axiom type, Asymptotic Frequen-

tism, requiring long streams of outcomes with the same empirical frequency to induce

similar preferences. We prove that this axiom induces the statistically sophisticated

behavior studied in the learning part of the chapter.

.1 Appendix

.1.1 Learning Results

Preliminaries

By Assumption 1, there exists 𝐾 ∈ R++ such that

− ln 𝑞𝑎 (𝑦) ≤ 𝐾 ∀𝑎 ∈ 𝐴, ∀𝑦 ∈ 𝑌, ∀𝑞 ∈ 𝑄.
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Throughout Appendix .1.1, the symbol 𝐾 will denote such strictly positive real num-

ber.

For an arbitrary Borel measurable subset 𝐶 of a metric space, we endow the space

𝐶N with the Borel 𝜎-algebra, ℬ
(︀
𝐶N
)︀
, corresponding to the product topology on 𝐶N.

For 𝑘1, .., 𝑘𝑡 ∈ 𝐶, 𝑡 ∈ N, we denote by 𝑘𝑡 = (𝑘1, ..., 𝑘𝑡) both the finite sequence in 𝐶𝑡

and the elementary cylinder in 𝐶N that it identifies. For every policy Π ∈ 𝐴ℋ, the

density of the objective probability distribution over infinite histories is defined over

a finite number of periods 𝐼 ⊆ N with 𝑡𝐼 = max 𝐼 as

P̃Π

(︀
(𝑎𝜏 , 𝑦𝜏 )𝜏∈𝐼

)︀
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if ∃ (�̂�𝜏 , 𝑦𝜏 )𝑡𝐼𝜏=1 ∈ (𝐴× 𝑌 )𝑡𝐼 :

�̂�𝜏+1 = Π(�̂�𝜏 , 𝑦𝜏 ) ,∀𝜏 ∈ {0, ..., 𝑡𝐼 − 1}

and (�̂�𝜏 , 𝑦𝜏 ) = (𝑎𝜏 , 𝑦𝜏 ) ,∀𝜏 ∈ 𝐼,

0 otherwise,

(8)

and

PΠ

(︀
(𝑎𝜏 )𝜏∈𝐼 , 𝐶

)︀
=

∫︁
𝐶

P̃Π

(︀
(𝑎𝜏 , ·)𝜏∈𝐼

)︀
𝑑

(︃∏︁
𝜏∈𝐼

𝑝*𝑎𝜏

)︃
∀𝐶 ∈ ℬ

(︀
𝑌 𝐼
)︀
.

Since the corresponding set of finite-dimensional probability measures is consistent,

there is a unique probability measure over infinite sequences of action-outcome pairs

with these marginals, defined through the Kolmogorov extension theorem (see The-

orem V.5.1 in Parthasarathy, 2005 for the version for standard Borel spaces used

here).

For every 𝑡 ∈ N and history ℎ𝑡 = (𝑎𝑡, 𝑦𝑡) ∈ ℋ let 𝑝ℎ𝑡 ∈ ∆(𝑌 )𝐴 be the action

contingent (finite support) probability measure over outcomes corresponding to the

empirical frequency: for all 𝑎 ∈ 𝐴 such that
∑︀𝑡

𝜏=1 I{𝑎} (𝑎𝜏 ) > 0,

𝑝ℎ𝑡
𝑎 (𝐶) =

∑︀𝑡
𝜏=1 I{(𝑎,𝑦):𝑦∈𝐶} (𝑎𝜏 , 𝑦𝜏 )∑︀𝑡

𝜏=1 I{𝑎} (𝑎𝜏 )
∀𝐶 ⊆ ℬ (𝑌 )

and 𝑝ℎ𝑡
𝑎 = 𝛿𝑦 for some arbitrary fixed 𝑦 ∈ 𝑌 if

∑︀𝑡
𝜏=1 I{𝑎} (𝑎𝜏 ) = 0. For every two

histories ℎ𝑡, ℎ𝜏 ∈ ℋ we write ℎ𝑡 ≻ ℎ𝜏 if there is 𝑛 ∈ N and (𝑎𝑖, 𝑦𝑖)
𝑛
𝑖=1 such that

ℎ𝑡 = (ℎ𝜏 , (𝑎𝑖, 𝑦𝑖)
𝑛
𝑖=1). For all 𝑏 ∈ 𝐴 let Π𝑏 the policy that prescribes 𝑏 at every
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period. Define the set 𝑄𝜀(𝑎) as all parameters at most 𝜀 away from a relative entropy

minimizer given action 𝑎,

𝑄𝜀(𝑎) = {𝑞 ∈ 𝑄 : ∃𝑞′ ∈ 𝑄(𝑎) ∩𝐵𝜀 (𝑞)}. (9)

Results

Our first lemma justifies the repeated use of min and max rather than inf and sup in

the definitions of the average robust criterion and LRT.

Lemma 1. 1. For every 𝑎 ∈ 𝐴, 𝜆 ∈ R++, and 𝑞 ∈ 𝑄

∅ ≠ argmin𝑝𝑎∈Δ(𝑌 )

(︂
E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +

𝑅 (𝑝𝑎||𝑞𝑎)
𝜆

)︂
.

2. For every 𝑡 ∈ N, ℎ𝑡 ∈ ℋ𝑡,

∅ ≠ argmax𝑝∈𝑁(𝑄)

𝑡∏︁
𝜏=1

𝑝𝑎𝜏 (𝑦𝜏 ) .

Proof. 1) Fix 𝑎 ∈ 𝐴, 𝜆 ∈ R++, and 𝑞 ∈ 𝑄. Since 𝑢 is continuous and 𝑌 is

compact, 𝑢 (𝑎, ·) is bounded, E𝑝𝑎 [𝑢 (𝑎, 𝑦)] ≥ min𝑦∈𝑌 𝑢 (𝑎, 𝑦) ∈ R for all 𝑝𝑎 ∈ ∆(𝑌 ),

and 𝑝𝑎 ↦→ E𝑝𝑎 [𝑢 (𝑎, 𝑦)] is continuous. Since 𝑌 is a compact metric space, by, e.g.,

Royden and Fitzpatrick (1988), it is a Polish space and so 𝑝𝑎 ↦→ 𝑅 (𝑝𝑎||𝑞𝑎) is lower

semicontinuous by Lemma 1.4.3 in Dupuis and Ellis (2011). Therefore, the set

𝐸 : =

{︂
𝑝𝑎 ∈ ∆(𝑌 ) : E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +

1

𝜆
𝑅 (𝑝𝑎||𝑞𝑎) ≤ E𝑞𝑎 [𝑢 (𝑎, 𝑦)]

}︂

is closed, and as 𝑅 (𝑞𝑎||𝑞𝑎) = 0 we clearly have

argmin𝑝𝑎∈Δ(𝑌 )E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +
1

𝜆
𝑅 (𝑝𝑎||𝑞𝑎) = argmin𝑝𝑎∈𝐸E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +

1

𝜆
𝑅 (𝑝𝑎||𝑞𝑎) .

Since 𝑌 is a compact metric space, by Theorem 15.11 in Aliprantis and Border (2013)

and Proposition 11.15 in Royden and Fitzpatrick (1988) so are ∆(𝑌 ) and 𝐸 endowed
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with the topology of weak convergence of measures. Since

𝑝𝑎 ↦→ E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +
1

𝜆
𝑅 (𝑝𝑎||𝑞𝑎)

is real-valued (with values in [min𝑦∈𝑌 𝑢 (𝑎, 𝑦) ,E𝑞𝑎 [𝑢 (𝑎, 𝑦)]]) and lower semicontinuous

on the compact 𝐸, it admits a minimizer by the generalized Weierstrass’ theorem (see,

e.g., Theorem 2.43 in Aliprantis and Border, 2013).

2) Let 𝑡 ∈ N, ℎ𝑡 ∈ ℋ𝑡. It follows from Assumption 2 (ii) and Theorem 1 in

Sweeting (1986) that

𝑁 (𝑄) → R

𝑝 ↦→
∏︀𝑡

𝜏=1 𝑝𝑎𝜏 (𝑦𝜏 )

is continuous.33 Then, the maximum is attained since 𝑁 (𝑄) is closed by Assumption

2 (i), and thus compact since 𝑌 is a compact metric space, and by Theorem 15.11

in Aliprantis and Border (2013) and Proposition 11.15 in Royden and Fitzpatrick

(1988). ■

The next lemma provides a useful rewriting of the LRT as a weighted average

of the empirical log-likelihood ratio when playing the different actions, with weights

proportional to how frequently each action has been used in the past.

Lemma 2. For every 𝑡 ∈ N and ℎ𝑡 = (𝑎𝑡, 𝑦𝑡) ∈ ℋ𝑡, if 𝑞′ ∈ argmax𝑞∈𝑄
∏︀𝑡

𝜏=1 𝑞𝑎𝜏 (𝑦𝜏 ),

and 𝑝 ∈ argmax𝑟∈𝑁(𝑄)

∏︀𝑡
𝜏=1 𝑟𝑎𝜏 (𝑦𝜏 ) then

𝐿𝐿𝑅 (ℎ𝑡, 𝑄) =
∑︁
𝑎∈𝐴

𝑡∑︁
𝜏=1

I{𝑎} (𝑎𝜏 )
∫︁
𝑌

log

(︂
d𝑝𝑎 (𝑦)
d𝑞′𝑎 (𝑦)

)︂
d𝑝ℎ𝑡

𝑎 (𝑦) .

33Observe that although the theorem in Sweeting (1986) is stated for densities with respect to the
Lebesgue measure, both Scheffe’s Theorem and Theorem 2.18 in Rudin (1970), that are used to
prove the result, work for densities with respect to any regular Borel measure, as the (𝑝*𝑎)𝑎∈𝐴 we
consider are (by, 𝑌 being metric and, e.g., Theorem II.1.2 in Parthasarathy, 2005).

54



Proof. We have

𝐿𝐿𝑅 (ℎ𝑡, 𝑄) = − log

(︃
max𝑞∈𝑄

∏︀𝑡
𝜏=1 𝑞

′
𝑎𝜏 (𝑦𝜏 )

max𝑟∈𝑁(𝑄)

∏︀𝑡
𝜏=1 𝑟𝑎𝜏 (𝑦𝜏 )

)︃

= log

(︃
max𝑟∈𝑁(𝑄)

∏︀𝑡
𝜏=1 𝑟𝑎𝜏 (𝑦𝜏 )

max𝑞∈𝑄
∏︀𝑡

𝜏=1 𝑞𝑎𝜏 (𝑦𝜏 )

)︃
= log

(︃∏︀𝑡
𝜏=1 𝑝𝑎𝜏 (𝑦𝜏 )∏︀𝑡
𝜏=1 𝑞

′
𝑎𝜏
(𝑦𝜏 )

)︃

= log

(︃
𝑡∏︁

𝜏=1

𝑝𝑎𝜏 (𝑦𝜏 )

)︃
− log

(︃
𝑡∏︁

𝜏=1

𝑞
′

𝑎𝜏 (𝑦𝜏 )

)︃

= log

(︃∏︁
𝑦∈𝑌

∏︁
𝑎∈𝐴

𝑝𝑎 (𝑦)
∑︀𝑡

𝜏=1 I{𝑎}(𝑎𝜏 )𝑝
ℎ𝑡
𝑎 ({𝑦})

)︃
− log

(︃∏︁
𝑦∈𝑌

∏︁
𝑎∈𝐴

𝑞′𝑎 (𝑦)
∑︀𝑡

𝜏=1 I{𝑎}(𝑎𝜏 )𝑝
ℎ𝑡
𝑎 ({𝑦})

)︃

=
∑︁
𝑎∈𝐴

𝑡∑︁
𝜏=1

I{𝑎} (𝑎𝜏 )
∑︁
𝑦∈𝑌

𝑝ℎ𝑡
𝑎 ({𝑦}) log (𝑝𝑎 (𝑦))−

∑︁
𝑎∈𝐴

𝑡∑︁
𝜏=1

I{𝑎} (𝑎𝜏 )
∑︁
𝑦∈𝑌

𝑝ℎ𝑡
𝑎 ({𝑦}) log (𝑞′𝑎 (𝑦))

=
∑︁
𝑎∈𝐴

𝑡∑︁
𝜏=1

I{𝑎} (𝑎𝜏 )

(︃∑︁
𝑦∈𝑌

𝑝ℎ𝑡
𝑎 ({𝑦}) log (𝑝𝑎 (𝑦))−

∑︁
𝑦∈𝑌

𝑝ℎ𝑡
𝑎 ({𝑦}) log (𝑞′𝑎 (𝑦))

)︃

=
∑︁
𝑎∈𝐴

𝑡∑︁
𝜏=1

I{𝑎} (𝑎𝜏 )
∫︁
𝑌

log

(︂
𝑝𝑎 (𝑦)

𝑞′𝑎 (𝑦)

)︂
d𝑝ℎ𝑡

𝑎 (𝑦) .

■

The next lemma shows that a robust control evaluation with respect to a struc-

tured model 𝑞 ∈ 𝑄 converges to a subjective expected utility evaluation as 𝜆 tends to

0, generalizing previous results in the decision-theoretic literature, where the function

evaluated was a finite range one, to continuous utility functions.

Lemma 3. For every 𝑎 ∈ 𝐴, 𝑞 ∈ 𝑄, and (𝑞𝑛, 𝜆𝑛)𝑛∈N ∈ (𝑄× R++)
N with

lim
𝑛→∞

(𝑞𝑛, 𝜆𝑛) = (𝑞, 0)

we have

lim
𝑛→∞

min
𝑝𝑎∈Δ(𝑌 )

(︂
E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +

𝑅 (𝑝𝑎||𝑞𝑎)
𝜆𝑛

)︂
= E𝑞𝑎 [𝑢 (𝑎, 𝑦)] .

Proof. Fix 𝑎 ∈ 𝐴 and define �̄� = max𝑦∈𝑌 𝑢 (𝑎, 𝑦)−min𝑦∈𝑌 𝑢 (𝑎, 𝑦). For every 𝑛 ∈ N,

min
𝑝𝑎∈Δ(𝑌 )

(︂
E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +

𝑅 (𝑝𝑎||𝑞𝑎,𝑛)
𝜆𝑛

)︂
∈
[︂
min
𝑦∈𝑌

𝑢 (𝑎, 𝑦) ,E𝑞𝑎,𝑛 [𝑢 (𝑎, 𝑦)]

]︂
⊆
[︂
min
𝑦∈𝑌

𝑢 (𝑎, 𝑦) ,max
𝑦∈𝑌

𝑢 (𝑎, 𝑦)

]︂
,
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so possibly restricting to a subsequence, we can assume that the limit in the LHS of

the statement is well defined. The statement is then proved by showing that any such

subsequence converges to the RHS. In particular, we show that we cannot have

lim
𝑛→∞

min
𝑝𝑎∈Δ(𝑌 )

(︂
E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +

𝑅 (𝑝𝑎||𝑞𝑎,𝑛)
𝜆𝑛

)︂
< E𝑞𝑎 [𝑢 (𝑎, 𝑦)] . (10)

This is sufficient as lim𝑛→∞ E𝑞𝑎,𝑛 [𝑢 (𝑎, 𝑦)] = E𝑞𝑎 [𝑢 (𝑎, 𝑦)] and therefore we know by

the lower semicontinuity of 𝑅 (see Lemma 1.4.3 in Dupuis and Ellis (2011)) that

lim
𝑛→∞

min
𝑝𝑎∈Δ(𝑌 )

(︂
E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +

𝑅 (𝑝𝑎||𝑞𝑎,𝑛)
𝜆𝑛

)︂
≤ E𝑞𝑎 [𝑢 (𝑎, 𝑦)] .

If equation (10) held, there would be an 𝜀 ∈ R++ with

lim
𝑛→∞

min
𝑝𝑎∈Δ(𝑌 )

(︂
E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +

𝑅 (𝑝𝑎||𝑞𝑎,𝑛)
𝜆𝑛

)︂
= E𝑞𝑎 [𝑢 (𝑎, 𝑦)]− 𝜀. (11)

For every 𝑛 ∈ N, let 𝑝𝑛𝑎 ∈ ∆(𝑌 ) be an arbitrary element of

argmin𝑝𝑎∈Δ(𝑌 )

(︂
E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +

𝑅 (𝑝𝑎||𝑞𝑎,𝑛)
𝜆𝑛

)︂
.

Since 𝑌 is a compact metric space, by Theorem 15.11 in Aliprantis and Border (2013)

so is ∆(𝑌 ), and therefore, we can assume (by restricting to a subsequence) that 𝑝𝑛𝑎
converges to some 𝑝𝑎 ∈ ∆(𝑌 ). By equation (11) and the fact that lim𝑛→∞ 𝑝𝑛𝑎 = 𝑝𝑎,

we have

E𝑝𝑎 [𝑢 (𝑎, 𝑦)] ≤ E𝑞𝑎 [𝑢 (𝑎, 𝑦)]− 𝜀.

Therefore,

∫︁ �̄�

0

1− 𝑝𝑎

(︂{︂
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦)−min

𝑦∈𝑌
𝑢 (𝑎, 𝑦) ≤ 𝑥

}︂)︂
d𝑥+

3

4
𝜀

= E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +
3

4
𝜀+min

𝑦∈𝑌
𝑢 (𝑎, 𝑦) ≤ E𝑞𝑎 [𝑢 (𝑎, 𝑦)] + min

𝑦∈𝑌
𝑢 (𝑎, 𝑦)

=

∫︁ �̄�

0

1− 𝑞𝑎

(︂{︂
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦)−min

𝑦∈𝑌
𝑢 (𝑎, 𝑦) ≤ 𝑥

}︂)︂
d𝑥. (12)
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Claim 1. There exist 𝑀 ∈ R and 𝐿 ∈ R++ such that

𝑝𝑎 ({𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦) ≤𝑀 − 𝐿})− 𝑞𝑎 ({𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦) ≤𝑀}) ≥ 𝜀

2�̄�
. (13)

Proof of the Claim. Suppose that for every 𝑀 ∈ R and 𝐿 ∈ R++ equation (13) does

not hold. Then for every 𝐿 ∈ R++∫︁ �̄�

0

1− 𝑝𝑎

(︂{︂
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦)−min

𝑦∈𝑌
𝑢 (𝑎, 𝑦) ≤ 𝑥

}︂)︂
d𝑥

=

∫︁ �̄�+𝐿

0

1− 𝑝𝑎

(︂{︂
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦)−min

𝑦∈𝑌
𝑢 (𝑎, 𝑦) + 𝐿 ≤ 𝑥

}︂)︂
d𝑥− 𝐿

=

∫︁ �̄�+𝐿

0

1− 𝑝𝑎

(︂{︂
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦)−min

𝑦∈𝑌
𝑢 (𝑎, 𝑦) + 𝐿 ≤ 𝑥

}︂)︂
d𝑥− 𝐿

≥
∫︁ �̄�+𝐿

0

1− 𝑞𝑎

(︂{︂
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦)−min

𝑦∈𝑌
𝑢 (𝑎, 𝑦) ≤ 𝑥

}︂)︂
− 𝜀

2�̄�
d𝑥− 𝐿

=

∫︁ �̄�

0

1− 𝑞𝑎

(︂{︂
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦)−min

𝑦∈𝑌
𝑢 (𝑎, 𝑦) ≤ 𝑥

}︂)︂
− 𝜀

2�̄�
d𝑥− 𝐿

=

∫︁ �̄�

0

1− 𝑞𝑎

(︂{︂
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦)−min

𝑦∈𝑌
𝑢 (𝑎, 𝑦) ≤ 𝑥

}︂)︂
− 𝜀/2− 𝐿

𝜀

2�̄�
− 𝐿.

Since 𝐿 can be chosen to be arbitrarily small, we have

∫︁ �̄�

0

1− 𝑝𝑎

(︂{︂
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦)−min

𝑦∈𝑌
𝑢 (𝑎, 𝑦) ≤ 𝑥

}︂)︂
d𝑥

≥
∫︁ �̄�

0

1− 𝑞𝑎

(︂{︂
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦)−min

𝑦∈𝑌
𝑢 (𝑎, 𝑦) ≤ 𝑥

}︂)︂
d𝑥− 𝜀/2,

a contradiction with equation (12). □

The claim, in turn, implies that there exists 𝑁 ∈ N such that for all 𝑛 ≥ 𝑁

𝑝𝑛𝑎

(︂{︂
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦) ≤𝑀 − 𝐿

2

}︂)︂
− 𝑞𝑎,𝑛

(︂{︂
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦) ≤𝑀 − 𝐿

2

}︂)︂
≥ 𝜀

4�̄�
.
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But then

min
𝑝𝑎∈Δ(𝑌 )

E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +
1

𝜆𝑛
𝑅 (𝑝𝑎||𝑞𝑎,𝑛)

= E𝑝𝑛𝑎 [𝑢 (𝑎, 𝑦)] +
1

𝜆𝑛
𝑅 (𝑝𝑛𝑎 ||𝑞𝑎,𝑛)

≥ min
𝑦∈𝑌

𝑢 (𝑎, 𝑦) +

(︃
𝑝𝑛𝑎

(︂{︂
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦) ≤𝑀 − 𝐿

2

}︂)︂
log

𝑝𝑛𝑎
(︀{︀
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦) ≤𝑀 − 𝐿

2

}︀)︀
𝑞𝑎,𝑛

(︀{︀
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦) ≤𝑀 − 𝐿

2

}︀)︀)︃ /𝜆𝑛
+

(︃
𝑝𝑛𝑎

(︂{︂
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦) > 𝑀 − 𝐿

2

}︂)︂
log

𝑝𝑛𝑎
(︀{︀
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦) > 𝑀 − 𝐿

2

}︀)︀
𝑞𝑎,𝑛

(︀{︀
𝑦 ∈ 𝑌 : 𝑢 (𝑎, 𝑦) > 𝑀 − 𝐿

2

}︀)︀)︃ /𝜆𝑛
where the inequality follows from Theorem 1.24 in Liese and Vajda (1987). But the

last term diverges to +∞ as 𝑛 goes to infinity, a contradiction with

min
𝑝𝑎∈Δ(𝑌 )

E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +
1

𝜆𝑛
𝑅 (𝑝𝑎||𝑞𝑎,𝑛) ≤ max

𝑦∈𝑌
𝑢 (𝑎, 𝑦) <∞.

■

Lemma 4. 1. For every 𝑎 ∈ 𝐴, the function 𝐺 : ∆ (𝑄)× R+ → R defined by

𝐺 (𝜈, 𝜆) =

∫︁
𝑄

min
𝑝𝑎∈Δ(𝑌 )

(︂
E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +

𝑅 (𝑝𝑎||𝑞𝑎)
𝜆

)︂
d𝜈 (𝑞) ∀𝜈 ∈ ∆(𝑄) ,∀𝜆 ∈ R++

and

𝐺 (𝜈, 0) =

∫︁
𝑄

E𝑞𝑎 [𝑢 (𝑎, 𝑦)] d𝜈 (𝑞) ∀𝜈 ∈ ∆(𝑄)

is continuous.

2. The correspondence 𝐵𝑅(·) (·) : R+ ×∆(𝑄) ⇒ 𝐴 where

𝐵𝑅(0) (𝜈) : = 𝐵𝑅𝑆𝑒𝑢 (𝜈) ∀𝜈 ∈ ∆(𝑄)

is upper hemicontinuous.

Proof. (1) Fix 𝑎 ∈ 𝐴. For every 𝑞 ∈ 𝑄, let 𝐹 (𝑞, 0) := E𝑞𝑎 [𝑢 (𝑎, 𝑦)] and observe that
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for each 𝜆 ∈ R++, by Proposition 1.4.2 in Dupuis and Ellis (2011) we have

𝐹 (𝑞, 𝜆) : = min
𝑝𝑎∈Δ(𝑌 )

(︂
E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +

𝑅 (𝑝𝑎||𝑞𝑎)
𝜆

)︂
=

− log
(︀∫︀

𝑌
exp (−𝜆𝑢 (𝑎, 𝑦)) d𝑞𝑎 (𝑦)

)︀
𝜆

.

Since 𝑌 is compact and 𝑢 is continuous, for all 𝜆 ∈ R++ and 𝑞 ∈ 𝑄, the RHS belongs

to [︂
min
𝑦∈𝑌

𝑢 (𝑎, 𝑦) ,max
𝑦∈𝑌

𝑢 (𝑎, 𝑦)

]︂
.

For every 𝜆 ∈ R++, exp (−𝜆𝑢 (𝑎, ·)) is a continuous and bounded function that is

bounded away from 0. Therefore,

𝑞 ↦→
∫︁
𝑌

exp (−𝜆𝑢 (𝑎, 𝑦)) d𝑞𝑎 (𝑦)

is continuous by definition of the weak convergence of measures, and 𝐹 is continuous

by Lemma 3 (at 𝜆 = 0) and Theorem 15.7.3 in Kallenberg (1973) (at 𝜆 ̸= 0).

Let (𝜈𝑛, 𝜆𝑛)𝑛∈N ∈ ∆(𝑄)×R++ be a convergent sequence with limit (𝜈, 𝜆). Suppose

first that 𝜆 > 0. Then

lim
𝑛→∞

∫︁
𝑄

log
(︀∫︀

𝑌
exp (−𝜆𝑛𝑢 (𝑎, 𝑦)) d𝑞𝑎 (𝑦)

)︀
−𝜆𝑛

d𝜈𝑛 (𝑞) =
∫︁
𝑄

log
(︀∫︀

𝑌
exp (−𝜆𝑢 (𝑎, 𝑦)) d𝑞𝑎 (𝑦)

)︀
−𝜆

d𝜈 (𝑞)

since weak convergence implies vague convergence, by Theorem 15.7.3 in Kallenberg

(1973) and the joint continuity of 𝐹 established above. Next, suppose that 𝜆 = 0.

Then

lim
𝑛→∞

∫︁
𝑄

−
log
(︀∫︀

𝑌
exp (−𝜆𝑛𝑢 (𝑎, 𝑦)) d𝑞𝑎 (𝑦)

)︀
𝜆𝑛

d𝜈𝑛 (𝑞) =
∫︁
𝑄

∫︁
𝑌

𝑢 (𝑎, 𝑦) d𝑞𝑎 (𝑦) d𝜈 (𝑞)

again by Theorem 15.7.3 in Kallenberg (1973) and the joint continuity of 𝐹 es-

tablished above. This proves (i).

(2) Follows by (1) and Theorem 17.31 in Aliprantis and Border (2013). ■

59



Lemma 5. 1. For every 𝑎 ∈ 𝐴, if (𝑞𝑛, 𝑝𝑛𝑎)𝑛∈N ∈ (𝑄×∆(𝑌 ))N is such that

lim
𝑛→∞

(𝑞𝑛, 𝑝
𝑛
𝑎)𝑛∈N = (𝑞′, 𝑝𝑎)

and supp𝑝𝑛𝑎 ⊆ {𝑦 ∈ 𝑌 : − ln 𝑞𝑎,𝑛 (𝑦) ≤ 𝐾} for all 𝑛 ∈ N then

lim
𝑛→∞

−
∫︁
𝑌

log (𝑞𝑎,𝑛 (𝑦)) d𝑝𝑛𝑎 (𝑦) = −
∫︁
𝑌

log (𝑞′𝑎 (𝑦)) d𝑝𝑎 (𝑦) .

2. For every 𝑎 ∈ 𝐴, if (𝑞𝑛, 𝑞′𝑛, 𝑝𝑛𝑎)𝑛∈N ∈ (𝑄×𝑄×∆(𝑌 ))N is such that

lim
𝑛→∞

(𝑞𝑛, 𝑞
′
𝑛, 𝑝

𝑛
𝑎)𝑛∈N =

(︀
𝑞, 𝑞′, 𝑝𝑎

)︀
and supp𝑝𝑛𝑎 ⊆ {𝑦 ∈ 𝑌 : − ln 𝑞𝑎,𝑛 (𝑦) ≤ 𝐾}, supp𝑝𝑛𝑎 ⊆

{︀
𝑦 ∈ 𝑌 : − ln 𝑞′𝑎,𝑛 (𝑦) ≤ 𝐾

}︀
,

for all 𝑛 ∈ N then

lim
𝑛→∞

−
∫︁
𝑌

log

(︂
𝑞𝑎,𝑛 (𝑦)

𝑞′𝑎,𝑛 (𝑦)

)︂
d𝑝𝑛𝑎 (𝑦) = −

∫︁
𝑌

log

(︂
𝑞
𝑎
(𝑦)

𝑞′𝑎 (𝑦)

)︂
d𝑝𝑎 (𝑦) .

Proof. By Assumption 1 (i-ii) the assumptions of Theorem 15.7.3 in Kallenberg

(1973) are satisfied for the sequences of integrand functions and probability measures

(log (𝑞𝑎,𝑛) , 𝑝𝑎)𝑛∈N and
(︀
log
(︀
𝑞
′
𝑎,𝑛

)︀
, 𝑝𝑎,𝑛

)︀
𝑛∈N. ■

The following lemma shows that under every policy, almost surely the infinite

sequence of observations do not contain a realization that provides an arbitrarily

large evidence against a structured model.

Lemma 6. For every Π ∈ 𝐴ℋ and 𝑞 ∈ 𝑄,

PΠ

(︁{︁
(𝑎𝑖, 𝑦𝑖)𝑖∈N ∈ (𝐴× 𝑌 )N : ∀𝑡 ∈ N,− ln 𝑞𝑎𝑡 (𝑦𝑡) ≤ 𝐾

}︁)︁
= 1.

Proof. By Assumption 1 (i) for every 𝑎 ∈ 𝐴, {𝑦 ∈ 𝑌 : − ln 𝑞𝑎 (𝑦) ≤ 𝐾} ∈ ℬ (𝑌 ). By

the definition of Radon-Nykodim derivative and equation (8), for every 𝑡 ∈ N,

PΠ

(︁{︁
(𝑎𝑖, 𝑦𝑖)𝑖∈N ∈ (𝐴× 𝑌 )N : − ln 𝑞𝑎𝑡 (𝑦𝑡) > 𝐾

}︁)︁
= 0.
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Since PΠ is a measure, it is countably subadditive and so

PΠ

(︁{︁
(𝑎𝑖, 𝑦𝑖)𝑖∈N ∈ (𝐴× 𝑌 )N : ∀𝑡 ∈ N,− ln 𝑞𝑎𝑡 (𝑦𝑡) ≤ 𝐾

}︁)︁
= 1− PΠ

(︁{︁
(𝑎𝑖, 𝑦𝑖)𝑖∈N ∈ (𝐴× 𝑌 )N : ∃𝑡,− ln 𝑞𝑎𝑡 (𝑦𝑡) > 𝐾

}︁)︁
≥ 1−

∞∑︁
𝑡=1

PΠ

(︁{︁
(𝑎𝑖, 𝑦𝑖)𝑖∈N ∈ (𝐴× 𝑌 )N : − ln 𝑞𝑎𝑡 (𝑦𝑡) > 𝐾

}︁)︁
= 1,

proving the statement. ■

The following lemma shows that, on every history where the empirical action

process stabilizes on 𝛼*, and the empirical outcome distribution contingent on the

actions played infinitely often converges to the true distribution, the limit LRT can

be rewritten as the minimum of an 𝛼* weighted average of the relative entropy from

the true DGP.

Lemma 7. Let 𝛼* ∈ ∆(𝐴) and (𝑎𝑡, 𝑦𝑡)𝑡∈N ∈ (𝐴× 𝑌 )N be such that there exists

𝑞 ∈ 𝑄 with − ln 𝑞𝑎𝑡 (𝑦𝑡) ≤ 𝐾 for all 𝑡 ∈ N. For every 𝑡 ∈ N, set ℎ𝑡 = (𝑎𝑡, 𝑦𝑡),

and let 𝑞 (ℎ𝑡) and 𝑟 (ℎ𝑡) be two arbitrary elements of argmax𝑞∈𝑄
∏︀𝑡

𝜏=1 𝑞𝑎𝜏 (𝑦𝜏 ) and

argmax𝑝∈𝑁(𝑄)

∏︀𝑡
𝜏=1 𝑝𝑎𝜏 (𝑦𝜏 ), respectively. If

lim
𝑡→∞

(︁
𝛼𝑡 (ℎ𝑡) ,

(︀
𝑝ℎ𝑡
𝑎

)︀
𝑎∈supp𝛼*

)︁
=
(︁
𝛼*, (𝑝*𝑎)𝑎∈supp𝛼*

)︁
then

𝐿𝐿𝑅 (ℎ𝑡, 𝑄)

𝑡
= lim

𝑡→∞

∑︁
𝑎∈𝐴

𝑡∑︁
𝜏=1

I{𝑎} (𝑎𝜏 )
∫︁
𝑌

log

(︂
𝑟𝑎 (ℎ𝑡) (𝑦)

𝑞𝑎 (ℎ𝑡) (𝑦)

)︂
d𝑝ℎ𝑡

𝑎 (𝑦) /𝑡 = min
𝑞∈𝑄

∑︁
𝑎∈𝐴

𝛼* (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) .

Proof. By assumption of the lemma, for all 𝑡 ∈ N, we have

∑︁
𝑎∈𝐴

𝑡∑︁
𝜏=1

I{𝑎} (𝑎𝜏 )
∫︁
𝑌

log

(︂
𝑟𝑎 (ℎ𝑡) (𝑦)

𝑞𝑎 (ℎ𝑡) (𝑦)

)︂
d𝑝ℎ𝑡

𝑎 (𝑦) /𝑡

=

∑︀
𝑎∈𝐴

∑︀𝑡
𝜏=1 I{𝑎} (𝑎𝜏 )

(︀∫︀
𝑌
log (𝑟𝑎 (ℎ𝑡) (𝑦)) d𝑝ℎ𝑡

𝑎 (𝑦)−
∫︀
𝑌
log (𝑞𝑎 (ℎ𝑡) (𝑦)) d𝑝ℎ𝑡

𝑎 (𝑦)
)︀

𝑡
.
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Let 𝑎 ∈ supp𝛼*. By Assumption 2 (i), we have

∫︁
𝑌

− log (𝑟𝑎 (ℎ𝑡) (𝑦)) d𝑝ℎ𝑡
𝑎 (𝑦) ≤ 0 ∀𝑡 ∈ N.

Also, take any subsequence ℎ𝑡𝑛 in which 𝑟𝑎 (ℎ𝑡) converges to some 𝑟𝑎

0 ≤
∫︁
𝑌

− log (𝑟𝑎 (𝑦)) d𝑝*𝑎 (𝑦) ≤ lim inf
𝑛→∞

∫︁
𝑌

− log (𝑟𝑎 (ℎ𝑡𝑛) (𝑦)) d𝑝ℎ𝑡𝑛
𝑎 (𝑦)

where the first inequality follows from Gibbs inequality and the second since by As-

sumption 2 (ii), there exists 𝐾 ′ ∈ R++ such that − log (𝑟𝑎 (ℎ𝑡𝑛) (𝑦)) ≥ −𝐾 ′, 𝑝*𝑎-almost

surely and so we can apply Lemma 3.2 in Serfozo (1982). Therefore, we have

lim
𝑡→∞

∑︁
𝑎∈𝐴

𝑡∑︁
𝜏=1

I{𝑎} (𝑎𝜏 )
∫︁
𝑌

− log (𝑟𝑎 (ℎ𝑡) (𝑦)) d𝑝ℎ𝑡
𝑎 (𝑦) /𝑡 = 0.

So

lim
𝑡→∞

∑︁
𝑎∈𝐴

𝑡∑︁
𝜏=1

I{𝑎} (𝑎𝜏 )
∫︁
𝑌

log

(︂
𝑟𝑎 (ℎ𝑡) (𝑦)

𝑞𝑎 (ℎ𝑡) (𝑦)

)︂
d𝑝ℎ𝑡

𝑎 (𝑦) /𝑡

= − lim
𝑡→∞

∑︁
𝑎∈𝐴

𝑡∑︁
𝜏=1

I{𝑎} (𝑎𝜏 )
∫︁
𝑌

log (𝑞𝑎 (ℎ𝑡) (𝑦)) d𝑝ℎ𝑡
𝑎 (𝑦) /𝑡

= − lim
𝑡→∞

min
𝑞∈𝑄

∑︁
𝑎∈𝐴

𝑡∑︁
𝜏=1

I{𝑎} (𝑎𝜏 )
∫︁
𝑌

log (𝑞𝑎 (ℎ𝑡) (𝑦)) d𝑝ℎ𝑡
𝑎 (𝑦) /𝑡.

Therefore the result follows from Lemma 5 and Theorem 17.31 in Aliprantis and

Border (2013). ■

Lemma 8. For every 𝑎 ∈ 𝐴,

lim
𝑘→∞

sup
𝑞∈𝑄

min
𝑝𝑎∈Δ(𝑌 )

∫︁
𝑌

𝑢 (𝑎, 𝑦) d𝑝𝑎 (𝑦) +
𝑅 (𝑝𝑎||𝑞𝑎)

𝑘
= min

𝑦∈∪𝑞∈𝑄supp𝑞𝑎
𝑢 (𝑎, 𝑦) .

Proof. Let 𝑦 ∈ argmin𝑦∈∪𝑞∈𝑄supp𝑞𝑎𝑢 (𝑎, 𝑦). If max𝑦∈𝑌 𝑢 (𝑎, 𝑦) = 𝑢 (𝑎, 𝑦) the statement

is trivially true, so suppose that max𝑦∈𝑌 𝑢 (𝑎, 𝑦) > 𝑢 (𝑎, 𝑦). By Assumption 1 (i) we
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have that

inf
𝑞∈𝑄

𝑞𝑎 (𝐵𝜀 (𝑦)) > 0 ∀𝜀 ∈ R++.

Otherwise, by the compactness of 𝑄 the portmanteau theorem (see, e.g., Theorem

11.1.1 Dudley, 2018) would imply that there exists 𝑞 ∈ 𝑄 with 𝑞𝑎
(︀
𝐵𝜀/2 (𝑦)

)︀
= 0. But

then, since there exists 𝑞 ∈ 𝑄 with 𝑦 ∈ supp𝑞𝑎 = supp𝑝*𝑎, and so 𝑝*𝑎
(︀
𝐵𝜀/2 (𝑦)

)︀
> 0,

we would obtain a contradiction with 𝑝*𝑎 ∼ 𝑞𝑎. Fix 𝜀 ∈
(︁
0,

max𝑦∈𝑌 𝑢(𝑎,𝑦)−𝑢(𝑎,𝑦)

2

)︁
. Since

𝑢 (𝑎, ·) is continuous, there exists 𝜀 such that

𝑦 ∈ 𝐵𝜀 (𝑦) =⇒ 𝑢 (𝑎, 𝑦) ≤ 𝑢 (𝑎, 𝑦) + 𝜀.

Then, for all 𝑞 ∈ 𝑄

𝑢 (𝑎, 𝑦) ≤ min
𝑝𝑎∈Δ(𝑌 )

∫︁
𝑌

𝑢 (𝑎, 𝑦) d𝑝𝑎 +
𝑅 (𝑝𝑎||𝑞𝑎)

𝑘

= −1

𝑘
log

(︂∫︁
𝑌

exp (−𝑘𝑢 (𝑎, 𝑦)) d𝑞𝑎 (𝑦)
)︂

≤ −1

𝑘
log

⎛⎝ exp (−𝑘 (𝑢 (𝑎, 𝑦) + 𝜀)) inf𝑞∈𝑄 𝑞𝑎 (𝐵𝜀 (𝑦))

+ (1− inf𝑞∈𝑄 𝑞𝑎 (𝐵𝜀 (𝑦))) exp (−𝑘max𝑦∈𝑌 𝑢 (𝑎, 𝑦))

⎞⎠
where the equality follows from Proposition 1.4.2 in Dupuis and Ellis (2011).

Moreover, the last term converges to 𝑢 (𝑎, 𝑦) + 𝜀 as 𝑘 goes to infinity by a simple

application of L’Hôpital’s rule. Since 𝜀 < max𝑦∈𝑌 𝑢(𝑎,𝑦)−𝑢(𝑎,𝑦)

2
was arbitrarily chosen,

and the last term does not depend on 𝑞 this proves the desired uniformity of the

convergence. ■

Proof of Proposition 1. Let (𝑢, 𝑎, 𝑌 ) be a decision problem with {𝑞*} = argmin𝑞∈𝑄𝑄 (𝑎)

for all 𝑎 ∈ 𝐴 and 𝜀 ∈ R++. We start by showing that there exists 𝑐 ∈ R++ such that

adjusting 𝜆 according to

Λ (h𝑡) =
𝐿𝐿𝑅 (h𝑡, 𝑄)

𝑐𝑡
(14)

is 𝜀-safe and 𝜀-consistent under almost correct specification. This is done by first

deriving a 𝑐 ∈ R++ such that 𝜀-safety is satisfied, and then showing that there exists

a 𝛿 that delivers 𝜀-consistency under almost correct specification. Safety is trivially
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satisfied by every policy if

max
𝑎∈𝐴

min
𝑦∈𝑌

𝑢 (𝑎, 𝑦) = min
𝑎∈𝐴,𝑦∈𝑌

𝑢 (𝑎, 𝑦) ,

so in that case pick an arbitrary 𝑐 ∈ R++. Suppose instead that we have

max
𝑎∈𝐴

min
𝑦∈𝑌

𝑢 (𝑎, 𝑦) > min
𝑎∈𝐴,𝑦∈𝑌

𝑢 (𝑎, 𝑦) .

Let 𝑃 ⊆ ∆(𝑌 )𝐴 be the set of 𝑝* that satisfy Assumption 1 jointly with 𝑄, and define

𝐴 (𝑝*) : =

{︂
𝑎′ ∈ 𝐴 : max

𝑎∈𝐴
min
𝑦∈𝑌

𝑢 (𝑎, 𝑦) > E𝑝*
𝑎′
[𝑢 (𝑎′, 𝑦)] +

𝜀

2

}︂
.

Claim 2. There exists 𝜙* > 0 such that for every Π ∈ 𝐴ℋ and 𝑝* ∈ 𝑃 ,

PΠ

⎛⎝ {︁
lim inf𝑡→∞

∑︀𝑡
𝑖=1 𝑢(a𝑖,y𝑖)

𝑡
−max𝑎∈𝐴 min𝑦∈𝑌 𝑢 (𝑎, 𝑦)− 𝜀 < 0

}︁
∩{lim sup𝑡→∞ 𝛼𝑡 (h𝑡) (𝑎

′) < 𝜙*, ∀𝑎′ ∈ 𝐴 (𝑝*)}

⎞⎠ = 0.

That is, almost surely the payoff is at most 𝜀-lower than the safe guarantee if the

actions whose objective expected performance is lower than the guarantee are played

sufficiently rarely (i.e., each of them has an average frequency lower than 𝜙*).

Proof of the Claim. Consider the stochastic process defined by

X𝑡 = 𝑢 (Π (h𝑡−1) ,y𝑡)− E𝑝*
Π(h𝑡−1)

[𝑢 (Π (h𝑡−1) , 𝑦)] ∀𝑡 ∈ N

with the sequence of sigma-algebras (ℱ𝑡)𝑡∈N generated by the stochastic process of

histories (h𝑡)𝑡∈N. The stochastic process is not i.i.d., as previous utility realizations

affect current period choices. Nevertheless it is a martingale difference sequence,

as 𝑢 is continuous in 𝑦 on the compact 𝑌 , so E [|X𝑡|] ≤ 2max𝑎,𝑦 |𝑢 (𝑎, 𝑦) | < ∞ and

E [X𝑡|ℱ𝑡−1] = 0 by equation (8). A fortiori, (X𝑡)𝑡∈N is a mixingale difference sequence,

and by the strong law of large numbers for mixingale sequences (see Theorem 2.7 in
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Hall and Heyde, 2014 for the version that applies here), we have

lim
𝑛→∞

∑︀𝑛
𝑡=1X𝑡

𝑛
= 0 PΠ-a.s.

so that

lim inf
𝑡→∞

∑︀𝑡
𝑖=1 𝑢 (a𝑖,y𝑖)

𝑡
= lim inf

𝑡→∞

𝑡∑︁
𝑖=1

X𝑖 + E𝑝*a𝑡
[𝑢 (a𝑡, ·)]
𝑡

≥
(︂
1− lim sup

𝑡→∞
𝛼𝑡 (h𝑡) (𝐴 (𝑝*))

)︂(︂
max
�̄�∈𝐴

min
𝑦∈𝑌

𝑢 (�̄�, 𝑦)− 𝜀

2

)︂
+ lim sup

𝑡→∞
𝛼𝑡 (h𝑡) (𝐴 (𝑝*)) min

𝑎∈𝑎,𝑦∈𝑌
𝑢 (𝑎, 𝑦)

≥

⎛⎝1−
∑︁

𝑎∈𝐴(𝑝*)

lim sup
𝑡→∞

𝛼𝑡 (h𝑡) (𝑎)

⎞⎠max
�̄�∈𝐴

min
𝑦∈𝑌

𝑢 (�̄�, 𝑦)− 𝜀

2

+
∑︁

𝑎∈𝐴(𝑝*)

lim sup
𝑡→∞

𝛼𝑡 (h𝑡) (𝑎) min
𝑎∈𝑎,𝑦∈𝑌

𝑢 (𝑎, 𝑦)

≥
(︂
1− |𝐴| max

𝑎∈𝐴(𝑝*)
lim sup
𝑡→∞

𝛼𝑡 (h𝑡) (𝑎)

)︂
max
�̄�∈𝐴

min
𝑦∈𝑌

𝑢 (�̄�, 𝑦)− 𝜀

2

+

(︂
|𝐴| max

𝑎∈𝐴(𝑝*)
lim sup
𝑡→∞

𝛼𝑡 (h𝑡) (𝑎)

)︂
min

𝑎∈𝑎,𝑦∈𝑌
𝑢 (𝑎, 𝑦)

and therefore the claim follows from setting

𝜀

2 (max�̄�∈𝐴 min𝑦∈𝑌 𝑢 (�̄�, 𝑦)−min𝑎∈𝑎,𝑦∈𝑌 𝑢 (𝑎, 𝑦)) |𝐴|
= 𝜙*.

□

Claim 3. There exists �̄� ∈ R++ such that if 𝜆 ≥ �̄� then for every 𝑝* ∈ 𝑃 , 𝑎′ ∈ 𝐴 (𝑝*),

𝜈 ∈ ∆(𝑄), we have 𝑎′ /∈ 𝐵𝑅𝜆 (𝜈).

That is, if the agent is sufficiently misspecification concerned, they do not play

actions that can perform worse than the safe guarantee.

Proof of the Claim. Observe that if 𝐴 (𝑝*) ̸= ∅, then by Assumption 1 (i) for all

𝑞 ∈ 𝑄, there is 𝑦 ∈ supp 𝑞𝑎′ with 𝑢 (𝑎′, 𝑦) ≤ max�̄�∈𝐴min𝑦∈𝑌 𝑢 (�̄�, 𝑦)− 𝜀
2
. But then the

claim follows from Lemma 8. □
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Claim 4. There exists 𝐽 ∈ (0, 1) such that for every 𝑝* ∈ 𝑃 , 𝑎′ ∈ 𝐴 (𝑝*), 𝜇 ∈ ∆(𝑄),

and 𝜆 ∈ R+,

𝜇 ({𝑞 ∈ 𝑄 : 𝑅 (𝑝*𝑎′||𝑞𝑎′ ) > 𝐽}) ≤ 𝐽 =⇒ 𝑎′ /∈ 𝐵𝑅𝜆 (𝜇) . (15)

That is, if the beliefs are sufficiently concentrated on the parameters that are close

to the true DGP, and under the true DGP 𝑎′ performs worse than the safe guarantee,

𝑎′ cannot be chosen regardless of the level of misspecification concern.

Proof of the Claim. Observe that given Claim 3, the statement immediately holds for

𝜆 > �̄�. Suppose by contradiction that equation (15) does not hold true. This means

that there exists a convergent (𝑝*𝑛, 𝜇𝑛, 𝜆𝑛)𝑛∈N ∈ 𝑃 ×∆(𝑄)×
[︀
0, �̄�
]︀

and 𝑎′ ∈ 𝐴 with

𝜇𝑛

(︂{︂
𝑞 ∈ 𝑄 : 𝑅

(︀
𝑝*𝑎′,𝑛||𝑞𝑎′

)︀
>

1

𝑛

}︂)︂
≤ 1

𝑛
, 𝑎′ ∈ 𝐴 (𝑝*𝑛) , and 𝑎′ ∈ 𝐵𝑅𝜆𝑛 (𝜇𝑛) .

By the lower semicontinuity of 𝑅 and the fact that 𝑅 (𝑝𝑎′ ||𝑞𝑎′) = 0 if and only if

𝑝𝑎′ = 𝑞𝑎′ , (see, e.g., Lemma 1.4.3 in Dupuis and Ellis (2011)), as well as Lemma 4

this in turn implies that there exists 𝑞 ∈ 𝑄 with

𝑎′ ∈ 𝐴 (𝑞) and E𝑞𝑎′
[𝑢 (𝑎′, 𝑦)] ≥ max

�̄�∈𝐴
min
𝑦∈𝑌

𝑢 (�̄�, 𝑦) ,

a contradiction. □

Let 𝑐 = 𝐽𝜙*

4�̄�
. Take an arbitrary 𝑝* ∈ 𝑃 , If for all 𝑎′ ∈ 𝐴 (𝑝*)

lim sup
𝑡→∞

𝛼𝑡 (h𝑡) (𝑎
′) = 0 < 𝜙* PΠ-a.s.

𝜀-safety follows by Claim 2. Suppose by contradiction that there is an action 𝑎′ ∈

𝐴 (𝑝*) with lim sup𝑡→∞ 𝛼𝑡 (h𝑡) (𝑎
′) > 𝜙*. ByClaim 4, it must be the case that

min𝑞∈𝑄𝑅 (𝑝*𝑎′ ||𝑞𝑎′) ≥ 𝐽 .

But then, by Lemmas 6 and 7 we have that

lim inf
𝑡→∞

Λ (h𝑡) ≥
min𝑞∈𝑄𝑅 (𝑝*||𝑞)

𝑐
≥ 𝐽

𝑐
= 2�̄� PΠ-a.s.
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Then by Claim 3, we have that for all 𝑎′ ∈ 𝐴 (𝑝*)

lim sup
𝑡→∞

𝛼𝑡 (h𝑡) (𝑎
′) = 0 PΠ-a.s.

a contradiction.

Since 𝑄 is compact, for every 𝜖 ∈ (0, 1) we can pick 𝛿 < 0 such that for all 𝑝* ∈ 𝑃 ,

min
𝑞∈𝑄

𝑅 (𝑝*||𝑞) < 𝛿

implies that for 𝑞 ∈ 𝑄𝜖(𝑎)

E𝑝* [𝑢 (𝑎
′, 𝑦)]− min

𝑝∈Δ(𝑌 )
E𝑝 [𝑢 (𝑎

′, 𝑦)]− 𝑅 (𝑝||𝑞𝑎)
𝜆

≤ 𝜀

4
∀𝑎′ ∈ 𝐴, ∀𝜆 ∈ [0, 2𝛿] .

But this is 𝜀-consistent with this 𝛿 by Lemmas 6, 7, and Berk (1966), page 54.

We show that there is a decision problem (𝑢, 𝑎, 𝑌 ) such that if the concern for

misspecification of the agent is such that

Λ (h𝑡) = 𝑜

(︂
𝐿𝐿𝑅 (h𝑡, 𝑄)

𝑡

)︂
PΠ-a.s.

then the decision rule is not 1
10

-safe. Suppose that

𝐴 = {1,−1, 0} and 𝑌 = {−1, 1} .

The utility function is 𝑢 (𝑎, 𝑦) = 𝑎𝑦. Each model 𝑞 considered by the agent is described

by 𝑞𝑎 (1) for some arbitrary 𝑎 ∈ 𝐴. With this, let 𝑄 = {0.9, 0.4}, 𝑝*𝑎 (1) = 0.6, and

𝜇 (0.9) =
1

2
= 𝜇 (0.4) .

Let 𝑁 (𝑄) = [0, 1], i.e., the unstructured models include all the action-independent

data-generating processes. We have

max
�̄�∈𝐴

min
𝑦∈𝑌

𝑢 (�̄�, 𝑦) = min
𝑦∈𝑌

𝑢 (0, 𝑦) = 0.
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However, by the Strong Law of Large Numbers it follows that PΠ-almost surely

lim
𝑡→∞

∑︀𝑡
𝜏=1 I{1} (y𝜏 )

𝑡
= 0.6.

Therefore, by Lemma 2 we have that

lim
𝑡→∞

𝐿𝐿𝑅 (h𝑡, 𝑄)

𝑡
= 𝑅 (0.6||0.4) PΠ-a.s.

and so

lim
𝑡→∞

Λ (h𝑡) = 0 PΠ-a.s.

Moreover, for the constant function 𝜑 (𝜀) = 1
2

for all 𝜀 ∈ R++ the prior is 𝜑-positive

on 𝑄 in the sense of Fudenberg, Lanzani, and Strack (2022a), and by their Lemma 1

𝜇 (0.4|h𝑡) → 1 PΠ-a.s.

But then by the upperhemicontinuity of 𝐵𝑅(·) (·) established in Lemma 4

lim inf
𝑡→∞

∑︀𝑡
𝑖=1 𝑢 (a𝑖,y𝑖)

𝑡
= −0.2 < 0 = max

�̄�∈𝐴
min
𝑦∈𝑌

𝑢 (�̄�, 𝑦) PΠ-a.s.

proving the desired result.

Finally, we show that there is a decision problem (𝑢, 𝑎, 𝑌 ) such that if the concern

for misspecification of the agent is such that

𝑜 (Λ (h𝑡)) =
𝐿𝐿𝑅 (h𝑡, 𝑄)

𝑡
PΠ-a.s.

then the decision rule is not 1
10

-consistent.

Let 𝛿 ∈ (0, 0.4) and suppose

𝐴 = {1,−1, 0} and 𝑌 = {−1, 1} .

The utility function is 𝑢 (𝑎, 𝑦) = 𝑎𝑦. Again, each model 𝑝 considered by the agent
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is described by 𝑝𝑎 (1) for some arbitrary 𝑎 ∈ 𝐴. With this, let 𝑄 = {0.6, 0.4} and

𝑝*𝑎 (1) = 0.6 + 𝛿. Let 𝑁 (𝑄) = [0, 1], i.e., the unstructured models include all the

action-independent data-generating processes.

Let �̄� be such that {0} = 𝐵𝑅𝜆 (𝜇) for all 𝜆 ≥ �̄� and 𝜇 ∈ ∆(𝑄). Such a �̄� exists

because for 𝑎 ∈ {−1, 1} and 𝑞 ∈ 𝑄

lim
𝜆→∞

min
𝑝𝑎∈Δ(𝑌 )

E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +
1

𝜆
𝑅 (𝑝𝑎||𝑞𝑎) = −1.

Let

𝐶𝑡 =

{︂
ℎ𝑡 ∈ ℋ𝑡 : 𝑝

ℎ𝑡 (1) ≥ 0.6, 𝑅
(︀
𝑝ℎ𝑡||0.6

)︀
≥ 𝑅 (0.6 + 𝛿||0.6)

2

}︂
.

For every ℎ𝑡 ∈ 𝐶𝑡, by Lemmas 2, 6, and 7

lim
𝑡→∞

𝐿𝐿𝑅 (ℎ𝑡, 𝑄)

𝑡
≥ 𝑅 (0.6 + 𝛿||0.6)

2

so that Λ (ℎ𝑡) is diverging to +∞ and it is eventually larger than �̄�. But by Sanov’s

Theorem (see, e.g., Theorem 2.2.1 in Dupuis and Ellis, 2011) the set 𝐶𝑡 has a proba-

bility converging to 1, so the result follows. ■

Proof of Proposition 2. Suppose that 𝑎* is a Λ-limit action. Thus, since for every

policy Π ∈ 𝐴ℋ

PΠ [sup{t : at ̸= 𝑎*} <∞] ≤
∞∑︁
𝑡=0

∑︁
ℎ𝑡∈ℋ𝑡

PΠ

[︀
𝑎* ∈ 𝐵𝑅Λ(h𝜏 ) (𝜇 (·|h𝜏 )) , ∀𝜏 ≥ 𝑡|ℎ𝑡

]︀
PΠ[ℎ𝑡],

there are a Λ-optimal policy Π̃ ∈ 𝐴ℋ, 𝑡 ∈ N0, and (𝑎𝑡, 𝑦𝑡) ∈ ℋ𝑡 with PΠ̃[(𝑎
𝑡, 𝑦𝑡)] > 0

such that with positive probability Π̃ prescribes 𝑎* after (𝑎𝑡, 𝑦𝑡) in every future period.

Define 𝜈 = 𝜇(·|(𝑎𝑡, 𝑦𝑡)), and notice that by Assumption 1 (i)

supp 𝜈 = supp𝜇 = 𝑄.

As the evolution of beliefs and misspecification concern under Π𝑎* , i.e., the policy

that plays 𝑎* in every period, is the same as under Π̃ for every history where the
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agent continues to play 𝑎*, we have that

PΠ̃[𝑎
* = Π̃(h𝜏 ) for all 𝜏 > 𝑡|(𝑎𝑡, 𝑦𝑡)] > 0

=⇒ PΠ𝑎* [𝑎* ∈ 𝐵𝑅Λ((𝑎𝑡,𝑦𝑡),h𝜏) (𝜈 (·|h𝜏 )) for all 𝜏 > 0] > 0.

We now show that if 𝑎* is not a selfconfirming equilibrium, the latter equals zero,

which establishes that 𝑎* cannot be a limit action under this way to adjust the mis-

specification concern. By the strong law of large numbers (see, e.g., Theorem 8.3.5

in Dudley, 2018),

lim
𝜏→∞

𝑝h𝜏

𝑎*
= 𝑝*

𝑎*
PΠ𝑎* -a.s.

Therefore, by the assumptions of the proposition and Gibbs’ inequality

lim
𝜏→∞

𝜏∏︁
𝜏 ′=1

𝑝h𝜏

a𝜏 ′
(y𝜏 ′) = lim

𝑡→∞
max
𝑞∈𝑄

𝜏∏︁
𝜏 ′=1

𝑞a𝜏 ′
(y𝜏 ′) = lim

𝑡→∞
max

𝑝∈𝑁(𝑄)

𝜏∏︁
𝜏 ′=1

𝑝a𝜏 ′
(y𝜏 ′) PΠ𝑎* -a.s.

So, lim𝜏→∞
𝐿𝐿𝑅((𝑎𝑡,𝑦𝑡),h𝜏 ,𝑄)

𝜏
= 0, PΠ𝑎* almost surely. With this, as by Assumption 1

(ii), the assumptions of Berk (1966), page 54, are satisfied, for every 𝜀 ∈ R++ we have

lim
𝜏→∞

𝜈 (𝐵𝜀 ({𝑞 ∈ 𝑄 : 𝑞𝑎* = 𝑝*𝑎*}) |h𝜏 ) = 1, PΠ𝑎* -a.s.

and the desired conclusion follows from Lemma 4. ■

Proof of Theorem 1. We start with the preliminary observation that by Lemma

6, − ln 𝑞a𝑡 (y𝑡) ≤ 𝐾 for all 𝑡 ∈ N and 𝑞 ∈ 𝑄, PΠ𝑎* -almost surely. This will allow us to

invoke Lemma 7 in all the various cases.

1) Suppose by contradiction that 𝑎* is a Λ-limit action but is not a Berk-Nash

equilibrium. Thus, since for every policy Π ∈ 𝐴ℋ

PΠ [sup{t : at ̸= 𝑎*} <∞] ≤
∞∑︁
𝑡=0

∑︁
ℎ𝑡∈ℋ𝑡

PΠ

[︀
𝑎* ∈ 𝐵𝑅Λ(h𝜏 ) (𝜇 (·|h𝜏 )) , ∀𝜏 ≥ 𝑡|ℎ𝑡

]︀
PΠ[ℎ𝑡],

there are a Λ-optimal policy Π̃ ∈ 𝐴ℋ, 𝑡 ∈ N0, and (𝑎𝑡, 𝑦𝑡) ∈ ℋ𝑡 with PΠ̃[(𝑎
𝑡, 𝑦𝑡)] > 0
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such that with positive probability Π̃ prescribes 𝑎* after (𝑎𝑡, 𝑦𝑡) in every future period.

Define 𝜈 = 𝜇(·|(𝑎𝑡, 𝑦𝑡)), and notice that by Assumption 1 (i)

supp 𝜈 = supp𝜇 = 𝑄.

As the evolution of beliefs and misspecification concern under Π𝑎* , i.e., the policy

that plays 𝑎* in every period, is the same as under Π̃ for every history where the

agent continues to play 𝑎*, we have that

PΠ̃[𝑎
* = Π̃(h𝜏 ) for all 𝜏 > 𝑡|(𝑎𝑡, 𝑦𝑡)] > 0

=⇒ PΠ𝑎* [𝑎* ∈ 𝐵𝑅Λ((𝑎𝑡,𝑦𝑡),h𝜏) (𝜈 (·|h𝜏 )) for all 𝜏 > 0] > 0.

We now show that the latter equals zero, which establishes that 𝑎* cannot be a limit

action under this way to adjust the misspecification concern.

Since 𝑌 is a compact metric spave, it is separable (see, e.g., Proposition 9.24 in

Royden and Fitzpatrick, 1988). Thus, by Theorems 1 and 3 in Varadarajan (1958),

lim𝜏→∞ 𝑝h𝜏

𝑎*
= 𝑝*

𝑎*
, PΠ𝑎* -a.s. Then, by Lemma 7 and equation (1.4) we have

lim
𝜏→∞

Λ
(︀
(𝑎𝑡, 𝑦𝑡),h𝜏

)︀
= 0 PΠ𝑎* -a.s.

By Assumption 1 (ii), the assumptions of Berk (1966), page 54, are satisfied, and we

have that for every 𝜀 ∈ R++,

𝜈 (𝑄𝜀 (𝑎*) |h𝜏 ) → 1, PΠ𝑎* -a.s.

Therefore, since 𝑄 is compact, (Λ ((𝑎𝑡, 𝑦𝑡),h𝜏 ) , 𝜈 (·|h𝜏 ))𝜏∈N admits PΠ𝑎* almost surely

a subsequence convergent to (0, 𝜈*) for some 𝜈* ∈ ∆(𝑄 (𝑎*)). With this, the result

follows from Lemma 4.

2) Suppose by contradiction that

𝑎* /∈ 𝐵𝑅𝑀𝑒𝑢
(︁{︁
𝑝 ∈ ∆(𝑌 )𝐴 : ∃𝑞 ∈ 𝑄,∀𝑎 ∈ 𝐴, 𝑞𝑎 ≫ 𝑝𝑎

}︁)︁
.
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and that 𝑎* is a Λ-limit action. Thus, since for every policy Π ∈ 𝐴ℋ

PΠ [sup{𝑡 : a𝑡 ̸= 𝑎*} <∞] ≤
∞∑︁
𝑡=0

∑︁
ℎ𝑡∈ℋ𝑡

PΠ

[︀
𝑎* ∈ 𝐵𝑅Λ(h𝜏 ) (𝜇 (·|h𝜏 )) ,∀𝜏 ≥ 𝑡|ℎ𝑡

]︀
PΠ[ℎ𝑡],

there are a policy Π̃ ∈ 𝐴ℋ that is optimal given the adjustment of misspecifica-

tion given by Λ (·), 𝑡 ∈ N0, and (𝑎𝑡, 𝑦𝑡) ∈ ℋ𝑡 with PΠ̃[(𝑎
𝑡, 𝑦𝑡)] > 0 such that with

positive probability Π̃ prescribes 𝑎* after (𝑎𝑡, 𝑦𝑡) in every future period. Define

𝜈 = 𝜇(·|(𝑎𝑡, 𝑦𝑡)), and notice that by Assumption 1 (i)

supp 𝜈 = supp𝜇 = 𝑄.

As the evolution of beliefs and misspecification concern under Π𝑎* , i.e., the policy

that plays 𝑎* in every period, is the same as under Π̃ for every history where the

agent continues to play 𝑎*, we have that

PΠ̃[𝑎
* = Π̃(h𝜏 ) for all 𝜏 > 𝑡|(𝑎𝑡, 𝑦𝑡)] > 0

=⇒ PΠ𝑎* [𝑎* ∈ 𝐵𝑅Λ((𝑎𝑡,𝑦𝑡),h𝜏) (𝜈 (·|h𝜏 )) for all 𝜏 > 0] > 0.

We now show that the latter equals zero, which establishes that 𝑎* cannot be a limit

action under this way to adjust the misspecification concern.

By Theorems 1 and 3 in Varadarajan (1958),

lim
𝜏→∞

𝑝h𝜏

𝑎*
= 𝑝*

𝑎*
PΠ𝑎* -a.s.

Then, by Lemmas 2 and 7, and equation (1.4), we have

lim
𝜏→∞

Λ
(︀
(𝑎𝑡, 𝑦𝑡),h𝜏

)︀
= ∞ PΠ𝑎* -a.s.

By Assumption 1 (i) for all 𝑞, 𝑞′ ∈ 𝑄 and 𝑎 ∈ 𝐴 we have

𝑞𝑎 ∼ 𝑞′𝑎.
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So we have

{︁
𝑝 ∈ ∆(𝑌 )𝐴 : ∃𝑞 ∈ 𝑄, ∀𝑎 ∈ 𝐴, 𝑞𝑎 ≫ 𝑝𝑎

}︁
=
{︁
𝑝 ∈ ∆(𝑌 )𝐴 : ∀𝑞 ∈ 𝑄, ∀𝑎 ∈ 𝐴, 𝑞𝑎 ≫ 𝑝𝑎

}︁
.

Therefore, by Lemma 8 for all 𝑎 ∈ 𝐴 we have that PΠ𝑎* almost surely

lim
𝜏→∞

sup
𝑞∈𝑄

min
𝑝𝑎∈Δ(𝑌 )

∫︁
𝑌

𝑢 (𝑎, 𝑦) d𝑝𝑎 + Λ
(︀
(𝑎𝑡, 𝑦𝑡),h𝜏

)︀
𝑅 (𝑝𝑎||𝑞𝑎) = min

𝑦∈∪𝑞∈𝑄supp𝑞𝑎
𝑢 (𝑎, 𝑦) .

But since by Assumption 1 (i) for all 𝜏 ∈ N, 𝜇 (·|h𝜏 ) ⊆ 𝑄, PΠ𝑎* almost surely, we

have

lim
𝜏→∞

E𝜇(·|h𝜏 )

[︂
min

𝑝𝑎∈Δ(𝑌 )

∫︁
𝑌

𝑢 (𝑎, 𝑦) d𝑝𝑎 + Λ
(︀
(𝑎𝑡, 𝑦𝑡),h𝜏

)︀
𝑅 (𝑝𝑎||𝑞𝑎)

]︂
= min

𝑦∈∪𝑞∈𝑄supp𝑞𝑎
𝑢 (𝑎, 𝑦) PΠ𝑎* -a.s.

With this, the result follows from the finiteness of the action space.

3) It follows from the more general Theorem 2. ■

Lemma 9. For every 𝑐 ∈ R++ the function 𝛼 ↦→ min𝑞∈𝑄
∑︀

𝑎∈𝐴 𝛼 (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) /𝑐 is

continuous and the correspondence 𝑄 (·) : ∆ (𝐴) → 2𝑄 is upper hemicontinuous.

Proof. We first show that the function

∆(𝐴)×𝑄 → R

(𝛼, 𝑞) ↦→
∑︀

𝑎∈𝐴 𝛼 (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) /𝑐
(16)

is continuous. Fix an 𝑎 ∈ 𝐴 and let (𝑞𝑛)𝑛∈N ∈ 𝑄N be a sequence that converges to

𝑞 ∈ 𝑄. By Assumption 1 (ii), 𝑞𝑎,𝑛 is converging pointwise to 𝑞𝑎. Then

|𝑅 (𝑝*𝑎||𝑞𝑎,𝑛)−𝑅 (𝑝*𝑎||𝑞𝑎) | =
⃒⃒⃒⃒∫︁

𝑌

log

(︂
𝑞𝑎 (𝑦)

𝑞𝑎,𝑛 (𝑦)

)︂
d𝑝*𝑎 (𝑦)

⃒⃒⃒⃒

and observe that the integrand on the right-hand side is dominated by a constant by

Assumption 1 (i). Therefore, by the dominated convergence theorem |𝑅 (𝑝*𝑎||𝑞𝑎,𝑛) −

𝑅 (𝑝*𝑎||𝑞𝑎) | converges to 0. Since 𝐴 is finite and the function in equation (16) is linear

in 𝛼, we have obtained the desired continuity. With this, the statement follows from
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Theorem 17.31 in Aliprantis and Border (2013).

Proof of Proposition 3. Consider the following three-player game. The action sets

are 𝐴1 = ∆(𝐴), 𝐴2 = ∆(𝑄), 𝐴3 = R+ with arbitrary elements denoted as 𝛼, 𝜈, 𝜆.

The utility functions are

𝑈1 (𝛼, 𝜈, 𝜆) =

⎧⎨⎩
∑︀

𝑎∈𝐴 𝛼 (𝑎)
∫︀
𝑄
min𝑝𝑎∈Δ(𝑌 )

(︁
E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +

𝑅(𝑝𝑎||𝑞𝑎)
𝜆

)︁
d𝜈 (𝑞) 𝜆 ̸= 0∑︀

𝑎∈𝐴 𝛼 (𝑎)
∫︀
𝑄
E𝑞𝑎 [𝑢 (𝑎, 𝑦)] d𝜈 (𝑞) 𝜆 = 0,

𝑈2 (𝛼, 𝜈, 𝜆) = −
∫︁
𝑄

∑︁
𝑎∈𝐴

𝛼 (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) d𝜈 (𝑞) ,

𝑈3 (𝛼, 𝜈, 𝜆) = −

(︃
𝜆−min

𝑞∈𝑄

∑︁
𝑎∈𝐴

𝛼 (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) /𝑐

)︃2

.

Observe that for the purpose of finding the equilibria of this game, it is without

loss of generality to limit the actions of player 3 to
[︀
0, �̄�
]︀

with

�̄� : = max
𝛼∈Δ(𝐴)

min
𝑞∈𝑄

∑︁
𝑎∈𝐴

𝛼 (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) /𝑐

=
max𝛼∈Δ(𝐴) min𝑞∈𝑄

∑︀
𝑎∈𝐴 𝛼 (𝑎)

∫︀
𝑌
− log (𝑞𝑎 (𝑦)) d𝑝*𝑎 (𝑦)

𝑐
<∞,

where the inequality holds by Assumption 1 (i). Therefore, since the compactness

of 𝑄 implies that also ∆(𝑄) is compact by Theorem 15.11 in Aliprantis and Border

(2013) all the three action sets are compact. Moreover, they are clearly convex.

The utility function 𝑈1 is jointly continuous in its second and third argument by

Lemma 4. Moreover, 𝑈2 is trivially continuous in its first and third argument and

𝑈3 is continuous in its first and second argument by Lemma 9. Therefore the game is

better-reply secure (see Reny, 1999, page 1033). Moreover, 𝑈1 and 𝑈2 are respectively

linear in 𝐴1 and 𝐴2 while 𝑈3 is concave in 𝐴3.

Therefore, by Theorem 3.1 and Footnote 8 in Reny (1999) this game admits a

pure-strategy equilibrium (𝛼*, 𝜈*, 𝜆*). But observe that

𝜆* ∈ argmax𝜆∈R+
−

(︃
𝜆−min

𝑞∈𝑄

∑︁
𝑎∈𝐴

𝛼* (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) /𝑐

)︃2

=⇒ 𝜆* =
min𝑞∈𝑄

∑︀
𝑎∈𝐴 𝛼

* (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎)
𝑐

,
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𝛼* ∈ argmax𝛼∈Δ(𝐴)𝑈1 (𝛼, 𝜈
*, 𝜆*) =⇒ 𝛼* ∈ ∆

(︀
𝐵𝑅𝜆*

(𝜈*)
)︀
,

and

𝜈* ∈ argmax𝜈∈Δ(𝑄) −
∫︁
𝑄

∑︁
𝑎∈𝐴

𝛼* (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) d𝜈 (𝑞)

=⇒ supp𝜈* ⊆ argmin𝑞∈𝑄

∑︁
𝑎∈𝐴

𝛼* (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) =⇒ 𝜈* ∈ ∆(𝑄 (𝛼*)) .

Therefore, 𝛼* is a mixed 𝑐-robust equilibrium sustained by the belief 𝜈* and the

concern for misspecification 𝜆*. ■

Proof of Theorem 2. We start with the preliminary observation that by Lemma

6, − ln 𝑞a𝑡 (y𝑡) ≤ 𝐾 for all 𝑡 ∈ N and 𝑞 ∈ 𝑄, PΠ-almost surely. This will allow us

to invoke Lemma 7. Observe that (𝛼𝑡)𝑡∈N satisfies the following differential inclusion:

for all 𝑎 ∈ 𝐴, 𝑡 ∈ N, ℎ𝑡 ∈ ℋ𝑡, and ℎ𝑡+1 ∈ ℋ𝑡+1 such that ℎ𝑡+1 ≻ ℎ𝑡

𝛼𝑡+1(ℎ𝑡+1)(𝑎) ∈
{︂
𝛼𝑡(ℎ𝑡)(𝑎) +

1

𝑡+ 1

(︀
I{𝑎′}(𝑎)− 𝛼𝑡(ℎ𝑡)(𝑎)

)︀
: 𝑎′ ∈ 𝐵𝑅Λ(ℎ𝑡)(𝜇 (·|ℎ𝑡))

}︂
.

Set 𝜏0 = 0 and 𝜏𝑡 =
∑︀𝑡

𝑖=1
1
𝑖

for all 𝑡 ∈ N. The continuous-time interpolation of 𝛼𝑡

is the function 𝑤 : R+ → ∆(𝐴)

𝑤(𝜏𝑡 + 𝑙) =

⎧⎨⎩ 𝛼𝑡 + 𝑙𝛼𝑡+1−𝛼𝑡

𝜏𝑡+1−𝜏𝑡
, ∀𝑡 ∈ N,∀𝑙 ∈

[︀
0, 1

𝑡+1

]︀
𝛼1 𝑡 = 0,∀𝑙 ∈ [0, 1].

(17)

For every 𝛼 ∈ ∆(𝐴), let

𝜒𝛼 =
{︀
𝛼′ ∈ ∆

(︀
𝐵𝑅min𝑞∈𝑄

∑︀
𝑎∈𝐴 𝛼(𝑎)𝑅(𝑝*𝑎||𝑞𝑎)/𝑐 (∆ (𝑄 (𝛼)))

)︀}︀
⊆ ∆(𝐴) .

We use the theory of stochastic approximation for differential inclusions (Benaim,

Hofbauer, and Sorin, 2005 and Esponda, Pouzo, and Yamamoto, 2021a) to show that

(17) can be approximated by a solution to

�̇�𝑡 ∈ 𝜒𝛼𝑡
− 𝛼𝑡. (18)
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A solution over [0, 𝑇 ], 𝑇 ∈ R++, to the differential inclusion (18) with initial

point �̂� ∈ ∆(𝐴) is a mapping 𝛼(·) : [0, 𝑇 ] → ∆(𝐴) that is absolutely continuous over

compact intervals such that 𝛼0 = �̂� and (18) is satisfied for almost every 𝑡. Let 𝑆𝑇
�̂� be

the set of the solutions to (18) over [0, 𝑇 ], 𝑇 ∈ R++, with initial conditions �̂� ∈ ∆(𝐴).

Since by Lemmas 9 and 4 𝛼 ↦→ min𝑞∈𝑄
∑︀

𝑎∈𝐴 𝛼 (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) /𝑐 is continuous and

𝑄 (·), 𝐵𝑅(·) (·) are upper hemicontinuous,

𝛼 ↦→ ∆
(︀
𝐵𝑅min𝑞∈𝑄

∑︀
𝑎∈𝐴 𝛼(𝑎)𝑅(𝑝*𝑎||𝑞𝑎)/𝑐 (∆ (𝑄 (𝛼)))

)︀
(19)

is upper hemicontinuous. To see this, we show that it has a closed graph. Since ∆(𝐴)

is compact, this is enough by, e.g., Proposition E.3 in Ok (2011). Let (𝛼𝑛, 𝛼
′
𝑛)𝑛∈N ∈

(∆ (𝐴)×∆(𝐴))N be such that

𝛼𝑛 ∈ ∆
(︁
𝐵𝑅min𝑞∈𝑄

∑︀
𝑎∈𝐴 𝛼′

𝑛(𝑎)𝑅(𝑝*𝑎||𝑞𝑎)/𝑐 (∆ (𝑄 (𝛼′
𝑛)))

)︁
∀𝑛 ∈ N

and lim𝑛→∞ (𝛼𝑛, 𝛼
′
𝑛) = (𝛼, 𝛼′). By finiteness of 𝐴, we can take (possibly truncating

some initial elements of the sequence) (𝛼𝑛, 𝛼
′
𝑛)𝑛∈N to be such that supp𝛼 ⊆ supp𝛼𝑛

for all 𝑛 ∈ N. Then for every �̄� ∈ supp𝛼 there is (𝜈 �̄�𝑛)𝑛∈N such that 𝜈 �̄�𝑛 ∈ ∆(𝑄 (𝛼′
𝑛))

and

�̄� ∈ 𝐵𝑅min𝑞∈𝑄
∑︀

𝑎∈𝐴 𝛼′
𝑛(𝑎)𝑅(𝑝*𝑎||𝑞𝑎)/𝑐 (𝜈 �̄�𝑛) ∀𝑛 ∈ N.

Since 𝑄 is compact so is ∆(𝑄) by Theorem 15.11 in Aliprantis and Border (2013),

and by restricting to a subsequence we can take 𝜈 �̄�𝑛 to be convergent to some 𝜈 �̄� ∈

∆(𝑄). Since 𝑄 (·) is upper hemicontinuous, 𝜈 �̄� ∈ 𝑄 (𝛼′). Since 𝐵𝑅(·) (·) is upper

hemicontinuous,

�̄� ∈ 𝐵𝑅min𝑞∈𝑄
∑︀

𝑎∈𝐴 𝛼′(𝑎)𝑅(𝑝*𝑎||𝑞𝑎)/𝑐 (𝜈 �̄�) ⊆ 𝐵𝑅min𝑞∈𝑄
∑︀

𝑎∈𝐴 𝛼′(𝑎)𝑅(𝑝*𝑎||𝑞𝑎)/𝑐 (𝑄 (𝛼′))

showing that (𝛼, 𝛼′) belongs to the graph of correspondence (19). Therefore, as 𝜒𝛼 is

also convex- and closed-valued, a solution to (18) exists by Theorem 2.1.4 in Aubin

and Cellina (2012), i.e., 𝑆𝑇
�̂� is nonempty for every 𝑇 ∈ R++ and �̂� ∈ ∆(𝐴). Let

𝑆𝑇 = ∪�̂�∈Δ(𝐴)𝑆
𝑇
�̂� .
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We next establish that the continuous-time interpolation of (𝛼𝑡 (h𝑡))𝑡∈N defined

in (17) can in the long run be approximated arbitrarily well by a solution to (18).

Observe that 𝑤 is Lipschitz continuous of order 1 as for all history sequences (ℎ𝑡)𝑡∈N ∈

×𝑡∈Nℋ𝑡 with ℎ𝑡+1 ≻ ℎ𝑡 for all 𝑡 ∈ N,

||𝛼𝑡+1 (ℎ𝑡+1)− 𝛼𝑡 (ℎ𝑡) ||∞
𝜏𝑡+1 − 𝜏𝑡

≤ 1/(𝑡+ 1)

1/(𝑡+ 1)
= 1 ∀𝑡 ∈ N. (20)

Therefore 𝑤 is absolutely continuous (see, e.g., Proposition 7 in Royden and Fitz-

patrick, 1988), and 𝛼𝑡 is uniformly bounded because it takes values in ∆(𝐴). Let

Υ = {𝛼− 𝛼′ : 𝛼, 𝛼′ ∈ ∆(𝐴)} and for all 𝜀 ∈ R+ and 𝛼′ ∈ ∆(𝐴),

𝑀𝜀 (𝛼
′) =

{︃
𝜈 ∈ ∆(𝑄) :

∫︁
𝑄

∑︁
𝑎∈𝐴

𝛼′ (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) d𝜈 (𝑞) ≤ 𝜀+min
𝑞∈𝑄

∑︁
𝑎∈𝐴

𝛼′ (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎)

}︃
.

By Esponda, Pouzo, and Yamamoto, 2021a, Part 1a of the proof of Theorem 2 (ob-

serve that Assumption 1 (i-ii) implies their Assumption 2 (ii-iii), except for the fact

that we do not require finite-dimensionality of 𝑌 and 𝑄. It is readily checked that

since these two sets are still assumed to be compact, this does not create any issue in

the proof of their Theorem 2), 𝑀(·) (·) is upper hemicontinuous. We define

𝐹 : R+ × R+ ×∆(𝐴) ⇒ Υ

by

𝐹 (𝜀, 𝜀′, 𝛼) =
{︁
𝜄 ∈
[︁
∆
(︁
∪𝜆′∈𝐵𝜀′(min𝑞∈𝑄

∑︀
𝑎∈𝐴 𝛼(𝑎)𝑅(𝑝*𝑎||𝑞𝑎)/𝑐)∩[0, 2𝐾𝑐 ]

𝐵𝑅𝜆′
(∆ (𝑀𝜀 (𝛼)))

)︁
− 𝛼

]︁}︁
.

Observe that 𝐹 (0, 0, 𝛼) = 𝜒𝛼 − 𝛼. Moreover, we now show that 𝐹 has a closed

graph, so it is upper hemicontinuous. Let

(𝜄𝑛, 𝜀𝑛, 𝜀
′
𝑛, 𝛼𝑛)𝑛∈N ∈ (Υ× R+ × R+ ×∆(𝐴))N
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be such that 𝜄𝑛 ∈ 𝐹 (𝜀𝑛, 𝜀
′
𝑛, 𝛼𝑛) for all 𝑛 ∈ N and

lim
𝑛→∞

(𝜄𝑛, 𝜀𝑛, 𝜀
′
𝑛, 𝛼𝑛) = (𝜄, 𝜀, 𝜀′, 𝛼) .

Since 𝐴 is finite, it is without loss of generality to take 𝜄𝑛 (𝑎) > −𝛼𝑛 (𝑎) for all 𝑛 ∈ N

and for all 𝑎 for which 𝜄 (𝑎) > −𝛼 (𝑎). Then for all �̂� such that 𝜄 (�̂�) > −𝛼 (�̂�), there

is a sequence
(︀
𝜈 �̂�𝑛, 𝜆

�̂�
𝑛

)︀
𝑛∈N ∈ (∆ (𝑄)× [0, 2𝐾/𝑐])N such that

𝜈 �̂�𝑛 ∈𝑀𝜀𝑛 (𝛼
′
𝑛) , 𝜆�̂�𝑛 ∈ 𝐵𝜀′𝑛

(︃
min
𝑞∈𝑄

∑︁
𝑎∈𝐴

𝛼𝑛 (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) /𝑐

)︃
, and �̂� ∈ 𝐵𝑅𝜆�̂�

𝑛
(︀
𝜈 �̂�𝑛
)︀
.

Since ∆(𝑄) and [0, 2𝐾/𝑐] are compact by restricting to a subsequence we can take(︀
𝜈 �̂�𝑛, 𝜆

�̂�
𝑛

)︀
𝑛∈N to be convergent to some

(︀
𝜈 �̂�, 𝜆�̂�

)︀
∈ ∆(𝑄) × [0, 2𝐾/𝑐]. Since 𝑀(·) (·) is

upper hemicontinuous 𝜈 �̂� ∈𝑀𝜀 (𝛼). Since

�̂� ↦→ min
𝑞∈𝑄

∑︁
𝑎∈𝐴

�̂� (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) /𝑐

is continuous by Lemma 9,

𝜆�̂� ∈ 𝐵𝜀′

(︃
min
𝑞∈𝑄

∑︁
𝑎∈𝐴

𝛼 (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) /𝑐

)︃
.

Since 𝐵𝑅(·) (·) is upper hemicontinuous,

�̂� ∈ 𝐵𝑅𝜆�̂� (︀
𝜈 �̂�
)︀
⊆

{︃
𝐵𝑅�̂� (𝜈) : 𝜈 ∈𝑀𝜀 (𝛼) , �̂� ∈ 𝐵𝜀′

(︃
min
𝑞∈𝑄

∑︁
𝑎∈𝐴

𝛼 (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) /𝑐

)︃
∩
[︂
0,

2𝐾

𝑐

]︂}︃

showing that (𝜄, 𝜀, 𝜀′, 𝛼) belongs to the graph of the correspondence (19).

With this, 𝐹 (0, 0, ·) + (·) : ∆ (𝐴) → ∆(𝐴) satisfies Hypothesis 1.1 in Benaim,

Hofbauer, and Sorin (2005), as it is clearly compact- and convex-valued. Moreover,

by Theorem 1 in Esponda, Pouzo, and Yamamoto (2021a) and Lemma 7 we have

that PΠ-almost surely, if lim𝑡→∞ 𝛼𝑡 (h𝑡) = 𝛼*, we eventually have 𝜇 (·|h𝑡) ∈ 𝑀𝜀 (𝛼
*)
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and

Λ (h𝑡) ∈ 𝐵𝜀′

(︃
min
𝑞∈𝑄

∑︁
𝑎∈𝐴

𝛼* (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) /𝑐

)︃

for all (𝜀, 𝜀′) ∈ R2
++. Thus, there is a sequence (𝜀𝑡)𝑡∈N ∈ RN

++ converging to 0 with

𝜒𝛼𝑡 − 𝛼𝑡 ∈ 𝐹 (𝜀𝑡, 𝜀𝑡, 𝛼𝑡).

Fix 𝑇 ∈ N and define the flow operator 𝐺 : 𝐶 (R,∆(𝐴))× R →𝐶 (R,∆(𝐴)) as

𝐺𝑡 (𝑓) (𝑠) = 𝑓 (𝑠+ 𝑡) ∀𝑓 ∈ 𝐶 (R,∆(𝐴)) ,∀𝑠 ∈ R,∀𝑡 ∈ R.

We now show that every limit point of (𝐺𝑡 (𝑤))𝑡∈N is in 𝑆𝑇 . This argument borrows

extensively from the proofs Theorem 4.2 in Benaim, Hofbauer, and Sorin (2005) and

Theorem 2 in Esponda, Pouzo, and Yamamoto (2021a). However they cannot be

directly applied, because the interpolated process 𝑤 we consider is not a perturbed

solution in the sense of Benaim, Hofbauer, and Sorin (2005). Indeed, it may not

be possible to find an 𝛼 that jointly justifies 𝑎𝑡 as a best reply to beliefs in 𝑄 (𝛼)

and the concern for misspecification min𝑞∈𝑄
∑︀

𝑎∈𝐴 𝛼 (𝑎)𝑅 (𝑝*𝑎||𝑞𝑎) /𝑐, as perturbation

of the empirical frequency 𝛼𝑡−1 in different directions may be needed for the concern

and the belief. Nevertheless, the core of their arguments can be adapted leveraging

the upper-hemicontinuity of 𝐹 established above.

Since 𝑤 is uniformly continuous by equation (20), the family (𝐺𝑡 (𝑤))𝑡∈N is equicon-

tinuous, and thus it is relatively compact in the topology of uniform convergence over

compact sets by the Arzela-Ascoli theorem (see Willard, 2012 Theorem 43.15 for the

version with a noncompact domain). The topology of uniform convergence over com-

pact sets is metrizable since ∆(𝐴) is metrizable and R is open (see Theorem 1.14b

in Simon, 2020), and so there exists a limit point 𝑧 = lim𝑡𝑛 𝐺
𝑡𝑛 (𝑤). Define

𝑚 (𝑡) = max {𝑘 ∈ N : 𝜏𝑘 ≤ 𝑡}

and for all 𝑠 ∈ R, 𝑣 (𝑠) = 𝑤′ (𝑠) = 𝛼𝑚(𝑠)+1 − 𝛼𝑚(𝑠) ∈ 𝐹
(︀
𝜀𝑚(𝑠), 𝜀𝑚(𝑠), 𝛼𝑚(𝑠)

)︀
, and
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𝑣𝑛 (𝑠) = 𝑣 (𝑡𝑛 + 𝑠) so

𝑧 (𝑇 )− 𝑧 (0) = lim
𝑡𝑛

(︀
𝐺𝑡𝑛 (𝑤) (𝑇 )−𝐺𝑡𝑛 (𝑤) (0)

)︀
= lim

𝑡𝑛
(𝑤 (𝑇 + 𝑡𝑛)− 𝑤 (𝑡𝑛)) = lim

𝑛→∞

∫︁ 𝑇

0

𝑣𝑛 (𝑠) d𝑠.

Since (𝑣𝑛)𝑛∈N is uniformly bounded, it is bounded in 𝐿2
(︀
[0, 𝑇 ] ,R𝐴, 𝐿𝑒𝑏

)︀
. By the

Banach-Alaoglu theorem (see Theorem 6.21 in Aliprantis and Border, 2013), (by

restricting to a subsequence) we can take (𝑣𝑛)𝑛∈N to be a weakly-convergent subse-

quence with limit 𝑣* ∈ 𝐿2
(︀
[0, 𝑇 ] ,R𝐴, 𝐿𝑒𝑏

)︀
. By Mazur’s lemma (see Corollary V.3.14

in Dunford and Schwartz (1988)), there exist a function 𝑁 : N → N and a sequence

of positive weights
(︀
𝜌𝑛 (𝑛) , ..., 𝜌𝑁(𝑛) (𝑛)

)︀
𝑛∈N with

∑︀𝑁(𝑛)
𝑖=𝑛 𝜌𝑖 (𝑛) = 1 for all 𝑛 ∈ N such

that if we define

𝑣𝑛 =

𝑁(𝑛)∑︁
𝑖=𝑛

𝜌𝑖 (𝑛) 𝑣𝑖,

then 𝑣𝑛 converges with respect to the 𝐿2
(︀
[0, 𝑇 ] ,R𝐴, 𝐿𝑒𝑏

)︀
norm, and thus almost

surely, to 𝑣*.

Let 𝜏 ∈ [0, 𝑇 ] be such that the convex combination of the elements of (𝑣𝑛)𝑛∈N is

converging to 𝑣* at 𝜏 . For every 𝑡 ∈ [0, 𝑇 ] and 𝑛 ∈ N, define

𝛾𝑛 (𝑡) = 𝜀𝑚(𝑡𝑛+𝑡) + ||𝑤 (𝑡𝑛 + 𝑡)− 𝛼𝑚(𝑡𝑛+𝑡)||

and

𝑤𝑛 (𝑡) = 𝑤 (𝑡𝑛 + 𝑡) .

Observe that by definition of 𝑤, (𝜀𝑡)𝑡∈N, and 𝑧,

lim
𝑛→∞

𝛾𝑛 (𝑡) = 0 and lim
𝑛→∞

𝑤𝑛 (𝑡) = 𝑧 (𝑡) .

But then, by the upperhemicontinuity of 𝐹 , for every 𝜀 ∈ R++ there exists 𝑁𝜀 such

that for 𝑛 ≥ 𝑁𝜀, 𝐹 (𝛾𝑛 (𝑡) , 𝛾𝑛 (𝑡) , 𝑤𝑛 (𝑡)) ⊆ 𝐵𝜀 (𝐹 (0, 0, 𝑧 (𝑡))), where the latter set is

80



closed and convex. But since 𝑣𝑛 (𝑡) ∈ 𝐹 (𝛾𝑛 (𝑡) , 𝛾𝑛 (𝑡) , 𝑤𝑛 (𝑡)), also

𝑣𝑛 (𝑡) ∈ 𝐹 (𝛾𝑛 (𝑡) , 𝛾𝑛 (𝑡) , 𝑤𝑛 (𝑡)) ⊆ 𝐵𝜀 (𝐹 (0, 0, 𝑧 (𝑡))) .

Therefore, 𝑣* ∈ (𝐹 (0, 0, 𝑧 (𝑡))). Since the fact that 𝑣𝑛 is weakly convergent to 𝑣*

implies by definition that

lim
𝑛→∞

∫︁ 𝑇

0

𝑣𝑛 (𝑠) d𝑠 = lim
𝑛→∞

∫︁ 𝑇

0

𝑣* (𝑠) d𝑠

we have that 𝑧 ∈ 𝑆𝑇 .

Therefore, by (ii) =⇒ (i) of Theorem 4.1 in Benaim, Hofbauer, and Sorin (2005)

(see Esponda, Pouzo, and Yamamoto, 2021b for the slightly corrected version used

here)

lim
𝑡→∞

inf
�̃�∈𝑆𝑇

sup
0≤𝑠≤𝑇

||𝑤(𝑡+ 𝑠)− �̃�𝑠|| = 0 PΠ-a.s. for all 𝑇 ∈ N. (21)

With this, we can replicate an argument from Fudenberg, Lanzani, and Strack

(2022b) to rule out convergence to non equilibria. If 𝛼* ∈ ∆(𝐴) is not a mixed 𝑐-robust

equilibrium, there is 𝑎 ∈ 𝐴 with 𝛼*(𝑎) > 0 and 𝛿𝑎 /∈ 𝜒𝛼* . Since 𝜒(·) = 𝐹 (0, 0, ·) + (·)

and 𝐹 has a closed graph and maps into the compact Υ, there exists 𝐷 ∈ R++ such

that for all 𝛼′ ∈ 𝐵𝐷(𝛼
*), 𝛼′(𝑎) − max�̂�∈𝜒𝛼′ �̂�(𝑎) > 𝛼*(𝑎)/2. Therefore, for every

initial condition �̄� ∈ 𝐵𝐷(𝛼
*) and every solution of (18), 𝛼(𝑎) decreases at rate at

least 𝛼*(𝑎)/4 until it leaves 𝐵𝐷(𝛼
*). So for every initial condition �̄� ∈ 𝐵𝐷(𝛼

*) and

every solution, the differential inclusion leaves 𝐵𝐷(𝛼
*) before time

𝑇 * : =
𝐷 + 𝛼* (𝑎)

𝛼*(𝑎)/4
.

With this, we can prove that (𝛼𝑡 (h𝑡))𝑡∈N does not converge to 𝛼* on a sample

path on which the convergence of equation (21) happens. Since the set of such sample

paths has probability 1 under policy Π, this fact concludes the proof. Suppose by

contradiction that on one of such paths (𝛼𝑡 (ℎ𝑡))𝑡∈N converges to 𝛼*. Therefore, we
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can choose 𝑇 ∈ N such that on that sample path 𝛼𝑡 (ℎ𝑡) ∈ 𝐵𝐷/2(𝛼
*) for all 𝑡 ≥ 𝑇 and

inf
𝛼∈𝑆𝑇*

sup
0≤𝑠≤𝑇 *

||𝑤(𝑇 + 𝑠)− 𝛼𝑠|| ≤ 𝐷/4. (22)

Take any 𝛼 ∈ 𝑆𝑇 * with sup0≤𝑠≤𝑇 * ||𝑤(𝑇 + 𝑠)− �̃�𝑠|| ≤ 𝐷/2. Since 𝑤
(︁
𝑇
)︁
∈ 𝐵𝐷/2(𝛼

*),

𝛼 ∈ 𝑆𝑇 *
�̄� for some initial condition �̄� ∈ 𝐵𝐷(𝛼

*). But then by definition of 𝑇 * the

differential inclusion leaves 𝐵𝐷(𝛼
*) by time 𝑇 *+𝑇 , and by (22), (𝛼𝑡 (h𝑡))𝑡∈N does not

stay in 𝐵𝐷/2(𝛼
*), a contradiction. ■

Proof of Corollary 1. We first show that for a sufficiently low 𝑐 there is no 𝑐-

robust equilibrium. Observe that by Assumption 3 (i) and Proposition 8 in Battigalli,

Cerreia-Vioglio, Maccheroni, Marinacci, and Sargent (2022) for every 𝛼 ∈ ∆(𝐴), we

have

𝑄 (𝛼) =
{︁
𝑞(𝜃

*
0 ,𝜃

*
1𝜋 ,𝜃

*
1𝑎,𝜃

*
2 ,𝜃

*
3)
}︁

. (23)

Moreover, since 𝜃* perfectly predicts the consequences under policy 0, we have

min
𝜃∈Θ

𝑅
(︀
𝑝*0||𝑞𝜃0

)︀
= 0.

By Assumption 3 (i) and Lemma 3 in Battigalli, Cerreia-Vioglio, Maccheroni, Mari-

nacci, and Sargent (2022), 𝐵𝑅𝑆𝑒𝑢 (∆ (𝑄 (0))) = {1}, and therefore 0 is not a 𝑐-robust

equilibrium for any 𝑐 ∈ R++. Since 𝑓1 is strictly concave on R++, by Assumption 3

(iii) it follows that min𝜃∈Θ𝑅
(︀
𝑝*1||𝑞𝜃1

)︀
= 𝑅

(︀
𝑝*1||𝑞𝜃

*
1

)︀
> 0. By Assumption 3 (ii) and

Lemma 8 there exists a sufficiently small 𝑐 such that for all 𝑐 ≤ 𝑐,

𝐵𝑅
min𝜃∈Θ 𝑅(𝑝*1||𝑞𝜃1)

𝑐 (𝛿𝜃*) = {0}

proving that there is no 𝑐-robust equilibrium if 𝑐 ≤ 𝑐. That a mixed 𝑐-robust equilib-

rium exists follows from Proposition 3.34

34To formally invoke Proposition 3, that requires absolute continuity with respect to the true data
generating process for all 𝜃 ∈ Θ, restrict the parameter space to {𝜃*}. Given equation (23) every
mixed 𝑐-robust equilibrium with the reduced parameter space remains a mixed 𝑐-robust equilibrium
with the original Θ.
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In particular, the maximal (resp. the minimal) equilibrium is defined as the 𝛼

such that
∑︀

𝑎∈𝐴 𝛼 (𝑎)𝑅
(︀
𝑝*𝑎||𝑞𝜃

*
𝑎

)︀
/𝑐 is equal to the maximal (resp. minimal) misspec-

ification concern 𝜆 such that 1 ∈ 𝐵𝑅𝜆 (𝛿𝜃*) (resp. 0 ∈ 𝐵𝑅𝜆 (𝛿𝜃*)). Since a larger

𝜃*1𝜋 + 𝜃*1𝑎 makes action 0 more favorable, the comparative statics follows. ■

.1.2 Representation

Preliminaries

Let 𝐵0 (Σ) denote the set of all real-valued Σ-measurable simple functions endowed

with the supnorm. The subset of functions in 𝐵0 (Σ) that take values in 𝐶 ⊆ R is

denoted as 𝐵0 (Σ, 𝐶). A functional 𝐼 : Φ → R defined on a nonempty subset Φ of

𝐵0 (Σ) is a niveloid if for every 𝜙, 𝜓 ∈ Φ

𝐼 (𝜙)− 𝐼 (𝜓) ≤ sup (𝜙− 𝜓) .

It is translation invariant if 𝐼 (𝛼𝜙+ (1− 𝛼) 𝑘I𝑆) = 𝐼 (𝛼𝜙)+(1− 𝛼) 𝑘 for all 𝛼 ∈ [0, 1],

𝜙 ∈ Φ, and 𝑘 ∈ R such that 𝛼𝜙 + (1− 𝛼) 𝑘I𝑆 and 𝛼𝜙 are in Φ. It is monotone

continuous if for every (𝜙𝑛)𝑛∈N ∈ ΦN such that lim𝑛→∞ 𝜙𝑛 = 𝜙 and 𝜙𝑛 ≤ 𝜙𝑛+1 for all

𝑛 ∈ N we have lim𝑛→∞ 𝐼 (𝜙𝑛) = 𝐼 (𝜙). A niveloid is normalized if 𝐼 (𝑘I𝑆) = 𝑘 for all

𝑘 ∈ R such that 𝑘I𝑆 ∈ Φ. A function 𝑐 : ∆(𝑆) → R+ is grounded if 𝑐−1(0) ̸= ∅. An

event is strongly nonnull if for every 𝑥, 𝑥′ ∈ 𝑋 with 𝑥 ≻ 𝑥′, we have 𝑥 ≻ 𝑥′𝐸𝑥.

Results

Our first lemma shows that the average robust control representation falls in the

variational class.

Lemma 10. Suppose that there exist a nonconstant affine function 𝑢 : 𝑋 → R,

a nonempty and finite 𝑄⊆∆(𝑆), 𝜇 ∈ ∆(𝑄), and (𝜆𝑞)𝑞∈𝑄 ∈ R𝑄
+ such that for all

𝑓, 𝑔 ∈ ℱ

𝑓 ≿ 𝑔 ⇐⇒ E𝜇

[︂
min

𝑝∈Δ(𝑆)
E𝑝 [𝑢 (𝑓)] +

𝑅 (𝑝||𝑞)
𝜆𝑞

]︂
≥ E𝜇

[︂
min

𝑝∈Δ(𝑆)
E𝑝 [𝑢 (𝑔)] +

𝑅 (𝑝||𝑞)
𝜆𝑞

]︂
. (24)
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Then ≿ satisfies Weak Order, Weak Certainty Independence, Continuity, Mono-

tonicity, Uncertainty Aversion, Nondegeneracy, Weak Monotone Continuity, and ad-

mits the representation

𝑓 ≿ 𝑔 ⇐⇒ min
𝑝∈Δ(𝑆)

∫︁
𝑆

�̂� (𝑓) d𝑝+ 𝑐 (𝑝) ≥ min
𝑝∈Δ(𝑆)

∫︁
𝑆

�̂� (𝑔) d𝑝+ 𝑐 (𝑝) (25)

for some nonconstant affine �̂� : 𝑋 → R and a grounded, convex, and lower semicon-

tinuous function 𝑐 : ∆ (𝑆) → [0,∞]. Moreover, we can choose �̂� = 𝑢 and 𝑐 is such

that 𝑐−1 (0) = E𝜇 [𝑞].

Proof. We first observe that without loss of generality we can take 𝑢 to be such that

0 ∈ int𝑢 (𝑋) in the representation of equation (24). Indeed, since 𝑢 is nonconstant

and affine, there exists 𝑥 ∈ 𝑋 with 𝑢 (𝑥) ∈ int𝑢 (𝑋). Define 𝑢′ (𝑦) = 𝑢 (𝑦)− 𝑢 (𝑥) for

all 𝑦 ∈ 𝑋. Then, we have

𝑓 ≿ 𝑔

⇐⇒ E𝜇

[︂
min

𝑝∈Δ(𝑆)
E𝑝 [𝑢 (𝑓)] +

𝑅 (𝑝||𝑞)
𝜆𝑞

]︂
≥ E𝜇

[︂
min

𝑝∈Δ(𝑆)
E𝑝 [𝑢 (𝑔)] +

𝑅 (𝑝||𝑞)
𝜆𝑞

]︂
⇐⇒ E𝜇

[︂
min

𝑝∈Δ(𝑆)
E𝑝 [𝑢

′ (𝑓)] +
𝑅 (𝑝||𝑞)
𝜆𝑞

]︂
≥ E𝜇

[︂
min

𝑝∈Δ(𝑆)
E𝑝 [𝑢

′ (𝑔)] +
𝑅 (𝑝||𝑞)
𝜆𝑞

]︂

and 0 ∈ int𝑢′ (𝑋).

Fix 𝑞 ∈ 𝑄. The functional 𝐼𝑞 : 𝐵0 (Σ,R) → R defined as

𝐼𝑞 (𝜙) : = min
𝑝∈Δ(𝑆)

∫︁
𝑆

𝜙 (𝑠) d𝑝+
1

𝜆𝑞
𝑅 (𝑝||𝑞) ∀𝜙 ∈ 𝐵0 (Σ,R)

is easily seen to be monotone, translation invariant, and concave by Theorem 11.13

in Aliprantis and Border (2013) and the concavity of the minimum. Since 𝑄 is finite,

𝐼 (𝜙) =

∫︁
𝑄

𝐼𝑞 (𝜙) d𝜇 (𝑞) ∀𝜙 ∈ 𝐵0 (Σ,R)

is well-defined and 𝐼 is monotone, concave, and represents ≿. Let 𝜙 ∈ 𝐵0 (Σ, 𝑢 (𝑋)),

𝑘 ∈ 𝑢 (𝑋), and 𝛾 ∈ (0, 1). Since 𝑢 is affine and 0 ∈ int𝑢 (𝑋), we have 𝛾𝜙+(1− 𝛾) 𝑘 ∈
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𝐵0 (Σ, 𝑢 (𝑋)), 𝛾𝜙 ∈ 𝐵0 (Σ, 𝑢 (𝑋)), and

𝐼 (𝛾𝜙+ (1− 𝛾) 𝑘) =

∫︁
𝑄

𝐼𝑞 (𝛾𝜙+ (1− 𝛾) 𝑘) d𝜇 (𝑞) =
∫︁
𝑄

𝐼𝑞 (𝛾𝜙) + (1− 𝛾) 𝑘d𝜇 (𝑞)

=

∫︁
𝑄

𝐼𝑞 (𝛾𝜙) d𝜇 (𝑞) + (1− 𝛾) 𝑘 = 𝐼 (𝛾𝜙) + (1− 𝛾) 𝑘.

But then, notice that

∫︁
𝑄

(︂
min

𝑝∈Δ(𝑆)

∫︁
𝑆

𝑢 (𝑓) d𝑝+
1

𝜆𝑞
𝑅 (𝑝||𝑞)

)︂
d𝜇 (𝑞) =

∫︁
𝑄

𝐼𝑞 (𝑢 (𝑓)) d𝜇 (𝑞) = 𝐼 (𝑢 (𝑓))

where 𝐼 is monotone and translation invariant. Therefore, by Lemma 25 in Mac-

cheroni, Marinacci, and Rustichini (2006a), 𝐼 is a concave niveloid, and it is clearly

normalized. With this, by Lemma 28 and Footnote 15 in Maccheroni, Marinacci, and

Rustichini (2006a) ≿ satisfies Weak Order, Weak Certainty Independence, Continuity,

Monotonicity, Uncertainty Aversion, and Nondegeneracy.

Fix 𝑓, 𝑔 ∈ ℱ , 𝑥 ∈ 𝑋, and (𝐸𝑖)𝑖∈N ∈ ΣN with 𝐸1 ⊇ 𝐸2 ⊇ ..., ∩𝑖≥1𝐸𝑖 = ∅, and 𝑓 ≻ 𝑔.

Then, by Proposition 1.4.2 in Dupuis and Ellis (2011) for all 𝑞 ∈ 𝑄, lim𝑖→∞ 𝑞 (𝐸𝑖) = 0

and for all 𝑖 ∈ N

− exp
(︀
−𝜆𝑞

(︀
𝐼𝑞
(︀
𝑥I𝐸𝑖

+ 𝑢 (𝑓) I𝑆∖𝐸𝑖

)︀)︀)︀
= −

∫︁
𝑆∖𝐸𝑖

exp (−𝜆𝑞𝑢 (𝑓 (𝑠))) d𝑞 (𝑠)−
∫︁
𝐸𝑖

exp (−𝜆𝑞𝑢 (𝑥)) d𝑞 (𝑠) .

But then

lim
𝑖→∞

− exp
(︀
−𝜆𝑞

(︀
𝐼𝑞
(︀
𝑥I𝐸𝑖

+ 𝑢 (𝑓) I𝑆∖𝐸𝑖

)︀)︀)︀
=

∫︁
𝑆

− exp (−𝜆𝑞𝑢 (𝑓 (𝑠))) d𝑞 (𝑠) >
∫︁
𝑆

−𝑒−𝜆𝑞𝑢(𝑔(𝑠))d𝑞 (𝑠)

that is

lim
𝑖→∞

𝐼𝑞
(︀
𝑥I𝐸𝑖

+ 𝑢 (𝑓) I𝑆∖𝐸𝑖

)︀
>

− log
(︀∫︀

𝑆
exp (−𝜆𝑞𝑢 (𝑔 (𝑠))) d𝑞 (𝑠)

)︀
𝜆𝑞

proving that there exists 𝑖 ∈ N such that 𝐼𝑞
(︀
𝑢 (𝑥) I𝐸𝑖

+ 𝑢 (𝑓) I𝑆∖𝐸𝑖

)︀
> 𝐼𝑞 (𝑢 (𝑔)).

Since the statement holds for every 𝑞 ∈ 𝑄 and 𝑄 is finite, there exists 𝑖 ∈ N such

that 𝐼
(︀
𝑢 (𝑥) I𝐸𝑖

+ 𝑢 (𝑓) I𝑆∖𝐸𝑖

)︀
> 𝐼 (𝑢 (𝑔)) proving that ≿ satisfies Weak Monotone
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Continuity.

By Theorem 3 and Lemma 30 in Maccheroni, Marinacci, and Rustichini (2006a)

it admits the representation in equation (25).

By the first part of the lemma we have

𝑢 (𝑥) ≥ 𝑢 (𝑥′) ⇐⇒ 𝑥 ≿ 𝑥′ ⇐⇒ �̂� (𝑥) ≥ �̂� (𝑥′)

and therefore by the uniqueness up to a positive affine transformation of �̂� guaranteed

by Corollary 5 in Maccheroni, Marinacci, and Rustichini (2006a) and the fact that

every two affine functions that represent ≿ on 𝑋 are positive affine transformations

of each other (see, e.g., Theorem 5.11 in Kreps, 1988), we can choose 𝑢 = �̂�. Finally,

by (ii) =⇒ (iii) of Lemma 32 in Maccheroni, Marinacci, and Rustichini (2006a) for

every 𝑞 ∈ 𝑄, and 𝑘 ∈ 𝑢 (𝑋), 𝜕𝐼𝑞 (𝑘) = {𝑞}. Let 𝑘 ∈ int𝑢 (𝑋) ̸= ∅ and observe that

since 𝑄 is finite,

lim
𝛼↓0

𝐼
(︀
𝑘 + 𝛼𝜙

)︀
− 𝐼

(︀
𝑘
)︀

𝛼
= lim

𝛼↓0

E𝜇

[︀
𝐼𝑞
(︀
𝑘 + 𝛼𝜙

)︀]︀
− E𝜇

[︀
𝐼𝑞
(︀
𝑘
)︀]︀

𝛼
= lim

𝛼↓0
E𝜇

[︃
𝐼𝑞
(︀
𝑘 + 𝛼𝜙

)︀
− 𝐼𝑞

(︀
𝑘
)︀

𝛼

]︃

= E𝜇

[︃
lim
𝛼↓0

𝐼𝑞
(︀
𝑘 + 𝛼𝜙

)︀
− 𝐼𝑞

(︀
𝑘
)︀

𝛼

]︃
= E𝜇

[︂∫︁
𝑆

𝜙d𝑞
]︂

.

Now, applying (iii) =⇒ (ii) of Lemma 32 in Maccheroni, Marinacci, and Rustichini

(2006a), we obtain that the unique 𝑐 identified by the choice of �̂� has

𝑐−1 (0) = {E𝜇 [𝑞]} .

■

Lemma 11. If 𝐸 ∈ Σ𝑠𝑡 is nonnull and ≿ satisfies Weak Order, Weak Certainty

Independence, Continuity, Monotonicity, Uncertainty Aversion, and Weak Monotone

Continuity, then ≿𝐸 satisfies Weak Order, Weak Certainty Independence, Continuity,

Monotonicity, Uncertainty Aversion, Nondegeneracy, and Weak Monotone Continu-

ity.
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Proof. Let 𝑓, 𝑔, ℎ ∈ ℱ . By Completeness of ≿ at least one between

𝑓𝐸ℎ ≿ 𝑔𝐸ℎ and 𝑔𝐸ℎ ≿ 𝑓𝐸ℎ

holds. Therefore, by definition of ≿𝐸 at least one between 𝑓 ≿𝐸 𝑔 and 𝑔 ≿𝐸 𝑓 holds.

Let 𝑓, 𝑓 ′, 𝑓 ′′ ∈ ℱ , with 𝑓 ≿𝐸 𝑓 ′ and 𝑓 ′ ≿𝐸 𝑓 ′′. By definition of ≿𝐸, there exist

ℎ′, ℎ′′ ∈ ℱ such that

𝑓𝐸ℎ′ ≿ 𝑓 ′𝐸ℎ′ and 𝑓 ′𝐸ℎ′′ ≿ 𝑓 ′′𝐸ℎ′′.

Since 𝐸 ∈ Σ𝑠𝑡, we have

𝑓𝐸ℎ′′ ≿ 𝑓 ′𝐸ℎ′′.

By Transitivity of ≿, 𝑓𝐸ℎ′′ ≿ 𝑓 ′′𝐸ℎ′′, and so by definition of ≿𝐸, 𝑓 ≿𝐸 𝑓
′′.

Let 𝑓, 𝑔 ∈ ℱ , 𝑥, 𝑥′ ∈ 𝑋, and 𝛾 ∈ (0, 1), be such that

𝛾𝑓 + (1− 𝛾)𝑥 ≿𝐸 𝛾𝑔 + (1− 𝛾)𝑥.

Since 𝐸 ∈ Σ𝑠𝑡, we have

(𝛾𝑓 + (1− 𝛾)𝑥)𝐸𝑥 ≿ (𝛾𝑔 + (1− 𝛾)𝑥)𝐸𝑥.

By Weak Certainty Independence of ≿ we get

(𝛾𝑓 + (1− 𝛾)𝑥′)𝐸 (𝛾𝑥+ (1− 𝛾)𝑥′) ≿ (𝛾𝑔 + (1− 𝛾)𝑥′)𝐸 (𝛾𝑥+ (1− 𝛾)𝑥′) .

But then by definition of ≿𝐸, we have 𝛾𝑓 + (1− 𝛾)𝑥′ ≿𝐸 𝛾𝑔 + (1− 𝛾)𝑥′, proving

that ≿𝐸 satisfies Weak Certainty Independence.

Let 𝑓, 𝑔, ℎ, ℎ′ ∈ ℱ . Since 𝐸 ∈ Σ𝑠𝑡, we have that

{𝛾 ∈ [0, 1] : 𝛾𝑓 + (1− 𝛾) 𝑔 ≿𝐸 ℎ} = {𝛾 ∈ [0, 1] : (𝛾𝑓 + (1− 𝛾) 𝑔)𝐸ℎ′ ≿ ℎ𝐸ℎ′}

= {𝛾 ∈ [0, 1] : 𝛾𝑓𝐸ℎ′ + (1− 𝛾) 𝑔𝐸ℎ′ ≿ ℎ𝐸ℎ′}
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and

{𝛾 ∈ [0, 1] : ℎ ≿𝐸 𝛾𝑓 + (1− 𝛾) 𝑔} = {𝛾 ∈ [0, 1] : ℎ𝐸ℎ′ ≿ (𝛾𝑓 + (1− 𝛾) 𝑔)𝐸ℎ′}

= {𝛾 ∈ [0, 1] : ℎ𝐸ℎ′ ≿ 𝛾𝑓𝐸ℎ′ + (1− 𝛾) 𝑔𝐸ℎ′}

where the sets on the bottom lines are closed by Continuity of ≿, proving that ≿𝐸

satisfies Continuity.

Let 𝑓, 𝑔, ℎ ∈ ℱ and 𝑓 (𝑠) ≿𝐸 𝑔 (𝑠) for all 𝑠 ∈ 𝑆. Then, 𝑓𝐸ℎ ≿ 𝑔𝐸ℎ by Monotonic-

ity of ≿. Therefore, by definition of ≿𝐸, 𝑓 ≿𝐸 𝑔 and so ≿𝐸 satisfies Monotonicity.

Let 𝑓, 𝑔, ℎ ∈ ℱ , 𝛾 ∈ (0, 1) and 𝑓 ∼𝐸 𝑔. Since 𝐸 ∈ Σ𝑠𝑡, 𝑓𝐸ℎ ∼ 𝑔𝐸ℎ and

by Uncertainty Aversion, (𝛾𝑓 + (1− 𝛾) 𝑔)𝐸ℎ = 𝛾𝑓𝐸ℎ + (1− 𝛾) 𝑔𝐸ℎ ≿ 𝑓𝐸ℎ. By

definition of ≿𝐸, this implies that 𝛾𝑓+(1− 𝛾) 𝑔 ≿𝐸 𝑓 and so ≿𝐸 satisfies Uncertainty

Aversion.

Since 𝐸 is nonnull, there exist 𝑓, 𝑔, ℎ ∈ ℱ such that 𝑓𝐸ℎ ≻ 𝑔𝐸ℎ. But then, since

𝐸 ∈ Σ𝑠𝑡, there is no ℎ′ ∈ ℱ with 𝑔𝐸ℎ′ ≿ 𝑓𝐸ℎ′. Therefore, by definition of ≿𝐸,

𝑓 ≻𝐸 𝑔 and ≿𝐸 satisfies Nondegeneracy.

Let 𝑓, 𝑔, ℎ ∈ ℱ , 𝑥 ∈ 𝑋, (𝐸𝑖)𝑖∈N ∈ ΣN with 𝐸1 ⊇ 𝐸2 ⊇ ... and ∩𝑛≥1𝐸𝑛 = ∅, and

𝑓 ≻𝐸 𝑔. Since 𝐸 ∈ Σ𝑠𝑡, 𝑓𝐸ℎ ≻ 𝑔𝐸ℎ. Moreover, (𝐸 ′
𝑖)𝑖∈N where 𝐸 ′

𝑖 = 𝐸𝑖 ∩ 𝐸 is such

that 𝐸 ′
1 ⊇ 𝐸 ′

2 ⊇ ... and ∩𝑛≥1𝐸
′
𝑛 ⊆ ∩𝑛≥1𝐸𝑛 = ∅. Then (𝑥𝐸 ′

𝑖𝑓)𝐸ℎ = 𝑥𝐸 ′
𝑖 (𝑓𝐸ℎ) for all

𝑖 ∈ N and by Weak Monotone Continuity and the fact that 𝑓𝐸ℎ ≻ 𝑔𝐸ℎ there exists

𝑛0 ∈ N such that
(︀
𝑥𝐸 ′

𝑛0
𝑓
)︀
𝐸ℎ ≻ 𝑔𝐸ℎ. But notice that

(𝑥𝐸𝑛0𝑓)𝐸ℎ =
(︀
𝑥𝐸 ′

𝑛0
𝑓
)︀
𝐸ℎ ≻ 𝑔𝐸ℎ

and therefore 𝑥𝐸𝑛0𝑓 ≻𝐸 𝑔, as 𝐸 ∈ Σ𝑠𝑡. ■

Lemma 12. Let Ω×{𝜌} ∈ Σ𝑠𝑡 be nonnull and contain at least three disjoint nonnull

events, and suppose ≿ satisfies Weak Order, Weak Certainty Independence, Continu-

ity, Monotonicity, Uncertainty Aversion, Nondegeneracy, Weak Monotone Continu-

ity, the Intramodel Sure-Thing Principle, and Structured Savage. For every 𝑓, 𝑔 ∈ ℱ ,
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we have

𝑓 ≿𝜌 𝑔 ⇐⇒ min
𝑞∈Δ(𝑆)

E𝑞[𝑢𝜌 (𝑓)] +
𝑅 (𝑞||𝑝𝜌)

𝜆𝜌
≥ min

𝑞∈Δ(𝑆)
E𝑞[𝑢𝜌 (𝑔)] +

𝑅 (𝑞||𝑝𝜌)
𝜆𝜌

where 𝑢𝜌 is a nonconstant affine function, 𝜆𝜌 ∈ [0,∞), and 𝑝𝜌 ∈ ∆(𝑆). Moreover, if

Ω×{𝜌} ∈ Σ𝑠𝑡 is strongly nonnull, 𝑢𝜌 can be chosen to be the same for all such 𝜌 and

supp𝑝𝜌 ⊆ Ω× {𝜌}.

Proof. By Lemma 11 ≿𝜌 satisfies Weak Order, Weak Certainty Independence, Con-

tinuity, Monotonicity, Uncertainty Aversion, Nondegeneracy, and Weak Monotone

Continuity. We now show that for every 𝑓, 𝑔, ℎ, ℎ̄ ∈ ℱ and 𝐸 ∈ Σ, we have

𝑓𝐸ℎ ≿𝜌 𝑔𝐸ℎ =⇒ 𝑓𝐸ℎ̄ ≿𝜌 𝑔𝐸ℎ̄.

Observe that by definition of ≿𝜌, 𝑓𝐸ℎ ≿𝜌 𝑔𝐸ℎ implies that there exists ℎ̂ ∈ ℱ such

that

(𝑓𝐸ℎ) 𝜌ℎ̂ ≿ (𝑔𝐸ℎ) 𝜌ℎ̂.

But then, there exists ℎ′ ∈ ℱ such that

(𝑓𝐸ℎ) 𝜌ℎ̂ ≿ (𝑔𝐸ℎ) 𝜌ℎ̂

=⇒ (𝑓 {(𝜔, 𝜌) : (𝜔, 𝜌) ∈ 𝐸}ℎ) 𝜌ℎ̂ ≿ (𝑔 {(𝜔, 𝜌) : (𝜔, 𝜌) ∈ 𝐸}ℎ) 𝜌ℎ̂

=⇒ (𝑓 {(𝜔, 𝜌′) : 𝜌′ ∈ ∆(Ω) , (𝜔, 𝜌) ∈ 𝐸}ℎ) 𝜌ℎ̂ ≿ (𝑔 {(𝜔, 𝜌′) : 𝜌′ ∈ ∆(Ω) , (𝜔, 𝜌) ∈ 𝐸}ℎ) 𝜌ℎ̂

=⇒ (𝑓 {(𝜔, 𝜌′) : 𝜌′ ∈ ∆(Ω) , (𝜔, 𝜌) ∈ 𝐸}ℎ) ≿𝜌 (𝑔 {(𝜔, 𝜌′) : 𝜌′ ∈ ∆(Ω) , (𝜔, 𝜌) ∈ 𝐸}ℎ)

=⇒
(︀
𝑓 {(𝜔, 𝜌′) : 𝜌′ ∈ ∆(Ω) , (𝜔, 𝜌) ∈ 𝐸} ℎ̄

)︀
≿𝜌

(︀
𝑔 {(𝜔, 𝜌′) : 𝜌′ ∈ ∆(Ω) , (𝜔, 𝜌) ∈ 𝐸} ℎ̄

)︀
=⇒

(︀
𝑓 {(𝜔, 𝜌′) : 𝜌′ ∈ ∆(Ω) , (𝜔, 𝜌) ∈ 𝐸} ℎ̄

)︀
𝜌ℎ′ ≿

(︀
𝑔 {(𝜔, 𝜌′) : 𝜌′ ∈ ∆(Ω) , (𝜔, 𝜌) ∈ 𝐸} ℎ̄

)︀
𝜌ℎ′

=⇒
(︀
𝑓 {(𝜔, 𝜌) : (𝜔, 𝜌) ∈ 𝐸} ℎ̄

)︀
𝜌ℎ′ ≿

(︀
𝑔 {(𝜔, 𝜌) : (𝜔, 𝜌) ∈ 𝐸} ℎ̄

)︀
𝜌ℎ′

=⇒
(︀
𝑓𝐸ℎ̄

)︀
𝜌ℎ′ ≿

(︀
𝑔𝐸ℎ̄

)︀
𝜌ℎ′ =⇒ 𝑓𝐸ℎ̄ ≿𝜌 𝑔𝐸ℎ̄

where the third, fifth, and eighth implications follow from the definition of ≿𝜌, the

fourth implication follows from the Intramodel Sure-Thing Principle, and the other
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implications only rewrite the acts involved.

Next, observe that if 𝐸 ⊆ Ω × {𝜌} is nonnull, then there exist 𝑓, 𝑔, ℎ ∈ ℱ with

(𝑓𝐸ℎ) 𝜌ℎ = 𝑓𝐸ℎ ≻ 𝑔𝐸ℎ = (𝑔𝐸ℎ) 𝜌ℎ. By Structured Savage P2, this implies that

𝑓𝐸ℎ ≻𝜌 𝑔𝐸ℎ, so that 𝐸 is nonnull for the preference ≿𝜌. With this, the first part

follows from Theorem 1 in Strzalecki (2011). For the second part, notice that by

Theorem 3 and Lemma 30 in Maccheroni, Marinacci, and Rustichini (2006a), ≿

admits a variational representation:

𝑓 ≿ 𝑔 ⇐⇒ min
𝑝∈Δ(𝑆)

(︂∫︁
𝑢 (𝑓) d𝑝+ 𝑐 (𝑝)

)︂
≥ min

𝑝∈Δ(𝑆)

(︂∫︁
𝑢 (𝑔) d𝑝+ 𝑐 (𝑝)

)︂
(26)

for some nonconstant affine 𝑢 : 𝑋 → R and a lower semicontinuous and grounded

function 𝑐 : ∆ (𝑆) → [0,∞].

Next, assume Ω × {𝜌} is strongly nonnull. Notice that ≿ and ≿𝜌 coincide on

𝑋. Indeed, let 𝑥 ≻ 𝑥′. Since Ω × {𝜌} is strongly nonnull 𝑥 ≻ 𝑥′𝜌𝑥 and given that

Ω × {𝜌} ∈ Σ𝑠𝑡 it follows that 𝑥 ≻𝜌 𝑥
′. Conversely, let 𝑥 ≿ 𝑥′, then by equation (26)

𝑢 (𝑥) ≥ 𝑢 (𝑥′). Since 𝑐 is grounded, there exists 𝑞* ∈ ∆(𝑆) with 𝑐 (𝑞*) = 0. But then

𝑢 (𝑥) ≥ 𝑢 (𝑥′) 𝑞* (Ω× {𝜌}) + (1− 𝑞* (Ω× {𝜌}))𝑢 (𝑥)

≥ min
𝑞∈Δ(𝑆)

(𝑢 (𝑥′) 𝑞 (Ω× {𝜌}) + (1− 𝑞 (Ω× {𝜌}))𝑢 (𝑥) + 𝑐 (𝑞))

that is, 𝑥 (Ω× {𝜌})𝑥 ≿ 𝑥′ (Ω× {𝜌})𝑥, and 𝑥 ≿𝜌 𝑥
′. Therefore, by the uniqueness

up to a positive affine transformation of 𝑢 guaranteed by Corollary 5 in Maccheroni,

Marinacci, and Rustichini (2006a) and the fact that every two affine functions that

represent ≿ on 𝑋 are positive affine transformations of each other (see, e.g., Theorem

5.11 in Kreps, 1988), we can choose 𝑢 = 𝑢𝜌. Suppose by way of contradiction that

there exists 𝐸 ∈ Σ such that 𝐸 ∩ (Ω× {𝜌}) = ∅ and 𝑝𝜌 (𝐸) > 0. Let 𝑥, 𝑦 ∈ 𝑋 with

𝑥 ≻ 𝑦. Then,

𝑢 (𝑥) > 𝑢 (𝑦) 𝑝𝜌 (𝐸) + 𝑢 (𝑥) (1− 𝑝𝜌 (𝐸)) ≥ min
𝑞∈Δ(𝑆)

∫︁
𝑢 (𝑦𝐸𝑥) d𝑞 +

1

𝜆𝜌
𝑅 (𝑞||𝑝𝜌)
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and so by equation (??), 𝑥 ≻𝜌 𝑦𝐸𝑥. But since 𝑥 = 𝑥 (Ω× {𝜌})𝑥, 𝑥 = (𝑦𝐸𝑥) (Ω× {𝜌})𝑥

and Ω× {𝜌} ∈ Σ𝑠𝑡 this would imply 𝑥 ≻ 𝑥, a contradiction to the Weak Order of ≿.

■

Lemma 13. Suppose that the assumptions of Theorem 3 hold. Let ≿ be such that

for all 𝑓, 𝑔 ∈ ℱ

𝑓 ≿ 𝑔 ⇐⇒ E𝜇

[︂
min

𝑝∈Δ(𝑆)
E𝑝 [𝑢 (𝑓)] +

𝑅 (𝑝||𝑞)
𝜆𝑞

]︂
≥ E𝜇

[︂
min

𝑝∈Δ(𝑆)
E𝑝 [𝑢 (𝑔)] +

𝑅 (𝑝||𝑞)
𝜆𝑞

]︂

where 𝑢 : 𝑋 → R is a nonconstant affine function, 𝑄⊆∆(𝑆) is a finite and nonempty

set such that

𝑞 ({𝜔, 𝜌𝑞}) = 𝜌𝑞 (𝜔) ∀𝑞 ∈ 𝑄,∀𝜔 ∈ Ω, (27)

for some 𝜌𝑞 ∈ ∆(Ω), 𝜇 ∈ ∆(𝑄), and (𝜆𝑞)𝑞∈𝑄 ∈ R𝑄
+. Then:

1. For every Ω×𝐵 ∈ Σ𝑠 and 𝑓, ℎ ∈ ℱ

∫︁
𝑄

min
𝑝∈Δ(𝑆)

∫︁
𝑆

𝑢 (𝑓Ω×𝐵ℎ) d𝑝+
𝑅 (𝑝||𝑞)
𝜆𝑞

d𝜇 (𝑞)

=

∫︁
{𝑞∈𝑄:𝜌𝑞∈𝐵}

min
𝑝∈Δ(𝑆)

E𝑝 [𝑢 (𝑓)] +
𝑅 (𝑝||𝑞)
𝜆𝑞

d𝜇 (𝑞)

+

∫︁
𝑄∖{𝑞∈𝑄:𝜌𝑞∈𝐵}

min
𝑝∈Δ(𝑆)

E𝑝 [𝑢 (ℎ)] +
𝑅 (𝑝||𝑞)
𝜆𝑞

d𝜇 (𝑞) .

2. For every Ω×𝐵 ∈ Σ𝑠, if 𝜇 ({𝑞 ∈ 𝑄 : 𝜌𝑞 ∈ 𝐵}) = 0, then Ω×𝐵 is null.
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Proof. 1) Let Ω×𝐵 ∈ Σ𝑠 and 𝑓, ℎ ∈ ℱ . We have

∫︁
𝑄

min
𝑝∈Δ(𝑆)

∫︁
𝑆

𝑢 (𝑓Ω×𝐵ℎ) d𝑝+
𝑅 (𝑝||𝑞)
𝜆𝑞

d𝜇 (𝑞)

=

∫︁
{𝑞∈𝑄:𝜌𝑞∈𝐵}

min
𝑝∈Δ(𝑆)

∫︁
𝑆

𝑢 (𝑓Ω×𝐵ℎ) d𝑝+
𝑅 (𝑝||𝑞)
𝜆𝑞

d𝜇 (𝑞)

+

∫︁
𝑄∖{𝑞∈𝑄:𝜌𝑞∈𝐵}

min
𝑝∈Δ(𝑆)

∫︁
𝑆

𝑢 (𝑓Ω×𝐵ℎ) d𝑝+
𝑅 (𝑝||𝑞)
𝜆𝑞

d𝜇 (𝑞)

=

∫︁
{𝑞∈𝑄:𝜌𝑞∈𝐵}

min
𝑝∈Δ(𝑆):𝑞≫𝑝

∫︁
𝑆

𝑢 (𝑓Ω×𝐵ℎ) d𝑝+
𝑅 (𝑝||𝑞)
𝜆𝑞

d𝜇 (𝑞)

+

∫︁
𝑄∖{𝑞∈𝑄:𝜌𝑞∈𝐵}

min
𝑝∈Δ(𝑆):𝑞≫𝑝

∫︁
𝑆

𝑢 (𝑓Ω×𝐵ℎ) d𝑝+
𝑅 (𝑝||𝑞)
𝜆𝑞

d𝜇 (𝑞)

=

∫︁
{𝑞∈𝑄:𝜌𝑞∈𝐵}

min
𝑝∈Δ(𝑆):𝑞≫𝑝

∫︁
𝑆

𝑢 (𝑓) d𝑝+
𝑅 (𝑝||𝑞)
𝜆𝑞

d𝜇 (𝑞)

+

∫︁
𝑄∖{𝑞∈𝑄:𝜌𝑞∈𝐵}

min
𝑝∈Δ(𝑆):𝑞≫𝑝

∫︁
𝑆

𝑢 (ℎ) d𝑝+
𝑅 (𝑝||𝑞)
𝜆𝑞

d𝜇 (𝑞)

=

∫︁
{𝑞∈𝑄:𝜌𝑞∈𝐵}

min
𝑝∈Δ(𝑆)

∫︁
𝑆

𝑢 (𝑓) d𝑝+
𝑅 (𝑝||𝑞)
𝜆𝑞

d𝜇 (𝑞) +
∫︁
𝑄∖{𝑞∈𝑄:𝜌𝑞∈𝐵}

min
𝑝∈Δ(𝑆)

∫︁
𝑆

𝑢 (ℎ) d𝑝+
𝑅 (𝑝||𝑞)
𝜆𝑞

d𝜇 (𝑞)

where the third equality follows from the fact that by equation (27) 𝑞 ≫ 𝑝 and

𝜌𝑞 ∈ 𝐵 imply supp𝑝 ⊆ supp𝑞 ⊆ Ω × 𝐵 (and conversely 𝑞 ≫ 𝑝 and 𝜌𝑞 /∈ 𝐵 imply

supp𝑝 ⊆ supp𝑞 ⊆ 𝑆 ∖ (Ω×𝐵)).

2) It follows from 1), since in this case for every 𝑓, 𝑔, ℎ ∈ ℱ

𝑓Ω×𝐵ℎ ≿ 𝑔Ω×𝐵ℎ

⇐⇒
∫︁
{𝑞∈𝑄:𝜌𝑞 /∈𝐵}

min
𝑝∈Δ(𝑆)

E𝑝 [𝑢 (ℎ)] +
𝑅 (𝑝||𝑞)
𝜆𝑞

d𝜇 (𝑞) ≥
∫︁
{𝑞∈𝑄:𝜌𝑞 /∈𝐵}

min
𝑝∈Δ(𝑆)

E𝑝 [𝑢 (ℎ)] +
𝑅 (𝑝||𝑞)
𝜆𝑞

d𝜇 (𝑞)

and the RHS is always trivially satisfied as an equality. ■

Lemma 14. Suppose that the assumptions of Theorem 3 hold. Let ≿ be such that

for all 𝑓, 𝑔 ∈ ℱ

𝑓 ≿ 𝑔 ⇐⇒ E𝜇

[︂
min

𝑝∈Δ(𝑆)
E𝑝 [𝑢 (𝑓)] +

𝑅 (𝑝||𝑞)
𝜆𝑞

]︂
≥ E𝜇

[︂
min

𝑝∈Δ(𝑆)
E𝑝 [𝑢 (𝑔)] +

𝑅 (𝑝||𝑞)
𝜆𝑞

]︂

where 𝑢 : 𝑋 → R is a nonconstant affine function, 𝑄⊆∆(𝑆) is finite, nonempty, and
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such that

𝑞 ({𝜔, 𝜌𝑞}) = 𝜌𝑞 (𝜔) ∀𝑞 ∈ 𝑄,∀𝜔 ∈ Ω,

for some 𝜌𝑞 ∈ ∆(Ω), 𝜇 ∈ ∆(𝑄), and (𝜆𝑞)𝑞∈𝑄 ∈ R𝑄
+. Then ≿ satisfies Uniform

Misspecification Concern if and only if there exists 𝜆* with 𝜆𝑞 = 𝜆* for all 𝑞 ∈ supp𝜇.

Proof. (If) Let 𝜌, 𝜌′ ∈ ∆(Ω), 𝑓, 𝑔 ∈ ℱ , and 𝑥 ∈ 𝑋 be such that Ω×{𝜌} and Ω×{𝜌′}

are nonnull,

𝜌 ({𝜔 : 𝑓 (𝜔, 𝜌) = 𝑦}) = 𝜌′ ({𝜔 : 𝑔 (𝜔, 𝜌′) = 𝑦}) ∀𝑦 ∈ 𝑋, (28)

and 𝑓 ≿Ω×{𝜌} 𝑥. Since Ω × {𝜌} and Ω × {𝜌′} are nonnull, by part 2 of Lemma 13

there exist 𝑞, 𝑞′ ∈ 𝑄 with 𝜇 ({𝑞}) > 0, 𝜇 ({𝑞′}) > 0, 𝜌𝑞 = 𝜌, and 𝜌𝑞′ = 𝜌′. Let

𝜑 (𝑐) = − exp (−𝜆*𝑐) , ∀𝑐 ∈ 𝑢 (𝑋)

and let 𝜉 ∈ ∆(𝑋) be the finite support probability measure such that for all 𝑦 ∈ 𝑋,

𝜉 (𝑦) = 𝑞 ({(𝜔, 𝜌𝑞) : 𝑓 (𝜔, 𝜌𝑞) = 𝑦}), then

∫︁
Ω

𝜑 (𝑢 (𝑓)) d𝑞 =
∫︁
𝑋

𝜑 (𝑢(𝑦)) d𝜉 (𝑦) .

Moreover, equation (28) implies

∫︁
Ω

𝜑 (𝑢 (𝑔)) d𝑞′ =
∫︁
𝑋

𝜑 (𝑢(𝑦)) d𝜉 (𝑦) .

Therefore, by Lemma 13 both 𝑓 ≿Ω×{𝜌} 𝑥 and 𝑔 ≿Ω×{𝜌′} 𝑥 mean that

∫︁
𝑋

𝜑 (𝑢(𝑦)) d𝜉 (𝑦) ≥ 𝜑 (𝑢 (𝑥))

proving that ≿ satisfies Uniform Misspecification Concern.

(Only if) Suppose by way of contradiction that there exist 𝑞, 𝑞′ ⊆ 𝑄 and 𝑘 ∈ R++
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with 𝜇 ({𝑞}) > 0 and 𝜇 ({𝑞′}) > 0 and

𝜆𝑞 > 𝑘 > 𝜆𝑞′ . (29)

Since the state space is adequate there exist two events 𝑊𝑞 ⊆ ∆(Ω) ,𝑊𝑞′ ⊆ ∆(Ω)

and 𝑐 ∈ (0, 1) with

𝜌𝑞 (𝑊𝑞) = 𝜌𝑞′ (𝑊𝑞′) = 𝑐.

Moreover, 𝑞 (𝑊𝑞 × {𝜌𝑞}) = 𝑐 = 𝑞′ (𝑊𝑞′ × {𝜌𝑞′}) and

𝑞 (𝑊𝑞′ × {𝜌𝑞′}) = 0 = 𝑞′ (𝑊𝑞 × {𝜌𝑞}) .

Pick 𝑧, 𝑦 ∈ 𝑋 with 𝑧 ≻ 𝑦. We have that

𝜌𝑞 ({𝜔 : 𝑧 ((𝑊𝑞 × {𝜌𝑞}) ∪ (𝑊𝑞′ × {𝜌𝑞′})) 𝑦 (𝜔, 𝜌𝑞) = 𝑥})

= 𝜌𝑞′ ({𝜔 : 𝑧 ((𝑊𝑞 × {𝜌𝑞}) ∪ (𝑊𝑞′ × {𝜌𝑞′})) 𝑦 (𝜔, 𝜌𝑞′) = 𝑥})

for all 𝑥 ∈ 𝑋. By the convexity of𝑋 and Lemma 13 there exists �̂� ∈ 𝑋 with 𝑧 ≻ �̂� ≻ 𝑦

and

𝑧 ((𝑊𝑞 × {𝜌𝑞}) ∪ (𝑊𝑞′ × {𝜌𝑞′})) 𝑦 ∼𝜌𝑞′
�̂�.

But by equation (29) and Lemma 13 we have

�̂� ≻𝜌𝑞 𝑧 ((𝑊𝑞 × {𝜌𝑞}) ∪ (𝑊𝑞′ × {𝜌𝑞′})) 𝑦

a violation of Uniform Misspecification Concern. ■

Proof of Theorem 3. (Only if) That ≿ satisfies Weak Order, Weak Certainty

Independence, Continuity, Monotonicity, Uncertainty Aversion, Nondegeneracy, and

Weak Monotone Continuity follows from Lemma 10.

Let 𝜌 ∈ ∆(Ω), 𝑊 ⊆ Ω, 𝑓, 𝑔, ℎ, ℎ′ ∈ ℱ , and 𝑓𝑊ℎ ≿𝜌 𝑔𝑊ℎ. If Ω× {𝜌} is null then

we trivially have 𝑓𝑊ℎ′ ≿𝜌 𝑔𝑊ℎ′. Therefore, suppose Ω×{𝜌} is nonnull. By Lemma
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13, and since 𝑞 ↦→ 𝜌𝑞 is injective, there exists 𝑞 ∈ ∆(𝑆) with 𝜌𝑞 = 𝜌, 𝜇 ({𝑞}) > 0, and

min
𝑝∈Δ(𝑆)

∫︁
𝑆

𝑢 (𝑓𝑊ℎ) d𝑝+
1

𝜆
𝑅 (𝑝||𝑞) ≥ min

𝑝∈Δ(𝑆)

∫︁
𝑆

𝑢 (𝑔𝑊ℎ) d𝑝+
1

𝜆
𝑅 (𝑝||𝑞) .

By Proposition 1.4.2 in Dupuis and Ellis (2011) this is equivalent to

∫︁
𝑆

𝜑 (𝑢 (𝑓𝑊ℎ)) d𝑞 ≥
∫︁
𝑆

𝜑 (𝑢 (𝑔𝑊ℎ)) d𝑞

with 𝜑 (·) = − exp (−𝜆 (·)). This is also equivalent to

∫︁
𝑊×Δ(Ω)

𝜑 (𝑢 (𝑓)) d𝑞 +
∫︁
(Ω∖𝑊 )×Δ(Ω)

𝜑 (𝑢 (ℎ)) d𝑞 (30)

≥
∫︁
𝑊×Δ(Ω)

𝜑 (𝑢 (𝑔)) d𝑞 +
∫︁
(Ω∖𝑊 )×Δ(Ω)

𝜑 (𝑢 (ℎ)) d𝑞

or ∫︁
𝑊×Δ(Ω)

𝜑 (𝑢 (𝑓)) d𝑞 ≥
∫︁
𝑊×Δ(Ω)

𝜑 (𝑢 (𝑔)) d𝑞.

But then, by reversing all the steps with ℎ′ in place of ℎ we get

𝑓𝑊ℎ′ ≿𝜌 𝑔𝑊ℎ′

and therefore ≿ satisfies Intramodel Sure-Thing Principle.

Moreover, ≿ satisfies Uniform Misspecification Concern by Lemma 14. That there

is a finite set 𝐵 ⊆ ∆(Ω) such that Ω× (∆ (Ω) ∖ 𝐵) is null immediately follows from

the representation and part 2 of Lemma 13. Let Ω × 𝐵 ∈ Σ𝑠 and 𝑓, 𝑔, ℎ, ℎ′ ∈ ℱ . If

Ω×𝐵 is null, we clearly have that Ω×𝐵 ∈ Σ𝑠𝑡. Suppose Ω×𝐵 is nonnull, then

𝑓 (Ω×𝐵)ℎ ≿ 𝑔 (Ω×𝐵)ℎ

⇐⇒∫︁
{𝑞∈𝑄:𝜌𝑞∈𝐵}

min
𝑝∈Δ(𝑆)

E𝑝 [𝑢 (𝑓)] +
𝑅 (𝑝||𝑞)
𝜆𝑞

d𝜇 (𝑞) ≥
∫︁
{𝑞∈𝑄:𝜌𝑞∈𝐵}

min
𝑝∈Δ(𝑆)

E𝑝 [𝑢 (𝑔)] +
𝑅 (𝑝||𝑞)
𝜆𝑞

d𝜇 (𝑞)

⇐⇒

𝑓 (Ω×𝐵)ℎ′ ≿ 𝑔 (Ω×𝐵)ℎ′
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where the two equivalences follow by Lemma 13. This proves that Ω × 𝐵 ∈ Σ𝑠𝑡.

Since 𝐵 was chosen to be an arbitrary measurable subset of ∆(Ω), Σ𝑠 ⊆ Σ𝑠𝑡, and

Structured Savage P2 holds.

That ≿ satisfies Structured Savage P4 and Uncertainty Neutrality over Models

immediately follows from Lemma 13 and the representation.

(If) By Structured Savage’s P2, Σ𝑠 ⊆ Σ𝑠𝑡. Suppose 𝐸 ∈ Σ𝑠 is nonnull, and let

𝑥, 𝑥′ ∈ 𝑋 with 𝑥 ≻ 𝑥′. Then there exist 𝑓, 𝑔, ℎ ∈ ℱ such that 𝑓𝐸ℎ ≻ 𝑔𝐸ℎ. Since 𝑓

and 𝑔 are simple acts, they assume finitely many values, and by Weak Order, there

exist �̄�, 𝑥 ∈ 𝑋 with

�̄� ≿ 𝑓 (𝑠) , 𝑔 (𝑠) ≿ 𝑥, ∀𝑠 ∈ 𝐸.

Since 𝐸 ∈ Σ𝑠 ⊆ Σ𝑠𝑡, 𝑓𝐸�̄� ≻ 𝑔𝐸�̄�. By the Monotonicity and Weak Order parts of

the Variational Axiom, 𝑥∅�̄� = �̄�𝐸�̄� ≿ 𝑓𝐸�̄� ≻ 𝑔𝐸�̄� ≿ 𝑥𝐸�̄�. Therefore, by Structured

Savage P4, 𝑥 = 𝑥′∅𝑥 ≻ 𝑥′𝐸𝑥. Since 𝐸 ∈ Σ𝑠 and 𝑥, 𝑥′ ∈ 𝑋 were arbitrarily chosen,

each nonnull 𝐸 ∈ Σ𝑠 is also strongly nonnull.

Next, fix a finite 𝐵, such that for each 𝜌 ∈ 𝐵, Ω × {𝜌} is nonnull, and such

that 𝑆 ∖ {Ω×𝐵} is null. Such a set exists by the Structured Savage axiom, and the

cardinality of 𝐵 is at least 3 by assumption of the theorem. For every 𝜌 ∈ 𝐵, by the

previous part of the proof Ω× {𝜌} is strongly nonnull and so by Lemma 12 we have

𝑓 ≿𝜌 𝑔 ⇐⇒ min
𝑝∈Δ(𝑆)

∫︁
𝑆

�̂� (𝑓) d𝑝+
1

𝜆𝜌
𝑅 (𝑝||𝑞𝜌) (31)

for some 𝑞𝜌 ∈ ∆(𝑆) with support contained in Ω× {𝜌} and a nonconstant affine �̂�.

Claim 5. We have 𝑞𝜌 = 𝜌× 𝛿𝜌.

Proof of the Claim. Since the space is adequate, there exists 𝑣𝜌 ∈ (0, 1) such that

𝜌 (𝜔) ∈ {0, 𝑣𝜌}. In particular, by applying Uniform Misspecification Concern with

𝜌 = 𝜌′, we obtain that 𝑞𝜌 (𝜔, 𝜌) = 𝑣𝜌 ⇐⇒ 𝜌 (𝜔) = 𝑣𝜌, and the desired conclusion

follows. □
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Let

𝑄 = {𝑞𝜌 ∈ ∆(𝑆) : 𝜌 ∈ 𝐵}. (32)

Identify each act 𝑓 ∈ ℱ with the real-valued function 𝑓 : 𝑄→ �̂� (𝑋) with

𝑓 (𝑞𝜌) = min
𝑝∈Δ(𝑆)

∫︁
𝑆

�̂� (𝑓) d𝑝+
1

𝜆𝜌
𝑅 (𝑝||𝑞𝜌) ∀𝜌 ∈ 𝐵

where 𝜆𝜌 is given by equation (31).

We now show that

𝑓 = 𝑔 =⇒ 𝑓 ∼ 𝑔 ∀𝑓, 𝑔 ∈ ℱ .

We partition 𝑆 in
{︁
{Ω× 𝜌}𝜌∈𝐵 , 𝑆 ∖ {Ω×𝐵}

}︁
and establish the claim by induction

on the number of cells of the partition on which 𝑓 and 𝑔 are not identical. Let 𝑓

and 𝑔 be such that 𝑓 = 𝑔 and they differ on one element of the partition, say 𝐸.

Then 𝑓 = 𝑓𝐸𝑔 ∼ 𝑔 by definition of ∼𝐸 and Structured Savage P2, so 𝑓 ∼ 𝑔. For the

inductive step, suppose that whenever 𝑓 and 𝑔 are such that 𝑓 = 𝑔 and they differ at

most on 𝑛 ∈ N elements of the partition, we have 𝑓 ∼ 𝑔. Let 𝑓 and 𝑔 be such that

𝑓 = 𝑔 and they differ on 𝑛 + 1 ∈ N elements of the partition. Let 𝐸 be an element

of the partition on which they differ. Then, 𝑓𝐸𝑔 and 𝑔 differ on one element of the

partition, and 𝑓𝐸𝑔 and 𝑓 differ on 𝑛 elements of the partition. Therefore, by the

inductive hypothesis, we have 𝑔 ∼ 𝑓𝐸𝑔 ∼ 𝑓 .

Moreover, it is immediate to see that �̂� (𝑋)𝑄 ⊆
{︁
𝑓 : 𝑓 ∈ ℱ

}︁
. Therefore, with a

slight abuse of notation we let ≿ denote also the binary relation on �̂� (𝑋)𝑄 defined

by 𝑓 ≿ 𝑔 if and only if 𝑓 ≿ 𝑔.

Claim 6. For every 𝑣, 𝑣′, 𝑤, 𝑧 ∈ �̂� (𝑋), 𝜌 ∈ 𝐵, and 𝛾 ∈ (0, 1)

𝑣𝜌𝑤 ≿ (𝛾𝑣 + (1− 𝛾) 𝑣′)𝜌 𝑧 ⇐⇒ ((1− 𝛾) 𝑣 + 𝛾𝑣′)𝜌𝑤 ≿ 𝑣′𝜌𝑧.

Proof of the Claim. If 𝑣 = 𝑣′ the equivalence is obvious. Suppose without loss of

generality that 𝑣′ > 𝑣.
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1. Let 𝑣𝜌𝑤 ≿ (𝛾𝑣 + (1− 𝛾) 𝑣′)𝜌 𝑧. This implies that 𝑤 > 𝑧. Then, by Continuity,

Structured Savage, and the fact that Ω×{𝜌} is strongly nonnull there exists 𝛼 ∈ [0, 1]

with

𝑣𝜌 (𝛼𝑤 + (1− 𝛼) 𝑧) ∼ (𝛾𝑣 + (1− 𝛾) 𝑣′)𝜌 𝑧.

By Uncertainty Neutrality over Models, this implies that ((1− 𝛾) 𝑣 + 𝛾𝑣′)𝜌 (𝛼𝑤 + (1− 𝛼) 𝑧) ∼

𝑣′𝜌𝑧. By Monotonicity, this implies that ((1− 𝛾) 𝑣 + 𝛾𝑣′)𝜌𝑤 ≿ 𝑣′𝜌𝑧.

2. Let ((1− 𝛾) 𝑣 + 𝛾𝑣′)𝜌𝑤 ≿ 𝑣′𝜌𝑧. This implies that 𝑤 > 𝑧. Then, by Continuity,

Structured Savage, and the fact that Ω×{𝜌} is strongly nonnull there exists 𝛼 ∈ [0, 1]

with

((1− 𝛾) 𝑣 + 𝛾𝑣′)𝜌 (𝛼𝑤 + (1− 𝛼) 𝑧) ∼ 𝑣′𝜌𝑧.

By Uncertainty Neutrality over Models, this implies that 𝑣𝜌 (𝛼𝑤 + (1− 𝛼) 𝑧) ∼ (𝛾𝑣 + (1− 𝛾) 𝑣′)𝜌 𝑧.

By Monotonicity, this implies that 𝑣𝜌𝑤 ≿ (𝛾𝑣 + (1− 𝛾) 𝑣′)𝜌 𝑧. □

By the previous claim, Continuity, Structured Savage, and Theorem VII.3.5 in

Wakker (2013) there exists 𝜇 ∈ ∆(𝑄) such that for all 𝜓, 𝜓′ ∈ �̂� (𝑋)𝑄35

𝜓 ≿ 𝜓′ ⇐⇒
∑︁
𝑞∈𝑄

𝜓 (𝑞)𝜇 (𝑞) ≥
∑︁
𝑞∈𝑄

𝜓′ (𝑞)𝜇 (𝑞) .

Moreover, by Observation VII.3.5 in Wakker (2013), 𝜇 is uniquely identified.

35Formally, one needs to apply Theorem VII.3.5 in Wakker (2013) twice. The first application gives

𝜓 ≿ 𝜓′ ⇐⇒
∑︁
𝑞∈𝑄

𝑈𝑞 (𝜓 (𝑞)) ≥
∑︁
𝑞∈𝑄

𝑈𝑞 (𝜓
′ (𝑞))

for some concave and increasing functions (𝑈𝑞 : �̂� (𝑋) → R)𝑞∈𝑄. The second application is to the
preference ≿− defined over (�̂� (𝑋))

𝑄 by 𝜓 ≿− 𝜓′ ⇐⇒ 𝜓′ ≿ 𝜓 for all 𝜓,𝜓′ ∈ (�̂� (𝑋))
𝑄. It gives

that for all 𝜓,𝜓′ ∈ �̂� (𝑋)
𝑄

𝜓 ≿ 𝜓′ ⇐⇒ 𝜓′ ≿− 𝜓 ⇐⇒
∑︁
𝑞∈𝑄

𝑈−
𝑞 (𝜓′ (𝑞)) ≥

∑︁
𝑞∈𝑄

𝑈−
𝑞 (𝜓 (𝑞)) ⇐⇒

∑︁
𝑞∈𝑄

−𝑈−
𝑞 (𝜓 (𝑞)) ≥

∑︁
𝑞∈𝑄

−𝑈−
𝑞 (𝜓′ (𝑞))

for some decreasing and concave functions
(︀
𝑈−
𝑞 : −�̂� (𝑋) → R

)︀
𝑞∈𝑄

. But since −𝑈−
𝑞 (·) is

an increasing and convex function, then by Observation VII.3.5 in Wakker (2013) 𝜓 ≿
𝜓′ ⇐⇒

∑︀
𝑞∈𝑄 𝑈

𝐿
𝑞 (𝜓 (𝑞)) ≥

∑︀
𝑞∈𝑄 𝑈

𝐿
𝑞 (𝜓′ (𝑞)) for some increasing and linear functions(︀

𝑈𝐿
𝑞 : �̂� (𝑋) → R

)︀
𝑞∈𝑄

, and the result follows by the Riesz Representation theorem.
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But then, by definition of ≿, we obtain that for all 𝑓, 𝑔 ∈ ℱ

𝑓 ≿ 𝑔 ⇐⇒ E𝜇

[︂
min

𝑝∈Δ(𝑆)
E𝑝 [𝑢 (𝑓)] +

𝑅 (𝑝||𝑞𝜌)
𝜆𝜌

]︂
≥ E𝜇

[︂
min

𝑝∈Δ(𝑆)
E𝑝 [𝑢 (𝑔)] +

𝑅 (𝑝||𝑞𝜌)
𝜆𝜌

]︂
.

Moreover, by Lemma 14 Uniform Misspecification Concern implies that 𝜆 = 𝜆𝜌 for

all 𝜌 ∈ 𝐵, proving the result. ■

Proof of Corollary 2. It immediately follows from Lemma 10 and Proposition 8 in

Maccheroni, Marinacci, and Rustichini (2006a). ■

Proposition 7. Let
(︀
≿ℎ
)︀
ℎ∈ℋ be such that:

1. For every ℎ ∈ ℋ, ≿ℎ satisfies the axioms of Theorem 3,

2.
(︀
≿ℎ
)︀
ℎ∈ℋ satisfies Constant Preference Invariance and Dynamic Consistency

over Models.

Then for every ℎ ∈ ℋ, ≿ℎ admits an average robust control representation (𝑢,𝑄, 𝜇 (·|ℎ) , 𝜆ℎ).

Proof. That each ≿ℎ admits an average robust control representation (𝑢ℎ, 𝑄ℎ, 𝜇ℎ, 𝜆ℎ)

where

𝑞 ({𝜔, 𝜌𝑞}) = 𝜌𝑞 (𝜔) ∀𝑞 ∈ 𝑄ℎ,∀𝜔 ∈ Ω,

for some 𝜌𝑞 ∈ ∆(Ω) follows from (the proof of) Theorem 3. That 𝑢ℎ = 𝑢 for some

constant affine 𝑢 follows from Constant Preference Invariance.

We now prove that Dynamic Consistency over Models implies 𝜇 (·|ℎ𝑡) = 𝜇ℎ𝑡 for

all ℎ𝑡 = (𝜔𝑖)
𝑡
𝑖=1 ∈ ℋ𝑡 such that

∏︀𝑡
𝑖=1 𝜌𝑞 (𝜔𝑖) > 0 for some 𝑞 ∈ 𝑄. By definition, we

have 𝜇ℎ𝑡 = 𝜇 for the empty history. Let 𝑓 and 𝑔 be measurable with respect to Σ𝑠.

Then we can suppress the dependence on 𝜔 in 𝑓 (𝜔, 𝜌) and 𝑔 (𝜔, 𝜌) and we have that

𝑓 ≿ℎ𝑡 𝑔 ⇐⇒ 𝑓 0 ≿∅ 𝑔0.

But by construction, the latter is equivalent to

E𝜇

[︃
𝛾𝑓(𝜌𝑞)

𝑡∏︁
𝑖=1

𝜌𝑞 (𝜔𝑖) (𝑢 (𝑧)− 𝑢 (𝑧))

]︃
≥ E𝜇

[︃
𝛾𝑔(𝜌𝑞)

𝑡∏︁
𝑖=1

𝜌𝑞 (𝜔𝑖) (𝑢 (𝑧)− 𝑢 (𝑧))

]︃
.
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Dividing both sides by the strictly positive ex-ante probability of history ℎ𝑡, we obtain

∫︀
Δ(Δ(𝑆))

𝛾𝑓(𝜌𝑞)
∏︀𝑡

𝑖=1 𝜌𝑞 (𝜔𝑖) (𝑢 (𝑧)− 𝑢 (𝑧)) d𝜇 (𝑞)∫︀
Δ(Δ(𝑆))

∏︀𝑡
𝑖=1 𝜌𝑞 (𝜔𝑖) d𝜇 (𝑞)

≥

∫︀
Δ(Δ(𝑆))

𝛾𝑔(𝜌𝑞)
∏︀𝑡

𝑖=1 𝜌𝑞 (𝜔𝑖) (𝑢 (𝑧)− 𝑢 (𝑧)) d𝜇 (𝑞)∫︀
Δ(Δ(𝑆))

∏︀𝑡
𝑖=1 𝜌𝑞 (𝜔𝑖) d𝜇 (𝑞)

.

But then, by the formula for Bayesian updating, this is equivalent to

∫︁
Δ(Δ(𝑆))

𝛾𝑓(𝜌𝑞) (𝑢 (𝑧)− 𝑢 (𝑧)) d𝜇 (𝑞|ℎ𝑡) ≥
∫︁
Δ(Δ(𝑆))

𝛾𝑔(𝜌𝑞) (𝑢 (𝑧)− 𝑢 (𝑧)) d𝜇 (𝑞|ℎ𝑡)

that is ∫︁
Δ(Δ(𝑆))

𝑢 (𝑓 (𝜌𝑞)) d𝜇 (𝑞|ℎ𝑡) ≥
∫︁
Δ(Δ(𝑆))

𝑢 (𝑔 (𝜌𝑞)) d𝜇 (𝑞|ℎ𝑡) .

That is, ≿ℎ𝑡 admits an SEU representation of the acts measurable with respect to

Σ𝑠 with Bernoulli utility 𝑢 and probability measure 𝜇 (·|ℎ𝑡). Since for the histories

ℎ𝑡 = (𝜔𝑖)
𝑡
𝑖=1 ∈ ℋ𝑡 where

∏︀𝑡
𝑖=1 𝜌𝑞 (𝜔𝑖) = 0 for all 𝑞 ∈ 𝑄 Bayesian updating does not

impose any restriction, the result follows. ■

Proof of Proposition 4. By Proposition 7, ≿ℎ admits an average robust control

representation (𝑢,𝑄, 𝜇 (·|ℎ) , 𝜆ℎ) for every ℎ ∈ ℋ. Observe that since the outcome

frequency is constant along the sequence (ℎ𝑡𝑛)𝑛∈N, by Lemma 2, 𝐿𝐿𝑅(ℎ𝑡𝑛 ,𝑄)
𝑡𝑛

= 1/𝑐 for

some 𝑐 ∈ R++ and for all 𝑛 ∈ N. Suppose by way of contradiction that

𝑙 : = lim inf
𝑛→∞

𝑐𝜆ℎ𝑡𝑛 = lim inf
𝑛→∞

𝜆ℎ𝑡𝑛

𝐿𝐿𝑅(ℎ𝑡𝑛 ,𝑄)
𝑡𝑛

< lim sup
𝑛→∞

𝜆ℎ𝑡𝑛

𝐿𝐿𝑅(ℎ𝑡𝑛 ,𝑄)
𝑡𝑛

= lim sup
𝑛→∞

𝑐𝜆ℎ𝑡𝑛
=: 𝐿.

Let 𝑞 ∈ 𝑄 be such that Ω × {𝜌𝑞} is nonnull and so that 𝑞 ∈ min𝑞∈𝑄𝑅
(︀
𝑝ℎ𝑡1 ||𝑞

)︀
.

Since Ω× {𝜌𝑞} contains at least three nonnull events, by Lemma 13, there is 𝐸 ⊆ 𝑊

and 𝑟 ∈ (0, 1) with 𝜌𝑞 (𝐸) = 𝑟. Let 𝑥, 𝑧 ∈ 𝑋, 𝛾*, 𝛾* ∈ (0, 1), and 𝜆*, 𝜆* ∈
(︀
𝑙
𝑐
, 𝐿
𝑐

)︀
be

such that 𝑥 ≻∅ 𝑧, 𝜆* > 𝜆*,

−𝜇 (𝑞) log (𝑟 exp (−𝜆* (𝑢 (𝑧))) + (1− 𝑟) exp (−𝜆* (𝑢 (𝑥))))
𝜇 (min𝑞∈𝑄𝑅 (𝑝ℎ𝑡1 ||𝑞))𝜆*

+

(︂
1− 𝜇 (𝑞)

𝜇 (min𝑞∈𝑄𝑅 (𝑝ℎ𝑡1 ||𝑞))

)︂
𝑢 (𝑧)

= 𝑢 (𝛾*𝑥+ (1− 𝛾*) 𝑧) ,
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and

−𝜇 (𝑞) log (𝑟 exp (−𝜆* (𝑢 (𝑧))) + (1− 𝑟) exp (−𝜆* (𝑢 (𝑥))))
𝜇 (min𝑞∈𝑄𝑅 (𝑝ℎ𝑡1 ||𝑞))𝜆*

+

(︂
1− 𝜇 (𝑞)

𝜇 (min𝑞∈𝑄𝑅 (𝑝ℎ𝑡1 ||𝑞))

)︂
𝑢 (𝑧)

= 𝑢 (𝛾*𝑥+ (1− 𝛾*) 𝑧) ,

where the existence of such 𝛾*, 𝛾* is guaranteed by 𝑢 being affine. Moreover, it is easy

to see that 𝛾* > 𝛾*. Consider a subsequence (𝑛𝑚)𝑚∈N such that

lim
𝑚→∞

𝑐𝜆ℎ𝑡𝑛𝑚 = 𝑙.

Moreover, let 𝑀 ∈ N be such that for all 𝑚 ≥𝑀

𝜆ℎ𝑡𝑛𝑚 <
𝜆* +

𝑙
𝑐

2
.

Similarly, let (𝑛�̃�)�̃�∈N such that

lim
�̃�→∞

𝑐𝜆ℎ𝑡𝑛�̃� = 𝐿.

Moreover, let �̃� ∈ N be such that for all �̃� ≥ �̃�

𝜆ℎ𝑡𝑛�̃� >
𝜆* + 𝐿

𝑐

2
.

With this, by Proposition 7 and Proposition 1.4.2 in Dupuis and Ellis (2011) we

have that for all 𝑚 ≥𝑀 and �̃� ≥ �̃�

𝛾
𝑥(𝐸×{𝜌𝑞})𝑧
≿

ℎ𝑡𝑛𝑚
> 𝛾* and 𝛾𝑥(𝐸×{𝜌𝑞})𝑧

≿
ℎ𝑡𝑛�̃�

< 𝛾*.

But this in turn implies that ≿ℎ𝑡𝑛𝑚 is never (𝑥, 𝑦, (𝐸 × {𝜌𝑞}) , (𝛾* − 𝛾*))-similar to

≿ℎ𝑡𝑛�̃�
for

min {𝑚, �̃�} ≥ max
{︁
𝑀, �̃�

}︁
,

a contradiction. This shows that either 𝜆ℎ𝑡𝑛
converges or it diverges to plus infinity.
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The last part of the statement immediately by taking 𝐸 in the first part of the proof

to be equal to the one whose existence is asserted in the statement, and by the

construction of 𝛾* and 𝛾* above. ■

Proof of Proposition 5. By Proposition 7 we know that each ≿ℎ admits an average

robust control representation (𝑢,𝑄, 𝜇 (·|ℎ) , 𝜆ℎ). Without loss of generality suppose

that 𝜇 ({𝑞} |∅) > 0 for all 𝑞 ∈ 𝑄. Let (ℎ𝑡𝑛)𝑛∈N ∈ ×𝑛∈NΩ
𝑡𝑛 be a equence of histories

with empirical frequency 𝜌 /∈ {𝜌𝑞 : 𝑞 ∈ 𝑄}. Observe that since the outcome frequency

is constant along the sequence (ℎ𝑡𝑛)𝑛∈N, by Lemma 2, 𝐿𝐿𝑅(ℎ𝑡𝑛 ,𝑄)
𝑡𝑛

= 𝑐 for some 𝑐 ∈ R++

and for all 𝑛 ∈ N. Suppose by way of contradiction that

𝐿 : = lim sup
𝑛→∞

𝐿𝐿𝑅 (ℎ𝑡𝑛 , 𝑄)

𝜆ℎ𝑡𝑛
𝑡𝑛

> 0. (33)

Since the state space is adequate there exist 𝑘 ∈ (0, 1) and (𝑊𝑞)𝑞∈𝑄 ∈
(︀
2Ω
)︀𝑄 such

that 𝜌𝑞 (𝑊𝑞) = 𝑘 for all 𝑞 ∈ 𝑄. Define 𝐸 = ∪𝑞∈𝑄 (𝑊𝑞 × {𝜌𝑞}). Let 𝑥, 𝑦 ∈ 𝑋 with

𝑥 ≻∅ 𝑦 and choose also 𝑧 ∈ 𝑋 such that 𝑥 ≻∅ 𝑧 ≻∅ 𝑦 and

− exp
(︁
−2

𝑐

𝐿
𝑢 (𝑧)

)︁
= −𝑘 exp

(︁
−2

𝑐

𝐿
𝑢 (𝑥)

)︁
− (1− 𝑘) exp

(︁
−2

𝑐

𝐿
𝑢 (𝑦)

)︁
where the existence of such 𝑧 is guaranteed by 𝑢 being affine and 𝑋 being convex.

Let 𝑓 ∈ ℱ be defined as 𝑓 = 𝑥𝐸𝑦. But then equation (33) implies that for infinitely

many 𝑛 ∈ N

𝑓 ≻ℎ𝑡𝑛
𝜌 𝑧

a contradiction with Asymptotic Concern for every 𝜌 ∈ {𝜌𝑞 : 𝑞 ∈ 𝑄}. ■

Proof of Proposition 6. By Proposition 7 we know that each ≿ℎ admits an average

robust control representation (𝑢,𝑄, 𝜇 (·|ℎ) , 𝜆ℎ) where

𝑞 ({𝜔, 𝜌𝑞}) = 𝜌𝑞 (𝜔) ∀𝑞 ∈ 𝑄,∀𝜔 ∈ Ω,

for some 𝜌𝑞 ∈ ∆(Ω). Without loss of generality suppose that 𝜇 ({𝑞} |∅) > 0 for all

𝑞 ∈ 𝑄. Consider a sequence of histories (ℎ𝑡𝑛)𝑛∈N with outcome frequency constant
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and not in {𝜌𝑞 : 𝑞 ∈ 𝑄}. Observe that since the outcome frequency is constant along

the sequence (ℎ𝑡𝑛)𝑛∈N, by Lemma 2, 𝐿𝐿𝑅(ℎ𝑡𝑛 ,𝑄)
𝑡𝑛

= 𝑐 for some 𝑐 ∈ R++ and for all

𝑛 ∈ N. Suppose by way of contradiction that

𝐿 : = lim inf
𝑛→∞

𝐿𝐿𝑅 (ℎ𝑡𝑛 , 𝑄)

𝜆ℎ𝑡𝑛
𝑡𝑛

∈ R. (34)

As the state space is adequate there exist 𝑘 ∈ (0, 1) and (𝑊𝑞)𝑞∈𝑄 ∈
(︀
2Ω
)︀𝑄 such that

for every 𝑞 ∈ 𝑄, 𝜌𝑞 (𝑊𝑞) = 𝑘. Let 𝑥, 𝑧 ∈ 𝑋 and 𝛾 ∈ (0, 1) be such that 𝑥 ≻∅ 𝑧 and

− ln

(︂
𝑘 exp

(︂
−𝑐𝑢 (𝑥)

2max {1, 𝐿}

)︂
+ (1− 𝑘) exp

(︂
−𝑐𝑢 (𝑧)

2max {1, 𝐿}

)︂)︂
=
𝑐 (𝑢 (𝛾𝑥+ (1− 𝛾) 𝑧))

2max {1, 𝐿}
,

where the existence of such 𝛾 is guaranteed by 𝑢 being affine, and 𝛾 < 𝑘. Define

𝐸 = ∪𝑞∈𝑄 (𝑊𝑞 × {𝜌𝑞}). Consider a subsequence (𝑛𝑚)𝑚∈N such that

lim
𝑚→∞

𝐿𝐿𝑅
(︀
ℎ𝑡𝑛𝑚

, 𝑄
)︀

𝜆ℎ𝑡𝑛𝑚
𝑡𝑛𝑚

= 𝐿.

Moreover, let 𝑀 be such that for all 𝑚 ≥𝑀

𝜆ℎ𝑡𝑛𝑚 /𝑐 >
1

2max {1, 𝐿}
.

With this, by Proposition 7 if we let ≥ be the subjective utility preference with

utility index 𝑢 and belief
∫︀
𝑄
𝑝d𝜇 (𝑞), we have that for all 𝑚 ≥𝑀

𝛾𝑥𝐸𝑧

≿
ℎ𝑡𝑛𝑚

< 𝛾 and 𝛾𝑥𝐸𝑧

≥ℎ𝑡𝑛𝑚
= 𝑘.

By Corollary 2, this contradicts Asymptotic Leniency as then ≿ℎ𝑡𝑛𝑚 and ≥ℎ𝑡𝑛𝑚 are

not (𝑥, 𝑦, 𝐸, 𝑘 − 𝛾)-similar for 𝑚 ≥𝑀 . ■

.1.3 General Statistical Distances

The results of the chapter that involve the statistically sophisticated type extend

easily to the case of an average of general divergence preferences (Cerreia-Vioglio,
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Hansen, Maccheroni, and Marinacci, 2022), i.e., to decision criteria of the form

∫︁
𝑄

min
𝑝∈Δ(𝑆)

E𝑝𝑎 [𝑢 (𝑎, 𝑦)] +
1

𝜆
𝐷𝜑 (𝑝𝑎||𝑞𝑎) d𝜇 (𝑞)

where

𝐷𝜑 (𝑝𝑎||𝑞𝑎) =

⎧⎨⎩
∫︀
𝜑
(︁

d𝑝𝑎
d𝑞𝑎

)︁
d𝑞𝑎 𝑞𝑎 ≫ 𝑝𝑎

∞ otherwise

for some continuous strictly convex function 𝜑 : R+ → R+ with

𝜑 (1) = 0 and lim
𝑡→∞

𝜑 (𝑡)

𝑡
= ∞.

From this expression, it is clear that the main case studied in the chapter is the one

where 𝜑 (𝑐) = 𝑐 log 𝑐 − 𝑐 + 1. The only caveat is that the best reply function 𝐵𝑅𝜆

must now be defined with respect to the relevant divergence.

.1.4 Computations supporting

Example 2

Observe that, compared Esponda and Pouzo (2016), we are adding (arbitrarily small)

noise 𝑙𝜀1 to the true tax schedule, fixing a problem in their original example. Indeed,

without this modification, the relative entropy between the true and conjectured

distribution is infinity for every model. We have

𝑅
(︀
𝑝*𝑎||𝑞𝜃𝑎

)︀
= const.

+

∫︁
R

∫︁
R

− exp
(︁
− (𝑡−𝜏(𝑎+𝜔𝑎))

2

2𝑙2

)︁
√
2𝜋

log

⎛⎜⎜⎝exp

(︂
−
(︁

𝑡
𝑎+𝜔𝑎

− 𝜃
)︁2
/2

)︂
√
2𝜋

⎞⎟⎟⎠ d𝑡d𝑝*𝑎 (𝜔𝑎)

= const. +
∫︁
R

∫︁
R

1√
2𝜋

exp

(︂
−𝜀

2
1

2

)︂(︂
𝜏 (𝑎+ 𝜔𝑎) + 𝜀1

𝑎+ 𝜔𝑎

− 𝜃

)︂2

/2d𝜀1d𝑝*𝑎 (𝜔𝑎)

= const. +
∫︁
R

∫︁
R

(︃
1√
2𝜋

exp

(︂
−𝜀

2
1

2

)︂(︃
−2

𝜏 (𝑎+ 𝜔𝑎) + (𝑙𝜀1)
2

𝑎+ 𝜔𝑎

𝜃 + 𝜃2

)︃)︃
/2d𝜀1d𝑝*𝑎 (𝜔𝑎)
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taking the FOC, we get

𝜃 = E𝑝*𝑎

[︂
𝜏 (𝑎+ 𝜔𝑎) + 𝑙2

𝑎+ 𝜔𝑎

]︂
and so 𝑄 (𝑎) ∼

{︁
𝑞E𝑝*𝑎 [

𝜏(𝑎+𝜔𝑎)
𝑎+𝜔𝑎

]
}︁

for small 𝑙. The condition for not switching from an

action 𝑎 to an action 𝑎′ with 𝑎 ≥ 𝑎′ in a Berk-Nash equilibrium in which the belief is

concentrated on 𝜃 is

E𝜔𝑎,𝜀2 [(𝑎− 𝑎′) (1− 𝜃 − 𝜀2)] = E𝜔𝑎,𝜀2 [(𝑎+ 𝜔𝑎) (1− 𝜃 − 𝜀2)]− E𝜔𝑎′ ,𝜀2
[(𝑎′ + 𝜔𝑎′) (1− 𝜃 − 𝜀2)]

≥ 𝑐 (𝑎)− 𝑐 (𝑎′) .

By Proposition 1.4.2 in Dupuis and Ellis (2011), the condition for not switching

from an action 𝑎 to an action 𝑎′ with 𝑎 ≥ 𝑎′ in a 𝑘-robust equilibrium in which the

belief is concentrated on 𝜃 is

−𝑘
𝑅 (𝑝*𝑎||𝑞𝜃𝑎)

logE𝜔𝑎,𝜔𝑎′ ,𝜀2

[︃
exp

(︃
𝑅
(︀
𝑝*𝑎||𝑞𝜃𝑎

)︀
[(𝑎′ + 𝜔𝑎′) (1− 𝜃 − 𝜀2)− (𝑎+ 𝜔𝑎) (1− 𝜃 − 𝜀2)]

𝑘

)︃]︃

=

E𝜔𝑎,𝜀2

[︂
exp

(︂
−𝑅(𝑝*𝑎||𝑞𝜃𝑎)(𝑎+𝜔𝑎)(1−𝜃−𝜀2)

𝑘

)︂]︂
E𝜔𝑎′ ,𝜀2

[︂
exp

(︂
−𝑅(𝑝*𝑎||𝑞𝜃𝑎)(𝑎′+𝜔𝑎)(1−𝜃−𝜀2)

𝑘

)︂]︂
=

−𝑘
𝑅 (𝑝*𝑎||𝑞𝜃𝑎)

logE𝜔𝑎,𝜔𝑎′ ,𝜀2

[︃
exp

(︃
−
𝑅
(︀
𝑝*𝑎||𝑞𝜃𝑎

)︀
(𝑎+ 𝜔𝑎) (1− 𝜃 − 𝜀2)

𝑘

)︃]︃

+
𝑘

𝑅 (𝑝*𝑎||𝑞𝜃𝑎)
logE𝜔𝑎,𝜔𝑎′ ,𝜀2

[︃
exp

(︃
−
𝑅
(︀
𝑝*𝑎||𝑞𝜃𝑎

)︀
(𝑎′ + 𝜔𝑎′) (1− 𝜃 − 𝜀2)

𝑘

)︃]︃
≥ 𝑐 (𝑎)− 𝑐 (𝑎′) .

Since E𝜔𝑎,𝜀2 [| (𝑎+ 𝜔𝑎) (1− 𝜃 − 𝜀2) |] and E𝜔𝑎′ ,𝜀2
[| (𝑎′ + 𝜔𝑎′) (1− 𝜃 − 𝜀2) |] are finite, by

Jensen inequality (see 10.2.6 in Dudley, 2018 for the version that applies here) the

LHS is lower in the second case, and we obtain the desired conclusion.
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Example 3

The condition for not switching from action 0 to an action 𝑎 with 𝑎 ≥ 0 in a Berk-Nash

equilibrium is

𝑝*𝑎 (𝑠 ≤ 𝑎)
(︀
E𝑝*𝑎 (𝑣)− 𝑎

)︀
≤ 0.

By Proposition 1.4.2 in Dupuis and Ellis (2011), the condition for not switching from

action 0 to an action 𝑎 with 𝑎 ≥ 0 in a 𝑘-robust equilibrium is

− 𝑘

𝑅 (𝑝*𝑎||𝑞𝑎)
log

∫︁
R

∫︁
R
exp

(︂
−𝑅 (𝑝*𝑎||𝑞𝑎)

𝑘
[𝑣 − 𝑎] I[0,𝑎] (𝑠)

)︂
d𝑝*𝑎 (𝑠) d𝑝*𝑎 (𝑣) ≤ 0.

Since E𝑝*𝑎 (|𝑣|) < ∞, by Jensen inequality (see 10.2.6 in Dudley, 2018 for the version

that applies here) the LHS is lower in the second case, and we obtain the desired

conclusion.

Example of Dynamic Incosistency

Example 4. To provide a simple illustration of dynamic inconsistency, we consider

the two-period truncated problem. An urn contains black (𝑏) or green (𝑔) balls. At

each time 𝑡, the DM is asked to bet 1 dollar on the color of the ball drawn from the urn

or to opt-out (𝑜) and observe the drawn with a payoff of 0.5. That is, 𝑢 (𝑎, 𝑦) = 𝐼{𝑎=𝑦}

if 𝑎 ∈ {𝑏, 𝑔} and 𝑢 (𝑜, 𝑦) = 0.6. Suppose that at period 0, the level of concern for

misspecification is Λ (ℎ0) = 0 and that the agent considers two models, 𝑞, 𝑞′, that

assign respectively probability 0.7 and 0.3 to the black ball, independently of the agent

action. The prior 𝜇 assigns equal probability to these two models.

To illustrate the possibility of dynamic inconsistencies of a forward-looking agent,

we introduce a discount factor equal to 𝛿 = 0.9 and suppose that Λ ((0, 𝑏)) = 2. In this

case, at time 0, the decision maker would like to commit to the following plan: opt-out

in the first period and then, in the second period, bet on the color of the ball drawn

in the first period. However, the increase in concern for misspecification created by

the observation of the black drawn makes this plan not feasible: at history (0, 𝑏), the
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agent will opt out again.
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Appendix A

Correlation Made Simple

A.1 Introduction

Correlation between risky alternatives can play a significant role in decisions. First,

it may be relevant because the Decision Maker (henceforth DM) cares about what

she would have received had she chosen differently, a channel emphasized by regret

theory. For example, an agent who has decided not to invest part of her resources

in stocks the day before a press release by the Fed may be better off if the market’s

effect is negative since she does not suffer for the foregone opportunity.

Second, the correlation structure can determine the attention and weight that the

DM allocates to the various contingencies, as emphasized by salience theory. For

example, when deciding whether to purchase comprehensive car insurance, the (un-

likely) event in which the car is destroyed in a crash may disproportionately attract

the DM’s attention due to the vast difference between the two alternatives’ conse-

quences. In this chapter, we study these possibilities from an axiomatic perspective.

We provide a simple axiomatization for a general class of correlation-sensitive

preferences. The motivation is two-fold. First, we show that our general framework

nests the recent models that highlight the role of correlation (see, e.g., Bordalo,

Gennaioli, and Shleifer, 2012, henceforth BGS, and Koszegi and Szeidl, 2013) as

particular cases so that we can characterize them in terms of additional testable

axioms. The study of these axioms lets us understand better where they depart from
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the preexisting theories. Second, we use this axiomatization to provide new insights

into the difference between classical models for which correlation is relevant (see Bell,

1982, Loomes and Sugden, 1982, Fishburn, 1989) and the benchmark model for choice

under risk, expected utility (henceforth EU).

We accomplish these goals by taking a different route than those followed in the

usual axiomatizations of correlation-sensitive preferences.1 We represent the prefer-

ences of the DM in the space of lotteries. In doing so, we face a complication: when

the correlation between alternatives matters, binary relations over lotteries are not

sufficiently rich as modeling tools. To see why, suppose that we have the two lotteries

𝑝 =
(︀
10, 1

3
; 5, 1

3
; 0, 1

3

)︀
and 𝑞 =

(︀
10, 1

3
; 4, 1

3
; 1, 1

3

)︀
, and consider the following two possible

correlation structures:

𝜋 1 4 10

0 0 1/3 0

5 0 0 1/3

10 1/3 0 0

𝜋′ 1 4 10

0 0 0 1/3

5 1/3 0 0

10 0 1/3 0

Both the joint distributions 𝜋 and 𝜋′ have marginal distributions 𝑝 and 𝑞. However,

we will see that a salience-sensitive DM may strictly prefer 𝑝 under the first correlation

structure (driven by the salient realization (10, 1)) and 𝑞 under the second correlation

structure (driven by the salient realization (0, 10)). Therefore, the classical approach

of describing the DM’s tastes using a binary relation over lotteries is not viable since

the DM cannot rank 𝑝 and 𝑞 without additional information about their joint distri-

bution. Indeed, applied researchers (e.g., Smith 1996, Braun and Muermann, 2004,

Filiz-Ozbay and Ozbay, 2007) have shown that in various economically significant

situations as auctions, insurance decisions, and health interventions, the correlation

between lotteries impacts choices.

Instead of using a binary relation, we use the preference set concept introduced by

Fishburn (1990a):2 Given a fixed set of possible outcomes 𝑋, tastes are represented
1See, e.g., Fishburn (1989), Sugden (1993), and Diecidue and Somaundaram (2017). All these papers
represent the preferences as a binary relation over acts à la Savage.

2Fishburn (1990a) introduces the concept of preference sets for intransitive preferences over multi-
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by a preference set Π ⊆ ∆(𝑋 ×𝑋), with the following interpretation. The DM

contemplates a joint distribution 𝜋 over 𝑋 × 𝑋. Facing this joint lottery, the DM

decides if, given the marginals and the correlation structure, she prefers to be paid

according to the realized row or column outcome.3 Then, we say that 𝜋 belongs to

the preference set Π if and only if the DM prefers to be paid according to the row

outcome. In our previous example, we have 𝜋 ∈ Π, and 𝜋′ /∈ Π.

There are several motivations for this modeling choice. On a theoretical side,

it avoids introducing an ancillary state-space and provides a clear comparison with

expected utility. If we want to test the theory, having an axiomatization for the

case of choice under risk, instead of one for acts defined over a state space in which

probabilities are not specified, allows us to disentangle violation of the axioms at

the cornerstone of our correlation sensitive theory from the ubiquitous failures in

formulating a unique, coherent probability measure over the states of the world.

The second motivation comes from our salience theory application. Indeed, BGS

define their preferences on the joint distributions of two alternative random variables,

and the correlation is part of the data exactly as under our proposed approach.

Moreover, the subsequent experimental papers consider choices between lotteries,

where the only state space is the one defined as the space of all the possible joint

realizations of the two lotteries under scrutiny.4 Therefore, axioms stated in terms of

joint lotteries are more natural to map into the BGS model, and they can be directly

challenged by the existing experimental evidence on the model. Finally, under the

alternative state-space formulation, the characterization of the salience properties

postulated by BGS is much more demanding in terms of the underlying state space’s

structural properties.

We first identify three axioms on the preference set Π necessary and sufficient to

attribute products and applies it to choices between acts in Fishburn (1990b). To the best of our
knowledge, this is the first work in which preference sets are used to axiomatize preferences under
risk.

3As we can always represent a joint distribution in the tabular form used above, we will refer to the
first and second marginal respectively as the row and column marginals.

4For the experimental tests of salience theory, see Dertwinkel-Kalt and Köster (2020), Frydman and
Mormann, (2017), Konigsheim, Lukas, and Noth (2019), Dertwinkel-Kalt, Frey, and Koster (2021)
Nielsen, Sebald, and Sorensen (2021).
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obtain a representation for correlation-sensitive preferences. This representation in-

cludes regret and salience theory as particular cases. These axioms are Completeness,

Strong Independence, and Archimedean Continuity, and they are equivalent to the

correlation-sensitive representation

𝜋 ∈ Π ⇔
∑︁
𝑥,𝑦

𝜑 (𝑥, 𝑦) 𝜋 (𝑥, 𝑦) ≥ 0

where 𝜑 is skew-symmetric. Here, 𝜑 (𝑥, 𝑦) corresponds to how much the joint realiza-

tion (𝑥, 𝑦) contributes in favor of the row marginal. That is, we have 𝜑 (𝑥, 𝑦) ≥ 0 if

and only 𝑥 is preferred to 𝑦, and larger values imply a comparison more favorable to 𝑥.

Under expected utility, 𝜑 (𝑥, 𝑦) reduces to the separable form 𝑢 (𝑥)− 𝑢 (𝑦), but more

generally (e.g., in the salience model), the two components are entangled. Indeed,

how much attention an outcome 𝑥 attracts may depend on how much it contrasts

with the counterfactual realization 𝑦. The skew symmetry of 𝜑 means that the “row”

and “column” labeling are irrelevant: 𝜑 (𝑥, 𝑦) = −𝜑 (𝑦, 𝑥), so that the contribution of

the joint realization (𝑥, 𝑦) in favor of the row component is equal to the contribution

of (𝑦, 𝑥) to the column component. We show that these axioms are mild relaxations of

their more familiar counterparts for binary relations and that if Transitivity is added,

the representation reduces to EU.

After weakening the EU axioms to allow for this more general correlation-sensitive

representation, we look for the additional axioms needed to characterize the partic-

ular case of salience theory. BGS’s salience model provides a theory of choice under

risk based on few psychological properties of salience detection: Ordering, Diminish-

ing Sensitivity, and Weak Reflexivity. Most importantly, Ordering prescribes that

joint realizations in which the two components are farther apart are overweighted. In

addition, there is Diminishing Sensitivity to the differences between the components

as their absolute values increase. At the same time, Weak Reflexivity can be loosely

paraphrased as the requirement that the salience ranking between two joint realiza-

tions that only involve gains remains the same if all the gains are transformed into

losses of the same size.
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A payoff of our preference sets setup is that it allows us to state and characterize

the testable versions of these properties in a straightforward manner. We also find

that Ordering is the property that brings salience theory outside the prospect the-

ory realm—instead, Diminishing Sensitivity and Weak Reflexivity combined amount

to the usual risk-aversion in gains, risk-loving in loss property featured by prospect

theory. We then characterize the salience model as the result of the Ordering, Di-

minishing Sensitivity, and Weak Reflexivity axioms combined with continuity and

monotonicity requirements.

We also provide a partial solution to the problem of choice between multiple

alternatives. A DM with correlation-sensitive preferences may not have an alternative

that is weakly preferred to all the others when facing a set of at least three options.

However, we prove that an optimal stochastic choice rule always exists.

Related Literature This chapter belongs to the literature studying the axiomati-

zation of correlation-sensitive models of choice. This literature starts with the classi-

cal works of Fishburn (1989), Sugden (1993), and Quiggin (1994). Recently, Diecidue

and Somasundaram (2017) significantly improve the regret model’s previous repre-

sentation, providing an axiomatization that delivers a continuous regret function on

an arbitrary finite state space. Their main conceptual contribution is to single out

the axioms for the more restrictive version of regret theory initially formulated by

Loomes and Sugden (1982) and separate the edonic utility from the regret function.

In this sense, their work is complementary to ours. In the first part of the chapter,

we want to axiomatize the more general form of correlation-sensitive preferences to

characterize later regret theory and salience theory as particular cases of this model.

Fishburn (1990b) uses preference sets to provide an axiomatization of the Skew-

Symmetric Additive (SSA) model. On a technical side, the object on which the

preferences are defined is different: Fishburn defines the preference sets as subsets

of the space of acts with two outcomes, whereas we focus on joint distribution over

outcomes. Notice that by letting the preference sets being a subset of the multivari-

ate acts, Fishburn (1990b) faces the general disadvantages discussed above: potential
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confusion with ambiguity aversion, axioms that are sufficient for the representation

but not necessary, more difficult comparison with EU, and a more relevant depar-

ture from the version of the model that has been experimentally tested.5 These

disadvantages become even more relevant in our salience theory application: first,

the additional properties characterizing salience theory as a particular case become

much more involved under the act formulation. Second, generalizations that build on

our axiomatization to combine salience theory for consumption and risk (see Köster,

2021) cannot be conciliated with the “structure axiom” needed in Fishburn (1990b),

therefore limiting the scope of his axiomatization.

Fishburn (1982) axiomatizes the class of SSB preferences over the space of lotteries.

With these preferences, each alternative’s realization has a value that depends on all

the possible realizations of the other alternative. When restricted to the comparison

between independent lotteries, the two models coincide.6 In this sense, Theorem 4

provides an alternative set of axioms for the SSB model. More importantly, the two

models are highly different in their predictions about correlation. Fishburn (1982)

explicitly rules out any correlation effect, and so it excludes the salience model, where

significantly different joint realizations attract the attention of the DM and imposes

an awkward structure on the regret model.7 Farther afield, the quadratic preferences

of Chew, Epstein, and Segal (1991) and the reference-dependent model of Koszegi

and Rabin (2007) also use of a joint evaluation of outcomes, although they do not

allow for correlation sensitivity and satisfy Transitivity.

5Among other things, the state space has to be atomless, a property at odds with the small finite set
of joint realizations used as the state space in BGS. Moreover, the use of atomless state space in the
classical axiomatizations of correlation-sensitive preferences is particularly unsatisfactory since it is
a direct consequence of what Fishburn (1990b) calls axiom P6*. This axiom is made for technical
convenience but is not necessary for the representation. Therefore, such a richness of the space is
not an intrinsic feature of the model but more the result of a technically convenient assumption.

6However, when Transitivity is imposed in the two models, the implications are different. Since
by definition of the domain of preferences in the SSB model Transitivity can only be imposed on
independent distributions, SSB reduces to the weighted utility model of Chew (1983), see Theorem 3
in Fishburn (1983). Instead, when I impose Transitivity of the marginal regardless of the correlation
structure, I obtain the Expected Utility model, as in Bikhchandani and Segal (2011). I thank Chew
Soo Hong for pushing me to explore this additional difference.

7For example, the form of regret compatible with the SSB model requires that when choosing not to
bet on a horse in a race, the DM must feel regret for the foregone possibility of a significant payoff,
regardless of whether the horse wins the race.
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This work is the first to axiomatize the salience theory of choice under risk. Ellis

and Masatioglu (2021) provide an axiomatization of the salience theory of consump-

tion (Bordalo, Gennaioli, and Shleifer, 2013). They focus on the rank-dependent

version of the salience model, while we focus on the continuous version. Herweg and

Muller (2021) provide a comparison between salience and regret theory, arguing that

the former can be interpreted as a particular case of the latter, but they do not

identify the axioms underlying the representation.

Outline The rest of the chapter is structured as follows. Section A.2 introduces

preference sets. Then, in Section A.3 we describe the weakening of EU that is nec-

essary to capture sensitivity to correlation, while in Section A.4 we provide the addi-

tional axioms characterizing salience theory. All the proofs of the results in the main

text are in Supplementary Appendix A.6. Supplementary Appendix A.7 establishes

the formal connection between axioms stated for preference sets and their counter-

parts in terms of binary relations. Supplementary Appendix A.8 extends the model

to choice from nonbinary subsets. Finally, Supplementary Appendix A.9 studies the

rank-based version of salience theory.

A.2 Preference Sets

Let𝑋 be an arbitrary nonempty set of outcomes (or prizes), and denote as ∆(𝑋 ×𝑋)

the set of (joint) probability measures over 𝑋×𝑋 with finite support. We model the

DM preferences by a subset Π (called preference set) of ∆(𝑋 ×𝑋). The interpre-

tation is that the DM faces a 𝜋 ∈ ∆(𝑋 ×𝑋), and she has to decide whether to be

paid according to the row or column outcome. Then, we say that 𝜋 ∈ Π if and only

if she (weakly) prefers to be paid according to the row outcome. The fact that the

knowledge of the marginal 𝜋1 and 𝜋2 may be insufficient to determine whether 𝜋 ∈ Π

is the deviation from the standard paradigm of rational choice.
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A.2.1 Eliciting Preference Sets

Here is a roadmap of how to test axioms imposed on the preference set. The DM

faces a finite-support joint distribution 𝜋 over prizes that a table can summarize:

𝜋 𝑦1 ... 𝑦𝑚

𝑥1 𝜋11 ... 𝜋1𝑚

... ... ... ...

𝑥𝑛 𝜋𝑛1 ... 𝜋𝑛𝑚

That is, the DM knows that every pair of outcomes (𝑥𝑖, 𝑦𝑗) realizes with probability

𝜋𝑖𝑗. Then, given the correlation structure between the two alternatives, the subject

chooses between being paid according to the row prizes (the 𝑥’s) or the column prizes

(the 𝑦’s). If she chooses to be paid according to the rows (resp. the columns), if

outcome (𝑥𝑖, 𝑦𝑗) realizes she gets 𝑥𝑖 (resp. 𝑦𝑗) regardless of the value of 𝑦𝑗 (resp. 𝑥𝑖).8

A joint distribution belongs to the preference set if, when faced, the DM chooses

to be paid according to the row prizes. The typical axioms we impose on preference

sets have the form “if 𝜋 ∈ Π then 𝜋′ belongs to Π,” where 𝜋′ has some particular

relation with 𝜋.

A.2.2 Preference Sets and Binary Relations

For every joint distribution 𝜋 ∈ ∆(𝑋 ×𝑋), we denote as 𝜋1 ∈ ∆(𝑋) and 𝜋2 ∈ ∆(𝑋),

respectively, the row and column marginals of 𝜋. Formally:

𝜋1 (𝑥) =
∑︁
𝑦∈𝑋

𝜋 (𝑥, 𝑦) and 𝜋2 (𝑦) =
∑︁
𝑥∈𝑋

𝜋 (𝑥, 𝑦) .

Notice that a binary relation ≿ over marginal distributions induces a unique pref-

erence set Π≿ that contains a joint distribution if and only if the row marginal is

preferred to the column according to ≿.

8Our theory is silent about the information revealed to the subject after a joint outcome (𝑥, 𝑦) is
drawn. One may expect that the behavior may differ, whether only the component paid out to the
DM or the joint realization is revealed.
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Definition 12. The preference set Π≿ induced by a binary relation ≿ is defined as

𝜋 ∈ Π≿ ⇔ 𝜋1 ≿ 𝜋2.

It is easy to see that two different binary relations induce different preference sets,

so no information is lost by describing the DM’s tastes using preference sets rather

than binary relations. Also, every preference set induces a (possibly incomplete)

binary relation over marginal distributions.

Definition 13. The binary relation ≿Π induced by a preference set Π is defined as

𝑝 ≿Π 𝑞 ⇔ (∀𝜋 ∈ ∆(𝑋 ×𝑋) : (𝜋1, 𝜋2) = (𝑝, 𝑞) , 𝜋 ∈ Π) .

Requiring 𝑝 ≿Π 𝑞 ensures that all the joint distributions with those marginals

are in the preference set (i.e., 𝑝 has to be preferred to 𝑞 regardless of their correla-

tion structure). Of course, when ≿Π is complete, it describes the DM’s tastes fully.

However, ≿Π may not be complete for a correlation-sensitive DM. In this case, the

patterns of behavior that can be described using preference sets are much richer than

those for binary relations.9

A.3 General Representation Theorem

We first define the general form of risk preferences we are interested in. Recall that

a function 𝜑 : 𝑋 ×𝑋 → R is skew symmetric if 𝜑 (𝑥, 𝑦) = −𝜑 (𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋.

Definition 14. A preference set Π admits a correlation-sensitive representation if

there exists a skew-symmetric 𝜑 : 𝑋 ×𝑋 → R such that for all 𝜋 ∈ ∆(𝑋 ×𝑋)

𝜋 ∈ Π ⇔
∑︁
𝑥,𝑦

𝜑 (𝑥, 𝑦) 𝜋 (𝑥, 𝑦) ≥ 0. (A.1)

9Lemma 15 in the Supplementary Appendix shows that for every binary relation ⪰, the binary
relation ≿Π⪰coincides with ⪰. A weaker notion of ≿Π would have replaced “for all 𝜋” with “for
some 𝜋” in its definition. Proposition 8 shows that our definition is more fruitful.
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To better understand this representation, it is helpful to compare it with expected

utility. Let 𝜋 ∈ ∆(𝑋 ×𝑋). Under EU, there exists a utility function 𝑢 such that

𝜋1 ≿ 𝜋2 ⇔
∑︁
𝑥

𝑢 (𝑥) 𝜋1 (𝑥) ≥
∑︁
𝑦

𝑢 (𝑦) 𝜋2 (𝑦) (A.2)

⇔
∑︁
𝑥,𝑦

(𝑢 (𝑥)− 𝑢 (𝑦))𝜋 (𝑥, 𝑦) ≥ 0. (A.3)

Given these equivalences, the difference between EU and the correlation-sensitive rep-

resentation can be described in the following way. In principle, when contemplating a

joint lottery 𝜋, two algorithmic procedures can determine according to which compo-

nent to be paid. The first algorithm is the following: (i) Take marginal 𝜋1. Consider

the utility obtained under each realization. Aggregate these utilities according to the

probability measure 𝜋1 to get a “score” 𝑈 (𝜋1) =
∑︀

𝑥 𝑢 (𝑥) 𝜋1 (𝑥). Note that this score

is independent of 𝜋2. (ii) Follow the same procedure for marginal 𝜋2. (iii) Compare

these scores obtained for the two alternatives, and choose to be paid according to the

row outcome if and only if 𝑈 (𝜋1) ≥ 𝑈 (𝜋2). There is no role for correlation between

the two marginal distributions under this procedure. This procedure consists of a

comparison of aggregations, and in the case of EU is given by (A.2).

Alternatively, one may consider the following procedure: (i) Take a possible joint

realization (𝑥, 𝑦). Compare the two prizes and give a score 𝜑 (𝑥, 𝑦), representing

a combination of how much 𝑥 is preferred to 𝑦 and the attention diverted to that

realization, with 0 meaning indifference or zero attention. (ii) Do the same for every

joint realization. (iii) Aggregate all these comparisons according to the probability

measure 𝜋 obtaining Φ (𝜋) =
∑︀

𝑥,𝑦 𝜋 (𝑥, 𝑦)𝜑 (𝑥, 𝑦). (iv) Choose to be paid according

to the row outcome if and only if Φ (𝜋) ≥ 0.

This aggregation of comparisons allows for correlation to matter. It is the kind

of reasoning that characterizes both regret and salience-sensitive DMs, and for EU

it corresponds to line (A.3). The pioneering works by Bell (1982) and Loomes and

Sugden (1982) already recognize the descriptive and normative value of this procedure.

However, under expected utility, aggregation of comparisons reduces to 𝜑 (𝑥, 𝑦) =
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𝑢 (𝑥)−𝑢 (𝑦), which makes correlation irrelevant because, for an EU agent, the value of

receiving 𝑥 is 𝑢 (𝑥) independent of the realization of the counterfactual. Therefore, in

this case, the two algorithms reach the same conclusion. We formalize this reasoning

in the following definition.

Definition 15. A preference set Π admits an expected utility representation if there

exists 𝑢 : 𝑋 → R such that

𝜋 ∈ Π ⇐⇒
∑︁

(𝑥,𝑦)∈𝑋×𝑋

(𝑢(𝑥)− 𝑢(𝑦))𝜋 (𝑥, 𝑦) ≥ 0. (A.4)

Instead, our first step is to provide a set of axioms that characterize the general

correlation-sensitive representation for a (possibly) nonseparable 𝜑. We will call these

axioms Completeness, Strong Independence, and Archimedean Continuity after the

names of the standard axioms for binary relations they resemble. In Supplementary

Appendix A.7, we show formally how each of the axioms for preference sets is a

weakening of the original one that only applies to joint distributions and that they

coincide when Transitivity is satisfied.

Before going further, a piece of notation is needed. Given 𝜋 ∈ ∆(𝑋 ×𝑋), we

define its conjugate distribution �̄� as

∀ (𝑥, 𝑦) ∈ 𝑋 ×𝑋 �̄� (𝑥, 𝑦) = 𝜋 (𝑦, 𝑥) .

Therefore, the conjugate distribution is just a relabeling of the row and column out-

comes into each other.

Axiom 11 (Completeness). For all 𝜋 ∈ ∆(𝑋 ×𝑋)

𝜋 /∈ Π ⇒ �̄� ∈ Π.

Completeness is a minimal requirement about the rationality of the DM. If she

prefers to be paid according to the column marginal when the joint distribution is

𝜋, she (weakly) prefers to be paid according to the row marginal after relabeling row
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outcomes into column ones and vice-versa.

Given a preference set Π ⊆ ∆(𝑋 ×𝑋), the strict preference set is defined as

Π̂ = {𝜋 ∈ Π : �̄� /∈ Π} .

In words, a joint distribution 𝜋 is in the strict preference set if the DM weakly prefers

to be paid according to the row outcome (i.e., 𝜋 ∈ Π), and she does not prefer to

be paid according to the column outcome (i.e., �̄� /∈ Π). It is the counterpart of the

asymmetric part of a binary relation in the language of preference sets. We use the

strict preference set in our second axiom. This axiom is a generalization to intransitive

preferences of the standard principle of reduction for compound lotteries. If there are

two joint distributions 𝜋 and 𝜋′ such that under each of them the DM prefers to

be paid according to the row outcome, it then seems reasonable she prefers to be

paid according to the row outcome even if the joint distribution that is going to be

used is 𝜋 with probability 𝛼 and 𝜋′ with probability (1− 𝛼). The preference is strict

whenever one of the initial preferences is.

Axiom 12 (Strong Independence). For all 𝜋, 𝜋′ ∈ Π, and all 𝛼 ∈ (0, 1)

𝛼𝜋 + (1− 𝛼) 𝜋′ ∈ Π.

Moreover, if 𝜋′ ∈ Π̂, then

𝛼𝜋 + (1− 𝛼) 𝜋′ ∈ Π̂.

The difference between the previous axiom and the standard Strong Independence

for binary relations can be understood in the setting of the Allais Paradox.

Example 5. Recall that in the Allais paradox, the marginal distributions faced by the

DM are

𝑝 = (2500, 0.33; 0, 0.01; 𝑧, 0.66)

𝑞 = (2400, 0.34; 𝑧, 0.66)
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for 𝑧 ∈ {0, 2400}. It is immediate to see that the Strong Independence axiom for

binary relations implies that the choice of the DM does not depend on the particular

value of 𝑧. The conclusion is more nuanced for our Strong Independence axiom.

Indeed, the version of the Allais paradox in which the alternatives are independent

corresponds to the joint distribution

𝜋𝑖𝑛𝑑,𝑧 2400 𝑧

2500 0.1122 0.2178

0 0.0034 0.0066

𝑧 0.2244 0.4356

Here, Strong Independence formulated as above does not impose cross-restrictions

for the behavior with different values of 𝑧. Therefore it accommodates the widely

documented pattern that for most of the DMs, 𝜋𝑖𝑛𝑑,0 ∈ Π and 𝜋𝑖𝑛𝑑,2400 /∈ Π. Instead,

the correlated version of the Allais paradox corresponds to the joint distribution

𝜋𝑐𝑜𝑟,𝑧 2400 𝑧

2500 0.33 0

0 0.01 0

𝑧 0 0.66

Here, Strong Independence formulated as above has bite: it requires that 𝜋𝑐𝑜𝑟,0 ∈ Π

if and only if 𝜋𝑐𝑜𝑟,2400 ∈ Π. This is consistent with the empirical evidence in BGS,

which shows how almost all the subjects do not change behavior when 𝑧 changes in

the correlated version of the problem. ▲

The example above highlights how preference sets allow us to disentangle two

components of Strong Independence for binary relations: the sure-thing principle and

probabilistic sophistication. The sure-thing principle is the part that is maintained

by Strong Independence for preference sets, as realizations where the two alternatives

pay the same are irrelevant for the evaluation. Instead, probabilistic sophistication

requires that the marginal distributions are sufficient for the comparison, and there-
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fore identical realizations can be canceled out even if they do not realize jointly. This

probabilistic sophistication is not imposed by Strong Independence for preference sets.

Finally, we impose a weak continuity axiom guaranteeing the nonexistence of a

joint distribution such that one marginal is “infinitely preferred” to the other.

Axiom 13 (Archimedean Continuity). For all 𝜋 ∈ Π̂, 𝜋′ /∈ Π, there exist 𝛼, 𝛽 ∈ (0, 1)

such that

𝛼𝜋 + (1− 𝛼) 𝜋′ ∈ Π̂ and 𝛽𝜋 + (1− 𝛽) 𝜋′ /∈ Π.

The following theorem provides a representation of the preference sets satisfying

these three axioms.

Theorem 4. A preference set Π satisfies Completeness, Strong Independence, and

Archimedean Continuity if and only if Π admits a correlation-sensitive representation.

Moreover, the representing 𝜑 is unique up to a positive linear transformation.

The theorem’s proof combines the standard techniques used to prove the vN-M

theorem with those used to deal with preference sets (see Fishburn 1990a) and in-

transitive preferences over acts (see Fishburn 1989). The theorem’s importance stems

from the fact that it connects a subset of the EU axioms to a general representation

sensitive to the alternatives’ correlation. Moreover, the value 𝜑(𝑥, 𝑦) has a cardinal

interpretation as the contribution of the joint outcome (𝑥, 𝑦) in favor of the row dis-

tribution. This cardinal role is the reason why the representing 𝜑 is unique up to a

positive linear transformation.10

The representation still meaningfully restricts the pattern of behavior of the DM.

To begin, if the joint distribution 𝜋 is such that the row distribution dominates

realization by realization the column distribution, then the joint distribution must

be in the preference set, that is, if for all (𝑥, 𝑦) ∈ supp𝜋, 𝛿(𝑥,𝑦) ∈ Π, then 𝜋 ∈

Π.11 Moreover, Section A.3.1 shows that the conclusion can be strengthened from
10It may be interesting to explore a decision criterion that treats the two distributions asymmetrically

because the row one is the status quo. We illustrate this possibility in Section A.4.5 where we
compare the correlation sensitive representation to the reference-dependent model of Koszegi and
Rabin (2007). Note that if the preference set admits a correlation-sensitive representation, by
Theorem 1 of Fishburn (1982) the function 𝜑 is determined by the independent joint distributions.

11We denote as 𝛿(𝑥,𝑦) the joint lottery such that with probability one, the row outcome is 𝑥, and the
column outcome is 𝑦.
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realization by realization dominance to first-order stochastic dominance if the two

lotteries under consideration are independent.

As the names of the previous axioms suggest, when the Transitivity axiom is

added, the correlation-sensitive representation reduces to EU. Proposition 8 shows

that this interpretation is correct. To do so, we need to translate Transitivity into

the language of preference sets.

Axiom 14 (Transitivity). For all 𝜋, 𝜒, 𝜌 ∈ ∆(𝑋 ×𝑋), if 𝜋2 = 𝜒1, 𝜌1 = 𝜋1, and

𝜌2 = 𝜒2, then

(𝜋 ∈ Π, 𝜒 ∈ Π) ⇒ 𝜌 ∈ Π.

The axiom has the following interpretation: Since 𝜋 ∈ Π, 𝜋1 = 𝜌1 is preferred to

𝜋2 = 𝜒1 (given the correlation structure described by 𝜋). Since 𝜒 ∈ Π, 𝜒1 = 𝜋2 is

preferred to 𝜒2 = 𝜌2 (given the correlation structure described by 𝜒). For Transitivity

to hold, we then need that 𝜌1 is preferred to 𝜌2, i.e., 𝜌 ∈ Π.

Example 6. The following three joint distributions illustrate a typical failure of Tran-

sitivity due to salience sensitivity. By changing the correlation structure between al-

ternatives, the realization with the most striking difference between outcomes changes,

reversing the comparison between a fixed marginal and two similar alternatives. Let

𝜋 7 2

10 0 1
4

5 1
2

0

0 0 1
4

𝜒 8 1

7 1/2 0

2 0 1/2

𝜌 8 1

10 1/4 0

5 0 1/2

0 1/4 0

we will see that for a salience sensitive DM, it is reasonable to have 𝜋 ∈ Π, 𝜒 ∈ Π, and

𝜌 /∈ Π. Indeed, in 𝜋 the large difference in the realization (10, 2) tilts the evaluation in

favor of the row marginal, and in 𝜌 the large difference in the realization (0, 8) tilts the

evaluation in favor of the column marginal. Moreover, the property of Diminishing

Sensitivity implies that 𝜒 ∈ Π.

The following result proves that when Transitivity is added to the previous axioms,
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the decision criterion reduces to expected utility maximization, confirming a similar

conclusion obtained by Bikhchandani and Segal (2011) in a slightly different setting.

Proposition 8. If Π admits a correlation-sensitive representation then the following

are equivalent:

1. Π satisfies Transitivity;

2. ≿Π admits an expected utility representation.

The intuition behind the additional strengthening imposed by Transitivity on

the correlation-sensitive representation is the following. Since the preference set is

complete, the representing 𝜑 must be skew symmetric, and imposing Archimedean

Continuity and Strong Independence ensures that probabilities are correctly taken

into account. However, only when Transitivity is added the alternatives are valued

independently.

A.3.1 Monotonicity and Continuity

Since salience theory is defined for lotteries with monetary outcomes, from now on,

we will focus on the case where 𝑋 = R endowed with the usual topology. In this

setting, we discuss using preference sets to axiomatically describe standard regularity

conditions for the representing function, such as monotonicity and continuity.

Axiom 15 (Monotonicity). For all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝜋 ∈ ∆(𝑋 ×𝑋), if 𝑥 > 𝑦 and

𝛼 ∈ (0, 1), then

𝛼𝛿(𝑦,𝑧) + (1− 𝛼) 𝜋 ∈ Π ⇒ 𝛼𝛿(𝑥,𝑧) + (1− 𝛼) 𝜋 ∈ Π̂.

Since we do not, in general, impose Transitivity, our monotonicity axiom slightly

departs from the usual one: it requires that whenever 𝑥 is strictly larger than 𝑦, 𝑥 is

more favorably compared than 𝑦 to every alternative 𝑧. Given a correlation-sensitive

representation, Monotonicity is easily characterized in terms of 𝜑.
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Remark 1. If Π admits a correlation-sensitive representation, Π satisfies Monotonic-

ity if and only if 𝜑 is strictly increasing in the first argument and strictly decreasing

in the second argument.

Before proceeding with salience theory, a few observations about the connection

between first-order stochastic dominance (FOSD) and Monotonicity in the general

correlation sensitive representation are in order. It is worth noting that Monotonicity

is not enough to guarantee that the preference set Π satisfies first-order stochastic

dominance, where the latter is defined as the requirement that

𝜋1 ≥𝐹𝑂𝑆𝐷 𝜋2 ⇒ 𝜋 ∈ Π (A.5)

with 𝜋 ∈ Π̂ if 𝜋1 ̸= 𝜋2. However, the decision criterion axiomatized in Theorem 4

has a few stochastic monotonicity implications. Indeed, the preference set Π satisfies

(A.5) when 𝜋 is an independent joint distribution, i.e., 𝜋 = 𝜋1 × 𝜋2.12

Finally, this setup also allows for a simple characterization of the continuity prop-

erties of 𝜑.

Axiom 16 (Continuity in Outcomes). Let (𝑥𝑛)𝑛∈N → 𝑥. Then, for every 𝛼 ∈ [0, 1],

𝑦 ∈ 𝑋, 𝜋 ∈ ∆(𝑋 ×𝑋)

𝛼𝛿(𝑥𝑛,𝑦) + (1− 𝛼) 𝜋 ∈ Π ∀𝑛 ∈ N =⇒ 𝛼𝛿(𝑥,𝑦) + (1− 𝛼)𝜋 ∈ Π

and

𝛼𝛿(𝑦,𝑥𝑛) + (1− 𝛼) 𝜋 ∈ Π ∀𝑛 ∈ N =⇒ 𝛼𝛿(𝑦,𝑥) + (1− 𝛼) 𝜋 ∈ Π.

Given Completeness, Strong Independence, and Archimedean Continuity, Conti-

nuity in Outcomes is one to one with a continuous 𝜑.

Remark 2. If Π admits a correlation-sensitive representation, Π satisfies Continuity

in Outcomes if and only if 𝜑 is continuous in both arguments.
12Indeed, Remark 1 guarantees that a preference set that satisfies Completeness, Strong Indepen-

dence, Archimedean Continuity, and Monotonicity, admits a representing 𝜑 that satisfies the OPT
and I properties of Loomes and Sugden (1987).
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A.4 Salience Characterization

This section describes salience theory as introduced by BGS and shows why it is a par-

ticular case of our correlation sensitive representation in which 𝜑 (𝑥, 𝑦) = (𝑥− 𝑦)𝜎 (𝑥, 𝑦)

and 𝜎 is a function that captures the salience of the joint realization (𝑥, 𝑦), and sat-

isfies some psychologically motivated conditions. We then propose an equivalent but

testable formulation of salience theory’s critical properties of Ordering, Diminishing

Sensitivity, and Weak Reflexivity. Finally, we characterize the salience model entirely

as the result of these Ordering, Diminishing Sensitivity and Weak Reflexivity axioms

combined with continuity and monotonicity requirements.

As formulated in BGS, salience theory explains the behavior of a DM that is facing

a joint lottery 𝜋 ∈ ∆(𝑋 ×𝑋). Salience’s main departure from EU theory is that

expectations are calculated with a distorted probability measure that overweights

salient pairs of outcomes. To formalize this idea, BGS introduced the concept of

salience function.

Definition 16. A function 𝜎 : R2 → R satisfies:

1. Symmetry if 𝜎 (𝑥, 𝑦) = 𝜎 (𝑦, 𝑥);

2. BGS-Ordering if 𝑥′ < 𝑦′, 𝑥 < 𝑦 and [𝑥′, 𝑦′] ⊂ [𝑥, 𝑦] imply 𝜎 (𝑥′, 𝑦′) < 𝜎 (𝑥, 𝑦) ;

3. BGS-Diminishing Sensitivity if 𝑥, 𝑦, 𝑘 ∈ R++ and 𝑥 > 𝑦 imply 𝜎 (𝑥+ 𝑘, 𝑦 + 𝑘) <

𝜎 (𝑥, 𝑦) ;

4. BGS-Weak Reflexivity if for all 𝑥, 𝑦, 𝑥′, 𝑦′ ∈ R+ with |𝑥− 𝑦| = |𝑥′ − 𝑦′|,

𝜎 (𝑥, 𝑦) ≥ 𝜎 (𝑥′, 𝑦′) ⇐⇒ 𝜎 (−𝑥,−𝑦) ≥ 𝜎 (−𝑥′,−𝑦′) .

A salience function is a function 𝜎 : R2 → R+ satisfying Symmetry, BGS-

Ordering, BGS-Diminishing Sensitivity, BGS-Weak Reflexivity and such that 𝜎 (𝑥, 𝑥) =

0 for all 𝑥 ∈ R.
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We will interpret the properties momentarily when we introduce their testable

counterparts. A fundamental feature is that a joint realization’s salience depends

only on its value, not its probability, a key difference with prospect theory. Indeed,

relative to the original vN-M set of axioms, prospect theory relaxes even the weaker

version of Strong Independence for joint distributions introduced by this chapter,

while salience theory relaxes Transitivity.

Definition 17. A preference set Π admits a 𝜎-distorted representation if there exists

a continuous function 𝜎 : R2 → R+ that satisfies symmetry such that

𝜋 ∈ Π ⇔
∑︁

(𝑥,𝑦)∈𝑋×𝑋

(𝑥− 𝑦)𝜎 (𝑥, 𝑦) 𝜋 (𝑥, 𝑦) ≥ 0. (A.6)

It admits a (smooth) salience representation if 𝜎 is also a salience function.

It is easy to see that a 𝜎-distorted representation is a particular case of our

correlation-sensitive model. The latter is much more general, and allows for behav-

iors that are at odds with salience theory’s key idea that states where the alternatives

differ more are overweighted. Therefore, we next characterize BGS-Ordering, BGS-

Diminishing Sensitivity, and BGS-Weak Reflexivity in terms of testable axioms.

Notice that BGS mainly used the rank-based version of their model, but they

recognized that its discontinuity causes some problems, and they suggest using the

smooth version of Definition 17.13 In what follows, we stick with the smooth version,

which has been the most used in empirical studies of the salience model.14 Supple-

mentary Appendix A.9 analyzes the weaknesses of the rank-based version.

A.4.1 The Ordering Axiom

The idea behind the BGS-Ordering property is straightforward. Fix the outcomes

𝑥 > 𝑦. Then, we can take some 𝛼, 𝛽 ∈ (0, 1), 𝛽 > 𝛼 and consider the two outcomes
13In their words: “A smooth specification would also address a concern with the current model that

states with similar salience may obtain very different weights. This implies that (1) splitting states
and slightly altering payoffs could have a large impact on choice, and (2) in choice problems with
many states the (slightly) less salient states are effectively ignored.”

14See Dertwinkel-Kalt and Koster (2020), Dertwinkel-Kalt, Frey, and Koster (2021), Nielsen, Sebald,
and Sorensen (2021) and the references therein.
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obtained by mixing 𝑥 and 𝑦

𝑥 > 𝛽𝑥+ (1− 𝛽) 𝑦 > 𝛼𝑥+ (1− 𝛼) 𝑦 > 𝑦.

If we consider the two realizations (𝑥, 𝑦) and (𝛼𝑥+ (1− 𝛼) 𝑦, 𝛽𝑥+ (1− 𝛽) 𝑦) the first

pair of outcomes has more widespread values, and therefore BGS-Ordering implies

that its contribution in favor of the row outcome will be relatively overweighted.

However, distortions of probabilities are not observable, and therefore, we cannot

directly test BGS-Ordering. Nevertheless, we can propose a testable version of the

property.

Now, if we look at the joint distribution

(︂
(𝑥, 𝑦) ,

𝛽 − 𝛼

1 + 𝛽 − 𝛼
; (𝛼𝑥+ (1− 𝛼) 𝑦, 𝛽𝑥+ (1− 𝛽) 𝑦) ,

1

1 + 𝛽 − 𝛼

)︂
the row and column marginals have the same expected value, and they should be indif-

ferent to an expected value maximizer. However, a salience-sensitive DM’s attention

is disproportionately drawn to the outcome with the most significant difference be-

tween payoff (in the inclusion sense). Since this outcome is (𝑥, 𝑦), and favors the row

component, a salience-sensitive DM prefers (at least weakly) to be paid according to

the row component. This reasoning is formalized in the Ordering axiom.

Axiom 17 (Ordering). For every 𝑥, 𝑦 ∈ R, 𝛼, 𝛽 ∈ [0, 1] if 𝑥 > 𝑦, 𝛽 > 𝛼, and at least

one between 𝛽 and 𝛼 is in (0, 1), we have that

(︂
(𝑥, 𝑦) ,

𝛽 − 𝛼

1 + 𝛽 − 𝛼
; (𝛼𝑥+ (1− 𝛼) 𝑦, 𝛽𝑥+ (1− 𝛽) 𝑦) ,

1

1 + 𝛽 − 𝛼

)︂
∈ Π̂.

The following proposition shows that the axiom corresponds to the original prop-

erty of BGS.

Proposition 9. Let Π admit a 𝜎-distorted representation. Then Π satisfies Ordering

if and only if 𝜎 satisfies BGS-Ordering. In that case, the representing 𝜑 satisfies

𝜑 (𝑥, 𝑦) >
𝜑 (𝛽𝑥+ (1− 𝛽) 𝑦, 𝛼𝑥+ (1− 𝛼) 𝑦)

(𝛽 − 𝛼)
(A.7)
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for all 𝑥, 𝑦 ∈ R and 𝛼, 𝛽 ∈ [0, 1] with 𝑥 > 𝑦, 𝛽 > 𝛼 and at least one between 𝛽 and 𝛼

in (0, 1).

Equation (A.7) confirms the intuition behind Ordering: under this axiom, the

positive contribution of the realization 𝜑 (𝑥, 𝑦) decreases sufficiently fast as the two

components are mixed, because of the combined effect of a smaller difference and a

decreased salience.

A.4.2 The Diminishing Sensitivity Axiom

The BGS-Diminishing Sensitivity property requires that when two pairs of outcomes

have the same absolute difference, the one with the highest relative difference is over-

weighted. The interpretation is easier for two-outcome lotteries. Suppose that the

DM is envisioning the joint probability distribution 𝜋 that assigns probability 1
2

both

to (𝑥, 𝑦) and (𝑦 + 𝑘, 𝑥+ 𝑘), with 𝑥, 𝑦, 𝑘 ∈ R+ and 𝑥 > 𝑦. The two pairs of outcomes

have the same absolute difference, but (𝑥, 𝑦) has a higher relative difference. There-

fore, (𝑥, 𝑦) is overweighted to (𝑦 + 𝑘, 𝑥+ 𝑘). Since (𝑥, 𝑦) favors the row marginal, the

DM chooses to be paid according to the row outcome. This reasoning is formalized

in the Diminishing Sensitivity axiom.

Axiom 18 (Diminishing Sensitivity). For every 𝑥 > 𝑦 > 0, and 𝑘 ∈ R+

𝜋 =

(︂
(𝑥, 𝑦) ,

1

2
; (𝑦 + 𝑘, 𝑥+ 𝑘) ,

1

2

)︂
∈ Π.

If moreover 𝜋 ∈ Π̂ whenever 𝑘 ∈ R++, Π̂ satisfies strict Diminishing Sensitivity.

The following proposition shows that our testable definition of Diminishing Sen-

sitivity corresponds to the original property of BGS.

Proposition 10. If Π admits a 𝜎-distorted representation, it satisfies strict Dimin-

ishing Sensitivity if and only if 𝜎 satisfies BGS-Diminishing Sensitivity.

In particular, it turns out that Diminishing Sensitivity alone is not in contrast

with the conventional notion of prospect theory. It is a generalization of the property
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of risk aversion over positive outcomes and risk loving over negative outcomes (cf.

also Proposition 13) to decision criteria that are not necessarily transitive. Denote as

E (𝑝) =
∑︀

𝑥∈𝑋 𝑝 (𝑥)𝑥 the expected value of the marginal distribution 𝑝 ∈ ∆(𝑋).

Definition 18. Π satisfies risk aversion (risk loving) for outcomes in (𝑎, 𝑏) if 𝜋 ∈ Π

(resp. �̄� ∈ Π) for all 𝜋 ∈ ∆(𝑋) with supp 𝜋 ⊆ (𝑎, 𝑏) and such that 𝜋2 is a mean

preserving spread of 𝜋1.

The previous definition is a translation of the usual risk aversion notion in the

language of preference sets: a DM is risk averse over the outcome range (𝑎, 𝑏) if she

prefers the expected value of a lottery supported over (𝑎, 𝑏) to the lottery itself.

Proposition 11. Let Π admit an expected utility representation with a strictly in-

creasing utility function. Then Π satisfies Diminishing Sensitivity if and only if Π

satisfies risk aversion for positive outcomes.

This result confirms that the BGS-Diminishing Sensitivity of the function 𝜎 allows

for risk-aversion of the agents in the main specification of the BGS model (Equation

(A.6)) without relying on the more general form15∑︁
(𝑥,𝑦)∈𝑋×𝑋

(𝑢 (𝑥)− 𝑢 (𝑦))𝜎 (𝑥, 𝑦) 𝜋 (𝑥, 𝑦) .

Remark 3. Under the correlation-sensitive representation, risk aversion for positive

outcomes always implies Diminishing Sensitivity. However, the following example

shows that risk aversion for positive outcomes is a strictly more demanding property.

Let the salience function be equal to the leading example in BGS, that is

𝜎 (𝑥, 𝑦) =
𝑥− 𝑦

𝑥+ 𝑦 + 1
. (A.8)

Then 𝜎 satisfies BGS-Ordering and BGS-Diminishing Sensitivity, and by Proposition

11, Π satisfies Diminishing Sensitivity. The joint distribution 𝜋 given in the follow-
15Moreover, a representation where 𝜎 satisfies Diminishing Sensitivity and 𝑢 is concave and differ-

entiable can always be reformulated as
∑︀

(𝑥,𝑦)∈𝑋×𝑋 (𝑥− 𝑦) �̂� (𝑥, 𝑦)𝜋 (𝑥, 𝑦) ≥ 0, where �̂� (𝑥, 𝑦) ={︃
𝜎(𝑥,𝑦)[𝑢(𝑥)−𝑢(𝑦)]

𝑥−𝑦 𝑥 ̸= 𝑦

0 𝑥 = 𝑦
is a continuous function that satisfies BGS-Diminishing Sensitivity.
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ing table is such that the row marginal is a mean preserving spread of the column

marginal:

𝜋 0 1 2

0 0 1/4 0

1 0 1/2 0

2 1/8 0 1/8

Therefore risk aversion in the positive domain would prescribe that 𝜋 /∈ Π. However,

𝜋 ∈ Π for a DM with salience function given by (A.8) because of the high salience of

the realization (2, 0). Therefore, the preference set of such a DM satisfies Diminishing

Sensitivity but not risk aversion for positive outcomes.

A.4.3 The Weak Reflexivity Axiom

The last property introduced by BGS is Weak Reflexivity, which captures the sym-

metry around 0 of the distortions. Again, we provide a testable counterpart of their

axiom.

Axiom 19 (Weak Reflexivity). For every 𝑥, 𝑦, 𝑤, 𝑧 ∈ R+, with 𝑥− 𝑦 = 𝑧 − 𝑤

(︂
(𝑥, 𝑦) ,

1

2
; (𝑤, 𝑧) ,

1

2

)︂
∈ Π̂ ⇔

(︂
(−𝑦,−𝑥) , 1

2
; (−𝑧,−𝑤) , 1

2

)︂
∈ Π̂.

The axiom is easily seen to be one to one with the corresponding property of the

distortion function 𝜎.

Proposition 12. If Π admits a 𝜎-distorted representation, Π satisfies Weak Reflex-

ivity if and only if 𝜎 satisfies BGS-Weak Reflexivity.

So far, we have not attached any specific interpretation to the lotteries’ realiza-

tions, except that they are expressed in monetary units. In particular, they can

represent either the total wealth or gains and losses obtained after realizing some

uncertainty. However, the Weak Reflexivity axiom, with the implied role for outcome

0, better suits the latter interpretation. We notice that Weak Reflexivity implies the

preference reversal of risk attitudes featured by prospect theory.
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Proposition 13. Suppose that Π has an EU representation and satisfies Monotonicity

and Weak Reflexivity. Then Π is risk-averse (resp. risk-loving) for lotteries with

values in (𝑎, 𝑏) ⊆ R+ if and only if ≿ is risk loving (resp. risk-averse) for lotteries

with values in (−𝑏,−𝑎).

This result sheds light on the observation made in BGS that salience theory can

explain the experimental evidence in favor of the fourfold pattern (see, e.g., Bruhin,

Fehr-Duda, and Epper 2010). Diminishing Sensitivity would only induce risk aversion

in the gain domain. Its combination with Ordering creates the risk aversion for small

gains vs. risk loving for large gains, and Weak Reflexivity gives the opposite patterns

for losses.

A.4.4 Complete Characterization of Salience Theory

We now put the pieces together and provide a complete characterization of the salience

model. To do so, we need a final continuity axiom.

Axiom 20 (Continuity at Identity). Let 𝑥 ∈ 𝑋. Then, for every (𝑥𝑛)𝑛∈N such that

𝑥𝑛 ↓ 𝑥, and for every 𝑘 ∈ 𝑋 and 𝜀 ∈ R++ there exists an 𝑚 ∈ N such that for all

𝑛 ≥ 𝑚

((𝑥, 𝑥𝑛) , (1− (𝑥𝑛 − 𝑥)) ; (𝑘 + 𝜀, 𝑘) , (𝑥𝑛 − 𝑥)) ∈ Π.

Moreover, for every (𝑥𝑛)𝑛∈N such that 𝑥𝑛 ↑ 𝑥, and for every 𝑘 ∈ 𝑋 and 𝜀 ∈ R++

there exists an 𝑚 ∈ N such that for all 𝑛 ≥ 𝑚

((𝑥𝑛, 𝑥) , (1− (𝑥− 𝑥𝑛)) ; (𝑘 + 𝜀, 𝑘) , (𝑥− 𝑥𝑛)) ∈ Π.

The axiom requires that joint realizations with two components that are arbitrar-

ily closed can be almost neglected. More precisely, the weight to these realizations

declines more than linearly in their differences when these become sufficiently small,

capturing a form of indistinguishability. With this, we have a complete characteriza-

tion of the salience model.16

16As shown by the proof of Theorem 5, adding Monotonicity, Continuity in Outcomes and Continuity
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Theorem 5. A preference set Π admits a salience representation if and only if Π

satisfies Completeness, Strong Independence, Archimedean Continuity, Monotonicity,

Continuity in Outcomes, Continuity at Identity, Ordering, Diminishing Sensitivity,

and Weak Reflexivity.

A.4.5 Comparison with Other Models

Relation with Regret Theory Theorem 5 allows us to compare salience theory

with regret theory readily. Indeed, recall that the most general version of regret

theory, proposed by Loomes and Sugden (1987), requires that the preference set Π of

the DM admits a correlation-sensitive representation, it satisfies Monotonicity, and

the representing 𝜑 satisfies Regret Aversion:

𝜑 (𝑥, 𝑦) > 𝜑 (𝑥, 𝑧) + 𝜑 (𝑧, 𝑦) for all 𝑥 > 𝑧 > 𝑦.

Corollary 3. If a preference set Π satisfies Completeness, Strong Independence,

Archimedean Continuity, and Ordering, the representing 𝜑 satisfies Regret Aversion.

The two models remain inherently different despite Ordering being a stronger

property than Regret Aversion in binary decision problems. First, they have differ-

ent psychological foundations that imply different behaviors when the DM is given

additional information. The behavior of a salience-sensitive DM is the same when

only the realization of the chosen marginal is shown and when the counterfactual is

announced. Instead, regret theory prescribes an EU consistent behavior in the first

scenario but is highly sensitive to correlation in the second.

Second, by making additional assumptions such as Ordering and Diminishing Sen-

sitivity, salience theory delivers a novel set of predictions. This is particularly evident

for problems with more than two alternatives, where the salience model predicts the

decoy effect, background contrast effects, and other context effects, a phenomenon

at Identity to a correlation sensitive representation implies that 𝜑 (𝑥, 𝑦) = (𝑥− 𝑦)𝜎 (𝑥, 𝑦) for some
continuous and symmetric 𝜎 : R2 → R+ such that 𝜎 (𝑥, 𝑥) = 0 for all 𝑥 ∈ R. Then, by adding
Ordering, Diminishing Sensitivity, and Weak Reflexivity, 𝜎 is forced to be a salience function.
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that we illustrate in the extension of Supplementary Appendix A.8. As the empiri-

cal literature has highlighted the widespread presence of these effects, salience theory

seems a better correlation-sensitive model in terms of the performance across different

decision environments.17

Relation with Reference-Dependent Preferences Another model under for

which the correlation between alternatives play a key role is the one of Koszegi and

Rabin (2007, 2009). Here, we show how to translate the model in the language of

preference set, highlight that it does not fall in the general class of correlation-sensitive

preferences we have proposed, and shows that this comes from violations of the Strong

Independence axiom.

Koszegi and Rabin (2007, 2009) model endogenous reference-dependent prefer-

ences as a (personal) choice-unacclimating equilibrium. More precisely, under their

criterion, a lottery 𝑝 can be chosen if, when alternatives are evaluated taking 𝑝 as

the reference point, 𝑝 has the highest evaluation for the DM. The reference depen-

dence is endogenous because the reference point is the candidate choice. It is called

choice-unacclimating, as when looking from deviations from a candidate, the agent

still evaluates them with the candidate as the reference point (as opposed to using

the deviation itself as the reference point). When generalized to allow for correlated

alternatives (similarly to Sugden 2003) and rephrased in the language of preference

sets, their decision criterion says that:

𝜋 ∈ Π ⇔
∑︁

(𝑥,𝑦):𝑥≥𝑦

𝜆 (𝑥− 𝑦) 𝜋 (𝑥, 𝑦) +
∑︁

(𝑥,𝑦):𝑥<𝑦

(𝑥− 𝑦) 𝜋 (𝑥, 𝑦) ≥ 0

for some 𝜆 > 1 that measures how much worse losses are than gains.18 The interpre-

tation is that the agent prefers the row marginal (i.e., 𝜋 ∈ Π) when taking the row

17Of course, salience theory also makes some predictions about non-choice behavior that separate
it from preexisting models, such as the attention dedicated to each dimension of the alternatives.
Thus, the use of additional instruments such as eye-tracking to further investigate is critical.
Moreover, Herweg and Muller (2021) argue that the more restrictive form of regret theory presented
in Loomes and Sugden (1982) is itself a special case of salience theory.

18We focus on their main specification and thank a referee for suggesting this link.
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marginal as the status quo. Here, the fact that the row marginal is the status quo

is captured by the fact that the gains induced by the column marginal are evaluated

with weight 1, while the losses are evaluated with weight 𝜆.

Interestingly, by letting 𝜑 (𝑥, 𝑦) = 𝜆 (𝑥− 𝑦), for 𝑥 ≥ 𝑦 and 𝜑 (𝑥, 𝑦) = 𝑥 − 𝑦 for

𝑥 < 𝑦, this criterion admits a representation

𝜋 ∈ Π ⇔
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝜑 (𝑥, 𝑦) 𝜋 (𝑥, 𝑦) ≥ 0.

However, the loss aversion coefficient makes this 𝜑 not skew symmetric. Moreover, by

Theorem 4 the reference-dependent model does not admit an alternative correlation-

sensitive representation. Indeed, a simple example shows that this criterion violates

Strong Independence.

Example 7. Let 𝜋 =
𝛿(10,1)

2
+

𝛿(1,10)
2

and 𝜋′ = 𝛿(1.1,1). Then both the row and column

marginals can be chosen under 𝜋, and only the row marginal can be chosen under

𝜋′, (i.e., 𝜋 ∈ Π∖Π̂, 𝜋′ ∈ Π̂), and Strong Independence would prescribe that 𝛼𝜋 +

(1− 𝛼) 𝜋′ ∈ Π̂ for all 𝛼 ∈ (0, 1). However, for 𝜆 and 𝛼 sufficiently high 𝛼𝜋 +

(1− 𝛼) 𝜋′ ∈ Π∖Π̂. The intuition is simple: a highly loss-averse agent that takes the

column marginal as the reference point can stick to it because of the high loss associated

with the realization (1, 10).

Therefore, beyond establishing the formal distinction between this model and the

class of correlation-sensitive preferences that contain salience and regret, the prefer-

ence set approach hints at violations of the “strict” part of the Strong Independence

axiom as the essential relaxation to allow for status quo biases. Loosely speaking,

the reference-dependent model have “too much Completeness” due to loss aversion.

Recall that the row marginal is the reference point, so there will be several instances

in which both marginals can be chosen if they were the original reference point. This

thickness of the indifference curves can lead to violations of Strong Independence,

as even if one of the original joint distributions is in the strict preference set, the

resulting convex combination may fall in the thick indifference curve part, i.e., it may
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be in the preference set but not in the strict preference set. Instead, it is easy to

see that Completeness, Archimedean Continuity, and the “weak” part of the Strong

Independence are still satisfied.

A.4.6 Identification of the Salience Function

Another advantage of our use of preference sets is that in light of Theorem 4, we can

directly test salience theory by first constructing a candidate salience function 𝜎 and

then checking whether it satisfies the properties imposed by BGS. As a preliminary

observation, it is immediate from (A.6) that if the preferences set Π admits a salience

representation with salience function 𝜎, they also admit a salience representation

with salience function 𝑘𝜎 whenever 𝑘 ∈ R++. Therefore, to eliminate this degree of

freedom, we set 𝜎 (1, 0) = 1.

Now, for every (𝑥, 𝑦) ∈ R2 with 𝑦 > 𝑥, if the preference set Π admits a smooth

salience representation, by Theorem 5 Π satisfies Completeness, Archimedean Con-

tinuity, Strong Independence and Monotonicity, and therefore by Theorem 4 there

exists a unique 𝛼𝑥,𝑦 ∈ (0, 1) such that

𝛼𝑥,𝑦𝛿(𝑥,𝑦) + (1− 𝛼𝑥,𝑦) 𝛿(1,0) ∈ Π∖Π̂.

Therefore, we can define

𝜎 (𝑥, 𝑦) =
(1− 𝛼𝑥,𝑦)

𝛼𝑥,𝑦(𝑦 − 𝑥)
.

It is immediate to check that this is the only possible value for 𝜎. We can use this

procedure and the fact that by symmetry 𝜎 (𝑥, 𝑦) = 𝜎 (𝑦, 𝑥) for those (𝑥, 𝑦) ∈ R2 with

𝑥 > 𝑦 to construct the candidate salience function. At this point, checking salience

theory boils down to verifying that 𝜎 satisfies BGS-Ordering, BGS-Diminishing Sen-

sitivity, and BGS-Weak Reflexivity.
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A.5 Conclusion

This work provides a simple axiomatic characterization of preferences over risky

choices when the agent cares about the correlation between the alternatives con-

sidered. We proved that when the joint distribution is included in the decision envi-

ronment, we can pinpoint Transitivity as the EU’s relaxation needed for correlation

sensitivity. This setting, moreover, allows a cleaner axiomatic comparison of theories

such as regret and salience with EU.

As the second payoff of our approach, we obtain a simple axiomatization of the

salience model of Bordalo, Gennaioli, and Shleifer (2012) within the realm of these

correlation-sensitive preferences. This provides a one-to-one map from the BGS as-

sumptions of Ordering, Diminishing Sensitivity, and Weak Reflexivity to testable

counterparts. Our characterization reveals that Ordering is the property that can-

not be reconciled with prospect theory, whereas Diminishing Sensitivity paired with

Weak Reflexivity corresponds to the usual risk-averse in gains, risk-loving in losses.

Moreover, the axiomatization allows for direct comparisons of the different EU axioms

relaxed by salience theory, prospect theory, regret theory, and the reference-dependent

preferences of Koszegi and Rabin (2007).
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A.6 Main Proofs

Let ⊕ =
{︀
(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : 𝛿(𝑥,𝑦) ∈ Π

}︀
and ⊕̂ =

{︁
(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : 𝛿(𝑥,𝑦) ∈ Π̂

}︁
.

Proof of Theorem 4
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(Necessity of the axioms) Completeness is necessary since the skew symmetry

of 𝜑 guarantees that
∑︀

(𝑥,𝑦)∈𝑋×𝑋 𝜋 (𝑥, 𝑦)𝜑 (𝑥, 𝑦) = −
∑︀

(𝑥,𝑦)∈𝑋×𝑋 �̄� (𝑥, 𝑦)𝜑 (𝑥, 𝑦) . For

Strong Independence, let 𝜋, 𝜒 ∈ Π (resp. 𝜋 ∈ Π and 𝜒 ∈ Π̂) and 𝜆 ∈ (0, 1). Then

∑︁
(𝑥,𝑦)∈𝑋×𝑋

(𝜆𝜋 + (1− 𝜆)𝜒) (𝑥, 𝑦)𝜑 (𝑥, 𝑦)

= 𝜆
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝜋 (𝑥, 𝑦)𝜑 (𝑥, 𝑦) + (1− 𝜆)
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝜒 (𝑥, 𝑦)𝜑 (𝑥, 𝑦) ≥ (resp. >)0.

For Archimedean Continuity, let 𝜋 ∈ Π̂, 𝜒 /∈ Π. If we define𝐾 : =
∑︀

(𝑥,𝑦)∈𝑋×𝑋 𝜋 (𝑥, 𝑦)𝜑 (𝑥, 𝑦) >

0 >
∑︀

(𝑥,𝑦)∈𝑋×𝑋 𝜒 (𝑥, 𝑦)𝜑 (𝑥, 𝑦) =: 𝑘, then any 𝛼 > −𝑘
𝐾−𝑘

and 𝛽 < −𝑘
𝐾−𝑘

are easily seen

to satisfy the requirements.

(Sufficiency of the axioms) We start by establishing some initial claims.

Claim 7. If supp 𝜋 ⊆ ⊕, then 𝜋 ∈ Π.

Proof The claim is proved by induction on the size of supp 𝜋. The claim is clearly

true when |supp 𝜋| = 1. Suppose the result holds for all the lotteries with support of

size 𝑛 ∈ N. Let 𝜋 be such that |supp 𝜋| = 𝑛+ 1. Choose arbitrarily (𝑥′, 𝑦′) ∈ supp 𝜋.

Then, we can define 𝜒 ∈ ∆(𝑋 ×𝑋) as

𝜒 (𝑥, 𝑦) =

⎧⎨⎩ 0 if (𝑥, 𝑦) = (𝑥′, 𝑦′)

𝜋(𝑥,𝑦)
1−𝜋(𝑥′,𝑦′)

otherwise.

Since |supp𝜒| = 𝑛 and supp𝜒 ⊆ ⊕, we have 𝜒 ∈ Π. Moreover, 𝜋 = 𝜋 (𝑥′, 𝑦′) 𝛿(𝑥′,𝑦′) +

(1− 𝜋 (𝑥′, 𝑦′))𝜒 and by Strong Independence, we have 𝜋 ∈ Π. □

Claim 8. Let 𝜋 ∈ Π̂, 𝜒 /∈ Π, there exists a unique 𝜆 ∈ (0, 1) such that 𝜆𝜋+(1− 𝜆)𝜒 ∈

Π∖Π̂.

Proof We let𝐴 =
{︁
𝜆 ∈ [0, 1] : 𝜆𝜋 + (1− 𝜆)𝜒 ∈ Π̂

}︁
, 𝐵 = {𝜆 ∈ [0, 1] : 𝜆𝜋 + (1− 𝜆)𝜒 /∈ Π} .

By Archimedean Continuity, both 𝐴 and 𝐵 have a nonempty intersection with (0, 1).

Suppose that 𝜆 ∈ 𝐴 and 𝜇 ∈ (𝜆, 1]. Then 𝜇𝜋+(1− 𝜇)𝜒 = 𝜇−𝜆
1−𝜆

𝜋+ 1−𝜇
1−𝜆

(𝜆𝜋 + (1− 𝜆)𝜒)
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and Strong Independence implies that 𝜇𝜋+(1− 𝜇)𝜒 ∈ Π̂. This, in turn, implies that

𝜇 ∈ 𝐴.

Suppose instead that 𝜆 ∈ 𝐵 and 𝜇 ∈ [0, 𝜆). Then by Completeness 𝜆�̄� +

(1− 𝜆) �̄� = 𝜆𝜋 + (1− 𝜆)𝜒 ∈ Π̂ and 𝜇�̄� + (1− 𝜇) �̄� = 𝜆−𝜇
𝜆
�̄� + 𝜇

𝜆
(𝜆�̄� + (1− 𝜆) �̄�).

Therefore, 𝜇�̄� + (1− 𝜇) �̄� ∈ Π̂ by Strong Independence, and 𝜇𝜋 + (1− 𝜇)𝜒 /∈ Π.

This, in turn, implies that 𝜇 ∈ 𝐵.

Summing up, 𝐴 and 𝐵 are two intervals in [0, 1] with empty intersection. Suppose

by contradiction that 𝐴∪𝐵 = [0, 1]. Then, we either have 𝐴 = [𝜆*, 1] and 𝐵 = [0, 𝜆*)

or 𝐴 = (𝜆*, 1] and 𝐵 = [0, 𝜆*]. In the first case, 𝜆*𝜋 + (1− 𝜆*)𝜒 ∈ Π̂, 𝜒 /∈ Π, and

Archimedean Continuity imply the existence of a 𝜇 ∈ [0, 𝜆*) such that 𝜇𝜋+(1− 𝜇)𝜒 ∈

Π̂, a contradiction. Similarly, we can rule out the other case. Therefore, there exists

𝜆* ∈ [0, 1] ∖ (𝐴 ∪𝐵) , that is, 𝜆*𝜋 + (1− 𝜆*)𝜒 ∈ Π∖Π̂.

It only remains to prove uniqueness. Suppose that both 𝜆* and 𝜇* have the desired

property, and let 𝜇* > 𝜆*. Then, 𝜇*𝜋+(1− 𝜇*)𝜒 = 𝜇*−𝜆*

1−𝜆* 𝜋+
1−𝜇*

1−𝜆* (𝜆
*𝜋 + (1− 𝜆*)𝜒)

and by Strong Independence, 𝜇*𝜋 + (1− 𝜇*)𝜒 ∈ Π̂, a contradiction. □

Claim 9. Let 𝑥, 𝑦, 𝑧, 𝑤, 𝑡, 𝑣 ∈ 𝑋, 𝜆, 𝜇, 𝛼 ∈ (0, 1) and 𝛿(𝑥,𝑦), 𝛿(𝑧,𝑤), 𝛿(𝑡,𝑣) ∈ Π̂ with

𝜆𝛿(𝑥,𝑦) + (1− 𝜆) 𝛿(𝑤,𝑧) ∈ Π∖Π̂,

𝜇𝛿(𝑧,𝑤) + (1− 𝜇) 𝛿(𝑣,𝑡) ∈ Π∖Π̂,

𝛼𝛿(𝑡,𝑣) + (1− 𝛼) 𝛿(𝑦,𝑥) ∈ Π∖Π̂.

Then
𝜆

1− 𝜆
· 𝜇

1− 𝜇
· 𝛼

1− 𝛼
= 1.

Proof Let

𝛾 =
𝜇

𝜇+ 1− 𝜆

and

𝜋 = 𝛾
(︀
𝜆𝛿(𝑥,𝑦) + (1− 𝜆) 𝛿(𝑤,𝑧)

)︀
+ (1− 𝛾)

(︀
𝜇𝛿(𝑧,𝑤) + (1− 𝜇) 𝛿(𝑣,𝑡)

)︀
.

By Strong Independence, 𝜋 ∈ Π∖Π̂. Since 𝛾 (1− 𝜆) = (1− 𝛾)𝜇, by Completeness we
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have that 𝛿(𝑤,𝑧)+𝛿(𝑧,𝑤)

2
=

𝛾(1−𝜆)𝛿(𝑤,𝑧)+(1−𝛾)𝜇𝛿(𝑧,𝑤)

𝛾(1−𝜆)+(1−𝛾)𝜇
∈ Π∖Π̂. Suppose by way of contradiction

that
𝛾𝜆𝛿(𝑥,𝑦) + (1− 𝛾) (1− 𝜇) 𝛿(𝑣,𝑡)

𝛾𝜆+ (1− 𝛾) (1− 𝜇)
/∈ Π.

Then Completeness implies that

𝛾𝜆𝛿(𝑦,𝑥) + (1− 𝛾) (1− 𝜇) 𝛿(𝑡,𝑣)
𝛾𝜆+ (1− 𝛾) (1− 𝜇)

∈ Π̂

and by Strong Independence, �̄� ∈ Π̂. But this leads to the contradiction 𝜋 /∈ Π.

Similarly, suppose by contradiction that

𝛾𝜆𝛿(𝑥,𝑦) + (1− 𝛾) (1− 𝜇) 𝛿(𝑣,𝑡)
𝛾𝜆+ (1− 𝛾) (1− 𝜇)

∈ Π̂.

Then, Strong Independence implies that 𝜋 ∈ Π̂, another contradiction. Therefore, we

have that
𝛾𝜆𝛿(𝑥,𝑦) + (1− 𝛾) (1− 𝜇) 𝛿(𝑣,𝑡)

𝛾𝜆+ (1− 𝛾) (1− 𝜇)
∈ Π∖Π̂

and by definition of Π̂

𝛾𝜆𝛿(𝑦,𝑥) + (1− 𝛾) (1− 𝜇) 𝛿(𝑡,𝑣)
𝛾𝜆+ (1− 𝛾) (1− 𝜇)

∈ Π∖Π̂.

Thus Claim 8 gives 1− 𝛼 = 𝛾𝜆
𝛾𝜆+(1−𝛾)(1−𝜇)

that implies

𝛼𝜇𝜆 = (1− 𝜆) (1− 𝜇) (1− 𝛼)

proving the statement. □

Claim 10. If supp 𝜋 ⊆ ⊕, and supp 𝜋 ∩ ⊕̂ ≠ ∅ then 𝜋 ∈ Π̂.

Proof If 𝜋 = 𝛿(𝑥,𝑦) for some (𝑥, 𝑦) , the result holds by definition of ⊕̂. Therefore,

suppose that 𝜋 is supported at least on two joint outcome realizations, let (𝑥′, 𝑦′) ∈
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supp 𝜋 ∩ ⊕̂, and define

𝜒 (𝑥, 𝑦) =

⎧⎨⎩ 0 (𝑥, 𝑦) = (𝑥′, 𝑦′)

𝜋(𝑥,𝑦)
1−𝜋(𝑥′,𝑦′)

otherwise.

By Claim 7, 𝜒 ∈ Π. Since

𝜋 = 𝜋 (𝑥′, 𝑦′) 𝛿(𝑥′,𝑦′) + (1− 𝜋 (𝑥′, 𝑦′))𝜒

Strong Independence implies that 𝜋 ∈ Π̂. □

Claim 11. If 𝜂, 𝜒 ∈ Π∖Π̂, then for all 𝜌 ∈ ∆(𝑋 ×𝑋)

𝜆𝜌+ (1− 𝜆)𝜒 ∈ Π ⇐⇒ 𝜆𝜌+ (1− 𝜆) 𝜂 ∈ Π.

Proof By Strong Independence both statements hold if 𝜌 ∈ Π. If 𝜌 /∈ Π, then by Com-

pleteness 𝜌 ∈ Π̂, and by assumption 𝜂, �̄� ∈ Π. Therefore, by Strong Independence,

both 𝜆𝜌+(1− 𝜆) �̄� and 𝜆𝜌+(1− 𝜆) 𝜂 are in Π̂. But then, neither 𝜆𝜌+(1− 𝜆)𝜒 ∈ Π

nor 𝜆𝜌+ (1− 𝜆) 𝜂 ∈ Π. □

If for every 𝑥, 𝑦 ∈ 𝑋, 𝛿(𝑥,𝑦) ∈ Π∖Π̂, by Claim 7 every 𝜋 ∈ ∆(𝑋 ×𝑋) is in

Π∖Π̂, and the statement of the theorem trivially holds by letting 𝜑 (𝑥, 𝑦) = 0 for all

𝑥, 𝑦 ∈ 𝑋. Therefore, by Completeness, we can assume that there exists (�̂�, 𝑦) with

𝛿(�̂�,𝑦) ∈ Π̂ and let 𝜑 (�̂�, 𝑦) be an arbitrary strictly positive real number. Moreover,

let 𝜑 (𝑥, 𝑦) = 0 for all 𝛿(𝑥,𝑦) ∈ Π∖Π̂. If (𝑥, 𝑦) /∈ ⊕, by Claim 8, there exists a unique

𝜆 ∈ (0, 1) with

𝜆𝛿(�̂�,𝑦) + (1− 𝜆) 𝛿(𝑥,𝑦) ∈ Π∖Π̂.

In this case, let

𝜑 (𝑥, 𝑦) = −𝜑 (�̂�, 𝑦) 𝜆

(1− 𝜆)
.

It only remains to define 𝜑 when (𝑥, 𝑦) ∈ ⊕̂. We set

𝜑 (𝑥, 𝑦) = −𝜑 (𝑦, 𝑥) ∀ (𝑥, 𝑦) ∈ ⊕̂.
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We now claim that the previous procedure defines 𝜑 uniquely up to a positive linear

transformation. Given the choice of a particular (�̂�, 𝑦), the only degree of freedom is

the choice of the (strictly positive) number 𝜑 (�̂�, 𝑦), and the values assumed by 𝜑 on

the rest of the domain are linear in 𝜑 (�̂�, 𝑦). Suppose instead that we define 𝜑 starting

from a different (�̄�, 𝑦) ∈ ⊕̂. Since we prove uniqueness only up to a positive linear

transformation, we can choose the (strictly positive) value of 𝜑 (�̄�, 𝑦). In particular,

set

𝜑 (�̄�, 𝑦) = 𝜑 (�̄�, 𝑦) = 𝜑 (�̂�, 𝑦)
𝜇

(1− 𝜇)

where

𝜇𝛿(�̂�,𝑦) + (1− 𝜇) 𝛿(𝑦,�̄�) ∈ Π∖Π̂

and consider (𝑥, 𝑦) /∈ ⊕. Then, by Claim 8 there exist unique 𝜆0, 𝜆1, such that

𝜆0𝛿(�̂�,𝑦) + (1− 𝜆0) 𝛿(𝑥,𝑦) ∈ Π∖Π̂,

𝜆1𝛿(�̄�,𝑦) + (1− 𝜆1) 𝛿(𝑥,𝑦) ∈ Π∖Π̂.

Given our definitions,

𝜑 (𝑥, 𝑦) = 𝜑 (𝑥, 𝑦) ⇐⇒ 𝜑 (�̂�, 𝑦) 𝜆0

(1−𝜆0)
= 𝜑 (�̄�, 𝑦) 𝜆1

(1−𝜆1)

⇐⇒ 𝜑 (�̂�, 𝑦) 𝜆0

(1−𝜆0)
= 𝜑 (�̂�, 𝑦) 𝜇

(1−𝜇)
𝜆1

(1−𝜆1)

⇐⇒ 𝜆0

(1−𝜆0)
= 𝜇

(1−𝜇)
𝜆1

(1−𝜆1)

and Claim 9 together with Completeness guarantee that the condition in the last line

holds true. Finally, we want to show that

𝜋 ∈ Π ⇐⇒
∑︁

(𝑥,𝑦)∈supp𝜋

𝜋 (𝑥, 𝑦)𝜑 (𝑥, 𝑦) ≥ 0.

We will consider three possible cases.

(First Case) Suppose supp 𝜋 ⊆ ⊕, then by Claim 7, 𝜋 ∈ Π, and by definition of

𝜑, 𝜑 (𝑥, 𝑦) ≥ 0 for every (𝑥, 𝑦) ∈ supp 𝜋.

(Second Case) Suppose supp �̄� ⊆ ⊕, and supp �̄�∩⊕̂ ≠ ∅. Then by Claim 10 �̄� ∈ Π̂
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and 𝜋 /∈ Π. By definition of 𝜑, 𝜑 (𝑥, 𝑦) ≤ 0 for every (𝑥, 𝑦) ∈ supp 𝜋, and 𝜑 (𝑥, 𝑦) < 0

for some (𝑥, 𝑦) ∈ supp 𝜋.

(Third Case) Finally, we show that all the other possibilities can be reduced into

one of the first two cases. Fix 𝑡 ∈ 𝑋. Suppose we are not in one of the first two

cases, that is, there exist (𝑥0, 𝑦0) , (𝑥1, 𝑦1) ∈ supp 𝜋 with (𝑥0, 𝑦0) , (𝑦1, 𝑥1) ∈ ⊕̂. Then

by Claim 8 there exists a unique 𝛼 ∈ (0, 1) such that 𝛼𝛿(𝑥0,𝑦0)+(1− 𝛼) 𝛿(𝑥1,𝑦1) ∈ Π∖Π̂.

By Claim 9 and uniqueness up to a positive linear transformation, 𝛼
(1−𝛼)

𝜑 (𝑥0, 𝑦0) =

𝜑 (𝑦1, 𝑥1). If 𝛼
1−𝛼

= 𝜋(𝑥0,𝑦0)
𝜋(𝑥1,𝑦1)

, then Claim 11 guarantees that 𝜋 ∈ Π if and only if 𝜋′ ∈ Π

where19

𝜋′ (𝑥, 𝑦) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜋 (𝑥, 𝑦) (𝑥, 𝑦) /∈ {(𝑥0, 𝑦0) , (𝑥1, 𝑦1) , (𝑡, 𝑡)}

0 (𝑥, 𝑦) ∈ {(𝑥0, 𝑦0) , (𝑥1, 𝑦1)}

𝜋 (𝑡, 𝑡) + 𝜋 (𝑥0, 𝑦0) + 𝜋 (𝑥1, 𝑦1) (𝑥, 𝑦) = (𝑡, 𝑡) .

Moreover,

𝜋 (𝑥0, 𝑦0)𝜑 (𝑥0, 𝑦0) + 𝜋 (𝑥1, 𝑦1)𝜑 (𝑥1, 𝑦1) = 0 = 𝜑 (𝑡, 𝑡) (𝜋 (𝑡, 𝑡) + 𝜋 (𝑥0, 𝑦0) + 𝜋 (𝑥1, 𝑦1))

so that
∑︀

(𝑥,𝑦)∈supp𝜋 𝜋 (𝑥, 𝑦)𝜑 (𝑥, 𝑦) ≥ 0 ⇔
∑︀

(𝑥,𝑦)∈supp𝜋′ 𝜋′ (𝑥, 𝑦)𝜑 (𝑥, 𝑦) ≥ 0.

19To see this, apply Claim 11 with 𝜂 = 𝛿(𝑡,𝑡), 𝜒 = 𝛼𝛿(𝑥0,𝑦0) + (1− 𝛼) 𝛿(𝑥1,𝑦1), 𝜆 = 1 − 𝜋 (𝑥0, 𝑦0) −
𝜋 (𝑥1, 𝑦1), and 𝜌 (𝑥, 𝑦) = 𝜋(𝑥,𝑦)

1−𝜋(𝑥0,𝑦0)−𝜋(𝑥1,𝑦1)
if (𝑥, 𝑦) /∈ {(𝑥0, 𝑦0) , (𝑥1, 𝑦1)} and 𝜌 (𝑥, 𝑦) = 0 other-

wise.
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If 𝛼
1−𝛼

> 𝜋(𝑥0,𝑦0)
𝜋(𝑥1,𝑦1)

, Claim 11 guarantees that 𝜋 ∈ Π if and only 𝜋′ ∈ Π where20

𝜋′ (𝑥, 𝑦) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜋 (𝑥, 𝑦) (𝑥, 𝑦) /∈ {(𝑥0, 𝑦0) , (𝑥1, 𝑦1) , (𝑡, 𝑡)}

0 (𝑥, 𝑦) = (𝑥0, 𝑦0)

𝜋 (𝑥1, 𝑦1)− 1−𝛼
𝛼
𝜋 (𝑥0, 𝑦0) (𝑥, 𝑦) = (𝑥1, 𝑦1)

𝜋 (𝑡, 𝑡) + 𝜋 (𝑥0, 𝑦0) +
1−𝛼
𝛼
𝜋 (𝑥0, 𝑦0) (𝑥, 𝑦) = (𝑡, 𝑡).

Moreover,

𝜋 (𝑥0, 𝑦0)𝜑 (𝑥0, 𝑦0) + 𝜋 (𝑥1, 𝑦1)𝜑 (𝑥1, 𝑦1) + 𝜑 (𝑡, 𝑡) 𝜋 (𝑡, 𝑡)

= −𝜋 (𝑥0, 𝑦0)
1− 𝛼

𝛼
𝜑 (𝑥1, 𝑦1) + 𝜋 (𝑥1, 𝑦1)𝜑 (𝑥1, 𝑦1) + 0

=

(︂
𝜋 (𝑥1, 𝑦1)−

1− 𝛼

𝛼
𝜋 (𝑥0, 𝑦0)

)︂
𝜑 (𝑥1, 𝑦1) + 0

= 𝜋′ (𝑥1, 𝑦1)𝜑 (𝑥1, 𝑦1) + 𝜑 (𝑡, 𝑡)𝜋′ (𝑡, 𝑡)

so that

∑︁
(𝑥,𝑦)∈supp𝜋

𝜋 (𝑥, 𝑦)𝜑 (𝑥, 𝑦) ≥ 0 ⇔
∑︁

(𝑥,𝑦)∈supp𝜋′

𝜋′ (𝑥, 𝑦)𝜑 (𝑥, 𝑦) ≥ 0.

A similar equivalence can be obtained if 𝛼
1−𝛼

< 𝜋(𝑥0,𝑦0)
𝜋(𝑥1,𝑦1)

. In every instance, the resulting

𝜋′ has strictly fewer elements in the support that do not belong to Π∖Π̂ than the

original 𝜋. Since the support is finite, by repeating this procedure a finite number of

times, we will obtain a �̂� ∈ ∆(𝑋 ×𝑋) that falls in one of the first two cases, and

such that 𝜋 ∈ Π ⇔ �̂� ∈ Π and

∑︁
(𝑥,𝑦)∈supp𝜋

𝜋 (𝑥, 𝑦)𝜑 (𝑥, 𝑦) ≥ 0 ⇔
∑︁

(𝑥,𝑦)∈supp �̂�

�̂� (𝑥, 𝑦)𝜑 (𝑥, 𝑦) ≥ 0

20To see this, apply Claim 11 with 𝜂 = 𝛿(𝑡,𝑡), 𝜒 = 𝛼𝛿(𝑥0,𝑦0) + (1− 𝛼) 𝛿(𝑥1,𝑦1), 𝜆 = 1 − 𝜋 (𝑥0, 𝑦0) −
1−𝛼
𝛼 𝜋 (𝑥0, 𝑦0), and

𝜌 (𝑥, 𝑦) =

⎧⎪⎪⎨⎪⎪⎩
𝜋(𝑥,𝑦)

1−𝜋(𝑥0,𝑦0)− 1−𝛼
𝛼 𝜋(𝑥0,𝑦0)

(𝑥, 𝑦) /∈ {(𝑥0, 𝑦0) , (𝑥1, 𝑦1)}
0 (𝑥, 𝑦) = (𝑥0, 𝑦0)
𝜋(𝑥1,𝑦1)− 1−𝛼

𝛼 𝜋(𝑥0,𝑦0)

1−𝜋(𝑥0,𝑦0)− 1−𝛼
𝛼 𝜋(𝑥0,𝑦0)

(𝑥, 𝑦) = (𝑥1, 𝑦1) .
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concluding the proof. ■

Proof of Proposition 8 We establish Proposition 8 by proving the following more

general result.21

Claim 12. If Π admits a correlation-sensitive representation then the following are

equivalent:

1. Π satisfies Transitivity;

2. ≿Π satisfies Classic Completeness;

3. ≿Π satisfies Classic Completeness, Classic Transitivity, Classic Archimedean

Continuity, and Classic Strong Independence;

4. ≿Π admits an expected utility representation.

Proof We define the binary relation ≥ over outcomes as 𝑥 ≥ 𝑦 ⇔ 𝛿(𝑥,𝑦) ∈ Π. We will

be interested in whether 𝜑 is modular with respect to this binary relation, i.e.,22

∀𝑥, 𝑥′, 𝑦, 𝑦′ ∈ 𝑋 𝜑 ((𝑥, 𝑦) ∨ (𝑥′, 𝑦′))+𝜑 ((𝑥, 𝑦) ∧ (𝑥′, 𝑦′)) = 𝜑 (𝑥, 𝑦)+𝜑 (𝑥′, 𝑦′) . (A.9)

The claim is proved by showing that each of the different conditions in the statement

is equivalent to Equation (A.9). Notice that since positive linear transformations

preserve modularity, it does not matter which representing 𝜑 we consider.

Equation (A.9) ⇒ 4. Let 𝑥0 ∈ 𝑋. Define 𝑢 (𝑧) as 𝜑 (𝑧, 𝑥0). Fix a pair (𝑧, 𝑤), with

𝑧 ≥ 𝑤. There are three cases:

21We use the adjective Classic for the conventional versions of Completeness, Transitivity,
Archimedean Continuity, and Strong Independence for binary relations. The definition for these
standard notions are in Supplementary Appendix A.7.

22Note the slight abuse of terminology here, as ≥ defined as above is not in general antisymmetric
(although it is in our application to salience theory with monetary outcomes) and therefore the join
and meet of two elements of the set may be not well defined. In that case everything works even
with indifferencies with the understanding that (𝑥, 𝑦)∨ (𝑥′, 𝑦′) is any pair (𝑧, 𝑤) where 𝑧 ∈ {𝑥, 𝑥′}
𝑧 ≥ 𝑥, 𝑧 ≥ 𝑥′ and 𝑤 ∈ {𝑦, 𝑦′} 𝑤 ≥ 𝑦, 𝑤 ≥ 𝑦′ and (𝑥, 𝑦)∧ (𝑥′, 𝑦′) is any pair (𝑧, 𝑤) where 𝑧 ∈ {𝑥, 𝑥′}
𝑧 ≤ 𝑥, 𝑧 ≤ 𝑥′ and 𝑤 ∈ {𝑦, 𝑦′} 𝑤 ≤ 𝑦, 𝑤 ≤ 𝑦′.
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• 𝑧 ≥ 𝑤 ≥ 𝑥0. Applying (A.9) with 𝑥 = 𝑧, 𝑦 = 𝑥′ = 𝑥0 and 𝑦′ = 𝑤 we have:

𝜑 (𝑧, 𝑤) + 𝜑 (𝑥0, 𝑥0) = 𝜑 (𝑧, 𝑥0) + 𝜑 (𝑥0, 𝑤) ⇔

𝜑 (𝑧, 𝑤) = 𝜑 (𝑧, 𝑥0)− 𝜑 (𝑤, 𝑥0) ⇔ 𝜑 (𝑧, 𝑤) = 𝑢 (𝑧)− 𝑢 (𝑤)

where the first implication follows from the skew symmetry of 𝜑.

• 𝑧 ≥ 𝑥0 ≥ 𝑤. Applying (A.9) with 𝑥 = 𝑧, 𝑦 = 𝑤 and 𝑥0 = 𝑦′ = 𝑥′ we have:

𝜑 (𝑧, 𝑥0) + 𝜑 (𝑥0, 𝑤) = 𝜑 (𝑧, 𝑤) + 𝜑 (𝑥0, 𝑥0) ⇔ 𝜑 (𝑧, 𝑤) = 𝑢 (𝑧)− 𝑢 (𝑤)

where the implication follows from the skew symmetry of 𝜑 and the definition

of 𝑢.

• 𝑥0 ≥ 𝑧 ≥ 𝑤. Applying (A.9) with 𝑥 = 𝑧, 𝑦 = 𝑥′ = 𝑥0 and 𝑦′ = 𝑤 we have:

𝜑 (𝑥0, 𝑥0) + 𝜑 (𝑧, 𝑤) = 𝜑 (𝑧, 𝑥0) + 𝜑 (𝑥0, 𝑤) ⇔ 𝜑 (𝑧, 𝑤) = 𝑢 (𝑧)− 𝑢 (𝑤)

where the implication follows from the skew symmetry of 𝜑 and the definition

of 𝑢.

This proves that 𝜑 (𝑧, 𝑤) = 𝑢 (𝑧) − 𝑢 (𝑤) whenever 𝑧 ≥ 𝑤. If 𝑤 > 𝑧, by skew-

symmetry of 𝜑, 𝜑 (𝑧, 𝑤) = −𝜑 (𝑤, 𝑧) = − (𝑢 (𝑤)− 𝑢 (𝑧)) = 𝑢 (𝑧)− 𝑢 (𝑤) proving that

the equality 𝜑 (𝑧, 𝑤) = 𝑢 (𝑧) − 𝑢 (𝑤) holds for every 𝑧, 𝑤 ∈ 𝑋. Therefore, we have

𝜋 ∈ Π if and only if

∑︁
(𝑥,𝑦)∈𝑋×𝑋

𝜋 (𝑥, 𝑦)𝜑 (𝑥, 𝑦) ≥ 0 ⇐⇒
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝜋 (𝑥, 𝑦) (𝑢 (𝑥)− 𝑢 (𝑦)) ≥ 0

⇐⇒
∑︁
𝑥∈𝑋

𝜋1 (𝑥)𝑢 (𝑥) ≥
∑︁
𝑥∈𝑋

𝜋2 (𝑥)𝑢 (𝑥)

proving that Π admits an EU representation.
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4⇒ Equation (A.9) If Π admits an EU representation then

𝜋 ∈ Π ⇐⇒
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝜋 (𝑥, 𝑦) (𝑢 (𝑥)− 𝑢 (𝑦)) ≥ 0.

Therefore, if we define 𝜑 (𝑧, 𝑤) = (𝑢 (𝑧)− 𝑢 (𝑤)), modularity holds: let 𝑥, 𝑦, 𝑥′, 𝑦′ ∈ 𝑋

𝜑 ((𝑥, 𝑦) ∨ (𝑥′, 𝑦′)) + 𝜑 ((𝑥, 𝑦) ∧ (𝑥′, 𝑦′))

= 𝑢(𝑥 ∨ 𝑥′)− 𝑢(𝑦 ∨ 𝑦′) + 𝑢(𝑥 ∧ 𝑥′)− 𝑢(𝑦 ∧ 𝑦′)

= 𝑢 (𝑥) + 𝑢 (𝑥′)− 𝑢 (𝑦)− 𝑢 (𝑦′) = 𝜑 (𝑥, 𝑦) + 𝜑 (𝑥′, 𝑦′) .

3 ⇔ 4 is a version of the vN-M EU theorem.

4 ⇒ 1 is straightforward given the representation.

4 ⇒ 2 holds trivially.

2 ⇒Equation (A.9) and 1 ⇒Equation (A.9) are proved by contradiction. Suppose

that there exist 𝑥, 𝑦, 𝑥′, 𝑧′ ∈ 𝑋 such that

𝜑 ((𝑥, 𝑦) ∨ (𝑥′, 𝑦′)) + 𝜑 ((𝑥, 𝑦) ∧ (𝑥′, 𝑦′)) > 𝜑 (𝑥, 𝑦) + 𝜑 (𝑥′, 𝑦′)

with (𝑥 ∨ 𝑥′) = 𝑥 and (𝑦 ∨ 𝑦′) = 𝑦′. Then the inequality reads

𝜑 (𝑥, 𝑦′) + 𝜑 (𝑥′, 𝑦) > 𝜑 (𝑥, 𝑦) + 𝜑 (𝑥′, 𝑦′) . (A.10)

Choose (𝑧, 𝑤) ∈ (𝑋 ×𝑋) and 𝛼 ∈ [0, 1] such that

𝛼𝜑 (𝑧, 𝑤)+(1− 𝛼)

(︂
𝜑 (𝑥, 𝑦′) + 𝜑 (𝑥′, 𝑦)

2

)︂
> 0 > 𝛼𝜑 (𝑧, 𝑤)+(1− 𝛼)

(︂
𝜑 (𝑥, 𝑦) + 𝜑 (𝑥′, 𝑦′)

2

)︂
.

The existence of such (𝑧, 𝑤) and 𝛼 is guaranteed by (A.10). Then

𝛼𝛿(𝑧,𝑤)+
(1− 𝛼) 𝛿(𝑥,𝑦′)

2
+
(1− 𝛼) 𝛿(𝑥′,𝑦)

2
∈ Π̂ and 𝛼𝛿(𝑧,𝑤)+

(1− 𝛼) 𝛿(𝑥,𝑦)
2

+
(1− 𝛼) 𝛿(𝑥′,𝑦′)

2
/∈ Π.

(A.11)

We now show that (A.11) implies that neither Classic Completeness of ≿Π nor Tran-
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sitivity of Π holds. For Classic Completeness notice that (A.11) implies that neither

𝛼𝛿𝑧 +
(1− 𝛼) 𝛿𝑥

2
+

(1− 𝛼) 𝛿𝑥′

2
≿Π 𝛼𝛿𝑤 +

(1− 𝛼) 𝛿𝑦′

2
+

(1− 𝛼) 𝛿𝑦
2

nor

𝛼𝛿𝑤 +
(1− 𝛼) 𝛿𝑦′

2
+

(1− 𝛼) 𝛿𝑦
2

≿Π 𝛼𝛿𝑧 +
(1− 𝛼) 𝛿𝑥

2
+

(1− 𝛼) 𝛿𝑥′

2

holds, and ≿Π does not satisfy Classic Completeness.

As for Transitivity, let

𝜋 = 𝛼𝛿(𝑧,𝑧) +
(1− 𝛼) 𝛿(𝑥,𝑥)

2
+

(1− 𝛼) 𝛿(𝑥′,𝑥′)

2
,

𝜒 = 𝛼𝛿(𝑧,𝑤) +
(1− 𝛼) 𝛿(𝑥,𝑦′)

2
+

(1− 𝛼) 𝛿(𝑥′,𝑦)

2
,

𝜌 = 𝛼𝛿(𝑧,𝑤) +
(1− 𝛼) 𝛿(𝑥,𝑦)

2
+

(1− 𝛼) 𝛿(𝑥′,𝑦′)

2
.

Completeness of Π implies that 𝜋 ∈ Π, and (A.11) gives 𝜒 ∈ Π, 𝜌 /∈ Π. However, since

𝜋1 = 𝜌1, 𝜋2 = 𝜒1, and 𝜒2 = 𝜌2, Transitivity of Π does not hold. Similar arguments

can be used to obtain contradictions for other violations of modularity. ■

Proof of Remark 1 (If) Let 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑥 > 𝑦. By assumption, we have

𝜑 (𝑥, 𝑧) > 𝜑 (𝑦, 𝑧). Therefore, for every 𝛼 ∈ (0, 1), 𝑧 ∈ 𝑋, and 𝜋 ∈ ∆(𝑋)

𝛼𝛿(𝑦,𝑧) + (1− 𝛼) 𝜋 ∈ Π ⇐⇒ 𝛼𝜑 (𝑦, 𝑧) + (1− 𝛼)
∑︁

(𝑥′,𝑦′)∈𝑋×𝑋

𝜋 (𝑥′, 𝑦′)𝜑 (𝑥′, 𝑦′) ≥ 0

⇒ 𝛼𝜑 (𝑥, 𝑧) + (1− 𝛼)
∑︁

(𝑥′,𝑦′)∈𝑋×𝑋

𝜋 (𝑥′, 𝑦′)𝜑 (𝑥′, 𝑦′) > 0

⇐⇒ 𝛼𝛿(𝑥,𝑧) + (1− 𝛼) 𝜋 ∈ Π̂.

(Only if) We first prove that 𝜑 is strictly increasing in the first argument. Let

𝑥1, 𝑥2, 𝑦 ∈ 𝑋, 𝑥1 > 𝑥2. Under a correlation-sensitive representation, we have 𝛿(𝑥2,𝑦)
2

+
𝛿(𝑦,𝑥2)

2
∈ Π. Then by Monotonicity 𝛿(𝑥1,𝑦)

2
+

𝛿(𝑦,𝑥2)
2

∈ Π̂ and given the correlation-

sensitive representation this implies 𝜑 (𝑥1, 𝑦) > 𝜑 (𝑥2, 𝑦). To see that 𝜑 is strictly
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decreasing in the second argument, notice that by skew symmetry:

𝜑 (𝑥1, 𝑦) > 𝜑 (𝑥2, 𝑦) ⇒ −𝜑 (𝑦, 𝑥1) > −𝜑 (𝑦, 𝑥2) ⇒ 𝜑 (𝑦, 𝑥1) < 𝜑 (𝑦, 𝑥2)

concluding the proof. ■

Proof of Remark 2 (Only if) If 𝜑 is always equal to 0 the claim is obvious.

Therefore, suppose there exists 𝑧, 𝑤 ∈ 𝑋 with 𝜑 (𝑧, 𝑤) > 0. We prove continuity in

the first argument; continuity in the second argument follows from skew-symmetry.

Let (𝑥𝑛)𝑛∈N → 𝑥, and suppose that there exists 𝑦 ∈ 𝑋 such that 𝜑 (𝑥𝑛, 𝑦) ↛ 𝜑 (𝑥, 𝑦).

There are two cases:

i) There exists an infinite subsequence of (𝑥𝑛𝑘
)𝑘∈N and an 𝜀 > 0 such that

𝜑 (𝑥𝑛𝑘
, 𝑦) ≥ 𝜑 (𝑥, 𝑦) + 𝜀 for all 𝑘 ∈ N. If 𝜑 (𝑥, 𝑦) ≥ −𝜀 notice that we have

∀𝑘 ∈ N
𝜑 (𝑧, 𝑤)

𝜑 (𝑥, 𝑦) + 𝜀+ 𝜑 (𝑧, 𝑤)
𝜑 (𝑥𝑛𝑘

, 𝑦) +
𝜑 (𝑥, 𝑦) + 𝜀

𝜑 (𝑥, 𝑦) + 𝜀+ 𝜑 (𝑧, 𝑤)
𝜑 (𝑤, 𝑧) ≥ 0

⇔ ∀𝑘 ∈ N
𝜑 (𝑧, 𝑤)

𝜑 (𝑥, 𝑦) + 𝜀+ 𝜑 (𝑧, 𝑤)
𝛿(𝑥𝑛𝑘

,𝑦) +
𝜑 (𝑥, 𝑦) + 𝜀

𝜑 (𝑥, 𝑦) + 𝜀+ 𝜑 (𝑧, 𝑤)
𝛿(𝑤,𝑧) ∈ Π

=⇒ 𝜑 (𝑧, 𝑤)

𝜑 (𝑥, 𝑦) + 𝜀+ 𝜑 (𝑧, 𝑤)
𝛿(𝑥,𝑦) +

𝜑 (𝑥, 𝑦) + 𝜀

𝜑 (𝑥, 𝑦) + 𝜀+ 𝜑 (𝑧, 𝑤)
𝛿(𝑤,𝑧) ∈ Π

⇔ 𝜑 (𝑥, 𝑦) ≥ 𝜑 (𝑥, 𝑦) + 𝜀

a contradiction. If 𝜑 (𝑥, 𝑦) < −𝜀 notice that we have

∀𝑘 ∈ N
𝜑 (𝑤, 𝑧)

𝜑 (𝑥, 𝑦) + 𝜀+ 𝜑 (𝑤, 𝑧)
𝜑 (𝑥𝑛𝑘

, 𝑦) +
𝜑 (𝑥, 𝑦) + 𝜀

𝜑 (𝑥, 𝑦) + 𝜀+ 𝜑 (𝑤, 𝑧)
𝜑 (𝑧, 𝑤) ≥ 0

⇔ ∀𝑘 ∈ N
𝜑 (𝑤, 𝑧)

𝜑 (𝑥, 𝑦) + 𝜀+ 𝜑 (𝑤, 𝑧)
𝛿(𝑥𝑛𝑘

,𝑦) +
𝜑 (𝑥, 𝑦) + 𝜀

𝜑 (𝑥, 𝑦) + 𝜀+ 𝜑 (𝑤, 𝑧)
𝛿(𝑧,𝑤) ∈ Π

=⇒ 𝜑 (𝑤, 𝑧)

𝜑 (𝑥, 𝑦) + 𝜀+ 𝜑 (𝑤, 𝑧)
𝛿(𝑥,𝑦) +

𝜑 (𝑥, 𝑦) + 𝜀

𝜑 (𝑥, 𝑦) + 𝜀+ 𝜑 (𝑤, 𝑧)
𝛿(𝑧,𝑤) ∈ Π

⇔ 𝜑 (𝑥, 𝑦) ≥ 𝜑 (𝑥, 𝑦) + 𝜀

a contradiction.

ii) There exists an infinite subsequence of (𝑥𝑛𝑘
)𝑘∈N and an 𝜀 > 0 such that
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𝜑 (𝑥𝑛𝑘
, 𝑦) ≤ 𝜑 (𝑥, 𝑦)− 𝜀 for all 𝑘 ∈ N. If 𝜑 (𝑥, 𝑦) ≥ 𝜀 notice that we have

∀𝑘 ∈ N
𝜑 (𝑧, 𝑤)

𝜑 (𝑥, 𝑦)− 𝜀+ 𝜑 (𝑧, 𝑤)
𝜑 (𝑥𝑛𝑘

, 𝑦) +
𝜑 (𝑥, 𝑦)− 𝜀

𝜑 (𝑥, 𝑦)− 𝜀+ 𝜑 (𝑧, 𝑤)
𝜑 (𝑤, 𝑧) ≤ 0

⇔ ∀𝑘 ∈ N
𝜑 (𝑧, 𝑤)

𝜑 (𝑥, 𝑦)− 𝜀+ 𝜑 (𝑧, 𝑤)
𝛿(𝑦,𝑥𝑛𝑘)

+
𝜑 (𝑥, 𝑦)− 𝜀

𝜑 (𝑥, 𝑦)− 𝜀+ 𝜑 (𝑧, 𝑤)
𝛿(𝑧,𝑤) ∈ Π

=⇒ 𝜑 (𝑧, 𝑤)

𝜑 (𝑥, 𝑦)− 𝜀+ 𝜑 (𝑧, 𝑤)
𝛿(𝑦,𝑥) +

𝜑 (𝑥, 𝑦)− 𝜀

𝜑 (𝑥, 𝑦) + 𝜀+ 𝜑 (𝑧, 𝑤)
𝛿(𝑧,𝑤) ∈ Π

⇔ 𝜑 (𝑥, 𝑦)− 𝜀 ≥ 𝜑 (𝑥, 𝑦) .

a contradiction. The case 𝜑 (𝑥, 𝑦) ≤ 𝜀 is proved along the same lines.

(If) Trivial. ■

A.6.1 Salience Characterization

Proof of Proposition 9 Let Π admit a correlation-sensitive representation, 𝑥, 𝑦 ∈ R,

and 𝛼, 𝛽 ∈ [0, 1] with 𝑥 > 𝑦 and 𝛽 > 𝛼 with at least one between 𝛼 and 𝛽 in (0, 1).

We have
(︁
(𝑥, 𝑦) , 𝛽−𝛼

1+𝛽−𝛼
; (𝛼𝑥+ (1− 𝛼) 𝑦, 𝛽𝑥+ (1− 𝛽) 𝑦) , 1

1+𝛽−𝛼

)︁
∈ Π̂ if and only if

𝛽−𝛼
1+𝛽−𝛼

𝜑 (𝑥, 𝑦) + 1
1+𝛽−𝛼

𝜑 (𝛼𝑥+ (1− 𝛼) 𝑦, 𝛽𝑥+ (1− 𝛽) 𝑦) > 0 that by skew symmetry

of 𝜑 is equivalent to

𝜑 (𝑥, 𝑦) (𝛽 − 𝛼) > 𝜑 (𝛽𝑥+ (1− 𝛽) 𝑦, 𝛼𝑥+ (1− 𝛼) 𝑦) . (A.12)

Now, let Π admit a 𝜎-distorted representation. We show that Ordering of Π implies

BGS-Ordering of 𝜎, the other direction is trivial.

We first show that if 𝑥 ≥ 𝑧 > 𝑤 ≥ 𝑦 with [𝑦, 𝑥] ⊃ [𝑤, 𝑧], then 𝜎 (𝑥, 𝑦) > 𝜎 (𝑤, 𝑧).

Define 𝛼 = 𝑤−𝑦
𝑥−𝑦

and 𝛽 := 𝑧−𝑦
𝑥−𝑦

and notice that 0 ≤ 𝛼 < 𝛽 ≤ 1 with at least one of the

two inequalities being strict. Therefore, (A.12) implies that

(𝛽 − 𝛼) (𝑥− 𝑦)𝜎 (𝑥, 𝑦) > (𝛽 − 𝛼) (𝑥− 𝑦)𝜎 (𝛼𝑥+ (1− 𝛼) 𝑦, 𝛽𝑥+ (1− 𝛽) 𝑦)

= (𝛽 − 𝛼) (𝑥− 𝑦)𝜎 (𝑤, 𝑧) ,

and 𝜎 (𝑥, 𝑦) > 𝜎 (𝑤, 𝑧).
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Next, let 𝑧 = 𝑤, with 𝑥 ≥ 𝑤 ≥ 𝑦 and at least one of the two inequalities strict, say

𝑥 > 𝑤 ≥ 𝑦. Suppose by way of contradiction that 𝜎(𝑤,𝑤) ≥ 𝜎 (𝑥, 𝑦). By continuity

of 𝜎, there exists an 𝜀 < 𝑥−𝑤
2

with 𝜎(𝑤 + 𝜀, 𝑤) > 𝜎 (𝑥, 𝑦). But this is a contradiction

with what was proved in the previous paragraph. ■

Proof of Proposition 10 Let Π admit a 𝜎-distorted representation and satisfy strict

Diminishing Sensitivity. Fix 𝑥 > 𝑦 > 0, 𝑘 > 0, we have that
(︀
(𝑥, 𝑦) , 1

2
; (𝑦 + 𝑘, 𝑥+ 𝑘) , 1

2

)︀
∈

Π̂. Given the 𝜎-distorted representation, this is equivalent to (𝑥− 𝑦)𝜎 (𝑥, 𝑦)+(𝑦 − 𝑥)𝜎 (𝑦 + 𝑘, 𝑥+ 𝑘) >

0. The previous inequality holds if and only if 𝜎 (𝑥, 𝑦 − 𝑘) > 𝜎 (𝑦, 𝑥+ 𝑘) = 𝜎 (𝑥+ 𝑘, 𝑦)

proving that 𝜎 satisfies BGS-Diminishing Sensitivity. All the steps are reversible. ■

Proof of Proposition 11 (If) Let 𝑥 ≥ 𝑦 ≥ 0 and 𝑘 ≥ 0. Consider the two

marginal distributions 𝑝 =
(︀
𝑥, 1

2
; 𝑦 + 𝑘, 1

2

)︀
and 𝑞 =

(︀
𝑥+ 𝑘, 1

2
; 𝑦, 1

2

)︀
. Notice that

𝑞 is a mean-preserving spread of 𝑝, since 𝑞 can be obtained by further randomiz-

ing each realization 𝑧 of 𝑝 with the additional random term ℎ𝑧 defined as ℎ𝑥 =(︁
𝑘, (𝑥−𝑦)

(𝑥−𝑦)+𝑘
; (𝑦 − 𝑥) , 𝑘

(𝑥−𝑦)+𝑘

)︁
and ℎ𝑦+𝑘 =

(︁
(𝑥− 𝑦) , 𝑘

(𝑥−𝑦)+𝑘
;−𝑘, (𝑥−𝑦)

(𝑥−𝑦)+𝑘

)︁
. Therefore,

as risk-averse expected utility DMs dislike mean-preserving spreads:

∑︁
𝑧∈𝑋

𝑝 (𝑧)𝑢 (𝑧) ≥
∑︁
𝑧∈𝑋

𝑞 (𝑧)𝑢 (𝑧) .

Rearranging the terms 1
2
(𝑢 (𝑥)− 𝑢 (𝑦)) + 1

2
(𝑢 (𝑦 + 𝑘)− 𝑢 (𝑥+ 𝑘)) ≥ 0 or

(︂
(𝑥, 𝑦) ,

1

2
; (𝑦 + 𝑘, 𝑥+ 𝑘) ,

1

2

)︂
∈ Π

and Diminishing Sensitivity holds.

(Only If) Let 𝑥0 ≥ 𝑦0 ≥ 0. By Diminishing Sensitivity

(︂(︂
𝑥0 + 𝑦0

2
, 𝑦0

)︂
,
1

2
;

(︂
𝑥0 + 𝑦0

2
, 𝑥0

)︂
,
1

2

)︂
∈ Π

that is 𝑢
(︀
𝑥0+𝑦0

2

)︀
≥ 𝑢(𝑥0)+𝑢(𝑦0)

2
proving the midpoint concavity of 𝑢 on the set of positive

real numbers. Since 𝑢 is strictly increasing, it is measurable. Since the Sierpinski

theorem implies that a midpoint concave and measurable function is concave, the
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DM is risk-averse on that range. ■

Proof of Proposition 12 Let 𝑥, 𝑦, 𝑤, 𝑧 ∈ R+, with 𝑥 − 𝑦 = 𝑧 − 𝑤 > 0. Under a

𝜎-distorted representation

(︂
(𝑥, 𝑦) ,

1

2
; (𝑤, 𝑧) ,

1

2

)︂
∈ Π̂ ⇔

(︂
(−𝑦,−𝑥) , 1

2
; (−𝑧,−𝑤) , 1

2

)︂
∈ Π̂

is tantamount to

(𝑥− 𝑦)𝜎 (𝑥, 𝑦) > (𝑧 − 𝑤)𝜎 (𝑤, 𝑧) ⇔ (𝑥− 𝑦)𝜎 (−𝑥,−𝑦) > (𝑧 − 𝑤)𝜎 (−𝑤,−𝑧)

which is equivalent to 𝜎 (𝑥, 𝑦) > 𝜎 (𝑤, 𝑧) ⇔ 𝜎 (−𝑥,−𝑦) > 𝜎 (−𝑤,−𝑧). The case in

which 𝑥−𝑦 = 𝑧−𝑤 < 0 is completely analogous, and the one in which 𝑥−𝑦 = 𝑧−𝑤 = 0

immediately follows from the fact that for all 𝑥,𝑤 ∈ R+,
(︀
(𝑥, 𝑥) , 1

2
; (𝑤,𝑤) , 1

2

)︀
∈ Π

and
(︀
(−𝑥,−𝑥) , 1

2
; (−𝑤,−𝑤) , 1

2

)︀
∈ Π. ■

Proof of Proposition 13 We will prove only the case in which Π is risk-averse in

(𝑎, 𝑏) as the other case is analogous. Let 𝑢 be a vN-M utility index representing Π

such that 𝑢 (0) = 0, and suppose that Π is risk-averse for lotteries with values in

(𝑎, 𝑏) ⊆ R+. Let −𝑏 < −𝑥 ≤ −𝑦 < −𝑎, since 𝑢 is concave on (𝑎, 𝑏), we have 𝑢 (𝑥) −

𝑢
(︀
𝑥+𝑦
2

)︀
≤ 𝑢

(︀
𝑥+𝑦
2

)︀
−𝑢 (𝑦) that is

(︀(︀
𝑥, 𝑥+𝑦

2

)︀
, 1
2
;
(︀
𝑦, 𝑥+𝑦

2

)︀
, 1
2

)︀
/∈ Π̂. By Weak Reflexivity,

this means that
(︀(︀
−𝑥+𝑦

2
,−𝑥

)︀
, 1
2
;
(︀
−𝑥+𝑦

2
,−𝑦

)︀
, 1
2

)︀
/∈ Π̂ or 𝑢

(︀
−𝑥+𝑦

2

)︀
≤ 𝑢(−𝑥)+𝑢(−𝑦)

2
.

This shows that 𝑢 is mid-point convex on (−𝑎,−𝑏). Since it is also increasing, it

is measurable, and by the Sierpinski theorem it is convex on (−𝑎,−𝑏), proving the

statement. ■

Proof of Theorem 5 (Only If) Given a smooth salience representation, let 𝜑 (𝑥, 𝑦) =

𝜎 (𝑥, 𝑦) (𝑥− 𝑦). By the symmetry axiom for 𝜎, we have 𝜑 (𝑥, 𝑦) = 𝜎 (𝑥, 𝑦) (𝑥− 𝑦) =

𝜎 (𝑦, 𝑥) (𝑥− 𝑦) = −𝜎 (𝑦, 𝑥) (𝑦 − 𝑥) = −𝜑 (𝑦, 𝑥) proving that 𝜑 is skew-symmetric.

Then Π satisfies Completeness, Strong Independence, and Archimedean Continuity

by Theorem 4. It satisfies Ordering, Diminishing Sensitivity, and Weak Reflexivity by

Propositions 9, 10, and 12. Since 𝜎 satisfies BGS-Ordering, Π satisfies Monotonicity

165



by Remark 1. To see it, suppose that 𝑦 ≥ 𝑥 > 𝑥′. Then 𝜑 (𝑥, 𝑦) = 𝜎 (𝑥, 𝑦) (𝑥− 𝑦) ≥

𝜎 (𝑥′, 𝑦) (𝑥′ − 𝑦) = 𝜑 (𝑥, 𝑦) where the inequality is due to 0 ≤ 𝜎 (𝑥, 𝑦) ≤ 𝜎 (𝑥, 𝑦′) with

at least one of the two inequalities being strict that in turns is a consequence of BGS

Ordering and the fact that a salience function takes positive values by definition. The

case 𝑥 > 𝑥′ ≥ 𝑦 is proved similarly, and 𝑥 > 𝑥′, 𝑦 ∈ (𝑥′, 𝑥) follows immediately from

𝜑 (𝑥, 𝑦) = 𝜎 (𝑥, 𝑦) (𝑥− 𝑦) > 0 ≥ 𝜎 (𝑥′, 𝑦) (𝑥′ − 𝑦) = 𝜑 (𝑥, 𝑦). Moreover, Π satisfies

Continuity in Outcomes by Remark 2 and since 𝜑 (𝑦, 𝑥) is the product of two jointly

continuous functions. Finally, let 𝑥 ∈ 𝑋, (𝑥𝑛)𝑛∈N be such that 𝑥𝑛 ↓ 𝑥, 𝑘 ∈ R and

𝜀 ∈ R++. Then

((𝑥, 𝑥𝑛) , (1− (𝑥𝑛 − 𝑥)) ; (𝑘 + 𝜀, 𝑘) , (𝑥𝑛 − 𝑥)) ∈ Π

⇔ 𝜑 (𝑥, 𝑥𝑛) (1− (𝑥𝑛 − 𝑥)) ≥ 𝜑 (𝑘, 𝑘 + 𝜀) (𝑥𝑛 − 𝑥)

⇔ 𝜎 (𝑥, 𝑥𝑛) (𝑥− 𝑥𝑛) (1− (𝑥𝑛 − 𝑥)) ≥ 𝜎 (𝑘 + 𝜀, 𝑘) 𝜀 (𝑥− 𝑥𝑛)

⇐ 𝜎 (𝑥, 𝑥𝑛) (1− (𝑥𝑛 − 𝑥)) ≤ 𝜎 (𝑘 + 𝜀, 𝑘) 𝜀

where the last inequality holds for sufficiently large 𝑛 by continuity of 𝜎, proving

that Π satisfies the first condition of Continuity at Identity. An analogous argument

establishes the second part.

(If) Since Π satisfies Completeness, Strong Independence, and Archimedean Con-

tinuity by Theorem 4 it admits the representation

𝜋 ∈ Π ⇐⇒
∑︁

(𝑥,𝑦)∈𝑋×𝑋

𝜑 (𝑥, 𝑦) 𝜋 (𝑥, 𝑦) ≥ 0.

Define 𝜎 by

𝜎 (𝑥, 𝑦) =
𝜑 (𝑥, 𝑦)

𝑥− 𝑦
∀𝑥 ̸= 𝑦

and 𝜎 (𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝑋. We have that 𝜎 maps 𝑋×𝑋 into positive real numbers

by Monotonicity and Remark 1. It is immediate that

𝜋 ∈ Π ⇔
∑︁

(𝑥,𝑦)∈𝑋×𝑋

(𝑥− 𝑦)𝜎 (𝑥, 𝑦) 𝜋 (𝑥, 𝑦) ≥ 0.
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Propositions 9, 10, and 12 guarantee that 𝜎 satisfies respectively BGS-Ordering, BGS-

Diminishing Sensitivity, and BGS-Weak Reflexivity. We now check that 𝜎 satisfies

symmetry and it is continuous. First, 𝜎 satisfies symmetry since 𝜑 is skew symmetric.

Moreover since 𝜑 is continuous by Remark 2 𝜎 is continuous at every (𝑥, 𝑦) such that

𝑥 ̸= 𝑦. We now show that it is continuous at each (𝑥, 𝑥) ∈ R × R. We show that

𝑥𝑛 ↓ 𝑥 implies 𝜎 (𝑥𝑛, 𝑥) → 0, the proof for the case in which 𝑥𝑛 ↑ 𝑥 is completely

analogous. Without loss of generality, we can assume that 𝑥𝑛 ̸= 𝑥 for all 𝑛 ∈ N. By

Continuity at Identity, for all 𝑘 ∈ R and 𝜀 ∈ R++, there exists an 𝑚 ∈ N such that

for all 𝑛 ≥ 𝑚,

((𝑥, 𝑥𝑛) , (1− (𝑥𝑛 − 𝑥)) ; (𝑘 + 𝜀, 𝑘) , (𝑥𝑛 − 𝑥)) ∈ Π

⇔ 𝜑 (𝑥, 𝑥𝑛) (1− (𝑥𝑛 − 𝑥)) ≥ 𝜑 (𝑘, 𝑘 + 𝜀) (𝑥𝑛 − 𝑥)

⇔ 𝜎 (𝑥, 𝑥𝑛) (𝑥− 𝑥𝑛) (1− (𝑥𝑛 − 𝑥)) ≥ 𝜎 (𝑘 + 𝜀, 𝑘) 𝜀 (𝑥− 𝑥𝑛)

⇔ 𝜎 (𝑥, 𝑥𝑛) (1− (𝑥𝑛 − 𝑥)) ≤ 𝜎 (𝑘 + 𝜀, 𝑘) 𝜀.

Since the 𝜀 can be chosen arbitrarily small 𝜀 and 𝜎 (𝑘 + 𝜀, 𝑘) is decreasing in 𝜀 by the

BGS-Ordering property established above, this proves that 𝜎 (𝑥, 𝑥𝑛) (1− (𝑥𝑛 − 𝑥)) is

converging to 0. This concludes the proof. ■

Proof of Corollary 3 Let 𝑥 > 𝑧 > 𝑦. Then, there exists 𝜆 ∈ (0, 1) with 𝜆𝑥 +

(1− 𝜆) 𝑦 = 𝑧. Applying Ordering and Proposition 9 with 𝛼 = 𝜆 and 𝛽 = 1 we

get 𝜑 (𝑥, 𝑦) (1− 𝜆) > 𝜑 (𝑥, 𝑧) . Applying Ordering and Proposition 9 with 𝛽 = 𝜆 and

𝛼 = 0 we get 𝜑 (𝑥, 𝑦)𝜆 > 𝜑 (𝑧, 𝑦) . By summing the two inequalities, we get the desired

result. ■

A.7 Binary Relations and Preference Sets

Lemma 15. For every binary relation ⪰, we have ≿Π⪰=⪰.

We collect the definitions of some standard axioms for binary relations over ∆(𝑋).

Axiom 21 (Classic Completeness). For all 𝑝, 𝑞 ∈ ∆(𝑋), either 𝑝 ≿ 𝑞 or 𝑞 ≿ 𝑝 or
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both.

Classic Completeness requires that the DM can (weakly) rank all the marginal

lotteries. Our analysis highlights why Classic Completeness may fail: the comparison

of some pairs of lotteries may depend on their correlation. The following lemma shows

that Completeness of the preference set weakens Classic Completeness. The example

discussed in the introduction shows why it may be a strictly weaker requirement.

Lemma 16. 1. Let ≿ be a binary relation. If ≿ satisfies Classic Completeness,

then Π≿ satisfies Completeness.

2. Let Π be a preference set. If ≿Π satisfies Classic Completeness, then Π satisfies

Completeness.

That is, the preference set derived from a complete binary relation satisfies Com-

pleteness. Moreover, the binary relation induced by a preference set is complete only

if the preference set satisfies Completeness.

Axiom 22 (Classic Transitivity). For all 𝑝, 𝑞, 𝑟 ∈ ∆(𝑋), if 𝑝 ≿ 𝑞 and 𝑞 ≿ 𝑟, then

𝑝 ≿ 𝑟. Moreover, if either 𝑝 ≻ 𝑞 or 𝑞 ≻ 𝑟, then 𝑝 ≻ 𝑟.

Classic Transitivity is the other central tenet of rationality.

Axiom 23 (Classic Strong Independence). For all 𝑝, 𝑞, 𝑟 ∈ ∆(𝑋) and 𝛼 ∈ (0, 1),

𝑝 ≿ 𝑞 ⇔ 𝛼𝑝+ (1− 𝛼) 𝑟 ≿ 𝛼𝑞 + (1− 𝛼) 𝑟.

Classic Strong Independence is the axiom usually paired to Classic Completeness,

Classic Transitivity, and Classic Archimedean Continuity to derive the expected util-

ity representation. Since we often work without Classic Transitivity in this chapter,

we also need to consider an alternative and stronger form of independence.

Axiom 24 (Classic Strong B-Independence). For all 𝑝, 𝑞, 𝑟, 𝑠 ∈ ∆(𝑋) and 𝛼 ∈ (0, 1),

𝑝 ≿ 𝑞, 𝑟 ≿ 𝑠⇒ 𝛼𝑝+ (1− 𝛼) 𝑟 ≿ 𝛼𝑞 + (1− 𝛼) 𝑠.
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Moreover, if 𝑝 ≻ 𝑞, then 𝛼𝑝+ (1− 𝛼) 𝑟 ≻ 𝛼𝑞 + (1− 𝛼) 𝑠.

Classic Strong B-Independence says that convex combinations of preferred alter-

natives are preferred to the convex combination of the alternatives they dominate. It

implies Classic Strong Independence, and the two axioms coincide under Classic Tran-

sitivity. The following remark proved in the Supplementary Appendix clarifies that

the usual approach that assumes Classic Strong Independence for a binary relation

implicitly imposes our notion of Strong Independence for preference sets.

Remark 4. If a binary relation ≿ satisfies Classic Strong B-Independence, then Π≿

satisfies Strong Independence.

The next axiom is a standard and weak form of continuity imposed on preferences

defined over a convex set.

Axiom 25 (Classic Archimedean Continuity). For all 𝑝, 𝑞, 𝑟 ∈ ∆(𝑋) such that 𝑝 ≻ 𝑞

and 𝑞 ≻ 𝑟, there exist 𝛼, 𝛽 ∈ (0, 1) such that 𝛼𝑝+(1− 𝛼) 𝑟 ≻ 𝑞 and 𝑞 ≻ 𝛽𝑝+(1− 𝛽) 𝑟.

A slightly more demanding version of Classic Archimedean Continuity is needed

when dealing with nontransitive and incomplete preferences.

Axiom 26 (Classic Archimedean B-Continuity). For all 𝑝, 𝑞, 𝑟, 𝑠 ∈ ∆(𝑋) such that

𝑝 ≻ 𝑞 and 𝑟 ̸≿ 𝑠, there exist 𝛼, 𝛽 ∈ (0, 1) such that

𝛼𝑝+ (1− 𝛼) 𝑟 ≻ 𝛼𝑞 + (1− 𝛼) 𝑠 and 𝛽𝑝+ (1− 𝛽) 𝑟 ̸≿ 𝛽𝑞 + (1− 𝛽) 𝑠.

Therefore, under Classic Completeness, Classic Archimedean Continuity is the

particular case of Classic Archimedean B-Continuity in which 𝑠 = 𝑞.

Axiom 27 (Classic Sequential Continuity). For each pair of sequences (𝑝𝑛)𝑛∈N and

(𝑞𝑛)𝑛∈N in ∆(𝑋) such that (𝑝𝑛)𝑛∈N → 𝑝0 and (𝑞𝑛)𝑛∈N → 𝑞0

𝑝𝑛 ≿ 𝑞𝑛 for all 𝑛 ∈ N =⇒ 𝑝0 ≿ 𝑞0.

Classic Sequential Continuity implies Classic Archimedean B-Continuity under

Classic Completeness.
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Lemma 17. If ≿ satisfies Classic Sequential Continuity and Classic Completeness,

then ≿ satisfies Classic Archimedean B-Continuity.

The following remark shows that the usual approach that assumes Classic Archimedean

B-Continuity for a binary relation implicitly imposes our notion of Archimedean Con-

tinuity for preference sets.

Remark 5. If ≿ satisfies Classic Archimedean B-Continuity, then Π≿ satisfies Archimedean

Continuity.

The next result verifies the asserted link between Classic Transitivity and Transi-

tivity of the preference sets.

Lemma 18. 1. If ≿ satisfies Classic Transitivity, Π≿ satisfies Transitivity.

2. If Π satisfies Transitivity, then ≿Π satisfies Classic Transitivity.

3. ≿Π satisfies Classic Transitivity and Classic Completeness if and only if Π sat-

isfies Transitivity and Completeness.

Proposition 8 can be used to highlight an additional benefit of our preference sets

approach: we obtain a new set of axioms that are one to one with expected utility

theory.

Theorem 6. For every Π ⊆ ∆(𝑋 ×𝑋) the following are equivalent:

1. ≿Π satisfy Classic Completeness, Classic Strong B-Independence, and Classic

Archimedean B-Continuity;

2. ≿Π satisfies Classic Completeness, Classic Transitivity, Classic Archimedean

Continuity, and Classic Strong Independence;

3. ≿Π admits an expected utility representation.

Proof It immediately follows by combining Lemmata 15, 16, and 18, Remarks 4 and

5, Claim 12 and the vN-M expected utility theorem. ■
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A.8 Choice from arbitrary sets

We now turn to an important question left open by the previous analysis: how the

DM chooses from a finite set 𝐴 of more than two alternatives. In general, since the

correlation-sensitive decision criterion is intransitive, it is possible that, given a choice

set 𝐴, no element of 𝐴 is (weakly) preferred to all the other options.

To describe the decision maker’s preferences when multiple alternatives are avail-

able, we will need to generalize the concept of choice rule. In particular, let ∆(𝑋𝑛)

be the joint distribution over the 𝑛 dimensional outcomes, and ∆ =
⋃︀

𝑛∈N∆(𝑋𝑛)

be the set of all the joint distribution over a finite number of outcomes. A choice

rule is a 𝒞 : ∆ ⇒ N such that 𝜋 ∈ ∆(𝑋𝑛) implies that ∅ ≠ 𝒞 (𝜋) ⊆ {1, ..., 𝑛}. The

interpretation is that the choice rule takes as an input a 𝜋 ∈ ∆(𝑋𝑛) that describes

the joint distribution over outcomes of 𝑛 alternatives, and gives back the subset of

these alternatives preferred by the DM given the correlation structure.

A natural question is whether, given a preference set Π that satisfies Completeness,

Strong Independence, and Archimedean Continuity, there always exists a consistent

choice rule. Formally, given a preference set Π that admits a correlation-sensitive

representation with skew symmetric function 𝜑 a choice rule 𝒞 is consistent with Π

if for all 𝑛 ∈ N, for all 𝜋 ∈ ∆(𝑋𝑛), if 𝑖 ∈ 𝒞 (𝜋), then

∀𝑗 ∈ {1, ..., 𝑛}
∑︁
(𝑥,𝑦)

𝜋𝑖,𝑗 (𝑥, 𝑦)𝜑 (𝑥, 𝑦) ≥ 0

where 𝜋𝑖,𝑗 is the marginal distribution over alternatives 𝑖 and 𝑗. That is, if the DM

prefers to be paid according to the 𝑖 alternative, then the preference set Π deems 𝑖

preferable to every other 𝑗 in their pairwise comparison.

It is immediate that if Π admits an expected utility representation, then there

exists a choice function consistent with Π. Unfortunately, given the more general

criterion’s intransitivity, this may not be the case for some preference sets that satisfy

Completeness, Strong Independence, and Archimedean Continuity, as shown in the

example below.
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However, in some situations, the DM may be able to randomize over the alter-

natives with a randomization device independent of the alternative under consider-

ation. A stochastic choice rule is a 𝒮 : ∆ → ∆(N) such that 𝜋 ∈ ∆(𝑋𝑛) implies

that supp𝒮 (𝜋) ⊆ {1, ..., 𝑛}. Since the randomization performed by the DM does not

introduce any additional correlation, we extend the notion of consistency in a linear

way. Given a preference set Π that admits a correlation-sensitive representation with

skew symmetric function 𝜑 a stochastic choice rule 𝒮 is consistent with Π if for all

𝑛 ∈ N, for all 𝜋 ∈ ∆(𝑋𝑛), if 𝒮 (𝜋) = 𝜈, then

∀𝜈 ′ ∈ ∆({1, ..., 𝑛})
∑︁

𝑖,𝑗∈{1,...,𝑛}

𝜈 (𝑖) 𝜈 (𝑗)
∑︁
(𝑥,𝑦)

𝜋𝑖,𝑗 (𝑥, 𝑦)𝜑 (𝑥, 𝑦) ≥ 0.

Fortunately, we can extend a result by Kreweras (1961) to show that a consistent

stochastic choice rule always exists.

Proposition 14. If Π satisfies Completeness, Strong Independence and Archimedean

Continuity, then there exists a stochastic choice rule 𝒮 that is consistent with Π.

Proof By Theorem 4 Π admits a correlation-sensitive representation with skew sym-

metric function 𝜑. Let 𝑛 ∈ N and 𝜋 ∈ ∆(𝑋𝑛). We have that

max
𝜈∈Δ({1,...,𝑛})

min
𝜈′∈Δ({1,...,𝑛})

∑︁
𝑖,𝑗∈{1,...,𝑛}

∑︁
(𝑥,𝑦)

𝜈 (𝑖) 𝜈 ′ (𝑗) 𝜋𝑖,𝑗 (𝑥, 𝑦)𝜑 (𝑥, 𝑦)

= min
𝜈′∈Δ({1,...,𝑛})

max
𝜈∈Δ({1,...,𝑛})

∑︁
𝑖,𝑗∈{1,...,𝑛}

𝜈 (𝑖) 𝜈 ′ (𝑗)
∑︁
(𝑥,𝑦)

𝜋𝑖,𝑗 (𝑥, 𝑦)𝜑 (𝑥, 𝑦)

= min
𝜈′∈Δ({1,...,𝑛})

max
𝜈∈Δ({1,...,𝑛})

∑︁
𝑖,𝑗∈{1,...,𝑛}

𝜈 (𝑖) 𝜈 ′ (𝑗)

⎛⎝−
∑︁
(𝑥,𝑦)

𝜋𝑗,𝑖 (𝑥, 𝑦)𝜑 (𝑥, 𝑦)

⎞⎠
= − max

𝜈∈Δ({1,...,𝑛})
min

𝜈′∈Δ({1,...,𝑛})

⎛⎝ ∑︁
𝑖,𝑗∈{1,...,𝑛}

∑︁
(𝑥,𝑦)

𝜈 (𝑖) 𝜈 ′ (𝑗) 𝜋𝑖,𝑗 (𝑥, 𝑦)𝜑 (𝑥, 𝑦)

⎞⎠
where the first equality follows from von Neumann’s min-max theorem, the second
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by skew symmetry of 𝜑, and the last by simple algebra. Therefore,

max
𝜈∈Δ({1,...,𝑛})

min
𝜈′∈Δ({1,...,𝑛})

∑︁
𝑖∈{1,...,𝑛}

∑︁
𝑗∈{1,...,𝑛}

∑︁
(𝑥,𝑦)

𝜈 (𝑖) 𝜈 ′ (𝑗) 𝜋𝑖,𝑗 (𝑥, 𝑦)𝜑 (𝑥, 𝑦) = 0,

that is there exists 𝜈𝜋 ∈ ∆({1, ..., 𝑛}) such that for all 𝜈 ′ ∈ ∆({1, ..., 𝑛}),

∑︁
𝑖∈{1,...,𝑛}

∑︁
𝑗∈{1,...,𝑛}

∑︁
(𝑥,𝑦)

𝜈𝜋 (𝑖) 𝜈
′ (𝑗) 𝜋𝑖,𝑗 (𝑥, 𝑦)𝜑 (𝑥, 𝑦) ≥ 0.

The result then follows by letting 𝒮 (𝜋) = 𝜈𝜋 for all 𝜋 ∈ ∆. ■

Example 8 (The effect of salience on random choice). Suppose that the preference

set Π admits a salience representation with salience function 𝜎 (𝑥, 𝑦) = |𝑥 − 𝑦|. The

DM faces three symmetric alternatives: 𝜋 ∈ ∆(𝑋3) with 𝜋 (3, 1, 2) = 𝜋 (2, 3, 1) =

𝜋 (1, 2, 3) = 1
3
. Here, choosing to be deterministically paid according to a single alter-

native is not consistent with Π, since for such a salience-sensitive DM 𝜋1,2, 𝜋2,1, 𝜋3,1 ∈

Π̂. However, it is easy to see that the unique randomization consistent with Π sees the

DM randomizing uniformly over the three acts. Next, suppose that the DM faces the

joint distribution 𝜋′ ∈ ∆(𝑋4) with 𝜋′ (3, 1, 2, 5) = 𝜋′ (2, 3, 1, 0) = 𝜋′ (1, 2, 3, 0) = 1
3
.

Notice that for this salience-sensitive DM 𝜋′
1,4, 𝜋

′
3,4 ∈ Π̂, but 𝜋′

4,2 ∈ Π since when the

second alternative is compared to the fourth, the realization where the fourth alterna-

tive pays 5 and the second pays 1 results sufficiently salient to tilt the comparison in

favor of the fourth alternative. It is easy to see that when faced with the choice set

𝜋′, uniform randomization over the first three alternatives is no longer optimal for

the agent and that the unique optimal randomization is
(︀
1
2
, 0, 1

6
, 1
3

)︀
. Here, the fourth

alternative plays a “stochastic decoy” effect: the probability of the other three alterna-

tives are distorted to favor the ones that perform better in the salient state in which

the decoy pays 5. ▲

173



A.9 Analysis of the Rank-Based Version

In this section, we analyze the relative weaknesses of the alternative rank-based

salience theory proposed in BGS. First, note that every function 𝜎 : 𝑋 × 𝑋 → R

induces a rank on the support of 𝜋. More precisely, if for all (𝑥, 𝑦) ∈ supp 𝜋 we let

�̂�𝜋 (𝑥, 𝑦) = |{(𝑥′, 𝑦′) ∈ supp𝜋 : 𝜎 (𝑥′, 𝑦′) > 𝜎 (𝑥, 𝑦)}| ,

we obtain | supp 𝜋| > �̂�𝜋 (𝑥, 𝑦) ≥ 0 with �̂�𝜋 (𝑥, 𝑦) = 0 for the most salient pair of

outcomes. Given these definitions, we can say when a preference relation admits a

rank-based salience theory representation.

Definition 19. A preference set Π admits a rank-based salience representation if

there exist a salience function 𝜎 : R2 → R and 𝛽 ∈ (0, 1] such that

𝜋 ∈ Π ⇔
∑︁

(𝑥,𝑦)∈supp𝜋

(𝑥− 𝑦) 𝛽�̂�𝜋(𝑥,𝑦)𝜋 (𝑥, 𝑦) ≥ 0. (A.13)

Since 𝛽 ≤ 1, and �̂�𝜋 is decreasing in the salience of a pair of outcomes, the

decision criterion is overweighting the most salient joint realizations. Therefore, this

criterion has the advantage of suggesting the main features of a salience-sensitive

DM: she probabilistically aggregates the difference between what is paid by the two

alternatives, with additional weight given to salient pairs of rewards. Notice that if

𝛽 = 1, the agent is a risk-neutral EU maximizer.

A.9.1 Weakness

Rank-based salience theory captures the idea that the distortion in evaluating an

event depends only on its relative salience. Hence, small perturbations in the amount

paid in a state can dramatically change its evaluation. As outlined above, this deci-

sion criterion is intransitive, and it does not satisfy the weaker axiom of Transitive

Consistency.23 For a joint distribution 𝜋 define the conditional row distribution of 𝜋
23For an in-depth analysis of Transitive Consistency, see Cerreia-Vioglio and Ok (2018), and

Nishimura and Ok (2018). For examples of intransitive binary relations satisfying this axiom,
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given 𝑦 ∈ supp 𝜋2 as

𝜋𝑦 (𝑥) =
𝜋 (𝑥, 𝑦)∑︀
𝑥∈𝑋 𝜋 (𝑥, 𝑦)

.

Axiom 28 (Transitive Consistency). Let 𝜋, 𝜒 be such that 𝜋2 = 𝜒2 and for all 𝑦 ∈

supp 𝜋2

𝜋𝑦 ≥𝐹𝑂𝑆𝐷 𝜒𝑦

then 𝜒 ∈ Π implies 𝜋 ∈ Π.

Transitive Consistency is a minimum rationality requirement imposed on an in-

transitive DM. The underlying idea is that, under the joint distribution 𝜋, the row

marginal has been improved conditional on every possible realization of the column

marginal. This implies that 𝜋1 ≥𝐹𝑂𝑆𝐷 𝜒1, and Transitive Consistency is satisfied

both by regret theory and the smooth salience theory.

The following example illustrates the possible transitive inconsistencies of rank-

based salience theory.

Example 9. Let 𝜋 and 𝜒 be

𝜋 5 11.5

7 1/3 0

9 0 2/3

𝜒 5 11.5

7 1/3 0

8.8 0 1/3

9 0 1/3

Suppose that we use the leading example of salience function proposed in BGS

𝜎(𝑥, 𝑦) =
|𝑥− 𝑦|
|𝑥|+ |𝑦|

and we set 𝛽 = 1/2. We obtain 𝜎(7, 5) > 𝜎(9, 11.5). Therefore 𝜋 /∈ Π since

1

3
[7− 5] + 𝛽

2

3
[9− 11.5] =

1

3
· 2− 1

2
· 2
3
· 2.5 < 0.

see Cerreia-Vioglio, Giarlotta, Greco, Maccheroni, and Marinacci (2020). Se also Kontek (2016)
for a related critique of the rank-based model.
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On the other hand, 𝜒 ∈ Π since

𝜎(7, 5) > 𝜎(8.8, 11.5) > 𝜎(9, 11.5).

and

1

3
[7− 5] + 𝛽

1

3
[8.8− 11.5] + 𝛽21

3
[9− 11.5]

=
1

3
· 2− 1

2
· 1
3
· 2.7− 1

4
· 1
3
· 2.5 > 0.

A.10 Minor Proofs

Proof of Lemma 15 Let 𝑝 ⪰ 𝑞. Then, if 𝜋 ∈ ∆(𝑋 ×𝑋) and (𝜋1, 𝜋2) = (𝑝, 𝑞),

𝜋 ∈ Π⪰ by definition of Π⪰. However, since 𝜋 was an arbitrary joint lottery with

marginals 𝑝 and 𝑞, by definition of ≿Π⪰ , we have 𝑝 ≿Π⪰ 𝑞.

Let 𝑝 ≿Π⪰ 𝑞. Then, by definition of ≿Π⪰ , 𝑝 × 𝑞 ∈ Π⪰. But by definition of Π⪰

this means that 𝑝 ⪰ 𝑞. ■

Proof of Lemma 16 (1) Let 𝜋 ∈ ∆(𝑋 ×𝑋). Since ≿ satisfies Classic Completeness,

at least one between 𝜋1 ≿ 𝜋2 and 𝜋2 ≿ 𝜋1 holds. By definition of Π≿ this implies that

at least one between 𝜋 ∈ Π and �̄� ∈ Π holds.

(2) Let 𝜋 ∈ ∆(𝑋 ×𝑋). Since ≿Π satisfies Classic Completeness at least one

between 𝜋1 ≿Π 𝜋2 and 𝜋2 ≿Π 𝜋1 holds, and this implies that at least one between

𝜋 ∈ Π and �̄� ∈ Π holds. ■

Proof of Remark 4 Let 𝜋, 𝜒 ∈ Π≿ (resp. 𝜒 ∈ Π̂≿) and 𝜆 ∈ (0, 1). By definition

of Π≿, 𝜋1 ≿ 𝜋2 and 𝜒1 ≿ 𝜒2 (resp. 𝜒1 ≻ 𝜒2). Since ≿ satisfies Classic Strong

B-Independence, 𝜆𝜋1 + (1− 𝜆)𝜒1 ≿ 𝜆𝜋2 + (1− 𝜆)𝜒2 (resp. 𝜆𝜋1 + (1− 𝜆)𝜒1 ≻

𝜆𝜋2 + (1− 𝜆)𝜒2), and by definition of Π≿, we have 𝜆𝜋 + (1− 𝜆)𝜒 ∈ Π≿ (resp.

𝜆𝜋 + (1− 𝜆)𝜒 ∈ Π̂≿). ■

Proof of Lemma 17 Let 𝑝, 𝑞, 𝑟, 𝑠 ∈ ∆(𝑋) be such that 𝑝 ≻ 𝑞 and 𝑟 ̸≿ 𝑠. We

first show that there exists 𝛼 ∈ (0, 1) such that 𝛼𝑝 + (1− 𝛼) 𝑟 ≻ 𝛼𝑞 + (1− 𝛼) 𝑠.
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Define 𝑟𝑛 =
(︀
1− 1

𝑛

)︀
𝑝 + 1

𝑛
𝑟 and 𝑞𝑛 =

(︀
1− 1

𝑛

)︀
𝑞 + 1

𝑛
𝑠. If 𝑟𝑛 ≻ 𝑞𝑛 for some 𝑛 ∈ N,

the result follows by setting 𝛼 = 1 − 1
𝑛
. Otherwise, by Classic Completeness of ≿,

we have 𝑞𝑛 ≿ 𝑟𝑛 for all 𝑛 ∈ N, but by Classic Sequential Continuity this implies that

lim𝑛 𝑞𝑛 = 𝑞 ≿ lim𝑛 𝑟𝑛 = 𝑝, a contradiction.

The existence of 𝛽 ∈ (0, 1) such that 𝛽𝑝+ (1− 𝛽) 𝑟 ̸≿ 𝛽𝑞 + (1− 𝛽) 𝑠 follows from

the first part and noticing that under Classic Completeness 𝑟 ̸≿ 𝑠 ⇐⇒ 𝑠 ≻ 𝑟 and

𝛽𝑝+ (1− 𝛽) 𝑟 ̸≿ 𝛽𝑞 + (1− 𝛽) 𝑠⇐⇒ 𝛽𝑞 + (1− 𝛽) 𝑠 ≻ 𝛽𝑝+ (1− 𝛽) 𝑟. ■

Proof of Remark 5 Let 𝜋 ∈ Π̂≿ and 𝜒 /∈ Π≿. By definition of Π≿, this means

that 𝜋1 ≻ 𝜋2 and 𝜒1 ̸≿ 𝜒2. But then, by Classic Archimedean B-Continuity, there

exists 𝛼 ∈ (0, 1) and 𝛽 ∈ (0, 1) such that 𝛼𝜋1 + (1− 𝛼)𝜒1 ≻ 𝛼𝜋2 + (1− 𝛼)𝜒2

and 𝛽𝜋1 + (1− 𝛽)𝜒1 ̸≿ 𝛽𝜋2 + (1− 𝛽)𝜒2. By definition of Π≿, this means that

𝛼𝜋 + (1− 𝛼)𝜒 ∈ Π̂≿ and 𝛽𝜋 + (1− 𝛽)𝜒 /∈ Π≿. ■

Proof of Lemma 18

(1) Let 𝜋, 𝜒, 𝜌 ∈ ∆(𝑋 ×𝑋), with 𝜋2 = 𝜒1, 𝜌1 = 𝜋1, and 𝜌2 = 𝜒2, and 𝜋 ∈ Π≿, 𝜒 ∈ Π≿.

By definition of Π≿, we have 𝜌1 = 𝜋1 ≿ 𝜋2 = 𝜒1 and 𝜒1 ≿ 𝜒2 = 𝜌2. Since ≿ is

transitive, this implies that 𝜌1 ≿ 𝜌2, and by definition of Π≿, we have 𝜌 ∈ Π≿.

(2) Let 𝑝, 𝑞, 𝑟 ∈ ∆(𝑋) with 𝑝 ≿Π 𝑞 and 𝑞 ≿Π 𝑟. Let 𝜋 = 𝑝 × 𝑞, 𝜒 = 𝑞 × 𝑟, and

let 𝜌 be such that 𝜌1 = 𝑝 and 𝜌2 = 𝑟. Then 𝜋,𝜒 ∈ Π by definition of ≿Π, and 𝜌 ∈ Π

by Transitivity of Π. Since 𝜌 was chosen arbitrarily among the joint lotteries with

marginals 𝑝 and 𝑟, 𝑝 ≿Π 𝑟, and the result follows.

(3) (≿Π satisfies Classic Transitivity and Classic Completeness⇒ Π satisfies Tran-

sitivity and Completeness) Let 𝜋, 𝜒, 𝜌 ∈ ∆(𝑋 ×𝑋), with 𝜋2 = 𝜒1, 𝜌1 = 𝜋1, and

𝜌2 = 𝜒2, and 𝜋 ∈ Π, 𝜒 ∈ Π. Then, Classic Completeness of ≿Π implies that

𝜋1 ≿Π 𝜋2 ≿Π 𝜒2, and Classic Transitivity of ≿Π implies 𝜌1 ≿Π 𝜌2, and the defi-

nition of ≿Π implies 𝜌 ∈ Π, that is Π satisfies Transitivity. Moreover, Π satisfies

Completeness by Lemma 16.

(Π satisfies Transitivity and Completeness⇒≿Π satisfies Classic Transitivity and

Classic Completeness) That ≿Π satisfies Classic Transitivity follows from the part

(2). For Classic Completeness, let 𝑝, 𝑞 ∈ ∆(𝑋). Define 𝜋 as the product measure
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𝜋 = 𝑝× 𝑞 ∈ ∆(𝑋 ×𝑋). By Completeness of Π, either 𝜋 ∈ Π or �̄� ∈ Π. If 𝜋 ∈ Π, let

𝜌 ∈ ∆(𝑋 ×𝑋) be an arbitrary element of ∆(𝑋 ×𝑋) such that 𝜌1 = 𝑝 and 𝜌2 = 𝑞,

and define 𝜒 = 𝑞× 𝑞. By Completeness, 𝜒 ∈ Π, and by Transitivity 𝜋 ∈ Π and 𝜒 ∈ Π

together imply that 𝜌 ∈ Π. Since 𝜌 was chosen arbitrarily among the joint lotteries

with marginals 𝑝 and 𝑞, 𝑝 ≿Π 𝑞. Suppose �̄� = 𝑞 × 𝑝 ∈ Π. Let 𝜌 ∈ ∆(𝑋 ×𝑋) be an

arbitrary element of ∆(𝑋 ×𝑋) such that 𝜌1 = 𝑞 and 𝜌2 = 𝑝, and define 𝜒 = 𝑝 × 𝑝.

By Completeness, 𝜒 ∈ Π, and by Transitivity �̄� ∈ Π and 𝜒 ∈ Π together imply that

𝜌 ∈ Π. Since 𝜌 was chosen arbitrarily among the joint lotteries with marginals 𝑞 and

𝑝, 𝑞 ≿Π 𝑝. Therefore, ≿Π satisfies Classic Completeness. ■

178



Appendix B

Dynamic Opinion Aggregation

B.1 Introduction

In recent years, studying people’s opinion dynamics and reciprocal influence has be-

come of utmost importance for economic research. This is mainly due to the signifi-

cant increase in social media usage and the formation of global social networks. Under

the classical Bayesian approach, agents act as statisticians who try to estimate a fun-

damental parameter based on their neighbors’ opinions. An alternative approach,

which is more descriptive and tractable, considers agents who assign fixed weights to

their neighbors and repeatedly take weighted averages of the opinions they observe.

This is commonly known as the DeGroot linear updating rule. However, even among

stationary updating rules, the DeGroot model is still quite unrealistic. In real life,

individuals are often attracted to extreme or intermediate stances, and the set of their

influencers varies and is not given by a fixed network of connections. These and other

relevant properties are incompatible with simple repeated averaging and have made

generalizing the DeGroot model and its insights the primary theoretical challenge in

this literature.

While the convergence and long-run consensus properties of particular nonlinear

rules have been widely studied in applied mathematics, computer science, and eco-

nomics, a general treatment of convergence and consensus with nonlinear updating

rules that naturally extends the tools of the DeGroot model is still missing. More-
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over, the central question of information aggregation in large networks, which is the

wisdom of the crowd hypothesis, has received much less attention for nonlinear up-

dating rules, primarily due to technical challenges. These gaps in the social learning

literature require new methodologies and mathematical tools to be closed.

This chapter addresses these gaps by analyzing a general and unifying class of sta-

tionary nonlinear updating rules. It answers questions on convergence, consensus, and

information aggregation by developing new mathematical tools that are well suited to

study nonlinear (and often nondifferentiable) rules and that generalize the ones used

for the DeGroot model. We show that most of the insights of the DeGroot model can

be generalized to this class of updating rules. However, we also highlight qualitative

insights that are peculiar to nonlinear rules. For example, due to certain patterns

of nonlinearities, agents may sometimes disregard some of their neighbors’ opinions,

reducing the number of effective connections and inducing long-run disagreement for

finite populations. Moreover, for the wisdom of the crowd in large populations, we

point out a trade-off between how connected society is and the nonlinearity of the

opinion aggregator.

Robust opinion aggregators We consider agents on a network whose initial opin-

ions equal a common fundamental parameter plus some agent-specific noise. Agents

observe their neighbors’ opinions and repeatedly incorporate them to update their

own through functions that we call robust opinion aggregators. These aggregators

map the last-period opinions of the neighbors of each agent into her current stance

and satisfy the following natural properties:

1. Normalization: If the agents have reached a consensus, then none of them

further updates her opinion.

2. Monotonicity: If two opinion profiles are such that the first coordinatewise

dominates the second, then this relation is preserved after aggregation.

3. Translation invariance: If the same constant shifts each agent’s opinion, then

the updates are shifted accordingly.
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The first two properties are straightforwardly interpreted as minimal trust in the

neighbors’ opinions. Translation invariance is equivalent to assuming that agents

only care about the opinions’ differences rather than their intrinsic levels and rules

out explosive/chaotic dynamics. This property is a consequence of a robust loss-

minimization procedure that provides a foundation and an interpretation of the up-

dating rule proposed (cf. Section B.5). Importantly, the recent field studies that

compare Bayesian to non-Bayesian social learning models have obtained evidence

consistent with our properties. For instance, Chandrasekhar et al. (2020) find that

if the sampled subjects reach a consensus, they remain stuck on their beliefs even

when such behavior is objectively suboptimal: this is consistent with normalization.

Similarly, they also find that most subjects respond monotonically to changes in their

neighbors’ opinions.

The properties of robust opinion aggregators imply that the influence among

agents depends on their current opinions. This simple feature makes our model the

first unifying framework to capture many documented descriptive phenomena that we

illustrate in Section B.3.1 In such framework, our main results deal with the long-run

stability of opinions across two complementary dimensions. We first provide graph-

theoretic conditions on robust opinion aggregators for different forms of convergence

of opinions in finite populations. We then derive structural properties of robust opin-

ion aggregators that either guarantee or prevent the identification of the fundamental

parameter as the population grows.

The dynamics of robust opinion aggregation We first show that the opinions’

time averages induced by any robust opinion aggregator uniformly converge so that a

profile of long-run opinions always exists. This first benchmark result implies that an

external agent can test the long-run learning properties of the updating procedure by

computing time averages, a feature that we exploit in our results on large networks.

Moreover, this is the stepping stone for deriving convergence and consensus for-

mation from the properties of the network structures associated with robust opinion

1We postpone the comparison with the existing models to the related literature.
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aggregators. We say that an agent is strongly influenced by another if the former

always reacts to variations in the latter’s opinion, regardless of the current opinion

profile in the society. We show that if each agent has at least one strong link and the

induced strong network is aperiodic, then opinions converge. This result is powerful

for two reasons. First, it guarantees that, in a comprehensive class of models, the

sole iteration of the aggregation procedure always leads to a stable distribution of

opinions in the population (i.e., a Nash equilibrium under a best-response dynam-

ics interpretation). Second, it highlights the critical role of strong ties in society to

stabilize opinions in the long run.

Alternatively, we say that an agent is weakly influenced by another if the former

reacts to variations in the latter’s opinion for at least one opinion profile, and we

show that opinions always converge only if the weak network is aperiodic. Therefore,

whenever these extreme networks coincide (for example, in the DeGroot model),

opinions’ convergence is characterized by network aperiodicity. However, whenever

behavioral biases or robustness concerns in the updating rules induce a wedge between

the two extreme networks, we cannot dispense from studying both to have a complete

picture of the opinions’ long-run behavior.

Instead, our contribution to convergence to consensus is more conceptual than

technical. It illustrates how the strong and weak networks are the key objects for

nonlinear opinion aggregation since extra conditions on them buy extra convergence

properties. We show that if the strong network has a unique, strongly connected, and

closed group, which is aperiodic, convergence to consensus always obtains. More-

over, a necessary condition for forming consensus, regardless of the initial opinions,

is that the weak network has a unique, strongly connected, and closed group, which

is aperiodic. Whenever the two networks coincide, convergence to consensus is fully

characterized by the previous property. However, if they differ, then even in societies

where every two agents share some form of connection, we might observe persistent

disagreement in the long run due to the weakness of these connections. Compared

to the existing literature on convergence to consensus, we are the first to link a net-

work structure derived from a given normalized, monotone, and translation invariant
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aggregator to convergence to consensus. However, several important works, such as

Moreau (2005), provide sufficient and necessary conditions given a fixed vector of

initial opinions that can be used as part of an alternative route to our result about

consensus. We postpone to Section B.6 a detailed comparison with these works.

Vox populi, vox Dei? We next study the information-aggregation properties of

robust opinion aggregators. In particular, we study whether the wisdom of the crowd

is achieved, i.e., if, in large networks, the agents’ opinions converge to a true funda-

mental parameter (cf. Golub and Jackson, 2010).

We define a given robust opinion aggregator’s strong and weak influence vector.

These objects respectively capture the minimal and maximal influences among agents

in the long run and give us a tool to study the limit opinions’ variability. If the long-

run weak influence of every agent vanishes sufficiently fast as the population grows,

then the variance of their opinions vanishes as well. Conversely, if the long-run strong

influence of at least one agent remains positive, then the aggregation procedure does

not wash out all the idiosyncratic variability. Vanishing variability and symmetry of

the robust opinion aggregator and the errors guarantee that the long-run opinions

coincide with the true parameter in the large population limit.

Notably, our large-population limit analysis does not presume convergence or con-

sensus. Therefore, the previous finite-population conclusions determine how the opin-

ions concentration in the large-population limit should be understood. When only

convergence of time averages obtains, these results should be interpreted in terms of

wisdom from the crowd; an external observer can identify the parameter by comput-

ing time averages of opinions. If standard convergence obtains, we have the usual

wisdom of the crowd interpretation. In particular, even if consensus does not obtain

for finite population sizes, a typical outcome in our model, our results still yield a

form of “stochastic” consensus for large populations.

Even if the conditions above are interpretable, they might be computationally

challenging to verify since they are expressed in terms of long-run influence. Therefore,

we combine graph-theoretic conditions on the weak networks and a nonlinearity index
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of the aggregators into more primitive sufficient conditions for the wisdom of the crowd

under the maintained symmetry assumptions. First, the aggregators are wise when

the nonlinearity index is bounded across population sizes and the degrees in the weak

network are growing sufficiently fast. Second, even if the degrees are bounded, but

their distribution is balanced, and the connectivity of the weak network (measured

by its second-largest eigenvalue in modulus) is high relative to the nonlinearity index,

wisdom obtains. For example, the former condition is satisfied in an Erdős–Rényi

model with (sufficiently) slowly decreasing linking probability. In turn, the latter

condition is satisfied by expander graphs with a sufficiently high (finite) degree or by

the island model of Golub and Jackson (2012) with a moderate level of homophily.

Foundation of robust opinion aggregators The properties of robust opinion

aggregators arise from the natural generalization of two foundations for non-Bayesian

opinions’ dynamics: repeated estimation of the underlying parameter with naive

agents (cf. DeMarzo et al. (2003)) and best-response dynamics in coordination games

(cf. Golub and Jackson (2012)). In particular, an opinion aggregator is robust if and

only if there is a profile of distance-based loss functions with positive complementaries

whose unique solution map coincides with the aggregator itself. Moreover, natural

convexity and smoothness properties of the loss functions yield robust opinion aggre-

gators with the sufficient (and necessary) conditions for convergence and consensus

obtained in our main results. Therefore, it is possible to reinterpret these results

in terms of convergence to Nash equilibria and the consistency of iterated robust

estimation.

B.2 The model

This section introduces our model of opinion aggregation in social networks. Let

𝑁 = {1, ..., 𝑛}, with 𝑛 ∈ N, denote a finite set of agents and let 𝐼 be an arbitrary

closed interval of R with nonempty interior denoting the set of possible opinions. Let

𝐵 = 𝐼𝑛 ⊆ R𝑛 denote the set of opinion profiles 𝑥 = (𝑥𝑖)
𝑛
𝑖=1. For example, the opinion
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profile may be the agents’ subjective probability assessments of an event, and in this

case, 𝐼 = [0, 1]. In this chapter, we consider different (directed) networks. We identify

them with an 𝑛 × 𝑛 adjacency matrix 𝐴′, that is, 𝑎′𝑖𝑗 = 1 if there is a directed link

from agent 𝑖 to agent 𝑗, and 𝑎′𝑖𝑗 = 0 otherwise.

Time is discrete, 𝑡 ∈ N, and the initial opinion of agent 𝑖 ∈ 𝑁 at period 0 is given

by a signal𝑋0
𝑖 = 𝜇+𝜀𝑖, where 𝜇 ∈ R is an underlying fundamental parameter and each

𝜀𝑖 : Ω → R is a random variable defined over a common probability space (Ω,ℱ , 𝑃 ).2

Let 𝐴 denote the observation network with 𝑁𝑖 = {𝑗 ∈ 𝑁 : 𝑎𝑖𝑗 = 1} denoting the

neighborhood of agent 𝑖. The interpretation is that agent 𝑖 can only observe the

current opinions of her neighbors 𝑗 ∈ 𝑁𝑖.

Let 𝑥0𝑖 denote the realization of the period-0 opinion of agent 𝑖. We model the

evolution of opinions in the following periods through an opinion aggregator 𝑇 : 𝐵 →

𝐵 that for each profile of period-𝑡 opinions 𝑥𝑡 ∈ 𝐵 returns the profile of period-

(𝑡+ 1) updates 𝑥𝑡+1 = 𝑇 (𝑥𝑡). We let 𝑇𝑖 : 𝐵 → 𝐼 denote the 𝑖-th component of 𝑇 , the

updating rule of agent 𝑖.3 Let 𝑒 ∈ R𝑛 denote the vector whose components are all 1s.

Definition 20. Let 𝑇 be an opinion aggregator. We say that:

1. 𝑇 is normalized if and only if 𝑇 (𝑘𝑒) = 𝑘𝑒 for all 𝑘 ∈ 𝐼.

2. 𝑇 is monotone if and only if for each 𝑥, 𝑦 ∈ 𝐵

𝑥 ≥ 𝑦 =⇒ 𝑇 (𝑥) ≥ 𝑇 (𝑦) .

3. 𝑇 is translation invariant if and only if

𝑇 (𝑥+ 𝑘𝑒) = 𝑇 (𝑥) + 𝑘𝑒 ∀𝑥 ∈ 𝐵, ∀𝑘 ∈ R s.t. 𝑥+ 𝑘𝑒 ∈ 𝐵.

2For completeness, we present the stochastic structure of initial opinions here. However, this does
not have a relevant role in the analysis until Section B.4 on the wisdom of the crowd.

3The network structure (𝑁,𝐴) can be reflected in the opinion aggregator 𝑇 by assuming that for
each 𝑖 ∈ 𝑁 and for each 𝑥, 𝑥′ ∈ 𝐵

𝑥𝑗 = 𝑥′𝑗 ∀𝑗 ∈ 𝑁𝑖 =⇒ 𝑇𝑖 (𝑥) = 𝑇𝑖 (𝑥
′) .

It is a natural assumption satisfied by all our illustrations, but it can be dispensed with for the
general analysis.
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We say that 𝑇 is robust if and only if 𝑇 is normalized, monotone, and translation

invariant.

Normalization requires that whenever all the agents share the same opinion, each

of the next-period updates coincides with that opinion. Monotonicity embodies a

form of trust of the agents in the opinions observed by others. Translation invariance

naturally arises when agents only care about their opinions’ differences, as we show

in Section B.5. In our related work (2023), we provide a game-theoretic foundation

that relaxes this property to translation subinvariance, that is, agents react less than

proportionally to uniform shifts. All our main convergence results continue to hold.4

Robust opinion aggregators are rich enough to describe several behavioral phenom-

ena that we illustrate below: aversion/attraction to extreme opinions, rank-dependent

social influence, confirmatory bias, and pure right/left bias. Moreover, they nest the

widely studied DeGroot model, where 𝑇 is also linear: 𝑇 (𝑥) = 𝑊𝑥, for all 𝑥 ∈ 𝐵.

Here, 𝑊 ∈ 𝒲 is the matrix collecting the vectors of weights, and 𝒲 denotes the

collection of stochastic matrices. This simple aggregation rule arises from either best-

response dynamics in coordination games with quadratic payoffs or naive repeated

maximum-likelihood estimation of a location parameter under Gaussian signal. In

both cases, each 𝑇𝑖 (𝑥) is the minimizer over 𝑐 ∈ R of the loss function

𝑛∑︁
𝑗=1

𝑤𝑖𝑗 (𝑥𝑗 − 𝑐)2 , (B.1)

where, 𝑤𝑖 ∈ ∆ =
{︁
𝑝 ∈ R𝑛

+ :
∑︀𝑛

𝑗=1 𝑝𝑗 = 1
}︁

is the 𝑖-th row of 𝑊 . In Section B.5.1, we

derive robust opinion aggregators from a more general robust loss-minimization prob-

lem that removes the quadratic and Gaussian assumptions. For this reason and the

unifying role of the properties in Definition 20, we have called robust the aggregators

4A careful inspection of the proofs shows that our convergence result will continue to hold for
opinion aggregators which are normalized, monotone, and Lipschitz continuous of order 1. Under
normalization and monotonicity, this latter property is equivalent to translation subinvariance. A
natural concern is that for some opinion domains, the shift from, e.g., 1

4 and 1
2 is perceived as larger

than the shift from 1
2 and 3

4 . If all the agents share this perception, all our results continue to hold
after rescaling 𝐼 according to the perceived differences. We thank an anonymous referee for this
observation.
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we analyze. Although natural, these properties exclude some extremely discontinuous

behavior patterns, such as agents listening to each other only when their opinions are

closer than some threshold. They also exclude updating rules where agents always

give some weight to an exogenously fixed opinion, as in Friedkin and Johnsen (1990).

Turning to the analysis of opinions’ dynamics, we deal with two kinds of limit of

{𝑇 𝑡 (𝑥)}𝑡∈N, the standard one induced by the supnorm ‖ ‖∞ and the one of Cesaro

(i.e., time-average limit):

C-lim
𝑡

𝑇 𝑡 (𝑥) = lim
𝜏

1

𝜏

𝜏∑︁
𝑡=1

𝑇 𝑡 (𝑥)

where the limit on the right-hand side of the definition is the standard one.

Definition 21. Let 𝑇 be an opinion aggregator. We say that 𝑇 is Cesaro convergent

if and only if C-lim𝑡 𝑇
𝑡 (𝑥) exists for all 𝑥 ∈ 𝐵. We say that 𝑇 is convergent if and

only if lim𝑡 𝑇
𝑡 (𝑥) exists for all 𝑥 ∈ 𝐵.

Given the initial opinions 𝑥0, if the updates converge, then it is well known that

Cesaro convergence obtains, and the time-average and the standard limit coincide.

When 𝑇 is Cesaro convergent, we define the long-run opinion aggregator 𝑇 : 𝐵 → R𝑛

by

𝑇 (𝑥) = C-lim
𝑡

𝑇 𝑡 (𝑥) ∀𝑥 ∈ 𝐵. (B.2)

If convergence obtains, we study whether the profile of long-run opinions is represented

by a unique consensus across all agents or by several coexisting conventions, i.e., long-

run disagreement. We denote by 𝐷 ⊆ 𝐵 the consensus subset, that is, 𝑥 ∈ 𝐷 if and

only if 𝑥𝑖 = 𝑥𝑗 for all 𝑖, 𝑗 ∈ 𝑁 .

Definition 22. Let 𝑇 be an opinion aggregator. We say that convergence to con-

sensus always obtains under 𝑇 if and only if 𝑇 is convergent and 𝑇 (𝑥) ∈ 𝐷 for all

𝑥 ∈ 𝐵.
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B.3 The dynamics of robust opinion aggregation

This section studies the long-run properties of opinions for a given population size.

B.3.1 Convergence of the time averages

Our first result shows that even if the updates of a robust opinion aggregator might

not converge, their time averages always stabilize in the long run.

Theorem 7. If 𝑇 is a robust opinion aggregator, then 𝑇 is Cesaro convergent. More-

over, the long-run opinion aggregator 𝑇 is a robust opinion aggregator such that

𝑇 ∘ 𝑇 = 𝑇 , and if �̂� is a bounded subset of 𝐵, then

lim
𝜏

(︃
sup
𝑥∈�̂�

⃦⃦⃦⃦
⃦1𝜏

𝜏∑︁
𝑡=1

𝑇 𝑡 (𝑥)− 𝑇 (𝑥)

⃦⃦⃦⃦
⃦
∞

)︃
= 0. (B.3)

The Cesaro limit is described by the long-run opinion aggregator 𝑇 that, for each

initial profile of stances 𝑥 ∈ 𝐵, returns the long-run average opinion of each agent.

In particular, 𝑇 is robust and satisfies the fixed point equation 𝑇 ∘ 𝑇 = 𝑇 , hence

generalizing the well-known notion of eigenvector centrality of the DeGroot model.

Finally, whenever the initial opinions of the agents are known to belong to a bounded

set, the initial realizations of their signals do not affect the rate of convergence of the

time averages.

Median aggregator We now illustrate the content of Theorem 7 with a natural

alternative to opinion aggregation via weighted means: the median aggregator. As-

sume that the agents best respond to the previous opponents’ opinions, but instead

of minimizing a weighted quadratic loss function (B.1), they minimize the weighted

absolute deviations:
𝑛∑︁

𝑗=1

𝑤𝑖𝑗 |𝑥𝑗 − 𝑐| ∀𝑥 ∈ 𝐵, ∀𝑐 ∈ 𝐼 (B.4)
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where the values 𝑤𝑖𝑗 are the entries of a stochastic matrix 𝑊 . It is well known that

the solution correspondence admits as a selection the robust opinion aggregator 𝑇 ,

𝑇𝑖 (𝑥) = min

⎧⎨⎩𝑐 ∈ R :
∑︁
𝑗:𝑥𝑗≤𝑐

𝑤𝑖𝑗 ≥ 0.5

⎫⎬⎭ ∀𝑥 ∈ 𝐵, ∀𝑖 ∈ 𝑁, (B.5)

that is, 𝑇𝑖 (𝑥) is the (weighted) median of 𝑥.

Example 10. A group of agents 𝑁 = {1, 2, 3, 4} share their opinions 𝑥0 ∈ 𝐵 = [0, 1]4.

The weights assigned to the other agents are represented by the matrix

𝑊 =

⎛⎜⎜⎜⎜⎜⎜⎝
0.4 0.3 0.3 0

0.3 0.4 0.3 0

0.1 0.1 0.2 0.6

0 0 0.6 0.4

⎞⎟⎟⎟⎟⎟⎟⎠ .

Aggregation through weighted averages would achieve consensus in the limit. How-

ever, the dynamics induced by using the median are qualitatively different.

If 𝑥0 = (𝑥01, 1, 1, 1), then the block of agents agreeing on the higher opinion is

sufficiently large to attract agent 1 to the same opinion, and the limit (consensus)

opinion of (1, 1, 1, 1) is reached in one round of updating. Note that the initial opinion

of agent 1 is irrelevant given the agreement of the other agents. Similarly, the same

limit consensus obtains if agent 2 disagrees with the initial consensus, that is if 𝑥0 =

(1, 𝑥02, 1, 1).

Instead, convergence to consensus fails if the initial opinions of both agents 1 and

2 fall. If 𝑥0 = (0, 1/2, 1, 1), then the first round of updating is 𝑥1 = (1/2, 1/2, 1, 1),

and this opinion segregation will be the limit outcome: a strongly connected society

fails to reach consensus without a sufficiently large block of initial agreement. This

highlights how with median aggregation, a joint deviation from consensus by a group

of agents might be necessary to destabilize an initial consensus.5

If 𝑥0 = (0, 1/2, 0, 1), then the agents’ first update is 𝑥1 = (0, 0, 1, 0) and agents 1

5Note that in the corresponding DeGroot model with matrix 𝑊 , both an individual and a joint
deviation would still lead to a consensus but on a different opinion.
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and 2 never change their opinions again, whereas agents 3 and 4 keep on reciprocally

switching their opinions. This shows that even convergence may not be guaranteed.

However, given Theorem 7, we obtain that 𝑇 (𝑥0) = (0, 0, 1/2, 1/2). ▲

On the one hand, the robust opinion aggregator defined in equation (B.5), with

𝑤𝑖𝑖 = 0 for all 𝑖 ∈ 𝑁 , yields a natural process of best-response dynamics under the

payoffs of equation (B.4). In this case, Theorem 7 always guarantees that actions

are going to stabilize on average over time, even when they do not converge. On the

other hand, there is no compelling reason to assume that each agent has the same

attraction for relatively central opinions.

For example, assume that the agents best respond to the previous opponents’

opinions by computing a convex linear combination of an optimistic and a pessimistic

aggregation. Formally, for each 𝑖 ∈ 𝑁 , consider a convex and closed set of probability

weights 𝐶𝑖 ⊆ ∆, a weight 𝛼𝑖 ∈ [0, 1], and let

𝑇𝑖 (𝑥) = 𝛼𝑖 min
𝑤𝑖∈𝐶𝑖

𝑛∑︁
𝑗=1

𝑤𝑖𝑗𝑥𝑗 + (1− 𝛼𝑖) max
𝑤𝑖∈𝐶𝑖

𝑛∑︁
𝑗=1

𝑤𝑖𝑗𝑥𝑗 ∀𝑥 ∈ 𝐵. (B.6)

In words, agent 𝑖 is uncertain about the relative importance of the opinions of the

other agents and this subjective uncertainty is represented by the set of possible

weights 𝐶𝑖, while 𝛼𝑖 measures the relative attractiveness toward lower stances. This

opinion aggregator is robust. Thus, Theorem 7 still guarantees convergence of time

averages. To obtain standard convergence, as for the linear case, we need extra graph-

based conditions. But, differently from the DeGroot model, given the nonlinearity of

𝑇 , there is no obvious notion of graph associated with it. In the next section, we show

that two natural graphs 𝐴 and 𝐴 associated with 𝑇 determine the long-run behavior

of the agents’ opinions. Indeed, for the aggregator in (B.6), we could either say that 𝑖

is influenced by 𝑗 if 𝑤𝑖𝑗 > 0 for all 𝑤𝑖 ∈ 𝐶𝑖 or if 𝑤𝑖𝑗 > 0 for some 𝑤𝑖 ∈ 𝐶𝑖. Intuitively,

the resulting graphs 𝐴 and 𝐴 collect the links relevant under every scenario and those

relevant under some scenario. In stark contrast with the linear case, 𝑇 is not always

convergent to consensus even if every two agents are directly connected under 𝐴, that

is, 𝑎𝑖𝑗 = 1 for all 𝑖, 𝑗 ∈ 𝑁 . Nevertheless, Theorem 8 provides necessary and sufficient
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conditions for convergence in terms of 𝐴 and 𝐴.

B.3.2 Stable long-run opinions

In the standard DeGroot model, convergence is tied to the properties of an underlying

network structure. The latter can either be implicit and given by the indicator matrix

𝐴 (𝑊 ) of 𝑊 or be explicit and given by a primitive observation network.6 Here, we

follow the first approach and derive different network structures from a robust opinion

aggregator 𝑇 . The generalization of the second approach is postponed to Section

B.5.2.

We recall some common terminology from the network literature first. Consider

an arbitrary network 𝐴′ and let ∅ ≠𝑀 ⊆ 𝑁 denote an arbitrary group. The network

𝐴′ is nontrivial if and only if for each 𝑖 ∈ 𝑁 there exists 𝑗 ∈ 𝑁 such that 𝑎′𝑖𝑗 = 1. A

path in 𝑀 is a finite sequence of agents 𝑖1, 𝑖2, ..., 𝑖𝐾 ∈𝑀 with 𝐾 ≥ 2, not necessarily

distinct, such that 𝑎′𝑖𝑘𝑖𝑘+1
= 1 for all 𝑘 ∈ {1, ..., 𝐾 − 1}. In this case, the length of the

path is 𝐾 − 1. A cycle in 𝑀 is a path in 𝑀 such that 𝑖1 = 𝑖𝐾 . A cycle is simple if

and only if the only repeated index in the sequence is the starting (and ending) one.7

We say that 𝑀 is strongly connected if and only if for each 𝑖, 𝑗 ∈ 𝑀 there exists a

path in 𝑀 such that 𝑖1 = 𝑖 and 𝑖𝐾 = 𝑗. We say that 𝑀 is closed if and only if for

each 𝑖 ∈ 𝑀 , 𝑎′𝑖𝑗 = 1 implies 𝑗 ∈ 𝑀 . We say that 𝑀 is aperiodic if and only if the

greatest common divisor of the lengths of its simple cycles is 1. Finally, we say that

𝐴′ is aperiodic if and only if each closed group 𝑀 is aperiodic.

In principle, there are multiple networks corresponding to the same robust aggre-

gator 𝑇 . We now give two natural definitions that formalize two extreme networks

among agents induced by 𝑇 . A piece of notation: 𝑒𝑗 ∈ R𝑛 denotes the 𝑗-th vector of

the canonical basis.

Definition 23. Let 𝑇 be an opinion aggregator. We say that 𝑗 strongly influences

𝑖 if and only if there exists 𝜀𝑖𝑗 ∈ (0, 1) such that for each 𝑥 ∈ 𝐵 and for each ℎ > 0

6Formally, the indicator matrix 𝐴 (𝑊 ) of an arbitrary 𝑊 ∈ 𝒲 is such that its 𝑖𝑗-th entry is equal
to 1 if 𝑤𝑖𝑗 is strictly positive and 0 otherwise.

7More formally, a cycle (of length 𝐾 − 1) is simple if and only if for each 𝑘, 𝑘′ ∈ {1, ...,𝐾 − 1}:
𝑖𝑘 = 𝑖𝑘′ =⇒ 𝑘 = 𝑘′.
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with 𝑥+ ℎ𝑒𝑗 ∈ 𝐵

𝑇𝑖
(︀
𝑥+ ℎ𝑒𝑗

)︀
− 𝑇𝑖 (𝑥) ≥ 𝜀𝑖𝑗ℎ. (B.7)

We say that 𝐴 (𝑇 ) is the network of strong ties of 𝑇 if and only if for each 𝑖, 𝑗 ∈ 𝑁

the 𝑖𝑗-th entry is such that

𝑎𝑖𝑗 =

⎧⎨⎩ 1 if 𝑗 strongly influences 𝑖

0 otherwise
.

We say that 𝑗 weakly influences 𝑖 if and only if there exist 𝑥 ∈ 𝐵 and ℎ > 0 such that

𝑥+ ℎ𝑒𝑗 ∈ 𝐵 and

𝑇𝑖
(︀
𝑥+ ℎ𝑒𝑗

)︀
− 𝑇𝑖 (𝑥) > 0.

We say that 𝐴 (𝑇 ) is the network of weak ties of 𝑇 if and only if for each 𝑖, 𝑗 ∈ 𝑁 the

𝑖𝑗-th entry is such that

�̄�𝑖𝑗 =

⎧⎨⎩ 1 if 𝑗 weakly influences 𝑖

0 otherwise
.

Equation (B.7) reflects uniform responsiveness of 𝑖 to 𝑗: no matter what is the

current opinion profile, the update of 𝑖 increases at least linearly in the opinion of 𝑗. In

actual social networks, strong links characterize only a subset of all the connections:

close friends, own past opinions (anchoring effect), or an extremely reliable source

(more generally, the relational “strong ties” as in Granovetter, 1973 and Centola and

Macy, 2007).

In principle, there might be additional links (i.e., relational “weak ties”) not in

𝐴 (𝑇 ) that are active only under particular circumstances. For instance, a person can

completely discard a distant friend’s opinion when this is too extreme compared to

the ones of the rest of her neighbors. In contrast, for topics involving potential high

stakes risks (e.g., vaccinations), a person may well be influenced by the opinion of

someone outside her personal network, especially when the latter reports an extremely

negative stance (e.g., isolated serious adverse reactions to vaccines). These examples
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motivate the second part of Definition 23. Intuitively, 𝑖 is weakly influenced by 𝑗 if

there are circumstances under which a change in 𝑗’s opinion affects her update.

It is plain to see that 𝐴 (𝑇 ) ≤ 𝐴 (𝑇 ), and if 𝑇 is linear with matrix 𝑊 , then

𝐴 (𝑊 ) = 𝐴 (𝑇 ) = 𝐴 (𝑇 ). Therefore, it is impossible to separate these two extreme

networks in the DeGroot model. For a general robust opinion aggregator 𝑇 , the

strong directed network 𝐴 (𝑇 ) is the minimal network underlying 𝑇 , while the weak

directed network 𝐴 (𝑇 ) is the maximal. As such, they are instrumental in providing

respectively sufficient and necessary conditions for convergence.

Theorem 8. Let 𝑇 be a robust opinion aggregator. The following statements are

true:

1. If the network of strong ties 𝐴 (𝑇 ) is aperiodic and nontrivial, then 𝑇 is con-

vergent.

2. If 𝑇 is convergent, then the network of weak ties 𝐴 (𝑇 ) is aperiodic and non-

trivial.

Therefore, if 𝐴 (𝑇 ) = 𝐴 (𝑇 ), then 𝑇 is convergent if and only if 𝐴 (𝑇 ) is aperiodic

and nontrivial.

The first part of the result builds on the uniform convergence of the time averages

of 𝑇 updates to obtain standard convergence. Specifically, we need to use a Tauberian

condition for 𝑇 that turns uniform Cesaro convergence into standard convergence. We

show that such a condition can be expressed in terms of the network of strong ties,

and in particular, it requires that it is aperiodic and nontrivial. We postpone to

Section B.6 a more detailed sketch of the proof that also elaborates on the technical

contributions of each step of the proof.

Even if an agent does not strongly influence another, this does not always prevent

communication between the two. Coherently, the second part of Theorem 8 states

that if there exists a cyclic behavior in a group that is closed with respect to weak ties,

then there exists a profile of initial opinions such that the updates of this group will
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not stabilize. Indeed, since the agents in this group are never affected by outsiders,

the cycle cannot be broken.

The third part of the result significantly generalizes Golub and Jackson (2010),

which states that aperiodicity of 𝐴 (𝑊 ) characterizes convergence for linear aggrega-

tors. The class of robust opinion aggregators such that 𝐴 (𝑇 ) = 𝐴 (𝑇 ) is much larger

(see Proposition 18), but, as we illustrate with rank-dependent aggregators right be-

low, in general, there exists a wedge between the two extreme networks 𝐴 (𝑇 ) and

𝐴 (𝑇 ).

Theorem 8 has important implications for our game-theoretic interpretation. Even

if multiple closed groups do not strongly influence each other, simple best-response

dynamics converge to a Nash equilibrium, provided that these groups are aperiodic

under 𝐴 (𝑇 ). Instead, when 𝑇 captures a process of pure information aggregation, it

is natural to assume that information gathered in the past is not entirely dismissed

in light of new evidence. This translates into the property that each agent strongly

influences herself, a condition that guarantees convergence. Notably, in the empirical

social learning literature, Chandrasekhar et al. (2020) find that most subjects’ behav-

ior is consistent with a form of own-history dependence, even when it is objectively

suboptimal.

Corollary 4. Let 𝑇 be a robust opinion aggregator. If 𝑇 is self-influential, that is

𝑎𝑖𝑖 = 1 for all 𝑖 ∈ 𝑁 , then 𝑇 is convergent.

We next introduce a general class of robust opinion aggregators which illustrates

both the flexibility of our model and our convergence results. Their distinctive feature

is rank-dependent influence across agents: a property that we have already encoun-

tered with the median aggregator.

Rank-dependent influence Consider a stochastic matrix 𝑊 whose positive en-

tries implicitly define the observation network. Formally, we say that 𝑇 𝑓 is a rank-
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dependent aggregator if and only if for each 𝑖 ∈ 𝑁

𝑇 𝑓
𝑖 (𝑥) =

𝑛∑︁
𝑗=1

𝑥𝜋(𝑗)

[︃
𝑓𝑖

(︃
𝑗∑︁

𝑙=1

𝑤𝑖𝜋(𝑙)

)︃
− 𝑓𝑖

(︃
𝑗−1∑︁
𝑙=1

𝑤𝑖𝜋(𝑙)

)︃]︃
∀𝑥 ∈ 𝐵, (B.8)

where 𝜋 is a permutation of 𝑁 such that 𝑥𝜋(1) ≤ ... ≤ 𝑥𝜋(𝑛) and 𝑓𝑖 : [0, 1] → [0, 1] is a

weakly increasing distortion function such that 𝑓𝑖 (0) = 0 and 𝑓𝑖 (1) = 1.8

A flexible parametric distortion function is given by

𝑓𝑖 (𝑠) = 𝑞

(︁
ln 𝑠
ln 𝑞𝑖

)︁𝛼𝑖

𝑖 ∀𝑠 ∈ (0, 1] (B.9)

where 𝑞𝑖 ∈ (0, 1) and 𝛼𝑖 ∈ R++.9 The parameter 𝛼𝑖 captures the attitudes of agent 𝑖

with respect to extreme opinions: (relative to 𝑞𝑖) attraction (𝛼𝑖 ∈ (0, 1)) or aversion

(𝛼𝑖 ∈ (1,∞)). The parameter 𝑞𝑖 captures the relative concern of agent 𝑖 for stating

an opinion that is higher (𝑞𝑖 ∈ (0, 1/2)) or lower (𝑞𝑖 ∈ (1/2, 1)) than the opinions

of her neighbors. To see why the parameter 𝑞𝑖 captures the asymmetric concerns

for disagreement of agent 𝑖, note that, as the aversion to extreme opinions increases

(𝛼𝑖 → ∞), under a mild assumption, the corresponding rank-dependent aggregator

converges pointwise to

𝑇 𝑞𝑖
𝑖 (𝑥) = min

⎧⎨⎩𝑐 ∈ R :
∑︁
𝑗:𝑥𝑗≤𝑐

𝑤𝑖𝑗 ≥ 𝑞𝑖

⎫⎬⎭ ∀𝑥 ∈ 𝐵, (B.10)

that is, the weighted 𝑞𝑖-quantile. In particular, we get back to the weighted median in

(B.5) when 𝑞𝑖 = 0.5. The 𝑞𝑖-quantiles capture the idea of an extreme truncation of the

sample of opinions effectively taken into account. Indeed, the essential feature of these

8The map 𝑇 𝑓
𝑖 : 𝐵 → 𝐼 is a Choquet integral against the capacity obtained by distorting the

probability vector 𝑤𝑖 ∈ Δ with respect to the conjugated distortion 𝑓𝑖 (·) = 1−𝑓𝑖 (1− ·) hence, 𝑇 𝑓

is robust. Note in particular that the functional form of 𝑇 𝑓
𝑖 is analogous to the decision criterion

in rank-dependent utility theory.
9Clearly, 𝑓𝑖 is defined only on (0, 1], but it also admits a unique continuous extension to [0, 1]. The
extension takes value 0 in 0. In particular, we obtain Prelec’s probability weighting function (1998)
when 𝑞𝑖 = 1∖𝑒. More generally, using an 𝑓𝑖 different from the identity map is a way to introduce
a perception bias a la Banerjee and Fudenberg (2021) in a model of naive and nonequilibrium
learning.
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particular rank-dependent aggregators is the extreme flatness of the corresponding

weight distortion function 𝑓𝑖 (𝑠) = 1[𝑞𝑖,1] (𝑠) for all 𝑠 ∈ [0, 1]. With this, for each

opinion profile 𝑥 ∈ 𝐵, agent 𝑖 is only influenced by the neighbor with the opinion

corresponding to the 𝑞𝑖-quantile of the distribution of opinions induced by the profile

𝑥 and the weights 𝑤𝑖 ∈ ∆. In the case of continuous opinions, a less extreme form

of truncation might be desirable. For example, agent 𝑖 aggregates opinions with a

trimmed mean with thresholds 𝑞
𝑖
, 𝑞𝑖 ∈ [0, 1], 𝑞

𝑖
< 𝑞𝑖, if her distortion function is

𝑓𝑖 (𝑠) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝑠 < 𝑞

𝑖
𝑠−𝑞

𝑖

𝑞𝑖−𝑞
𝑖

if 𝑞
𝑖
≤ 𝑠 ≤ 𝑞𝑖

1 if 𝑠 > 𝑞𝑖

∀𝑠 ∈ [0, 1] . (B.11)

The 𝑞𝑖-quantile is the limit case in which both 𝑞
𝑖

and 𝑞𝑖 converge to 𝑞𝑖 ∈ (0, 1).

Notice that flat regions of 𝑓𝑖 imply that agent 𝑖 disregards the opinions of some of her

neighbors depending on the current ranking of opinions. For example, suppose that

the opinion of 𝑗 is currently the lowest among the opinions of the neighbors of agent

𝑖. If the weight that agent 𝑖 puts on 𝑗’s opinion is not too high, that is 𝑤𝑖𝑗 < 𝑞
𝑖
, then

𝑖 completely ignores 𝑗’s opinion. Differently, whenever the weight on the opinion of

𝑗 is high enough, that is 𝑤𝑖𝑗 > max
{︁
𝑞
𝑖
, 1− 𝑞𝑖

}︁
, agent 𝑖 will always be influenced

by 𝑗 regardless of the current opinion profile. We illustrate this point in a particular

example.

Example 11 (The islands model). Suppose that the agents are partitioned in 𝑚

groups {𝑀𝑝}𝑚𝑝=1, that is, 𝑁 = ∪𝑝∈𝐺𝑀𝑝, where 𝑀𝑝 ∩ 𝑀𝑝′ = ∅ for all 𝑝, 𝑝′ ∈ 𝐺 =

{1, ...,𝑚} such that 𝑝 ̸= 𝑝′. For example, these groups might capture the agents’

similar cultural or social backgrounds. Also, consider a strongly connected observation

network 𝐴 with 𝑎𝑖𝑖 = 1 for all 𝑖 ∈ 𝑁 . So far, there is no relation between the

neighborhood 𝑁𝑖 of an agent 𝑖 and the only group she belongs to, denoted 𝑀𝑝𝑖 . In

order to relate these two objects, let us define the internal linking fraction of 𝑖 ∈ 𝑁

as

ℓ𝑖 =
|{𝑗 ∈𝑀𝑝𝑖 : 𝑎𝑖𝑗 = 1}| − 1

|𝑁𝑖|
.
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According to our interpretation of the groups, the ℓ𝑖s capture the degree of homophily

in the given network structure: agents with a high ℓ𝑖 are connected with many neigh-

bors belonging to their own group 𝑀𝑝𝑖 . A stylized picture of real-world networks that

has been fruitfully used in the literature (cf. Golub and Jackson, 2012) is the islands

structure with a large internal linking fraction for each agent.

Let each 𝑁𝑖 be such that |𝑁𝑖| ≥ 3. Consider the stochastic matrix 𝑊 such that

𝑤𝑖𝑖 = 𝛽 ∈ (1/ |𝑁𝑖| , 1/2), 𝑤𝑖𝑗 = 1−𝛽
|𝑁𝑖|−1

if 𝑗 ∈ 𝑁𝑖∖ {𝑖}, and 𝑤𝑖𝑗 = 0 otherwise, for all

𝑖 ∈ 𝑁 . Suppose that each agent 𝑖 ∈ 𝑁 aggregates the opinions she observes in her

neighborhood using a trimmed mean 𝑇𝑖 with weights given by 𝑊 and 𝑞
𝑖
= 1 − 𝑞𝑖 =

𝛼/2 where 𝛼 ∈ [0, 2𝛽). In words, every agent computes the weighted average of

the opinions she observes, discarding both the 𝛼/2 highest and lowest opinions and

never fully discarding her own previous opinion, that is, 𝐴 (𝑇 ) ≥ 𝐼. Therefore, 𝑇

is convergent by Corollary 4. The DeGroot model, obtained as a particular case by

setting 𝛼 = 0, would still predict convergence to consensus in the long run. However,

if there is sufficiently high homophily, that is, ℓ𝑖 > 1 − 𝛼/2 for all 𝑖 ∈ 𝑁 , then

disagreement is a typical outcome for the long-run dynamics. We next illustrate

this point by studying the opinions’ evolution in the society when, starting from a

consensus 𝑘𝑒 ∈ 𝐵, the stances of a nonempty subset 𝑀 ⊆ 𝑁 of agents are shifted

upwards, that is,

𝑥0𝑖 =

⎧⎨⎩ 𝑘 + 𝛿 if 𝑖 ∈𝑀

𝑘 otherwise,
∀𝑖 ∈ 𝑁

with 𝛿 > 0 such that 𝑘 + 𝛿 ∈ 𝐼. For example, we can interpret this shock as follows:

a subset of agents 𝑀 is targeted by a marketing campaign and persuaded to increase

the use of a certain technology. Crucially, the extent of opinion segregation in the new

long-run dynamics will depend on the agents’ identities in the subgroup in relation

to the islands structure. If the shock is local, that is, 𝑀 = 𝑀𝑝 for some 𝑝 ∈ 𝐺, then

the long-run limit will be such that lim𝑡 𝑇
𝑡
𝑖 (𝑥

0) > 𝑘 if 𝑖 ∈ 𝑀 , and lim𝑡 𝑇
𝑡
𝑖 (𝑥

0) = 𝑘

if instead 𝑖 ̸∈ 𝑀 . Differently, if the shock is dispersed, that is |𝑀 ∩𝑀𝑝| ≤ 1 for all

𝑝 ∈ 𝐺, and the self-influentiality 𝛽 is low enough, then the long-run limit will be such

that lim𝑡 𝑇
𝑡
𝑖 (𝑥

0) = 𝑘 for all 𝑖 ∈ 𝑁 .
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If the number of islands 𝑚 is much greater than the size of each island |𝑀𝑝|, then

the dispersed shock involves a much larger subgroup of agents. Nevertheless, the

deviation of each subgroup member is washed out within each island, and the orig-

inal consensus is restored. Instead, the original consensus is broken if the targeted

set of agents 𝑀 is smaller but more inward-looking, as in the first case. This phe-

nomenon resembles the so-called “complex contagion” theory of Centola and Macy

(2007), whereby a few “long ties” are not sufficient to spread an increased opinion

globally. It is supported by the evidence on technology adoption in developing coun-

tries. In contrast, in the DeGroot model, both shocks lead to the formation of a new

higher consensus. ▲

Even if the observation network is strongly connected, there is no global conver-

gence to consensus due to the wedge between the observation and the strong network.

It is easy to see that whenever ℓ𝑖 ≥ 1− 𝛼/2 for each 𝑖 ∈ 𝑁 , no agent strongly influ-

ences any agent, apart for herself. In general, the strong and the weak networks for

rank-dependent aggregators are completely characterized by the distortion functions

(𝑓𝑖)
𝑛
𝑖=1 and the matrix of weights 𝑊 . Agent 𝑗 strongly influences 𝑖 if and only if her

incremental weight, 𝑓𝑖
(︁∑︀

𝑙∈𝑀∪{𝑗}𝑤𝑖𝑙

)︁
− 𝑓𝑖

(︀∑︀
𝑙∈𝑀 𝑤𝑖𝑙

)︀
, with respect to any baseline

group 𝑀 ⊆ 𝑁∖ {𝑗} of agents is strictly positive. Similarly, agent 𝑗 weakly influences 𝑖

if and only if her incremental weight with respect to some baseline group of agents is

strictly positive. This shows that convergence of opinions to disagreement is a much

more natural outcome for robust opinion aggregators even in completely connected

societies.

Remark 6. Suppose that the agents use a rank-dependent aggregator 𝑇 𝑓 with matrix

of weights 𝑊 ∈ 𝑊 . Consider two disjoint groups 𝑁,𝑁 ⊆ 𝑁 . If the members of both

groups distort sufficiently toward zero the total weights of the outsiders, that is,

𝑓𝑖

⎛⎝ ∑︁
𝑗∈𝑁∖𝑁

𝑤𝑖𝑗

⎞⎠ = 0 ∀𝑖 ∈ 𝑁 and 𝑓𝑙

⎛⎝∑︁
𝑗∈𝑁

𝑤𝑙𝑗

⎞⎠ = 1 ∀𝑙 ∈ 𝑁 , (B.12)

then convergence to consensus does not always obtain under 𝑇 𝑓 . For example, long-
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run disagreement arises whenever there is initial agreement within �̄� on 𝑏 ∈ 𝐼, initial

agreement within 𝑁 on 𝑎 < 𝑏, and all the other agents have intermediate opinions

𝑥𝑖 ∈ [𝑎, 𝑏]. In particular, equation (B.12) is compatible with an observation and a

weak network, 𝐴 (𝑊 ) and 𝐴
(︀
𝑇 𝑓
)︀
, that are both strongly connected. ▲

The remark shows that it is not possible to resort to known results on convergence

to consensus for nonlinear opinion aggregation models to analyze this kind of long-run

behavior (e.g., (2005)). In turn, Theorem 8 gives easy-to-check sufficient conditions,

in terms of strong links, to assess convergence of opinions. Finally, as we can easily

see in Example 11, the exact composition of these groups is flexible and might change

depending on their initial stances.

B.3.3 Long-run consensus

Our following result shows that if we cannot partition the strong network into multiple

strongly connected and closed groups, then convergence to consensus always obtains.

Conversely, convergence to consensus implies that the weak network does not admit

such a partition.

Proposition 15. Let 𝑇 be a robust opinion aggregator. The following statements are

true:

1. If the network of strong ties 𝐴 (𝑇 ) is nontrivial, has a unique strongly connected

and closed group 𝑀 , and 𝑀 is aperiodic under 𝐴 (𝑇 ), then convergence to

consensus always obtains.

2. If convergence to consensus always obtains, then the network of weak ties 𝐴 (𝑇 )

is nontrivial, has a unique strongly connected and closed group 𝑀 , and 𝑀 is

aperiodic under 𝐴 (𝑇 ).

Therefore, if 𝐴 (𝑇 ) = 𝐴 (𝑇 ), then convergence to consensus always obtains if and

only if 𝐴 (𝑇 ) is nontrivial, has a unique strongly connected and closed group 𝑀 , and

𝑀 is aperiodic.
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Point 1 states that if there exists a unique strongly connected set of agents in the

society that do not have strong connections with the outsiders, then all the agents

will eventually conform to this group. Instead, if even the weak ties are not sufficient

to connect two disjoint subgroups, then long-run disagreement can occur. It is then

critical to identify strong and weak ties in the society to understand whether an

intervention might generate a global consensus or just a localized one. However, the

last part of the result confirms a general principle for robust opinion aggregators: if

weak and strong ties coincide, then the results for convergence and consensus of the

DeGroot model extend plainly. We next completely characterize the long-run opinion

aggregator for a case with this property.

Quasi-arithmetic biased aggregation and opinions’ dispersion Consider agents

that best respond to the previous opinions of the opponents at each period. Within

this interpretation of our dynamics, a restriction imposed by the quadratic loss in

(B.1) is that upward and downward discrepancies are felt as equally harming by ev-

ery agent. It might be the case that (some) agents are more concerned with one or

the other. A smooth and tractable robust opinion aggregator that takes into account

these asymmetries is obtained by minimizing

𝜑𝜃
𝑖 (𝑥− 𝑐𝑒) =

𝑛∑︁
𝑗=1

𝑤𝑖𝑗 [exp (𝜃 (𝑥𝑗 − 𝑐))− 𝜃 (𝑥𝑗 − 𝑐)] ∀𝑥 ∈ R𝑛,∀𝑐 ∈ R (B.13)

where 𝜃 ̸= 0 and the values 𝑤𝑖𝑗 are the entries of a stochastic matrix 𝑊 . In particular,

whenever 𝜃 > 0, upward deviations from 𝑖’s current opinion are more penalized than

downward deviations and vice versa whenever 𝜃 < 0.

We next show that there exists a unique solution function 𝑇 𝜃
𝑖 for each minimization

problem induced by 𝜑𝜃
𝑖 . In particular, for this parametric class, we derive an explicit

formula for the induced robust long-run opinion aggregator.

Proposition 16. Let 𝐼 be bounded and let 𝜑 be the profile of loss functions
(︀
𝜑𝜃
𝑖 : R𝑛 → R+

)︀𝑛
𝑖=1

as in (B.13) with 𝑊 ∈ 𝒲 and 𝜃 ∈ R∖ {0}. The following statements are true:
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1. For each 𝑖 ∈ 𝑁 we have that

𝑇 𝜃
𝑖 (𝑥) = argmin𝑐∈R 𝜑

𝜃
𝑖 (𝑥− 𝑐𝑒) =

1

𝜃
ln

(︃
𝑛∑︁

𝑗=1

𝑤𝑖𝑗 exp (𝜃𝑥𝑗)

)︃
∀𝑥 ∈ 𝐵 (B.14)

and 𝑇 𝜃 is a robust opinion aggregator with 𝐴
(︀
𝑇 𝜃
)︀
= 𝐴

(︀
𝑇 𝜃
)︀
= 𝐴 (𝑊 ).

2. For each 𝑖 ∈ 𝑁 we have that

lim
𝜃→𝜃

𝑇 𝜃
𝑖 (𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max𝑗:𝑤𝑖𝑗>0 𝑥𝑗 if 𝜃 = ∞∑︀𝑛

𝑗=1𝑤𝑖𝑗𝑥𝑗 if 𝜃 = 0

min𝑗:𝑤𝑖𝑗>0 𝑥𝑗 if 𝜃 = −∞

∀𝑥 ∈ 𝐵.

3. If there exists a vector 𝑠 ∈ ∆ such that

lim
𝑡
𝑊 𝑡𝑥 =

(︃
𝑛∑︁

𝑖=1

𝑠𝑖𝑥𝑖

)︃
𝑒 ∀𝑥 ∈ R𝑛, (B.15)

then convergence to consensus always obtains under 𝑇 𝜃 and

𝑇 𝜃 (𝑥) =
1

𝜃
ln

(︃
𝑛∑︁

𝑖=1

𝑠𝑖 exp (𝜃𝑥𝑖)

)︃
𝑒 ∀𝑥 ∈ 𝐵.

Point 1 gives an explicit functional form for the opinion aggregator, proving that

the time-invariant version of the Log-Sum-Exp model of Tahbaz-Salehi and Jadbabaie

(2006) is also a robust opinion aggregator.10 Point 2 shows that this functional form

encompasses the linear case as a limit and allows for nonneutral behaviors toward

the direction of disagreement. Equation (B.15) in point 3 is satisfied if and only

if 𝐴 (𝑊 ) has a unique strongly connected and closed group 𝑀 and 𝑀 is aperiodic

under 𝐴 (𝑊 ). In this case, we see how not just the network structure determines the

limit influence of each agent, but the initial opinion also plays a key role. Indeed,

the marginal contribution to the limit of agent 𝑖’s initial opinion is proportional to

𝑠𝑖 exp (𝜃𝑥𝑖). Therefore, when 𝜃 > 0, the higher the initial signal realization of an in-
10Differently from us, (2006) allow for time changing connections, but they assume uniform weights

for all neighbors.
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dividual, the higher her marginal contribution to the limit is. This fact has extremely

relevant consequences. For example, consider one of the classical applications of non-

Bayesian learning, technology adoption in a village of a developing country, with an

opinion vector representing how much the agents have invested in the new technology

(e.g., the share of land cultivated with the new technology). There, 𝜃 > 0 captures

the idea that the most innovative members of the society have a disproportionate

influence on the others, maybe because their performance attracts relatively more

attention. If resources are limited, i.e., if the external actor can only increase adop-

tion for an agent directly, relying on the network aggregation for the rest, the policy

prescription is qualitatively different. Indeed, she should choose the agent 𝑗 for which

𝑠𝑗 exp (𝜃𝑥𝑗) is maximized, combining the standard eigenvector centrality 𝑠𝑗 with a

distortion increasing in the initial opinion 𝑥𝑗 of agent 𝑗.

B.4 Vox populi, vox Dei?

In the previous section, we considered a given deterministic profile of initial opinions

and studied their evolution. However, for any given population size, the stochastic

nature of the vector of initial opinions 𝑋 = 𝜇+ 𝜀 implies that the long-run outcome

𝑇 (𝑋) will be stochastic as well. This section considers large networks to study the

aggregate variability and the accuracy of long-run opinions under robust opinion

aggregation, following the approach pioneered by Golub and Jackson (2010). Their

question is whether the long-run opinions approach the true mean in large networks,

i.e., if a “law of large numbers” holds under DeGroot opinion aggregation. We take up

that question for robust opinion aggregators. Remarkably, even seemingly very basic

questions about this were unresolved. For example, take a large Erdős–Rényi network

and assume that everyone uses a nonlinear rule such as rank-dependent influence. On

the one hand, it seems that in a large network where everyone’s neighborhood is small

and influence locally look symmetric, there is no channel for anyone’s idiosyncratic

noise to become influential enough to disrupt a law of large numbers. On the other

hand, existing techniques seem basically powerless against this question. We next
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provide sufficient and necessary conditions for this concentration around the true

parameters to hold.

Formally, we keep the same setup of Sections B.2 and B.3, with the caveat that

here everything is parametrized by the size 𝑛 of the population.

Assumptions In this section, we maintain the following assumptions:

1. 𝐼 = R.

2. For each 𝑛 ∈ N we assume that 𝑋𝑖 (𝑛) = 𝜇 + 𝜀𝑖 (𝑛) for all 𝑖 ∈ 𝑁 , where

{𝜀𝑖 (𝑛)}𝑖∈𝑁,𝑛∈N is an array of uniformly bounded and independent random vari-

ables such that inf𝑖∈𝑁,𝑛∈NVar (𝜀𝑖 (𝑛)) ≥ 𝜎2 > 0.

Some additional notation is helpful for the following analysis.

Notation With 𝐼, we denote a bounded open interval such that 𝑋𝑖 (𝑛) (𝜔) ∈ 𝐼 for all

𝜔 ∈ Ω, 𝑖 ∈ 𝑁 , and 𝑛 ∈ N. We denote by ℓ def
= sup 𝐼− inf 𝐼 the signal range. Moreover,

we denote the collection of probability vectors in R𝑛 by ∆𝑛.

We are interested in whether a growing society becomes wise (cf. Golub and

Jackson (2010)), that is, whether there is an efficient aggregation of the information

available in the network in the limit.

Definition 24. Let {𝑇 (𝑛)}𝑛∈N be a sequence of robust opinion aggregators. The

sequence {𝑇 (𝑛)}𝑛∈N has vanishing variance if and only if, for each 𝜄 ∈ N,11

Var
(︀
𝑇𝜄 (𝑛) (𝑋1 (𝑛) , ..., 𝑋𝑛 (𝑛))

)︀
→ 0. (B.16)

The sequence {𝑇 (𝑛)}𝑛∈N is wise if and only if, for each 𝜄 ∈ N,

𝑇𝜄 (𝑛) (𝑋1 (𝑛) , ..., 𝑋𝑛 (𝑛))
𝑃→ 𝜇. (B.17)

11Note the following innocuous abuse of notation (given our interest in limit results): for each 𝜄 ∈ N,
the sequences in equations (B.16) and (B.17) are well defined only starting from 𝑛 ≥ 𝜄. In fact, an
agent with position 𝜄 can only belong to a society with size 𝑛 greater than or equal to 𝜄. A similar
observation applies throughout the section, in particular, in Theorem 9.
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When equation (B.16) holds, the aggregation procedure neutralizes the idiosyn-

cratic variability of the agents’ opinions. If, in addition, the agents’ limit opinions

are unbiased, then they concentrate around 𝜇, and equation (B.17) holds. If 𝑇 (𝑛)

is linear with strongly connected matrix 𝑊 (𝑛), then 𝑇 (𝑛) is linear and represented

by a matrix �̄� (𝑛) whose rows all coincide with the left Perron-Frobenius eigenvector

𝑠 (𝑇 (𝑛)) ∈ ∆𝑛 of 𝑊 (𝑛): a standard measure of network centrality. DeMarzo et al.

(2003) as well as Golub and Jackson (2010) call 𝑠 (𝑇 (𝑛)) the influence vector and the

latter show that {𝑇 (𝑛)}𝑛∈N is wise if and only if lim𝑛max𝑘∈𝑁 𝑠𝑘 (𝑇 (𝑛)) = 0, provided

the errors 𝜀𝑖 (𝑛) have 0 mean. In this case, the vector 𝑠 (𝑛) coincides with the gradient

of 𝑇𝑖 (𝑛), thereby capturing the idea of the “marginal contributions” of the agents to

the limit opinion of 𝑖.12

As suggested by Theorem 7, for robust opinion aggregators, the marginal contri-

butions to the limit opinion are captured by the partial derivatives of 𝑇𝑖 (𝑛). Even

if our opinion aggregators might not be (Frechet) differentiable, they are Lipschitz

continuous,13 hence almost everywhere differentiable by Rademacher’s Theorem. Let

𝒟
(︀
𝑇 (𝑛)

)︀
⊆ 𝐼𝑛 be the subset of 𝐼𝑛 where 𝑇 (𝑛) is differentiable.

Definition 25. Let 𝑇 (𝑛) : R𝑛 → R𝑛 be a robust opinion aggregator and 𝑖 ∈ 𝑁 . We

say that 𝑠𝑖 (𝑇 (𝑛)) ∈ R𝑛 is the strong influence vector for 𝑖 given 𝑇 (𝑛) if and only if

𝑠𝑖𝑗 (𝑇 (𝑛)) = inf
𝑥∈𝒟(𝑇 (𝑛))

𝜕𝑇𝑖 (𝑛)

𝜕𝑥𝑗
(𝑥) ∀𝑗 ∈ 𝑁 .

We say that 𝑠𝑖 (𝑇 (𝑛)) ∈ R𝑛 is the weak influence vector for 𝑖 given 𝑇 (𝑛) if and only

if

𝑠𝑖𝑗 (𝑇 (𝑛)) = sup
𝑥∈𝒟(𝑇 (𝑛))

𝜕𝑇𝑖 (𝑛)

𝜕𝑥𝑗
(𝑥) ∀𝑗 ∈ 𝑁 .

As for the notions of networks associated with a robust opinion aggregator, there
12Observe that, compared to the results of the wisdom of the crowd result in(2010), we are allowing

for a sequence of opinion aggregators that do not necessarily induce a consensus from every starting
opinion, and so we may have 𝑇𝜄 (𝑛) ̸= 𝑇𝜄′ (𝑛) for some 𝑛 ∈ N and 𝜄, 𝜄′ ∈ {1, ..., 𝑛}. In that case,
our definitions of vanishing variance and wise require that, for each fixed agent 𝜄, respectively the
variance of the long-run opinion is going to 0 and the long-run opinion is converging in probability
to 𝜇. This definition collapses to the one of(2010) under their additional assumption that 𝑇𝜄 (𝑛) =
𝑇𝜄′ (𝑛) for all 𝑛 ∈ N and 𝜄, 𝜄′ ∈ {1, ..., 𝑛}

13See Lemma 20 in Appendix B.8.
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are two natural definitions of influence vector. The values 𝑠𝑖𝑗 (𝑇 (𝑛)) , 𝑠𝑖𝑗 (𝑇 (𝑛)) ∈ R

are respectively the minimal and maximal influence that, under the opinion aggre-

gator 𝑇 (𝑛), the initial opinion of 𝑗 exerts on the limit opinion of 𝑖. Observe that,

whenever 𝑇 (𝑛) is a robust opinion aggregator that satisfies 1 of Proposition 15,

for each 𝑖, 𝑙 ∈ 𝑁 , we have 𝑠𝑖 (𝑇 (𝑛)) = 𝑠𝑙 (𝑇 (𝑛)) and 𝑠𝑖 (𝑇 (𝑛)) = 𝑠𝑙 (𝑇 (𝑛)), since

𝑇𝑖 = 𝑇𝑙. Moreover, both definitions of influence vector above coincide with the

one of Golub and Jackson whenever 𝑇 (𝑛) is linear and strongly connected since

𝑠𝑖 (𝑇 (𝑛)) = 𝑠𝑖 (𝑇 (𝑛)) = 𝑠 (𝑇 (𝑛)) for all 𝑖 ∈ 𝑁 .

These objects are crucial to providing sufficient and necessary conditions for van-

ishing variance. To obtain also the wisdom of the crowd, the following additional

symmetry assumptions are needed. We say that the array {𝜀𝑖 (𝑛)}𝑖∈𝑁,𝑛∈N is symmet-

ric if and only if for each 𝑖 ∈ 𝑁 and for each 𝑛 ∈ N, 𝜀𝑖 (𝑛) and −𝜀𝑖 (𝑛) have the same

distribution under 𝑃 . Moreover, we say that the sequence {𝑇 (𝑛)}𝑛∈N is odd if and

only if 𝑇 (𝑛) (−𝑥) = −𝑇 (𝑛) (𝑥) for all 𝑥 ∈ R𝑛 and for all 𝑛 ∈ N.14

Theorem 9. Let {𝑇 (𝑛)}𝑛∈N be a sequence of robust opinion aggregators. The fol-

lowing statements are true:

1. If lim𝑛

∑︀𝑛
𝑗=1 𝑠𝜄𝑗 (𝑇 (𝑛))2 = 0 for all 𝜄 ∈ N, then {𝑇 (𝑛)}𝑛∈N has vanishing vari-

ance. If in addition {𝑇 (𝑛)}𝑛∈N is odd and {𝜀𝑖 (𝑛)}𝑖∈𝑁,𝑛∈N is symmetric, then

{𝑇 (𝑛)}𝑛∈N is wise.

2. If lim sup𝑛 max𝑗∈𝑁 𝑠𝜄𝑗 (𝑇 (𝑛)) > 0 for some 𝜄 ∈ N, then {𝑇 (𝑛)}𝑛∈N does not

have vanishing variance. In particular, {𝑇 (𝑛)}𝑛∈N is not wise.

Given 𝜄 ∈ N, the quantity
∑︀𝑛

𝑗=1 𝑠𝜄𝑗 (𝑇 (𝑛))2 is an upper bound for the sensitivity

of 𝑇𝜄 (𝑛) to changes in the initial opinions of small subsets of agents. As long as this

measure vanishes, the variance of the limit opinion of 𝜄 is going to 0. It is easy to show

that this condition is implied by max𝑗∈𝑁 𝑠𝜄𝑗 (𝑇 (𝑛)) = 𝑜
(︁

1√
𝑛

)︁
, that is, the maximum

weak influence on 𝜄 is vanishing fast enough. Conversely, if the maximum strong

influence on some agent 𝜄 is not vanishing, then the variability of her limit opinion
14In the foundation of robust opinion aggregators that we propose in Section B.5.1, loss functions

that are symmetric with respect to opinions’ deviations (i.e., even) induce odd opinion aggregators.
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does not disappear, preventing agent 𝜄 from learning 𝜇. Therefore, the wisdom of

the crowd is achieved only if lim𝑛 max𝑗∈𝑁 𝑠𝜄𝑗 (𝑇 (𝑛)) = 0 for all 𝜄 ∈ N, paralleling the

linear case.

Observe that, whenever each 𝑇 (𝑛) is linear and strongly connected, the sufficient

and necessary conditions for the wisdom of the crowd in points 1 and 2 are equivalent

to lim𝑛 max𝑗∈𝑁 𝑠𝑗 (𝑇 (𝑛)) = 0: the condition of Golub and Jackson(2010) which char-

acterizes the wisdom of the crowd for the DeGroot model.15 Thus, we obtain their

characterization as a particular case of our result. In general, there are two other

conceptual differences between the previous results about the wisdom of the crowd

and ours. First, we neither impose any parametric structure on the opinion aggre-

gators nor assume that agents aggregate opinions according to functionals belonging

to the same subclass (e.g., the median, quantiles, rank-dependent, quasi-arithmetic).

Second, our results encompass the case of nonconvergent robust opinion aggregators.

In such a case, 𝑇 (𝑛) is the limit of the updates’ time averages. This extra layer of

generality is helpful for the following question: can an external observer learn 𝜇 by

observing only part of the updating dynamics of a subset of the agents, i.e., can she

achieve the wisdom from the crowd? We have a positive answer under the conditions

of point 1: the external observer can use 𝑇𝜄 (𝑛) as a consistent estimator of the under-

lying parameter, even if the agents’ opinions are not converging. In addition, when

𝑇 (𝑛) is also convergent for all 𝑛 ∈ N, we have the wisdom of the crowd : all agents

learn the true parameter. Finally, as the proof of Theorem 9 clarifies, our results are

not only qualitative, but also quantitative. For example, in point 1, not only do we

prove that there is vanishing variance, but we provide an estimate of the variance,

given a fixed population of size 𝑛.

The proof of Theorem 9 has the following steps. For point 1, we treat each 𝑇𝑖 (𝑛) as

an estimator of 𝜇 and borrow techniques from large-deviation theory. In particular,

we observe that McDiarmid’s concentration inequality can be used to bound the

variance of 𝑇𝑖 (𝑛) whenever its variations with respect to the signal realizations can

15Indeed, given 𝑛 ∈ N and 𝑖 ∈ 𝑁 , if 𝑠𝑖 (𝑇 (𝑛)) ∈ Δ𝑛 (as in(2010)), then
∑︀𝑛

𝑗=1 𝑠𝑖𝑗 (𝑇 (𝑛))
2 ≤

max𝑗∈𝑁 𝑠𝑖𝑗 (𝑇 (𝑛)).
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be bounded. Intuitively, these variations are proportional to the partial derivatives of

𝑇𝑖 (𝑛) with respect to the initial opinions of the other agents when these derivatives

are defined. We can formalize this idea by using a version of the Mean Value Theorem

for Lipschitz functions to show that each 𝑠𝑖𝑗 (𝑇 (𝑛)) bounds the changes of 𝑇𝑖 (𝑛) as

𝑋𝑗 varies. With this, we obtain a bound on the variance of 𝑇𝑖 (𝑛) that vanishes

as
∑︀𝑛

𝑗=1 𝑠𝜄𝑗 (𝑇 (𝑛))2 does, yielding the first part of point 1. Next, we show that if

both the errors and the opinion aggregator are symmetric, then 𝑇𝑖 (𝑛) is an unbiased

estimator, so it converges in probability to 𝜇.

For point 2, we show that the assumption on the strong influence vector implies

that the variance of the long-run opinion of agent 𝜄 remains bounded away from

zero for every 𝑛. This happens because (up to selecting a subsequence) for every 𝑛,

there exists an agent 𝑗𝑛 with a strong influence of at least 𝛼 ∈ (0, 1) on 𝜄. In turn,

this implies that we can decompose the long-run opinion of 𝜄 as the convex linear

combination of 𝑋𝑗𝑛 (𝑛) (with weight 𝛼) and a monotone function of the opinions of

all agents. By Harris inequality, the covariance between 𝑋𝑗𝑛 (𝑛) and this monotone

function is nonnegative. Therefore the overall variance of agent 𝜄 long-run opinion is

at least 𝛼2Var (𝑋𝑗𝑛 (𝑛)) ≥ 𝛼2𝜎2 > 0.

B.4.1 Weak networks and the wisdom of the crowd

Point 1 of Theorem 9 provides an easy-to-interpret sufficient condition on the se-

quence of long-run opinion aggregators for both absence of aggregate variability and

wisdom. However, it is important to have properties of the primitive sequence of

robust opinion aggregators that induce long-run wisdom. To address this point via

Theorem 9, we need to control the derivatives of the sequence of robust opinion aggre-

gators {𝑇 (𝑛)}𝑛∈N with their weak networks
{︀
𝐴 (𝑛)

}︀
𝑛∈N. For each 𝑛 ∈ N and 𝑖 ∈ 𝑁 ,

we denote the degree of 𝑖 in 𝐴 (𝑛) by 𝑑𝑖 (𝑛) =
∑︀

𝑗∈𝑁 �̄�𝑖𝑗 (𝑛). We define the maximum

and minimum degrees by 𝑑max (𝑛) = max𝑖∈𝑁 𝑑𝑖 (𝑛) and 𝑑min (𝑛) = min𝑖∈𝑁 𝑑𝑖 (𝑛), re-

spectively. Recall that 𝐼𝑛 is the set of possible initial opinion vectors. Similar to

before, we denote by 𝒟 (𝑇 (𝑛)) ⊆ 𝐼𝑛 the subset of 𝐼𝑛 where 𝑇 (𝑛) is differentiable.
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Definition 26. Let {𝑇 (𝑛)}𝑛∈N be a sequence of robust opinion aggregators and

𝜅 ≥ 1. The sequence {𝑇 (𝑛)}𝑛∈N is 𝜅-dominated if and only if

𝜕𝑇𝑖 (𝑛)

𝜕𝑥𝑗
(𝑥) ≤ 𝜅

𝑑𝑖 (𝑛)
∀𝑥 ∈ 𝒟 (𝑇 (𝑛)) (B.18)

for all 𝑖, 𝑗 ∈ 𝑁 and for all 𝑛 ∈ N.

For a fixed 𝑛 ∈ N, since each 𝑇 (𝑛) is Lipschitz continuous, we can always sat-

isfy the inequality in (B.18) by choosing 𝜅 (𝑛) = 𝑑max (𝑛).16 Therefore, a sufficient

condition for the sequence {𝑇 (𝑛)}𝑛∈N to be 𝜅-dominated for some 𝜅 ≥ 1 is that

sup𝑛∈N 𝑑max (𝑛) < ∞. Here, 𝜅 measures the deviation of 𝑇 (𝑛) from the uniform lin-

ear aggregation of the opinions of the weak neighbors. This deviation can take two

forms: i) some neighbors may be more important than others; and ii) the relative

weights may depend on the current opinion. The first form is already present in

the linear model with nonuniform weights, while the second one is specific to robust

opinion aggregators, as we next illustrate.

Example 12. Let
{︀
𝑇 𝑓 (𝑛)

}︀
𝑛∈N denote the sequence of rank-dependent aggregators

with matrices of weights {𝑊 (𝑛)}𝑛∈N and distortions {𝑓𝜄}𝜄∈N, with each 𝑓𝜄 continuous

and locally Lipschitz on (0, 1).17 This implies that there exists a set 𝐹 ⊆ (0, 1) of

measure 1 where each 𝑓𝜄 is differentiable. We assume that the weights are uniform

over the (nontrivial) observation network, that is, for each 𝑛 ∈ N and 𝑖, 𝑗 ∈ 𝑁 , it

holds 𝑤𝑖𝑗 (𝑛) ∈ {0, 1/ |𝑁𝑖 (𝑛)|}. In this case, we have that the inequality in (B.18)

holds with 𝜅 = sup𝜄∈N sup𝑥∈𝐹 𝑓
′
𝜄 (𝑥). If 𝜅 < ∞, then the sequence

{︀
𝑇 𝑓 (𝑛)

}︀
𝑛∈N is

𝜅-dominated. For example, if all agents use the same distortion 𝑓𝜄 = 𝑓 which belongs

to any of the cases in Figure 1, except for quantiles, then 𝜅 is finite. Alternatively,

if all agents are using trimmed means with symmetric, but potentially heterogenous
16In general, we can choose a much smaller 𝜅 (𝑛) (cf. Example 12). That said, since 𝑇 (𝑛) is

monotone and translation invariant, observe that the gradient ∇𝑇𝑖 (𝑛) (𝑥) is a probability vector
for all 𝑖 ∈ 𝑁 and for all 𝑥 ∈ 𝒟 (𝑇 (𝑛)). This implies that 𝜅 (𝑛) can never be chosen to be smaller
than 1. Moreover, it can be chosen to be 1 if and only if 𝑇 (𝑛) (𝑥) =𝑊 (𝑛)𝑥 for all 𝑥 ∈ R𝑛, where
𝑊 (𝑛) is the stochastic matrix of uniform weights associated with 𝐴 (𝑛). Intuitively, the less the
derivative of 𝑇 can change, the closer 𝑇 is to being linear, and the smaller 𝜅 can be chosen. For
these reasons, we interpret 𝜅 as an index of nonlinearity.

17For example, this is the case if each 𝑓𝜄 is continuous on [0, 1] and either convex or concave.
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trimming cutoffs
(︁
𝑞
𝜄
, 1− 𝑞

𝜄

)︁
𝜄∈N

such that sup𝜄∈N 𝑞𝜄 < 1/2, then
{︀
𝑇 𝑓 (𝑛)

}︀
𝑛∈N is 𝜅-

dominated with 𝜅 = 1/
(︁
1− 2 sup𝜄∈N 𝑞𝜄

)︁
and each 𝑇 𝑓 (𝑛) is odd. ▲

We now give two difference conditions under which a a 𝜅-dominated sequence of

odd robust opinion aggregators is wise. For each 𝑛 ∈ N, if 𝐴 (𝑛) is strongly connected

and undirected, the stochastic matrix of uniform weights associated with 𝐴 (𝑛) (i.e.,

the matrix whose 𝑖𝑗-th entry is �̄�𝑖𝑗 (𝑛) /𝑑𝑖 (𝑛)) has 𝑛 real eigenvalues. We denote by

𝜆2 (𝑛) the second largest eigenvalue in modulus of this matrix (henceforth, SLEM): a

standard measure of connectivity.

Proposition 17. Let {𝑇 (𝑛)}𝑛∈N be a 𝜅-dominated sequence of odd robust opinion

aggregators and {𝜀𝑖 (𝑛)}𝑖∈𝑁,𝑛∈N be symmetric. The following statements are true:

1. If lim𝑛

√
𝑛

𝑑min(𝑛)
= 0, then {𝑇 (𝑛)}𝑛∈N is wise.

2. If the weak networks
{︀
𝐴 (𝑛)

}︀
𝑛∈N are undirected and strongly connected, sup𝑛∈N

𝑑max(𝑛)

𝑑min(𝑛)
<

∞, and sup𝑛∈N 𝜆2 (𝑛) <
1
𝜅2 , then {𝑇 (𝑛)}𝑛∈N is wise.

The first part of the propostion shows that a sequence of odd robust opinion

aggregators which is 𝜅-dominated is wise, provided that the weak degree of each

agent is increasing fast enough. On the one hand, the degree-growth condition in this

statement is satisfied with high probability in standard random graph models such

as the Erdős–Rényi model with (sufficiently) slowly decreasing linking probability.

On the other hand, many real-world networks exhibit bounded degrees, even when

the population size grows. In these cases, we can still obtain the wisdom of the crowd

at the cost of requiring a high level of connectivity in the weak networks compared

to the nonlinearity index 𝜅. We now observe that this joint condition is satisfied by

multiple graph models. For example, within the class of the 𝑑 (𝑛)-regular graphs,

where each agent has exactly 𝑑 (𝑛) links, Ramanujan graphs have particularly high

connectivity, with 𝜆2 (𝑛) ≤ 2/
√︀
𝑑 (𝑛). Importantly, for fixed 𝑑 ∈ N, random graphs

that are uniformly distributed over 𝑑-regular graphs are “almost Ramanujan”, in the

sense that, with probability converging to 1, their SLEM will be lower than 2/
√
𝑑,

as 𝑛 grows. Therefore, under this graph model, the connectivity condition reduces
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to 𝑑 > 4𝜅4. In the context of Example 12 with agents using trimmed means with

symmetric cutoffs, this condition amounts to 𝑑 > 4
(︁

1
1−2 sup𝜄∈N 𝑞

𝜄

)︁4
, which is satisfied

with reasonable parameters such as sup𝜄∈N 𝑞𝜄 ≤ 1/8 and 𝑑 ≥ 13.

Even if regular graphs constitute a benchmark structure given their balancedness

properties, they still fail to capture the clustering of many real-world networks. The

multi-type random graph model of Golub and Jackson (2012) is an example that

overcomes this limitation allowing for homophily between agents of the same type.

Notably, the realized degrees distribution is balanced, and the SLEM of the realized

network is close to the SLEM of the associated deterministic network of types.18

Therefore, in order to guarantee the wisdom of the crowd, we need that the SLEM

of the type network generating the weak networks of {𝑇 (𝑛)}𝑛∈N is small enough

compared to their coefficient of nonlinearity 1/𝜅2. Moreover, in their leading case of

an island model, this condition is always satisfied when the homophily index is low

enough.

In Example 13 in Section B.5, we illustrate how to use the sufficient conditions of

Proposition 17 to obtain the wisdom of the crowd in a model where agents repeatedly

solve an estimation problem for the fundamental parameter 𝜇.

Point 2 of Theorem 9 establishes that the persistent limit influence, of at least an

individual, is sufficient to preserve the opinions’ variability, even for large populations.

It is not difficult to show that a more structural sufficient condition for persistent

influence in terms of prominent families as in Golub and Jackson (2010) can be given.

B.5 Foundation of robust opinion aggregators

In this section, we give a microfoundation of robust opinion aggregators and their

convergence and information-aggregation properties.

18The second statement is the content of their Theorem 2, while the balance condition is implied by
their Lemma A.4. Golub and Jackson (2012) also point out that a small SLEM guarantees that
convergence speed to 𝜇 does not explode as the population size increases.
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B.5.1 A characterization of robust opinion aggregators

Here, we characterize robust opinion aggregators as the solution to a distance mini-

mization problem. Formally, we endow each agent 𝑖 with a loss function 𝜑𝑖 : R𝑛 → R+

and we assume that at each period the agent solves

min
𝑐∈R

𝜑𝑖 (𝑥− 𝑐𝑒) (B.19)

where 𝑥 ∈ 𝐵 is the opinion profile of the previous period. Intuitively, in choosing her

current opinion 𝑐, agent 𝑖 minimizes a loss function that penalizes the disagreement

(i.e., differences of opinions) with the last-period opinions of her neighbors. We next

impose two minimal restrictions on the profile of loss functions 𝜑 = (𝜑𝑖)
𝑛
𝑖=1.

Definition 27. The profile of loss functions 𝜑 is sensitive if and only if 𝜑𝑖 (ℎ𝑒) >

𝜑𝑖 (0) for all 𝑖 ∈ 𝑁 and for all ℎ ∈ R∖ {0}.

If agent 𝑖 observes a unanimous opinion (including herself), then her loss is mini-

mized by declaring that same opinion. In particular, under a best-response dynamics

interpretation, sensitivity implies that all the constant profiles of actions are Nash

equilibria of the induced game.

Definition 28. The profile of loss functions 𝜑 has increasing shifts if and only if for

each 𝑖 ∈ 𝑁 , 𝑧, 𝑣 ∈ R𝑛, and ℎ ∈ R++

𝑧 ≥ 𝑣 =⇒ 𝜑𝑖 (𝑧 + ℎ𝑒)− 𝜑𝑖 (𝑧) ≥ 𝜑𝑖 (𝑣 + ℎ𝑒)− 𝜑𝑖 (𝑣) .

It has strictly increasing shifts if and only if the above inequality is strict whenever

𝑧 ≫ 𝑣.

The property of increasing shifts is a form of complementarity in disagreeing with

two or more agents from the same side. It is implied by stronger properties usually

required on supermodular games played on networks, such as degree complementarity.

We call robust a profile of loss functions that is sensitive and has increasing shifts.

The collection of all these profiles is denoted by Φ𝑅. Given a robust profile of loss
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functions 𝜑, we denote with 𝑇 𝜑 : 𝐵 → 𝐵 an arbitrary selection of the argmin corre-

spondence

𝑇 𝜑 (𝑥) ∈
𝑛∏︁

𝑖=1

argmin𝑐∈R 𝜑𝑖 (𝑥− 𝑐𝑒) ∀𝑥 ∈ 𝐵. (B.20)

The selfmap 𝑇 𝜑 is an opinion aggregator and describes one possible updating rule

induced by 𝜑. The next theorem shows that our loss-function-based updating proce-

dure naturally generalizes the one of the DeGroot model without committing to any

specific functional form (e.g., quadratic) of the loss function.19

Theorem 10. Let 𝑇 be an opinion aggregator. The following statements are equiva-

lent:

(i) There exists 𝜑 ∈ Φ𝑅 which has strictly increasing shifts and is such that 𝑇 = 𝑇 𝜑,

that is, for each 𝑖 ∈ 𝑁

𝑇𝑖 (𝑥) = argmin𝑐∈R 𝜑𝑖 (𝑥− 𝑐𝑒) ∀𝑥 ∈ 𝐵; (B.21)

(ii) 𝑇 is a robust opinion aggregator.

The property of strictly increasing shifts guarantees that argmin𝑐∈R 𝜑𝑖 (𝑥− 𝑐𝑒) is

a singleton. However, it is violated in some interesting specifications of 𝜑 (see, e.g.,

equation (B.4)). In Proposition 23 in Appendix B.10, we show that the solution

correspondence of problem (B.19) always admits a selection which is a robust opinion

aggregator.

This theorem also suggests that, as in DeMarzo et al. (2003), we can interpret the

induced opinion dynamics as repeated estimation of 𝜇 given the last-period neighbors’

opinions. In particular, (2003) only studied the case of maximum likelihood updating

with Gaussian initial signals. Instead, we follow the general robust statistics approach:

the agents minimize a loss function.

19In particular, it is always possible to derive a DeGroot aggregator via the loss function (B.1).
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B.5.2 Loss functions and long-run dynamics

Next, we illustrate how our foundation is linked to the convergence and wisdom results

for robust opinion aggregators. We focus on the familiar and particularly tractable

class of loss functions given by

𝜑𝑖 (𝑧) =
𝑛∑︁

𝑗=1

𝑤𝑖𝑗𝜌𝑖 (𝑧𝑗) ∀𝑧 ∈ R𝑛,∀𝑖 ∈ 𝑁

where 𝑊 ∈ 𝒲 is a stochastic matrix whose positive entries implicitly define the

observation network, and 𝜌 = (𝜌𝑖 : R → R+)
𝑛
𝑖=1 is a profile of positive functions. The

weight 𝑤𝑖𝑗 captures the relative importance of the opinion of 𝑗 as perceived by 𝑖. We

call such a profile additively separable and write 𝜑 = (𝑊, 𝜌). We denote the set of

robust and additively separable profiles of loss functions with Φ𝐴. Easy computations

yield that (𝑊, 𝜌) ∈ Φ𝐴 if and only if each 𝜌𝑖 is convex, strictly decreasing on R−, and

strictly increasing on R+. Additionally, if each 𝜌𝑖 is strictly convex, then there exists

a unique robust opinion aggregator 𝑇 𝜑 that satisfies (B.20). Three relevant examples

of robust opinion aggregators stemming from additively separable loss functions are

the DeGroot aggregators, the quantile aggregators, and the opinion aggregator of

Proposition 16.

Natural conditions on the profile of loss functions 𝜑 = (𝑊, 𝜌) yield that both the

strong network 𝐴
(︀
𝑇 𝜑
)︀

and the weak network 𝐴
(︀
𝑇 𝜑
)︀

coincide with the observation

network given by 𝑊 .20

Proposition 18. Let 𝜑 = (𝑊, 𝜌) ∈ Φ𝐴. If 𝐼 is compact and 𝜌𝑖 is twice continuously

differentiable and strongly convex for all 𝑖 ∈ 𝑁 , then there exists a unique 𝑇 𝜑 that

satisfies (B.20) and 𝐴
(︀
𝑇 𝜑
)︀
= 𝐴

(︀
𝑇 𝜑
)︀
= 𝐴 (𝑊 ).

Note that Proposition 18, paired with Theorem 8 and Proposition 15, characterizes

convergence and convergence to consensus in terms of the observation network 𝐴 (𝑊 ),

provided that each 𝜌𝑖 is sufficiently smooth and convex.
20In general, we can prove a similar result for profiles of loss functions which are not additively

separable. In this case, the assumptions of differentiability and strong convexity can also be
weakened and replaced with a coercivity condition and a Lipschitz property of the difference
quotients.
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Finally, we illustrate how Proposition 17 can be applied to check the wisdom of the

crowd in terms of the profile of loss functions. As a by-product, we obtain that, under

Assumptions 1-3 of Section B.4, the wisdom of the crowd can be achieved as long as

the minimum degree of connections gets larger as the population size increases.

Example 13. Consider a sequence {𝑇 (𝑛)}𝑛∈N of odd robust opinion aggregators as

in Section B.4 such that:

𝑇𝑖 (𝑛) (𝑥) ∈ argmin𝑐∈R

∑︁
𝑗∈𝑁𝑖(𝑛)

𝜌𝑖 (𝑛) (𝑥𝑗 − 𝑐)

|𝑁𝑖 (𝑛)|
∀𝑥 ∈ R𝑛

where the profile of loss functions 𝜑 (𝑛) = (𝑊 (𝑛) , 𝜌 (𝑛)) ∈ Φ𝐴 used by the agents

satisfies the assumptions in Proposition 18 and is such that 𝜌𝑖 (𝑛) (−𝑧) = 𝜌𝑖 (𝑛) (𝑧)

for all 𝑧 ∈ R, for all 𝑖 ∈ 𝑁 , and for all 𝑛 ∈ N.21 In this case, the weights 𝑤𝑖𝑗 (𝑛) of

each 𝑊 (𝑛) are uniform over their (nonempty) neighborhoods 𝑁𝑖 (𝑛). Moreover, let

{𝜀𝑖 (𝑛)}𝑖∈𝑁,𝑛∈N be symmetric and assume that there exists 𝜅 ∈ R such that

𝜌′′𝑖 (𝑛) (𝑧)

𝜌′′𝑖 (𝑛) (𝑧
′)
≤ 𝜅 ∀𝑖 ∈ 𝑁, ∀𝑛 ∈ N, ∀𝑧, 𝑧′ ∈ [−ℓ, ℓ] .

In particular, this condition is satisfied if 𝜌𝑖 (𝑛) = 𝜌 for all 𝑖 ∈ 𝑁 and for all 𝑛 ∈ N.

By the Implicit Function Theorem, we have that 𝑇 (𝑛) is differentiable and

𝜕𝑇𝑖 (𝑛)

𝜕𝑥𝑗
(𝑥) ≤ 𝜅

|𝑁𝑖 (𝑛) |
≤ 𝜅

min𝑘∈𝑁 |𝑁𝑘 (𝑛) |
∀𝑖, 𝑗 ∈ 𝑁, ∀𝑥 ∈ 𝐼𝑛,∀𝑛 ∈ N.

In words, the uniform bound on the sensitivity of the loss functions implies that the

reciprocal weak influence among the agents can be bounded using the size of the

minimal neighborhood in the growing network. By Proposition 18, we have that

{𝑇 (𝑛)}𝑛∈N is 𝜅-dominated.

By Proposition 17, wisdom is reached if the minimal degree in the society is

21In this case, 𝐼 is the closure of 𝐼.
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growing sufficiently fast, that is,

1

min𝑘∈𝑁 |𝑁𝑘 (𝑛) |
= 𝑜

(︂
1√
𝑛

)︂
. (B.22)

Alternatively, if each𝐴 (𝑊 (𝑛)) is undirected and strongly connected, sup𝑛∈N
max𝑘∈𝑁 |𝑁𝑘(𝑛)|
min𝑘∈𝑁 |𝑁𝑘(𝑛)|

<

∞, and sup𝑛∈N 𝜆2 (𝑛) <
1
𝜅2 , then {𝑇 (𝑛)}𝑛∈N is wise. For example, when the signal

range is 1 and 𝜌 (𝑧) = 𝛼𝑧4 + (1− 𝛼) 𝑧2 for some 𝛼 ∈ (0, 1), the SLEM condition

becomes sup𝑛∈N 𝜆2 (𝑛) <
(︀

1−𝛼
5𝛼+1

)︀2. ▲

B.6 Related literature

The linear model This chapter belongs to the literature on non-Bayesian opinion

aggregation and nests the benchmark DeGroot model (1974). Within this model,

Golub and Jackson (2010) fully characterize convergence, convergence to consensus,

and the wisdom of the crowd in terms of the network structure. For convergence, we

significantly extend the scope of the conditions of Golub and Jackson (2010). We show

that in our nonlinear model they are still sufficient for convergence and convergence

to consensus when imposed on the strong network, while they are necessary when

imposed on the weak network. For the wisdom of the crowd, we derive a general

law of large numbers for robust opinion aggregators specializing to the one of(2010)

for the linear case. Here the three main novelties are that: i) the maximal influence

in the network, which generalizes the notion of maximal eigenvector centrality, has

to vanish sufficiently fast ; ii) both the noise distribution and the opinion aggregators

must satisfy a symmetry property without which we only obtain the bias of the crowd;

and iii) the necessary and sufficient conditions for the wisdom of the crowd must be

expressed respectively in terms of the strong and the weak network, possibly creating

a wedge that is not present in the linear model.

Convergence and the mathematics literature Our most novel contribution in

terms of convergence is Theorem 8. Compared to the opinion aggregation literature

in computer science and economics, our techniques are completely functional ana-
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lytic. This is natural since our aggregators are nonlinear. Formally, this creates an

immediate overlap with the literature of maps iteration and fixed point theory where

the iterates {𝑇 𝑡 (𝑥)}𝑡∈N and their convergence are studied in order to find the fixed

points of 𝑇 . Using functional analysis in place of linear algebra comes at a cost. On

the one hand, it is a language that is richer but not immediately amenable to graph-

theoretic notions which are better expressed in terms of matrices. On the other hand,

graph-theoretic properties are instead primitive within our framework. Thus, as a

general contribution, our notions of networks of weak and strong ties build a useful

link between nonlinear analysis and graph theory.

More in detail, the proof of point 1 of Theorem 8 relies on five major steps. We next

comment on each step in relation to the literature. Given uniform Cesaro convergence

of Theorem 7 and using Lorentz’s Theorem, the first step (Lemma 22) observes that

convergence of 𝑇 is equivalent to asymptotic regularity. This technique seems to have

first appeared in Bruck (1978), who applied it to the case of nonexpansive maps in

Hilbert spaces. Because of this observation, showing that 𝑇 is asymptotically regular

is important. Conceptually, it poses the issue of what asymptotic regularity might

mean at a graph-theoretic level. The second step moves to address these points.

Proposition 19 is a quite simple yet new observation: if 𝐴 (𝑇 ) is nontrivial, then

𝑇 admits a decomposition 𝑇 (𝑥) = 𝜀𝑊𝑥 + (1− 𝜀)𝑆 (𝑥) where 𝜀 ∈ (0, 1), 𝑊 is a

stochastic matrix such that 𝐴 (𝑊 ) = 𝐴 (𝑇 ), and 𝑆 is a robust opinion aggregator.

This grain of linearity is what allows us to bridge graph notions to the convergence

properties of the operator 𝑇 . Indeed, the third step (Lemma 23 and Proposition 20)

shows that when 𝑊 is a {0, 1}-valued stochastic matrix that partitions the agents

in 𝑚 classes of agents that share the only individual in the class they observe (see

Definition 29), then 𝑇 is asymptotically regular. The third step thus offers an example

of a graph-theoretic property encoded by 𝑊 , which yields asymptotic regularity. In

proving this step, we generalize the techniques of Edelstein and O’Brien (1978).22 The

22Their case is more general in terms of the domain of 𝑇 in that 𝐵 can be any convex subset of
a normed vector space. However, their generality comes at a cost. In our jargon, they are only
studying the case in which 𝑇 is self-influential, which in our case would only yield the intermediate
step needed to derive Corollary 4.
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decomposition used in the third step yields convergence, but it is a very special one.

This concern is partially tamed by the fourth step (Lemma 24): if 𝐴 (𝑇 ) is aperiodic

and nontrivial, then there exists 𝑡 ∈ N such that 𝑇 𝑡 and 𝑇 𝑡+1 possess such a special

decomposition, making 𝑇 𝑡 and 𝑇 𝑡+1 convergent. In the final step (proof of point 1 of

Theorem 8), we prove that if 𝑇 𝑡 and 𝑇 𝑡+1 are convergent, so is 𝑇 . To our knowledge,

the second point of Theorem 8 does not have a counterpart in the literature.

Convergence to consensus and the computer science literature The mul-

tidisciplinary literature on repeated averaging procedures is mostly focused on con-

vergence to consensus: a relevant question which we study in Section B.3.3. We

now discuss the most important contributions to this issue. The closest paper to

our functional approach is Moreau (2005), who considers the iteration of a nonlinear

and time-varying operator on a Euclidean space. Neither our results nor the ones

in (2005) nest the others. We restrict ourselves to time-homogeneous operators on a

one-dimensional space and impose the additional condition of translation invariance

(both papers assume normalization and monotonicity). The first two restrictions are

substantial, and make our approach less useful for some engineering applications con-

sidered in (2005). Instead, the requirement of translation invariance only boils down

to different continuity assumptions between the two papers. Indeed, as we mentioned

in the text, the only implication of translation invariance used in our convergence

result is Lipschitz continuity of order 1. Assumption 1.4 of Moreau (2005) imposes

a different continuity condition on an ancillary function that controls the shrinking

rate of the operator. More generally, Moreau (2005) can only be used, after some

additional steps, to derive point 1 of Proposition 15, which we obtain from Theorem

8. However, Moreau (2005) does not address issues which are relevant to us such

as convergence without consensus and the wisdom of the crowd. These questions

significantly complicate the analysis and we need to resort to completely different

techniques coming from functional analysis as discussed above. In addition, since

our opinion aggregators are microfounded, under mild conditions, they inherit the

primitive observation network structure of the foundation (see Proposition 18). This
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imposes a strong discipline on the averaging process that allows us to provide bounds

on the rate of convergence to consensus which are function of the underlying network.

Wisdom of the crowd and asymptotic learning Among the recent papers, the

one closest to our wisdom of the crowd results is Molavi et al. (2018). However, both

the questions and the methodology are rather different. First, they follow Jadbabaie et

al. (2012) in considering social learning when agents both repeatedly receive external

signals about an underlying state of the world and naively combine the beliefs of

their neighbors. Instead, we follow the wisdom of the crowd approach of Golub and

Jackson (2010), and we study the long-run opinions as the size of the society grows

to infinity. Therefore, we single out the role of the network structure and the opinion

aggregator in efficiently combining the agents’ initial information as the network’s

size increases. For the questions we explore, log-linear aggregators a la Molavi et al.

(2018) can be studied in an equivalent linear system, thus making use of the results

developed for the DeGroot model and its time-varying versions. So, our results cover

their aggregators too after a suitable transformation.

Other related contributions Both Mueller-Frank (2018) and Arieli et al. (2021)

address different robustness concerns in a social learning setting: in Mueller-Frank

(2018)it is with respect to external manipulation of the initial opinions, while in Arieli

et al. (2021) it is with respect to the initial information structure of the agents.

Finally, our results also make use of some techniques coming from decision theory,

and in particular Ghirardato et al. (2004), Maccheroni et al. (2006), and Schmeidler

(1989). Ghirardato et al. (2004), Maccheroni et al. (2006) are the first to study

functionals that satisfy normalization, monotonicity, and translation invariance, using

nonstandard differential techniques. These techniques turn out to be particularly

useful when we discuss the wisdom of the crowd. The third paper introduces the

class of comonotonic additive functionals that include rank-dependent aggregators.

Compared to these papers, we instead consider (iterations of) operators as opposed

to functionals. However, even under the usual decision theoretic interpretation, our
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machinery and convergence results turn out to be useful, as shown in Cerreia-Vioglio

et al. (2023).

B.7 Conclusion

We see our results on the wisdom of the crowd as a natural starting point for fur-

ther work. In Section B.4.1, we considered a sequence of robust opinion aggregators

{𝑇 (𝑛)}𝑛∈N and a derived sequence of (uniform) DeGroot aggregators {𝑊 (𝑛)}𝑛∈N.

Each 𝑊 (𝑛) was constructed from the networks of weak ties 𝐴 (𝑛) which we assumed

to be undirected. In a nutshell, we showed that if the Jacobian of each 𝑇 (𝑛), when-

ever defined, is uniformly dominated by the corresponding 𝑊 (𝑛), then the wisdom

of the crowd holds, provided the dominating graphs exhibit enough connectivity. A

careful inspection of the proof shows that 𝑊 (𝑛) does not need to be induced by the

network of weak ties. For example, it can be induced by any undirected multigraph

and the result would still hold. In both cases, connectivity is measured by the second

largest eigenvalue in modulus, which can be computed thanks to the graphs being

undirected. It remains an open question if the same type of result holds true when

the graph is not assumed to be undirected, for example, by replacing the eigenvalue

measure with another coefficient of ergodicity.

On a more applied side, our results can be important tools for studying the trans-

mission of idiosyncratic shocks to aggregate fluctuations in large economies. Even if

we derived 𝑇 as the operator mapping initial opinions to long-run opinions, our Theo-

rem 9 would apply to any nonlinear operator with the same properties. For example,

we might consider a standard macroeconomic model of production networks and de-

rive the equilibrium output and prices as functions of the idiosyncratic shocks of the

firms. In their seminal paper, Acemoglu et al. (2010) obtain linear equilibrium maps

and provide sufficient conditions for the persistence of aggregate fluctuations in large

economies. In our language, this means a non-zero asymptotic variance as 𝑛 → ∞.

Under more general specifications of the production functions or, perhaps more inter-

estingly, under endogenous network formation (see, e.g., Acemoglu and Azar, 2020),
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the equilibrium maps might well be nonlinear, but still satisfy our properties. There-

fore, our results would be the first step to extend and test the results of (2010) in

these more general and realistic settings. In all these cases, it would be interesting

to derive the sufficient and necessary conditions for persistent aggregate fluctuations

on the equilibrium operators from properties of the primitives, in the spirit of our

Proposition 17. This is the subject of current investigation.

Another avenue for future work explores the role of robust opinion aggregators as a

bridge between DeGroot-style continuous opinion aggregators and diffusion/contagion

of a binary behavior such as adopting new technology. Indeed, (generalizations of)

the discrete-opinion models of Morris (2000), Kempe et al. (2003), Centola and Macy

(2007), and Muller-Frank and Neri (2021) can be obtained by considering a subclass

of robust opinion aggregators with the property that each agent’s updated opinion

exactly coincides with one of the neighbors’ opinions observed in the last period,

a property that linear aggregators rule out. In the working paper Cerreia-Vioglio,

Corrao, and Lanzani (2020), we show how our framework can deal with discrete

(e.g., binary) opinions and obtain a result about convergence in that case. Obtaining

sharper results on the wisdom of the crowd for such aggregators is an interesting open

question.

B.8 Appendix: convergence

All the missing proofs are in the Supplementary Appendix (see Section B.11.1). The

next three ancillary lemmas highlight the properties of 𝑇 and the limiting operator

𝑇 , whenever it exists. Their proofs are based on routine arguments.

Lemma 19. Let 𝑇 be an opinion aggregator. The following statements are true:

1. If 𝑇 is robust, then it admits an extension 𝑆 : R𝑛 → R𝑛 which is also robust.

2. If 𝑇 is normalized and monotone, then ‖𝑇 𝑡 (𝑥)‖∞ ≤ ‖𝑥‖∞ for all 𝑥 ∈ 𝐵 and

for all 𝑡 ∈ N.
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Lemma 20. If 𝑇 is a robust opinion aggregator, then 𝑇 𝑡 is nonexpansive (i.e., Lip-

schitz continuous of order 1) for all 𝑡 ∈ N. In particular, 𝑇 is nonexpansive.

Despite being easy to derive, the property of nonexpansivity plays an important

role in what follows and it also rules out the presence of chaotic behavior. The proof

of next lemma instead relies on the property of “being a limit”. It thus shows that

the properties of 𝑇 are often inherited by 𝑇 , provided the latter exists.

Lemma 21. Let 𝑇 be an opinion aggregator. If 𝑇 is Cesaro convergent, then 𝑇 :

𝐵 → 𝐵, as defined in equation (B.2), is well defined and 𝑇 ∘ 𝑇 = 𝑇 . Moreover,

1. If 𝑇 is nonexpansive, so is 𝑇 . In particular, 𝑇 is continuous.

2. If 𝑇 is normalized and monotone, so is 𝑇 .

3. If 𝑇 is robust, so is 𝑇 .

4. If 𝑇 is odd, so is 𝑇 , provided 𝐼 is a symmetric interval, that is, 𝑘 ∈ 𝐼 if and

only if −𝑘 ∈ 𝐼.

We can now prove that any sequence of updates of a robust opinion aggregator

converges a la Cesaro and this convergence is uniform on bounded subsets of 𝐵.

Proof of Theorem 7. Consider 𝑥 ∈ 𝐵. By point 2 of Lemma 19, we have that

{𝑇 𝑡 (𝑥)}𝑡∈N is a bounded sequence and, in particular, relatively compact. By Lemma

20, 𝑇 is nonexpansive. By Baillon et al. (1978), we can conclude that C-lim𝑡 𝑇
𝑡 (𝑥)

exists for all 𝑥 ∈ 𝐵. By Lemma 21, 𝑇 is a robust opinion aggregator such that

𝑇 ∘ 𝑇 = 𝑇 . Next, consider a bounded subset �̂� of 𝐵. Define by �̃� the closed convex

hull of �̂�. Since �̂� is bounded and 𝐵 is closed and convex, �̃� is a closed and bounded

subset of 𝐵 and, in particular, compact. For each 𝜏 ∈ N define 𝑆𝜏 : �̃� → R𝑛 by

𝑆𝜏 (𝑥) =
1

𝜏

𝜏∑︁
𝑡=1

𝑇 𝑡 (𝑥) ∀𝑥 ∈ �̃�.

By Lemma 20, 𝑆𝜏 is well defined and nonexpansive for all 𝜏 ∈ N. The collection

{𝑆𝜏}𝜏∈N belongs to the space 𝐶
(︁
�̃�,R𝑛

)︁
of continuous functions from �̃� to R𝑛. This
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space is a Banach space once endowed with the supnorm: ‖𝑓‖* = sup𝑥∈�̃� ‖𝑓 (𝑥)‖∞
for all 𝑓 ∈ 𝐶

(︁
�̃�,R𝑛

)︁
. Since {𝑆𝜏}𝜏∈N is a collection of nonexpansive maps, this

implies that the sequence {𝑆𝜏}𝜏∈N ⊆ 𝐶
(︁
�̃�,R𝑛

)︁
is equicontinuous. By contradiction,

assume that 𝑆𝜏

‖ ‖*
̸→ 𝑇|�̃� . This would imply that there exist 𝜀 > 0 and a subsequence

{𝑆𝜏𝑚}𝑚∈N ⊆ {𝑆𝜏}𝜏∈N such that
⃦⃦⃦
𝑆𝜏𝑚 − 𝑇|�̃�

⃦⃦⃦
*
≥ 𝜀 for all 𝑚 ∈ N. By the Arzela-Ascoli

Theorem and since {𝑆𝜏𝑚}𝑚∈N is equicontinuous and {𝑆𝜏𝑚 (𝑥)}𝑚∈N ⊆ R𝑛 is bounded

for all 𝑥 ∈ �̃�, this would imply that there exists a subsequence
{︁
𝑆𝜏𝑚(𝑙)

}︁
𝑙∈N

and a

function 𝑆 ∈ 𝐶
(︁
�̃�,R𝑛

)︁
such that lim𝑙

⃦⃦⃦
𝑆𝜏𝑚(𝑙)

− 𝑆
⃦⃦⃦
*
= 0. By the previous part of

the proof, recall that lim𝜏 𝑆𝜏 (𝑥) = 𝑇 (𝑥) for all 𝑥 ∈ �̃�. By definition of ‖ ‖*, it would

follow that 𝑇 (𝑥) = lim𝑙 𝑆𝜏𝑚(𝑙)
(𝑥) = 𝑆 (𝑥) for all 𝑥 ∈ �̃�, that is, 𝑇 = 𝑆 on �̃�. This

would imply that 0 < 𝜀 ≤ lim𝑙

⃦⃦⃦
𝑆𝜏𝑚(𝑙)

− 𝑇|�̃�
⃦⃦⃦
*
= 0, a contradiction. We can conclude

that

0 ≤ lim
𝜏

sup
𝑥∈�̂�

⃦⃦⃦⃦
⃦1𝜏

𝜏∑︁
𝑡=1

𝑇 𝑡 (𝑥)− 𝑇 (𝑥)

⃦⃦⃦⃦
⃦
∞

≤ lim
𝜏

sup
𝑥∈�̃�

⃦⃦⃦⃦
⃦1𝜏

𝜏∑︁
𝑡=1

𝑇 𝑡 (𝑥)− 𝑇 (𝑥)

⃦⃦⃦⃦
⃦
∞

= lim
𝜏

⃦⃦⃦
𝑆𝜏 − 𝑇|�̃�

⃦⃦⃦
*
= 0,

proving the last part of the statement. ■

We next prove our first result on standard convergence: Theorem 8. We begin by

presenting few facts which are useful for proving point 1. First, we identify a technical

property, termed asymptotic regularity, which characterizes convergence. Second, we

show how 𝐴 (𝑇 ) being nontrivial is equivalent to 𝑇 having a useful decomposition.

Finally, via this decomposition, we show that aperiodicity of 𝐴 (𝑇 ) yields asymptotic

regularity, hence convergence. We then prove point 2 of Theorem 8 for an important

special case: 𝑁 strongly connected under 𝐴 (𝑇 ). The general case then follows by

observing that a robust opinion aggregator can be restricted to any strongly connected

component of 𝐴 (𝑇 ) and retain its properties, including convergence.

Lemma 22. Let 𝑇 be a robust opinion aggregator. The following statements are

equivalent:

(i) 𝑇 is asymptotically regular, that is, lim𝑡 ‖𝑇 𝑡+1 (𝑥)− 𝑇 𝑡 (𝑥)‖∞ = 0 for all 𝑥 ∈ 𝐵;

(ii) 𝑇 is convergent.
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Proposition 19. Let 𝑇 be a robust opinion aggregator. The following statements are

equivalent:

(i) 𝐴 (𝑇 ) is nontrivial;

(ii) There exist 𝑊 ∈ 𝒲 and 𝜀 ∈ (0, 1) such that

𝑇 (𝑥) = 𝜀𝑊𝑥+ (1− 𝜀)𝑆 (𝑥) ∀𝑥 ∈ 𝐵 (B.23)

where 𝑆 is a robust opinion aggregator.

Moreover, we have that 𝑊 in (ii) can be chosen to be such that 𝐴 (𝑊 ) = 𝐴 (𝑇 ).

Proof. (i) implies (ii). For each 𝑖, 𝑗 ∈ 𝑁 if 𝑗 strongly influences 𝑖, consider 𝜀𝑖𝑗 ∈ (0, 1)

as in (B.7) otherwise let 𝜀𝑖𝑗 = 1/2. Define �̃� to be such that �̃�𝑖𝑗 = 𝑎𝑖𝑗𝜀𝑖𝑗 for all 𝑖, 𝑗 ∈

𝑁 where 𝑎𝑖𝑗 is the 𝑖𝑗-th entry of 𝐴 (𝑇 ). Since each row of 𝐴 (𝑇 ) is not null, for each

𝑖 ∈ 𝑁 there exists 𝑗 ∈ 𝑁 such that 𝑎𝑖𝑗 = 1 and, in particular, �̃�𝑖𝑗 > 0. This implies

that
∑︀𝑛

𝑙=1 �̃�𝑖𝑙 > 0 for all 𝑖 ∈ 𝑁 . Define also 𝜀 = min {min𝑖∈𝑁
∑︀𝑛

𝑙=1 �̃�𝑖𝑙, 1/2} ∈ (0, 1).

Define 𝑊 ∈ 𝒲 to be such that 𝑤𝑖𝑗 = �̃�𝑖𝑗/
∑︀𝑛

𝑙=1 �̃�𝑖𝑙 for all 𝑖, 𝑗 ∈ 𝑁 . Clearly, we have

that for each 𝑖, 𝑗 ∈ 𝑁

𝑤𝑖𝑗 > 0 ⇐⇒ �̃�𝑖𝑗 > 0 ⇐⇒ 𝑎𝑖𝑗 = 1. (B.24)

This yields that 𝐴 (𝑊 ) = 𝐴 (𝑇 ). Next, consider 𝑥, 𝑦 ∈ 𝐵 such that 𝑥 ≥ 𝑦. Define

𝑦0 = 𝑦. For each 𝑡 ∈ {1, ..., 𝑛− 1} define 𝑦𝑡 ∈ 𝐵 to be such that 𝑦𝑡𝑖 = 𝑥𝑖 for all 𝑖 ≤ 𝑡

and 𝑦𝑡𝑖 = 𝑦𝑖 for all 𝑖 ≥ 𝑡+ 1. Define 𝑦𝑛 = 𝑥. Note that 𝑥 = 𝑦𝑛 ≥ ... ≥ 𝑦1 ≥ 𝑦0 = 𝑦. It

follows that for each 𝑖 ∈ 𝑁

𝑇𝑖 (𝑥)− 𝑇𝑖 (𝑦) =
𝑛∑︁

𝑗=1

[︀
𝑇𝑖
(︀
𝑦𝑗
)︀
− 𝑇𝑖

(︀
𝑦𝑗−1

)︀]︀
≥

𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝜀𝑖𝑗
(︀
𝑦𝑗𝑗 − 𝑦𝑗−1

𝑗

)︀
=

𝑛∑︁
𝑗=1

�̃�𝑖𝑗 (𝑥𝑗 − 𝑦𝑗)

=

(︃
𝑛∑︁

𝑙=1

�̃�𝑖𝑙

)︃(︃
𝑛∑︁

𝑗=1

�̃�𝑖𝑗∑︀𝑛
𝑙=1 �̃�𝑖𝑙

(𝑥𝑗 − 𝑦𝑗)

)︃
=

(︃
𝑛∑︁

𝑙=1

�̃�𝑖𝑙

)︃(︃
𝑛∑︁

𝑗=1

𝑤𝑖𝑗 (𝑥𝑗 − 𝑦𝑗)

)︃
≥ 𝜀

𝑛∑︁
𝑗=1

𝑤𝑖𝑗 (𝑥𝑗 − 𝑦𝑗) .
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It follows that

𝑥 ≥ 𝑦 =⇒ 𝑇 (𝑥)− 𝑇 (𝑦) ≥ 𝜀𝑊 (𝑥− 𝑦) = 𝜀 (𝑊𝑥−𝑊𝑦) . (B.25)

Define 𝑆 : 𝐵 → R𝑛 by

𝑆 (𝑥) =
𝑇 (𝑥)− 𝜀𝑊𝑥

1− 𝜀
∀𝑥 ∈ 𝐵. (B.26)

By definition of 𝑆 and since 𝑊 ∈ 𝒲 and 𝑇 is normalized and translation invariant, it

is immediate to see that 𝑆 (𝑘𝑒) = 𝑘𝑒 for all 𝑘 ∈ 𝐼 and that 𝑆 is translation invariant.

Since (B.25) holds and 𝜀 ∈ (0, 1), routine computations yield that 𝑆 is monotone.

Since 𝑆 is normalized and monotone, then 𝑆 (𝐵) ⊆ 𝐵, that is, 𝑆 is a selfmap and, in

particular, 𝑆 is a robust opinion aggregator. By rearranging (B.26), (B.23) follows.

(ii) implies (i). Consider 𝑖 ∈ 𝑁 . Since 𝑊 is a stochastic matrix, there exists 𝑗 ∈ 𝑁

such that 𝑤𝑖𝑗 > 0. Let 𝑥 ∈ 𝐵 and ℎ > 0 be such that 𝑥 + ℎ𝑒𝑗 ∈ 𝐵. By (B.23) and

since 𝑆 is monotone, we have that 𝑇𝑖 (𝑥+ ℎ𝑒𝑗)−𝑇𝑖 (𝑥) = 𝜀𝑤𝑖𝑗ℎ+(1− 𝜀)𝑆𝑖 (𝑥+ ℎ𝑒𝑗)−

(1− 𝜀)𝑆𝑖 (𝑥) ≥ 𝜀𝑤𝑖𝑗ℎ, proving that 𝑗 strongly influences 𝑖 and 𝑎𝑖𝑗 = 1. It follows that

the 𝑖-th row of 𝐴 (𝑇 ) is not null. Since 𝑖 was arbitrarily chosen, the statement follows.

Finally, by (B.24), note that 𝑊 in (ii) can be chosen to be such that 𝐴 (𝑊 ) =

𝐴 (𝑇 ). ■

Point 1 of Theorem 8 builds on two assumptions: i) the matrix of strong ties 𝐴 (𝑇 )

has no null row; ii) each closed group of 𝐴 (𝑇 ) is aperiodic. The first assumption

allows for a decomposition of 𝑇 into a convex linear combination of a linear opinion

aggregator with matrix𝑊 and a robust opinion aggregator 𝑆 (cf. Proposition 19). We

next show that if 𝑊 takes a very particular form, which we dub partition matrix, then

𝑇 is asymptotically regular and, in particular, convergent (Lemma 23 and Proposition

20 below). The second assumption yields that 𝑊 can be always chosen such that 𝑊 𝑡

eventually “contains” a partition matrix. This will prove point 1 of Theorem 8.

Definition 29. Let 𝐽 : 𝐵 → 𝐵 be an opinion aggregator. We say that 𝐽 is a

partition operator/matrix if and only if there exists a family of disjoint nonempty
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subsets
{︁
�̂�𝑙

}︁𝑚

𝑙=1
of 𝑁 such that ∪𝑚

𝑙=1�̂�𝑙 = 𝑁 and for each 𝑙 ∈ {1, ...,𝑚} there exists

𝑘𝑙 ∈ �̂�𝑙 such that 𝐽𝑖 (𝑥) = 𝑥𝑘𝑙 for all 𝑖 ∈ �̂�𝑙.

Note that a partition operator is linear. With a small abuse of notation, we will

denote the matrix and the operator by the same symbol.

Lemma 23. Let 𝑇 be a robust opinion aggregator such that 𝑇 = 𝜀𝐽+(1− 𝜀)𝑆 where

𝜀 ∈ (0, 1), 𝐽 is a partition operator, and 𝑆 : 𝐵 → 𝐵 is a robust opinion aggregator.

Let 𝐶 be a nonempty subset of 𝐵 such that there exists 𝑘 > 0 satisfying

‖𝑇 (𝑥)− 𝑥‖∞ < 𝑘 ∀𝑥 ∈ 𝐶. (B.27)

If there exists 𝛿 > 0 such that for each 𝑡 ∈ N0 there exists 𝑥 ∈ 𝐶 satisfying

⃦⃦
𝑇 𝑡+1 (𝑥)− 𝑇 𝑡 (𝑥)

⃦⃦
∞ ≥ 𝛿, (B.28)

then {𝑇 𝑡 (𝑥) : 𝑥 ∈ 𝐶 and 𝑡 ∈ N0} is unbounded.

Proposition 20. Let 𝑇 be a robust opinion aggregator. If 𝑇 is such that 𝑇 =

𝜀𝐽 + (1− 𝜀)𝑆 where 𝜀 ∈ (0, 1), 𝐽 is a partition operator, and 𝑆 is a robust opin-

ion aggregator, then 𝑇 is asymptotically regular and, in particular, convergent.

Proof. Fix 𝑥 ∈ 𝐵. In Lemma 23, set 𝐶 = {𝑥}. Clearly, there exists 𝑘 > 0 that

satisfies ‖𝑇 (𝑥)− 𝑥‖∞ < 𝑘. By point 2 of Lemma 19 and since 𝑇 is a robust opinion

aggregator, it follows that {𝑇 𝑡 (𝑥)}𝑡∈N0
is bounded. By Lemma 23, we have that for

each 𝛿 > 0 there exists 𝑡 ∈ N0 such that

⃦⃦⃦
𝑇 𝑡+1 (𝑥)− 𝑇 𝑡 (𝑥)

⃦⃦⃦
∞
< 𝛿. (B.29)

Since 𝑇 is nonexpansive, {‖𝑇 𝑡+1 (𝑥)− 𝑇 𝑡 (𝑥)‖∞}𝑡∈N0
is a decreasing sequence. By

(B.29) and since {‖𝑇 𝑡+1 (𝑥)− 𝑇 𝑡 (𝑥)‖∞}𝑡∈N0
is a decreasing sequence, we have that

for each 𝛿 > 0 there exists 𝑡 ∈ N such that ‖𝑇 𝑡+1 (𝑥)− 𝑇 𝑡 (𝑥)‖∞ < 𝛿 for all 𝑡 ≥ 𝑡,

that is, lim𝑡 ‖𝑇 𝑡+1 (𝑥)− 𝑇 𝑡 (𝑥)‖∞ = 0. Since 𝑥 was arbitrarily chosen, it follows that

𝑇 is asymptotically regular. By Lemma 22, this implies that 𝑇 is convergent. ■
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Lemma 24 below shows that if 𝐴 (𝑇 ) is aperiodic and nontrivial, then there exists

𝑡 ∈ N such that 𝑇 𝑡 = 𝛾𝐽 + (1− 𝛾)𝑆 (resp. 𝑇 𝑡+1 = 𝛾𝐽 + (1− 𝛾)𝑆) where 𝐽 is a

partition operator, 𝛾 ∈ (0, 1), and 𝑆 is a robust opinion aggregator. The operator

𝐽 only depends on 𝐴 (𝑇 ) while 𝛾 and 𝑆 both depend on 𝑡 (resp. 𝑡 + 1). In turn,

Proposition 20 yields that 𝑇 𝑡 and 𝑇 𝑡+1 are convergent. This will be sufficient to

imply the convergence of 𝑇 .

Lemma 24. Let 𝑇 be a robust opinion aggregator. If 𝐴 (𝑇 ) is aperiodic and nontriv-

ial, then there exists 𝑡 ∈ N such that 𝑇 𝑡 and 𝑇 𝑡+1 are convergent.

Proof. By Proposition 19 and since 𝐴 (𝑇 ) is nontrivial, we have that there exists

𝑊 ∈ 𝒲 , 𝜀 ∈ (0, 1), and a robust opinion aggregator 𝑆 : 𝐵 → 𝐵 such that

𝑇 (𝑥) = 𝜀𝑊𝑥+ (1− 𝜀)𝑆 (𝑥) ∀𝑥 ∈ 𝐵. (B.30)

Moreover, 𝑊 can be chosen to be such that 𝐴 (𝑊 ) = 𝐴 (𝑇 ). By Theorems 2 and 3 of

Golub and Jackson (2010) and since 𝐴 (𝑇 ) is aperiodic, this implies that there exist

𝑡 ∈ N and a partition
{︁
�̂�𝑙

}︁𝑚

𝑙=1
of 𝑁 such that for each 𝑙 ∈ {1, ...,𝑚} there exists

𝑘𝑙 ∈ �̂�𝑙 satisfying 𝑤(𝑡)
𝑖𝑘𝑙
, 𝑤

(𝑡+1)
𝑖𝑘𝑙

> 0 for all 𝑖 ∈ �̂�𝑙.23 It follows that

𝑊 𝑡 = 𝛿𝑡𝐽 + (1− 𝛿𝑡) �̃�𝑡 and 𝑊 𝑡+1 = 𝛿𝑡+1𝐽 + (1− 𝛿𝑡+1) �̃�𝑡+1 (B.31)

where 𝛿𝑡, 𝛿𝑡+1 ∈ (0, 1), 𝐽 is a partition operator/matrix,24 and �̃�𝑡 as well as �̃�𝑡+1 are

stochastic matrices. By (B.30) and induction, we also have that 𝑇 𝑡 (𝑥) = 𝜀𝑡𝑊 𝑡𝑥 +(︀
1− 𝜀𝑡

)︀
𝑆𝑡 (𝑥) and 𝑇 𝑡+1 (𝑥) = 𝜀𝑡+1𝑊 𝑡+1𝑥 +

(︀
1− 𝜀𝑡+1

)︀
𝑆𝑡+1 (𝑥) for all 𝑥 ∈ 𝐵, where

𝑆𝑡 and 𝑆𝑡+1 are robust opinion aggregators. By (B.31), it follows that 𝑇 𝑡 = 𝛾𝑡𝐽 +

(1− 𝛾𝑡)𝑆𝑡 and 𝑇 𝑡+1 = 𝛾𝑡+1𝐽 + (1− 𝛾𝑡+1)𝑆𝑡+1 where 𝛾𝑡 = 𝜀𝑡𝛿𝑡 (resp. 𝛾𝑡+1 = 𝜀𝑡+1𝛿𝑡+1)

and 𝑆𝑡 (𝑥) =
𝜀𝑡(1−𝛿𝑡)

1−𝜀𝑡𝛿𝑡
�̃�𝑡𝑥+

1−𝜀𝑡

1−𝜀𝑡𝛿𝑡
𝑆𝑡 (𝑥) (resp. 𝑆𝑡+1 (𝑥) =

𝜀𝑡+1(1−𝛿𝑡+1)
1−𝜀𝑡+1𝛿𝑡+1

�̃�𝑡+1𝑥+
1−𝜀𝑡+1

1−𝜀𝑡+1𝛿𝑡+1
𝑆𝑡+1 (𝑥))

for all 𝑥 ∈ 𝐵. It follows that 𝛾𝑡, 𝛾𝑡+1 ∈ (0, 1) and 𝑆𝑡 as well as 𝑆𝑡+1 are robust opinion

23As usual, we denote by 𝑤(𝑡)
𝑖𝑘𝑙

(resp. 𝑤(𝑡+1)
𝑖𝑘𝑙

) the entry in the 𝑖-th row and 𝑘𝑙-th column of the matrix
𝑊 𝑡 (resp. 𝑊 𝑡+1).

24That is, 𝐽𝑖 (𝑥) = 𝑥𝑘𝑙
for all 𝑖 ∈ �̂�𝑙 and for all 𝑙 ∈ {1, ...,𝑚} where

{︁
�̂�𝑙

}︁𝑚

𝑙=1
and {𝑘𝑙}𝑚𝑙=1 have been

defined above.
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aggregators. By Proposition 20, this implies that 𝑇 𝑡 and 𝑇 𝑡+1 are convergent. ■

We next present two results which are instrumental to prove point 2 of Theorem 8.

To this end, we focus on the network of weak ties 𝐴 (𝑇 ). Assume that
{︀
𝐶[𝑟]

}︀
𝑟∈{0,...,𝑑−1}

is a family of disjoint nonempty subsets of 𝑁 such that ∪𝑑−1
𝑟=0𝐶[𝑟] = 𝑁 with 𝑑 ≥ 1.

Given
{︀
𝑥[𝑟]
}︀
𝑟∈{0,...,𝑑−1} ⊆ 𝐵, we denote by 𝑥 =

∑︀𝑑−1
𝑟=0 𝑥

[𝑟]1𝐶[𝑟]
∈ 𝐵 the vector whose

𝑖-th generic component is such that 𝑥𝑖 = 𝑥
[𝑟′]
𝑖 when 𝑖 ∈ 𝐶[𝑟′] and 𝐶[𝑟′] is the only

element in
{︀
𝐶[𝑟]

}︀
𝑟∈{0,...,𝑑−1} containing 𝑖.

Lemma 25. Let 𝑇 be an opinion aggregator and
{︀
𝐶[𝑟]

}︀
𝑟∈{0,...,𝑑−1} a family of disjoint

nonempty subsets of 𝑁 such that ∪𝑑−1
𝑟=0𝐶[𝑟] = 𝑁 with 𝑑 ≥ 1. If 𝑇 is normalized and

monotone, then 𝐴 (𝑇 ) is nontrivial. Moreover, if �̄� ∈ 𝑁 and {𝑗 ∈ 𝑁 : �̄��̄�𝑗 = 1} ⊆ 𝐶[𝑟�̄�]

for some 𝑟�̄� ∈ {0, ..., 𝑑− 1}, then

𝑥 =
𝑑−1∑︁
𝑟=0

𝑥[𝑟]1𝐶[𝑟]
=⇒ 𝑇�̄� (𝑥) = 𝑇�̄�

(︀
𝑥[𝑟�̄�]
)︀
. (B.32)

Proposition 21. Let 𝑇 be a robust opinion aggregator such that 𝑁 is strongly con-

nected under 𝐴 (𝑇 ). If 𝑇 is convergent, then the network of weak ties 𝐴 (𝑇 ) is aperi-

odic and nontrivial.

Proof. By Lemma 25 and since 𝑇 is normalized and monotone, 𝐴 (𝑇 ) is nontrivial.

By contradiction, assume that 𝐴 (𝑇 ) is not aperiodic, that is, there exists a closed

group 𝑀 which is not aperiodic under 𝐴 (𝑇 ). Since 𝑁 is strongly connected under

𝐴 (𝑇 ), we have that 𝑁 is the only closed group, yielding that the greatest common

divisor of the lengths of the simple cycles in 𝑁 is 𝑑 ≥ 2. For each 𝑖 ∈ 𝑁 define

�̄�𝑖 = {𝑗 ∈ 𝑁 : �̄�𝑖𝑗 = 1}. It follows that there exists a partition of 𝑁 in cyclic classes{︀
𝐶[𝑟]

}︀
𝑟∈{0,...,𝑑−1} such that ∪𝑖∈𝐶[𝑟]

�̄�𝑖 ⊆ 𝐶[𝑟]⊕[1] for all 𝑟 ∈ {0, ..., 𝑑− 1} where [𝑟] are

the elements of Z𝑑 and ⊕ is the standard sum in Z𝑑. Since 𝐼 has nonempty interior,

there exist 𝑎, 𝑏 ∈ 𝐼 such that 𝑎 > 𝑏. Define the vector 𝑥 ∈ 𝐵 to be such that

𝑥 =
∑︀𝑑−1

𝑟=0

(︀
𝑘[𝑟]𝑒

)︀
1𝐶[𝑟]

, where 𝑘[0] = 𝑎 and 𝑘[𝑟] = 𝑏 for all 𝑟 ∈ {1, ..., 𝑑− 1}. By Lemma
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25 and induction and since ∪𝑖∈𝐶[𝑟]
�̄�𝑖 ⊆ 𝐶[𝑟]⊕[1] for all 𝑟 ∈ {0, ..., 𝑑− 1}, we have that

𝑇 𝑡 (𝑥) =
𝑑−1∑︁
𝑟=0

(︀
𝑘[𝑟]⊕𝑡[1]𝑒

)︀
1𝐶[𝑟]

∀𝑡 ∈ N.

This implies that ‖𝑇 𝑡+1 (𝑥)− 𝑇 𝑡 (𝑥)‖∞ ≥ 𝑎− 𝑏 > 0 for all 𝑡 ∈ N, a contradiction with

Lemma 22 and 𝑇 being convergent. ■

Proof of Theorem 8. 1. We adopt the usual convention 𝑇 0 (𝑥) = 𝑥 for all 𝑥 ∈ 𝐵.

By Lemma 24 and since 𝐴 (𝑇 ) is aperiodic and nontrivial, there exists 𝑡 ∈ N such that

𝑇 𝑡 and 𝑇 𝑡+1 are convergent. We next show that this implies that 𝑇 is convergent.

Fix 𝑥 ∈ 𝐵. Since 𝑇 𝑡 is convergent, we can conclude that lim𝑘 𝑇
𝑘𝑡 (𝑥) exists. Denote

�̄� = lim𝑘 𝑇
𝑘𝑡 (𝑥). Since 𝑇 is continuous and so is 𝑇 𝑡, it is plain that 𝑇 𝑡 (�̄�) = �̄�. This

implies that

𝑇 𝑡 (𝑇 𝑠 (�̄�)) = 𝑇 𝑡+𝑠 (�̄�) = 𝑇 𝑠+𝑡 (�̄�) = 𝑇 𝑠
(︁
𝑇 𝑡 (�̄�)

)︁
= 𝑇 𝑠 (�̄�) ∀𝑠 ∈ N0.

By induction on 𝑘, this yields that for each 𝑠 ∈ N0

𝑇 (𝑘+1)𝑡 (𝑇 𝑠 (�̄�)) = 𝑇 𝑘𝑡
(︁
𝑇 𝑡 (𝑇 𝑠 (�̄�))

)︁
= 𝑇 𝑘𝑡 (𝑇 𝑠 (�̄�)) = 𝑇 𝑠 (�̄�) ∀𝑘 ∈ N.

In particular, by setting 𝑘 = 𝑠, we obtain that for each 𝑠 ∈ N

𝑇 𝑠(𝑡+1) (�̄�) = 𝑇 𝑠𝑡 (𝑇 𝑠 (�̄�)) = 𝑇 𝑠 (�̄�) . (B.33)

Since 𝑇 𝑡+1 is convergent, we have that lim𝑠 𝑇
𝑠(𝑡+1) (�̄�) exists. By (B.33), this implies

that lim𝑠 𝑇
𝑠 (�̄�) exists. Denote �̂� = lim𝑠 𝑇

𝑠 (�̄�). Since 𝑇 is continuous, it is plain that

𝑇 (�̂�) = �̂�. Since
{︀
𝑇 𝑘𝑡 (�̄�)

}︀
𝑘∈N ⊆ {𝑇 𝑠 (�̄�)}𝑠∈N and 𝑇 𝑘𝑡 (�̄�) = �̄� for all 𝑘 ∈ N, we have

that

�̄� = lim
𝑘
𝑇 𝑘𝑡 (�̄�) = lim

𝑠
𝑇 𝑠 (�̄�) = �̂� and 𝑇 (�̂�) = �̂�. (B.34)

We can now prove that {𝑇 𝑡 (𝑥)}𝑡∈N converges too. By (B.34) and since 𝑇 is nonex-
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pansive, we have that

⃦⃦
�̄�− 𝑇 𝑡+1 (𝑥)

⃦⃦
∞ =

⃦⃦
𝑇 (�̄�)− 𝑇

(︀
𝑇 𝑡 (𝑥)

)︀⃦⃦
∞ ≤

⃦⃦
�̄�− 𝑇 𝑡 (𝑥)

⃦⃦
∞ ∀𝑡 ∈ N,

yielding that {‖�̄�− 𝑇 𝑡 (𝑥)‖∞}𝑡∈N is a decreasing sequence. Moreover, since �̄� =

lim𝑘 𝑇
𝑘𝑡 (𝑥), we have that the subsequence

{︀⃦⃦
�̄�− 𝑇 𝑘𝑡 (𝑥)

⃦⃦
∞

}︀
𝑘∈N ⊆ {‖�̄�− 𝑇 𝑡 (𝑥)‖∞}𝑡∈N

converges to 0. This implies that lim𝑡 𝑇
𝑡 (𝑥) = �̄�. Since 𝑥 was arbitrarily chosen, the

statement follows.

2. By Lemma 25 and since 𝑇 is normalized and monotone, 𝐴 (𝑇 ) is nontrivial.

Next, we consider a family of disjoint subsets
{︁
�̂�𝑙

}︁𝑚+1

𝑙=1
of 𝑁 such that ∪𝑚+1

𝑙=1 �̂�𝑙 = 𝑁

where 𝑚 ≥ 1 and the first 𝑚 sets are nonempty. We choose the first 𝑚 elements of{︁
�̂�𝑙

}︁𝑚+1

𝑙=1
to be the classes (the partition) of essential indexes of 𝐴 (𝑇 ) and we collect

all the possible inessential indexes of 𝐴 (𝑇 ) in �̂�𝑚+1. If 𝑙 ∈ {1, ...,𝑚}, then �̂�𝑙 is

closed and strongly connected and �̄�𝑖𝑗 = 0 for all 𝑖 ∈ �̂�𝑙 and for all 𝑗 ∈ �̂� 𝑐
𝑙 . The

set �̂�𝑚+1 might be empty. If 𝑚 = 1 and �̂�𝑚+1 = ∅, then 𝑁 is strongly connected

under 𝐴 (𝑇 ). In this case, by Proposition 21, 𝐴 (𝑇 ) is aperiodic. Assume that either

𝑚 > 1 or 𝑚 = 1 and �̂�𝑚+1 ̸= ∅. By contradiction, assume that 𝐴 (𝑇 ) is not aperiodic.

This implies that there exists a closed group 𝑀 which is not aperiodic under 𝐴 (𝑇 ).

It is immediate to see that there exists 𝑙 ∈ {1, ...,𝑚} such that �̂�𝑙 ⊆ 𝑀 . Since �̂�𝑙

has (simple) cycles and the simple cycles of �̂�𝑙 are simple cycles of 𝑀 and 𝑀 is not

aperiodic, the greatest common divisor of the lengths of the cycles of �̂�𝑙 is greater

than the one of the cycles of 𝑀 and, in particular, ≥ 2. Set �̂�𝑙 = {𝑖1, ..., 𝑖𝑟}. Clearly,

𝑟 ≥ 2. We introduce two maps 𝑃 : R𝑟 → R𝑛 and 𝜋 : R𝑛 → R𝑟. The first is defined

by 𝑥 = 𝑃 (�̃�) where 𝑥𝑖 = minℎ∈{1,...,𝑟} �̃�ℎ if 𝑖 ̸∈ �̂�𝑙 and 𝑥𝑖ℎ = �̃�ℎ for all ℎ ∈ {1, ..., 𝑟}.

The second one is defined by �̃� = 𝜋 (𝑥) where �̃�ℎ = 𝑥𝑖ℎ for all ℎ ∈ {1, ..., 𝑟}. It

is immediate to check that 𝑃 (𝜋 (𝑧)) = 𝑧1�̂�𝑙
+
(︀
minℎ∈{1,...,𝑟} 𝑧𝑖ℎ𝑒

)︀
1�̂�𝑐

𝑙
for all 𝑧 ∈ R𝑛.

Note that 𝑃
(︁
�̃�
)︁
⊆ 𝐵 and 𝜋 (𝐵) ⊆ �̃� where �̃� = 𝐼𝑟. Next, we define 𝑆 : �̃� → �̃� by

𝑆 (�̃�) = 𝜋 (𝑇 (𝑃 (�̃�))) for all �̃� ∈ �̃�. It is routine to check that 𝑆 is a robust opinion

aggregator. Moreover, by construction and since �̂�𝑙 is strongly connected and not

aperiodic, we also have that the restricted set of agents �̃� = {1, ..., 𝑟} is strongly
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connected and not aperiodic under 𝐴 (𝑆). Note that 𝑆𝑡 (�̃�) = 𝜋 (𝑇 𝑡 (𝑃 (�̃�))) for all

�̃� ∈ �̃�. Indeed, by Lemma 25 and induction and since �̄�𝑖𝑗 = 0 for all 𝑖 ∈ �̂�𝑙 and for

all 𝑗 ∈ �̂� 𝑐
𝑙 , we have that for each 𝑡 ∈ N and for each �̃� ∈ �̃�

𝑆𝑡+1 (�̃�) = 𝜋
(︀
𝑇
(︀
𝑃
(︀
𝜋
(︀
𝑇 𝑡 (𝑃 (�̃�))

)︀)︀)︀)︀
= 𝜋

(︂
𝑇

(︂
𝑇 𝑡 (𝑃 (�̃�)) 1�̂�𝑙

+

(︂
min

ℎ∈{1,...,𝑟}
𝑇 𝑡
𝑖ℎ
(𝑃 (�̃�)) 𝑒

)︂
1�̂�𝑐

𝑙

)︂)︂
= 𝜋

(︀
𝑇
(︀
𝑇 𝑡 (𝑃 (�̃�))

)︀)︀
= 𝜋

(︀
𝑇 𝑡+1 (𝑃 (�̃�))

)︀
.

Since 𝑇 is convergent and 𝜋 is continuous, this implies that 𝑆 is convergent. By

Proposition 21 and since 𝑆 is a convergent robust opinion aggregator such that �̃� is

strongly connected under 𝐴 (𝑆), this is a contradiction with �̃� not being aperiodic.■

Proof of Corollary 4. Since 𝑇 is self-influential, it follows that each row of 𝐴 (𝑇 )

is not null, yielding that 𝐴 (𝑇 ) is nontrivial. Moreover, since there is a simple cycle

of length 1 from 𝑖 to 𝑖 for all 𝑖 ∈ 𝑁 , each closed group is aperiodic. By Theorem 8,

the statement follows. ■

In order to prove Proposition 15, we begin by making two simple observations

about convergence and fixed points of the opinion aggregator 𝑇 : i) convergence is

always toward a fixed point of 𝑇 ; ii) simple properties on the network 𝐴 (𝑇 ) yield

that those fixed points are constant vectors. We denote by 𝐸 (𝑇 ) the set of fixed

points/equilibria of 𝑇 . Recall that 𝐷 is the consensus subset, that is, 𝑥 ∈ 𝐷 ⊆ 𝐵 if

and only if 𝑥𝑖 = 𝑥𝑗 for all 𝑖, 𝑗 ∈ 𝑁 .

Proposition 22. Let 𝑇 be a robust opinion aggregator. If 𝐴 (𝑇 ) is nontrivial, has a

unique strongly connected and closed group 𝑀 , and 𝑀 is aperiodic under 𝐴 (𝑇 ), then

𝐸 (𝑇 ) = 𝐷.

Proof of Proposition 15. 1. Since 𝐴 (𝑇 ) is nontrivial, has a unique strongly

connected and closed group 𝑀 , and 𝑀 is aperiodic under 𝐴 (𝑇 ), we have that any

other closed group 𝑀 ′ is a superset of 𝑀 , yielding that 𝑀 ′ is aperiodic under 𝐴 (𝑇 ).

By Theorem 8 and Proposition 22 and since standard convergence implies Cesaro

convergence and 𝑇 is continuous, it is immediate to see that 𝑇 is convergent and
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𝑇 (𝑥) = lim𝑡 𝑇
𝑡 (𝑥) ∈ 𝐸 (𝑇 ) = 𝐷 for all 𝑥 ∈ 𝐵, proving the statement.

2. Consider the same family of disjoint subsets
{︁
�̂�𝑙

}︁𝑚+1

𝑙=1
of 𝑁 , as in the proof

of point 2 of Theorem 8. Recall that if 𝑙 ∈ {1, ...,𝑚}, then �̂�𝑙 is closed and strongly

connected and �̄�𝑖𝑗 = 0 for all 𝑖 ∈ �̂�𝑙 and for all 𝑗 ∈ �̂� 𝑐
𝑙 . Recall also that �̂�𝑚+1 might

be empty. By Theorem 8 and since 𝑇 is convergent (to consensus), 𝐴 (𝑇 ) is aperiodic

and nontrivial. By contradiction and since 𝐴 (𝑇 ) is nontrivial and each closed group

is aperiodic under 𝐴 (𝑇 ), assume that 𝑇 does not have a unique strongly connected

and closed group. Since 𝐴 (𝑇 ) is nontrivial, this implies that there are at least two

distinct strongly connected and closed groups and, in particular, 𝑚 ≥ 2. Since 𝐼 has

nonempty interior, consider 𝑎, 𝑏 ∈ 𝐼 such that 𝑎 > 𝑏. Consider a vector 𝑥 ∈ 𝐵 such

that 𝑥𝑖 = 𝑎 for all 𝑖 ∈ �̂�1, 𝑥𝑖 = 𝑏 for all 𝑖 ∈ �̂�𝑙 and for all 𝑙 ∈ {2, ...,𝑚}. Since 𝑇 is

convergent, define �̄� = lim𝑡 𝑇
𝑡 (𝑥). By Lemma 25 and induction and since �̄�𝑖𝑗 = 0 for

all 𝑖 ∈ �̂�𝑙, for all 𝑗 ∈ �̂� 𝑐
𝑙 , and for all 𝑙 ∈ {1, ...,𝑚}, we have that

𝑇 𝑡
𝑖 (𝑥) = 𝑥𝑖 ∀𝑖 ∈ �̂�𝑙,∀𝑙 ∈ {1, ...,𝑚} ,∀𝑡 ∈ N,

proving that �̄�𝑖 = 𝑥𝑖 for all 𝑖 ∈ �̂�𝑙 and for all 𝑙 ∈ {1, ...,𝑚}. Since 𝑎 ̸= 𝑏, we have

that �̄� is not a constant vector, a contradiction with convergence to consensus. ■

B.9 Appendix: vox populi, vox Dei?

All the missing proofs are in the Supplementary Appendix (see Section B.11.2).

Proof of Theorem 9. Given 𝑛 ∈ N, for notational convenience, we define �̂� = 𝐼𝑛.

We first make a few observations. Since the random variables {𝑋𝑖 (𝑛)}𝑖∈𝑁,𝑛∈N are

uniformly bounded and 𝑇𝑖 (𝑛) is continuous for all 𝑖 ∈ 𝑁 and for all 𝑛 ∈ N, it follows

that 𝜔 ↦→ 𝑇𝑖 (𝑛) (𝑋1 (𝑛) (𝜔) , ..., 𝑋𝑛 (𝑛) (𝜔)) is integrable for all 𝑖 ∈ 𝑁 and for all

𝑛 ∈ N.

Fix 𝑛 ∈ N and 𝑖 ∈ 𝑁 . By Rademacher’s Theorem and since 𝑇 (𝑛) is nonexpansive,

this implies that 𝑇 (𝑛) is almost everywhere differentiable. Let 𝒟
(︀
𝑇 (𝑛)

)︀
⊆ �̂� be the

subset of �̂� where 𝑇 (𝑛) is differentiable. Clearly, 𝑇𝑖 (𝑛) is differentiable on 𝒟
(︀
𝑇 (𝑛)

)︀
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and, in particular, Clarke differentiable. Since 𝑇𝑖 (𝑛) is monotone and translation

invariant, note that ∇𝑇𝑖 (𝑛) (𝑥) ∈ ∆𝑛 for all 𝑥 ∈ 𝒟
(︀
𝑇 (𝑛)

)︀
. Consider �̄� ∈ �̂�. Recall

that Clarke’s differential is the set:

𝜕𝑇𝑖 (𝑛) (�̄�) = co
{︁
𝑝 ∈ ∆𝑛 : 𝑝 = lim

𝑘
∇𝑇𝑖 (𝑛)

(︀
𝑥𝑘
)︀

s.t. 𝑥𝑘 → �̄� and 𝑥𝑘 ∈ 𝒟
(︀
𝑇 (𝑛)

)︀}︁
.

(B.35)

By Definition 25 and (B.35) and since 𝑖 and 𝑛 were arbitrarily chosen, note that

0 ≤ 𝑠𝑖𝑗 (𝑇 (𝑛)) ≤ 𝑝𝑗 ≤ 𝑠𝑖𝑗 (𝑇 (𝑛)) ∀𝑖, 𝑗 ∈ 𝑁,∀𝑝 ∈ 𝜕𝑇𝑖 (𝑛) (𝑥) ,∀𝑥 ∈ �̂�, ∀𝑛 ∈ N.

(B.36)

1. We start the proof of point 1 with an ancillary claim.

Claim. For each 𝑖, 𝑗 ∈ 𝑁 and for each 𝑛 ∈ N

sup
{(𝑥,𝑡)∈�̂�×R:𝑥+𝑡𝑒𝑗∈�̂�}

⃒⃒
𝑇𝑖 (𝑛)

(︀
𝑥+ 𝑡𝑒𝑗

)︀
− 𝑇𝑖 (𝑛) (𝑥)

⃒⃒
≤ ℓ𝑠𝑖𝑗 (𝑇 (𝑛)) .

Proof of the Claim. Fix 𝑖 ∈ 𝑁 and 𝑛 ∈ N and consider 𝑗 ∈ 𝑁 , 𝑥 ∈ �̂�, and 𝑡 ∈ R such

that 𝑥 + 𝑡𝑒𝑗 ∈ �̂�. Define 𝑦 = 𝑥 + 𝑡𝑒𝑗. By Lebourg’s Mean Value Theorem, we have

that there exist 𝜆 ∈ (0, 1) and 𝑝 ∈ 𝜕𝑇𝑖 (𝑛) (𝑧) where 𝑧 = 𝜆𝑦+(1− 𝜆)𝑥 ∈ �̂� such that

𝑇𝑖 (𝑛)
(︀
𝑥+ 𝑡𝑒𝑗

)︀
− 𝑇𝑖 (𝑛) (𝑥) = 𝑇𝑖 (𝑛) (𝑦)− 𝑇𝑖 (𝑛) (𝑥) =

𝑛∑︁
𝑙=1

𝑝𝑙 (𝑦𝑙 − 𝑥𝑙) .

By (B.36), this implies that

⃒⃒
𝑇𝑖 (𝑛)

(︀
𝑥+ 𝑡𝑒𝑗

)︀
− 𝑇𝑖 (𝑛) (𝑥)

⃒⃒
= |𝑝𝑗 (𝑦𝑗 − 𝑥𝑗)| = 𝑝𝑗 |𝑦𝑗 − 𝑥𝑗| ≤ ℓ𝑝𝑗 ≤ ℓ𝑠𝑖𝑗 (𝑇 (𝑛)) .

Since 𝑥 and 𝑡 were arbitrarily chosen, it follows that

sup
{(𝑥,𝑡)∈�̂�×R:𝑥+𝑡𝑒𝑗∈�̂�}

⃒⃒
𝑇𝑖 (𝑛)

(︀
𝑥+ 𝑡𝑒𝑗

)︀
− 𝑇𝑖 (𝑛) (𝑥)

⃒⃒
≤ ℓ𝑠𝑖𝑗 (𝑇 (𝑛)) .

Since 𝑖, 𝑛, and 𝑗 were also arbitrarily chosen, the statement follows. □

Consider now 𝑛 ∈ N and 𝑖 ∈ 𝑁 . By McDiarmid’s inequality as well as the previous
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claim, we can conclude that for each 𝛿 > 0

𝑃
(︁{︁
𝜔 ∈ Ω :

⃒⃒
𝑇𝑖 (𝑛) (𝑋1 (𝑛) (𝜔) , ..., 𝑋𝑛 (𝑛) (𝜔))− E

(︀
𝑇𝑖 (𝑛) (𝑋1 (𝑛) , ..., 𝑋𝑛 (𝑛))

)︀⃒⃒2 ≥ 𝛿
}︁)︁

= 𝑃
(︁{︁
𝜔 ∈ Ω :

⃒⃒
𝑇𝑖 (𝑛) (𝑋1 (𝑛) (𝜔) , ..., 𝑋𝑛 (𝑛) (𝜔))− E

(︀
𝑇𝑖 (𝑛) (𝑋1 (𝑛) , ..., 𝑋𝑛 (𝑛))

)︀⃒⃒
≥

√
𝛿
}︁)︁

≤ 2 exp

(︃
− 2𝛿∑︀𝑛

𝑗=1 (ℓ𝑠𝑖𝑗 (𝑇 (𝑛)))2

)︃
= 2 exp

(︃
− 2𝛿

ℓ2
∑︀𝑛

𝑗=1 𝑠𝑖𝑗 (𝑇 (𝑛))2

)︃
.

Next, since 𝑖 and 𝑛 were arbitrarily chosen, observe that

Var
(︀
𝑇𝑖 (𝑛) (𝑋1 (𝑛) , ..., 𝑋𝑛 (𝑛))

)︀
= E

(︁(︀
𝑇𝑖 (𝑛) (𝑋1 (𝑛) , ..., 𝑋𝑛 (𝑛))− E

(︀
𝑇𝑖 (𝑛) (𝑋1 (𝑛) , ..., 𝑋𝑛 (𝑛))

)︀)︀2)︁
=

∫︁ ∞

0

𝑃
(︁{︁
𝜔 ∈ Ω :

(︀
𝑇𝑖 (𝑛) (𝑋1 (𝑛) (𝜔) , ..., 𝑋𝑛 (𝑛) (𝜔))− E

(︀
𝑇𝑖 (𝑛) (𝑋1 (𝑛) , ..., 𝑋𝑛 (𝑛))

)︀)︀2 ≥ 𝑡
}︁)︁

𝑑𝑡

=

∫︁ ℓ2

0

𝑃
(︁{︁
𝜔 ∈ Ω :

⃒⃒
𝑇𝑖 (𝑛) (𝑋1 (𝑛) (𝜔) , ..., 𝑋𝑛 (𝑛) (𝜔))− E

(︀
𝑇𝑖 (𝑛) (𝑋1 (𝑛) , ..., 𝑋𝑛 (𝑛))

)︀⃒⃒2 ≥ 𝑡
}︁)︁

𝑑𝑡

≤
∫︁ ℓ2

0

2 exp

(︃
− 2𝑡

ℓ2
∑︀𝑛

𝑗=1 𝑠𝑖𝑗 (𝑇 (𝑛))2

)︃
𝑑𝑡

= ℓ2

(︃
𝑛∑︁

𝑗=1

𝑠𝑖𝑗 (𝑇 (𝑛))2
)︃[︃

1− exp

(︃
− 2∑︀𝑛

𝑗=1 𝑠𝑖𝑗 (𝑇 (𝑛))2

)︃]︃
∀𝑖 ∈ 𝑁, ∀𝑛 ∈ N.

If we consider 𝜄 ∈ N and 𝑛 ≥ 𝜄, this implies that Var
(︀
𝑇𝜄 (𝑛) (𝑋1 (𝑛) , ..., 𝑋𝑛 (𝑛))

)︀
→ 0,

proving (B.16).

For the second statement of point 1, assume that {𝜀𝑖 (𝑛)}𝑖∈𝑁,𝑛∈N is symmetric and

that {𝑇 (𝑛)}𝑛∈N is odd. It is enough to show that 𝑇𝑖 (𝑛) is an unbiased estimator of

𝜇 for all 𝑖 ∈ 𝑁 and for all 𝑛 ∈ N. By Theorem 7 as well as points 3 and 4 of Lemma

21 and since 𝐼 = R and 𝑇 (𝑛) is an odd robust opinion aggregator for all 𝑛 ∈ N, we

have that 𝑇 (𝑛) is a well-defined odd robust opinion aggregator for all 𝑛 ∈ N. Since

𝑇 (𝑛) is odd for all 𝑛 ∈ N and {𝜀𝑖 (𝑛)}𝑖∈𝑁,𝑛∈N is symmetric, this implies that for each

𝑖 ∈ 𝑁 and for each 𝑛 ∈ N

∫︁
Ω

𝑇𝑖 (𝑛) (𝜀1 (𝑛) , ..., 𝜀𝑛 (𝑛)) 𝑑𝑃 =

∫︁
Ω

𝑇𝑖 (𝑛) (−𝜀1 (𝑛) , ...,−𝜀𝑛 (𝑛)) 𝑑𝑃 = −
∫︁
Ω

𝑇𝑖 (𝑛) (𝜀1 (𝑛) , ..., 𝜀𝑛 (𝑛)) 𝑑𝑃.
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It follows that 2
∫︀
Ω
𝑇𝑖 (𝑛) (𝜀1 (𝑛) , ..., 𝜀𝑛 (𝑛)) 𝑑𝑃 = 0 for all 𝑖 ∈ 𝑁 and for all 𝑛 ∈ N.

Since 𝑇 (𝑛) is translation invariant, we can conclude that for each 𝑖 ∈ 𝑁 and for each

𝑛 ∈ N

E
(︀
𝑇𝑖 (𝑛) (𝑋1 (𝑛) , ..., 𝑋𝑛 (𝑛))

)︀
=

∫︁
Ω

𝑇𝑖 (𝑛) (𝑋1 (𝑛) , ..., 𝑋𝑛 (𝑛)) 𝑑𝑃

=

∫︁
Ω

𝑇𝑖 (𝑛) (𝜇+ 𝜀1 (𝑛) , ..., 𝜇+ 𝜀𝑛 (𝑛)) 𝑑𝑃 = 𝜇+

∫︁
Ω

𝑇𝑖 (𝑛) (𝜀1 (𝑛) , ..., 𝜀𝑛 (𝑛)) 𝑑𝑃 = 𝜇,

proving that 𝑇𝑖 (𝑛) is an unbiased estimator of 𝜇 and thus concluding the proof of

point 1.

2. Fix 𝑛 ∈ N and 𝑖, 𝑗 ∈ 𝑁 . Consider 𝑥, 𝑦 ∈ �̂� such that 𝑥 ≥ 𝑦. By Lebourg’s Mean

Value Theorem and (B.36), we have that there exist 𝜆 ∈ (0, 1) and 𝑝 ∈ 𝜕𝑇𝑖 (𝑛) (𝑧)

where 𝑧 = 𝜆𝑥 + (1− 𝜆) 𝑦 ∈ �̂� such that 𝑇𝑖 (𝑛) (𝑥) − 𝑇𝑖 (𝑛) (𝑦) =
∑︀𝑛

𝑙=1 𝑝𝑙 (𝑥𝑙 − 𝑦𝑙) ≥

𝑝𝑗 (𝑥𝑗 − 𝑦𝑗) ≥ 𝑠𝑖𝑗 (𝑇 (𝑛)) (𝑥𝑗 − 𝑦𝑗). Since 𝑥 and 𝑦 were arbitrarily chosen, we have

that

𝑇𝑖 (𝑛) (𝑥)− 𝑇𝑖 (𝑛) (𝑦) ≥ 𝑠𝑖𝑗 (𝑇 (𝑛)) (𝑥𝑗 − 𝑦𝑗) ∀𝑥, 𝑦 ∈ �̂� s.t. 𝑥 ≥ 𝑦. (B.37)

By definition and since 𝑇 (𝑛) is a robust opinion aggregator, we have that 𝑠𝑖𝑗 (𝑇 (𝑛)) ∈

[0, 1]. If 𝑠𝑖𝑗 (𝑇 (𝑛)) < 1, define𝑅𝑖𝑗 (𝑛) : �̂� → R by𝑅𝑖𝑗 (𝑛) (𝑥) =
(︀
𝑇𝑖 (𝑛) (𝑥)− 𝑠𝑖𝑗 (𝑇 (𝑛))𝑥𝑗

)︀
/
(︀
1− 𝑠𝑖𝑗 (𝑇 (𝑛))

)︀
for all 𝑥 ∈ �̂�. By (B.37), it is immediate to see that 𝑅𝑖𝑗 (𝑛) is monotone and

𝑇𝑖 (𝑛) (𝑥) = 𝑠𝑖𝑗 (𝑇 (𝑛))𝑥𝑗 +
(︀
1− 𝑠𝑖𝑗 (𝑇 (𝑛))

)︀
𝑅𝑖𝑗 (𝑛) (𝑥) ∀𝑥 ∈ �̂�. (B.38)

If 𝑠𝑖𝑗 (𝑇 (𝑛)) = 1, then 𝑇𝑖 (𝑛) (𝑥) = 𝑥𝑗 for all 𝑥 ∈ �̂� and we can choose 𝑅𝑖𝑗 (𝑛) : �̂� → R

to be any monotone functional and obtain (B.38). Since 𝑛, 𝑖, and 𝑗 were arbitrarily

chosen, it follows that (B.38) holds for all 𝑖, 𝑗 ∈ 𝑁 and for all 𝑛 ∈ N.

By assumption, there exists 𝜄 ∈ N such that 𝛼 = lim sup𝑛max𝑗∈𝑁 𝑠𝜄𝑗 (𝑇 (𝑛)) /2 >

0. It follows that there exist a subsequence {𝑇 (𝑛𝑚)}𝑚∈N and a sequence {𝑗𝑚}𝑚∈N ⊆ N

such that 𝑠𝜄𝑗𝑚 (𝑇 (𝑛𝑚)) ≥ 𝛼 and 𝑗𝑚 ≤ 𝑛𝑚 for all 𝑚 ∈ N. Fix 𝑚 ∈ N. By (B.38)

and Harris’ inequality and since {𝑋𝑖 (𝑛𝑚)}𝑖∈𝑁 is a collection of independent random
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variables, we have that

Var
(︀
𝑇𝜄 (𝑛𝑚) (𝑋1 (𝑛𝑚) , ..., 𝑋𝑛𝑚 (𝑛𝑚))

)︀
=
(︀
1− 𝑠𝜄𝑗𝑚 (𝑇 (𝑛𝑚))

)︀2
Var (𝑅𝜄𝑗𝑚 (𝑛𝑚) (𝑋1 (𝑛𝑚) , ..., 𝑋𝑛𝑚 (𝑛𝑚))) + 𝑠𝜄𝑗𝑚 (𝑇 (𝑛𝑚))

2Var (𝑋𝑗𝑚 (𝑛𝑚))

+ 2
(︀
1− 𝑠𝜄𝑗𝑚 (𝑇 (𝑛𝑚))

)︀
𝑠𝜄𝑗𝑚 (𝑇 (𝑛𝑚)) Cov (𝑅𝜄𝑗𝑚 (𝑛𝑚) (𝑋1 (𝑛𝑚) , ..., 𝑋𝑛𝑚 (𝑛𝑚)) , 𝑋𝑗𝑚 (𝑛𝑚))

≥ 𝛼2Var (𝑋𝑗𝑚 (𝑛𝑚)) = 𝛼2Var (𝜀𝑗𝑚 (𝑛𝑚)) ≥ 𝛼2𝜎2 > 0.

Since 𝑚 was arbitrarily chosen, we can conclude that {𝑇 (𝑛)}𝑛∈N does not have van-

ishing variance. Moreover, since {𝑋𝑖 (𝑛)}𝑖∈𝑁,𝑛∈N is an array of uniformly bounded

random variables, so is the array
{︀
𝑇𝑖 (𝑛) (𝑋1 (𝑛) , ..., 𝑋𝑛 (𝑛))

}︀
𝑖∈𝑁,𝑛∈N. This implies

that 𝑇𝜄 (𝑛) (𝑋1 (𝑛) , ..., 𝑋𝑛 (𝑛)) cannot converge in probability to a constant (other-

wise, {𝑇 (𝑛)}𝑛∈N would have vanishing variance), proving that {𝑇 (𝑛)}𝑛∈N is not wise.

■

B.10 Appendix: discussion

All the missing proofs are in the Supplementary Appendix (see Section B.11.3). Given

the profile of loss functions 𝜑 = (𝜑𝑖)
𝑛
𝑖=1, define T𝜑 : 𝐵 ⇒ 𝐵 as

T𝜑 (𝑥) =
𝑛∏︁

𝑖=1

argmin𝑐∈R 𝜑𝑖 (𝑥− 𝑐𝑒) ∀𝑥 ∈ 𝐵. (B.39)

The next two ancillary lemmas are instrumental in showing that T𝜑 is well defined

and behaved.

Lemma 26. Let 𝜑 be a profile of loss functions. If 𝜑 ∈ Φ𝑅, then for each 𝑖 ∈ 𝑁 and

𝑧 ∈ R𝑛

𝑧 ≫ 0 =⇒ 𝜑𝑖 (𝑧) > 𝜑𝑖

(︂
𝑧 −min

𝑗∈𝑁
𝑧𝑗𝑒

)︂
,

and

0 ≫ 𝑧 =⇒ 𝜑𝑖 (𝑧) > 𝜑𝑖

(︂
𝑧 −max

𝑗∈𝑁
𝑧𝑗𝑒

)︂
.

235



Lemma 27. Let 𝜑 be a profile of loss functions. If 𝜑 ∈ Φ𝑅, then for each 𝑖 ∈ 𝑁 and

for each 𝑥 ∈ R𝑛 the function 𝑓𝑖,𝑥 : R → R+, defined by 𝑓𝑖,𝑥 (𝑐) = 𝜑𝑖 (𝑥− 𝑐𝑒) for all

𝑐 ∈ R, is continuous and convex. Moreover, if 𝜑 has strictly increasing shifts, then

𝑓𝑖,𝑥 is strictly convex for all 𝑖 ∈ 𝑁 and for all 𝑥 ∈ R𝑛.

To prove (i) implies (ii) of Theorem 10, we prove a more general result, namely,

that the solution correspondence (B.39) of problem (B.19), always admits a selection

which is a robust opinion aggregator.

Proposition 23. Let 𝜑 be a profile of loss functions. If 𝜑 ∈ Φ𝑅, then the cor-

respondence T𝜑 is well defined and admits a selection 𝑇 𝜑 which is a robust opinion

aggregator. Moreover, if 𝜑 has strictly increasing shifts, then T𝜑 = 𝑇 𝜑 is single-valued

and, in particular, is a robust opinion aggregator.

Proof. Fix 𝑖 ∈ 𝑁 . We begin by considering the correspondence T𝜑
𝑖 : 𝐵 ⇒ 𝐼 defined

by T𝜑
𝑖 (𝑥) = argmin𝑐∈R 𝜑𝑖 (𝑥− 𝑐𝑒) for all 𝑥 ∈ 𝐵. We next show that T𝜑

𝑖 is well defined,

nonempty-, convex-, and compact-valued, and such that for each 𝑥, 𝑦 ∈ 𝐵

𝑥 ≥ 𝑦 =⇒ T𝜑
𝑖 (𝑥) ≥SSO T𝜑

𝑖 (𝑦) (B.40)

where ≥SSO is the strong set order. Fix 𝑥 ∈ 𝐵. We next show that

∀𝑑 ̸∈
[︂
min
𝑗∈𝑁

𝑥𝑗,max
𝑗∈𝑁

𝑥𝑗

]︂
,∃𝑐 ∈

[︂
min
𝑗∈𝑁

𝑥𝑗,max
𝑗∈𝑁

𝑥𝑗

]︂
s.t. 𝜑𝑖 (𝑥− 𝑐𝑒) < 𝜑𝑖 (𝑥− 𝑑𝑒) . (B.41)

Consider 𝑑 as above. We have two cases either 𝑑 < min𝑗∈𝑁 𝑥𝑗 or 𝑑 > max𝑗∈𝑁 𝑥𝑗.

In the first case, we have that 𝑥 − 𝑑𝑒 ≫ 0, in the second case, we have that

0 ≫ 𝑥 − 𝑑𝑒. By Lemma 26 and since 𝜑 ∈ Φ𝑅, if we set 𝑐 = min𝑗∈𝑁 𝑥𝑗 − 𝑑 (resp.

max𝑗∈𝑁 𝑥𝑗 −𝑑), we obtain that 𝜑𝑖 (𝑥− 𝑑𝑒) > 𝜑𝑖 (𝑥− 𝑑𝑒− 𝑐𝑒) = 𝜑𝑖 (𝑥− 𝑐𝑒) where 𝑐 =

min𝑗∈𝑁 𝑥𝑗 ∈ [min𝑗∈𝑁 𝑥𝑗,max𝑗∈𝑁 𝑥𝑗] (resp. 𝑐 = max𝑗∈𝑁 𝑥𝑗 ∈ [min𝑗∈𝑁 𝑥𝑗,max𝑗∈𝑁 𝑥𝑗]),

proving (B.41). By (B.41), we can conclude that

min
𝑐∈R

𝜑𝑖 (𝑥− 𝑐𝑒) = min
𝑐∈𝐼

𝜑𝑖 (𝑥− 𝑐𝑒) = min
𝑐∈[min𝑗∈𝑁 𝑥𝑗 ,max𝑗∈𝑁 𝑥𝑗]

𝜑𝑖 (𝑥− 𝑐𝑒) (B.42)
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as well as argmin𝑐∈R 𝜑𝑖 (𝑥− 𝑐𝑒) = argmin𝑐∈𝐼 𝜑𝑖 (𝑥− 𝑐𝑒) = argmin𝑐∈[min𝑗∈𝑁 𝑥𝑗 ,max𝑗∈𝑁 𝑥𝑗] 𝜑𝑖 (𝑥− 𝑐𝑒).

By Weierstrass’ Theorem and since, by Lemma 27, the map 𝑐 ↦→ 𝜑𝑖 (𝑥− 𝑐𝑒) is contin-

uous and convex, it follows that the above minimization problems admit solution and

each argmin is a compact and convex set. Since 𝑥 was arbitrarily chosen, this implies

that T𝜑
𝑖 is well defined, nonempty-, convex-, and compact-valued and, in particular,

∅ ≠ T𝜑
𝑖 (𝑥) ⊆

[︂
min
𝑗∈𝑁

𝑥𝑗,max
𝑗∈𝑁

𝑥𝑗

]︂
⊆ 𝐼 ∀𝑥 ∈ 𝐵. (B.43)

We next prove (B.40). In order to do so, we rewrite explicitly (B.42) as a problem of

parametric optimization/monotone comparative statics. Next, define 𝑓 : 𝐼 × 𝐵 → R

by 𝑓 (𝑐, 𝑥) = −𝜑𝑖 (𝑥− 𝑐𝑒) for all (𝑐, 𝑥) ∈ 𝐼 ×𝐵. It is immediate to see that T𝜑
𝑖 (𝑥) =

argmax𝑐∈𝐼 𝑓 (𝑐, 𝑥) for all 𝑥 ∈ 𝐵. We next show that 𝑓 has increasing differences in

(𝑐, 𝑥). Consider 𝑥, 𝑦 ∈ 𝐵 as well as 𝑐, 𝑑 ∈ 𝐼 such that 𝑐 ≥ 𝑑 and 𝑥 ≥ 𝑦. Define

𝑧 = 𝑥− 𝑐𝑒, 𝑣 = 𝑦− 𝑐𝑒, and ℎ = 𝑐− 𝑑. Note that 𝑧 ≥ 𝑣 and ℎ ∈ R+. Since 𝜑 ∈ Φ𝑅, it

follows that

𝑓 (𝑐, 𝑥)− 𝑓 (𝑑, 𝑥) = 𝜑𝑖 (𝑥− 𝑑𝑒)− 𝜑𝑖 (𝑥− 𝑐𝑒) = 𝜑𝑖 (𝑧 + ℎ𝑒)− 𝜑𝑖 (𝑧)

≥ 𝜑𝑖 (𝑣 + ℎ𝑒)− 𝜑𝑖 (𝑣) = 𝜑𝑖 (𝑦 − 𝑑𝑒)− 𝜑𝑖 (𝑦 − 𝑐𝑒) = 𝑓 (𝑐, 𝑦)− 𝑓 (𝑑, 𝑦) .

This shows that 𝑓 satisfies the property of increasing differences in (𝑐, 𝑥). By Milgrom

and Shannon (1994), T𝜑
𝑖 satisfies (B.40). We finally show that T𝜑

𝑖 is such that for

each 𝑥 ∈ 𝐵 and for each 𝑘 ∈ R such that 𝑥+ 𝑘𝑒 ∈ 𝐵

𝑐⋆ ∈ T𝜑
𝑖 (𝑥) ⇐⇒ 𝑐⋆ + 𝑘 ∈ T𝜑

𝑖 (𝑥+ 𝑘𝑒) . (B.44)

Fix 𝑥 ∈ 𝐵. Consider 𝑘 ∈ R such that 𝑥 + 𝑘𝑒 ∈ 𝐵. Consider 𝑐⋆ ∈ T𝜑
𝑖 (𝑥). By

definition, it follows that 𝜑𝑖 (𝑥− 𝑐⋆𝑒) ≤ 𝜑𝑖 (𝑥− 𝑐𝑒) for all 𝑐 ∈ R. This implies that

𝜑𝑖 (𝑥+ 𝑘𝑒− (𝑐⋆ + 𝑘) 𝑒) = 𝜑𝑖 (𝑥− 𝑐⋆𝑒) ≤ 𝜑𝑖 (𝑥− (𝑑− 𝑘) 𝑒) = 𝜑𝑖 (𝑥+ 𝑘𝑒− 𝑑𝑒) for all

𝑑 ∈ R. By definition of T𝜑
𝑖 , this implies that 𝑐⋆ + 𝑘 ∈ T𝜑

𝑖 (𝑥+ 𝑘𝑒). Vice versa,

if 𝑐⋆ + 𝑘 ∈ T𝜑
𝑖 (𝑥+ 𝑘𝑒), then 𝜑𝑖 (𝑥+ 𝑘𝑒− (𝑐⋆ + 𝑘) 𝑒) ≤ 𝜑𝑖 (𝑥+ 𝑘𝑒− 𝑑𝑒) for all 𝑑 ∈

R, yielding that 𝜑𝑖 (𝑥− 𝑐⋆𝑒) = 𝜑𝑖 (𝑥+ 𝑘𝑒− (𝑐⋆ + 𝑘) 𝑒) ≤ 𝜑𝑖 (𝑥− 𝑐𝑒) for all 𝑐 ∈ R,
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proving that 𝑐⋆ ∈ T𝜑
𝑖 (𝑥).

To sum up, since 𝑖 ∈ 𝑁 was arbitrarily chosen, we proved that, for each 𝑖 ∈ 𝑁 ,

T𝜑
𝑖 is well defined, nonempty-, convex-, and compact-valued, and satisfies (B.40)

as well as (B.44). Observe also that T𝜑 : 𝐵 ⇒ 𝐵 is the product correspondence

T𝜑=
∏︀𝑛

𝑖=1 T
𝜑
𝑖 . We are ready to show that T𝜑 admits a selection 𝑇 𝜑 which is a robust

opinion aggregator. Define 𝑇 𝜑 : 𝐵 → 𝐵 to be such that 𝑇 𝜑
𝑖 (𝑥) = minT𝜑

𝑖 (𝑥) for all

𝑥 ∈ 𝐵, and for all 𝑖 ∈ 𝑁 . Since T𝜑
𝑖 (𝑥) is nonempty and compact for all 𝑥 ∈ 𝐵 and

for all 𝑖 ∈ 𝑁 , it follows that 𝑇 𝜑
𝑖 (𝑥) is well defined and, in particular, 𝑇 𝜑

𝑖 (𝑥) ∈ T𝜑
𝑖 (𝑥)

for all 𝑥 ∈ 𝐵 and for all 𝑖 ∈ 𝑁 , proving that 𝑇 𝜑 is a selection of T𝜑. By (B.43), it

follows that T𝜑
𝑖 (𝑘𝑒) = {𝑘} for all 𝑘 ∈ 𝐼 and for all 𝑖 ∈ 𝑁 , proving that 𝑇 𝜑

𝑖 (𝑘𝑒) = 𝑘

for all 𝑘 ∈ 𝐼 and for all 𝑖 ∈ 𝑁 , that is, that 𝑇 𝜑 is normalized. Next, consider 𝑥, 𝑦 ∈ 𝐵

such that 𝑥 ≥ 𝑦. By (B.40), we have that 𝑇 𝜑
𝑖 (𝑥) ≥ 𝑇 𝜑

𝑖 (𝑦) for all 𝑖 ∈ 𝑁 , proving

monotonicity of 𝑇 𝜑
𝑖 for all 𝑖 ∈ 𝑁 and so of 𝑇 𝜑. Finally, consider 𝑥 ∈ 𝐵 and 𝑘 ∈ R

such that 𝑥 + 𝑘𝑒 ∈ 𝐵. By (B.44) and definition of 𝑇 𝜑
𝑖 (𝑥) as well as 𝑇 𝜑

𝑖 (𝑥+ 𝑘𝑒), we

have that 𝑇 𝜑
𝑖 (𝑥) ∈ T𝜑

𝑖 (𝑥) for all 𝑖 ∈ 𝑁 , yielding that 𝑇 𝜑
𝑖 (𝑥) + 𝑘 ∈ T𝜑

𝑖 (𝑥+ 𝑘𝑒) for all

𝑖 ∈ 𝑁 and, in particular, 𝑇 𝜑
𝑖 (𝑥) + 𝑘 ≥ 𝑇 𝜑

𝑖 (𝑥+ 𝑘𝑒) for all 𝑖 ∈ 𝑁 . This implies that

𝑇 𝜑
𝑖 (𝑥+ 𝑘𝑒) = 𝑇 𝜑

𝑖 (𝑥) + 𝑘 for all 𝑖 ∈ 𝑁 , proving translation invariance.25

Finally, by Lemma 27, if 𝜑 has strictly increasing shifts, then the map 𝑐 ↦→

𝜑𝑖 (𝑥− 𝑐𝑒) is strictly convex, yielding that each T𝜑
𝑖 is single-valued and so is T𝜑.

■

Proof of Theorem 10. (i) implies (ii). By Proposition 23 and since 𝜑 ∈ Φ𝑅 and

has strictly increasing shifts, the implication follows.

(ii) implies (i). Let 𝑇 : 𝐵 → 𝐵 be a robust opinion aggregator. By point 1

of Lemma 19, there exists an extension from R𝑛 to R𝑛. With a small abuse of

notation, we denote it by the same symbol 𝑇 . Fix 𝑖 ∈ 𝑁 . Define 𝜑𝑇
𝑖 : R𝑛 → R+ by

𝜑𝑇
𝑖 (𝑧) = (𝑇𝑖 (𝑧))

2 for all 𝑧 ∈ R𝑛. Next, consider ℎ ∈ R∖ {0}. Since 𝑇 is normalized,

it follows that 𝜑𝑇
𝑖 (ℎ𝑒) = (𝑇𝑖 (ℎ𝑒))

2 = ℎ2 > 0 = (𝑇𝑖 (0))
2 = 𝜑𝑇

𝑖 (0). Since 𝑖 and ℎ were

25Fix 𝑖 ∈ 𝑁 . By the previous part of the proof, for each 𝑥 ∈ 𝐵 and for each 𝑘 ∈ R such that
𝑥+𝑘𝑒 ∈ 𝐵, we have that 𝑇𝜑

𝑖 (𝑥+ 𝑘𝑒) ≤ 𝑇𝜑
𝑖 (𝑥)+𝑘. Next, note that if 𝑥 ∈ 𝐵 and 𝑥+𝑘𝑒 ∈ 𝐵, then

(𝑥+ 𝑘𝑒)− 𝑘𝑒 = 𝑥 ∈ 𝐵. It follows that 𝑇𝜑
𝑖 (𝑥) = 𝑇𝜑

𝑖 ((𝑥+ 𝑘𝑒)− 𝑘𝑒) ≤ 𝑇𝜑
𝑖 (𝑥+ 𝑘𝑒)− 𝑘, proving the

opposite inequality.
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arbitrarily chosen, this implies that 𝜑 =
(︀
𝜑𝑇
𝑖

)︀𝑛
𝑖=1

is sensitive. Since 𝑇 is translation

invariant, we have that

𝜑𝑇
𝑖 (𝑧 + ℎ𝑒) = (𝑇𝑖 (𝑧 + ℎ𝑒))2 = (𝑇𝑖 (𝑧) + ℎ)2 = (𝑇𝑖 (𝑧))

2+2ℎ𝑇𝑖 (𝑧)+ℎ
2 ∀ℎ ∈ R,∀𝑧 ∈ R𝑛.

(B.45)

Consider 𝑧, 𝑣 ∈ R𝑛 and ℎ ∈ R++. By (B.45) and since 𝑇 is monotone, we can conclude

that

𝑧 ≥ 𝑣 =⇒ 𝜑𝑇
𝑖 (𝑧 + ℎ𝑒)−𝜑𝑇

𝑖 (𝑧) = 2ℎ𝑇𝑖 (𝑧)+ℎ
2 ≥ 2ℎ𝑇𝑖 (𝑣)+ℎ

2 = 𝜑𝑇
𝑖 (𝑣 + ℎ𝑒)−𝜑𝑇

𝑖 (𝑣) .

Since 𝑖 was arbitrarily chosen, it follows that 𝜑 =
(︀
𝜑𝑇
𝑖

)︀𝑛
𝑖=1

has increasing shifts

and, in particular, 𝜑 ∈ Φ𝑅. Next, consider 𝑧, 𝑣 ∈ R𝑛 such that 𝑧 ≫ 𝑣. Set

𝑘 = min𝑗∈𝑁 (𝑧𝑗 − 𝑣𝑗). It follows that 𝑘 > 0 and 𝑧 ≥ 𝑣 + 𝑘𝑒. Since 𝑇 is mono-

tone and translation invariant and 𝑘 > 0, we can conclude that 𝑇 (𝑧) ≥ 𝑇 (𝑣 + 𝑘𝑒) =

𝑇 (𝑣)+𝑘𝑒≫ 𝑇 (𝑣). Since 𝑧, 𝑣 ∈ R𝑛 were arbitrarily chosen, it follows that 𝑧 ≫ 𝑣 =⇒

𝑇 (𝑧) ≫ 𝑇 (𝑣). By (B.45), this implies that if 𝑧, 𝑣 ∈ R𝑛 and ℎ ∈ R++, then

𝑧 ≫ 𝑣 =⇒ 𝜑𝑇
𝑖 (𝑧 + ℎ𝑒)−𝜑𝑇

𝑖 (𝑧) = 2ℎ𝑇𝑖 (𝑧)+ℎ
2 > 2ℎ𝑇𝑖 (𝑣)+ℎ

2 = 𝜑𝑇
𝑖 (𝑣 + ℎ𝑒)−𝜑𝑇

𝑖 (𝑣) .

Since 𝑖 was arbitrarily chosen, it follows that 𝜑 =
(︀
𝜑𝑇
𝑖

)︀𝑛
𝑖=1

has strictly increasing

shifts. We next prove (B.21). By Proposition 23 and since 𝜑 =
(︀
𝜑𝑇
𝑖

)︀𝑛
𝑖=1

∈ Φ𝑅 has

strictly increasing shifts, we have that T𝜑
𝑖 (𝑥) = argmin𝑐∈R 𝜑

𝑇
𝑖 (𝑥− 𝑐𝑒) is well defined

and single-valued for all 𝑥 ∈ 𝐵 and for all 𝑖 ∈ 𝑁 . Finally, fix 𝑖 ∈ 𝑁 and 𝑥 ∈ 𝐵. By

(B.45), we have that 𝜑𝑇
𝑖 (𝑥− 𝑐𝑒) = (𝑇𝑖 (𝑥))

2 − 2𝑐𝑇𝑖 (𝑥) + 𝑐2 for all 𝑐 ∈ R, which, as a

function of 𝑐, is quadratic and minimized at 𝑐 = 𝑇𝑖 (𝑥), proving the statement. ■
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B.11 Supplementary Appendix
In this section, we confine all the missing proofs. They appear in the order in which the corresponding
statements appear in the text, unless they are new ancillary results.

B.11.1 Convergence

Proof of Lemma 19. 1. Since 𝑇 is robust, we have that 𝑇𝑖 : 𝐵 → R is monotone and translation
invariant for all 𝑖 ∈ 𝑁 .26 By Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2014), 𝑇𝑖 is
a niveloid for all 𝑖 ∈ 𝑁 . By Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2014), 𝑇𝑖
admits an extension 𝑆𝑖 : R𝑛 → R which is a niveloid for all 𝑖 ∈ 𝑁 . By Cerreia-Vioglio, Maccheroni,
Marinacci, and Rustichini (2014), 𝑆𝑖 is monotone and translation invariant for all 𝑖 ∈ 𝑁 . Define
𝑆 : R𝑛 → R𝑛 to be such that the 𝑖-th component of 𝑆 (𝑥) is 𝑆𝑖 (𝑥) for all 𝑖 ∈ 𝑁 and for all 𝑥 ∈ R𝑛. It
is immediate to see that 𝑆 is monotone and translation invariant. Fix 𝑘′ ∈ 𝐼. Since 𝑆 is translation
invariant and 𝑇 is normalized, it follows that for each 𝑘 ∈ R

𝑆 (𝑘𝑒) = 𝑆 (𝑘′𝑒+ (𝑘 − 𝑘′) 𝑒) = 𝑆 (𝑘′𝑒) + (𝑘 − 𝑘′) 𝑒 = 𝑇 (𝑘′𝑒) + (𝑘 − 𝑘′) 𝑒 = 𝑘′𝑒+ (𝑘 − 𝑘′) 𝑒 = 𝑘𝑒,

proving that 𝑆 is normalized and, in particular, that 𝑆 is robust.

2. By induction, if 𝑇 is normalized and monotone, then 𝑇 𝑡 is normalized and monotone for
all 𝑡 ∈ N. Consider 𝑥 ∈ 𝐵 and 𝑡 ∈ N. Define 𝑘⋆ = min𝑖∈𝑁 𝑥𝑖 and 𝑘⋆ = max𝑖∈𝑁 𝑥𝑖. Note that
‖𝑥‖∞ = max {|𝑘⋆| , |𝑘⋆|}, 𝑘⋆, 𝑘⋆ ∈ 𝐼, and 𝑘⋆𝑒 ≤ 𝑥 ≤ 𝑘⋆𝑒. Since 𝑇 𝑡 is normalized and monotone, we
have that

𝑘⋆𝑒 = 𝑇 𝑡 (𝑘⋆𝑒) ≤ 𝑇 𝑡 (𝑥) ≤ 𝑇 𝑡 (𝑘⋆𝑒) = 𝑘⋆𝑒,

yielding that |𝑇 𝑡 (𝑥)| ≤ max {|𝑘⋆| , |𝑘⋆|} 𝑒 and ‖𝑇 𝑡 (𝑥)‖∞ ≤ ‖𝑥‖∞. Since 𝑡 and 𝑥 were arbitrarily
chosen, the statement follows. ■

Proof of Lemma 20. Since 𝑇 is a robust opinion aggregator, 𝑇𝑖 is normalized, monotone, and
translation invariant for all 𝑖 ∈ 𝑁 . By Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini
(2014), it follows that 𝑇𝑖 is a niveloid for all 𝑖 ∈ 𝑁 . By Cerreia-Vioglio, Maccheroni, Marinacci, and
Rustichini (2014), it follows that |𝑇𝑖 (𝑥)− 𝑇𝑖 (𝑦)| ≤ ‖𝑥− 𝑦‖∞ for all 𝑥, 𝑦 ∈ 𝐵 and for all 𝑖 ∈ 𝑁 . This
implies that

‖𝑇 (𝑥)− 𝑇 (𝑦)‖∞ = max
𝑖∈𝑁

|𝑇𝑖 (𝑥)− 𝑇𝑖 (𝑦)| ≤ ‖𝑥− 𝑦‖∞ ∀𝑥, 𝑦 ∈ 𝐵,

proving that 𝑇 is nonexpansive.

26With a small abuse of terminology, we use the same name for similar properties that pertain to
functionals and operators.
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By induction, we next show that 𝑇 𝑡 is nonexpansive for all 𝑡 ∈ N. Since we have shown that 𝑇
is nonexpansive, 𝑇 𝑡 is nonexpansive for 𝑡 = 1, proving the initial step. By the induction hypothesis,
assume that 𝑇 𝑡 is nonexpansive, we have that for each 𝑥, 𝑦 ∈ 𝐵

⃦⃦
𝑇 𝑡+1 (𝑥)− 𝑇 𝑡+1 (𝑦)

⃦⃦
∞ =

⃦⃦
𝑇
(︀
𝑇 𝑡 (𝑥)

)︀
− 𝑇

(︀
𝑇 𝑡 (𝑦)

)︀⃦⃦
∞ ≤

⃦⃦
𝑇 𝑡 (𝑥)− 𝑇 𝑡 (𝑦)

⃦⃦
∞ ≤ ‖𝑥− 𝑦‖ ,

proving the inductive step. The statement follows by induction. ■

Proof of Lemma 21. Let 𝑥 ∈ 𝐵. Since 𝑇 is a selfmap, we have that {𝑇 𝑡 (𝑥)}𝑡∈N ⊆ 𝐵. Since 𝐵 is
convex, we have that 1

𝜏

∑︀𝜏
𝑡=1 𝑇

𝑡 (𝑥) ∈ 𝐵 for all 𝜏 ∈ N. Since 𝑥 was arbitrarily chosen, this implies
that 𝐴𝜏 : 𝐵 → 𝐵, defined by 𝐴𝜏 (𝑥) =

∑︀𝜏
𝑡=1 𝑇

𝑡 (𝑥) /𝜏 for all 𝑥 ∈ 𝐵, is well defined for all 𝜏 ∈ N.
Since 𝐵 is closed, we have that 𝑇 (𝑥) = lim𝜏 𝐴𝜏 (𝑥) = lim𝜏

1
𝜏

∑︀𝜏
𝑡=1 𝑇

𝑡 (𝑥) ∈ 𝐵 for all 𝑥 ∈ 𝐵, proving
that 𝑇 is well defined. So one has

𝐴𝜏 (𝑇 (𝑥)) =
𝜏 + 1

𝜏
𝐴𝜏+1 (𝑥)−

1

𝜏
𝑇 (𝑥) ∀𝑥 ∈ 𝐵, ∀𝜏 ∈ N.

This implies that

𝑇 (𝑇 (𝑥)) = lim
𝜏
𝐴𝜏 (𝑇 (𝑥)) = lim

𝜏

𝜏 + 1

𝜏
lim
𝜏
𝐴𝜏+1 (𝑥)− lim

𝜏

1

𝜏
𝑇 (𝑥) = 𝑇 (𝑥) ∀𝑥 ∈ 𝐵,

proving that 𝑇 ∘ 𝑇 = 𝑇 .

1. By the same inductive argument contained in the proof of Lemma 20, we have that for each
𝑡 ∈ N the map 𝑇 𝑡 : 𝐵 → 𝐵 is nonexpansive. Since the convex linear combination of nonexpansive
maps is nonexpansive, the map 𝐴𝜏 : 𝐵 → 𝐵 is nonexpansive for all 𝜏 ∈ N. We can conclude that
for each 𝑥, 𝑦 ∈ 𝐵

⃦⃦
𝑇 (𝑥)− 𝑇 (𝑦)

⃦⃦
∞ =

⃦⃦⃦
lim
𝜏
𝐴𝜏 (𝑥)− lim

𝜏
𝐴𝜏 (𝑦)

⃦⃦⃦
∞

= lim
𝜏

‖𝐴𝜏 (𝑥)−𝐴𝜏 (𝑦)‖∞ ≤ ‖𝑥− 𝑦‖∞ ,

proving that 𝑇 is nonexpansive. Continuity of 𝑇 trivially follows.

2. By induction, we have that for each 𝑡 ∈ N the map 𝑇 𝑡 : 𝐵 → 𝐵 is normalized and mono-
tone. Since the convex linear combination of normalized and monotone operators is normalized and
monotone, the map 𝐴𝜏 : 𝐵 → 𝐵 is normalized and monotone for all 𝜏 ∈ N. We can conclude that
𝑇 (𝑘𝑒) = lim𝜏 𝐴𝜏 (𝑘𝑒) = 𝑘𝑒 for all 𝑘 ∈ 𝐼 as well as

𝑥 ≥ 𝑦 =⇒ 𝑇 (𝑥) = lim
𝜏
𝐴𝜏 (𝑥) ≥ lim

𝜏
𝐴𝜏 (𝑦) = 𝑇 (𝑦) ,

proving that 𝑇 is normalized and monotone.

3. Since 𝑇 is robust, 𝑇 is normalized, monotone, and translation invariant. By the previous
point, 𝑇 is normalized and monotone. By induction, we have that for each 𝑡 ∈ N the map 𝑇 𝑡 : 𝐵 → 𝐵

is translation invariant. Since the convex linear combination of translation invariant operators is
translation invariant, the map 𝐴𝜏 : 𝐵 → 𝐵 is translation invariant for all 𝜏 ∈ N. We can conclude
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that for each 𝑥 ∈ 𝐵 and for each 𝑘 ∈ R such that 𝑥+ 𝑘𝑒 ∈ 𝐵

𝑇 (𝑥+ 𝑘𝑒) = lim
𝜏
𝐴𝜏 (𝑥+ 𝑘𝑒) = lim

𝜏
[𝐴𝜏 (𝑥) + 𝑘𝑒] = 𝑇 (𝑥) + 𝑘𝑒,

proving that 𝑇 is translation invariant and, in particular, robust.

4. By induction, we have that for each 𝑡 ∈ N the map 𝑇 𝑡 : 𝐵 → 𝐵 is odd. Since the convex
linear combination of odd maps is odd, the map 𝐴𝜏 : 𝐵 → 𝐵 is odd for all 𝜏 ∈ N. We can conclude
that

𝑇 (−𝑥) = lim
𝜏
𝐴𝜏 (−𝑥) = lim

𝜏
[−𝐴𝜏 (𝑥)] = −𝑇 (𝑥) ∀𝑥 ∈ 𝐵,

proving that 𝑇 is odd. ■

In order to prove Lemma 22, we are going to rely upon Lorentz’s Theorem.

Theorem 11 (Lorentz). Let {𝑥𝑡}𝑡∈N ⊆ R𝑛 be a bounded sequence. The following statements are
equivalent:

(i) There exists �̄� ∈ R𝑛 such that

∀𝜀 > 0 ∃𝜏 ∈ N ∀𝑚 ∈ N s.t.

⃦⃦⃦⃦
⃦1𝜏

𝜏∑︁
𝑡=1

𝑥𝑚+𝑡 − �̄�

⃦⃦⃦⃦
⃦
∞

< 𝜀 ∀𝜏 ≥ 𝜏

and lim𝑡

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦
∞ = 0;

(ii) lim𝑡 𝑥
𝑡 = �̄�.

Proof of Lemma 22. By Theorem 7 and since 𝑇 is robust, we have that if �̂� is a bounded subset
of 𝐵, then

lim
𝜏

(︃
sup
𝑥∈�̂�

⃦⃦⃦⃦
⃦1𝜏

𝜏∑︁
𝑡=1

𝑇 𝑡 (𝑥)− 𝑇 (𝑥)

⃦⃦⃦⃦
⃦
∞

)︃
= 0 (B.46)

where 𝑇 : 𝐵 → 𝐵 is a robust opinion aggregator such that 𝑇 ∘ 𝑇 = 𝑇 . Since 𝑇 (𝑇 (𝑥)) = 𝑇 (𝑥) for
all 𝑥 ∈ 𝐵, by induction, we have that 𝑇 (𝑇𝑚 (𝑥)) = 𝑇 (𝑥) for all 𝑚 ∈ N and for all 𝑥 ∈ 𝐵.

(i) implies (ii). Fix 𝑥 ∈ 𝐵. Define the sequence 𝑥𝑡 = 𝑇 𝑡 (𝑥) for all 𝑡 ∈ N. By point 2 of Lemma
19, we have that {𝑥𝑡}𝑡∈N is bounded. Set �̂� = {𝑥𝑡}𝑡∈N. Note that for each 𝜏 ∈ N and for each
𝑚 ∈ N

1

𝜏

𝜏∑︁
𝑡=1

𝑥𝑚+𝑡 =
1

𝜏

𝜏∑︁
𝑡=1

𝑇𝑚+𝑡 (𝑥) =
1

𝜏

𝜏∑︁
𝑡=1

𝑇 𝑡 (𝑇𝑚 (𝑥)) .

Since (B.46) holds, if we define �̄� = 𝑇 (𝑥), then we have that for each 𝑚 ∈ N

lim
𝜏

1

𝜏

𝜏∑︁
𝑡=1

𝑥𝑚+𝑡 = lim
𝜏

1

𝜏

𝜏∑︁
𝑡=1

𝑇 𝑡 (𝑇𝑚 (𝑥)) = 𝑇 (𝑇𝑚 (𝑥)) = 𝑇 (𝑥) = �̄�.
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It follows that

sup
𝑚∈N

⃦⃦⃦⃦
⃦1𝜏

𝜏∑︁
𝑡=1

𝑥𝑚+𝑡 − �̄�

⃦⃦⃦⃦
⃦
∞

= sup
𝑚∈N

⃦⃦⃦⃦
⃦1𝜏

𝜏∑︁
𝑡=1

𝑇 𝑡 (𝑇𝑚 (𝑥))− 𝑇 (𝑇𝑚 (𝑥))

⃦⃦⃦⃦
⃦
∞

≤ sup
𝑥∈�̂�

⃦⃦⃦⃦
⃦1𝜏

𝜏∑︁
𝑡=1

𝑇 𝑡 (𝑥)− 𝑇 (𝑥)

⃦⃦⃦⃦
⃦
∞

.

Since (B.46) holds and 𝑇 is asymptotically regular, we have that {𝑥𝑡}𝑡∈N satisfies point (i) of Theorem
11. By Theorem 11, we have that lim𝑡 𝑇

𝑡 (𝑥) = lim𝑡 𝑥
𝑡 exists. Since 𝑥 was arbitrarily chosen, the

implication follows.

(ii) implies (i). Fix 𝑥 ∈ 𝐵. Define 𝑥𝑡 = 𝑇 𝑡 (𝑥) for all 𝑡 ∈ N. Since 𝑇 is convergent,
we have that {𝑥𝑡}𝑡∈N converges and, in particular, is bounded. By Theorem 11, we have that
lim𝑡

⃦⃦
𝑇 𝑡+1 (𝑥)− 𝑇 𝑡 (𝑥)

⃦⃦
∞ = lim𝑡

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦
∞ = 0. Since 𝑥 was arbitrarily chosen, the implication

follows. ■

Proof of Lemma 23. We first offer two definitions and make two observations. Define the diameter
of {𝑇 𝑡 (𝑥) : 𝑥 ∈ 𝐶 and 𝑡 ∈ N0} by �̄�.27 Given 𝑥 ∈ 𝐵, define 𝑥𝑡 = 𝑇 𝑡 (𝑥) as well as 𝑦𝑡 = 𝑆 (𝑥𝑡) for
all 𝑡 ∈ N0. Since 𝑇 is nonexpansive, recall that

{︀⃦⃦
𝑥𝑡 − 𝑥𝑡−1

⃦⃦
∞

}︀
𝑡∈N is a decreasing sequence for all

𝑥 ∈ 𝐵. Note that this implies that ‖𝑇 (𝑥)− 𝑥‖∞ ≥
⃦⃦
𝑇 𝑡+1 (𝑥)− 𝑇 𝑡 (𝑥)

⃦⃦
∞ for all 𝑡 ∈ N0 and for all

𝑥 ∈ 𝐵, yielding that 𝑘 > 𝛿.

By contradiction, assume that {𝑇 𝑡 (𝑥) : 𝑥 ∈ 𝐶 and 𝑡 ∈ N0} is bounded. This implies that �̄� <

∞. Consider 𝑀 ∈ N∖ {1} and 𝑃 ∈ N to be such that 𝑀𝛿 > �̄�+𝛿+1 and
⌊︀

𝑃
𝑀

⌋︀
> max

{︁
1, 𝑘

(1−𝜀)𝜀𝑀

}︁
.

By (B.28) and since 𝑃 ∈ N, there exists 𝑥 ∈ 𝐶 such that
⃦⃦
𝑥𝑃+1 − 𝑥𝑃

⃦⃦
∞ =

⃦⃦
𝑇𝑃+1 (𝑥)− 𝑇𝑃 (𝑥)

⃦⃦
∞ ≥

𝛿. Now, we list seven useful facts:

1. By (B.27) and since
{︀⃦⃦
𝑥𝑡 − 𝑥𝑡−1

⃦⃦
∞

}︀
𝑡∈N is a decreasing sequence, it follows that 𝑘 ≥

⃦⃦
𝑥𝑖+1 − 𝑥𝑖

⃦⃦
∞ ≥

𝛿 for all 𝑖 ∈ {1, ..., 𝑃}.

2. By definition of {𝑦𝑡}𝑡∈N0
and since 𝑆 is nonexpansive, we have that

⃦⃦
𝑦𝑡 − 𝑦𝑡−1

⃦⃦
∞ ≤

⃦⃦
𝑥𝑡 − 𝑥𝑡−1

⃦⃦
∞

for all 𝑡 ∈ N.

3. By definition of {𝑥𝑡}𝑡∈N0
and since 𝑇 = 𝜀𝐽 + (1− 𝜀)𝑆, we have that 𝑥𝑡 = 𝑇

(︀
𝑥𝑡−1

)︀
=

𝜀𝐽
(︀
𝑥𝑡−1

)︀
+ (1− 𝜀) 𝑦𝑡−1 for all 𝑡 ∈ N, that is,

𝑦𝑡−1 =
1

1− 𝜀
𝑥𝑡 − 𝜀

1− 𝜀
𝐽
(︀
𝑥𝑡−1

)︀
∀𝑡 ∈ N.

By point 2, this yields that
⃦⃦⃦

1
1−𝜀

(︀
𝑥𝑡+1 − 𝑥𝑡

)︀
− 𝜀

1−𝜀

(︀
𝐽 (𝑥𝑡)− 𝐽

(︀
𝑥𝑡−1

)︀)︀⃦⃦⃦
∞

=
⃦⃦
𝑦𝑡 − 𝑦𝑡−1

⃦⃦
∞ ≤⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦
∞ for all 𝑡 ∈ N.

4. Let 𝐿 be an integer in N such that

𝐿 >
𝑘

(1− 𝜀) 𝜀𝑀
. (B.47)

27Recall that the diameter of a subset 𝐴 of 𝐵 is the quantity sup
{︁
‖𝑥− 𝑦‖∞ : 𝑥, 𝑦 ∈ 𝐴

}︁
.
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Define 𝑏𝑚 = 𝛿 +𝑚 (1− 𝜀) 𝜀𝑀 for all 𝑚 ∈ {0, ..., 𝐿}. It follows that the collection of intervals
{[𝑏𝑚, 𝑏𝑚+1]}𝐿−1

𝑚=0 contains 𝐿 elements whose union is a superset of [𝛿, 𝑘].

5. Note that 𝜀𝑀−1 1−𝜀𝑖

𝜀𝑖 = 𝜀𝑀−𝑖−1 − 𝜀𝑀−1 ≤ 𝜀𝑀−𝑖−1 for all 𝑖 ∈ {1, ...,𝑀 − 1}. Since 𝜀 ∈ (0, 1),
this implies that

(1− 𝜀) 𝜀𝑀
𝑀−1∑︁
𝑖=1

1− 𝜀𝑖

𝜀𝑖
≤ (1− 𝜀) 𝜀

𝑀−1∑︁
𝑖=1

𝜀𝑀−𝑖−1 = (1− 𝜀) 𝜀

𝑀−2∑︁
𝑖=0

𝜀𝑖 ≤ (1− 𝜀) 𝜀
1

1− 𝜀
≤ 𝜀 < 1.

6. Let 𝑡 ∈ N, 𝑗 ∈ 𝑁 , and 𝑏, 𝜅, 𝑐 ≥ 0. If 𝑥𝑡+1
𝑗 − 𝑥𝑡𝑗 ≥ 𝑏 − 𝑐 and

⃦⃦
𝑥𝑡 − 𝑥𝑡−1

⃦⃦
∞ ≤ 𝑏 + 𝜅, then (by

point 3): 𝑏−𝑐
1−𝜀 − 𝜀

1−𝜀

(︀
𝑥𝑡𝑘𝑙

− 𝑥𝑡−1
𝑘𝑙

)︀
= 𝑏−𝑐

1−𝜀 − 𝜀
1−𝜀

(︀
𝐽𝑗 (𝑥

𝑡)− 𝐽𝑗
(︀
𝑥𝑡−1

)︀)︀
≤ 𝑏 + 𝜅 where 𝑙 is such

that 𝑗 ∈ �̂�𝑙. This yields that

𝑥𝑡𝑘𝑙
− 𝑥𝑡−1

𝑘𝑙
≥ 𝑏− 𝑐

𝜀
− 1− 𝜀

𝜀
𝜅. (B.48)

7. Let 𝑡 ∈ N, 𝑗 ∈ 𝑁 , and 𝑏, 𝜅, 𝑐 ≥ 0. If 𝑥𝑡𝑗 − 𝑥𝑡+1
𝑗 ≥ 𝑏 − 𝑐 and

⃦⃦
𝑥𝑡 − 𝑥𝑡−1

⃦⃦
∞ ≤ 𝑏 + 𝜅, then (by

point 3): 𝑏−𝑐
1−𝜀 − 𝜀

1−𝜀

(︀
𝑥𝑡−1
𝑘𝑙

− 𝑥𝑡𝑘𝑙

)︀
= 𝑏−𝑐

1−𝜀 − 𝜀
1−𝜀

(︀
𝐽𝑗
(︀
𝑥𝑡−1

)︀
− 𝐽𝑗 (𝑥

𝑡)
)︀
≤ 𝑏 + 𝜅 where 𝑙 is such

that 𝑗 ∈ �̂�𝑙. This yields that

𝑥𝑡−1
𝑘𝑙

− 𝑥𝑡𝑘𝑙
≥ 𝑏− 𝑐

𝜀
− 1− 𝜀

𝜀
𝜅. (B.49)

By definition of 𝑃 , we have that ⌊𝑃/𝑀⌋ satisfies (B.47). By point 4, there exists a collection
of intervals {[𝑏𝑚, 𝑏𝑚+1]}⌊𝑃/𝑀⌋−1

𝑚=0 which covers [𝛿, 𝑘]. By point 1, [𝛿, 𝑘] contains
{︀⃦⃦
𝑥𝑖+1 − 𝑥𝑖

⃦⃦
∞

}︀𝑃
𝑖=1

.
Since we have ⌊𝑃/𝑀⌋ intervals and the first 𝑃 elements (of the sequence

{︀⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦
∞

}︀
𝑡∈N) belong

to these intervals, we have that there exists one of them, 𝐼 = [𝑏�̄�, 𝑏�̄�+1], which contains at least 𝑀
elements of

{︀⃦⃦
𝑥𝑖+1 − 𝑥𝑖

⃦⃦
∞

}︀𝑃
𝑖=1

. Since
{︀⃦⃦
𝑥𝑡 − 𝑥𝑡−1

⃦⃦
∞

}︀
𝑡∈N is decreasing, we have that there exists

𝐾 ∈ N0 such that
⃦⃦
𝑥𝐾+𝑖+1 − 𝑥𝐾+𝑖

⃦⃦
∞ ∈ 𝐼 for all 𝑖 ∈ {1, ...,𝑀}. This implies that there exists 𝑗 ∈

{1, ..., 𝑛} such that
⃒⃒
𝑥𝐾+𝑀+1
𝑗 − 𝑥𝐾+𝑀

𝑗

⃒⃒
≥ 𝑏�̄� and ||𝑥𝐾+𝑀 −𝑥𝐾+𝑀−1||∞ ≤ 𝑏�̄�+1 = 𝑏�̄� +(1− 𝜀) 𝜀𝑀 .

We have two cases:

a. 𝑥𝐾+𝑀+1
𝑗 − 𝑥𝐾+𝑀

𝑗 ≥ 𝑏�̄�. Set 𝑏 = 𝑏�̄�, 𝑐 = 0, and 𝜅 = (1− 𝜀) 𝜀𝑀 . By (B.48), we can conclude
that

𝑥𝐾+𝑀
𝑘𝑙

− 𝑥𝐾+𝑀−1
𝑘𝑙

≥ 𝑏�̄� − (1− 𝜀) 𝜀𝑀
(1− 𝜀)

𝜀
. (B.50)

By (finite) induction, we next prove that

𝑥𝐾+𝑀+1−𝑖
𝑘𝑙

− 𝑥𝐾+𝑀−𝑖
𝑘𝑙

≥ 𝑏�̄� − (1− 𝜀) 𝜀𝑀
(︀
1− 𝜀𝑖

)︀
𝜀𝑖

∀𝑖 ∈ {1, ...,𝑀 − 1} . (B.51)

By (B.50), the statement is true for 𝑖 = 1. Next, we assume it is true for 𝑖 ∈ {1, ...,𝑀 − 1}
and prove it is still true for 𝑖 + 1 when 𝑖 + 1 ∈ {1, ...,𝑀 − 1}. This implies that 𝑖 ≤ 𝑀 − 2.
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Define 𝑡 = 𝐾 +𝑀 − 𝑖. By the induction hypothesis, we have that

𝑥𝑡+1
𝑘𝑙

− 𝑥𝑡𝑘𝑙
= 𝑥𝐾+𝑀+1−𝑖

𝑘𝑙
− 𝑥𝐾+𝑀−𝑖

𝑘𝑙
≥ 𝑏�̄� − (1− 𝜀) 𝜀𝑀

(︀
1− 𝜀𝑖

)︀
𝜀𝑖

.

Moreover, we also have that
⃦⃦
𝑥𝑡 − 𝑥𝑡−1

⃦⃦
∞ =

⃦⃦
𝑥𝐾+𝑀−𝑖 − 𝑥𝐾+𝑀−𝑖−1

⃦⃦
∞ ≤ 𝑏�̄� + (1− 𝜀) 𝜀𝑀 .

Set 𝑏 = 𝑏�̄�, 𝑐 = (1− 𝜀) 𝜀𝑀
(1−𝜀𝑖)

𝜀𝑖 , and 𝜅 = (1− 𝜀) 𝜀𝑀 . By (B.48), we can conclude that

𝑥
𝐾+𝑀+1−(𝑖+1)
𝑘𝑙

− 𝑥
𝐾+𝑀−(𝑖+1)
𝑘𝑙

= 𝑥𝐾+𝑀−𝑖
𝑘𝑙

− 𝑥𝐾+𝑀−𝑖−1
𝑘𝑙

= 𝑥𝑡𝑘𝑙
− 𝑥𝑡−1

𝑘𝑙

≥ 𝑏�̄� − (1− 𝜀) 𝜀𝑀
(︀
1− 𝜀𝑖

)︀
𝜀𝑖

1

𝜀
− 1− 𝜀

𝜀
(1− 𝜀) 𝜀𝑀

= 𝑏�̄� − (1− 𝜀) 𝜀𝑀
(︀
1− 𝜀𝑖+1

)︀
𝜀𝑖+1

,

proving (B.51). By (B.51) and summation as well as point 5, this implies that

𝑥𝐾+𝑀
𝑘𝑙

− 𝑥𝐾+1
𝑘𝑙

≥ (𝑀 − 1) 𝑏�̄� − (1− 𝜀) 𝜀𝑀
𝑀−1∑︁
𝑖=1

1− 𝜀𝑖

𝜀𝑖
≥ (𝑀 − 1) 𝑏�̄� − 1,

that is,
⃦⃦
𝑥𝐾+𝑀 − 𝑥𝐾+1

⃦⃦
∞ ≥ 𝑥𝐾+𝑀

𝑘𝑙
− 𝑥𝐾+1

𝑘𝑙
≥ (𝑀 − 1) 𝑏�̄� − 1. Since 𝑏�̄� ≥ 𝛿 > 0, we have

that (𝑀 − 1) 𝑏�̄� ≥ (𝑀 − 1) 𝛿 > �̄� + 1. We can conclude that �̄� ≥
⃦⃦
𝑥𝐾+𝑀 − 𝑥𝐾+1

⃦⃦
∞ ≥

(𝑀 − 1) 𝑏�̄� − 1 > �̄�, a contradiction.

b. 𝑥𝐾+𝑀
𝑗 − 𝑥𝐾+𝑀+1

𝑗 ≥ 𝑏�̄�. Set 𝑏 = 𝑏�̄�, 𝑐 = 0, and 𝜅 = (1− 𝜀) 𝜀𝑀 . By (B.49), we can conclude
that

𝑥𝐾+𝑀−1
𝑘𝑙

− 𝑥𝐾+𝑀
𝑘𝑙

≥ 𝑏�̄� − (1− 𝜀) 𝜀𝑀
1− 𝜀

𝜀
. (B.52)

By (finite) induction, we next prove that

𝑥𝐾+𝑀−𝑖
𝑘𝑙

− 𝑥𝐾+𝑀+1−𝑖
𝑘𝑙

≥ 𝑏�̄� − (1− 𝜀) 𝜀𝑀
(︀
1− 𝜀𝑖

)︀
𝜀𝑖

∀𝑖 ∈ {1, ...,𝑀 − 1} . (B.53)

By (B.52), the statement is true for 𝑖 = 1. Next, we assume it is true for 𝑖 ∈ {1, ...,𝑀 − 1}
and prove it is still true for 𝑖 + 1 when 𝑖 + 1 ∈ {1, ...,𝑀 − 1}. This implies that 𝑖 ≤ 𝑀 − 2.
Define 𝑡 = 𝐾 +𝑀 − 𝑖. By the induction hypothesis, we have that

𝑥𝑡𝑘𝑙
− 𝑥𝑡+1

𝑘𝑙
= 𝑥𝐾+𝑀−𝑖

𝑘𝑙
− 𝑥𝐾+𝑀+1−𝑖

𝑘𝑙
≥ 𝑏�̄� − (1− 𝜀) 𝜀𝑀

(︀
1− 𝜀𝑖

)︀
𝜀𝑖

.

Moreover, we also have that
⃦⃦
𝑥𝑡 − 𝑥𝑡−1

⃦⃦
∞ =

⃦⃦
𝑥𝐾+𝑀−𝑖 − 𝑥𝐾+𝑀−𝑖−1

⃦⃦
∞ ≤ 𝑏�̄� + (1− 𝜀) 𝜀𝑀 .
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Set 𝑏 = 𝑏�̄�, 𝑐 = (1− 𝜀) 𝜀𝑀
(1−𝜀𝑖)

𝜀𝑖 , and 𝜅 = (1− 𝜀) 𝜀𝑀 . By (B.49), we can conclude that

𝑥
𝐾+𝑀−(𝑖+1)
𝑘𝑙

− 𝑥
𝐾+𝑀+1−(𝑖+1)
𝑘𝑙

= 𝑥𝐾+𝑀−𝑖−1
𝑘𝑙

− 𝑥𝐾+𝑀−𝑖
𝑘𝑙

= 𝑥𝑡−1
𝑘𝑙

− 𝑥𝑡𝑘𝑙

≥ 𝑏�̄� − (1− 𝜀) 𝜀𝑀
(︀
1− 𝜀𝑖

)︀
𝜀𝑖

1

𝜀
− 1− 𝜀

𝜀
(1− 𝜀) 𝜀𝑀

= 𝑏�̄� − (1− 𝜀) 𝜀𝑀
(︀
1− 𝜀𝑖+1

)︀
𝜀𝑖+1

,

proving (B.53). By (B.53) and summation as well as point 5, this implies that

𝑥𝐾+1
𝑘𝑙

− 𝑥𝐾+𝑀
𝑘𝑙

≥ (𝑀 − 1) 𝑏�̄� − (1− 𝜀) 𝜀𝑀
𝑀−1∑︁
𝑖=1

1− 𝜀𝑖

𝜀𝑖
≥ (𝑀 − 1) 𝑏�̄� − 1,

that is,
⃦⃦
𝑥𝐾+1 − 𝑥𝐾+𝑀

⃦⃦
∞ ≥ 𝑥𝐾+1

𝑘𝑙
− 𝑥𝐾+𝑀

𝑘𝑙
≥ (𝑀 − 1) 𝑏�̄� − 1. Since 𝑏�̄� ≥ 𝛿 > 0, we have

that (𝑀 − 1) 𝑏�̄� ≥ (𝑀 − 1) 𝛿 > �̄� + 1. We can conclude that �̄� ≥
⃦⃦
𝑥𝐾+1 − 𝑥𝐾+𝑀

⃦⃦
∞ ≥

(𝑀 − 1) 𝑏�̄� − 1 > �̄�, a contradiction.

Points a and b prove the statement. ■

Proof of Lemma 25. Consider generic 𝑥, 𝑦 ∈ 𝐵 and 𝑙 ∈ 𝑁 . Define 𝑦0 = 𝑦. For each 𝑡 ∈
{1, ..., 𝑛− 1} define 𝑦𝑡 ∈ 𝐵 to be such that 𝑦𝑡𝑖 = 𝑥𝑖 for all 𝑖 ≤ 𝑡 and 𝑦𝑡𝑖 = 𝑦𝑖 for all 𝑖 ≥ 𝑡+ 1. Define
𝑦𝑛 = 𝑥. Note that 𝑦𝑗 − 𝑦𝑗−1 = (𝑥𝑗 − 𝑦𝑗) 𝑒

𝑗 for all 𝑗 ∈ {1, ..., 𝑛}. We also have that

𝑇𝑙 (𝑥)− 𝑇𝑙 (𝑦) = 𝑇𝑙 (𝑦
𝑛)− 𝑇𝑙

(︀
𝑦0
)︀
=

𝑛∑︁
𝑗=1

[︀
𝑇𝑙
(︀
𝑦𝑗
)︀
− 𝑇𝑙

(︀
𝑦𝑗−1

)︀]︀
. (B.54)

Since 𝐼 has nonempty interior, we have that there exist 𝑎, 𝑏 ∈ 𝐼 such that 𝑎 > 𝑏. By contradiction,
assume that 𝐴 (𝑇 ) is not nontrivial, that is, there exists 𝑖 ∈ 𝑁 such that �̄�𝑖𝑗 = 0 for all 𝑗 ∈ 𝑁 , yielding
that 𝑇𝑖

(︀
𝑧 + ℎ𝑒𝑗

)︀
= 𝑇𝑖 (𝑧) for all ℎ ∈ R and for all 𝑧 ∈ 𝐵 such that 𝑧+ℎ𝑒𝑗 ∈ 𝐵. Set 𝑥 = 𝑎𝑒 and 𝑦 = 𝑏𝑒.

By (B.54) and since 𝑇 is normalized, it follows that 0 < 𝑎−𝑏 = 𝑇𝑖 (𝑎𝑒)−𝑇𝑖 (𝑏𝑒) = 0, a contradiction,
proving the first part of the statement. Next, consider �̄� ∈ 𝑁 and define �̄��̄� = {𝑗 ∈ 𝑁 : �̄��̄�𝑗 = 1}. By
assumption, we have that �̄��̄� ⊆ 𝐶[𝑟�̄�]. Let 𝑥 be as in (B.32) and 𝑦 = 𝑥[𝑟�̄�]. By definition of 𝐴 (𝑇 ), it
is immediate to see that �̄��̄�𝑗 = 0 only if 𝑇�̄�

(︀
𝑧 + ℎ𝑒𝑗

)︀
= 𝑇�̄� (𝑧) for all ℎ ∈ R and for all 𝑧 ∈ 𝐵 such

that 𝑧 + ℎ𝑒𝑗 ∈ 𝐵. Consider 𝑗 ∈ {1, ..., 𝑛}. We have two cases: either 𝑗 ∈ �̄��̄� or 𝑗 ̸∈ �̄��̄�. In the first
case, since �̄��̄� ⊆ 𝐶[𝑟�̄�], we have that 𝑦𝑗 − 𝑦𝑗−1 =

(︁
𝑥
[𝑟�̄�]
𝑗 − 𝑥

[𝑟�̄�]
𝑗

)︁
𝑒𝑗 = 0 and 𝑇�̄�

(︀
𝑦𝑗
)︀
− 𝑇�̄�

(︀
𝑦𝑗−1

)︀
= 0.

In the second case, since �̄��̄�𝑗 = 0, we have that 𝑇�̄�
(︀
𝑦𝑗
)︀
= 𝑇�̄�

(︁
𝑦𝑗−1 +

(︁
𝑥𝑗 − 𝑥

[𝑟�̄�]
𝑗

)︁
𝑒𝑗
)︁
= 𝑇�̄�

(︀
𝑦𝑗−1

)︀
,

yielding that 𝑇�̄�
(︀
𝑦𝑗
)︀
− 𝑇�̄�

(︀
𝑦𝑗−1

)︀
= 0. By (B.54), it follows that 𝑇�̄� (𝑥)− 𝑇�̄�

(︀
𝑥[𝑟�̄�]

)︀
= 0. ■

Proof of Proposition 22. By Proposition 19, since 𝐴 (𝑇 ) is nontrivial, there exist 𝑊 ∈ 𝒲 and
𝜀 ∈ (0, 1) such that

𝑇 (𝑥) = 𝜀𝑊𝑥+ (1− 𝜀)𝑆 (𝑥) ∀𝑥 ∈ 𝐵 (B.55)

where 𝑆 : 𝐵 → 𝐵 is a robust opinion aggregator. Moreover, 𝑊 can be chosen to be such that
𝐴 (𝑊 ) = 𝐴 (𝑇 ). By induction and (B.55), we have that if 𝑡 ∈ N, then there exist 𝛾 ∈ (0, 1) and a
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robust opinion aggregator 𝑆 : 𝐵 → 𝐵 (which both depend on 𝑡) such that

𝑇 𝑡 (𝑥) = 𝛾𝑊 𝑡𝑥+ (1− 𝛾)𝑆 (𝑥) ∀𝑥 ∈ 𝐵. (B.56)

As usual, we denote the 𝑖𝑗-th entry of 𝑊 𝑡 by 𝑤(𝑡)
𝑖𝑗 . Since 𝑇 is normalized, observe that 𝐸 (𝑇 ) ⊇ 𝐷.

By induction, if 𝑡 ∈ N, then 𝐷 ⊆ 𝐸 (𝑇 ) ⊆ 𝐸 (𝑇 𝑡). Since 𝐴 (𝑊 ) = 𝐴 (𝑇 ), it follows that 𝐴 (𝑊 ) has
a unique strongly connected and closed group 𝑀 , and 𝑀 is aperiodic under 𝐴 (𝑊 ). By Jackson
(2008), 𝑊 is such that there exist 𝑡 ∈ N and 𝑘 ∈ 𝑁 such that 𝑤(𝑡)

𝑖𝑘 > 0 for all 𝑖 ∈ 𝑁 . Let 𝑆
denote the robust opinion aggregator for 𝑡 in equation (B.56). We next show that 𝐸

(︀
𝑇 𝑡
)︀
= 𝐷. By

contradiction, assume that there exists 𝑥 ∈ 𝐵∖𝐷 such that 𝑇 𝑡 (𝑥) = 𝑥. Define 𝑥𝑖 = min𝑙∈𝑁 𝑥𝑙 and
𝑥𝑗 = max𝑙∈𝑁 𝑥𝑙. It follows that 𝑥𝑗 > 𝑥𝑖 and 𝑖 ̸= 𝑗. We have two cases:

1. 𝑥𝑘 < 𝑥𝑗 . It follows that

0 =
⃦⃦⃦
𝑇 𝑡 (𝑥)− 𝑥

⃦⃦⃦
∞

≥
⃒⃒⃒
𝑇 𝑡
𝑗 (𝑥)− 𝑥𝑗

⃒⃒⃒
=

⃒⃒⃒⃒
⃒𝛾

𝑛∑︁
𝑙=1

𝑤
(𝑡)
𝑗𝑙 𝑥𝑙 + (1− 𝛾)𝑆𝑗 (𝑥)− 𝑥𝑗

⃒⃒⃒⃒
⃒

= 𝛾

𝑛∑︁
𝑙=1

𝑤
(𝑡)
𝑗𝑙 (𝑥𝑗 − 𝑥𝑙) + (1− 𝛾)

(︁
𝑥𝑗 − 𝑆𝑗 (𝑥)

)︁
≥ 𝛾𝑤

(𝑡)
𝑗𝑘 (𝑥𝑗 − 𝑥𝑘) > 0,

a contradiction.

2. 𝑥𝑘 > 𝑥𝑖. It follows that

0 =
⃦⃦⃦
𝑇 𝑡 (𝑥)− 𝑥

⃦⃦⃦
∞

≥
⃒⃒⃒
𝑇 𝑡
𝑖 (𝑥)− 𝑥𝑖

⃒⃒⃒
=

⃒⃒⃒⃒
⃒𝛾

𝑛∑︁
𝑙=1

𝑤
(𝑡)
𝑖𝑙 𝑥𝑙 + (1− 𝛾)𝑆𝑖 (𝑥)− 𝑥𝑖

⃒⃒⃒⃒
⃒

= 𝛾

𝑛∑︁
𝑙=1

𝑤
(𝑡)
𝑖𝑙 (𝑥𝑙 − 𝑥𝑖) + (1− 𝛾)

(︁
𝑆𝑖 (𝑥)− 𝑥𝑖

)︁
≥ 𝛾𝑤

(𝑡)
𝑖𝑘 (𝑥𝑘 − 𝑥𝑖) > 0,

a contradiction.

Cases 1 and 2 prove that 𝐸
(︀
𝑇 𝑡
)︀
= 𝐷, and hence that 𝐸 (𝑇 ) = 𝐷. ■

Proof of Proposition 16. We omit the proof of point 2 which follows from well-known facts.28

1. Consider 𝜃 ∈ R∖ {0} and 𝜌 : R → R+ defined by 𝜌 (𝑠) = 𝑒𝜃𝑠 − 𝜃𝑠 for all 𝑠 ∈ R. It is
easy to see that 𝜌 is strictly convex and differentiable. Given 𝑥 ∈ 𝐵 and 𝑖 ∈ 𝑁 , consider also
the function 𝑐 ↦→ 𝜑𝜃𝑖 (𝑥− 𝑐𝑒) =

∑︀𝑛
𝑗=1 𝑤𝑖𝑗𝜌 (𝑥𝑗 − 𝑐). Since 𝜌 is strictly convex and differentiable,

so is 𝑐 ↦→ 𝜑𝜃𝑖 (𝑥− 𝑐𝑒). Given 𝑥 ∈ 𝐵 and 𝑖 ∈ 𝑁 , this implies that the minimizer of the function
𝑐 ↦→ 𝜑𝜃𝑖 (𝑥− 𝑐𝑒) is then uniquely pinned down by the first order conditions. Moreover, as we will
immediately see, minimizing 𝑐 ↦→ 𝜑𝜃𝑖 (𝑥− 𝑐𝑒) over 𝐼 is equivalent to minimize it over R. We compute

28The result for 𝜃 = ∞ is also known as Laplace’s method. The case for 𝜃 = −∞ is instead obtained
from the previous one and by observing that 𝜃𝑥𝑗 = −𝜃 (−𝑥𝑗) and that 𝜃 → −∞ yields −𝜃 → ∞.
The case of 𝜃 = 0 is a standard result in risk theory.
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the first order conditions where 𝑐⋆ is the optimal value:

−
𝑛∑︁

𝑗=1

𝑤𝑖𝑗 [𝜃 exp (𝜃 (𝑥𝑗 − 𝑐⋆))− 𝜃] = 0 =⇒
𝑛∑︁

𝑗=1

𝑤𝑖𝑗 exp (𝜃𝑥𝑗) = exp (𝜃𝑐⋆) =⇒ 𝑐⋆ =
1

𝜃
ln

⎛⎝ 𝑛∑︁
𝑗=1

𝑤𝑖𝑗 exp (𝜃𝑥𝑗)

⎞⎠ ∈ 𝐼.

Since 𝑖 and 𝑥 were arbitrarily chosen, equation (B.14) is satisfied. It is routine to show that 𝑇 𝜃 is
a robust opinion aggregator. As for the second part, fix 𝑖, 𝑗 ∈ 𝑁 . Observe that 𝑇 𝜃

𝑖 is continuously
differentiable in the interior of 𝐵. Moreover, 𝜕𝑇 𝜃

𝑖

𝜕𝑥𝑗
(𝑥) > 0 for some 𝑥 ∈ int𝐵 if and only if there

exists 𝜀 ∈ (0, 1) such that 𝜕𝑇 𝜃
𝑖

𝜕𝑥𝑗
(𝑥) ≥ 𝜀 for all 𝑥 ∈ int𝐵 if and only if 𝑤𝑖𝑗 > 0. By the Mean Value

Theorem and since 𝑖 and 𝑗 were arbitrarily chosen, this implies that 𝐴
(︀
𝑇 𝜃
)︀
= 𝐴

(︀
𝑇 𝜃
)︀
= 𝐴 (𝑊 ).

3. Let 𝑆 : R𝑛 → R𝑛
++ be defined by 𝑆𝑖 (𝑥) = exp (𝜃𝑥𝑖) for all 𝑖 ∈ 𝑁 and for all 𝑥 ∈ R𝑛. Define

𝑇 : R𝑛 → R𝑛 by 𝑇 (𝑥) =𝑊𝑥 for all 𝑥 ∈ R𝑛. We next show that

(︀
𝑇 𝜃
)︀𝑡

= 𝑆−1𝑇 𝑡𝑆 ∀𝑡 ∈ N. (B.57)

By definition of 𝑇 𝜃, if 𝑡 = 1, then 𝑇 𝜃 (𝑥) = 𝑆−1 (𝑊𝑆 (𝑥)) for all 𝑥 ∈ 𝐵, yielding (B.57). Next,
assume that (B.57) holds for 𝑡. We have that

(︀
𝑇 𝜃
)︀𝑡+1

= 𝑇 𝜃
(︀
𝑇 𝜃
)︀𝑡

= 𝑆−1𝑇𝑆𝑆−1𝑇 𝑡𝑆 = 𝑆−1𝑇 𝑡+1𝑆,
proving that (B.57) holds for 𝑡 + 1. By induction, (B.57) follows. Consider 𝑥 ∈ 𝐵. By (B.15),
it follows that lim𝑡 𝑇

𝑡 (𝑆 (𝑥)) = lim𝑡𝑊
𝑡𝑆 (𝑥) = (

∑︀𝑛
𝑖=1 𝑠𝑖 exp (𝜃𝑥𝑖)) 𝑒 ∈ R𝑛

++. By (B.57) and since
𝑆−1 is continuous, we have that lim𝑡

(︀
𝑇 𝜃
)︀𝑡
(𝑥) =

(︀
1
𝜃 ln (

∑︀𝑛
𝑖=1 𝑠𝑖 exp (𝜃𝑥𝑖))

)︀
𝑒 = 𝑇 𝜃 (𝑥). Since 𝑥 was

arbitrarily chosen, the statement follows. ■

B.11.2 Vox populi, vox Dei?

To ease notation, we discuss the next ancillary result by dropping the 𝑛 indexing. Let 𝒲un denote
the subset of 𝒲 such that 𝑊 ∈ 𝒲un if and only if there exists an undirected and strongly connected
graph with an 𝑛×𝑛 adjacency matrix 𝐴 such that 𝑤𝑖𝑗 =

𝑎𝑖𝑗

𝑑𝑖
for all 𝑖, 𝑗 ∈ 𝑁 where 𝑑𝑖 =

∑︀𝑛
𝑙=1 𝑎𝑖𝑙. It

is well known that if 𝑊 ∈ 𝒲un, then 𝑊 is reversible and there exists a unique left Perron-Frobenius
eigenvector �̄� ∈ Δ, that is �̄�T𝑊 = �̄�T, and

�̄�𝑖 =
𝑑𝑖∑︀𝑛
𝑗=1 𝑑𝑗

∀𝑖 ∈ 𝑁.

In particular, note that

0 ≤ �̄�𝑘 ≤ 1

𝑛

max𝑖∈𝑁 𝑑𝑖
min𝑖∈𝑁 𝑑𝑖

∀𝑘 ∈ 𝑁. (B.58)

Finally, recall that if 𝑊 ∈ 𝒲un and 𝑛 ≥ 2, then the eigenvalues of 𝑊 are real and, accounting for
multiplicity, such that 1 = �̃�1 ≥ �̃�2 ≥ ... ≥ �̃�𝑛 ≥ −1. We denote by 𝜆2 (= max𝑖=2,...,𝑛

⃒⃒⃒
�̃�𝑖

⃒⃒⃒
) the

second largest eigenvalue in modulus (SLEM).

Lemma 28. Let 𝑇 be a robust opinion aggregator and 𝑛 ≥ 2. If there exist 𝜅 ≥ 1 and 𝑊 ∈ 𝒲un
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such that
𝜕𝑇𝑖
𝜕𝑥𝑗

(𝑥) ≤ 𝜅𝑤𝑖𝑗 ∀𝑥 ∈ 𝒟 (𝑇 ) ,∀𝑖, 𝑗 ∈ 𝑁, (B.59)

then

𝑠𝑖𝑗 (𝑇 ) ≤ 𝜅𝑡�̄�𝑗 +

√︃
max𝑖∈𝑁 𝑑𝑖
min𝑖∈𝑁 𝑑𝑖

𝜅𝑡𝜆𝑡2 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑡 ∈ N,

where 𝜆2 ∈ R+ is the SLEM of 𝑊 .

Proof. Define �̂� = 𝐼𝑛. Before starting, we introduce an useful object: the Clarke differential of
𝑇 . By Rademacher’s Theorem and since 𝑇 is robust, 𝑇 is Lipschitz continuous and, in particular,
almost everywhere differentiable on R𝑛. Recall that 𝒟 (𝑇 ) denotes the set of points of �̂� where 𝑇
is differentiable. We denote the Jacobian of 𝑇 at 𝑥 ∈ 𝒟 (𝑇 ) by 𝐽𝑇 (𝑥). Since 𝑇 is a robust opinion
aggregator, we have that 𝐽𝑇 (𝑥) ∈ 𝒲 for all 𝑥 ∈ 𝒟 (𝑇 ). Finally, given 𝑥 ∈ �̂�, we denote the Clarke
differential of 𝑇 at 𝑥 by 𝜕𝑇 (𝑥) where

𝜕𝑇 (𝑥) = co

{︂
𝑊 ∈ 𝒲 :𝑊 = lim

𝑘
𝐽𝑇
(︀
𝑥𝑘
)︀

s.t. 𝑥𝑘 → 𝑥 and 𝑥𝑘 ∈ 𝒟 (𝑇 )

}︂
.

By Theorem 7, recall that 𝑇 ∘ 𝑇 = 𝑇 , yielding that 𝑇𝑖 ∘ 𝑇 = 𝑇𝑖 for all 𝑖 ∈ 𝑁 . By the Chain rule, we
have that

𝜕𝑇𝑖 (𝑥) ⊆ co
{︀
𝜕𝑇𝑖 (𝑇 (𝑥)) 𝜕𝑇 (𝑥)

}︀
∀𝑖 ∈ 𝑁, ∀𝑥 ∈ �̂� (B.60)

where 𝜕𝑇𝑖 (𝑇 (𝑥)) 𝜕𝑇 (𝑥) is the set of probability vectors 𝑝 ∈ Δ such that 𝑝T = 𝑞T�̃� where 𝑞 ∈
𝜕𝑇𝑖 (𝑇 (𝑥)) and �̃� ∈ 𝜕𝑇 (𝑥). By definition of 𝜕𝑇 (𝑥) and since 𝑇 satisfies (B.59), we have that

�̃� ≤ 𝜅𝑊 ∀�̃� ∈ 𝜕𝑇 (𝑥) ,∀𝑥 ∈ �̂�. (B.61)

We next prove by induction that for each 𝑥 ∈ �̂�, for each 𝑖 ∈ 𝑁 , for each 𝑝 ∈ 𝜕𝑇𝑖 (𝑥), and for each
𝑡 ∈ N there exists 𝑞 ∈ Δ such that

𝑝T ≤ 𝑞T
(︀
𝜅𝑡𝑊 𝑡

)︀
. (B.62)

By (B.61), we have that 𝑞T�̃� ≤ 𝑞T (𝜅𝑊 ) for all 𝑞 ∈ 𝜕𝑇𝑖 (𝑇 (𝑥)), for all �̃� ∈ 𝜕𝑇 (𝑥), for all 𝑥 ∈ �̂�,
and for all 𝑖 ∈ 𝑁 . By (B.60) and since 𝜕𝑇𝑖 (𝑇 (𝑥)) ⊆ Δ for all 𝑖 ∈ 𝑁 , this implies that (B.62)
holds for 𝑡 = 1. Next, we assume that the statement holds for 𝑡 and we show it holds for 𝑡 + 1.
Consider 𝑥 ∈ �̂�, 𝑖 ∈ 𝑁 , and 𝑝 ∈ 𝜕𝑇𝑖 (𝑥). By (B.60), we have that there exist

{︀
𝑞𝑘
}︀𝑚
𝑘=1

⊆ 𝜕𝑇𝑖 (𝑇 (𝑥)),{︁
�̃�𝑘

}︁𝑚

𝑘=1
⊆ 𝜕𝑇 (𝑥), and {𝛼𝑘}𝑚𝑘=1 ⊆ [0, 1] such that

∑︀𝑚
𝑘=1 𝛼𝑘 = 1 and 𝑝T =

∑︀𝑚
𝑘=1 𝛼𝑘

(︀
𝑞𝑘
)︀T
�̃�𝑘. By

inductive hypothesis and since
{︀
𝑞𝑘
}︀𝑚
𝑘=1

⊆ 𝜕𝑇𝑖 (𝑇 (𝑥)) and 𝑇 (𝑥) ∈ �̂�, for each 𝑘 ∈ {1, ...,𝑚} we have
that

(︀
𝑞𝑘
)︀T
𝜅𝑊 ≤

(︀
𝑞𝑘
)︀T

(𝜅𝑡𝑊 𝑡)𝜅𝑊 =
(︀
𝑞𝑘
)︀T (︀

𝜅𝑡+1𝑊 𝑡+1
)︀

for some 𝑞𝑘 ∈ Δ. By (B.61), this yields
that

𝑝T =

𝑚∑︁
𝑘=1

𝛼𝑘

(︀
𝑞𝑘
)︀T
�̃�𝑘 ≤

𝑚∑︁
𝑘=1

𝛼𝑘

(︀
𝑞𝑘
)︀T

(𝜅𝑊 ) ≤

(︃
𝑚∑︁

𝑘=1

𝛼𝑘

(︀
𝑞𝑘
)︀T)︃(︀

𝜅𝑡+1𝑊 𝑡+1
)︀
.

Since
∑︀𝑚

𝑘=1 𝛼𝑘𝑞
𝑘 ∈ Δ and 𝑥, 𝑖, as well as 𝑝 were arbitrarily chosen, the inductive step follows. By

induction, (B.62) holds.
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By Bremaud (2017) and since 𝑊 ∈ 𝒲un, we have that

max
𝑖,𝑗∈𝑁

⃒⃒⃒
𝑤

(𝑡)
𝑖𝑗 − �̄�𝑗

⃒⃒⃒
≤

√︃
max𝑖∈𝑁 𝑑𝑖
min𝑖∈𝑁 𝑑𝑖

𝜆𝑡2 ∀𝑡 ∈ N.

Consider �̄� ∈ �̂�, 𝑝 ∈ 𝜕𝑇𝑖 (�̄�), 𝑖 ∈ 𝑁 , and 𝑡 ∈ N. By (B.62), this implies that 𝑝T ≤ 𝑞T (𝜅𝑡𝑊 𝑡) =

𝜅𝑡𝑞T𝑊 𝑡 for some 𝑞 ∈ Δ, yielding that

𝑝𝑗 ≤ 𝜅𝑡
𝑛∑︁

𝑖=1

𝑞𝑖𝑤
(𝑡)
𝑖𝑗 = 𝜅𝑡�̄�𝑗 + 𝜅𝑡

𝑛∑︁
𝑖=1

𝑞𝑖

(︁
𝑤

(𝑡)
𝑖𝑗 − �̄�𝑗

)︁
≤ 𝜅𝑡�̄�𝑗 + 𝜅𝑡

𝑛∑︁
𝑖=1

𝑞𝑖

⃒⃒⃒
𝑤

(𝑡)
𝑖𝑗 − �̄�𝑗

⃒⃒⃒
≤ 𝜅𝑡�̄�𝑗 + 𝜅𝑡

√︃
max𝑖∈𝑁 𝑑𝑖
min𝑖∈𝑁 𝑑𝑖

𝜆𝑡2 ∀𝑗 ∈ 𝑁.

Since �̄�, 𝑝, and 𝑡 were arbitrarily chosen, and ∇𝑇𝑖 (𝑥) ∈ 𝜕𝑇𝑖 (𝑥) for all 𝑥 ∈ 𝒟
(︀
𝑇
)︀
, we have that

𝑠𝑖𝑗 (𝑇 ) = sup
𝑥∈𝒟(𝑇)

𝜕𝑇𝑖
𝜕𝑥𝑗

(𝑥) ≤ 𝜅𝑡�̄�𝑗 + 𝜅𝑡

√︃
max𝑖∈𝑁 𝑑𝑖
min𝑖∈𝑁 𝑑𝑖

𝜆𝑡2 ∀𝑗 ∈ 𝑁, ∀𝑡 ∈ N .

Since 𝑖 was arbitrarily chosen, the statement follows. ■

Proof of Proposition 17. 1. Fix 𝑛 ∈ N and define �̂� = 𝐼𝑛. Since 𝑇 (𝑛) is a robust opinion
aggregator, we have that 𝑇 (𝑛) is Lipschitz continuous. By Rademacher’s Theorem, this implies
that 𝑇 (𝑛) is almost everywhere differentiable on �̂� and, in particular, Clarke differentiable. Since
𝑇𝑗 (𝑛) is monotone and translation invariant for all 𝑗 ∈ 𝑁 , note that ∇𝑇𝑗 (𝑛) (𝑥) ∈ Δ𝑛 for all
𝑥 ∈ 𝒟 (𝑇 (𝑛)) and for all 𝑗 ∈ 𝑁 . Recall that the Clarke’s differential is the set:

𝜕𝑇𝑗 (𝑛) (�̄�) = co

{︂
𝑝 ∈ Δ𝑛 : 𝑝 = lim

𝑘
∇𝑇𝑗 (𝑛)

(︀
𝑥𝑘
)︀

s.t. 𝑥𝑘 → �̄� and 𝑥𝑘 ∈ 𝒟 (𝑇 (𝑛))

}︂
∀�̄� ∈ �̂�, ∀𝑗 ∈ 𝑁.

(B.63)
By Theorem 7, recall that 𝑇 (𝑛)∘𝑇 (𝑛) = 𝑇 (𝑛). Fix �̄� ∈ �̂�. Define by Π𝑛

𝑗=1𝜕𝑇𝑗 (𝑛) (�̄�) the collection
of all 𝑛× 𝑛 square matrices whose 𝑗-th row is an element of 𝜕𝑇𝑗 (𝑛) (�̄�). From the previous part of
the proof, we have that Π𝑛

𝑗=1𝜕𝑇𝑗 (𝑛) (�̄�) ⊆ 𝒲. For each 𝑖 ∈ 𝑁 , define

𝜕𝑇𝑖 (𝑛) (𝑇 (𝑛) (�̄�))Π𝑛
𝑗=1𝜕𝑇𝑗 (𝑛) (�̄�)

=
{︀
�̃� ∈ Δ𝑛 : ∃𝑝 ∈ 𝜕𝑇𝑖 (𝑛) (𝑇 (𝑛) (�̄�)) ,∃𝑊 ∈ Π𝑛

𝑗=1𝜕𝑇𝑗 (𝑛) (�̄�) s.t. 𝑝T𝑊 = �̃�T
}︀
.

By the Chain Rule, we have that for each 𝑖 ∈ 𝑁

𝜕𝑇𝑖 (𝑛) (�̄�) ⊆ co
{︀
𝜕𝑇𝑖 (𝑛) (𝑇 (𝑛) (�̄�))Π𝑛

𝑗=1𝜕𝑇𝑗 (𝑛) (�̄�)
}︀
. (B.64)
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By assumption, we have that for each 𝑖, 𝑗 ∈ 𝑁

sup
𝑥∈𝒟(𝑇 (𝑛))

𝜕𝑇𝑖 (𝑛)

𝜕𝑥𝑗
(𝑥) ≤ 𝜅

𝑑𝑖 (𝑛)
≤ 𝜅

𝑑min (𝑛)
. (B.65)

By (B.63) and (B.65), we have that 0 ≤ 𝑝𝑗 ≤ 𝜅
𝑑min(𝑛)

for all 𝑝 ∈ 𝜕𝑇𝑖 (𝑛) (�̄�) and for all 𝑖, 𝑗 ∈ 𝑁 .
By (B.64), 0 ≤ 𝑝𝑗 ≤ 𝜅

𝑑min(𝑛)
for all 𝑝 ∈ 𝜕𝑇𝑖 (𝑛) (�̄�) and for all 𝑖, 𝑗 ∈ 𝑁 . Finally, observe that if

𝑥 ∈ 𝒟
(︀
𝑇 (𝑛)

)︀
, we have that ∇𝑇𝑖 (𝑛) (𝑥) ∈ 𝜕𝑇𝑖 (𝑛) (𝑥) and, in particular, 𝜕𝑇𝑖(𝑛)

𝜕𝑥𝑗
(𝑥) ≤ 𝜅

𝑑min(𝑛)
for all

𝑖, 𝑗 ∈ 𝑁 . This yields that

𝑠𝑖𝑗 (𝑇 (𝑛)) = sup
𝑥∈𝒟(𝑇 (𝑛))

𝜕𝑇𝑖 (𝑛)

𝜕𝑥𝑗
(𝑥) ≤ 𝜅

𝑑min (𝑛)
∀𝑖, 𝑗 ∈ 𝑁.

Therefore, since lim𝑛

√
𝑛

𝑑min(𝑛)
= 0 and 𝑛 was arbitrarily chosen, we have that for each 𝜄 ∈ N

lim
𝑛

𝑛∑︁
𝑗=1

(𝑠𝜄𝑗 (𝑇 (𝑛)))
2 ≤ lim

𝑛

𝑛∑︁
𝑗=1

(︂
𝜅

𝑑min (𝑛)

)︂2

= lim
𝑛

𝑛𝜅2(︀
𝑑min (𝑛)

)︀2 = 0.

By point 1 of Theorem 9, this implies point 1.

2. For each 𝑛 ∈ N denote by 𝑊 (𝑛) ∈ 𝒲 the stochastic matrix whose 𝑖𝑗-th entry is �̄�𝑖𝑗 (𝑛) /𝑑𝑖 (𝑛).
By assumption, each 𝑊 (𝑛) is in 𝒲un and has a unique left Perron-Frobenius eigenvector that
we denote �̄� (𝑛) ∈ Δ𝑛. By assumption, it follows that there exists �̄� > 1 and 𝜀 > 0 such that
{𝑇 (𝑛)}𝑛∈N is �̄�-dominated and sup𝑛∈N 𝜆2 (𝑛) <

1
�̄�2+𝜀 . Set �̄� = sup𝑛∈N

√︁
𝑑max(𝑛)

𝑑min(𝑛)
∈ R+ and 𝑡𝑛 =

max
{︁
1,
⌊︁
log�̄�2 (max𝑘∈𝑁 �̄�𝑘 (𝑛))

−𝛼
⌋︁}︁

for all 𝑛 ∈ N where 𝛼 = 1+𝛿
1+𝜀 with 𝛿 ∈ (0, 𝜀). Note that

𝛼 ∈ (0, 1) and (1 + 𝜀)𝛼 = 1 + 𝛿. By (B.58), we have that 0 ≤ max𝑘∈𝑁 �̄�𝑘 (𝑛) ≤ �̄�2/𝑛 for all 𝑛 ∈ N
and, in particular, lim𝑛 max𝑘∈𝑁 �̄�𝑘 (𝑛) = 0. By Lemma 28, recall that

0 ≤ 𝑠𝑖𝑗 (𝑇 (𝑛)) ≤ �̄�𝑡𝑛�̄�𝑗 (𝑛) + �̄��̄�𝑡𝑛𝜆𝑡𝑛2 (𝑛) ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑛 ∈ N∖ {1} .

It follows that

𝑠𝑖𝑗 (𝑇 (𝑛))
2 ≤ �̄�2𝑡𝑛�̄�𝑗 (𝑛)

2
+ 2�̄�𝑡𝑛�̄�𝑗 (𝑛) �̄��̄�

𝑡𝑛𝜆𝑡𝑛2 (𝑛) + �̄�2�̄�2𝑡𝑛𝜆2𝑡𝑛2 (𝑛) ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑛 ∈ N∖ {1}

and
𝑛∑︁

𝑗=1

𝑠𝑖𝑗 (𝑇 (𝑛))
2 ≤ 𝑎𝑛 + 𝑏𝑛 + 𝑐𝑛 ∀𝑖 ∈ 𝑁, ∀𝑛 ∈ N∖ {1} (B.66)

where 𝑎𝑛 =
∑︀𝑛

𝑗=1 �̄�
2𝑡𝑛�̄�𝑗 (𝑛)

2, 𝑏𝑛 =
∑︀𝑛

𝑗=1 2�̄��̄�
2𝑡𝑛𝜆𝑡𝑛2 (𝑛) �̄�𝑗 (𝑛), and 𝑐𝑛 =

∑︀𝑛
𝑗=1 �̄�

2�̄�2𝑡𝑛𝜆2𝑡𝑛2 (𝑛)

for all 𝑛 ∈ N∖ {1}. Note that these three sequences only depend on 𝑛 and not on 𝑖, 𝑗 ∈ 𝑁 . We
next show that lim𝑛 𝑎𝑛 = lim𝑛 𝑏𝑛 = lim𝑛 𝑐𝑛 = 0. Since lim𝑛 max𝑘∈𝑁 �̄�𝑘 (𝑛) = 0 and �̄� > 1,
observe that lim𝑛 (max𝑘∈𝑁 �̄�𝑘 (𝑛))

−𝛼
= ∞ and lim𝑛 log�̄�2 (max𝑘∈𝑁 �̄�𝑘 (𝑛))

−𝛼
= ∞. This implies

that lim𝑛 𝑡𝑛 = ∞. Moreover, there exists �̄� ∈ N∖ {1} such that log�̄�2 (max𝑘∈𝑁 �̄�𝑘 (𝑛))
−𝛼 − 1 ≤ 𝑡𝑛 =
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⌊︁
log�̄�2 (max𝑘∈𝑁 �̄�𝑘 (𝑛))

−𝛼
⌋︁
≤ log�̄�2 (max𝑘∈𝑁 �̄�𝑘 (𝑛))

−𝛼 for all 𝑛 ≥ �̄�.

- Since 1− 𝛼 ∈ (0, 1), �̄� > 1, and lim𝑛 max𝑘∈𝑁 �̄�𝑘 (𝑛) = 0, observe that for each 𝑛 ≥ �̄�

0 ≤ 𝑎𝑛 = �̄�2𝑡𝑛
𝑛∑︁

𝑗=1

�̄�𝑗 (𝑛)
2 ≤ �̄�2𝑡𝑛 max

𝑘∈𝑁
�̄�𝑘 (𝑛)

𝑛∑︁
𝑗=1

�̄�𝑗 (𝑛)

= �̄�2𝑡𝑛 max
𝑘∈𝑁

�̄�𝑘 (𝑛) ≤
(︀
�̄�2
)︀log�̄�2 (max𝑘∈𝑁 �̄�𝑘(𝑛))

−𝛼

max
𝑘∈𝑁

�̄�𝑘 (𝑛) =

(︂
max
𝑘∈𝑁

�̄�𝑘 (𝑛)

)︂1−𝛼

→ 0 as 𝑛→ ∞.

- Since �̄� > 1, we have that 0 ≤ sup𝑛∈N �̄�
2𝜆2 (𝑛) ≤ 1

�̄�𝜀 < 1. Since 𝑡𝑛 ∈ N for all 𝑛 ∈ N and
lim𝑛 𝑡𝑛 = ∞, this implies that

0 ≤ 𝑏𝑛 = 2�̄��̄�2𝑡𝑛𝜆𝑡𝑛2 (𝑛)

𝑛∑︁
𝑗=1

�̄�𝑗 (𝑛) = 2�̄�
(︀
�̄�2𝜆2 (𝑛)

)︀𝑡𝑛 ≤ 2�̄�

(︂
sup
𝑛∈N

�̄�2𝜆2 (𝑛)

)︂𝑡𝑛

→ 0 as 𝑛→ ∞.

- Since sup𝑛∈N 𝜆2 (𝑛) ≤ 1
�̄�2+𝜀 , we have that sup𝑛∈N 𝜆

2
2 (𝑛) ≤ 1

�̄�4+2𝜀 , that is, 0 ≤ sup𝑛∈N �̄�
2𝜆22 (𝑛) ≤

1
�̄�2+2𝜀 . Since 𝑡𝑛 ∈ N for all 𝑛 ∈ N, this implies that

(︀
sup𝑛∈N �̄�

2𝜆22 (𝑛)
)︀𝑡𝑛 ≤

(︀
1

�̄�2+2𝜀

)︀𝑡𝑛 for all
𝑛 ∈ N.

Since (1 + 𝜀)𝛼 = 1 + 𝛿 and 𝛿 > 0, we obtain that for each 𝑛 ≥ �̄�

0 ≤ 𝑐𝑛 = �̄�2𝑛�̄�2𝑡𝑛𝜆2𝑡𝑛2 (𝑛) = �̄�2𝑛
(︀
�̄�2𝜆22 (𝑛)

)︀𝑡𝑛 ≤ �̄�2𝑛

(︂
1

�̄�2+2𝜀

)︂𝑡𝑛

= �̄�2𝑛

(︂
1

�̄�2(1+𝜀)

)︂𝑡𝑛

≤ �̄�2𝑛
(︀
�̄�2
)︀−(1+𝜀)(log�̄�2 (max𝑘∈𝑁 �̄�𝑘(𝑛))

−𝛼−1)
= �̄�2𝑛�̄�2(1+𝜀)

(︀
�̄�2
)︀−(1+𝜀) log�̄�2 (max𝑘∈𝑁 �̄�𝑘(𝑛))

−𝛼

= �̄�2�̄�2(1+𝜀)𝑛

(︂
max
𝑘∈𝑁

�̄�𝑘 (𝑛)

)︂(1+𝜀)𝛼

≤ �̄�2�̄�2(1+𝜀)𝑛

(︂
�̄�2

𝑛

)︂(1+𝜀)𝛼

= �̄�4+2𝛿�̄�2(1+𝜀)𝑛−𝛿 → 0 as 𝑛→ ∞.

By (B.66), we have lim𝑛

∑︀𝑛
𝑗=1 𝑠𝜄𝑗 (𝑇 (𝑛))

2
= 0 for all 𝜄 ∈ N. By point 1 of Theorem 9 and since

{𝑇 (𝑛)}𝑛∈N is a sequence of odd robust opinion aggregators and {𝜀𝑖 (𝑛)}𝑖∈𝑁,𝑛∈N is symmetric, point
2. of the statement follows. ■

B.11.3 Discussion
Proof of Lemma 26. Fix 𝑖 ∈ 𝑁 . Consider 𝑧 ∈ R𝑛 such that 𝑧 ≫ 0. Define 𝑧 = 𝑧 −min𝑗∈𝑁 𝑧𝑗𝑒,
𝑣 = 0, and ℎ = min𝑗∈𝑁 𝑧𝑗 . Note that 𝑧 ≥ 𝑣 as well as ℎ ∈ R++. Since 𝜑 has increasing shifts and is
sensitive, we obtain that

𝜑𝑖 (𝑧)− 𝜑𝑖

(︂
𝑧 −min

𝑗∈𝑁
𝑧𝑗𝑒

)︂
= 𝜑𝑖 (𝑧 + ℎ𝑒)− 𝜑𝑖 (𝑧) ≥ 𝜑𝑖 (𝑣 + ℎ𝑒)− 𝜑𝑖 (𝑣) = 𝜑𝑖

(︂
min
𝑗∈𝑁

𝑧𝑗𝑒

)︂
− 𝜑𝑖 (0) > 0,

proving the first inequality. A symmetric argument yields the second inequality. ■
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Proof of Lemma 27. Fix 𝑖 ∈ 𝑁 and 𝑥 ∈ R𝑛. Define 𝑔𝑖,𝑥 : R → R+ by 𝑔𝑖,𝑥 (𝑐) = 𝜑𝑖 (𝑥+ 𝑐𝑒) for
all 𝑐 ∈ R. Consider 𝑐1, 𝑐2 ∈ R such that 𝑐1 > 𝑐2 and ℎ > 0. Since 𝜑 ∈ Φ𝑅 and 𝑥+ 𝑐1𝑒 ≥ 𝑥+ 𝑐2𝑒, it
follows that

𝑔𝑖,𝑥 (𝑐1 + ℎ)− 𝑔𝑖,𝑥 (𝑐1) = 𝜑𝑖 ((𝑥+ 𝑐1𝑒) + ℎ𝑒)− 𝜑𝑖 (𝑥+ 𝑐1𝑒)

≥ 𝜑𝑖 ((𝑥+ 𝑐2𝑒) + ℎ𝑒)− 𝜑𝑖 (𝑥+ 𝑐2𝑒) = 𝑔𝑖,𝑥 (𝑐2 + ℎ)− 𝑔𝑖,𝑥 (𝑐2) .

It follows that 𝑔𝑖,𝑥 is midconvex. Next, fix 𝑐 ∈ R and 𝑐′ ∈ (𝑐− 1, 𝑐+ 1). Set 𝑐1 = 2𝑐− 𝑐′, 𝑐2 = 𝑐− 1,
and ℎ = 𝑐′ − (𝑐− 1). Since 𝑐1 > 𝑐2, ℎ > 0, and 𝜑𝑖 ≥ 0, we have that

𝑔𝑖,𝑥 (𝑐
′)− 𝑔𝑖,𝑥 (𝑐− 1) ≤ 𝑔𝑖,𝑥 (𝑐+ 1)− 𝑔𝑖,𝑥 (2𝑐− 𝑐′) =⇒ 0 ≤ 𝑔𝑖,𝑥 (𝑐

′) ≤ 𝑔𝑖,𝑥 (𝑐− 1) + 𝑔𝑖,𝑥 (𝑐+ 1) .

Since 𝑐′ was arbitrarily chosen, we have that 𝑔𝑖,𝑥 is bounded on (𝑐− 1, 𝑐+ 1). It follows that 𝑔𝑖,𝑥 is
continuous and convex. Finally, observe that 𝑓𝑖,𝑥 = 𝑔𝑖,𝑥 ∘ ℎ where ℎ (𝑐) = −𝑐 for all 𝑐 ∈ R, yielding
that 𝑓𝑖,𝑥 is convex and continuous being the composition of a convex and continuous function with
an affine and continuous function. Next, assume that 𝜑 has also strictly increasing shifts and, in
particular, has increasing shifts. By the previous part of the proof, 𝑔𝑖,𝑥 is convex. By contradiction,
assume that 𝑔𝑖,𝑥 is not strictly convex. This implies that there exists an interval [𝑑2, 𝑑1], with
𝑑2 < 𝑑1, where 𝑔𝑖,𝑥 is affine. Define 𝑐1 = 1

2𝑑1 + 1
2𝑑2, 𝑐2 = 𝑑2, and ℎ = (𝑑1 − 𝑑2) /2. Note that

𝑐1 > 𝑐2 and ℎ > 0. Since 𝜑 has strictly increasing shifts, by the same computations of the previous
part of the proof, we have that

𝑔𝑖,𝑥 (𝑑1)− 𝑔𝑖,𝑥

(︂
1

2
𝑑1 +

1

2
𝑑2

)︂
= 𝑔𝑖,𝑥 (𝑐1 + ℎ)− 𝑔𝑖,𝑥 (𝑐1)

> 𝑔𝑖,𝑥 (𝑐2 + ℎ)− 𝑔𝑖,𝑥 (𝑐2) = 𝑔𝑖,𝑥

(︂
1

2
𝑑1 +

1

2
𝑑2

)︂
− 𝑔𝑖,𝑥 (𝑑2) ,

yielding that 𝑔𝑖,𝑥
(︀
1
2𝑑1 +

1
2𝑑2
)︀
< 1

2𝑔𝑖,𝑥 (𝑑1) +
1
2𝑔𝑖,𝑥 (𝑑2), a contradiction with affinity. Since 𝑔𝑖,𝑥 is

strictly convex, so is 𝑓𝑖,𝑥 = 𝑔𝑖,𝑥 ∘ ℎ. ■

Proof of Proposition 18. Before starting, we make few observations about strong convexity. Since
each 𝜌𝑖 is strongly convex and twice continuously differentiable, we have that for each 𝑖 ∈ 𝑁 there
exists 𝛼𝑖 > 0 such that 𝜌′′𝑖 (𝑠) ≥ 𝛼𝑖 for all 𝑠 ∈ R. Moreover, we have that for each 𝑖 ∈ 𝑁

(𝜌′𝑖 (𝑠1)− 𝜌′𝑖 (𝑠2)) (𝑠1 − 𝑠2) ≥ 𝛼𝑖 (𝑠1 − 𝑠2)
2 ∀𝑠1, 𝑠2 ∈ R. (B.67)

Finally, since each 𝜌𝑖 is twice continuously differentiable and 𝐼 is compact, for each 𝑖 ∈ 𝑁 we have
that there exists 𝐿𝑖 > 0 such that

|𝜌′𝑖 (𝑠1)− 𝜌′𝑖 (𝑠2)| ≤ 𝐿𝑖 |𝑠1 − 𝑠2| ∀𝑠1, 𝑠2 ∈ [min 𝐼 −max 𝐼,max 𝐼 −min 𝐼] . (B.68)

Recall that 𝜑𝑖 : R𝑛 → R+ is defined by 𝜑𝑖 (𝑧) =
∑︀𝑛

𝑗=1 𝑤𝑖𝑗𝜌𝑖 (𝑧𝑗) for all 𝑧 ∈ R𝑛 and for all 𝑖 ∈ 𝑁 . By
assumption, 𝜑 ∈ Φ𝐴 ⊆ Φ𝑅. Since 𝜌′′𝑖 ≥ 𝛼𝑖 > 0 for all 𝑖 ∈ 𝑁 , this implies that 𝜌𝑖 is strictly convex for
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all 𝑖 ∈ 𝑁 . Standard computations yield that 𝜑 has strictly increasing shifts. By Proposition 23, we
have that T𝜑 = 𝑇𝜑 is single-valued and a robust opinion aggregator from 𝐵 to 𝐵. Moreover, 𝑇𝜑

𝑖 (𝑥)

is the unique solution of

min
𝑐∈R

𝜑𝑖 (𝑥− 𝑐𝑒) = min
𝑐∈𝐼

𝜑𝑖 (𝑥− 𝑐𝑒) ∀𝑖 ∈ 𝑁, ∀𝑥 ∈ 𝐵. (B.69)

Fix 𝑖 ∈ 𝑁 . Since 𝜌𝑖 is differentiable and convex, so is the map 𝑐 ↦→ 𝜑𝑖 (𝑥− 𝑐𝑒) for all 𝑥 ∈ 𝐵. The
solution of (B.69) is then given by the first order condition

∑︀𝑛
𝑗=1 𝑤𝑖𝑗𝜌

′
𝑖

(︁
𝑥𝑗 − 𝑇𝜑

𝑖 (𝑥)
)︁

= 0 for all
𝑥 ∈ 𝐵. Consider 𝑥 ∈ 𝐵, ℎ > 0, and 𝑙 ∈ 𝑁 such that 𝑥+ ℎ𝑒𝑙 ∈ 𝐵. We have that

𝑛∑︁
𝑗=1

𝑤𝑖𝑗𝜌
′
𝑖

(︁
𝑥𝑗 − 𝑇𝜑

𝑖 (𝑥)
)︁
= 0 and

𝑛∑︁
𝑗=1

𝑤𝑖𝑗𝜌
′
𝑖

(︁
𝑥𝑗 + ℎ𝑒𝑙𝑗 − 𝑇𝜑

𝑖

(︀
𝑥+ ℎ𝑒𝑙

)︀)︁
= 0. (B.70)

Note that if 𝑤𝑖𝑙 = 0, then
∑︀𝑛

𝑗=1 𝑤𝑖𝑗𝜌
′
𝑖

(︀
𝑥𝑗 + ℎ𝑒𝑙𝑗 − 𝑐

)︀
=
∑︀𝑛

𝑗=1 𝑤𝑖𝑗𝜌
′
𝑖 (𝑥𝑗 − 𝑐) for all 𝑐 ∈ R, proving

that 𝑇𝜑
𝑖

(︀
𝑥+ ℎ𝑒𝑙

)︀
= 𝑇𝜑

𝑖 (𝑥). Since 𝑥 and ℎ were arbitrarily chosen, we have that 𝑤𝑖𝑙 = 0 implies
�̄�𝑖𝑙 = 0. In particular, since 𝑖 and 𝑙 were arbitrarily chosen, we have that 𝐴 (𝑊 ) ≥ 𝐴

(︀
𝑇𝜑
)︀
.

Next, assume that 𝑤𝑖𝑙 > 0. By (B.68), (B.70), and (B.67) and since 𝑇𝜑 is monotone and ℎ > 0,
we can conclude that

𝐿𝑖

(︁
𝑇𝜑
𝑖

(︀
𝑥+ ℎ𝑒𝑙

)︀
− 𝑇𝜑

𝑖 (𝑥)
)︁
≥

𝑛∑︁
𝑗=1

𝑤𝑖𝑗𝜌
′
𝑖

(︁
𝑥𝑗 + ℎ𝑒𝑙𝑗 − 𝑇𝜑

𝑖 (𝑥)
)︁
−

𝑛∑︁
𝑗=1

𝑤𝑖𝑗𝜌
′
𝑖

(︁
𝑥𝑗 + ℎ𝑒𝑙𝑗 − 𝑇𝜑

𝑖

(︀
𝑥+ ℎ𝑒𝑙

)︀)︁
=

𝑛∑︁
𝑗=1

𝑤𝑖𝑗𝜌
′
𝑖

(︁
𝑥𝑗 + ℎ𝑒𝑙𝑗 − 𝑇𝜑

𝑖 (𝑥)
)︁
−

𝑛∑︁
𝑗=1

𝑤𝑖𝑗𝜌
′
𝑖

(︁
𝑥𝑗 − 𝑇𝜑

𝑖 (𝑥)
)︁

= 𝑤𝑖𝑙

[︁
𝜌′𝑖

(︁
𝑥𝑙 + ℎ− 𝑇𝜑

𝑖 (𝑥)
)︁
− 𝜌′𝑖

(︁
𝑥𝑙 − 𝑇𝜑

𝑖 (𝑥)
)︁]︁

≥ 𝑤𝑖𝑙𝛼𝑖ℎ,

proving that 𝑇𝜑
𝑖

(︀
𝑥+ ℎ𝑒𝑙

)︀
− 𝑇𝜑

𝑖 (𝑥) ≥ 𝜀𝑖𝑙ℎ where 𝜀𝑖𝑙 = 𝐿−1
𝑖 𝑤𝑖𝑙𝛼𝑖/2 ∈ (0, 1). Since 𝑥 and ℎ were

arbitrarily chosen, we have that 𝑤𝑖𝑙 > 0 implies 𝑎𝑖𝑙 = 1. In particular, since 𝑖 and 𝑙 were arbitrarily
chosen, we have that 𝐴

(︀
𝑇𝜑
)︀
≥ 𝐴 (𝑊 ). Since 𝐴

(︀
𝑇𝜑
)︀
≥ 𝐴

(︀
𝑇𝜑
)︀
, we can conclude that 𝐴 (𝑊 ) =

𝐴
(︀
𝑇𝜑
)︀
= 𝐴

(︀
𝑇𝜑
)︀
, proving the statement. ■
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