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Abstract

Prospect theory (Kahneman and Tversky (1979)) and cumulative prospect
theory (Tversky and Kahneman (1992)) model agents who overweight small
probabilities, while simplicity theory (Puri (2022) models agents who prefer
lotteries with fewer outcomes. We evaluate the predictive performance of these
theories, and of hybrid models that combine them, on lotteries with varying
numbers of outcomes. A heterogeneous-agent model that combines simplicity
theory with cumulative prospect theory has the highest outsample predictive
accuracy, and comes close to machine learning performance. We also study the
relationship between probability weighting and simplicity, and analyze observ-
able determinants of membership in each behavioral group.
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1 Introduction

There is abundant evidence that people’s risk-taking behavior in laboratory exper-
iments depends nonlinearly on the stated probabilities of the various outcomes, and
in particular that people overweight small probabilities and underweight large ones.
For that reason, the most commonly used alternatives to expected utility, namely
prospect theory (PT, Kahneman and Tversky (1979)) and cumulative prospect the-
ory (CPT, Tversky and Kahneman (1992)) both allow for for non-linear probability
weighting. More recently, simplicity theory (Puri (2020)) posits that people assign
a utility premium to lotteries with fewer possible outcomes. This is consistent with,
but stronger than, a preference for deterministic payments over stochastic ones, and
can explain some behavior that PT and CPT cannot. Conversely, because simplicity
theory reduces to expected utility theory when comparing lotteries with the same
support size, it cannot explain some behavior that is consistent with non-linear prob-
ability weights. This leads us to compare the predictive performance of these theories
with hybrid models that we term PT-Simplicity and CPT-Simplicity.1

We evaluate the standard functional forms for utility functions and probability
weighting, and a functional form for simplicity theory that we introduce here. For
each model, we allow for heterogeneous agents with different model parameters. We
find that a heterogeneous-agent model combining simplicity theory with CPT (the
CPT-Simplicity model) does best, and comes close to matching machine-learning
performance, which suggests that it captures most of the empirical regularities in the
data. The other models all perform less well.

The CPT-Simplicity model uncovers three behavioral types in the population.
Group 1, which comprises about 42% of our data, is complexity averse and distorts
probabilities mildly. Group 2, comprising 36% of our data, is less strongly complex-
ity averse, and also distorts probabilities mildly. Group 3, comprising 21%, weighs
probabilities heavily and is complexity averse.

We also test for whether participants prefer simplicity over and above any prefer-
ence for certainty. We do so by calculating the residuals from the three-group CPT
model, and regressing these on the number of outcomes. We find that the coefficient
on number of outcomes is statistically significant for two of three groups, which in-

1By predictive performance we mean that we train our models on one dataset, and test them on
another, a standard technique to avoid overfitting (Tulchinsky, 2020).
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dicates these groups have a preference for simplicity over and above a preference for
certainty.

We then test whether it is possible to predict a person’s behavioral type from
their observable characteristics. Education, employment status, age, and race do
not predict group membership in a statistically significant way. Financial literacy
is predictive: a lower financial literacy score increases the probability of belonging
to Group 3, which weights probabilities strongly, and decreases the probability of
belonging to Groups 1 and 2, which weight probabilities less. However, all three
groups have substantial shares of both financially literate and financially illiterate
individuals. Gender and income are also predictive.

As tests of external validity, we apply the parameters and groups found by the
heterogeneous CPT-Simplicity model to three other datasets. First, we show that the
model accurately predicts the amount of Allais-type behavior in prior studies. Sec-
ond, we show that our estimated model approximately replicates the event-splitting
findings of Bernheim and Sprenger (2020), which compares two-outcome lotteries with
three-outcome lotteries formed by adding a mean-preserving spread to what had been
the more likely outcome.

Our estimation technique for heterogeneous economic models improves on earlier
work in several ways, which allows it to more consistently find parameters used to
generate synthetic data. For example, we use a validation set to choose the number
of groups and other hyperparameters.

We focus on pure economic models, rather than on hybrids of machine learning and
economic theory, because pure economic models are easier to interpret and also easier
to port to other domains to evaluate comparative statics and policy implications.

2 Related Work

Testing the Independence Axiom The literature that directly tests (and typi-
cally rejects) the independence axiom of expected utility theory includes studies of
the Allais paradox (including Conlisk (1989), Fan (2002), Huck and Müller (2012),
Mongin (2019)) and also tests of the independence axiom with various combinations of
probabilities and support sizes (Harless and Camerer (1994)). Fehr-Duda and Epper
(2012) points out that probability weighting has been repeatedly observed in the lab,
though evidence outside the lab is mixed; for example, Hajimoladarvish (2017) finds
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underweighting of 0.01 and 0.1, and Etchart-Vincent (2009) finds that probability
weighting changes with the magnitude of the outcomes.

Representative-agent parametric estimates Most of the work that estimates
CPT uses a representative-agent model and restricts attention to lotteries with two
outcomes (Tversky and Kahneman (1992), Tversky and Fox (1995), Wu and Gonzalez
(1996), Abdellaoui (2000), Bleichrodt and Pinto (2000), Booij, van Praag and van de
Kuilen (2010), Tanaka, Camerer and Nguyen (2010)). Similarly, in a survey of work
on probability weighting, Fehr-Duda and Epper (2012) only consider two-outcome
lotteries, as does the Bruhin, Epper and Fehr-Duda (2010), which estimates a mixture
model.

While many papers find evidence of PT or CPT behavior, parametric values seem
to vary widely from study to study (Neilson and Stowe, 2002). Fehr-Duda and Epper
(2012) also surveys work reporting that parametric values vary from population to
population, for example, on student versus representative versus professional trading
samples.

Although PT and CPT incorporate probability weighting, and help explain many
experimental results, their validity is challenged in several recent studies (Etchart-
Vincent (2009), Andreoni and Sprenger (2011), Bernheim and Sprenger (2020)).
Bernheim and Sprenger (2020) tests and rejects the rank-dependence feature of CPT,
and also find evidence of a form of stochastically dominated choices when events are
“split” that violates both PT and CPT.

Mixture Models Conte, Hey and Moffatt (2011) estimates a mixture model on
lotteries with 2 and 3 outcomes. It assumes there are two groups in the population,
one of which has expected utility preferences and the other CPT with a one-parameter
family of probability weighting functions. Their main conclusion is that there is in-
deed heterogeneity in the population. Bruhin, Epper and Fehr-Duda (2010) estimates
a mixture model for PT/CPT on binary lotteries, where these two theories are equiv-
alent, and uses training data to determine the optimal number of groups. They find
that there are three distinct groups, with two of them (about 80% of the population)
exhibiting significant probability weighting. Fudenberg et al. (2020) also estimates
CPT with three types of agents on binary lotteries, and finds that it does a good job
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of predicting the average certainty equivalents.2

Certainty preference and complexity aversion Some part of the observed vi-
olations of PT and CPT seems to reflect a preference for certainty; as summarized
by Harless and Camerer (1994), “in the triangular interior [e.g for lotteries with three
outcomes], however, EU manages a miraculous recovery.” Moffatt, Sitzia and Zizzo
(2015) and Sonsino, Benzion and Mador (2002) find that, holding fixed the expected
value, people prefer lotteries with fewer outcomes even when those lotteries have
higher variance. Dillenberger (2010) captures a preference for certainty with the ax-
iom of negative certainty independence, and Cerreia-Vioglio, Dillenberger and Ortol-
eva (2015) uses this axiom to provide a representation theorem for “cautious expected
utility.”

Puri (2020) introduces and axiomatizes a “simplicity theory,” which posits that
agents incur a weakly increasing disutility from increases in a lottery’s support. The
empirical evidence so far suggests that a preference for simplicity may explain regu-
larities in behavior that probability weighting cannot: Bernheim and Sprenger (2020)
finds an effect of event splitting that is consistent with simplicity preference but not
with PT or CPT, and Goodman and Puri (2022) and Puri (2022) find evidence of
behavior that cannot be rationalized by PT, or CPT but is predicted by simplicity
theory. Finally Fudenberg and Puri (2022) used estimated parameters from an older
version of this paper (Fudenberg and Puri, 2021) to speculatively predict take up of
prize-linked savings accounts in South Africa.3

Machine Learning and Risk Preferences Erev et al. (2010), Erev et al. (2017),
Plonsky et al. (2016), and Plonsky et al. (2017) run prediction contests in which
participants were invited to submit machine learning algorithms to predict people’s
choices over lotteries. Plonsky et al. (2016) and Plonsky et al. (2017) find that a
combination (representative agent) ML-theory algorithm performs better than other
contest entries. Ke et al. (2020) similarly introduces a combination ML-theory algo-

2Andersen, Harrison and Rutström (2006), Harrison and Rutström (2009), and Harrison,
Humphrey and Verschoor (2010) use finite mixture models, but rather than a mixture of individuals,
these papers use a mixture model on choices.

3The parameter estimates have changed, and while the qualitative result that CPT predicts too
much takeup is similar, CPT-simplicity now substantially underpredicts the actual take up of 63%:
CPT now predicts that all groups should take up at 90-100%; and CPT-Simplicity now predicts that
Group 2 has 46% takeup while the other groups have 14 and 7% respectively.
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rithm. Our focus is instead on whether any economic theory can predict choices well;
we do not introduce or evaluate combination ML-theory algorithms. Also, the models
in these papers are implicitly representative agent: the same algorithm is applied to
everyone. In contrast, we allow for heterogeneous agent models. Finally, when these
papers use non-binary lotteries, they are lotteries with either a binomial distribu-
tion, or a left- or right-skewed binomial distribution. Our multi-outcome lotteries are
generated uniformly at random, which gives these lotteries more variety both in the
outcomes and in the probabilities assigned to those outcomes.

Peysakhovich and Naecker (2017) uses ridge regression to predict choices on binary
lotteries, and compare its performance to CPT. We use a larger range of machine
learning models, test a larger variety of economic models, use a dataset with more
variance in the number of outcomes, and apply our findings to external datasets. We
contribute to this literature by using unsupervised learning techniques, which we find
perform best. We also use validation sets, rather than train or test sets, to select
hyperparameters.

Other complexity measures There are other ways that lotteries can be complex
beyond support size. For example, a uniform distribution over 20 outcomes may
be more appealing that a lottery over 19 outcomes that has higher mean and lower
variance if the distribution of the 19-outcome lottery is very irregular. Prior papers
have hypothesized that insensitivity to probabilities may be due to cognitive limita-
tions (Viscusi, 1989; Wakker, 2010), and Enke and Graeber (2021) considers a model
that, in the risk context, implies probabilities are biased towards a uniform prior. Puri
(2022) proposes a relatively abstract way to model complexity that can accommodate
linguistic complexity and ease-of-computation effects. While our measure considers
only one measure of simplicity, it is striking that this measure performs favorably
relative to CPT, arguably the most prominent behavioral model over the past several
decides.

Comparing the Performance of Theories Fudenberg et al. (2020) proposes
that the “completeness” of a theory should be measured by comparing its percentage
improvement over a naive model to that of a table-lookup algorithm. We modify this
to a machine learning completeness score that uses a machine learning benchmark in

5



place of a table-lookup benchmark.4

3 Experimental Design

3.1 Participants

To gather our data we ran a survey on Amazon Mechanical Turk (MT) from May -
June 2022. We implemented four steps to help ensure clean data collection. First, we
implemented a practice round and three comprehension questions. Second, we paid
well above MT average earnings, with our participants earning, on average, $6.81 for
19 minutes of survey completion time, for an hourly rate of $20.43, three times over
the typical hourly wage on MT (Hara et al., 2017). Third, we restricted participation
to workers who had at least 100 prior tasks and had successfully completed at least
95% of them, using the auxiliary service CloudResearch, as suggested by Moss et al.
(2021) and Peer et al. (2021). Fourth, we included a free response question at the
end of the survey, asking participants whether or not they felt they understood the
task.

We collected 201 responses.5 Participants who completed the survey indicated
that they understood it, with most responses to the question of whether they under-
stood the task being some variant of ‘I understood’; ‘Yes’; or ‘I understood from the
beginning.’

We had collected an earlier dataset, and reported those results in an earlier version
of the paper (Fudenberg and Puri, 2021). The 2022 dataset is superior in several ways.
First, far more of the participants passed the comprehension test. For example, our
free response question (‘Do you felt you understood the task at the start of the
experiment? If not, when did you start understanding it?’) allows participants to
indicate if they had any trouble understanding the certainty equivalent task. Almost
all participants report understanding the task. Second, we introduce a practice round
on certainty equivalents to further help participants understand the task. Third, our
attrition rate in the 2022 sample is much lower than that in the earlier sample. Fourth,
we present lotteries so that a single click autofills rows of the multiple price list. Fifth,

4This is in the spirit of Peysakhovich and Naecker (2017) and Bodoh-Creed, Boehnke and Hick-
man (2018), which compare the performance of machine learning algorithms with that of models of
risk preference.

5A further 55 people were kicked out after they failed a comprehension check.
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the earlier experiment had payoffs and probabilities on a finer grid. We now generate
all lotteries so that their probabilities are multiples of 0.05, and their payoffs are
multiples of 0.25, which are ‘clean’ numbers participants may find easier to grapple
with.

The two samples statistically come from different distributions (a Kolmogorov-
Smirnoff test for differences in the distribution of relative risk premia yields a statis-
tically significant p-value of < 0.01), so we do not combine the datasets, but only use
the newer one.

Participants’ task was to provide their certainty equivalents for 30 different lot-
teries: 10 each of 2, 4, and 6 outcome lotteries, with lottery presentation in random
order. To elicit certainty equivalents, we used the standard multiple price list proce-
dure with single switching, described in further detail below.

In addition to having participants provide certainly equivalents for lotteries, we
ask participants about their income, age, sex, education, and employment. We also
ask financial literacy questions from Lusardi and Mitchelli (2007). There are three
financial literacy questions; the first two are simple percentage calculations, and the
third is a compound interest calculation (the exact questions are in Appendix A.2).
We impose a time limit of 45 seconds to answer the first question, one minute to
answer the second question, and five minutes to answer the third question. Following
Lusardi and Mitchelli (2007), the participant receives a score of 2 if they answer the
first or second question correctly and the third question correctly; they receive a score
of 1 if they answer the first or second question, but not the third question, correctly;
and they receive a score of 0 if they answer no questions correctly.

The summary statistics for each demographic and financial literacy question are
shown in Table 4 in Appendix A.3. In our sample, 69% of participants receive the
highest financial literacy score, 57% have at least a four-year college degree, and 72%
are under the age of 40.

3.2 Random Lottery Generation

There are 30 lotteries, 10 for each of two, four, and six outcomes. We do not want
there to be structural differences between lotteries with different numbers of outcomes,
so we generate random lotteries by matching on moments, e.g. we generate a set of
four outcome lotteries, and match the two and six outcome lotteries to those of the
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four outcome lotteries. Probabilities range from 0 to 1 and occur in increments of
0.05. Payoffs range from $1 to $10 and occur in increments of 0.25. The full random
lottery generation algorithm may be found in Appendix A.1, which also shows that
the mean, variance, and skewness of payoffs are not significantly correlated with the
number of outcomes. Each subject provided certainty equivalents for all lotteries.

3.3 Obtaining Certainty Equivalents

We use the multiple choice list method, as in Bruhin, Epper and Fehr-Duda (2010),
Bernheim and Sprenger (2020), and Chapman et al. (2017), among others.6 To ensure
that participants do not have to spend excessive time clicking, we impose single
switching, as in Andersen et al. (2006) and Tanaka, Camerer and Nguyen (2010).

Following Bruhin, Epper and Fehr-Duda (2010), for each lottery, each question
has 20 evenly-spaced choices. The choices range from $0.50 cents to $10. This allows
participants to violate dominance if they choose, by picking a certainty equivalent
below the lowest outcome in the lottery. Participants were asked to provide certainty
equivalents for all 30 lotteries. Figure 1 shows a sample question.

4 Preference Models

We consider monetary lotteries p with outcomes x1 > x2 > ... ≤ x|support(p)| > 0,
where the support size |support(p)| ranges from 2 to 6. Our basic preference models
are expected utility theory, PT, CPT, and simplicity theory.

• Expected Utility Theory:

u(p) =
∑

u(x)p(x)

• PT:
u(p) =

∑
i

u(xi)π(p(xi))

6This is a standard way to determine risk preferences, but there is some evidence that other
procedures yield different behavior, see e.g. Andreoni and Sprenger (2011), Freeman, Halevy and
Kneeland (2019).
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Figure 1: Sample Question

9



• CPT:

u(p) =
∑
i

u(xi)

[
π

(
i∑

k=1

pk

)
− π

(
i−1∑
k=1

pk

)]
,

where outcomes are in decreasing order, and the sum from 1 to 0 is defined to
be 0.7

• Simplicity Theory:

u(p) =
∑
i

u(xi)p(xi)− C(|support(p)|)

We also consider hybrid models that combine simplicity theory with either PT
or CPT.

• PT-Simplicity:

u(p) =
∑
i

u(xi)π(p(xi))− C(|support(p)|)

• CPT-Simplicity:

u(p) =
∑
i

u(xi)

[
π

(
i∑

k=1

pk

)
− π

(
i−1∑
k=1

pk

)]
− C(|support(p)|)

These hybrid models are proposed (but not axiomatized) in Puri (2020). We use the
standard CRRA specification u(x) = xα, α > 0,and probability weighting function
π(p) = pγ

(pγ+(1−p)γ)
1
γ
, γ > 0 from Kahneman and Tversky (1979) and subsequent work.8

Simplicity theory is relatively new, so there is no standard functional form to use.
We specify a three-parameter family of sigmoid functions, with C(1) = 0 as the theory
requires: C(x) = ι

1+eκ(x−ρ) − ι
1+eκ(1−ρ) . In this specification, ι represents the height of

the function, and ρ the midpoint of the rise, before normalization. The parameter
κ represents the slope, with higher κ corresponding to a steeper slope. Because we
normalize C so that C(1) = 0, larger values of κ and ρ also increase the height of the

7We will only consider the gains domain, and use a fixed reference point of 0, so this is equivalent
to Rank-Dependent Expected Utility (Quiggin, 1991).

8Bruhin, Epper and Fehr-Duda (2010) uses a more flexible specification with an additional pa-
rameter; Fudenberg, Gao and Liang (2022) argues that this extra parameter adds more flexibility
to the specification than is justified by the amount it improves predictions.
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function, though to a lesser extent than increases in ι. 9 In fitting the function, we
restrict each parameter to be weakly positive.10

When combining the models, we assume that the simplicity cost enters additively
with the PT or CPT evaluation. There is no particular a priori reason that this
should be the case, but as we will see this specification is very successful at predicting
the certainty equivalents.

5 Econometric and Machine Learning Models

Instead of estimating the preferences of a representative agent with each preference
model, we use mixture models, as in Bruhin, Epper and Fehr-Duda (2010), and allow
the model’s preference parameters to vary across individuals, with each individual
classified into one of k groups. This allows some groups to exhibit more probability
weighting than others, and also to have different risk preferences and responses to
complexity. 11 Our use of outsample evaluation for these models helps reduce the risk
of overfitting; models with more parameters can have higher cross-validated prediction
errors.

5.1 Evaluation

Each model maps parameter vectors to predicted certainty equivalents for each
group and lottery. We evaluate models based on their mean-squared error (MSE),
which is the average of the mean-squared error over all observations. We use cross
validation to split our data into train, validation, and test sections.12 The validation
sets are used to set hyperparameters such as the number of groups, while the test
sets are used to evaluate model performance on unseen data. Because we evaluate
on outsample error, our results should generalize more broadly than if we evaluated
on insample error, and models with more parameters do not necessarily have an

9Because our data only has three different values for |support(p) we could have instead estimated
a separate cost for each support size, but the sigmoid function lets us extrapolate to lotteries with
different support sizes.

10We have also tried specifications with ι allowed to take on any value, which allows for complexity-
loving behavior. Even allowing for that flexibility, we found ι > 0 for all groups, indicating that all
groups are complexity averse.

11We do not, however, allow some groups to have PT preferences and others to have CPT.
12Validation sets are used in machine learning to tune hyperparameters. A hyperparameter is a

value that contributes to the description of the model, such as a regularization weight in Lasso.
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advantage.
Unless otherwise stated, for all models below, we use the following cross validation

procedure. Our data consists of 30 lotteries total, which we randomly divide evenly
into s subsets, numbered A1, A2, .., As. We use A1 as test data, and B2 as validation
data. The models are trained on all other groups. The model hyperparameters are
chosen to be those under which the validation MSE is lowest given the parameters
estimated on the train data. Once the model parameters and hyperparameters are
determined, the model is evaluated on the test data. We use s = 5, so that our data is
split into 60% train, 20% validation, and 20% test (e.g, 20 train lotteries, 6 validation,
and 6 test). To ensure that each fold has a balance along complexity levels, we split
so that each fold has two 2 outcome lotteries, two 4 outcome lotteries, and two 6
outcome lotteries.

5.1.1 Econometric Specification

We wish to estimate parameters θ for model m. Denote by ĉel(θ) the predicted
certainty equivalent for lottery l when using model m with parameters θ. The ob-
served certainty equivalent for individual i on lottery l is cei,l = ĉel(θ) + ϵi,l, where
ϵi,l ∼ N(0, σi), σi = ξi, and each individual i has their own variance ξi in lottery
selection.

Let c = 1, 2, ..., C denote the different groups. Let θc be the parameters associated
with group c. The probability density of individual i’s choices under parameters θc

is:

f(cei; θc, {σi}l∈L) =
L∏
l=1

1

σi,l

ϕ

(
cei,l − ĉel

σi

)
,

where ϕ denotes the density of the standard normal distribution.
Let πc denote the probability of group membership of type c. The log-likelihood

of the finite mixture model is:

N∑
i=1

ln
C∑
c=1

πcf(cei; θc, σi),

where the first sum is over individuals and the second sum is over groups. The
parameters to be estimated are (θ1, ..θC , π1, .., πC , ξ1, .., ξN).
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5.1.2 Estimation

We estimate the model using an expectation-maximization algorithm (Dempster,
Laird and Rubin, 1977). This algorithm proceeds iteratively, first calculating the
log-likelihood of the model, and then estimating the parameters of the model using
maximum likelihood. We repeat these two steps until the process converges.

We estimate parameters for k = 1, 2, and 3 groups. Because the number of
groups is a hyperparameter, we pick the best number of groups based on validation
set performance. Our estimation procedure builds on that of Bruhin, Epper and
Fehr-Duda (2010), with some changes: we evaluate based on outsample performance,
and use validation performance to choose the number of groups for any given model,
using the two-step procedure detailed in Section 5.1.2 rather than averaging over
initializations. In combining cross validation with bootstrap, we first split the data
into folds for cross validation. Then, for 1000 different random seeds, we bootstrap
and select which folds correspond to test and validation sets. Also, because we have
two levels of noise (the cross-validation procedure and the bootstrap) as opposed to
one (just the bootstrap), we add several fixes for numerical stability: We impose a
lower bound on each πk of (number of groups)/100, and impose a lower bound on σi

of 1/100 and an upper bound of 100. These fixes for numerical stability allow the
mixture model to more consistently find parameters used to generate synthetic data.
We also use a canonical standard error correction for cross-validation.13

5.2 Machine Learning Algorithms

We predicted certainty equivalents using three different machine learning algo-
rithms: neural networks, k-means, and gradient boosting trees. Here we describe
how we implemented these algorithms.

5.2.1 Neural Networks

Our output variable for the neural network is the observed certainty equivalent
for each lottery and individual. To obtain stronger performance, we allow the neural
network to use the following sets of input variables: {the set of outcomes, the set of

13Hansen (2022) writes that an approximation for standard error takes the standard deviation
over cross-validation estimates and divides by the square root of the number of folds, based on the
idea that the cross-validation estimates are approximately uncorrelated across folds.
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probabilities, and an indicator for each individual}; {expected value, variance, number
of outcomes, and an indicator for each individual}; {expected value, variance, and
an indicator for each individual}; and each of these without the individual-specific
indicators. Similarly, we allow for any of the following architectures: 2-layer, 2-hidden
unit; 2-layer, 3-hidden unit; and 3-layer, 2 hidden units per layer, choosing the best
variable set by validation set performance. Having chosen the best input variable
set and architecture using validation performance, we report test performance in the
results section (Section 6). We use a cross-validation and bootstrap procedure similar
to that described in Section 5.1 and evaluate each input variable set - architecture
pair using 10 draws across 30 different initializations.

5.2.2 K-Means

K-Means is an unsupervised algorithm that clusters similar groups together. To
apply it, we use a cross-validation and bootstrap procedure similar to that described
in Section 5.1. Lotteries are split into train, validation, and test sets. We group
individuals into k groups using the train data. On the validation data, we predict
individual i’s certainty equivalent for lottery g to be the average of the certainty
equivalents for lottery g picked by everyone else in individual i’s group (excluding
individual i).14 We split our data into 60% train, 20% validation, and 20% test. We
attempt up to three groups, and pick the best group number and initialization based
on validation set performance. For each group, we evaluate using 10 draws across 250
different initializations.

5.2.3 Gradient Boosting Trees

A gradient boosting tree uses multiple splits of the data to predict certainty equiv-
alents. We split our data into 60% train, 20% validation, and 20% test in each
bootstrap iteration. The input variable set is {expected value, variance, number of
outcomes, and an indicator for each individual}, and the hyperparameter we focus
on is the maximum depth of the tree. We use the default maximum depth of up to 3,
choosing the best depth and initialization by performance on the validation set. For
each maximum depth, we evaluate using 10 draws across 250 different initializations.

14To ensure the validation and test predictions are well defined, we impose the constraint that the
minimum group size is two. For this, we use the standard Python implementation, which is based
on Bradley, Bennett and Demiriz (2000).
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6 Analysis

6.1 Relative Scores

Table 1 compares test performance of the economic theories to that of the best-
performing machine learning algorithm, which turned out to be k-means; with the
exception of EU, every model performs best with three groups.15 We compute a score
for each model, similar to Fudenberg et al. (2020). That paper suggests calculating a
completeness score by using the performance of a naive algorithm and a benchmark
hold-one-out evaluation method. Here, we use expected value as our naive algorithm,
but as a benchmark we use machine learning, so we report the machine learning
completeness score:

Score (model) =
MSEnaive −MSEmodel

MSEnaive −MSEML

We emphasize that we measure completeness with respect to this dataset and our ma-
chine learning algorithms. A larger dataset or one with more features could improve
the machine learning benchmark, as could advances in machine learning algorithms.
Conversely, we might expect larger prediction errors for both machine learning and
for the CPT-Simplicity model on a dataset with more variation in the magnitudes of
the prizes.

The combination model CPT-Simplicity achieves a 93% ML completeness score
when used with three groups, which turns out to be optimal.16 The next best mod-
els, in order, are: Simplicity, CPT, PT-Simplicity, PT, and EU. Simplicity on its own
outperforms both CPT and PT. CPT, while performing better than PT, still misses
regularities in behavior. 17Because the test set consists of only six lotteries, the stan-
dard errors are relatively large, and the performance gap between CPT-Simplicity
and the next three models is not statistically significant.

15See (Table 6 in Online Appendix C). The best performance of each machine learning algorithm,
as measured by validation set MSE, is reported in Table 7 in Online Appendix C). The fact that the
best performing machine learning algorithm is k-means may reflect the size of our dataset— with
millions of observations, we might expect a neural network to perform better (D’Souza, Huang and
Yeh, 2020).

16On the validation set, three groups gives a 20% improvement in MSE relative to using one group.
17Because of our more complex set of lotteries, CPT fits less well here than in the binary lotteries

studied by Bruhin, Epper and Fehr-Duda (2010) and Fudenberg et al. (2020), both in an absolute
sense and compared to ML performance.
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Table 2 provides parameter estimates for the CPT-Simplicity model. Figure 2
plots the probability weighting functions for each group. Probability weighting for
the majority groups (Group 1 and Group 2, which together constitute about 80% of
the sample) is mild. Probability weighting for the Group 3 is much stronger.

In addition to estimating the parameters, the bootstrap method allows us to
directly estimate complexity costs C(2), C(4), C(6) as a function of the simplicity
parameters found in each bootstrap iteration. Figure 3 plots the simplicity point
estimates for each group, as reported in Table 2. All three groups display complexity
aversion. The CRRA parameter for all groups is around between 0.4 - 0.9, consistent
with α estimates in prior experimental work using prospect theory (Kahneman and
Tversky, 1979; Bruhin, Epper and Fehr-Duda, 2010; Camerer and Ho, 1994). The
probability weighting parameters, at 0.81 and 0.88 for the two larger groups, resem-
ble that of Wu and Gonzalez (1996) who find γ = 0.74 in a representative agent
context, and at 0.51 for the minority group resembles Camerer and Ho (1994) who
find γ = 0.56 in a representative agent context. Thus probability weighting matters
even when simplicity cost is included. This fits with the fact that it is helpful when
considering only binary lotteries, where simplicity is irrelevant.

The minority group displays higher complexity aversion and more probability
weighting than the other two groups. The two majority groups display some proba-
bility weighting and display complexity aversion. These results together suggest that
people who display strong probability weighting may also display strong complex-
ity aversion, and that even those who display mild probability weighting are often
complexity averse.
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Table 1: Outsample Performance

(a) Cross-Validation and Bootstrap

Model Test MSE ML Completeness Score
Expected Value 4.284 0%

(0.271)
EU 3.083 62%

(0.190)
PT 2.814 76%

(0.245)
PT-Simplicity 2.616 86%

(0.262)
CPT 2.514 91%

(0.240)
Simplicity 2.486 92%

(0.251)
CPT-Simplicity 2.477 93%

(0.257)
Machine Learning Benchmark 2.337 100%

(0.113)

Standard error in parentheses.

(b) Cross-Validation Only

Model Test MSE ML Completeness Score
Expected Value 4.284 0%

(0.271)
CPT 2.416 89%

(0.089)
Simplicity 2.385 90%

(0.085)
CPT-Simplicity 2.374 91%

(0.062)
Machine Learning Benchmark 2.189 100%

(0.232)

Standard error in parentheses.
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Table 2: CPT-Simplicity Group Parameters

α 0.784 0.649 0.503
(0.098) (0.139) (0.143)

γ 0.811 0.884 0.510
(0.071) (0.080) (0.117)

ι 0.351 0.334 0.573
(0.211) (0.202) (0.289)

κ 4.526 4.216 5.240
(2.209) (1.772) (1.504)

ρ 1.554 1.714 0.917
(1.261) (1.222) (0.508)

C(2) 0.062 0.051 0.107
(0.044) (0.039) (061)

C(4) 0.088 0.074 0.118
(0.055) (0.045) (0.062)

C(6) 0.096 0.083 0.122
(0.055) (0.044) (0.061)

Number 91.867 70.900 38.233
(5.461) (4.855) (6.000)

Standard error in parentheses.
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Figure 2: Probability Weighting Functions By Group
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Figure 3: Simplicity Functions By Group
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To further supplement our analysis, in Online Appendix D.2, we re-estimate the
CPT-Simplicity and CPT models on the 14 lotteries that are not dominated by any
other lottery in our dataset. Simplicity allows for dominance violations while CPT
does not, so this procedure allows us to check whether Simplicity is adding value
over and above allowing for such behavior. We find that CPT-Simplicity continues
to outperform CPT outsample, which shows that simplicity’s contribution extends
beyond explaining dominance violations.
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6.2 Constraints on Generality

We start by speaking to the extent to which we would expect these results to hold
in other experiments with the same lotteries and same subject population, and then
speak to the likely generalizability of our results to other lotteries or individuals.

Because cross-validation is known to have high standard errors (Braga-Neto and
Dougherty, 2004; Efron and Tibshirani, 1997), even for data with thousands of ob-
servations, computer scientists often use the ‘one standard error rule,’ which says
that one picks the most interpretable model within one standard error of the best
performer (Piegorsch, 2015). Following the one standard error rule would imply that
no model beats machine learning, as none of them are within one standard deviation
of ML performance. However, the closest performer is CPT-Simplicity.

It is worth pointing out that typical ML also does not use bootstrap, while we
do, introducing even more variance into our analysis. Table 1b recomputes results for
the three-group CPT-Simplicity, Simplicity, and CPT models, using cross-validation
but not bootstrap, in line with more standard CS procedure. Here again, the “one
standard error” rule suggests choosing CPT-Simplicity. In addition, CPT-Simplicity
is about one standard deviation better than CPT, and while it is only marginally
better than Simplicity alone our priors and the weight of past evidence both suggest
that probability weighting is important.

One may also ask whether these results would hold on other datasets, or with
other study participants. We developed our algorithm to generate lotteries uniformly
at random, keeping mean, variance, and skewness similar across complexity levels.
A similar dataset, with lotteries generated in this way, may produce similar results.
However, our results may or may not generalize to special distributions such as nor-
mals, exponentials, etc. which we do not study here.

Our study population is taken from Amazon Mechanical Turk, which many have
argued (Berinsky, Huber and Lenz, 2012) may be at least as representative of the
population as studies using a student population.
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6.3 Group Composition

The propensity score of individual i for group c is the average of the probability
that individual i belongs to group c, taken over all iterations.18 Uniformly random
assignment would correspond to a propensity score of 33%. Figure 5 in Appendix
B.1 shows that the propensity scores are near zero or above 50% for many individ-
uals, especially in Groups 1 and 3. We now statistically test whether certain
characteristics predict group membership. In each iteration of the mixture model, we
calculated the probability that an individual belonged to a particular group. For each
group, we regress the probability that an individual belongs to group c in iteration b

on the matrix of financial literacy and demographic characteristics for that individual.
We cluster standard errors at the individual level.19 Table 5 in Appendix B.2 shows
that age, employment status, and education do not predict group membership at the
10% significance level. Few variables are predictive, and even those that are explain
little of the variation in group composition. The only variables that have predictive
content are financial literacy score, gender, and income. Men are 7% more likely to
be in Group 1, and women are 6% more likely to be in Group 3; recall also that the
former group shows less risk aversion than the latter. This result is consistent with
experimental literature showing that women are more risk averse than men (Eckel
and Grossman, 2008), and are more prone to probability weighting (Rieger, Wang
and Hens, 2017). A $1,000 increase in income increases the probability of being in
Group 1 by 0.07%. Those who are less financially literate are 5% more likely to be
in Group 3. Greater financial literacy is associated with being in Groups 1 or 2: a
one point increase in the financial literacy score increases the probability of being
in Group 1 by 3%, and Group 2 by 2%. Our results seem to indicate that financial
literacy matters for probability weighting, but that even financially literate people
can have simplicity preferences.

18For ease of computation, for this and other sections involving group membership analysis, we re-
run the model on all individuals without bootstrapping. This gives a probability that the individual
belongs to each group for each iteration, whereas with bootstrap, there may be some iterations where
the individual is not drawn. There remains variation from which folds are assigned as validation,
train, or test. The resulting parameter estimates for this procedure are numerically similar to those
with bootstrap.

19Precisely, the specification is pi,c,b = βXi + ϵi,c, where pi,c,b is the probability that individual i
belongs to group c in bootstrap iteration b and xi are individual characteristics.
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7 Non-Parametric Analysis

In this section we examine risk-taking behavior, probability weighting, and com-
plexity aversion without imposing a parametric structure on the simplicity cost. To
examine probability weighting, we follow Bruhin, Epper and Fehr-Duda (2010) and
plot the median relative risk premium (EV −CE)/EV .20 Probability weighting pre-
dicts that the relative risk premium is weakly increasing in the probability of the
better outcome. We also plot the risk premium against the variance of the lotteries
to examine attitudes towards risk.

To examine complexity aversion, we use the CPT residuals, which are the differ-
ences between the actual certainty equivalents and those predicted by CPT with our
estimated parameters. If CPT is the true model this residual should be unrelated
to the number of outcomes, whereas complexity aversion predicts the residual would
be increasing in the number of outcomes. In all regressions that follow, we include
an intercept term, so that any relationship between number of outcomes and CPT
residuals is relative to the canonical CPT model. One interpretation of including an
intercept is what CPT plus a certainty premium captures, with respect to number
of outcomes. Regardless of whether or not we include an intercept term, we obtain
similar results (e.g, statistical significance on the number of outcomes coefficient is
similar regardless of whether an intercept is included).

7.1 Overall

Figure 6 in Online Appendix C.2 shows that individuals respond strongly to both
expected value and risk, with the risk premium increasing with variance. There is
evidence of mild probability weighting: the median risk premium is negative for prob-
abilities below 0.2, and mostly positive afterwards. The relative risk premium first
increases, then decreases in the probability of the better outcome. There is evidence
that complexity matters: a regression of the CPT residual on the number of outcomes,
clustering standard errors by individuals, yields a statistically significant coefficient
of 0.03 (p-value < 0.03).

A representative agent here would be complexity averse and display some prob-
20While we follow the literature in calling the object EV − CE the risk premium against the

probability of obtaining the better outcome in two-outcome lotteries (Fehr-Duda and Epper, 2012).
Puri (2020) pointed out that in the presence of a simplicity preference, the risk premium is better
thought of as a “risk-complexity premium.”
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ability weighting. We had instead fit a heterogeneous agent model. The next few
subsections consider the unconditional data by group, checking whether the data
without parametric assumptions maps back to the parametric behavior we found.
Breaking the data by group allows more nuanced patterns to emerge.

7.2 By Group

We show that the non-parametric behavior described for each group is qualita-
tively similar to the parametric behavior predicted for that group. We assign an
individual to a group if their propensity score for that group is at least 0.5. This
procedure successfully assigns 161 of the 201 individuals (about 80%) to groups.

In additional to the graphical analysis described earlier, we also examine com-
plexity aversion analytically, by regressing the CPT residual against the number of
outcomes, clustering standard errors at the individual level. To construct a CPT
residual for each group, we use the γ and α estimates for that group as found using
a representative agent CPT model for that group.

Figure 7 shows the probability weighting, variance, and expected value plots for
Group 1 (all figures referred to in this section are in Online Appendix C.2). The group
shows mild evidence of probability weighting: the median relative risk premium in-
creases, then decreases in the probability of the higher outcome for two-outcome
lotteries (Figure 7c). The group shows strong evidence of risk aversion, with median
risk premium increasing linearly in the variance of the lottery (Figure 7b).

This group shows evidence of complexity aversion: regressing the CPT residual on
the number of outcomes, clustering standard errors by individual, yields a coefficient
of -0.03, with a p-value of 0.04.

Group 2 likewise displays evidence of complexity aversion, and mild probability
weighting. For complexity aversion, regressing the CPT residual on number of out-
comes, clustering standard errors at the individual level, yields a coefficient of -0.05,
with p-value < 0.01.

In Figure 8 the median relative risk premium first increases, then remains flat or
decreases, as the probability of the better outcome increases for two-outcome lotteries
(Figure 8c), which is mild evidence of probability weighting (see Fehr-Duda and Epper
(2012) and Bruhin, Epper and Fehr-Duda (2010)). This group also responds strongly
to expected value, and to variance (compare Figures 8b and 7b).
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Group 3 displays evidence for probability weighting (Figure 9c), as their relative
risk premia tends to increase in the probability of the better outcome. The group
also displays evidence of complexity aversion, and mild probability weighting. For
complexity aversion, regressing the CPT residual on number of outcomes, clustering
standard errors at the individual level, yields a coefficient of -0.05, with p-value 0.04.

Like the other two groups, this group responds strongly to the expected value
(Figure 9a). This group also responds more strongly to variance than the first two
groups (Figure 9b).

7.3 Testing for a Simplicity Preference

Section 6.3 looked at the CPT residual, with the groups as found by the CPT-
Simplicity model. This helped us understand behavior for each of those groups. To
test for a simplicity preference, we now use the groups found by the CPT model21,
and construct CPT residuals for each of these groups. The null hypothesis behind
this test is that the true model within each group is CPT, and that the CPT model
correctly assigns people to groups.

Table 3 shows the coefficient and p-value after regressing the CPT residual on
number of outcomes, clustering errors at the individual level. These regressions have a
statistically significant slope for the second and third group. Separate regressions also
indicate complexity aversion over and above what CPT with a certainty preference
can capture; in CPT with a certainty preference, we would expect the intercept to be
positive and the slope flat, which is not what we find.22 An alternative explanation
for complexity aversion is that the probability weighting parameter γ is not fixed, but
varies with the cardinality of the lottery’s support. To test this alternative theory, we
hold α fixed at the value found for each group on two outcomes only, and separately
estimate a CPT model for each number of outcomes for each group. Online Appendix
D.1 shows that, for Groups B and C (for which the CPT residuals test showed a need
for simplicity), γ’s do not vary statistically by number of outcomes.

21The parameters found by the heterogeneous agent CPT model are reported in Appendix C.3.
22Regressions with an intercept term yield a negative and statistically significant slope for the

largest group, and statistically insignificant slopes for the other two groups.
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Table 3: Regress CPT Residual on Number of Outcomes; Groups Found by
Three-Group CPT Model

Group Coefficient on N. Outcomes p-value of Coefficient
Group A -0.01 0.67

Group B -0.05 0.00

Group C -0.07 0.01

8 External Applications

In this section we examine the predictions of our estimated CPT-Simplicity model
on data we did not collect. To make predictions for each group we draw parameters
for that group from a normal distribution whose mean is the group’s point estimate
for that parameter and whose standard deviation is the group’s standard deviation
for that parameter as reported in 2.23 We draw these parameters 1000 times. Some
of the applications involve payoffs beyond the range of our experiment. In these cases
we linearly decrease the payoffs to fall within the range that we examined.

The Allais paradox For the Allais paradox, the behavior our model predicts is
close to those found in incentivized experiments. Conlisk (1989) reports that 6%
of people violate EU in the Allais paradox; Huck and Müller (2012) finds 8% of
people display Allais behavior; and Harrison (1994) finds 15% of people displaying
Allais behavior. Using the the payoffs of Conlisk (1989) (which are similar to those
in Huck and Müller (2012)), our model predicts that Group 1 and Group 2 display
Allais behavior 0.2% and 12% of the time, respectively while the minority Group
3 displays Allais behavior 62% of the time. Taking a population weighted average,
our simulations predict that 18% of the time, the population displays Allais behavior
when faced with real, small stakes, in line with proportion of Allais behavior found
by studies using these stakes.24

23This is standard Monte Carlo (Brandimarte, 2014) on group behavior, where the uncertainty
arises from uncertainty over the parameter estimates. Here, individual heterogeneity is already
accounted for by splitting the population into three groups.

24There is a vast literature on Allais with large and hypothetical stakes. We compare our predic-
tions to the real stakes results because they are incentivized. The real stakes used in experiments
are also close to those used in our experiment.
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Neilson and Stowe (2002) notes that there is a large range of probability weighting
estimates for CPT models. In particular, Kahneman and Tversky (1979) finds a CPT
parameter of γ = 0.61; Camerer and Ho (1994) finds γ = 0.56; and Wu and Gonzalez
(1996) finds γ = 0.74. Our heterogeneous agent model can accommodate the range
of previous parameters found.25

Event splitting Our model also predicts the event splitting behavior found by
Bernheim and Sprenger (2020), where spitting the probability of an event leads to
a drop of the certainty equivalent that is not consistent with CPT. Paralleling their
“split-low” case, we simulate the utility for each group for the lotteries {$2, 0.6; $3, 0.4}
and {$2 − ϵ, 0.3; $2 + ϵ, 0.3; $3, 0.4}, where ϵ ∈ {0.05, 0.1, 0.2, 0.3}.26 Bernheim and
Sprenger (2020) finds that experimental participants provide a lower certainty equiv-
alent from the three-outcome lotteries, over and above what CPT would predict; and
further the certainty equivalent is higher for the two-outcome lottery than for the
three-outcome lottery with the smallest value of ϵ.

Simulating behavior for each group, we find that Groups 2 and 3 incur a utility
penalty over and above what CPT would predict for the three-outcome lotteries
relative to the two-outcome lotteries (see Figure 12 in Online Appendix E.1), roughly
replicating the empirical pattern found in Bernheim and Sprenger (2020). Group 1
incurs less of a utility penalty than CPT predicts. Taking a population-weighted
average yields that the simulated certainty equivalent decreases by $0.15. Figure 13
shows that we have analogous findings in the “split-high” case where the two-outcome
lottery {$2, 0.4; $3, 0.6} is compared to {$2, 0.4; $3− ϵ, 0.3; $3 + ϵ, 0.3}.

9 Conclusion

We found that the CPT-simplicity model comes close to matching machine learn-
ing algorithms in making outsample predictions and outperforms simplicity theory,
CPT, PT-Simplicity, and PT. Our results show that simplicity matters for prediction;

25The lowest γ we found in the three-group CPT-Simplicity model is around the lowest represen-
tative agent γ in the papers discussed in this section; similarly, the highest γ in the three groups
roughly corresponds to the highest γ from the representative agent literature.

26The payoffs they used are 10 times as large, and they bound their multiple price list at a minimum
of zero and a maximum of the highest outcome in the lottery; we impose the same restrictions on
our predicted certainty equivalents.
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this is confirmed in the Goodman and Puri (2022) study of the preferences of traders
in binary option markets. Also, while we use a particular function for simplicity cost
as a function of support size; it would be interesting to consider other functional
forms, and to incorporate other aspects of simplicity into the cost function. Finally,
we found that financial literacy, gender, and income help predict group membership,
i.e. the best fitting form of risk preferences. It would be interesting to better under-
stand the link between these characteristics and and tolerance for complexity.
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Online Appendix A Data

A.1 Random Lottery Generation Procedure

There are 30 lotteries: 10 with 2 outcomes, 10 with 4, and 10 with 6. We generate
these using a greedy algorithm:

1. Randomly generate 10 4-outcome lotteries.

2. Randomly generate 500,000 2-outcome and 500,000 6-outcome lotteries.

3. For each 4 outcome lottery p(4), in the entire set of n outcome lotteries p(n),
n ∈ {2, 6}, find the n-outcome lottery that minimizes the loss function

0.4|Mean(p(4))− Mean(p(n))|+ 0.1|Var(p(4))− Var(p(n))|
+0.1|Skew(p(4))− Skew(p(n))|+ 0.4|Range(p(4))− Range(p(n))|

By randomly generate, we mean that the following process was used:

• Set remaining probability to 1, and the outcome set O to the empty set.

• Until the desired number of outcomes n is reached:

– Uniformly at random draw a number between 1 and 10, which is a multiple
of $0.25. If that number is not in the outcome set, add it to the outcome
set. If that number is in the outcome set already, then repeat this step
until drawing an outcome not already in the outcome set.

– Uniformly at random draw a probability between 0.05 and remaining probability−
(n− |O|) ∗ 0.05, such that this probability is a multiple of 0.05.

The resulting lotteries do not differ significantly in mean, variance, or skewness by
number of outcomes. Figure 4 plots each measure against the number of outcomes.
Kolmogorov-Smirnoff tests do not reject that for each number of outcomes these
moment distributions are identical to each other.

A.2 Financial Literacy Questions

The financial literacy questions asked are:

1. If the chance of getting a disease is 10 percent, how many people out of 1,000
would be expected to get the disease?

2. If 5 people all have the winning number in the lottery and the prize is 2 million
dollars, how much will each of them get?
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(a) (b)

(c)
Figure 4: Moments of the Lottery and Number of Outcomes

3. Let’s say you have 200 dollars in a savings account. The account earns 10
percent interest per year. How much would you have in the account at the end
of two years?
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A.3 Demographic Summary

Table 4: Demographics and Financial Literacy, Overall Sample
Age

20-29 19%
30-39 37%
40-49 20%
50-59 14%
> 60 8%

Gender
Male 58%
Female 42%

Education
High school graduate 13%
Some college 18%
2-Year degree 11%
4-Year degree 47%
Master’s degree 8%
Doctoral degree 1%
Professional degree (ex. JD, MD) 1%

Employment
Paid employee 64%
Self-employed 26%
Not working 10%

Household Income
< $10,000 4%
$10,000-$24,999 11%
$25,000-$49,999 33%
$50,000-$74,999 21%
$75,000-$99,999 13%
$100,000-$124,999 4%
$125,000-$149,999 4%
> $150,000 7%
Prefer not to answer 1%

Financial Literacy
Score = 0 1%
Score = 1 44%
Score = 2 54%

Respondents 201
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Online Appendix B Group Membership

B.1 Propensity Scores

(a) Group 1 (b) Group 2

(c) Group 3

Figure 5: Propensity Scores by Group
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B.2 Group Membership and Demographics

Table 5 shows the results of regressing the probability of belonging to each group,
for each individual, on demographic characteristics, where probabilities of belonging
are taken over all bootstrap iterations.

Table 5: Group Membership Regressions
Complexity Averse Complexity Averse

(Stronger)
Prob. Weighers

Financial Literacy 0.0314∗ 0.0227∗ -0.0541∗∗

(0.019) (0.012) (0.025)

Age 0.0005 0.0003 -0.0008
(0.001) (0.001) (0.002)

Income 0.0007∗∗ 0.000 -0.0007∗

(0.000 ) (0.000) (0.000)

College-Educated -0.0077 0.0094 -0.0017
(0.031) (0.020) (0.038)

Male 0.0675∗∗ -0.0017 -0.0658
(0.031) (0.020) (0.040)

Employed 0.0350 0.0303 -0.0654
(0.051) (0.030) (0.065)

N.Individuals 201 201 201
R2 0.015 0.002 0.035
Standard errors clustered at the individual level. Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, , ∗∗∗ p < 0.01
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Online Appendix C Analysis

C.1 Validation Performance

Table 6: Validation Performance of Models by Number of Groups

Model Groups Validation MSE
Expected Utility 1 3.281

(0.191)
2 3.095

(0.190)
3 3.146

(0.251)
Prospect Theory 1 4.404

(0.395)
2 3.190

(0.389)
3 2.823

(0.256)
Simplicity Theory 1 3.110

(0.181)
2 2.536

(0.140)
3 2.485

(0.253)
Cumulative Prospect Theory 1 3.048

(0.131)
2 2.520

(0.116)
3 2.511

(0.240)
PT-Simplicity 1 3.256

(0.535)
2 2.625

(0.159)
3 2.624

(0.262)
CPT-Simplicity 1 3.068

(0.141)
2 2.507

(0.112)
3 2.472

(0.256)
Standard error in parentheses.

Table 7: Machine Learning Algorithms: Best Validation Performance

Model Validation MSE
Gradient Boosting Tree 1.954
Neural Network 1.668
K-Means 1.532
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C.2 Data Visualization: Figures

(a) Expected Value (b) Variance

(c) Probability Weighting

Figure 6: Data Overall: Non-Parametric Behavior
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(a) Expected Value (b) Variance

(c) Probability Weighting

Figure 7: Group 1: Non-Parametric Behavior
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(a) Expected Value (b) Variance

(c) Probability Weighting

Figure 8: Group 2: Non-Parametric Behavior
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(a) Expected Value (b) Variance

(c) Probability Weighting

Figure 9: Group 3: Non-Parametric Behavior
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C.3 CPT Parameter Estimates

Table 8: CPT Parameters Estimated on All Outcomes

γ 0.79 0.83 0.24
(0.13) (0.19) (0.03)

α 0.59 0.90 1.35
(0.33) (0.31) (0.17)

Number 95 77 30
(10) (7) (7)

Standard deviation in parentheses.

Online Appendix D Supplemental Analysis

D.1 Varying γ by number of outcomes

Here we allow γ to vary by number of outcomes, using the group assignments found by
the three-group CPT model, where we assign a person to a group if their propensity score
for that group exceeds 50%. Since this test is for varying γ and not varying αs27, we hold α

for each group fixed at the value when estimating a representative agent CPT model for that
group. Figure 10 shows point estimates and 95% confidence intervals for each γ estimate.
For Groups B and C, γ’s do not vary statistically by number of outcomes, nor are they much
different numerically. For Group A, γ at 2 outcomes is higher than γ at 4, but between 4
and 6 outcomes the γ’s are statistically indistinguishable and numerically similar.

D.2 Dominance Relations

Because we have 30 lotteries, there are 435 pairwise comparisons, and in 177 of these
one lottery first-order stochastically dominates the other. We say that define a dominance
violation occurs for participant i in lottery pair p, q if lottery p dominates lottery q, but
participant i provides at least as high a a certainty equivalent for q as for p.28 Figure 11
plots frequency of dominance relations by subject, sorted in increasing order. The x-axis
is an arbitrary subject number (e.g subject 1, subject 2,...), and the y axis is the number
of times the participant exhibits pairwise dominance violations. On average, subjects have
26.95 pairwise dominance violations, corresponding to 3% of all pairwise comparisons and
15% of all possible dominance relations. On the subset of 135 pairs of lotteries with the same

27α’s that vary by number of outcomes are evidence for complexity aversion, as the theory in Puri (2022)
shows.

28Because participants are restricted to certainty equivalents on a finite grid, this is an upper bound on
the number of actual dominance violations.
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(a) CPT Group 1 γ’s (99 people total) (b) CPT Group 2 γ’s (47 people total)

(c) CPT Group 3 γ’s (25 people total)

Figure 10: Allowing γ to Vary by Number of Outcomes

supports, there are 61 pairs where one lottery dominates the other, and on these lotteries
subjects have an average of 9.6 dominance violations. 29

We now drop all lotteries that are dominated by some other lottery, and re-run our
cross validation procedure on these for the three-group CPT and CPT-Simplicity models.
Since this procedure uses a subset of lotteries, we drop the requirement that the cross-
validation split has balanced complexity levels in each fold, but try to have at least some
complexity-balanced folds. The resulting procedure shows that CPT-Simplicity continues to
substantially outperform CPT, with the outsample error of CPT-Simplicity 10% less than
that of CPT. Table 9 shows the outsample performance for the three-group CPT-Simplicity,
CPT, Simplicity, and PT-Simplicity. The ranking of CPT-Simplicity first, then Simplicity,
is similar to our overall results in Table 1. One change is that PT-Simplicity outperforms

29There are 18 pairs of two-outcome lotteries that are ranked by first-order dominance, and on these pairs
there were on average 2.7 dominance violations per subject, or 15% of the possible violations.
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CPT on this data.

Figure 11: Number of Pairwise Dominance Violations by Subject

Online Appendix E Applications

E.1 Event Splitting

Figures 12 and 13 show the results of our simulations for the split low and split high tests
of Bernheim and Sprenger (2020), respectively. Observe that the disutility incurred from
splitting is over and above the CPT prediction for the complexity averse groups, while the
utility added from splitting is over and above the CPT prediction for the complexity loving
groups.

Online Appendix F Experimental Instructions

Screenshots of the experimental instructions and comprehension questions are shown in
Figures 14 - 20. In addition, at the end of the experiment, we asked participants, in a free
response question, ‘Do you felt you understood the task at the start of the experiment? If
not, when did you start understanding it?’

Table 10 lists the 30 randomly generated lotteries used.
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Figure 12: Split Low

Figure 13: Split High
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Model Test MSE
CPT-Simplicity 2.365

(0.200)

Simplicity 2.378
(0.186)

PT-Simplicity 2.461
(0.219)

CPT 2.594
(0.274)

PT 3.253
(0.510)

EU 3.845
(0.316)

Table 9: Outsample Performance of Theories on Data that Excludes Dominance
Violations
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Table 10: Lotteries
N. Outcomes O1 P1 O2 P2 O3 P3 O4 P4 O5 P5 O6 P6 EV Var Skew Range

4 8.75 0.4 8.5 0.35 5.0 0.1 3.0 0.15 7.42 4.63 50.1 5.75
4 7.75 0.15 7.0 0.35 2.5 0.4 1.25 0.1 4.74 6.37 12.21 6.5
4 5.25 0.05 2.5 0.05 1.25 0.15 1.0 0.75 1.32 0.92 10.28 4.25
4 9.5 0.05 7.75 0.55 7.0 0.35 1.25 0.05 7.25 2.21 127.33 8.25
4 9.75 0.05 8.0 0.4 6.5 0.15 1.25 0.4 5.16 10.66 8.42 8.5
4 9.75 0.15 8.25 0.25 4.5 0.4 1.25 0.2 5.57 8.61 12.52 8.5
4 7.75 0.15 6.25 0.45 5.5 0.1 2.5 0.3 5.27 3.66 28.69 5.25
4 9.0 0.35 8.75 0.25 7.25 0.15 5.75 0.25 7.86 1.82 214.46 3.25
4 7.5 0.05 6.75 0.1 4.75 0.05 1.5 0.8 2.49 4.11 7.19 6.0
4 9.75 0.6 9.0 0.05 3.5 0.15 2.25 0.2 7.28 11.01 16.45 7.5
6 9.0 0.6 7.5 0.05 6.75 0.05 5.25 0.15 3.5 0.1 3.25 0.05 7.41 4.63 50.3 5.75
6 7.5 0.4 4.75 0.25 2.5 0.05 1.75 0.2 1.25 0.05 1.0 0.05 4.77 6.39 12.22 6.5
6 5.25 0.05 2.75 0.15 2.25 0.05 1.75 0.05 1.25 0.15 1.0 0.55 1.61 1.1 10.39 4.25
6 10.0 0.05 8.25 0.15 7.75 0.35 7.25 0.35 5.5 0.05 1.75 0.05 7.35 2.27 128.29 8.25
6 9.5 0.1 7.5 0.4 7.0 0.1 2.0 0.05 1.25 0.15 1.0 0.2 5.14 10.67 8.32 8.5
6 9.75 0.05 8.0 0.5 3.75 0.15 2.5 0.1 1.75 0.1 1.25 0.1 5.6 8.59 12.41 8.5
6 7.75 0.3 6.75 0.1 4.5 0.3 3.5 0.15 2.75 0.1 2.5 0.05 5.28 3.73 28.73 5.25
6 9.75 0.25 9.5 0.05 9.0 0.05 8.5 0.15 7.5 0.1 6.5 0.4 7.99 1.89 213.59 3.25
6 7.0 0.15 4.25 0.05 2.5 0.05 1.75 0.4 1.5 0.1 1.0 0.25 2.49 4.08 7.14 6.0
6 10.0 0.5 9.25 0.05 7.25 0.1 3.0 0.2 2.75 0.05 2.5 0.1 7.18 10.86 16.37 7.5
2 8.0 0.85 2.25 0.15 7.14 4.22 50.48 5.75
2 9.75 0.2 3.25 0.8 4.55 6.76 12.11 6.5
2 5.25 0.05 1.0 0.95 1.21 0.86 10.3 4.25
2 9.25 0.95 1.0 0.05 8.84 3.23 129.35 8.25
2 10.0 0.3 2.75 0.7 4.92 11.04 8.58 7.25
2 10.0 0.3 3.5 0.7 5.45 8.87 12.49 6.5
2 9.5 0.15 4.25 0.85 5.04 3.51 29.43 5.25
2 8.25 0.8 5.0 0.2 7.6 1.69 215.85 3.25
2 7.5 0.15 1.5 0.85 2.4 4.59 6.73 6.0
2 9.5 0.7 2.25 0.3 7.32 11.04 16.46 7.25
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Figure 14: Experimental Instructions
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Figure 15: Experimental Instructions Continued: Sample Question
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Figure 16: Experimental Instructions Continued: Practice Round
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Figure 17: Experimental Instructions Continued: Post Practice Round Sample
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Figure 18: Experimental Instructions Continued: Comprehension Question 1
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Figure 19: Experimental Instructions Continued: Comprehension Question 2
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Figure 20: Experimental Instructions Continued: Comprehension Question 3
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