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Abstract

We evaluate dynamic oligopoly estimators with laboratory data. Using a stylized en-

try/exit game, we estimate structural parameters under the assumption that the data are

generated by a Markov-perfect equilibrium (MPE) and use the estimates to predict coun-

terfactual behavior. The concern is that if the Markov assumption was violated one would

mis-predict counterfactual outcomes. The experimental method allows us to compare pre-

dicted behavior for counterfactuals to true counterfactuals implemented as treatments. Our

main finding is that counterfactual prediction errors due to collusion are in most cases only

modest in size.
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1 Introduction

Many empirical studies attempt to recover primitives of an economic model that are then

used to evaluate counterfactual scenarios. Identification of such primitives typically requires

assumptions (on functional forms, equilibrium selection, etc.), and if these are not met, param-

eter estimates and counterfactual policy recommendations can be inaccurate. In this paper, we

illustrate how the laboratory can be used to evaluate the extent to which specific modeling as-

sumptions generate counterfactual prediction errors if the model is misspecified. The exercise

we propose involves four steps. First, we implement a model of interest in the laboratory and

obtain data resulting from (subjects’) play under those primitives. Second, under standard iden-

tification assumptions, we use the laboratory-generated data to structurally recover the primi-

tives. Third, we compare the true implemented primitives to the estimates. Fourth, we use

the estimated primitives to predict behavior in a counterfactual scenario. Crucially, for step

four, we also run the counterfactual scenario directly in the laboratory so that we can compare

the prediction to actual behavior in the counterfactual scenario. This comparison allows us

to evaluate to what extent specific assumptions for estimation lead to model-misspecification

and counterfactual prediction errors. In particular, we are interested in the bias that results

when the econometrician does not account for collusion.

We study a dynamic game of oligopolistic competition. The primitives in these models

are often related to investments or fixed costs and counterfactual policy scenarios might study

merger guidelines or other market interventions. The basic environment is one of repeated

interactions, with a state variable that evolves endogenously (e.g. the number of firms in the

market in an entry/exit model). The set of subgame-perfect equilibria (SPE) in dynamic games

with an infinite horizon can be large (Dutta, 1995) and often hard to characterize. Empirical

studies often focus on a subset of SPE known as Markov-perfect equilibria (MPE), where atten-

tion is restricted to stationary Markov strategies. On the one hand, this restriction is extremely

useful as it allows for dynamic programming tools to solve for MPE and makes the model

tractable. On the other hand, there are circumstances where the assumption of Markov play

may be too restrictive. In fact, when the gains from collusion are large, behavior may not be

properly captured by an MPE. Support of collusion as an SPE typically requires the threat

of credible punishments to deter parties from otherwise profitable deviations. Hence, agents

need to keep track of past play and use history to condition their present choices. Stationary

Markov strategies, however, condition behavior only on the state variable, ignoring the partic-



ular history that led to the current state. Consequently, collusive equilibria that are supported

by a switch to a punishment phase upon deviation cannot be enforced with a Markov strat-

egy. It is therefore possible that equilibrium Markov strategies are not the true data generating

process when the environment provides strong incentives to collude.

The central goal of this study is to test how restrictive the Markov assumption is for coun-

terfactual predictions. To that end, we implement a dynamic oligopoly model in the laboratory

where a key treatment variable is a structural parameter that affects whether collusion can be

supported as an SPE or not. To provide a stringent test, the gains from collusion are very high

in some treatments.

There are two potential threats posed by a violation of the MPE assumption. First, it may

lead to biased estimates. Standard Monte Carlo simulations in our environment show that

estimates are strongly biased if the data are generated according to a collusive equilibrium.

Second, it may lead to biased counterfactual predictions. Monte Carlo simulations, again,

confirm that such counterfactual prediction error can be severe in our setting. Consider a

baseline in which the incentives to collude are low, and the data is actually consistent with an

MPE. If the incentives to collude are larger in the counterfactual scenario, the selected equilib-

rium may change. The counterfactual might therefore not only entail a change in primitives

but also in conduct, violating the ceteris paribus assumption of counterfactual comparisons.

Therefore, a prediction based on MPE play in the counterfactuals may lead to errors. A Monte

Carlo exercise can help to determine the extent of biases and prediction errors under specific

assumptions on behavior, but it cannot resolve which of the assumptions better capture hu-

man behavior. The experimental exercise in this paper allows us to study the consequences of

human behavior without having to take an a priori stance on what such behavior consists of.

In this sense it is akin to a Monte Carlo exercise, except that the data are generated by humans

in a laboratory.

Our design is based on a model that builds on the seminal contribution of Ericson and

Pakes (1995), an infinite-horizon entry/exit game.1 In our model each of two firms can be

in or out of the market in each period and their state (in/out) is publicly observable. At the

beginning of the game, both firms start in the market and each period consists of two stages:

the quantity stage and the entry/exit stage. When both firms are in the market they play a

quantity-stage game. Each firm can either select a low or a high level of production, where

1To be precise, we implement a model that includes privately observed shocks to firms’ decisions, like in Bajari et al. (2007) and Aguirre-

gabiria and Mira (2007).
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high is associated with the stage-game Nash equilibrium and low with collusion. A firm that is

not in the market does not participate in the quantity game and makes zero profits. If a firm

is alone in the market, the optimal action is to set the high quantity. Firms receive feedback

on their quantity-stage payoffs and then face an entry/exit stage that determines whether

they are in or out of the market for the next period. Firms that are in the market choose

whether to stay in or to receive a scrap value and exit the market, while firms that are out

decide whether to stay out or to pay an entry fee. Scrap values and entry fees are privately

observed and randomly drawn each period from common-knowledge distributions. There is

no absorbing state; a firm that exits the market can re-enter at a future date. Total payoffs in

each period consist of the quantity-stage and the entry/exit payoff, and profits are discounted

by δ ∈ (0, 1).2

A first set of treatments manipulates the incentives for quantity-stage collusion. The treat-

ment variable (A) is a parameter that determines by how much own quantity-stage profits

increase when a firm changes production from low to high. We use three different parame-

terizations for A, keeping the other parameters fixed. In all cases we characterize the unique

symmetric MPE in which firms select high in the quantity stage and make entry and exit de-

cisions consistent with the quantity choice. When the gain from increasing own production is

not large (lower values ofA), we show that selecting low in the quantity stage can be supported

as an SPE, and profit gains relative to the MPE range from 75% to 450% in our parameteriza-

tions.

Overall, collusion in the quantity stage creates a pattern of entry and exit that is different

from the one under the MPE. This means, that if firms collude, structural estimates under the

assumption of Markov play will be biased. However, the pattern of entry/exit decisions may

differ from the predictions of the MPE for reasons other than the possibility of collusion. To

control for such discrepancies, we conduct three additional treatments –one for each value of

A– without a quantity stage choice. Whenever both firms are in the market, they are assigned

the stage-game Nash payment corresponding to both selecting high, and agents only make

entry/exit decisions. These treatments therefore serve as a baseline to capture discrepancies

from the MPE entry/exit predictions that are unrelated to quantity-stage collusion.

The main finding is that for the purpose of counterfactual predictions the restriction to

2The goal of the simplified version is to recreate an environment that retains the main tensions and allows us to focus on a test of Markov

perfection. In doing so our version is stripped of aspects that are meaningful when dealing with non-laboratory data, but not central to the

questions in this paper. For instance, we set the number of firms and the set of quantity-stage available actions to two because it simplifies

coordination hurdles required for collusion, and hence provides a more demanding test for Markov perfection.
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equilibrium Markov strategies leads to a relatively modest bias. It seems reasonable to expect

that, in settings with high incentives to collude, the restriction to Markov strategies will lead

to misspecification and bias. Our experimental design therefore provides a stress test of the

Markov assumption in an environment where it is expected to fail. However, we find that, for

most counterfactual computations, differential incentives for collusion are only a minor source

of errors.

The study of quantity-stage choices suggests a mechanism for this finding. Collusion leads

to errors only as long as agents manage to sustain it. We do find that subjects’ quantity-stage

choices respond significantly to the collusion incentive. When collusion cannot be supported

as an SPE, modal quantity-stage behavior coincides with the Nash equilibrium. Contrarily,

in treatments with high gains from collusion, many subjects try to collude at the beginning

of the game. But successful collusion phases are rare as they break down quickly after the

initial attempt. Moreover, enacted punishments are close to the MPE after collusion breaks

down. Hence, discrepancies from MPE quantity-stage choices only last for the few periods of

a supergame. Equilibrium Markov play can therefore still serve as a sensible approximation

of behavior despite the fact that the choices of a significant proportion of subjects are better

rationalized by a non-Markovian strategy.

The fact that collusion in the quantity stage does not succeed for long is consistent with

patterns documented for actual firms outside of the laboratory. While the incentives to collude

in our environment are high and coordination challenges are minimal, equilibrium collusion

is tacit. However, empirical evidence suggests that successful cartels usually require inter-

firm communication and/or transfers, referred to as explicit collusion. The Sherman Act, part

of the US anti-trust law, forbids any explicit agreement to coordinate on quantities or prices.

Our setting should, therefore, be well suited to capture situations where firms do not engage

in illegal agreements to coordinate.3 However, an important insight of the “new empirical

industrial organization” is that each industry operates subject to a unique set of market forces

and institutional constraints, often permitting an empirical one size fits all approach. This

caveat of external validity certainly also applies to the results here. To what extent the Markov

assumption is sensible should therefore be carefully judged on a case-by-case basis. However,

we do believe that experiments can give useful auxiliary information on the validity of specific

modeling assumptions.

3For example, according to Marshall and Marx (2012), page 3: “(...), it appears that repeated interaction is not enough in practice, at least

not for many firms in many industries. Even for duopolies (...) explicit collusion was required to substantially elevate prices and profits.” See

Marshall et al. (2008) and Harrington (2008) for additional evidence.
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Beyond these results on collusion, we also document that subjects’ decisions deviate in

other ways from the MPE, leading to less entry and exit than expected. We provide an anal-

ysis of this phenomenon, which we call inertia, and also suggest ways to correct for it in the

estimation.

Our findings also offer avenues for future research. One could inquire what market struc-

tures or other conditions lead to sustained collusion and how those would impact counterfac-

tual predictions. Those include direct (cheap-talk) communication and multi-market contacts.

In this study, we focus on collusion, but one can imagine other reasons why the assumption of

Markov perfection might be violated: in many dynamic environments an MPE can be a very

demanding concept in terms of the information that agents ought to have and their capacity

to process it. The literature discusses ways to relax these requirements (see Pakes, 2015), and

the lab might be used as a tool to evaluate such alternatives.

Other possible extensions concern the definition of the state. Our exercise uses standard

payoff-relevant states to define MPE, but another approach expands the definition of the state

to include elements of the history that are not payoff relevant (e.g. Fershtman and Pakes, 2000).

In this case, the researcher decides how to expand the state, since some elements of the history

must be excluded (otherwise the set of MPE and the set of SPE would coincide). While in the

environment that we study we find that expanding the definition of a state would not lead to

meaningful improvements; further experimental research can provide guidance on when this

could be the case.

Finally, in environments with multiple equilibria, the laboratory can help evaluate if there

are systematic deviations from a particular assumption on equilibrium selection. One rea-

son to assume sub-game perfection and a Markovian structure is often the lack of more com-

pelling assumptions. Moreover, since there are many ways in which behavior can deviate from

Markov perfection, exploring the consequences of possible deviations might not be feasible.

Laboratory data, however, can provide some guidance. Based on the observation of human

behavior, it can help to sort out which of all theoretically possible deviations from Markov

perfection is most likely to occur.
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Related Literature

The original framework for the game we study is formulated in Ericson and Pakes (1995).4

Most empirical applications of Markov-perfect industry dynamics rest on the two-stage ap-

proach, which substantially reduces the computational burden of estimation relative to full

solution methods.5 We describe the application of the two-stage approach in section 4. The

two-stage approach builds on the idea that the equilibrium law of motions, on which players

base their actions, is directly observed in the data. There are also suggestions for estimators in

which players believes are not in equilibrium (Aguirregabiria and Magesan, 2016).

Our paper is also related to the literature that studies the issue of equilibrium multiplicity

in empirical models of strategic behavior. Note that there are, in fact, two issues related to

equilibrium selection. First, a maintained solution concept, like Markov perfection, will rule

out many plausible equilibria. Second, even the set of equilibria admitted by a solution con-

cept may be large. This is also true for MPEs. Typical empirical applications (especially those

with asymmetric firms) might allow for many potential MPE.6 For suggestions on how to deal

with the latter, see Borkovsky et al. (2014).7 Our paper focuses on the former, and the environ-

ment is constructed to have just one symmetric MPE. However, a similar experimental design

might be used to study equilibrium selection within the set of MPE. For a broader discussion

of the issue of multiple equilibria in empirical models see De Paula (2013).

The literature is clearly aware that assuming Markov play can lead to biases under col-

lusion. In fact, in their seminal paper on static entry games Bresnahan and Reiss (1990) have

pointed out that collusion can affect estimates of market structure parameters that are obtained

under the assumption of simple static Nash. More broadly, there is a literature on the detec-

tion of collusion in dynamic settings, of which Porter (1983) is a famous example. Harrington

and Skrzypacz (2011) present theoretical work that builds on recent insights from the litera-

ture on repeated games to explain collusive practice in a dynamic context. The focus of our

paper, however, is not on how to detect collusion but to quantify model mis-specification (and

4To give just some recent examples of applications see Collard-Wexler (2013) and Ryan (2012) for entry exit choices, and Goettler and

Gordon (2011), Schmidt-Dengler (2006), Blonigen et al. (2013), and Sweeting (2013) for the introduction and development of new products.

See Aguirregabiria and Mira (2010), Doraszelski and Pakes (2007), and Ackerberg et al. (2007) for references on methodological issues.
5Variants of such estimators have, for example, been suggested in Bajari et al. (2007), Pakes et al. (2007), Aguirregabiria and Mira (2007)

and Pesendorfer and Schmidt-Dengler (2008).
6Since the empirical dynamic games literature has largely focused on MPE, the multiplicity issue is typically referring multiplicity within

the set of MPE. Abito (2015) discusses identification in repeated games without imposing a Markov structure.
7The same issue arises for making counterfactual predictions. If the counterfactual scenario allows for multiple equilibria one has to pick

the equilibrium that agents would actually coordinate on in the counterfactual. An econometric suggestion of how to deal with this problem

has, for example, been suggested in Aguirregabiria and Ho (2012).
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counterfactual bias) if the econometrician ignores collusion.8

We find that the symmetric MPE organizes the comparative statics very well. This finding

is consistent with results from the experimental literature on dynamic games. For example,

Battaglini et al. (2015) and Vespa (2019) find that a large proportion of play can be rationalized

by the MPE in other dynamic games.9 Finally, experimental data has been used to evaluate

structural estimates. The main focus of these studies is not to assess the accuracy of counter-

factual predictions but of parameter recovery. See Bajari and Hortacsu (2005) and Ertaç et al.

(2011) for the case of auctions, Brown et al. (2011) for the case of labor-market search, Fréchette

et al. (2005) for bargaining, and Merlo and Palfrey (2013) for voter turnout models.10

2 Setup

We chose a parsimonious implementation of Ericson and Pakes (1995) with two firms, indexed

by i. The time horizon is infinite, and agents discount the future by δ ∈ (0, 1). In each period

t, firms first face a quantity stage and then face a market entry/exit stage. A state variable tracks

whether firm i is in the market in period t (sit = 1) or not (sit = 0). We assume that at t = 0

all firms start in the market. There are four possible values for the state of the game at time t:

st = (s1t, s2t) ∈ S = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Model Quantity Stage

At the beginning of each period, the observable part of the state (st) is common knowledge.

If both firms are in the market (st = (1, 1)), firms simultaneously make a quantity choice,

qit ∈ {0, 1}, with quantity stage profits given by:

Πit = A · (1 + qit)−B · q−it. (1)

8There is a literature that studies collusion in the laboratory. First, if the prisoner’s dilemma is thought of as a reduced form oligopoly

game, many insights on collusion -or cooperation- have been provided by the experimental literature on the repeated prisoner’s dilemma

(see Dal Bó and Fréchette, 2018 for a recent survey). There is also a literature that studies collusion in the context of market experiments (see

Davis and Holt, 2008 for a survey).
9For other studies of dynamic games in the laboratory, see Battaglini et al. (2012), Kloosterman (2018), Saijo et al. (2014), and Vespa and

Wilson (2017; 2018). There is also a literature that focuses on studying to what extent subjects can solve dynamic problems, but abstracts from

aspects of strategic interaction that are the focus of this paper. See for example, Hey and Dardanoni (1988), Noussair and Matheny (2000), Lei

and Noussair (2002), and Houser et al. (2004).
10There are also a limited number of studies that use field data to either evaluate structural estimates or aid structural estimation. See

Arcidiacono et al. (2016), Conlon and Mortimer (2010), Conlon and Mortimer (2013), Keniston (2011), and Pathak and Shi (2017).
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We require that B > A. A is a parameter that captures the effect of the own production

decision on profits.11 B measures the effect of competition: how firm i’s profits are affected

when the competitor increases production. The profit function is therefore a reduced form that

captures the typical strategic tension inherent in a Cournot game, which is represented here

with prisoner’s dilemma payoffs. Selecting the higher quantity (qit = 1) increases firm i’s own

market share but also imposes an externality on the other firm through the decrease in price.

We will refer to the choice firms face when both are in the market as the quantity stage decision

and to the choice of qit = 1 (qit = 0) as selecting the high (low) quantity. Once both firms have

made their quantity choices, they learn the other firm’s choice and the corresponding quantity-

stage profits.

If at least one firm is out of the market (st = (s1t, s2t) ∈ {(0, 0), (0, 1), (1, 0)}), there is no

quantity choice. The quantity stage profits of a firm that is out of the market are normalized to

zero. If only firm i is in the market, its quantity stage profits are given by 2A. This corresponds

to the highest payoff in (1), as if qit = 1 and q−it = 0. Formally, the available action space (Qi)
for the quantity stage depends on the state: Qi(s = (1, 1)) = {0, 1}, and Qi(s 6= (1, 1)) = {∅}.

Model Entry/Exit Stage

After the quantity stage, firms can decide whether they want to be in the market for the next

period or not. This choice is captured by ait ∈ {0, 1} = Ai, with ait = 1, indicating that firm

i chooses to be in the market in period t + 1. If a firm that is currently in the market decides

to exit, it collects a scrap value, which is iid, that is φit ∼ U [0, 1].12 At the beginning of the exit

stage, a firm that is deciding on whether to exit or not is privately informed about the realized

scrap value. Firms that stay in the market don’t receive a scrap value.

A firm that is currently out of the market, but is deciding whether to enter or not, faces a

similar situation. If the firm decides to enter, it must pay an entry fee. This entry fee is C +ψit.

The fixed part C is common knowledge as well as the fact that the random part is iid and that

ψit ∼ U [0, 1]. The firm deciding whether to enter or not is privately informed of the realization

of ψit before it makes its choice. Firms can re-enter the market if they are out, which means

that exiting the market does not lead to an absorbing state.

Once firms make their entry/exit choices, period t is over, and period payoffs are realized.

11To guarantee that subjects make no negative payoffs in the laboratory we add a constant 0.60 to all payoffs
12While in empirical applications the error term is typically assumed to be distributed T1EV, we favored a uniform distribution because it

is much easier to explain to subjects in the laboratory. Moreover, the bounded support rules out extremely large payoffs.
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The dynamic entry/exit choice determines the evolution of the state from st to st+1, and a new

period starts.

Markov Perfection

In each period, total payoffs are pinned down by the state (s) and the random component of

the entry/exit decision. Using these payoff-relevant variables, it is possible to compute the

value function of the game at t, which for known market quantities (qit, q−it) is given by:

Vi(st, εit) = max
ait,qit

{
1 {st = (1, 1)} · (A · (1 + qit)−B · q−it) + 1 {st = (1, 0)} · (2A)

+ εit(ait, sit)− 1 {ait = 1, sit = 0} · C + δ · Eφ−i,ψ−i
[
Vi(st+1, εi(t+1))|st, ait

]}
(2)

with

εit(ait, sit) = φit · 1 {ait = 0, sit = 1} − ψit · 1 {ait = 1, sit = 0} ,

where 1{·} is an indicator function. Following Maskin and Tirole (2001), a Markov strategy

prescribes a choice for both stages of each period that depends only on payoff-relevant vari-

ables.13

Definition: A Markov strategy is a set of functions: i) prescribing a choice for each state

in the quantity stage, ρi : s → Qi; and ii) an entry/exit choice for each value of the state and

random component, αi : (s, εi)→ Ai.
A Markov-perfect equilibrium (MPE) is a subgame-perfect equilibrium (SPE) of the game

in which agents use Markov strategies. It is the typical solution concept for dynamic oligopoly

games, as well as an essential assumption in the estimation procedures that we evaluate.

Definition: An MPE is given by Markov strategies
(
ρ = [ρ1, ρ2], α = [α1, α2]

)
and state

transition probabilities (Fα(st+1|st)) such that: i) ρ(s = (1, 1)) = (1, 1); ii) α maximizes the

discounted sum of profits for each player, given Fα(st+1|st); and iii) α implies Fα(st+1|st).
13For simplicity in the text we refer to st as the state, but in the formulation of the value function payoff-relevant variables include the

endogenous state st and the conditionally exogenous state εit. st is endogenous as it depends on the firm’s choices, while εit is conditionally

exogenous. That is, conditional on the firm being in the market or out of the market, εit is determined by an exogenous process. It is possible

to expand the definition of the state so that it would also include part of the history of the game. In the limit all aspects of the history can

be included, making the restriction to strategies that condition on the state irrelevant. The goal of this paper is to test how restrictive it is to

focus on equilibria that ignore past play. For further discussion on why it is meaningful not to include elements of the history that are not

payoff-relevant as part of the state see Mailath and Samuelson (2006).
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In an MPE, firms have no means of enforcing anything but the static Nash equilibrium in

the quantity choice. Since B > A, firms will always choose the high quantity when both are in

the market. If any firm were to select the low quantity and use a strategy that conditions only

on the state, the other could systematically take advantage by selecting the high quantity. The

quantity choices in an MPE lead to the following reduced form for the quantity stage payoffs:

Πit = sit·(2A−B·s−it). In other words, a firm earns the highest quantity stage profits (2A) when

it is alone in the market and the defection payoff (2A − B) when both firms are in the market

at the same time. With the quantity-stage profits set, an MPE specifies entry/exit probabilities

for each value of the state. The existence of MPE equilibria is discussed in Doraszelski and

Satterthwaite (2010), but our assumptions guarantee that there is a symmetric MPE consisting

of a set of state-specific cutoff strategies. In the next section, we compute such equilibria for

specific parametrizations that we implement in the laboratory.

3 Experimental Design

Standard Treatments

The underlying primitives of the model areA,B, C, δ, and the distribution of ε. The goal of the

structural estimation procedure will be to recover estimates forA,B, andC using experimental

data, assuming that the econometrician does know δ and the distribution of ε. We will generate

data in the laboratory using three different values forA. For our purposes, it is useful to haveA

as a treatment variable, as it affects whether collusion in the quantity choice can be supported

as an SPE or not. We will describe collusive equilibria later in this section, but to intuitively

see why, notice –in Equation 1– that as A increases, the temptation of deviating from a low

to a high quantity increases as well. Hence, for a given δ, it will be more difficult to support

collusion when the own effect on profits (A) is larger.

In all our treatments, parameter B, which measures the effect on player’s own profits if the

other player increases production, is set to 0.60. Depending on whether the value of A is small

(AS), medium (AM ), or large (AL), the coefficients are, respectively: AS = 0.05, AM = 0.25, or

AL = 0.40. The three payoff matrices in Table 1 display the quantity stage payoffs for the case

when both subjects are in the market for each of the three values of A. Finally, we set C = 0.15.

For presentational purposes in the laboratory, all payoffs are multiplied by 100.

Treatment variable A is used to perform the main exercise of the paper. For example, we
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0 1

0 65 5

1 70 10

AS = 0.05

0 1

0 85 25

1 110 50

AM = 0.25

0 1

0 100 40

1 140 80

AL = 0.4

Table 1: Quantity-choice payoffs for the row player in the laboratory

will recover estimates from the baseline treatment, AL, (where collusion is not an SPE) and

then make predictions for the treatment with AS (where collusion is supported as an SPE). If

collusion is indeed present in the data for AS , then the counterfactual prediction that assumes

MPE play will entail a large prediction error.

Characterization of the Stationary MPE

We compute for each treatment (three values for A) the cutoff-strategies corresponding to the

symmetric MPE and report them in italics in Table 2.14 For the dynamic entry/exit choice,

the equilibrium MPE strategy provides the probability of being in the market next period,

conditional on the current state, p(s), and we refer to the vector with such probabilities as p.15

Given the uniform distributions for the random entry fee and the random exit payment, we

can interpret these probabilities as thresholds. Consider, for example, the AS treatment when

s = (1, 0). In that case, the strategy prescribes for the agent in the market to exit if the random

exit payoff is higher than the threshold 0.458.16 In other words, when the firm is in the market

(s(1, ·)), the threshold indicates the lowest scrap value at which the firm would exit, and we

will refer to these as exit thresholds. Entry thresholds (when the state is s(0, ·)) include only

the random part of the entry fee and indicate the highest random entry fee for which the firm

would enter. For example, if in the current state both agents are out (s = (0, 0)), the MPE

probability of being in the market next period for the AS treatment is 0.161. This means that,

to enter the market in that state, an agent is willing to pay a random entry fee of up to 0.161.

14In Appendix A we provide details behind these computations.
15The table reports the conditional probability of being in the market next period for the agent whose current state is the first component

of s. For example, if s = (1, 0), then p(1, 0) reports the corresponding conditional probability for the firm that is currently in the market.
16In the laboratory random entry and exit payoffs are multiplied by 100 given the normalization. For predictions and when we report

results in the text we omit the normalization and will thus refer to random exit and entry payoffs as numbers between 0 and 1.
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Table 2: Cutoff-strategies for each treatment: MPE and CE

AS AM AL

Conditional probability MPE (p) CE (pc) MPE (p) CE (pc) MPE (p) CE (pc)

p(1, 0) 0.458 0.519 0.688 0.823 0.880 0.925

p(1, 1) 0.360 0.512 0.596 0.784 0.781 0.870

p(0, 0) 0.260 0.368 0.498 0.663 0.681 0.757

p(0, 1) 0.161 0.362 0.408 0.624 0.583 0.702

Is collusion in quantity

choice an SPE: YES YES NO

Gains from collusion in

quantity choice only: 450.8% 75.9% 32.1%

Gains from collusion in

quantity + dynamic choice: 481.1% 93.2% 52.0%

Note: This table presents the conditional probability for the firm whose current state is the first component of s. p(s) indicates the probability of being in the market next period condi-

tional on being in state s in the current period. The probabilities are presented for each of the three values of A as indicated in the top row. Predictions are presented for the MPE(p)

as well as the case where players collude in the quantity choice, CE (pc). The bottom panel of the table indicates whether the collusive equilibrium can be supported as an SPE and

how high the gains over the MPE would be. Full collusion refers to the joint monopoly case with computation in Appendix A where firms not only coordinate their static quantity

production choice but also coordinate in the entry/exit choices.

The stationary MPE reported in Table 2 makes clear predictions within and across treat-

ments. In Appendix B we explicitly formulate these comparative-statics hypotheses.

Collusive Equilibrium

An assumption underlying the symmetric MPE is that agents play a Nash equilibrium in the

quantity stage. In principle, however, it is possible for agents to attain higher than MPE pay-

offs in equilibrium if they collude in their quantity choices. We now present a non-Markovian

strategy that can support collusion in the quantity choice (details in Appendix A).

Assume that both agents select the low quantity whenever they are in the market. In such

a collusive arrangement the value of being in the market is higher. The entry and exit prob-

abilities under such stage game collusion are denoted as pc (Table 2). When both agents are

in the market, the outcome of the quantity choice is observed before the exit decision is made.

This enables agents to use trigger strategies: as long as they have colluded in the past, they

will make their entry/exit decisions according to pc. If any agent ever deviates to the high

quantity, then all entry/exit decisions made from then onwards follow the MPE thresholds

12



(p), and agents choose the stage-Nash quantities.

For the discount value that we implement in the laboratory (δ = 0.8), the collusive strategy

is an SPE for AS and AM . In fact, Table 2 shows that the gains from collusion relative to the

MPE are large: 450.8% and 75.9% for AS and AM , respectively. For AL, there are incentives to

deviate from the collusive strategy, and it does not constitute an SPE.

From now on, we will refer to the SPE that uses the collusive strategy as the collusive equi-

librium (CE), although this is simply one of possibly many collusive equilibria. We think of the

characterized collusive equilibrium as a natural benchmark for collusive behavior.17

We now want to highlight some aspects of the comparison between MPE and CE proba-

bilities. First, the ordering of the probabilities across the two is unchanged. In other words,

the difference between the MPE and the CE probabilities is quantitative but not qualitative.

Second, the CE probabilities predict a much smaller effect of competition. Because players

always select the low quantity, the payoff from being alone in the market is closer to the one

of being in the market together. Third, and perhaps most importantly, along the equilibrium

path, the CE is consistent with a Markov strategy and looks like an MPE. The only difference

for the computation of the probabilities is the assumption on quantity stage payoffs when both

agents are in the market.

The CE also delivers a prediction for entry and exit thresholds following defection. Exit

and entry thresholds should respond to market behavior according to the collusive strategy:

the market is relatively less valuable after the other agent deviates from collusive behavior. As

a consequence, agents would be willing to leave for lower scrap values and would be willing

to pay less in order to re-enter the market.18

Optimization errors and No Quantity Choice Treatments

To explain why we introduce a second treatment variable, it is useful to discuss some features

of the environment presented so far. An important reason why we use a binary action space

for quantities is that it makes the trade-off very stark. Consider the alternative, where the

quantity choice is made in a continuous or in a large discrete action space. The problem for

17This collusive equilibrium, however, does not support the most efficient outcome from the firms’ perspective. To achieve efficiency, firms

would also need to coordinate their entry/exit choices. In Appendix A we also provide the computation of entry/exit thresholds under joint

maximization. However, given the private nature of scrap values and the random portion of the entry fee, coordination is difficult and we

favor a collusive equilibrium benchmark that does not rely on such demanding conditions. More importantly, the data are not consistent

with the predictions under joint maximization of profits.
18For further details, see Appendix B where we explicitly state these hypotheses.
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subjects who want to collude would be more challenging as they first have to coordinate on the

collusive quantity and, in addition, on which quantity to use for punishments. With just two

choices there are no such coordination problems; the difference in payoffs between collusive

and stage-Nash outcomes is easier to see.

From an experimental design perspective, it would have been ideal to keep things as simple

in the dynamic decision as well, which would have meant a small number of discretized entry

cost and scrap values. However, both for equilibrium existence and estimation, the model

requires a continuum of scrap values and entry fees - see section 4. One consequence of this

choice is that entry/exit decisions are more demanding on subjects. For example, consider the

case when one subject is in the market and the other is out. For the AS parameter, the MPE in

Table 2 indicates that the subject should exit if the scrap value is 0.458 or higher. For a scrap

value realization of 0.95 most subjects will quickly realize that exiting is worthwhile, but if the

realization were 0.48, the difference in payoffs from exiting and staying in the market is rather

small. In other words, the incentives to evaluate if a threshold of 0.47 is preferred to 0.49 are

weak, and it seems reasonable to expect - ex ante - that subjects’ choices will not exactly meet

the theoretical predictions in entry and exit thresholds. We will refer to such differences as

optimization errors.

It is possible for optimization errors to create a bias in the structurally recovered parame-

ter estimates,19 but the challenges with optimizing entry/exit thresholds are present in both

baseline and counterfactual. Since the main focus of our exercise is to evaluate whether the

incentives to collude affect counterfactual predictions (and not on whether subjects can op-

timally solve a dynamic programing problem), we introduce a second treatment variable to

control for such discrepancies from the theoretical benchmark.

For each value of A, we conduct an additional treatment where agents do not make a quan-

tity choice. The quantity-stage payoffs when both are in the market, are those prescribed by

the unique Nash equilibrium. We refer to these treatments as No Quantity Choice and to treat-

ments that do involve a quantity choice as Standard treatments. There can be deviations from

the optimal policy in the No Quantity Choice treatments, but such errors are, by definition,

unrelated to collusion incentives. Therefore, the question is whether errors in counterfactual

predictions are higher in the Standard treatments than in the No Quantity Choice treatments.

This comparison holds the rest of the dynamic environment and therefore the propensity for

19In subsection 5.2 we discuss a specific mechanism that can create a bias.
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other optimization errors fixed.20

To summarize, we implement a 3× 2 between-subjects experimental design, where we ex-

plore three different levels of A along one dimension and whether or not players can choose

stage-game quantities along the other. Before describing our data, we will outline the struc-

tural estimation procedure.

4 Estimation Procedure

The first part gives a brief introduction to the estimation procedure. We also present results of

a Monte Carlo study (this is an actual Monte Carlo study and we are not referring to the exper-

iment here). The Monte Carlo serves two purposes. First, it demonstrates that the estimator

indeed recovers the underlying parameters consistently if the model is correctly specified. Sec-

ond, it helps to quantify the bias that results if data is coming from collusive interactions and

the model is mis-specified.

4.1 Two Stage Estimator

We follow the two-stage approach (Aguirregabiria and Mira, 2007, Bajari et al., 2007, Pakes et al.,

2007 and Pesendorfer and Schmidt-Dengler, 2008), which is computationally tractable and,

under certain assumptions, does not suffer from the problem of multiple MPEs.

The procedure works under the assumption that the observed behavior is the result of an

MPE. Under this assumption, a dataset containing the commonly observed payoff relevant

states as well as the choices of firms (enter/exit), allows the researcher to observe the corre-

sponding equilibrium policy function in the data.21 The first stage of the procedure directly

estimates the policy function, using non-parametric techniques such as kernel-density estima-

tion or sieves.22 In this case, it simply consists of four conditional choice probabilities (p̂(a|s))

20The characterization of the collusive equilibrium presented earlier is useful for our purpose as it describes a rationale for why using

the Markov assumption at the estimation stage may lead to counterfactual prediction errors. In principle, it is possible that subjects in the

Standard treatment are not following the symmetric MPE, but as long as the (possibly asymmetric) equilibrium that they follow does not

depend on colluding at the quantity stage, such equilibrium is also available in the No Quantity Choice treatment.
21The data under consideration involves several sets of two firms, with each set interacting in a separate market under the rules of our

theoretical model. For each set the econometrician observes whether the firm is in or out of the market in each period of time. From the

econometric perspective cross-sectional and inter-temporal variation are equivalent.
22In our case, the procedure assumes that the econometrician knows the distribution functions for the private information terms. Specifi-

cally, in line with the empirical literature on dynamic games we assume that the econometrician knows the discount factor, δ = 0.8, and that

φ ∼ U [0, 1] and ψ ∼ U [0, 1].

15



for the dynamic choice, one for each state. The second stage uses the estimated policy func-

tion to recover the structural parameters. Using the first-stage choice probabilities, one can

invert the value function, V̂ . The inverted value function together with a parameter guess,

θ̂ = {Â, B̂, Ĉ}, can be used to obtain a set of predicted choice probabilities: Ψ(a|s; V̂ , θ̂). These

predicted choice probabilities are then used for a simple moment estimator where p̂ is the

vector of all choice probabilities, and Ψ(θ) is the vector of respective predicted choice proba-

bilities:23

min
θ

(p̂−Ψ(θ))′W(p̂−Ψ(θ))

Notice that the procedure only uses entry and exit decisions and does not rely on observing

choices in the quantity stage. However, entry and exit decisions are affected by choices in the

quantity stage. For example, firms that are colluding in quantities are more inclined to stay in

the market, which becomes more valuable under collusion.

Some models treat the stage game as a function of only the number of firms in the market,

and others explicitly use stage-game data. Here, we assume that the researcher does not have

access to quantity data. However, since we do collect quantity-stage data, we will also report

how estimates would differ if this additional information was taken into account.

4.2 Monte Carlo

The main purpose of the Monte Carlo simulation is to verify that the three parameters of in-

terest (A, B and C) are consistently estimated if we assume the correct data generating process

(i.e. the symmetric MPE). We also explore what estimates (bias) would result if, instead, the

data is generated according to the CE identified earlier.24

The data-generating process matches the features of the data we collect in the laboratory,

and details are presented in Appendix A.25 The main message from the exercise can be sum-

23We use the identity matrix as a weighting matrix (W).
24Notice that to the econometrician the CE on the equilibrium path looks like an MPE. Both for the MPE and for the CE, conditional on the

state, choices are made according to probabilities that do not change in time. The punishment trigger will not be executed and there will be

no “structural break” in the conditional choice probabilities. Specifically, recall that the econometrician only has access to data on entry and

exit, and to recover the unknown structural parameters, the procedure assumes that the data is being generated from a symmetric MPE. If

the MPE assumption holds, then agents condition the choices at t only on the payoff-relevant state at t. If the data was generated by collusive

play and at some point one of the firms defects, then a portion of the data would follow CE probabilities (until the defection), and another

portion of the data would follow MPE probabilities. In this case, with enough data, the MPE assumption can be shown to fail: agents would

be conditioning on the state and on past behavior. But if there are no defections, along the equilibrium path play looks as in a symmetric MPE.
25We also quantify the bias in counterfactual predictions under collusion. We provide those results in subsection 5.3
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marized in Figure 1, which focuses on the AM case, but the findings for other A values are

qualitatively unchanged. Consider the first observation, where the collusion rate is zero. In

this case, the data is generated under the assumption of MPE play (no collusion in the market).

The vertical axis presents the estimation for each of the three parameters of interest. As can

be clearly seen, the estimation is very accurate, indeed recovering the true parameters when

there is no collusion.

The same graphs also shows what happens when the data is instead generated under vary-

ing extends of collusive play. Different collusion rates on the x-axis correspond to different

fractions of firm pairs that collude under the true DGP. Estimation, however, is conducted

under the maintained assumption of no collusion. As collusion in the data goes up, we see

that the estimates of A and C are entirely unaffected. However, the interaction parameter B

becomes more downwards biased as the collusion rate increases.26
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Figure 1: Parameter estimates under different collusion probabilities for the AM treatment.

26Simple algebra shows that the lower bound for the estimate ofB must beA since the difference in earnings in the market when the other

player is in versus out (2A−A = A) is entirely attributed to B.
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5 Results

5.1 Experimental Sessions

We conducted three sessions for each of our 6 treatments with subjects from the population

of students at UC Santa Barbara. Subjects participated in only one session, and each session

consisted of 14 participants.27 The average participant received approximately $19 and all

sessions lasted close to 90 minutes.28

In a given session, subjects will play several repetitions of the supergame. Subjects are

randomly rematched with another subject in the room each time a new supergame starts.

Repetitions of the supergame allow subjects to gain experience with the environment. In total

there are 16 supergames per session.29 Additional details regarding the implementation of the

experiment are given in Appendix F.

5.2 Overview

We first document some basic patterns in the data and then proceed to the structural estima-

tion and counterfactual prediction. We find that subjects’ behavior is qualitatively close to

the predictions, which indicates that subjects are reacting to the main tensions in the environ-

ment. Moreover, we also find that subjects respond to the collusion incentives in the predicted

manner so that, in principle, it is possible that the structural estimates – under the incorrect

assumption of an MPE in the data – are biased and lead to large errors in counterfactual pre-

dictions. However, we also document that successful collusion is rare and that punishments

after unsuccessful collusion attempts are consistent with a reversion to the MPE. The frequent

breakdown of collusion is reflected in low additional bias in counterfactuals due to collusion

(section 5.3).

27Once participants entered the laboratory instructions were read by the experimenter (see Appendix G with instructions) and the session

started. Subjects only interacted with each other via computer terminals and the code was written using zTree (Fischbacher, 2007). At the

end of the session payoffs for all periods were added, multiplied by the exchange rate of 0.0025$ per point, and paid to subjects in cash. One

session of the treatment with AS -No Quantity Choice treatment had 12 participants.
28The environment the theory is trying to capture involves much larger stakes. While we cannot infer whether behavior in this setting is

sensitive to the size of the stakes, see Camerer (2003) for numerous examples where increasing the stakes did not lead to changes in reported

behavior.
29We observe 315 dynamic games per treatment. Since the length of these games is random this translates into a random number of inter-

actions, where an interaction is defined as a tuple of state and dynamic choice for each player. In AL we observe 1933 repeated interactions

in the treatment with quantity stage choice and 1954 in the treatment without; in AM it is 2220 with quantity stage choice and 2052 without;

and in AS it is 2080 and 1928 respectively.
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In Figure 2, we provide an overview of the entry/exit choices by focusing on the aggregate

frequencies, which constitute the central input of the first stage in the estimation routine. For

each treatment, the white diamonds display the estimated frequency of being in the market

next period (vertical axis) for each possible current state (horizontal axis).30 We also represent

95% confidence intervals around the estimate and the theoretical MPE probabilities of Table 2,

which are shown as black circles.

A_L, no quant. choice A_L, standard A_M, no quant. choice A_M, standard A_S, no quant. choice A_S, standard
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Figure 2: Probability of being in the market next period for each current state by treatment.

Support for Comparative Statics and Presence of Inertia

A first observation is that the data in all treatments can be organized fairly well by the MPE

comparative statics. All 60 possible comparisons are in the predicted direction, and 50 are sta-

tistically significant at the 5% level or lower (2 more at the 10% level). The reader is referred

to Appendix B and Appendix C for details on the comparisons. Evidence of behavior con-

sistent with MPE comparative statics is not evidence of MPE play, because such comparative

statics are not unique to the characterized MPE. Indeed, the CE shares several comparative

statics. The observed comparative statics, therefore, do not allow us to determine which type

30Table 4 shows the first stage frequencies presented graphically in Figure 2.
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of equilibrium better rationalizes choices. However, the evidence does indicate that subjects

are responding to the economic incentives in a sensible manner.

While the data is in line with the MPE comparative statics, Figure 2 also shows that there

is a quantitative deviation from the theoretic MPE probabilities. Subjects are more likely to

stay in the market when they are already in (white diamonds are above the black circles) and

less likely to enter if they are out (white diamonds are below the black circles). Relative to the

prediction, subjects are demanding higher payoffs to leave and are willing to pay less to enter

the market. This, in turn, means that subjects are more likely to remain in their current state

than predicted by the MPE. We will refer to this phenomenon as subjects displaying inertia

relative to the MPE.

Inertia can be a manifestation of what we earlier referred to as optimization errors. To see

how, consider the case of a subject in the AS treatment who is in the market while the other

is out. According to the MPE, the subject should exit if the scrap value is higher than 0.458.

Exiting the market for a high realization of the scrap value is not difficult to determine, but

determining the lowest value at which to sell is more difficult. Given the challenge to compute

the threshold, it is possible that subjects use exit thresholds that are more conservative than

optimal, trying to avoid “selling” the company for a lower-than-optimal value. Likewise,

subjects may use entry thresholds that are more conservative than the MPE, because they want

to avoid paying a higher-than-optimal entry fee.31 Under this rationale, the optimization errors

are not centered around the MPE prediction but are systematically on one side of the predicted

threshold.32 It is possible that experience could reduce or eliminate inertia. However, we find

that there is little to no change in inertia as the session evolves. Specifically, in Appendices

B and C we present detail on choices as the sessions evolve, which allow to study if inertia

changes with experience and more broadly possible learning effects. We document that there

is little evidence of play moving in a systematic direction, suggesting that inertia might not

simply disappear as subjects earn more experience with the environment.

Table 3 summarizes the absolute difference between theoretical MPE probabilities and em-

pirical probabilities across treatments. We will refer to the absolute difference between MPE

and empirical probabilities in the No Quantity Choice treatments as inertia. We distinguish

31This phenomenon is consistent with inertia described in experiments of choices under experience. The canonical example in such exper-

iments is a decision problem in which subjects select between pressing button A or B, and know that each button will generate a payoff but

are not told any details about the distributions generating payoffs. Instead, subjects can experiment and learn from experience the payoffs

they receive when the click on each button. In this environment many subjects display inertia in the sense that they keep on pressing the

same button even if recent observations suggest that switching may be preferable (see Erev and Haruvy, 2015 for a detailed exposition).
32In footnote 39 we argue that inertia cannot be generated by risk aversion.
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those differences from the corresponding differences in Standard treatments, which might (in

part) also be due to collusion. Average inertia (as measured in each treatment by the third

column in Table 3) is comparable across No Quantity Choice treatments, ranging between 0.13

and 0.17. While the averages are similar, the presence of inertia in entry and exit thresholds

changes with A. As A increases from AS to AL, inertia shifts from exit to entry thresholds.

Table 3: Differences between MPE and empirical probabilities

AL AM AS

Exit Entry Average Exit Entry Average Exit Entry Average

Standard 0.097 0.269 0.183 0.216 0.134 0.175 0.326 0.043 0.184

No Quantity Choice 0.082 0.260 0.171 0.171 0.123 0.147 0.216 0.041 0.128

Note: This table presents a summary of the differences between MPE and empirical probablilities. In each state we first compute the absolute difference

between equilibrium MPE probabilities and empirical probabilities reported in Table 4. ‘Exit’ columns present the average in p(1, 0) and p(1, 1) (related

to exit thresholds). ‘Entry’ columns present the average in p(0, 1) and p(0, 0) (related to entry thresholds). The average over all probabilities is presented

in the ‘Average’ columns.

The presence of inertia will bias the structural estimates, but it is important to highlight

that inertia is present in both Standard and No Quantity Choice treatments. Hence, it is not a

phenomenon that is due to collusion.

Evidence of Short-lived Collusion

We can directly observe evidence for collusion by inspecting quantity-stage choices in Stan-

dard treatments. In the first period, all subjects start in the market, and their quantity-stage

choices can be used as a measure of collusion attempts. The rate of attempted collusion refers to

the proportion of subjects who selected the low quantity in the first period, while the rate of

successful collusion captures the proportion of subjects who selected the low quantity and have

a partner who also selected the low quantity in the first period.33 The dark-shaded bars in the

left panel display the average attempted and successful collusion rates by treatment (we also

represent 95% confidence intervals around the estimate). Attempts to collude are highest for

the treatments where collusion can be supported in equilibrium (AS andAM ) and lowest in the

treatment where collusion is not sub-game perfect (AL). This indicates that, in the aggregate,

subjects are responding to the incentives to collude.

33The measure of attempted collusion is often referred to in the experimental repeated-games literature as the first-period cooperation rate.

The cooperation rate in later periods is endogenous, as it is affected by earlier choices within the supergame.
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Figure 3: Collusion: Intentions, successes, and failures

For collusion to have an effect on structural estimates, it is necessary that the patterns of

entry and exit are affected by quantity-stage choices. For each treatment, the left-most bar

(black) of the right panel of Figure 3 shows the proportion of subjects who select to be in

the market next period, conditional on both subjects colluding in the current period. The bar

in the center (dark gray) shows the proportion of subjects who select to be in the market next

period if at least one subject did not select the collusive quantity.34 These differences, which are

present in all treatments, are consistent with the CE: it shows that when collusion is successful

it can have an effect on entry-exit choices, hence introducing a bias in the structural estimates.

However, to understand how much this can bias the estimates, it is crucial to determine

how often collusive attempts are successful. A first observation from the left panel of Figure 3

is that even in the treatments where collusion attempts are highest, approximately 50% of

subjects make choices that are consistent with the stage-Nash equilibrium and hence are not

trying to collude. If, however, in the first period one of the two subjects does not collude in the

34The proportion of subjects who select to be in the market next period is a measure for the probability of being in the market next period.

The figure for theAS treatment is lower than for other treatments because in theAS treatment the outside option is relatively more attractive

than in other treatments. Notice, in addition, that the bar in the center (at least one of the subjects did not collude in the quantity stage) is of

comparable magnitude to the right-most bar that represents the corresponding no-quantity-choice treatment, where by definition no subject

can collude. The figure shows a difference only in the case of the AS treatment.
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quantity stage the belief that collusion will take place in the future is likely lower.35 The rate

of successful collusion is presented in the left panel of Figure 3 in light gray. The figure shows

that slightly more than a quarter of subjects succeed in colluding in the first period. In other

words, in treatments where collusion can be supported in equilibrium, about three-quarters

of subjects do not experience a first-period outcome that would foster a belief of collusion for

future periods. Finally, comparing the two right-most bars in the right panel of Figure 3, we

observe that the dynamic choice after unsuccessful collusion in standard treatments is close to

the dynamic choice in the no-quantity choice treatments.

The previous observations are representative of broader patterns in supergame choices. A

formal study of quantity-stage choices throughout the supergame is presented in Appendix C,

where we conclude that successful collusion represents approximately 12% of all choices. In

cases where collusion does not succeed, the analysis shows that a large proportion of choices

are consistent with the punishments of the CE (using the stage-Nash equilibrium). Overall,

the analysis indicates that while a large proportion of subjects intends to collude, and while

successful collusion attempts can have an impact on entry-exit decisions, there are relatively

few successful cases. In addition, while there is evidence that quantity-stage collusion can

affect thresholds, most differences are small and not statistically significant.

5.3 Structural Results

Parameter Estimates

The structural parameter estimates are reported in Table 4.36 We consider the estimates of A

first. The estimates are below the true parameters in all treatments. However, for both the

Standard and the No Quantity Choice treatments we find that ÂL > ÂM > ÂS . Moreover, for

a fixed true value of A, the estimates of the Standard and the No Quantity Choice treatments

are relatively close to each other. For instance, for AM the estimates are Â = 0.14 and Â = 0.17

for the Standard and No Quantity Choice treatments, respectively.37

35Using the Monte Carlo exercise reported in Figure 1 as a reference, the attempted collusion rates indicate that the bias in parameter B

would be considerably below the maximum possible bias. Still, if 50% of subjects successfully collude, the bias can be substantial. But their

expectations will likely be lower than 50% as the rate of successful collusion is lower.
36The estimates in Table 4 use data from all supergames in each session. In Appendix D we present estimates constraining the number of

supergames included and show that the estimates are robust to changes in the sample. Only in the AL-Standard treatment do we observe an

increase in A once we restrict data to the last eight supergames.
37Regarding the precision of the estimates, Table 4 shows that A is estimated with small standard errors in all treatments except for the

AL-No Quantity Choice treatment.
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Table 4: Estimated and theoretical entry/exit probabilities for each treatment

along with parameter estimates.

Standard No Quantity Choice
State (si, s−i) (1, 0) (1, 1) (0, 0) (0, 1) (1, 0) (1, 1) (0, 0) (0, 1)

A = 0.4, B = 0.6, C = 0.15

MPE 0.880 0.781 0.681 0.583
CE 0.925 0.870 0.757 0.702
Empirical 0.967 0.887 0.381 0.345 0.938 0.886 0.435 0.310

Parameter A B C A B C

Estimates 0.18 0.11 0.54 0.22 0.22 0.56

Std. Err 0.01 0.03 0.03 0.05 0.13 0.02

A = 0.25, B = 0.6, C = 0.15

MPE 0.701 0.602 0.502 0.403
CE 0.768 0.737 0.612 0.580
Empirical 0.881 0.854 0.339 0.299 0.871 0.774 0.369 0.290

Parameter A B C A B C

Estimates 0.14 0.05 0.55 0.17 0.19 0.47

Std. Err 0.01 0.03 0.02 0.01 0.04 0.02

A = 0.05, B = 0.6, C = 0.15

MPE 0.459 0.360 0.260 0.161
CE 0.519 0.512 0.368 0.362
Empirical 0.764 0.707 0.210 0.196 0.710 0.540 0.184 0.166

Parameter A B C A B C

Estimates 0.10 0.07 0.53 0.08 0.20 0.43

Std. Err 0.01 0.03 0.02 0.01 0.04 0.02

Note: The table provides an overview over all estimates (standard errors) as well as first stage probabilities (Empiri-

cal), the latter of which can be compared to the theoretical MPE and Collusive probabilities. Theoretical probabilities

coincide for Standard and No Quantity Choice treatments. Results are shown for each of the six treatments with

different market sizes (A) and conditional on whether there is a quantity choice or not.

The entry cost C is on average estimated to be 3.4 times higher than the true value, and
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this bias is present in all treatments. Both Standard and No Quantity Choice treatments show

higher estimates for C of a comparable magnitude.

Regarding the estimates of B, we make three main observations. First, the estimates range

from 0.05 to 0.22 and are well below the true value of 0.6 in all treatments. Second, the esti-

mates are lower in the Standard treatments than in the No Quantity Choice treatments.38 For a

fixed value of A, the estimate for the No Quantity Choice treatment at least doubles that of the

Standard treatment. Third, the estimates in all treatments with No Quantity Choice are quite

close to each other, but in the Standard treatments the estimates are lower for AS and AM .

In all treatments we therefore report structural estimates that are quantitatively far from

the true values. We find two main sources for the differences. First, the presence of inertia in

entry/exit thresholds can, in principle, introduce a bias in all coefficients. The second source is

collusion: the estimates of B are further downwards biased in Standard relative to No Quan-

tity Choice treatments.39

Inertia

In Appendix E, we document the effects of inertia in detail. Specifically, in Section E.1., we

present three procedures that modify the structural model to explicitly account for inertia.

We prefer the third procedure, which we call myopic inertia-augmented model, because it re-

covers estimates that are much closer to their values and in many cases significantly reduces

counterfactual bias. The model involves estimating a fourth parameter, which can be inter-

preted as a perceived cost for either entering or exiting the market. Inertia in this model is

myopic in the sense that the agent does not expect to pay this cost for entering and exiting

in future periods.40 The myopic inertia-augmented model recovers a parameter of B closer

to the true value and a lower estimate for C. These findings are consistent with Monte Carlo

38We have implemented a non-parametric test based on a bootstrap procedure to determine the significance of those differences. In theAL
treatment those differences are not significant, but for the other two market sizes one can reject at the 5% level that the competition parameters

are coming from the same distribution.
39Our estimations and equilibrium computations are based on the assumption of risk neutrality. However, allowing for risk aversion

cannot rationalize the data. We numerically computed equilibria under risk aversion and it moves the probability that a firm wants to be in

the market next period up in all four states. The intuition is the following. There are two ways to earn money in the market. The first one is

by staying in the market and collecting rents and the second is to earn scrap value by entering the market for low cost and exiting for high

resale values. But the latter way to earn profits is more “risky” due to the randomness of entry cost and scrap values. Players with higher

risk aversion therefore want to stay in the market more often.
40A possible justification behind this extension is that the agent considers a realized state differently than a potential state that can happen

in the future. That is, if the agent is in the market, the agent has an “extra” valuation for the current state because that is what she has now.

But when she considers the future, she doesn’t attach an “extra” valuation to being in the market tomorrow because that state has not yet

materialized.
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simulations that we report in Section E.2. Using simulations, we show that inertia always bi-

ases the estimates of C upwards, and that the estimates of A and B can be biased upwards or

downwards. The pattern of entry and exit that would bias the estimate of B upwards is not

present in our data, and consistently, we do not observe an upwards bias in any estimate of B

reported in Table 4. However, A is biased downwards in AL and AM but upwards in AS . The

Monte Carlo simulations illustrate that the upwards bias in Â can result when inertia is mostly

present in exit thresholds, as we observe in AS .

While inertia is present in all treatments, the second source of bias (collusion) affects Stan-

dard and No Quantity Choice treatments differently. A question then is to what extent the

counterfactual bias from inertia will interact with the one from collusion. Monte Carlo simu-

lations with inertia and collusion (Section E.2 of Appendix E) show that those two biases do

not interact.41 In other words, the simulations indicate that, even with inertia, the bias from

collusion will still only show up in B. This insight will be important for discussing the results

of the counterfactual bias due to collusion.

Correcting for Collusion by using Empirical Market Quantity Choice

The estimation so far assumed that the econometrician has no information on quantity choices.

As was pointed out, deviations from Nash stage-game behavior can only occur as part of

an equilibrium with dynamic punishment strategies. As the empirical analysis of quantity

choices has revealed, collusion often breaks down, which implies a distribution of quantity

choices that is in between the fully collusive outcome and static Nash. Under the assumption

that subjects hold correct beliefs about implied quantity choices, we can adjust for actual mar-

ket behavior by imputing the observed frequencies. Our Monte Carlo simulation shows that

such an adjustment will only affect the estimate ofB. ForAL, this adjustment increasesB from

0.11 to 0.15, for AM from 0.05 to 0.09, and for AS from 0.07 to 0.13. Using the available quantity

choice data, one can therefore move the estimates ofB closer to the true value. Consistent with

the equilibrium prediction, these adjustment are in percentage terms much larger in the AM
and AS treatments. However, even after adjustment, the estimates of B are far from their true

value, which mirrors the findings from the No Quantity Choice treatments and foreshadows

our discussion of the effect of collusion on counterfactual predictions.

41Figure 9 reproduces the analysis of Figure 1 for the AM treatment adding inertia, and we document the same pattern. As the collusion

rate increases, the estimate of B is biased downwards, but the estimates of A and C are unaffected.
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Counterfactual Calculations

We now come to the main exercise, which is to use the recovered parameters to predict behav-

ior in another treatment, and then compare predicted behavior with actual laboratory behavior

in those treatments. Unlike in typical applications with observational data, we observe each

treatment and therefore each counterfactual scenario. This means that we can estimate the

parameters for each treatment and also run the counterfactual for the respective remaining

treatments. In total, this amounts to six different counterfactuals for the Standard case and six

different counterfactuals for the No Quantity Choice case.

We use the term baseline treatment for the treatment that provides the estimated parameters

to predict behavior elsewhere. To obtain the counterfactual parameters, we scale the recovered

market size parameter by the factor that would make the true value of A in the baseline equal

to the counterfactual true value of A. For example, for the AL-No Quantity Choice treatment,

we recovered Â = 0.22. If we want to predict behavior in the case ofAM , we scale the estimated

parameter by 5/8 (0.25/0.4). The other two parameters, B̂ and Ĉ, are kept constant. The results

are presented in Table 5.42

Table 5: Counterfactual predictions

Baseline
Prediction AL Prediction AM Prediction AS

MAE(p) MAPE(V) MAE(p) MAPE(V) MAE(p) MAPE(V)

AL

Standard - - 0.11 37.8% 0.20 68.5%

No Quantity Choice - - 0.08 40.8% 0.13 64.9%

AM

Standard 0.13 82.3% - - 0.18 65.1%

No Quantity Choice 0.12 84.3% - - 0.10 50.9%

AS

Standard 0.36 949.1% 0.41 621.8% - -

No Quantity Choice 0.36 716.2% 0.32 326.4% - -

Note: The first column indicates the baseline treatment and subsequent columns the counterfactual. MAE(p) reports the mean absolute error in

the prediction of probabilities. MAPE(V) reports the mean absolute percentage error in the prediction of continuation values.

For each of the six counterfactuals, Table 5 reports two measures. The first measure cap-

tures errors in the predicted probabilities of being in the market next period. The mean abso-

42More detailed results, conditional on states, are shown in Appendix D.
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lute error in probabilities (MAE(p)) is the absolute difference between the actual and predicted

probabilities, averaged across states.43 Our preferred measure captures the mean absolute per-

centage error in firm values (MAPE(V); see Equation 6 in Appendix A for the expression used

to compute the continuation values (V(s))). It is the absolute percentage difference between

actual and predicted firm values, averaged across states.

Overall, we find that collusion does not increase counterfactual prediction errors substan-

tially. When the baseline is AL and there is No Quantity Choice, the MAPE(V) for the AM
counterfactual is 40.8%, which is close to 37.8% in the Standard treatment. If the prediction

error in the No Quantity Choice treatment had been substantially smaller than in the Standard

treatment, it would have meant that collusion is a driver of prediction errors. Instead, we ob-

serve a prediction error of similar magnitude. When the counterfactual treatment is AS , there

is an increase in the MAPE(V), but again there are only small differences between treatments

with and without quantity choice. The same pattern holds for counterfactuals whereAM is the

baseline.

Lastly, Table 5 shows that when the baseline isAS , prediction errors are substantially larger,

and it appears as if the bias shrinks (by about 25% and 48%) if we don’t allow for collusion.

In this case, however, our counterfactual exercise is misleading, due to extreme prediction

that the model makes. When we use the ÂS estimate to obtain a counterfactual value of A,

the resulting value is above the actual estimate. For example, we compute the counterfactual

for the AL-Standard treatment as: ÂASL = 0.4
0.05

ÂS = 0.64 > ÂL = 0.18. In other words, the

prediction for the AL parameter, using AS as the baseline (0.64), is 3.5 times the best estimate

that we have from behavior in the AL-Standard treatment (0.18). The market value in the

counterfactual (0.64) is in fact so large, that being in the market becomes an absorbing state.

This is shown in the last set of graphs in Figure 10 (Appendix E).44 When AL or AM are used

as baseline treatments, it is also the case that the counterfactual predictions of A are far from

the estimated values. However, such distortions do not predict an absorbing state.45

To make it easier to judge whether the counterfactual biases due to collusion are large

43The table presents the simple average across states. It is also possible to weigh states depending on how frequently they are visited. Since

the frequency of visits to a state depends on the treatment, there are two possible weights: using the baseline or the counterfactual weights.

Qualitatively using either weights would not change the findings we report.
44Being in the market is an absorbing state if p(1, 0) = p(1, 1) = 1. With these probabilities if the subject is ever predicted to be in the

market, she will not leave. The same qualitative outcome happens when AS is the baseline and AM is the counterfactual treatment. For the

Standard treatments, for example, ÂASM = 0.4 > ÂL = 0.14.
45For example, consider the Standard treatments when AL is the baseline and AS the counterfactual. In this case, ÂALS = 0.05

0.4
ÂL =

0.023 < 0.10 = ÂS . The difference between the predicted value (0.023) and the actual estimate (0.10) is large and it does introduce prediction

errors, but there is no absorbing state in the counterfactual as the first row of Figure 10 shows.
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or small we now provide a benchmark. The benchmark makes again use of Monte Carlo

results, where we now compute the maximal bias in counterfactuals due to collusion.46 This

benchmark is computed under the assumption that there is no other confounding deviation

from the Markov perfect equilibrium besides collusion and we refer to this benchmark as

Maximal.

To allow for a direct comparison with the counterfactual bias resulting from our estimates

we therefore take the following approach. We conduct a second set of counterfactual pre-

dictions where we assume the econometrician knows the counterfactual entry cost Ĉ and the

market size parameter Â but uses the estimate of B from the baseline treatment. To understand

our approach for the comparison it is important to keep in mind that collusion only biases B

and that other parameters are still unbiased, which is is true even under inertia (Figure 9 in

Appendix E). In other words, the exercise “controls” for confounding variation in the data

that leads to biases in parameters other than B. While in the the No Quantity Choice treat-

ments the bias in B̂ can not stem from collusion the B̂ in Standard treatments might be biased

both because of collusion and other confounding factors. In particular, inertia will also lead

to downwards bias in B. Therefore, the comparison of counterfactual bias in Standard and No

Quantity Choice treatments isolates the portion of the bias due to collusion. The computations

are summarized in Table 6.47

The main message from this second exercise is consistent with the findings we documented

earlier, as the prediction errors due to collusion are rather small. The two highest prediction

errors reported in Table 6 (in terms of MAPE(V)) take place when AM -Standard is the baseline

to predict AL (24.0%) and when AL-Standard is the baseline to predict AM (18.1%). Net of

the counterfactual errors in the No Quantity Choice cases (9.3 and 6.5%, respectively), the

proxy for the prediction errors due to collusion are 14.7 and 11.6%. We then compute the ratio

between this difference and Maximal. We report those ratios in Table 7 and range from 0 to

33%. That is, in the worst case, the observed bias due to collusion is a third of the bias in the

Maximal simulations. In most cases the ratio is substantially lower.

46As a reminder, this maximal bias would result if the econometrician recovers data from a baseline without collusion and then predicts

behavior for a counterfactual with full collusion but under the maintained assumption of markov play, which means the model in the

counterfactual is mis-specified.
47Table 26 in Appendix E presents the predicted probabilities. In Appendix E we also report other counterfactual predictions, such as the

predicted probability of observing a monopoly and a duopoly; see Table 26.
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Table 6: Counterfactual predictions based only on bias in B̂

Baseline
Prediction AL Prediction AM Prediction AS

MAE(p) MAPE(V) MAE(p) MAPE(V) MAE(p) MAPE(V)

AL

Standard - - 0.04 18.1% 0.02 11.6%

No Quantity Choice - - 0.01 6.5% 0.04 4.7%

AM

Standard 0.05 24.0% - - 0.01 6.5%

No Quantity Choice 0.03 9.3% - - 0.04 0.8%

AS

Standard 0.04 5.8% 0.02 6.5% - -

No Quantity Choice 0.03 1.2% 0.00 6.1% - -

Note: The first column indicates the baseline treatment and subsequent columns the counterfactual. MAE(p) reports the mean absolute error in the

prediction of probabilities. MAPE(V) reports the mean absolute percentage error in the prediction of continuation values.

To sum up, we have documented that in most cases the counterfactual bias in the Standard

treatment and the No Quantity Choice treatment are close. The cases where they are not close

entail an extreme prediction that the firm never wants to leave the market. Compared to the

Maximal benchmark, the bias due to collusion is small. After correcting for inertia, one never

mis-predicts the value of the firm by more than 24%. This mis-prediction amounts to, at most,

33% of the possible bias and is often well below this.

In Appendix D we report on a different robustness exercise to test for the impact of collu-

sion on counterfactual prediction errors. We use the parameters we estimate for the Standard

treatments to predict behavior in the No Quantity Choice treatments. This can be interpreted

as predicting behavior in a new market that has the same primitives but might have a dif-

ferent conduct. We then contrast this prediction to actual behavior in No Quantity Choice

treatments. If collusion were large, the prediction error would be large as well. With this

exercise we essentially reproduce our main findings. The observed counterfactual bias due

to collusion represents a relatively small portion of the maximal counterfactual prediction er-

ror due to collusion. Finally, in a related exercise, we use a model where inertia is captured

directly in the estimation. With this inertia-augmented model (Appendix E) we reproduce the

counterfactual prediction exercise. We find that the levels of the counterfactual prediction er-

rors are lower once we control for inertia and that the qualitative conclusions from comparing

Standard and No Quantity Choice treatments are similar.
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Baseline/Counterfactual AL AM AS

∆MAPE(V)
Maximal MAPE(V)

AL - 33% 12%

AM 24% - 5%

AS 4% 0% -

Table 7: Observed relative to maximal counterfactual error from collusion

For each comparison, this table reports the ratio in which the numerator, ∆MAPE(V), is the difference between Standard and No Quantity

Choice MAPE(V) computed using Table 6. The denominator is the Maximal MAPE(V) that can result from collusion, which is reported in

Table 21 of Appendix A.

6 Conclusion

The assumption of Markov play for dynamic oligopoly games is commonplace in applications,

but it is often not possible to test its validity based on only observational data. The laboratory

provides an environment where we can systematically evaluate conditions under which the

restriction to Markov perfect equilibria (MPE) may introduce biases in estimation and coun-

terfactual predictions. One possible source of these biases is collusion if agents condition their

behavior on past play and reach sub-game perfect equilibria that are not MPEs. In this pa-

per, we explore the resulting bias in counterfactual predictions if collusion is ignored. We

take a simplified version of Ericson and Pakes (1995) to the laboratory and construct a series

of treatments for which we characterize an MPE but where it is also possible for a collusive

equilibrium (CE) to emerge. The estimator, however, assumes that the data is coming from

a Markovian equilibrium, which rules out collusion. We use the lab to test how strong this

restriction is.

Our experimental exercise provides several insights. First, the MPE prediction for the

quantity stage is often wrong. We find that a large proportion of subjects intend to collude,

particularly when the incentives are higher. If cooperation were successful, there would be

large biases in the estimators and large prediction errors in counterfactuals due to the assump-

tion of Markov play. However, we also document that cooperation often breaks down and that

successful cooperative attempts are relatively rare.48 As a result, we find that the structural pa-

rameter affected by collusion (B) is more biased in treatments where the incentives to collude

48As highlighted in the Introduction, the evidence that tacit collusion breaks down is not exclusive to the laboratory but consistent with

evidence from the field.
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are higher. The central question, however, is whether the extra bias leads to large prediction

errors. Our results suggest that this is not the case. The prediction errors that we can attribute

to collusion are far from the potential bias that Monte Carlo simulations suggest.

In studying the possible prediction errors introduced by collusion, we uncover a different,

yet systematic, deviation from theoretical predictions in all treatments. We refer to such devi-

ation as inertia and show that it arises even when collusion is not possible. The bias that can

be attributed to collusion pales in comparison to what can be attributed to inertia. Our design

is not equipped to uncover the mechanisms that lead to this behavior. However, we explore

a number of alternatives to rationalize inertia, and we found that a model in which players

myopically perceive an additional switching cost best explains the data. Given its prominent

presence in the data, it is a feature that needs further exploration.

To the best of our knowledge, this is the first paper that uses the laboratory to study the rel-

evance of the Markov restriction for the estimation of dynamic games and counterfactual com-

putations. Our paper illustrates how laboratory methods can be used to substantiate behav-

ioral assumptions that are required for structural estimation. Further experimental research

can help to better understand if the quantitative deviations from the MPE that we document

are a feature of our environment or if they are present in other settings as well. Experimen-

tal methods may be especially attractive to tackle the problem of equilibrium multiplicity in

counterfactuals. In an experiment, the researcher has control over model specification and

can observe not only the parameters, but also true counterfactual behavior as implemented by

experimental treatments.
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ONLINE APPENDICES

Appendix A

Solving for MPE equilibria

We express the equilibrium as a system of equations in terms of choice continuation values.

Denote the per period profits by Πα(st) and let vα(1, st) and vα(0, st) be the continuation value

of entering the market given the state and exiting the market given the state respectively. In

other words, the vα(., st) are the non-random part of the value of choosing either of the two

alternatives, given the current state. The α notation inticates that we are looking for pairs

of values vα(., st)∀st ∈ S and Fα(st+1|., st)∀st ∈ S such that these vα(., st) imply the condi-

tional distribution for the state transition process Fα(st+1|., st) and the state transition process

induces the values vα(., st). This gives us the following recursive expression for the value

functions, which defines a system of equations:

vα(1, st) = Πα(st) + δ ·
∑

st+1∈S

∫
max

{
vα(0, st+1) + ε′(0), vα(1, st+1) + ε′(1)

}
dG(ε′)Fα(st+1|1, st) ∀st ∈ S (3)

vα(0, st) = Πα(st) + δ ·
∑

st+1∈S

∫
max

{
vα(0, st+1) + ε′(0), vα(1, st+1) + ε′(1)

}
dG(ε′)Fα(st+1|0, st) ∀st ∈ S (4)

We focus on symmetric Markov-perfect equilibria.s Since we have four states S = {(0, 0), (0, 1),

(1, 0), (1, 1)} we are solving a system of eight equations in eight unknowns, four of each

vα(1, st) ∀ st ∈ S and vα(0, st)∀ st ∈ S. When the player is in the market dG(ε′) is equal to

one and ε(0) is drawn uniformly from [0, 1], which is the support of the scrap value distribu-

tion. The entry cost ε(1) is always zero in this case. Likewise, if the player is outside of the

market dG(ε′) is equal to 1
1+C

and ε(1) is drawn uniformly from [C, 1 + C] whereas ε(0) is zero

in these states. Due to the possibility of multiple equilibria we solve this system of equations

from many different starting values. In practice we always found only one solution to this

system of equations for each of our parameter constellations of interest. While this is a strong

indication that in our simple case there exists a unique equilibrium, we cannot entirely rule

out that there are other equilibria that our numerical solver did not find. Note that once the

vα(., st) are obtained they imply a set of cutoff values for the scrap value and the random part

of the entry cost, which imply the choice equilibrium choice probabilities.
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Collusive Equilibrium

Let p(a = 1|st, δ) be the vector of MPE choice probabilities. For δ = 0.8, these are the choice

probabilities, which are identified in italics in Table 2. These probabilities maximize the value

function under the assumption that when both agents are in the market they play the stage

Nash equilibrium and receive a payoff of 2A − B. Likewise, let pc(a = 1|st, δ) represent the

probabilities that maximize the value function for the case that agents earn A, the collusive

quantity choice outcome, whenever they are in the market.

The collusive quantity-stage outcome may be supported as an SPE if defection from the

prescribed low quantity choice is punished. Strategies that support collusion have two phases:

the collusion phase and the punishment phase. In the collusion phase both players select

a low quantity in the first period and as long as both have always selected a low quantity

in the past.49 Under collusion they make their entry/exit decisions following the implied

choice probabilities pc(a = 1|st, δ). We consider a punishment that is akin to grim-trigger: if

one agent deviates from low production, then all entry/exit decisions are made according to

p(a = 1|st, δ); and whenever both agents are in the market, the choice is high quantity (stage-

game Nash). To express punishments formally, let mt be given by:

mt =

0 if qi,r = qj,r = 0 for all r ≤ t when st = (1,1)

1 otherwise

In each period, mt is therefore updated according to the latest quantity decisions. Due

to the timing assumptions agents know mt before they make their entry/exit decisions. If

both agents have selected a low quantity (whenever both have been in the market) up to and

including period t, then mt takes on a value of 0. If any agent selected high production in any

period up to and including t, then mt takes a value of 1. Let νi,t be the scrap value, or the

random component of the entry cost, whichever corresponds to the state of the player. In our

analysis we focus on grim-trigger strategies that specify an action for the quantity stage –in

case both agents are in the market– and a decision rule for entry/exit choices. Hence, for each

player i and time period t this class of strategies can be summarized by a pair (qit, ait) such

that:
49Note that both players start in the market.
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qit =

0 if mt−1 = 0 or t = 1

1 if mt−1 = 1

and

ait (st) =



1 if νit ≤ pc (st, δ) and mt = 0

0 if νit > pc (st, δ) and mt = 0

1 if νit ≤ p (st, δ) and mt = 1

0 if νit > p (st, δ) and mt = 1

Let C(δ) be the discounted value of collusion and let D(δ) be the discounted value of play-

ing according to the symmetric MPE. Now, consider deviations. To establish that a collusive

strategy can be supported as an SPE we check whether there is a profitable deviation from

such a strategy. According to the one-shot deviation principle it is enough to consider strate-

gies that deviate in period t but otherwise (for every following period) conform to the collu-

sive one. Whenever both agents are in the market in period t, an agent can deviate from the

production decision, from the exit decision, or from both. By construction of pc there are no

incentives to deviate only in the exit decision. If there were, then pc would not have been com-

puted correctly. An agent could deviate in the production decision. In that case, they would

receive a quantity stage payoff of 2A. If one agent deviates in the quantity stage of period t,

then mt = 0 and the exit decision in that period will be taken according to p. From period t+ 1

onwards agents would be in the punishment phase for all future periods, but this involves

playing according to the symmetric MPE, which is sub-game perfect. The payoff of a devia-

tion is: Def(δ) = 2A + E[ν|ν > p(sit = 1, sit = 1)] · (1 − p(sit = 1, sit = 1)) + δ × D(δ). The

grim-trigger strategy is a sub-game perfect equilibrium for all δ such that: Def(δ) ≤ C(δ).

In order to determine whether the trigger strategies constitute an SPE we first compute pc

for each treatment, which are reported in the second column of Table 2. We then use these

probabilities to check in each case if Def(0.8) < C(0.8). Our treatment parameters are chosen

so that trigger strategies can support the quantity- stage collusive outcome for AS and AM

but not for AL. Finally, we provide a measure of how much higher gains can be under the

trigger strategies in each treatment. This measure captures how high the collusion incentives

are and is summarized by the percentage increase of collusion over the MPE payoffs: GoC =

100 · (C(0.8)−D(0.8))/D(0.8). The figures are reported in the last row of Table 2.
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Joint Monopoly Entry/Exit Probabilities

In the fully collusive equilibrium firms not only collude in the quantity decision, they also

coordinate their entry and exit choices. To implement such a collusive strategy firms have to

solve a private monitoring problem since the random parts of the entry cost and the scrap

values are only privately observed by the players. We do not solve this private monitoring

problem. However, to still be able to obtain a benchmark on how much higher the gains

from collusion would be if firms also collude in the dynamic decision, we solve for the case

in which firms know the entry cost and scrap values of the other firm. Under this assump-

tion the problem can be solved as a simple single agent dynamic programming problem. For

each of the possible four states st ∈ S the combined firm has four possible actions at ∈ A =

{(0, 0), (0, 1), (1, 0), (1, 1)}. We solve for the choice continuation values that summarize the

non-random part of each of those four possible choices. In total there are sixteen equations:

v(at, st) = Π(st) + δ ·
∫

max
at∈A
{v(at, st+1) + ε′(at)} dG(ε′)F (st+1|at, st) ∀st ∈ S,∀at ∈ A (5)

Results are shown in Table 8, which is similar to Table 2 but includes the dynamic choice

probabilities on the most collusive equilibrium. Interestingly, the probability to be in the mar-

ket in each period is much lower compared to quantity-stage collusion for each of the four

states. This result has a simple intuition. The combined market value is the same no matter

whether there are two or only one firm in the market. Relative to the quantity-stage collu-

sive equilibrium firms now coordinate on entry exit choices, which allows them to exploit the

gains they can make from high scrap values and low entry cost. The prediction involves high

turnover to exploit these gains.

Table 8: Cutoff-strategies for each treatment: MPE, CE and joint monopoly (MON)

AS AM AL

Conditional probability MPE (p) CE (pc) MON MPE (p) CE (pc) MON MPE (p) CE (pc) MON

p(1, 0) 0.458 0.519 0.504 0.688 0.823 0.652 0.880 0.925 0.683

p(1, 1) 0.360 0.512 0.492 0.596 0.784 0.602 0.781 0.870 0.610

p(0, 0) 0.260 0.368 0.354 0.498 0.663 0.505 0.681 0.757 0.554

p(0, 1) 0.161 0.362 0.340 0.408 0.624 0.467 0.583 0.702 0.457

Is collusion in quantities an SPE? YES YES NO

Gains from collusion in quantities 450.8% 481.1% 75.9% 93.22% 32.1% 51.98%

Note: This table presents the conditional choice probabilities for each of the four states as indicated in the left column. The choice probabilities are presented for each of the three market sizes, which we implement

as treatments as indicated in the top row. Predictions are presented for the MPE(p) as well as the case where players collude in the marketstage, CE (pc). In the bottom the table indicates whether the collusive

equilibrium we highlight can be supported as an SPE and how high the gains over MPE would be.
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Mapping Choice Probabilities to Value Functions

In this section we provide details on the estimation procedure. In a first stage we estimate the

empirical dynamic choice probabilities P using simple frequency estimation, thus obtaining P̂ .

This means we compute the fraction of time a player stays in the market or leaves the market

respectively for each of the four states. Following the insight of Hotz and Miller (1993) the

value function can be expressed in terms of these choice probabilities. Since all agents under

the model assumption are planning with the equilibrium transitions that we estimate from the

data we can directly solve for the value function in terms of these probabilities. We can write

the value function as:

V =
∑
a

Pa(P̂ )[ua + ea(P̂ ) + δ · Fa(P̂ ) · V ]⇔

V =
[
I − δ ·

∑
a

Pa(P̂ ) · Fa(P̂ )
]−1[∑

a

Pa(P̂ )(ua + ea(P̂ ))
]

In our case with four states these objects take on a simple form:

V = [I − δ · [P1(P̂ ) · F1(P̂ ) + P0(P̂ ) · F0(P̂ )]]−1[P1(P̂ ) · (e1(P̂ ) + u1) + P0(P̂ ) · (e0(P̂ ) + u0)] (6)

with

u1 =


0

0

2 · A
2 · A−B

u0 =


−C
−C
2 · A

2 · A−B

 e1 =


0

0

1− p̂3
2

1− p̂4
2

 e0 =


− p̂1

2

− p̂2
2

0

0



P1 =


p̂1 0 0 0

0 p̂2 0 0

0 0 p̂3 0

0 0 0 p̂4

P0 =


1− p̂1 0 0 0

0 1− p̂2 0 0

0 0 1− p̂3 0

0 0 0 1− p̂4



F1 =


p̂1 1− p̂1 0 0

p̂3 1− p̂3 0 0

p̂2 1− p̂2 0 0

p̂4 1− p̂4 0 0

F0 =


0 0 p̂1 1− p̂1

0 0 p̂3 1− p̂3

0 0 p̂2 1− p̂2

0 0 p̂4 1− p̂4
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In the previous expressions, we use the following shortened notation: p1 = p(a = 1|s =

(0, 0)), p2 = p(a = 1|s = (0, 1)), p3 = p(a = 1|s = (1, 0)), p4 = p(a = 1|s = (1, 1)). Note

that Equation 6 expresses the value function only in terms of parameters and objects that are

composed of observables. The following section shows briefly how the expected values e1(P̂ )

and e0(P̂ ) are obtained from choice probabilities as indicated above. For a given parameter

guess and choice probabilities we therefore form a guess V̂ . Once we know V̂ , we can easily

compute v̂(1, st) ∀ st ∈ S and v̂(0, st)∀ st ∈ S from this.

Choice Probabilities and Expectations for the Uniform

Let xout denote the states in which the player is out and xin be the states in which he is in. For

the entry-case under ψ ∼ U [0, 1] and 0 ≤ (v(1|xout)− v(0|xout)) ≤ 1 we have:

E[ψ|ψ < v(1|xout)− v(0|xout)] =

∫ v(1|xout)−v(0|xout)

0

ψ
1

v(1|xout)− v(0|xout)
dψ =

ψ2

2

1

v(1|xout)− v(0|xout)
|v(1|xout)−v(0|xout)
0 =

(v(1|xout)− v(0|xout))
2

=
P (in)

2

For the exit case under φ ∼ U [0, 1] and 0 ≤ (v(1|xout)− v(0|xout)) ≤ 1 we have:

E[φ|v(1|xin)− v(0|xin) < φ] =

∫ 1

v(1|xin)−v(0|xin)

φ
1

1− (v(1|xin)− v(0|xin))
dφ

=
1 + (v(1|xin)− v(0|xin))

2
= 1− P (in)

2

Monte Carlo

Data Generating Process

We generate data either under the assumption of the symmetric MPE or the CE play for our

parametrizations. We assume that there are 300 pairs of firms and each pair of firms is con-

sidered to be isolated from the rest. The interaction between each pair of firms ends after each

period with probability 0.2, which corresponds to the discount implemented in the labora-

tory. For the Monte Carlo study we will estimate parameters using 100 such data sets and

subsample each data set 30 times to obtain standard errors.
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Table 9: Monte Carlo results

AS AM AL

Estimates True value Estimates True value Estimates True value

Parameter MPE CE MPE CE MPE

A 0.052 0.044 0.05 0.249 0.246 0.25 0.390 0.4

(0.012) (0.045) (0.03) (0.049) (0.041)

B 0.620 0.032 0.6 0.611 0.24 0.6 0.575 0.6

(0.130) (0.173) (0.132) (0.144) (0.111)

C 0.142 0.148 0.15 0.146 0.148 0.15 0.153 0.15

(0.029) (0.04) (0.032) 0.021 (0.027)

Note: The table shows the results of the Monte Carlo estimation. For each of the three values of A it shows the estimates if the econometrician assumes

the correct data generating process (MPE) as well as the estimates if the econometrician incorrectly assumes the MPE and the data is in fact coming from

decisions on the equilibrium path of the highlighted collusive equilibrium (CE) for AM and AS . In the case of AL, the CE is not an SPE. Estimates are aver-

ages over 100 datasets. Each dataset assumes 300 markets of an average length of five periods (market terminates randomly with probability 0.2). Standard

errors are shown in parentheses below the estimates and are obtained by subsampling each data-set 30 times.

Monte Carlo Estimates

For each value of A, Table 9 presents the Monte Carlo estimates. In the “MPE” column we

present estimates when firms’ play is generated according to the symmetric MPE, while in the

“CE” column we display estimates when firms are assumed to follow the Collusive Equilib-

rium (and the econometrician wrongfully assumes MPE play). By comparing estimates in the

“MPE” column with the True Value column treatment by treatment we verify that the param-

eters can be recovered with tight standard errors from a data set of modest size.50

Comparing the CE estimates to the true value we notice that the bias from an incorrect

assumption on the equilibrium shows up in B. The parameter that captures the competitive

effect would be biased downwards. Intuitively, the estimator in recovering B compares the

choices of firm i when firm −i is in the market to those when firm −i is not in the market. For
50We also ran versions of the Monte Carlo in which players’ cost depends on individual specific cost shifters that are observable to the

econometrician. Such cost shifters would help to considerably improve the standard error of the interaction term B and improved identi-

fication at the limits of the parameter space. Under the current specification, the only observable variable that shifts player i’s action is the

action of player−i. Because of this minimal structure of the model, parameter estimates become noisy for B values very close to zero, where

the influence of the other player vanishes. However, in the experiment, other observable cost shifters (i.e. some variable x not determined

endogenously) would have increased the number of necessary treatments and the complexity considerably, which is why we decided against

such a setup.
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example, consider market AS and assume firm i is currently in the market. Because the CE

data is generated according to the second column of Table 2, firm i will be in the market next

period with probability 0.519 or 0.512, depending on whether firm −i is in the market or not.

This small difference in probabilities (a small effect of competition) will be rationalized with

an estimate for B that is smaller than the true value. In other words, a lower estimate for B is

consistent with the presence of collusion.

Monte Carlo Counterfactuals

For each baseline we perform an exercise in which there is full collusion in the Monte Carlo

generated data, but the econometrician wrongly assumes that there is no collusion. Then the

econometrician uses the estimates to predict behavior for other market sizes. To document the

maximum possible error in counterfactual predictions we assume that in each counterfactual

there is actually no collusion in the data.

The bias (as in Section 5.4 of the paper) is computed as the percentage deviation in the

value of the firm from the true value of the firm under the correct data generating process

for each state. The results are shown in Table 21. We then collapse these measures into a

single measure assigning equal weight to each state, what we refer to in Section 5.4 as MAPE

(V). No bias would result in a MAPE (V) of zero. These Monte Carlo results emphasize that

proper collusion if not accounted for by the econometrician would severely bias counterfactual

computations. Table 21 shows that the overestimate ranges from ≈ 36% to ≈ 110%.

AL AM AS

Baseline/Counterfactual MAPE(V) MAPE(V) MAPE(V)

AL - 35.4 56.5

AM 60.9 - 107.6

AS 107.3 113.5 -

Table 10: Maximal counterfactual error from collusion (in %)

This table (based on Monte Carlo results and NOT data) shows the maximal resulting bias if the econometrician wrongly assumes that firms

do not collude in the baseline and predicts the outcomes in a market (of the same market size) under the correct assumption that firms in the

counterfactual do not collude.
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Appendix B

In this appendix we study entry/exit choices in more detail. We first provide detailed hy-

potheses on comparative statics, which are afterwards tested.

Comparative Static Hypotheses

We now explicitly formulate MPE comparative statics in terms of entry and exit thresholds

using Table 2 as a reference. We can then contrast these predictions under MPE play with

what we actually observe in the data.

Comparative Statics 1 (CS1): Exit vs. Entry thresholds (within treatment). Exit thresholds

are predicted to be higher than entry thresholds.

In addition, there are predictions on how entry and exit thresholds should vary as a re-

sponse to the state of the other player (i.e. compare thresholds for s(·, 1) to s(·, 0)). When the

other is in the market there is competition, and quantity-stage payoffs correspond to the static

Nash equilibrium; these payoffs are lower than the (static monopoly) payoffs the agent gets

when the other is out of the market. In the equilibrium this is captured with a difference be-

tween the two exit thresholds and a difference between the two entry thresholds. We refer to

these predictions as the “effect of competition” on thresholds.

Comparative Statics 2 (CS2): Effect of competition in thresholds (within treatment). Fix

the agent’s own current state. Thresholds are higher when the other player is currently out than when

the other player is currently in the market.

The MPE also provides comparative statics across treatments. As the value of A increases,

the relative attractiveness of the market also increases and all corresponding thresholds are

higher: agents demand higher exit payments to leave the market and are willing to pay higher

entry fees to go in. This prediction is summarized below:

Comparative Statics 3 (CS3): Between treatments: All thresholds increase monotonically with

A.

The Collusive Equilibrium also provides hypotheses on comparative statics. For exam-

ple, exit and entry thresholds should respond to market behavior according to the collusive

strategy: the market is relatively less valuable after the other agent deviates from collusive be-

havior. As a consequence, agents would be willing to leave for lower scrap values and would

be willing to pay less in order to re-enter the market.51 We now state this as a hypothesis.

51As mentioned earlier, the characterized collusive equilibrium is one of possibly many equilibria that support collusion in the quantity
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Collusion Hypothesis 1 (CH1): Effect of Defection on Thresholds. According to the Col-

lusive Equilibrium, entry and exit thresholds are lower in all periods after defection in the quantity

stage.

Finally, we can also use Table 2 and compare thresholds between treatments that allow and

that do not allow for a quantity choice.

Collusion Hypothesis 2 (CH2): Standard vs. No Quantity Choice treatments. Fix the value

of A and compare Standard treatments to treatments with No Quantity Choice. There is evidence con-

sistent with the presence of collusion if: 1) the effect of competition is lower in the Standard treatments;

and 2) if thresholds for all states are higher in the Standard treatments.

States

There are large differences across treatments in terms of states’ frequencies, which are pre-

sented in Table 11. Considering the unit of observation as a pair of subjects in each period of

each supergame there are three possible states the pair can be at: both are out of the market,

one out and the other in or both are in the market. The table shows the proportion of periods in

which a pair was in either of these three states by treatment. Period 1 of every match is omitted

as by definition all subjects start out, so that the table only shows the results of endogenous

decisions.

There are clear patterns in the table. First, being out of the market is more likely when

A is lower. The state when both are out reaches the highest share for AS and its occurrence

diminishes whenA is higher. In fact, in only very few occasions do we observe pairs of subjects

in this state for AL. The opposite situation is observed for the state when both are in, which

reaches the highest share for AL. The lower likelihood of being out in the large market size

treatment will have consequences on the accurateness of the average entry threshold estimate.

This will be reflected as relatively larger confidence intervals as can be seen in Figure 2.

The second pattern is that the likelihood of being out is higher when there is No Quantity

Choice as long as A is not at the highest level. Consider, for instance, AS . The proportion of

times that both agents are out of the market is clearly larger when there is No Quantity Choice.

This is consistent with the fact that quantity choices present the alternative to obtain higher

payoffs and thus have the potential of making staying in the market more attractive. The effect

stage. However, any punishment phase that achieves collusion in the quantity stage is expected to involve lower thresholds. If collusion in

the quantity stage cannot be supported, then being in the market is less valuable, which is reflected by lower thresholds.
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State

Treatment Both Out One Out-One In Both In

AS , No Quantity Choice 34.8 51.2 14.0

AS , Standard 22.9 49.7 27.4

AM , No Quantity Choice 9.5 48.1 42.5

AM , Standard 5.7 41.1 53.2

AL, No Quantity Choice 2.8 32.5 64.7

AL, Standard 2.6 31.5 65.9

Table 11: States by treatment after period 1 (in percentages)

is smaller for AM and almost indistinguishable for AL, when there is a negligible number of

cases in either treatment where both agents are out of the market.

Within Treatment Hypotheses on Thresholds

To test for the main within treatment hypotheses (CS1, CS2), we will use panel data analysis.

We conduct one regression per treatment, which are reported in Table 12. The left-hand-side

variable in all cases is the threshold selected by each subject. If in the corresponding period

the subject is deciding to exit (enter) the market, the threshold variable captures their report

for the exit (entry) threshold. On the right-hand side there are four variables. We exclude

the state when the subject is out and the other is in the market (s = (0, 1)), which in theory

corresponds to the case where the subject is least likely to enter the market next. Naturally,

the excluded state will be captured by the constant, and we add a dummy for each of the

three other possible states. Depending on the state, the corresponding dummy will report the

increment to the baseline threshold defined by the constant.

CS1 predicts that exit thresholds are higher than entry thresholds. This translates into

four comparisons by treatment, and in all 24 cases the differences are significant at the 1%

level in the direction predicted by the theory. In other words, there is strong support for this

hypothesis, which indicates that subjects do respond to one of the most basic incentives of the
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game.

There is also evidence in favor of CS2. In this case, the hypothesis implies two comparisons

by treatment: fixing si and testing whether there is a difference depending on the state of the

other. For the case when the subject is out of the market, the outcome for the comparison

is readily available in the estimates for coefficient (s = (0, 0)). In all cases the estimate is

positive: subjects are willing to pay more to enter the market if the other is out. However, the

coefficient is significant at the 5% level for AM treatments and at the 10% level in two other

cases. Moreover, while the theory predicts a 10-point difference (see Table 2), the estimate is

quantitatively smaller in all cases. The effect of competition, however, is more evident when

the subject is in the market. In this case, the difference between the coefficients (s = (1, 1)

and s = (1, 0)) is always as predicted by the theory and significant in all treatments. In a few

words, all comparisons are in line with the prediction and all but two are significant at least at

the 10% level.

Table 12: Panel regressions: Within treatment hypotheses

Variable AS AM AL

Standard No Quantity Choice Standard No Quantity Choice Standard No Quantity Choice

Intercept 20.377*** 19.273*** 36.365*** 33.879*** 45.488*** 37.391***

(2.412) (2.494) (3.001) (3.666) (5.503) (3.471)

s = (0, 0) 2.310* 1.150 5.828*** 5.387*** 2.302 1.658*

(1.375) (2.431) (1.077) (1.306) (5.575) (0.915)

s = (1, 1) 47.587*** 34.768*** 46.913*** 42.930*** 41.026*** 49.589***

(2.709) (5.136) (6.465) (6.102) (8.394) (2.272)

s = (1, 0) 54.119*** 50.047*** 51.202*** 49.650*** 46.221*** 53.658***

(3.306) (6.494) (5.700) (5.084) (6.678) (1.032)

Note: This table provides reduced form analysis of the within treatment comparative statics. The dependent variable is the selected threshold (entry or exit) that cor-

responds to the state. The independent variables are dummies for each state where the state (s = (0, 1)) is the excluded category. Standard Errors reported between

parentheses, Significance levels: 1%(***), 5%(**), 10%(*), Standard Errors are clustered at the session level

The analysis so far has focused on centrality measures, which are key for computing struc-

tural estimates. To provide a broader perspective of our data, Figure 4 displays the cumulative

distributions of thresholds by state for all treatments. Some patterns are present across treat-

ments. First, the distributions are largely ordered as predicted by the symmetric MPE. Entry

thresholds display lower values than exit thresholds, and within each case subjects largely
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select higher values when the other is out. Second, most distributions suggest that values

are centered around the mean. For example, in the case of the AS-Standard treatment, entry

thresholds display a significant mass between the relatively lower values (20 and 40), while

most of the mass in the case of exit thresholds is between 70 and 80.

Between Treatment Hypotheses on Thresholds

We now test statements that involve comparisons that depend on the value ofA or on whether

there is a quantity stage or not. With this aim we conduct two panel regressions, one for exit

and one for entry thresholds. More specifically, the “Entry Threshold” regression only consid-

ers periods when subjects had to select an entry threshold. The selected entry threshold con-

stitutes the left-hand side variable. On the right-hand side there are two sets of dummies. The

excluded group corresponds to the AS-Standard case. The first set of dummies will capture

the differential effect corresponding to the other five treatments. The second set of dummies

interacts the treatment dummy with the state of the other player. That is, for each treatment

there is a dummy that takes value 1 if the other is out of the market. The second regression

uses the same controls, but considers exit thresholds on the left-hand side instead. The results

are reported in Table 13.

CS3 states that thresholds increase with market size. There are 24 comparative statics:

for each of the four states there are three comparisons, and such comparisons can be made

for treatments with and without a quantity stage. Not all comparative statics are statistically

significant, but all differences are in the direction predicted by the hypothesis. In all treatments

the difference in entry and exit thresholds is significant at the 1% level when comparing the

AS treatment to either of the other market sizes. When comparing the AM to AL, the difference

between thresholds is statistically significant at the 5% level only for exit thresholds when

there is No Quantity Choice. In other cases differences are not statistically significant. Overall

this means that in 18 out of 24 comparisons differences are statistically significant.

Section 3 also presented hypotheses that would be consistent with the presence of collu-

sion. Part 1 of CH2 claims that there is evidence consistent with the presence of collusion if

the effect of competition is lower when there is a quantity choice. There would be evidence

supporting the claim if fixing the market size, the interaction dummy is significantly higher

when there is a quantity stage. Again, in all six comparisons the differences are in the direction

predicted by the hypothesis. For entry thresholds the differences are significant at the 5% and
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Figure 4: Cumulative distributions of thresholds across treatments
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10% level for AM and AL, respectively. For exit thresholds, the differences are significant at the

1% level only for AS .

Fixing the market size collusion is consistent with higher thresholds when there is a quan-

tity choice, which constitutes part 2 of CH2. This hypothesis involves 12 comparisons using

the estimates presented in Table 13. For example, consider the entry threshold regression and

AM . The hypothesis claims two comparisons, depending on whether the other is in or not: i)

the coefficient for AM -S is higher than for AM -NQ, and ii) adding the coefficients for AM -S and

the interaction AM -S × Other Out is lower than the addition of the same coefficients but when

there is no quantity choice. The direction of the differences is in line with the prediction in all

cases, but differences are not significant with the exception of the exit threshold for AS size

when the other is in the market.
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Table 13: Panel regressions: Between treatment hypotheses

Variable Entry Threshold Exit Threshold

Intercept 22.001*** 67.131***

(1.955) (1.951)

AS-NQ -3.110 -14.547***

(2.988) (3.337)

AM -S 10.046*** 14.652***

(3.566) (4.055)

AM -NQ 10.858*** 9.000***

(2.681) (3.177)

AL-S 13.498*** 18.087***

(2.578) (4.258)

AL-NQ 12.320*** 19.482***

(4.207) (2.585)

AS-S × Other Out 1.406* 7.490***

(0.830) (1.380)

AS-NQ × Other Out 1.968 14.398***

(2.595) (1.310)

AM -S × Other Out 2.204*** 4.479***

(0.450) (0.635)

AM -NQ × Other Out 3.945*** 6.476***

(0.348) (1.725)

AL-S × Other Out 1.139*** 3.521***

(0.229) (1.219)

AL-NQ × Other Out 4.297** 3.802***

(1.836) (1.390)

Note: Standard Errors reported between parentheses, Significance levels: 1%(***), 5%(**),

10%(*), Standard Errors are clustered at the session level. S: indicates Standard treatment;

NQ indicates No Quantity Choice treatment.
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Effect of Quantity-Stage Choices on Thresholds

CH1 claims that entry and exit thresholds are lower after defection. We present the results of

a random-effects probit regression where the left-hand side is the exit (or entry) threshold and

on the right-hand side there is a set of dummy variables that capture the outcome for the last

time subjects were in the market.52 Table 14 displays the results of these regressions for each

treatment.

Several patterns emerge. First, consider exit thresholds. In AS and AM treatments subjects

are more responsive to last period’s outcome. In these cases, subjects are significantly more

likely to select a higher exit threshold, while if the other defected in the previous market inter-

action they are more likely to select a lower threshold. This last effect is also present for AL.

When, instead, we look at entry thresholds, the pattern is less clear. It appears that in most

cases subjects are less responsive to recent market behavior when they are out of the market.

Outcome Last Quantity Stage

AS AM AL

Exit Threshold Entry Threshold Exit Threshold Entry Threshold Exit Threshold Entry Threshold

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

(Collude ,Collude) 5.551*** 0.956 0.997 0.947 5.688*** 0.622 4.478** 1.916 0.108 0.618 .704 3.479

(Collude, Defect) -6.867*** 1.172 -1.848* 1.01 -1.965*** 0.772 -1.013 1.657 -1.940*** 0.719 4.361 2.761

(Defect, Collude) -1.319 -1.17 -0.306 0.931 -0.377 0.773 0.538 1.484 -0.876 .126 4.885 3.073

Constant 69.484*** 1.868 37.84*** 2.639 81.81*** 2.246 47.08*** 2.982 85.88*** .124 49.7*** 3.396

Notes: The dependent variable is the threshold selected by subject i. The right-hand side variables include possible outcomes from last quantity stage, where the first action corresponds
to the choice of subject i. Significant at: *** 1%, **5%, *10%

Table 14: Effect of past market choices on thresholds

Choices As the Session Evolves

In principle it is possible that choices in the aggregate change as the session evolves. Figures

5 and 6 display average exit and entry thresholds for each supergame for each possible state

a subject may be at, for Standard and No Quantity Choice treatments, respectively. Visual

inspection suggests that in most cases a trend is not evident, which we indeed confirm with

statistical analysis.53 If we add a dummy for each supergame to the regressions of Tables
52In cases where subjects are deciding on an exit threshold the last period for which there is an outcome is the current period. The reference

is to the last period in which there was a market choice in the case of entry thresholds.
53The case of entry thresholds forAL when the other is not in the market does display volatility, but this is due to the relatively low number

of observations (see Table 11).
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12 and 13 the message is similar. In a few cases there is a significant effect of a particular

supergame; when such effect is present it happens in the earlier supergames of the session

and is quantitatively very small.

It is also possible that subjects change the thresholds within a supergame. This may be be-

cause they are following a strategy that conditions the threshold on past play (i.e. as in the CE)

or because they follow a strategy that conditions on a particular period. We know that some

subjects may be conditioning their thresholds on past play given that some aggregate choices

are consistent with CH1. In order to test if there is a strong pattern in aggregate thresholds

depending on the period, we include the regressions in Table 12: a) a set of period dummies

and b) interactions of each period dummy with the dummy that takes value 1 if the other is

not in the market. Results show that there is no clear pattern that indicates a period effect at

the aggregate level.54

Summary

We now summarize the main findings in this appendix:

• There is broad support in the data for the comparative statics predicted by the symmetric

MPE. Out of 60 comparisons implied by CS1, CS2 and CS3 all differences are in the

predicted direction and 50 (52) are significant at least at the 5% (10%) level.

• There is evidence that is consistent with market collusion having an effect on threshold

choices. The effect of market collusion on threshold choices appears to be higher for AS
and AM , and for exit thresholds.

• The evidence does not indicate substantial changes in aggregate behavior as the session

evolves.

54Given the large set of controls we do not report these regressions, but they are available upon request.
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Figure 5: Evolution of thresholds: No Quantity Choice treatments
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Figure 6: Evolution of thresholds: Standard treatments
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Appendix C

This appendix provides additional analysis on the quantity-stage choice. Figure 7 displays the

cooperation rate taking all periods of a supergame into consideration and basically reproduces

the same broad patterns presented in Figure 8, which only takes into account cooperation in

the first period of each supergame. Cooperation rates after period 1 will be endogenously

affected by behavior within the supergame. In this section we use two approaches to better

understand the determinants of quantity-stage choices. First, we take a non-structural ap-

proach and use panel regression analysis to study how cooperation in period t is affected by

behavior in previous periods and supergames. Second, we use a structural method to study

which strategies better capture subjects’ choices. Finally, we study further the connections

between quantity-stage and entry/exit-stage choices.
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Figure 7: Cooperation rates (all)

Cooperative Behavior: A Non-Structural Approach

To further study decisions in the quantity stage we run random effects probit regressions

where the market action is the variable on the left-hand side (1: cooperation) and the right-

hand side includes a series of usual controls. We control for the subjects’ last choice (Own past

action) and their partner’s past action (Other’s past action) last time they were in the market,

and we include period 1 decisions to control for dynamic unobserved effects. There are also

three dummies to capture the state in the last period, where the state in which both subjects are
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Figure 8: Cooperation rates (first period)

out is omitted. Match dummies and period dummies are also included, but for space reasons

omitted in Table 15.

Several patterns are consistent across treatments. First of all, the likelihood of cooperation

is higher when the subject or the other colluded last time they were in the market. In fact, the

probability of cooperating is higher when the other colluded previously. Second, the dummy

for the likelihood of cooperation if the state last period was (1, 0) is the most negative in all

treatments. This indicates that subjects are least likely to cooperate coming from a situation

when they were in the market, but the other was out. This also suggests that some subjects

may choose to be less cooperative in the market in order to incentivize the other to leave the

market.

Recovering Strategies Using SFEM

Cooperation rates provide one measure of collusion, but there are techniques –the Strategy

Frequency Estimation Method (SFEM) of Dal Bó and Fréchette (2011)– that recover which

strategies best rationalize the data. This would tell us to what extent choices in treatments

where collusion can be supported as an SPE are consistent with the CE.55

55In principle, another alternative consists of regressing choices on past play. However, such an exercise can be misleading. For example,

if only a small proportion of subjects are consistently conditioning their choices on some aspect of the history, the associated coefficient can
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Variable
AS AM AL

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Own past action 0.369*** 0.124 .784*** 0.095 .836*** 0.105

Other’s past action 0.857*** 0.121 .966*** 0.103 1.259*** 0.119

Own action in period 1 2.191*** 0.150 2.039*** 0.124 1.336*** .126

Other’s action in period 1 0.659*** 0.120 0.809*** 0.107 0.738*** .124

st−1 = (0, 1) -0.262 0.191 -0.943*** 0.186 -0.215 .198

st−1 = (1, 0) -1.256*** 0.223 -1.264*** 0.186 -0.929*** .246

st−1 = (1, 1) -0.913*** 0.119 -1.049*** 0.105 -0.710*** .116

Note: Significant at: *** 1%, **5%, *10%

Table 15: Random effects probit results

In order to outline how the SFEM works, consider an infinitely repeated prisoners’ dilemma.

The game involves just a static decision, where in every period the agent faces a binary choice

(cooperate or defect), as if both subjects were in the market. In that simpler environment there

is a large set of possible strategies σ an agent can follow. Strategies may depend on past behav-

ior, and it is possible to compute for each σ ∈ Σ what choices the subject would have made had

she been exactly following strategy σ. On the other hand we have the subject’s actual choices.

The unit of observation is a history: the set of choices a subject made within a supergame. The

SFEM procedure works as a signal detection method and estimates via maximum likelihood

how close the actual choices are from the prescriptions of each strategy. The output is the

frequency for each strategy in the population sample.

To describe the method in further detail, assume that the experimental data has been gen-

erated for an infinitely repeated prisoners’ dilemma and define chicr as the choice of subject i

in period p of supergame g, chigp ∈ {Cooperate,Defect}. Consider a set of K strategies that

specify what to do in round 1 and in later rounds depending on past history. Thus, for each

history h, the decision prescribed by strategy k for subject i in period p of supergame g can

be computed: higp(hk). A choice is a perfect fit for a history if chigp = higp(h
k) for all rounds

of the history. The procedure allows for mistakes and models the probability that the choice

turn out to be significant. We could mistakenly conclude that past play does have an effect in the population, while it is actually driven by

a small share. The technique we use, on the other hand, allows us to estimate the proportion of choices that can be better rationalized as

conditioning on past play. We would, thus, observe if such proportion is a small share or not. More generally, using standard regression

analysis to evaluate whether behavior is Markovian or not can be very misleading; see Vespa (2019) for more details.

60



corresponds to a strategy k as:

Pr(chigp = higp(h
k)) =

1

1 + exp
(
−1
γ

) = β. (7)

In (7) γ > 0 is a parameter to be estimated. As γ → 0, then Pr(chigp = higp(h
k)) → 1 and

the fit is perfect. Define yigp as a dummy variable that takes value one if the subject’s choice

matches the decision prescribed by the strategy, yigp = 1
{
chigp = higp(h

k)
}

. If (7) specifies the

probability that a choice in a specific round corresponds to strategy k, then the likelihood of

observing strategy k for subject i is given by:

pi
(
sk
)

=
∏
g

∏
p

 1

1 + exp
(
−1
γ

)
yigp 1

1 + exp
(

1
γ

)
1−yigp

(8)

Aggregating over subjects:
∑

i ln
(∑

k φkpi
(
sk
))

, where φk represents the parameter of in-

terest, the proportion of the data which is attributed to strategy sk. The procedure recovers an

estimate for γ and the corresponding value of β can be calculated using (7). The estimate of

β can be used to interpret how noisy the estimation is. For example, with only two actions a

random draw would be consistent with β = 0.5.

Our environment is more complex than an infinitely repeated prisoners’ dilemma; it in-

volves a dynamic (continuous) and a static (discrete) choice. While the SFEM procedure is

designed to study discrete choices, we can still use it to learn about the strategies that ratio-

nalize our subjects’ quantity choices. A necessary condition for CE is that subjects follow a

grim-trigger strategy whenever both are in the market. Likewise, a necessary condition for

the symmetric MPE is that both subjects always defect from cooperation in the static choice.

We use the SFEM procedure to study if subjects’ behavior in the quantity stage is consistent

with these necessary conditions.

We proceed in the following manner. First, for each history in our dataset we only keep the

static choices. All subjects make a quantity choice in period 1, but it is possible for example

that the next period with a market choice is period 4. In our constrained dataset we would

only keep the quantity stage choices for rounds 1 and 4 and would interpret them as the first

and the second quantity choices. In this way we obtain a dataset that resembles the dataset

coming from an infinitely repeated prisoners’ dilemma. Second, we define a set of strategies

K ⊂ Σ following the literature (see for example Dal Bó and Fréchette (2011) or Fudenberg et

al. (2012)). We include in K five strategies that have been shown to capture most behavior in
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infinitely repeated prisoners’ dilemma: 1) Always Defect (AD), 2) Always Cooperate (AC), 3)

Grim-Trigger (Grim), 4) Tit-for-Tat, and 5) Suspicious-Tit-for-Tat.56

All data Last 8 Supergames

AS AM AL AS AM AL

AD 0.394*** 0.403*** 0.549*** 0.463*** 0.404*** 0.604***

(0.077) (0.096) (0.109) (0.114) (0.121) (0.154)

AC 0.064 0.094* 0.024 0.123** 0.124** 0.026

(0.052) (0.050) (0.031) (0.057) (0.054) (0.038)

Grim 0.205*** 0.339*** 0.047 0.172* 0.335** 0.000

(0.088) (0.125) (0.047) (0.106) (0.151) (0.043)

Tit-for-Tat 0.285*** 0.111 0.188 0.206* 0.087 0.211*

(0.088) (0.083) (0.126) (0.128) (0.103) (0.128)

Susp.-Tit-for-Tat 0.052 0.052 0.192 0.036 0.048 0.158

γ 0.488*** 0.419*** 0.384*** 0.404*** 0.357*** 0.333***

(0.044) (0.054) (.033) (0.039) (0.051) (0.047)

β 0.885 0.916 0.931 0.922 0.943 0.953
Note: Significant at: *** 1%, **5%, *10%. See Appendix C for the definition of γ. β = 1

e(−1/γ)

Table 16: Strategy frequency estimation method results

Table 16 presents the results of the estimation for the three Standard treatments using all

data and using the last eight super games.57 The estimates uncover clear patterns in subjects’

choices. Consider first always defect (AD). In all cases this is the strategy with the highest fre-

quency, around 40% for AS and AM and close to 60% for AL. Second, comparing across treat-

ments we observe that Grim displays the opposite pattern of AD: while clearly non-existent

for AL, there is a large and significant mass in other cases.58

56In the cases of Tit-for-Tat and Suspicious-Tit-for-Tat from the second choice onwards the subject would simply select what the other chose

the previous time, but these strategies differ in the period 1 choice. Tit-for-Tat starts by cooperating, while Suspicious-tit-for-tat starts with

defection.
57We compute the standard deviations for the estimates bootstrapping 1000 repetitions. The procedure leaves unidentified the standard

error for the K-th strategy. The estimate of β can be used to interpret how noisy the estimation is. For example, with only two actions a

random draw would be consistent with β = 0.5. Notice that in all cases the estimate of β is relatively high, indicating that the set of strategies

used for the estimation can accurately accommodate the data.
58The proportion corresponding to Grim is relatively higher for AM than for AS . This is consistent with cooperation being more attractive

for AS . It may be that attracted by the gains of cooperation subjects are more willing to forgive and start a new cooperative phase, which is

feasible using Tit-for-Tat.
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More importantly, notice that strategy AC displays a frequency estimate of approximately

12% that is significant for AM and AS . This is the frequency of successful cooperation. In

other words, AC captures the mass that may be particularly influential in determining how

strong the Markov assumption for structural estimation is. A strategy such as Grim or Tit-for-

Tat can only be identified if subjects deviate from cooperation: along the cooperative phase

both strategies are identical. But once subjects enter a punishment phase market behavior is

closer to the stage Nash, and hence, discrepancies with respect to the MPE assumption for the

quantity choice are only present for the periods prior to defection.
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Appendix D

Robustness of Structural Estimates

Tables 17, 18, and 19 provide estimates of A, B, and C as the session evolves. The first row

in each table shows the estimates when we use all the sample (as reported in the text) and

each row reports the estimation as we exclude earlier matches. The last row uses the last five

matches of the session.

Overall the estimates for the medium and small market display relatively minor changes as

the sample is restricted. We do notice some changes in the estimates ofA andB in large market

treatments. For the Standard treatment we notice a relatively large change when the sample

is restricted to matches 9-16 and onwards. In the No Quantity Choice treatments we notice

changes mainly in the estimate of B starting when the sample is restricted to matches 4-16.

These changes in the estimates are consistent with the fact that in the large market treatments

there are relatively few observations when both subjects are out of the market. As a session

evolves the estimates rely on even fewer observations in this state.

Table 17: Sample used and estimates of A

Matches included
AL AM AS

Standard No Quantity Choice Standard No Quantity Choice Standard No Quantity Choice

1-16 0.18 0.22 0.14 0.17 0.10 0.08

2-16 0.18 0.22 0.14 0.17 0.10 0.08

3-16 0.18 0.21 0.15 0.18 0.10 0.08

4-16 0.18 0.17 0.15 0.17 0.10 0.08

5-16 0.18 0.16 0.15 0.18 0.09 0.08

6-16 0.18 0.16 0.15 0.17 0.10 0.08

7-16 0.22 0.16 0.14 0.17 0.10 0.09

8-16 0.23 0.16 0.14 0.17 0.10 0.08

9-16 0.42 0.16 0.14 0.18 0.10 0.09

10-16 0.46 0.16 0.14 0.18 0.09 0.09

11-16 0.68 0.15 0.14 0.21 0.09 0.10
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Table 18: Sample used and estimates of B

Matches included
AL AM AS

Standard No Quantity Choice Standard No Quantity Choice Standard No Quantity Choice

1-16 0.11 0.22 0.05 0.19 0.07 0.20

2-16 0.10 0.20 0.05 0.19 0.07 0.20

3-16 0.10 0.19 0.06 0.19 0.07 0.20

4-16 0.10 0.08 0.07 0.19 0.07 0.19

5-16 0.09 0.07 0.05 0.19 0.07 0.17

6-16 0.09 0.07 0.06 0.18 0.09 0.17

7-16 0.20 0.07 0.04 0.18 0.09 0.19

8-16 0.22 0.06 0.05 0.19 0.09 0.19

9-16 0.71 0.05 0.06 0.20 0.09 0.21

10-16 0.78 0.07 0.05 0.23 0.06 0.22

11-16 1.33 0.04 0.04 0.28 0.04 0.25

Table 19: Sample used and Estimates of C

Matches included
AL AM AS

Standard No Quantity Choice Standard No Quantity Choice Standard No Quantity Choice

1-16 0.54 0.56 0.55 0.47 0.53 0.43

2-16 0.55 0.56 0.55 0.47 0.53 0.43

3-16 0.55 0.57 0.56 0.46 0.52 0.44

4-16 0.56 0.56 0.56 0.47 0.52 0.43

5-16 0.55 0.57 0.55 0.48 0.52 0.44

6-16 0.56 0.58 0.57 0.48 0.52 0.45

7-16 0.56 0.58 0.58 0.48 0.52 0.45

8-16 0.57 0.57 0.58 0.47 0.52 0.45

9-16 0.54 0.57 0.57 0.47 0.52 0.46

10-16 0.55 0.57 0.57 0.46 0.53 0.46

11-16 0.52 0.58 0.57 0.43 0.53 0.46
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Robustness of Counterfactual Exercises

In this section we consider an alternative counterfactual experiment to measure the prediction

bias due to collusion. We use the parameters we estimate for the Standard treatments and

predict behavior in the No Quantity Choice treatments. We then contrast this prediction to

actual behavior in No Quantity Choice treatments. The results are shown on Table 20, where

for a fixed value of A the baseline corresponds to the treatment with no quantity choice, and

the counterfactual to the Standard treatment.

Baseline/Counterfactual AS AM AL

Standard/No Quantity Choice

AS 24.9 % - -

AM - 7.2 % -

AL - - 11.6 %

Table 20: Counterfactual Error From Collusion (MAPE(V)), Standard predicts No Quantity

Choice

This table shows the resulting bias in counterfactual computations if the econometrician wrongly assumes that firms do not collude in the

baseline (Standard treatment) and predicts the outcomes in a market (of the same market size) where firms do not collude. Then we contrast

the prediction to actual behavior in the No Quantity Choice treatments and compute prediction errors.

The counterfactual bias varies from 7% to 25%. By definition, the highest incentives to

collude are in theAS market. Therefore, it is natural that the largest bias takes place in this case,

where the magnitude means that averaging across states the difference between predicted

continuation value and actual continuation value is 25%. On the one hand, a twenty-five

percentage points bias in continuation values is relatively large. On the other hand, how large

are these magnitudes relative to a case where firms fully collude in the baseline? To answer this

question we perform a Monte Carlo exercise where in the baseline we generate data under full

collusion and we estimate parameters under the assumption of no collusion. We then compare

the prediction to counterfactual data where there is no collusion. Those results are shown in

Table 21

These results show that the counterfactual bias due to collusion that we observe in the data

is smaller than what would be observed if firms were successful at colluding. In the case of

the small and medium market it is 11% to 12% of the maximal possible bias and in the large

market it is 38% of the maximal possible bias. This means that especially in the scenario where
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Baseline/Counterfactual AS (Standard) AM (Standard) AL (Standard)

AS (No Quantity Choice) 197.1 % - -

AM (No Quantity Choice) - 62.9 % -

AL (No Quantity Choice) - - 30.2 %

Table 21: Maximal Counterfactual Error From Collusion, Standard predicts No Quantity

Choice (Monte Carlo Results)

This table (based on Monte Carlo results and NOT data) shows the maximal resulting bias (measured by MAPE(V)) if the econometrician

wrongly assumes that firms do not collude in the baseline and predicts the outcomes in a market (of the same market size) where firms do

not collude.

the incentives to collude are high and where they should be quantitatively important we only

observe a small fraction of the possible bias.

67



Appendix E

One of the salient deviations from the theory in our data is that subjects do not enter and exit

the market as often as the MPE predicts in this setting. Table 3 summarizes the absolute differ-

ence between theoretical MPE probabilities and empirical probabilities across treatments. We

refer to the absolute difference between MPE and empirical probabilities in the No Quantity

Choice treatments as inertia. Average inertia (as measured in each treatment by the third col-

umn in Table 3) is comparable across No Quantity Choice treatments, ranging between 0.13

and 0.17.

In this appendix we describe three approaches to shed more light on inertia. In the first

part of the appendix, we first study three alternative ways to explicitly account for inertia at

the estimation stage. The goal is to obtain estimates closer to the true values. We will show

that the three procedures actually lead to improvements. The first one directly corrects en-

try thresholds and uses the fact that we observe the actual thresholds that subjects pick. We

then propose two different extended models that explicitly account for inertia and estimate an

additional parameter (which do not require to observe the thresholds and could therefore be

applied in a standard setting). The latter of the two is the most successful, and for this proce-

dure we also report the full exercise on counterfactuals. We do document that counterfactual

prediction errors are lower relative to the counterfactuals we report in the main text. How-

ever, the qualitative comparison between counterfactual prediction errors in Standard and No

Quantity Choice treatment is qualitatively similar.

In the second part of the appendix we take a different approach and use Monte Carlo

simulations to study how inertia affects parameter estimates. We show that inertia, for all

reasonable ranges, biases the estimates of C (the entry cost) upwards and B (the competition

parameter) downwards. However, the effect on A can be ambiguous. This is consistent with

what we observe in the data. A is biased downwards in AL and AM but upwards in AS . We

illustrate with Monte Carlo simulations that the upwards bias in Â can result when inertia is

mostly present in exit thresholds as in AS .59

59Notice that inspection of Table 3 confirms this is the case in our data. That is, while the averages are similar, the presence of inertia in

entry and exit thresholds changes with A. As A increases from AS to AL inertia shifts from exit to entry thresholds.
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E.1. Three Procedures to Account for Inertia at the Estimation Stage

Subject-Specific Effects

We first explore to what extent we can recover estimates closer to the true parameter values

by accounting for a subject-specific (“fixed-effect”) deviation from the theoretical threshold.

Creating a dataset that controls for the average deviation from the MPE threshold of each sub-

ject would allow us to reduce the amount of inertia in the data and should result in estimates

closer to the true values.

Recall that our experimental design asks subjects directly for their entry and exit thresholds

(such thresholds, however, are typically not observed in a standard empirical application).

The resulting binary entry and exit choices (which the estimation method uses) are computed

based on those thresholds. To generate a dataset that controls for average deviations from

theoretical predictions we proceed in three steps. We first compute a subject-specific mean

deviation from the theoretically predicted ones. Second, we adjust each threshold by this

amount. Finally, we compute a new set of entry-exit choices using the same random draws

from the experimental sessions and the adjusted thresholds.60 With this alternative dataset,

based on “adjusted” entry/exit thresholds, we re-estimate the parameters. For comparability,

the top panel of Table 22 reproduces the main estimates in the paper, and the second panel

shows the estimation results correcting for subject-specific effects.

What these results show is that this correction broadly moves all estimates in the right di-

rection. Specifically, the entry cost C is substantially reduced, and the A estimates are moving

in slightly closer to the true parameters. The estimate of B is also moving closer to the true

value of 0.6 in almost all treatments, though it still is far from such value. Of course, cor-

recting the data in this way is not feasible in a standard empirical application because (i) the

thresholds are not directly observed and even if they were (ii) the theoretical thresholds are

unknown.

Inertia-Augmented Model

We now present our first augmented model that allows to partially correct for inertia without

a priori knowledge of thresholds. Since our experiment was not designed to estimate such a

60Of course, because the choices implied by adjusted thresholds and the thresholds selected by the subject may not coincide, this alternative

data is no longer dynamically consistent. For example, using the adjusted thresholds we may compute that the firm exits in period t, but

would be actually observed next period in the market because this is the state that actually occurred in the laboratory.
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Treatment Standard No Quantity Choice

AS AM AL AS AM AL

Original (Reproduced from Table 4)

A 0.1 0.14 0.18 0.08 0.17 0.22

B 0.07 0.05 0.11 0.2 0.19 0.22

C 0.53 0.55 0.54 0.43 0.47 0.56

Thresholds Corrected for

Subject-Specific Effects

A 0.02 0.13 0.3 0.02 0.19 0.22

B 0.24 0.12 0.32 0.3 0.39 0.22

C 0.2 0.19 0.18 0.16 0.18 0.56

Inertia-Augmented Model

A 0.08 0.12 0.15 0.07 0.15 0.29

B 0.07 0.05 0.1 0.52 0.19 0.43

C 0.18 0.18 0.19 0.25 0.16 0.18

D 0.01 0.01 0.01 0.01 0.1 0.01

Myopic Inertia-Augmented Model

A 0.04 0.19 0.25 0.04 0.21 0.23

B 0.47 0.69 0.89 0.47 0.83 0.72

C 0.23 0.04 0.06 0.23 0.06 0.09

D 0.15 0.14 0.12 0.15 0.08 0.09

Table 22: Inertia: Parameter estimates

The top part of this table reproduces the parameter estimates of Table 4 and the bottom shows the estimates including inertia parameter

D, which captures a potential time inconsistent behavior where the firm assumed that there is an entry or exit cost that has to be paid for

changing the market status today but not at any point in the future. True values of parameters are: AS = 0.05, AM = 0.25, AL = 0.4,

B = 0.6, C = 0.15.
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model, we see the model we introduce here and in the third approach as more speculative. An

intuitive explanation for the observed behavior is that subjects perceive some general switch-

ing cost to change the market state. This would call for a straightforward extension of the

model with one extra parameter, the perceived switching cost, that needs to be estimated. Un-

like the entry cost it would have to be paid both for entering and exiting the market (this is,

intuitively, also how it would be separately identified). We now present our first augmented

model and start by re-writing the expressions that solve for the MPE recursively. For x ∈ {0, 1},
the following function captures the continuation value.

Γ(x, st) =
∑

st+1∈S

∫
max{vα(0, st+1) + ε′(0), vα(1, st+1) + ε′(1)}dG(ε′)Fα(st+1|x, st) ∀st (9)

A first aspect to notice is that inertia can be thought of as working asymmetrically for

a fixed agent i’s state. If agent i is in the market, which happens when the state is in set

s1
t = {(1, 0), (1, 1)}, then ‘inertia’ can be thought of as providing the agent an extra payment

(D1) if the agent stays in the market, but not if the agent decides to leave. Likewise, if the

agent is not in the market, that is if the state is in the set s0
t = {(0, 0), (0, 1)}, then inertia would

provide an extra payment (D0) if the agent stays out, a payment the agent would not receive if

she chooses to enter. That is, the extra payments, D0 and D1 act by making it more expensive

to leave the state in which the agent is located.

The recursive expressions that solve for MPE are given by:

vα(1, s1
t ) = Πα(s1

t ) +D1 + δ · Γ(1, s1
t ) ∀s1

t (10)

vα(1, s0
t ) = Πα(s0

t ) + δ · Γ(1, s0
t ) ∀s0

t (11)

vα(0, s1
t ) = Πα(s1

t ) + δ · Γ(0, s1
t ) ∀s1

t (12)

vα(0, s0
t ) = Πα(s0

t ) +D0 + δ · Γ(0, s0
t ) ∀s0

t (13)

Unfortunately, we cannot identify D0 separate from D1, so we impose that D0 = D1 = D.61

61As mentioned earlier, inertia is mostly present in exit thresholds when A is low (AS ), but shifts towards entry thresholds as A increases

to AL (see Table 3). Thus, if it were possible to estimate D0 separately from D1, the fit would be better. Our design was not planned to study

inertia and our ability to structurally characterize inertia is thus limited.
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Hence, the inertia-augmented model involves estimating one extra parameter (D) and the

estimates are presented in the third panel of Table 22.

The estimate of parameterD is relatively small in all treatments. With respect to the param-

eters in the original model, we note a substantial drop of parameter C, which is closer to the

true value in all treatments (relative to the original estimates). There are only small changes

in the estimates of A and the estimates of B, while in most cases higher than in the original

estimation, remain far from the true value. Even though such a model seems an intuitive

alternative to capture inertia, it does not lead to a marked improvements of the estimates.

Myopic Inertia-Augmented Model

The findings with the inertia-augmented model have lead us to explore another alternative, in

which inertia is present but in a time-inconsistent manner. A possible justification behind this

extension is that the agent considers a realized state differently than a potential state that can

happen in the future. That is, if the agent is in the market, the agent has an “extra” valuation

for the current state because that is what she has now. But when she considers the future, she

doesn’t attach an “extra” valuation to being in the market tomorrow because that state has not

yet materialized.

Since in this model inertia only affects the valuation in the present, we can re-express the

continuation values as follows:

vα(x, st) = Πα(st) + δ · Γ(x, st) ∀st (14)

for x ∈ {0, 1}.
However, the current valuations are affected by inertia. We express the value functions of

a problem with myopic inertia as follows.

ṽα(1, s1
t ) = Πα(s1

t ) +D1 + δ · Γ(1, s1
t ) ∀s1

t (15)

ṽα(1, s0
t ) = Πα(s0

t ) + δ · Γ(1, s0
t ) ∀s0

t (16)

ṽα(0, s1
t ) = Πα(s1

t ) + δ · Γ(0, s1
t ) ∀s1

t (17)

ṽα(0, s0
t ) = Πα(s0

t ) +D0 + δ · Γ(0, s0
t ) ∀s0

t (18)
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We cannot identify D0 separate from D1. Since we know that inertia is mostly present in

exit threshold in AS (see Table 3), we estimate D1 = D, D0 = 0 in AS . Inertia shifts towards

entry thresholds in AM and AL, so we estimate D0 = D, D1 = D in these two treatments.62

We estimateD together with the other parameters using a slight modification to the estima-

tion procedure described on Appendix A. We start with some initial values for all parameters

and compute the system of equations in (9)-(14). In addition, we use (9)-(14) and the initial

guesses to compute (15)-(18). We then use (9)-(14) to compute predicted choice probabilities

that we contrast to observed choice probabilities. The procedure is repeated until the parame-

ter estimates provides predicted choice probabilities that are sufficiently close to the observed

choice probabilities.

The bottom panel of Table 22 provides the estimates. The estimate of parameter D varies

from 0.05 to 0.15, depending on the treatment. With respect to the parameters in the original

model, we also note a substantial drop of parameter C, consistent with all corrections for

inertia (and the Monte Carlo exercises we report in the next section). As with other corrections,

the changes in estimates of A are more nuanced, but there is a large upward adjustment in

parameter B, which is closer to the true value of 0.6 in all treatments. Without controlling for

inertia the parameter is substantially underestimated, with values between 0.05 and 0.22 and

none of the previous corrections is very successful in bringing the estimate close to the true

value.63

Given that the myopic augmented-inertia model is relatively more successful in moving

all estimates closer to the true values, we inspect it further and use it to report counterfactual

predictions. The two top panels of Table 22 reproduce, as a reference, the predictions for coun-

terfactuals that we report in the text. The two bottom panels provide the same computations,

but using the myopic augmented-inertia model.

A first observation is that in 10 of 12 predictions, the myopic inertia-augmented model

involves a lower prediction error than the original model reported in the text.64 This suggests

that controlling for inertia can indeed reduce the prediction error. A second observation is that

while the prediction error is reduced in the majority of cases, there is no indication of higher

prediction error in the Standard treatments relative to the No Market Choice treatments. This

62An empirical researcher would not have information related to which thresholds are mostly affected by inertia, but the purpose of this

exercise is to provide an estimation that explicitly controls for inertia as well as possible.
63The Monte Carlo exercises in the next section will show that inertia biases the parameter B downwards.
64In the two cases where the prediction is higher in the myopic inertia-augmented model, the increase in the error is relatively small. From

0.38 to 0.39 when the AL Standard is the baseline and AM Standard the predicted counterfactual, and from 0.52 to 0.67 when the AM No

Market Choice is the baseline and AS No Market Choice the predicted counterfactual.
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suggests that the possibility of collusion is not leading to an increase in the prediction error

when we control for inertia. In a few words, the main comparative static that we report in the

paper for counterfactual exercises holds when we use the myopic inertia-augmented model.65

Baseline/Counterfactual AS AM AL

Standard

AS - 621.8 949.1

AM 65.1 - 82.3

AL 68.5 37.8 -

No Market Choice

AS - 326.4 716.2

AM 51.6 - 84.3

AL 64.9 40.8 -

Standard (Myopic Inertia)

AS - 96.9 98.3

AM 65.4 - 43.9

AL 66.1 35.3 -

No Market Choice (Myopic Inertia)

AS - 29.3 30.7

AM 42.7 - 70.2

AL 50.3 39.2 -

Table 23: Counterfactual prediction error

This table shows the counterfactual predictions using the MAPE(V ) measure if we account for inertia by using the myopic inertia-augmented

model.

E.2. Monte Carlo Study on Inertia

In this section we use a series of Monte Carlo exercises to study how differences between

observed probabilities and MPE probabilities can affect the estimates. We first provide an

65The counterfactual exercise we report here does not fully remove inertia from counterfactual prediction errors. We conduct the counter-

factual exercise scaling the A estimate and keeping the estimates of B, C and D from the baseline. As explained earlier, at the estimation

stage we assume that the researcher knows that inertia operates mostly through exit thresholds in AS and through both thresholds in other

treatments. But for the counterfactual exercise we keep the estimate of D from the baseline. Since inertia can operate differently in baseline

and counterfactual, the difference in counterfactual prediction errors can still capture some effect from inertia.
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informal discussion on the identification of each coefficient that we illustrate with simulations.

In a second step we outline how inertia affects the estimates in each of our treatments. What

we document is consistent with our findings in the previous section. In particular, inertia will

bias the estimate of C upwards and B downwards.

Table 24 reports several Monte Carlo simulations that connect entry-exit probabilities and

coefficient estimates. The baseline reference is simulation 0. The data for the simulation is

generated according to probabilities in the first four columns.66 These probabilities correspond

to the MPE equilibrium in the AM treatment, and as shown in the last three columns of the

Monte Carlo simulation, recovers the true parameters of this treatment. We now illustrate

how small optimization errors can generate a bias in each coefficient.

We start with the estimate ofA. Notice first that the structural procedure assigns a quantity-

stage contemporaneous payoff that includes A whenever the subject is in the market.67 This

suggests that the estimate of A will be large if subjects display a high propensity to be in the

market next period regardless of the state. Consider simulations 1 and 1’ of Table 24. In the

case of simulation 1 (1’) the data is generated with probabilities equal to those of simulation 0

minus (plus) 0.05. In other words, being in the market next period is less (more) likely for all

states in simulation 1 (1’). In line with the intuition, the estimate for A in simulation 1 (1’) is

below (above) the estimate in simulation 0.

Parameter B captures the effect of competition. Intuitively, B̂ is identified from compar-

ing the subject’s choices depending on whether the other is in the market or not; that is,

p(1, 0)−p(1, 1) and p(0, 0)−p(0, 1). In principle, the larger these differences the more the subject

reacts to the presence of the other in the market, which means that the effect of competition

is larger and the estimate of B will be correspondingly higher. This intuition is confirmed by

simulations 2 and 2’. Notice that in the baseline simulation 0 the difference in probabilities is

0.1 in both cases.68 In simulation 2 (2’) we reduce (increase) the difference in probabilities to

0.05 (0.15) and accordingly observe a reduction (increase) in B̂ relative to the baseline.

Finally, the estimate of C will be high when the probabilities indicate that subjects do not

want to pay the fixed fee to enter the market, which is consistent with subjects being very likely

to remain in the market if they are already in the market and to stay out if they are already out.

66For each simulation we proceed as described in section 4. We assume that there are 300 pairs of firms, and generate 100 data sets

(according to the probabilities described in the table) that we use to estimate parameters.
67Recall that the quantity-stage contemporaneous payoff when the subject is in the market is 100 × (2A + 0.60) if the other is out and

100× (2A−B + 0.60) if the other is also in. Meanwhile the quantity-stage payoff when the subject is out of the market is 100× 0.6.
68p(1,0)-p(1,1)=0.70-0.60=0.1; p(0,0)-p(0,1)=0.50-0.40=0.1.
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In other words, the estimate Ĉ is large if there is a large difference between probabilities when

the subject is in the market (p(1, ·)) and probabilities when the subject is out of the market

(p(0, ·)). In simulation 3 (3’) we subtract (add) 0.05 to p(1, ·) simulation 0 probabilities and add

(subtract) 0.05 to p(0, ·) simulation 0 probabilities. Correspondingly, we find a lower (higher)

estimate of C in simulation 3 (3’) relative to the baseline.

Table 24: Monte Carlo simulations and optimization errors

Probabilities Estimates

Simulation p(1, 0) p(1, 1) p(0, 0) p(0, 1) Â B̂ Ĉ

0 0.70 0.60 0.50 0.40 0.25 0.60 0.15

1 0.65 0.55 0.45 0.35 0.21 0.60 0.15

1’ 0.75 0.65 0.55 0.45 0.41 0.50 0.16

2 0.65 0.60 0.45 0.40 0.16 0.28 0.19

2’ 0.75 0.60 0.55 0.40 0.34 0.91 0.08

3 0.65 0.55 0.55 0.45 0.43 1.17 0.01

3’ 0.75 0.65 0.45 0.35 0.20 0.40 0.26

4 0.95 0.85 0.44 0.40 0.33 0.01 1.47

5 0.80 0.60 0.50 0.30 0.27 0.77 0.17

Note: p(s) indicates the probability of being in the market next period conditional on being in

state s in the current period.

Now, we use Monte Carlo simulations to evaluate how inertia can affect the estimates.

Suppose that MPE probabilities are given by p. We say that p′ exhibits inertia relative to p

if p′(1, ·) > p(1, ·) and p′(0, ·) < p(1, ·). Notice that the exercise described in simulation 3’

precisely involves the deviation from simulation 0 probabilities introduced by inertia. Inertia

makes transitions between states more rare and is always rationalized with a higher estimate

of Ĉ.

With respect to the estimates of A and B inertia can introduce an upwards or downwards

bias. The case presented in simulation 3’ shows a downwards bias in Â relative to simulation

0 (0.20 vs. 0.40). This downwards bias in Â is consistent with the estimates for AL and AM
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reported in Table 4. In these two treatments there is evidence of inertia in probabilities related

to both entry and exit thresholds. In the AS treatment inertia is present almost exclusively in

probabilities related to exit thresholds (p(1, ·)). Simulation 4 reproduces some of the inertia

conditions present in the AS treatment. Relative to the simulation 0 baseline, we add 0.25 to

both probabilities related to exit thresholds, and subtract 0.06 from p(0, 0).69 In this case, there

is an upwards bias in Â (0.33 vs. 0.25). Clearly, the equilibrium MPE probabilities in AS differ

from those in the simulation 0 baseline, but we observe a similar effect in the estimates, in

particular, with Â biased upwards.

In all B̂ reported in Table 4 there is a downwards bias relative to the true B parameter. This

is also consistent with the reports in simulations 3’ and 4 that also involve inertia. Although

we do not observe it in our data, it is possible to introduce inertia in a way that would bias

B upwards. Simulation 5 involves a change in probabilities relative to simulation 0 that is

consistent with inertia, but the ‘inertia’ in p(1, 0) and p(0, 1) is larger than the inertia in p(1, 1)

and p(0, 0). In other words, inertia increases how one subject responds to the presence of the

other in the market. In this case, we observe an upwards bias in B̂ (0.77 vs. 0.60).

We conclude this section with another set of Monte Carlo simulations that focus on how the

presence of inertia can bias the coefficients for different levels of collusion. As in section 4, the

data are generated from a model in which a proportion x ∈ [0, 1] of the pairs of firms collude.

We use the setup of the AM treatment, but add (subtract) 0.14 points to exit (entry) threshold

probabilities. In other words, the exercise reported in Figure 9 is comparable to Figure 1 except

that it includes inertia in the data. The main observations remain unchanged: the estimates of

A and C are basically unaffected by the presence of collusion, which does affect the estimate

of B, biasing it downwards as collusion increases.

Counterfactuals

Table 25 and Figure 10 provide further details of the counterfactual predictions presented in

subsection 5.3. Table 25 presents the predictions for p(s) for the counterfactual exercise re-

ported in Table 5 (predicted 1) and the second exercise reported in Table 6 (predicted 2). The

table also displays actual observed probabilities in each case. Figure 10 shows the actual prob-

abilities and the predictions for the first counterfactual exercise (see Table 5).

69As a consequence there is only a small difference between probabilities related to entry thresholds, which is consistent with what we find

for AS (see Appendix B).
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Baseline AL
AS AM

state predicted 1 predicted 2 actual predicted 1 predicted 2 actual

St
an

da
rd

p(1, 0) 0.56 0.74 0.76 0.79 0.87 0.88

p(1, 1) 0.50 0.68 0.71 0.72 0.80 0.85

p(0, 0) 0.02 0.21 0.21 0.24 0.31 0.34

p(0, 1) 0.00 0.15 0.20 0.18 0.24 0.30

N
o

Q
ua

nt
ity p(1, 0) 0.58 0.66 0.71 0.87 0.87 0.87

p(1, 1) 0.47 0.59 0.54 0.72 0.76 0.77

p(0, 0) 0.01 0.21 0.18 0.27 0.37 0.37

p(0, 1) 0.00 0.12 0.17 0.12 0.26 0.29

Baseline AM
AS AL

state predicted 1 predicted 2 actual predicted 1 predicted 2 actual

St
an

da
rd

p(1, 0) 0.58 0.76 0.76 1.00 0.98 0.95

p(1, 1) 0.55 0.73 0.71 1.00 0.95 0.89

p(0, 0) 0.03 0.23 0.21 0.55 0.44 0.38

p(0, 1) 0.00 0.20 0.20 0.53 0.41 0.34

N
o

Q
ua

nt
ity p(1, 0) 0.59 0.66 0.71 1.00 1.00 0.94

p(1, 1) 0.49 0.58 0.54 0.97 0.89 0.89

p(0, 0) 0.09 0.22 0.18 0.57 0.45 0.43

p(0, 1) 0.01 0.14 0.17 0.50 0.33 0.31

Baseline AS
AM AL

state predicted 1 predicted 2 actual predicted 1 predicted 2 actual

St
an

da
rd

p(1, 0) 1.00 0.88 0.88 1.00 0.97 0.95

p(1, 1) 1.00 0.83 0.85 1.00 0.93 0.89

p(0, 0) 1.00 0.34 0.34 1.00 0.43 0.38

p(0, 1) 1.00 0.28 0.30 1.00 0.39 0.34

N
o

Q
ua

nt
ity p(1, 0) 1.00 0.87 0.87 1.00 1.00 0.94

p(1, 1) 1.00 0.77 0.77 1.00 0.91 0.89

p(0, 0) 0.81 0.37 0.36 1.00 0.45 0.43

p(0, 1) 0.78 0.28 0.29 1.00 0.33 0.31
Notes: Predicted 1 (Predicted2) presents probabilities related to the counterfactual exercise reported in Table 5 (Table 6).

Table 25: Counterfactual calculations78



● ● ● ● ● ● ● ● ●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Collusion rate

Pa
ra

m
et

er
 e

st
im

at
e

Estimate ●●●A B C

Figure 9: Parameter estimates under different collusion probabilities for the AM treatment

with inertia.

Table 26 provides information on counterfactual calculations of the probability of observ-

ing a monopoly or a duopoly using the counterfactual exercise reported in Table 5.
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Figure 10: Counterfactual predictions
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Baseline AL
AL AS AM

probability predicted actual predicted actual predicted actual

Standard
p2 0.72 0.74 0.00 0.24 0.26 0.61

p1 0.24 0.23 0.04 0.35 0.38 0.29

No Quantity
p2 0.74 0.71 0.00 0.13 0.25 0.50

p1 0.25 0.25 0.03 0.32 0.47 0.35

Baseline AM
AM AS AL

probability predicted actual predicted actual predicted actual

Standard
p2 0.57 0.61 0.00 0.24 1.00 0.74

p1 0.30 0.29 0.03 0.35 0.00 0.23

No Quantity
p2 0.49 0.50 0.01 0.13 0.94 0.71

p1 0.36 0.35 0.18 0.32 0.06 0.25

Baseline AS
AS AM AL

probability predicted actual predicted actual predicted actual

Standard
p2 0.24 0.24 1.00 0.61 1.00 0.74

p1 0.35 0.35 0.00 0.29 0.00 0.23

No Quantity
p2 0.12 0.13 0.04 0.50 1.00 0.71

p1 0.32 0.32 0.23 0.35 0.00 0.25

Table 26: Counterfactual calculations for the probability of observing a monopoly (p1) or a

duopoly (p2)
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Appendix F

This appendix describes several additional details of the experimental implementation. We

implement the infinite time horizon as an uncertain time horizon (Roth and Murnighan, 1978).

After each period of play, there is one more period with probability δ = 0.8. We implement the

uncertain time horizon using a modified block design (Fréchette and Yuksel, 2013). Subjects

play the first five periods without being told after each period whether the supergame has

ended or not. Once period five ends they are informed whether the game ended in any of the

first five periods. Only periods prior to ending count for payoff (including the period when

the game ended). From the sixth period onwards subjects are told period by period whether

the game ended or not, and cumulative payoffs are computed for all periods until the game

ends. This procedure allows us to collect information for several periods without affecting the

theoretical incentives.70

Our sessions are divided into two parts. The difference between parts is in how subjects

report their dynamic choice to the interface. In Part 1, in the exit (entry) stage subjects are

informed of the randomly selected exit payment (entry fee) and then decide whether to exit

or not (enter or not). In Part 2 subjects first specify an exit threshold (entry threshold), that is

a number between [0, 100], with the understanding that if the exit payment is higher than the

threshold (entry fee is lower than the threshold) they will exit the market (enter the market).71

Part 1 consists of 1 supergame and Part 2 consists of the remaining 15 supergames.72

70See Fréchette and Yuksel (2013) for a comparison between this and other alternatives to implement infinite time horizons in the laboratory.
71Appendix G presents the instructions, screenshots of the interface and describes how subjects made their choices. In the case of the entry

fee subjects specify a threshold in [15,115], which includes the fixed portion of the entry fee. For the purpose of analysis in the paper we will

always present entry thresholds net of the fixed entry fee.
72The structural estimation procedure uses only information on whether subjects are in the market or not for estimation. Our implementa-

tion in part 2 provides us with additional information: we know the threshold of their decision. We use the additional information to evaluate

the aggregate information content of only using the binary information for being in the market or not. We find the binary information to be

consistent with thresholds if aggregate estimates on frequencies per state are of a comparable magnitude. If this were not the case, then using

only binary information may already introduce a bias in the estimation. However, in the data we do not find that using only whether firms

are in the market or not would lead to a bias.
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Appendix G

This appendix provides the instructions for the Standard treatment for AL. The instructions

consist of two parts. The first part presents the environment for the first cycle, and part 2 intro-

duces the thresholds for entry/exit decisions. Instructions for No Quantity Choice treatments

are identical except that we do not present a table for the quantity choice decision, and instead

subjects are told they would receive Nash payoff when they are both in the market. After the

instructions there is a set of figures with screen shots of the interface.

INSTRUCTIONS

Welcome

You are about to participate in an experiment on decision-making. What you earn depends

partly on your decisions, partly on the decisions of others, and partly on chance. Please turn

off cell phones and similar devices now. Please do not talk or in any way try to communicate

with other participants. We will start with a brief instruction period. During the instruction

period you will be given a description of the main features of the experiment. If you have any

questions during this period, raise your hand and your question will be answered so everyone

can hear.

General Instructions: Part 1

1. This experiment is divided into 16 cycles. In each cycle you will be matched with a

randomly selected person in the room. In each cycle, you will be asked to make decisions

over a sequence of rounds.

2. The number of rounds in a cycle is randomly determined as follows:

• After each round, there is an 80% probability that the cycle will continue for at least

another round of payment.

• At the end of each round the computer rolls a 100-sided die.

• If the number is equal to or smaller than 80, there will be one more round that will

count for your payments.

• If the number is larger than 80, then subsequent rounds stop counting toward your

payment.
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• For example, if you are in round 2, the probability that the third round will count

is 80%. If you are in round 9, the probability round 10 also counts is 80%. In other

words, at any point in a cycle, the probability that the payment in the cycle contin-

ues is 80%.

3. You interact with the same person in all rounds of a cycle. After a cycle is finished, you

will be randomly matched with a participant for a new cycle. In each round, your payoff

depends on your choices and those of the person you are paired with. In each round

there is a market stage and an entry/exit stage. In the entry/exit stage you and the other

will decide whether to enter or exit the market. We first explain the market stage and

later we explain the entry/exit stage.

4. At the beginning of each cycle (in Round 1) you and the other start in the market. You

and the other will first make the market stage choices and then decide whether you want

to stay in the market or exit.

Market Stage

5. When you and the other are both in the market, your payoff depends on your choice and

the choice of the other:

• If you select 1, and the other selects 1, your payoff is 100, and the other’s is 100.

• If you select 1, and the other selects 2, your payoff is 40, and the other’s is 140.

• If you select 2, and the other selects 1, your payoff is 140, and the other’s is 40.

• If you select 2, and the other selects 2, your payoff is 80, and the other’s is 80.

The table below summarizes all the possible outcomes:

Other’s Choice

1 2

Your Choice
1 100,100 40,140

2 140,40 80,80

In this table, the rows indicate your choices and the columns the choices of the person

you are paired with. The first number of each cell represents your payoff, and the second

number (in italics) is the payoff of the person you are paired with.
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6. If in any round you are in the market and the other is out, your payoff will be equal to

140.

7. If in any round you are out of the market you make a payoff of 60.

8. Once the market stage is over, you will start the entry/exit stage.

Entry/Exit Stage

9. Exit decision. In each round when you are in the market, you will have to decide whether

you want to exit the market or not. If you exit the market you will receive an exit pay-

ment. The exit payment is a random number between 0 and 100. All numbers are equally

likely. The randomly selected exit payment will be presented to you on the screen. You

will have to indicate whether you want to take the exit payment and exit the market or

not take the payment and stay in the market.

10. The exit payment is selected separately for each participant. That means that you will

have one exit payment and when the other is selecting whether to exit or not, they will

have another randomly selected exit payment. The exit payment is selected randomly in

each round. This means that exit payments in different rounds will likely be different.

11. Entry decision. If in any round you are out of the market, you have to choose whether

you want to enter the market or not. To enter the market you have to pay an entry fee.

The entry fee is a random number between 15 and 115. All numbers are equally likely.

The randomly selected entry fee will be presented to you on the screen. You will have to

indicate whether you want to pay the entry fee and enter the market or not pay the fee

and stay out of the market.

12. The entry fee is selected separately for each participant. That means that you will have

one entry fee and when the other is selecting whether to enter or not, they will have

another randomly selected entry fee. The entry fee is selected randomly in each round.

This means that entry fees in different rounds will likely be different.

13. In each round after round 1 you first face the market stage and then the entry/exit stage.

If you are in the market in that round you will have to decide whether to exit or not. If

you are out of the market you will have to decide whether to enter or not.

Payoffs

85



14. In each cycle you start with 30 points, and you will make choices for the first 5 rounds

without knowing whether or not the cycle payment has stopped. At the end of the fifth

round the interface will display on the screen the results of the 100-sided die roll for each

of the first 5 rounds.

15. If the roll of the 100-sided die was higher than 80 for any of the first five rounds, the cycle

will end, and the last round for payment is the first where the 100-sided die roll is higher

than 80.

• The interface subtracts entry fees that you pay, adds exit payments, and adds all

points that you make in the market stages of all rounds that count for payment

within a cycle.

• For example, assume that the 100-sided die in the first five rounds results in: 40, 84,

3, 95, 65. Because 84 is higher than 80, payments will stop after the second round.

The interface will add your market and entry/exit payoffs for rounds 1 and 2.

16. If the 100-sided die rolls were lower than or equal to 80 for the first five rounds, there will

be a sixth round. From the sixth round onwards the interface will display the 100-sided

die roll round by round. The cycle will end in the first round where the 100-sided die

roll is higher than 80.

• The interface subtracts entry fees that you pay, adds exit payments, and adds all

points that you make in the market stages of all rounds that count for payment

within a cycle.

• For example, assume that the 100-sided die in the first five rounds results in: 51, 24,

13, 80, 55. Because all numbers are equal to or lower than 80 there will be another

round, so the cycle continues to round 6. After you make your choices for round 6

you are shown that the 100-sided die for that round is 52, which is lower than 80 so

there will be a seventh round. After round 7 you are shown that the 100-sided die

for that round is 91. Because 91 is higher than 80 the cycle is over and the interface

will add your payoffs for all rounds 1 through 7.

17. If at any point in the cycle your total payoff for the cycle is less than 0, the cycle is over.
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18. Your total payoffs for the session are computed by adding the total payoffs of all 16

cycles. These payoffs will be converted to dollars at the rate of 0.0025$ for every point

earned.

Are there any questions?

Summary

Before we start, let me remind you that:

• The length of a cycle is randomly determined. After every round there is an 80% proba-

bility that the payment cycle will continue for another round.

• In Round 1 of each cycle you and the other start in the market.

• Each Round has a market stage and an entry/exit stage.

1. Market Stage Payoffs

Other

In the Market Out of the Market

You
In the Market See Payoff Table 140

Out of the Market 60 60

2. Exit/Entry Decision

– If you are out and decide to enter, you will pay the entry fee. If you stay out,

you do not have to pay any fee.

– If you are in and decide to leave, you will be paid the exit payment. If you

decide to stay in, you will not receive an extra payment.

• You interact with the same person in all rounds of a cycle. After a cycle is finished, you

will be randomly matched with a participant for a new cycle.

• Part 1 consists of 1 cycle. Once the first cycle is over we will give you brief instructions

for Part 2 that will consist of 15 cycles. The only difference between Part 1 and Part 2 will

be on how you report your choices to the interface. Other than that Part 1 and Part 2 are

identical.
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General Instructions: Part 2

1. The only difference in Part 2 is on how you report to the interface your entry/exit deci-

sions.

Exit Decision

2. Instead of deciding if you want to Exit or Stay In the market for a particular Exit Payment,

you will report an Exit Threshold.

3. You will report your Exit Threshold before you learn the Exit Payment that was ran-

domly selected.

4. The Exit Threshold specifies the minimum Exit Payment you would take to exit the mar-

ket. If the Exit Payment were to be higher than your choice for the Exit Threshold, then

you would exit the market and receive the Exit Payment. If the Exit Payment were to

be equal to or lower than your choice for the Exit Threshold, then you will Stay In the

market and not receive the Exit Payment.

5. After you submit your choice for the Exit Threshold the interface will show you the

randomly selected Exit Payment and will implement a choice for your Exit Threshold.

Entry Decision

6. Instead of deciding if you want to Enter or Stay Out of the market for a particular Entry

Fee, you will report an Entry Threshold.

7. You will report your Entry Threshold before you learn the Entry Fee that was randomly

selected.

8. The Entry Threshold specifies the maximum Entry Fee below which you are willing to

pay to enter the market. If the Entry Fee were to be higher than or equal to your choice

for the Entry Threshold, then you would not enter the market and not pay the Entry Fee.

If the Entry Fee were to be lower than your choice for the Entry Threshold, then you

would enter the market and pay the Entry Fee.

9. After you submit your choice for the Entry Threshold the interface will show you the

randomly selected Entry Fee and will implement a choice for your Entry Threshold.

Are there any questions?
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Screenshots of the Interface

Figure 11 displays the first screen that subjects see when the experiment starts in the case of a

Standard treatment with A = 0.4. At the top left subjects are reminded of general information:

the cycle and rounds within the cycle. The blank part on the left side of the screen will be

populated with past decisions as the session evolves. In round 1 of every cycle both start in

the market, which they are reminded of at the top right. The quantity stage table is presented

below and subjects are asked to select a row. In the laboratory we refer to the quantity stage

as the market stage.

Figure 12 shows a case where the first row has been selected. As soon as a row is selected

a ‘submit’ button appears. Subjects can change their choice as long as they haven’t clicked on

the ‘submit’ button. Figure 13 shows an example of the feedback subjects get in a case where

the subject selected row 2 and the other selected row 1.

After a quantity stage subjects face the entry/exit stage. Figure 14 shows an example of

an exit stage in cycle 1. Subjects are presented with a randomly selected scrap value and they

simply indicate if they exit or stay in the market. An entry stage is similar, except that subjects

decide between ‘enter’ or ‘stay out.’

Figure 15 shows an example when there is no quantity decision in the quantity stage. Sub-

jects in this case are simply informed of their quantity stage payoff. This screen is qualitatively

similar to what subjects in the No Quantity Choice treatment see if they are both in the market.

This screenshot, which corresponds to a case in round 5, also shows on the left side the table

with past decisions in the current cycle. As the session evolves subjects also have access to

choices for previous cycles. They simply enter the number for the cycle for which they wish

to see their feedback in the box after ‘History for Cycle’ and click on ‘Show.’
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Figure 11: Quantity Stage of Standard Treatment with A = 0.4.

Figure 12: Example where the subject selects row 1.
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Figure 13: Example of Feedback when the subject selects 2 and the other selects 1.

Figure 14: Example of an exit stage decision in cycle 1.
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Figure 15: Example of quantity stage where there is No Quantity Choice.

Figure 16 presents an example of the exit decision for part 2 of the session. Subjects can

select a threshold by clicking anywhere on the black line. Once they click on the horizontal

black line a red vertical line appears with a red number indicating the choice. In the example

the subject selects a threshold of 51. Once a choice is made the interface indicates with arrows

the values of the scrap value for which the subject would exit or stay in the market. Subjects

can change their choice by clicking anywhere else on the black line. They can also adjust their

choice by clicking on the plus/minus buttons at the bottom. Each click in the plus (minus)

button adds (subtracts) one unit to the current threshold. Once they click on ‘submit’ their

choice is final.

Finally, Figure 17 shows an example of the feedback that subjects receive after they make

an exit decision. First they are informed of the randomly selected scrap value (exit payment),

then they are reminded of the threshold they finally submitted. Given these two values they

are informed of the final decision.

92



Figure 16: Example of an exit stage decision in cycles 2-16

Figure 17: Feedback after exit stage decision in cycles 2-16
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