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Abstract

This paper studies how governments intervene in agricultural markets to reshape
the economic consequences of climate extremes. We construct a global dataset of
agricultural policies and extreme heat exposure by country and crop since 1980.
Extreme heat shocks to domestic production lead to policies that assist consumers
by lowering domestic food prices. This effect is persistent, primarily implemented
via border policies, and stronger during election years. Shocks to foreign produc-
tion induce the opposite response: policies that assist producers by raising prices.
These findings can be rationalized by a model in which governments use agricultural
policy to redistribute among domestic interest groups. Our estimates imply that
policy responses shield domestic consumers, while exacerbating losses for domestic
producers and foreign consumers. Policy responses have regressive consequences

globally, disproportionately harming poor and heat-exposed countries.
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1 Introduction

In March 2022, a heat wave in India reduced the country’s wheat production by 11
million metric tons, or 10% of expected output (Beillard and Singh, 2022). On May 13,
citing concerns that elevated prices threatened food security, the government announced
a ban on wheat exports. While this policy had potential benefits for Indian consumers,
it was controversial both in India and around the world. Farmer Ranbeer Singh Sirsa,
quoted in the New York Times on May 14, decried the government’s action: “If the price
wants to go up, let it settle at the international price. Who are they trying to protect
now, at the cost of farmers?” (Yasir and Kim, 2022). Ashok Gulati, former chairman of
India’s Commission for Agricultural Costs and Prices, concurred that the policy was “anti-
farmer” and “painted a very sorry picture” of India’s role in global commerce (India Today,
2022). Other critics focused on the global repercussions: on the policy’s announcement,
global wheat prices jumped 6%, exacerbating food security concerns in other countries
(Lockett and Fildes, 2022). In 2023 alone, a similar story could be told for palm oil in
Indonesia, rice in India and Myanmar, olives in Spain and Turkey, onions in Kenya and
Tanzania, and potatoes and tomatoes in Morocco (Ghosal et al., 2023).

These examples have three ingredients that are increasingly common in a warming
world. First, extreme heat is dramatically disrupting global agricultural production. Sec-
ond, governments may not be passive observers and instead might react with policy inter-
ventions that balance different stakeholders’ interests. Third, these policy reactions may
redistribute the economic burden of environmental shocks, both domestically and around
the world, and could either mitigate or exacerbate overall economic losses.

This paper combines measurement and theory to study the interaction between cli-
mate conditions and agricultural policy. In particular, we ask: does policy systematically
respond to climate extremes? If so, how and why? And what are the implications for
global adaptation to a warming world?

To study these questions empirically, we compile a global data set of temperature
extremes and agricultural policy interventions since 1980. We measure annual exposure
to extreme temperatures for every country-crop pair, combining gridded, global data on
daily temperature realizations from the ERA5 dataset (Munoz-Sabater et al., 2021) with
expert-elicited estimates of temperature tolerances for individual plant species. Our main
empirical strategy exploits the differential exposure of country-crop pairs to exogenous

variation in extreme heat over time. We validate that our measure of extreme heat reduces



crop-specific yields in international panel data.

We measure agricultural policy interventions using data from the World Bank’s Distor-
tions to Agricultural Incentives project (Anderson and Valenzuela, 2008). This database
reports the “nominal rate of assistance” (NRA), which measures percent distortions of
domestic prices from international prices, as driven by policy interventions. The database
covers 80 agricultural products and 81 countries, covering about 85% of global agricul-
tural production (Anderson et al., 2013). The NRA is an appealing measure for our
study because it takes into account multiple policy instruments, including border taxes,
quantity restrictions, and domestic subsidies. We also use the specific components of the
summary NRA measure, as well as measures of tariffs from the United Nations’ Trade
Analysis Information System database and of other policy interventions from the Global
Trade Alert database, to further differentiate between policy levers and to validate our
findings with independently collected data.

First, we document that extreme heat exposure systematically induces policy inter-
ventions that assist consumers by lowering domestic prices. These effects are particularly
large for economically important staple crops. Moving from the first to fourth quartile
of extreme heat exposure for staple crops induces a 32 percentage point change in the
nominal rate of assistance. That is, a country with no distortion initially would imple-
ment a 32% domestic consumer subsidy. Decomposing this result across different policy
tools, we find that governments respond primarily through border policies. We find no
effects on agricultural input policies (e.g., fertilizer subsidies) and much weaker effects
on non-border, output-based policies (e.g., agricultural buybacks). We then replicate our
findings in independently collected data on tariffs and export restrictions. Consistent
with our baseline results, domestic heat shocks lead to tariff reductions for net importing
markets and to export restrictions for net exporting markets. While all countries respond
to domestic shocks with consumer support, the policy tools they use depend on their
precise circumstances.

Second, we investigate how extreme heat exposure in foreign markets affects agricul-
tural policy. We measure external shocks with two strategies: a leave-one-out average of
shocks to all global producers and a country-specific measure that weights shocks by pre-
period import and export linkages. With both approaches, we find that foreign extreme
heat shocks lead to a more producer-oriented policy at home. Unconditional increases in
global prices also lead to pro-producer policy, and this effect is larger and more precisely

estimated when we instrument for international prices with extreme heat shocks. Thus, a



threat to food production that originates overseas has precisely the opposite effect as one
that originates domestically. This finding is inconsistent with the hypothesis that gov-
ernments’ singular goal is to reduce price fluctuations for consumers, regardless of their
origins. It also contradicts narratives of food policy “contagion” and “multiplier effects”
in case studies of global food trade disruptions (e.g., Ghosal et al., 2023). Explaining the
opposite policy responses to domestic and foreign supply disruptions is a key novelty of
our theoretical model, which we describe below.

Third, we investigate the dynamics of policy responses to extreme heat shocks. Policy
does not anticipate future changes in extreme heat, but persists for up to three years after
the original shock. Motivated by this finding, we also study how long-run changes in cli-
mate affect long-run policy stances. In principle, long-run responses could be weaker than
short-run responses if there is mean reversion in policy or adaptation in production and
trade (Dell et al., 2012; Burke and Emerick, 2016). However, we find decadal-frequency
effects that are consistent with, and slightly larger than, our baseline annual-frequency
estimates. Governments respond not only to short-run weather fluctuations, but also to
longer-run climate trends.

Finally, we consider mechanisms by studying heterogeneity in our baseline estimates of
how extreme heat affects policy. We first examine short-term political incentives, treating
the timing of elections as within-country variation in the salience of constituent demands.*
In the lead-up to elections, we estimate effects that are roughly four times as large as our
baseline estimates. Short-term political incentives shape policy responses to extreme heat
shocks and thus their distributional consequences. Second, we investigate the mitigating
effect of fiscal constraints, and we find muted effects when countries’ debt-to-GDP ratio
is high. When countries lack fiscal flexibility, they are less likely to intervene in response
to shocks. Third, we investigate differences based on proxies for country-level economic
development and political institutions. We find little evidence of heterogeneity along these
margins. Rich and poor nations and democratic and autocratic regimes all seem to face
strong incentives to assist consumers when the supply of staple foods is threatened. But
we do find some evidence of stronger responses in less agricultural countries—those that
are more urban and those that import a large share of their food—and in products that
are disproportionately consumed by the poor.

We rationalize this collection of results with a model of optimal government policy

IThis strategy builds on the idea that “electoral cycles” affect political behavior (see e.g., Nordhaus,
1975; Alesina and Roubini, 1992; Akhmedov and Zhuravskaya, 2004; Balboni et al., 2021)



with redistributive concerns, in the tradition of Grossman and Helpman (1994), Goldberg
and Maggi (1999), and Maggi and Rodriguez-Clare (2000). A government sets a border
tax to maximize a weighted sum of consumer surplus, producer surplus, and government
revenue. If the government is sufficiently redistribution-focused—as defined by a condition
that we derive on the extent of government concern for consumers and producers compared
to revenue—then optimal policy responds to domestic supply shocks with pro-consumer
policy interventions. In this case, the government’s main consideration is that reduced
domestic supply shifts the burden of lowering prices away from domestic producers and
toward foreign producers, on whom the government places no weight. The same logic
implies that the government would intervene to raise domestic prices and assist producers
in response to a shock that reduces foreign production or raises foreign demand.

Our model can rationalize our full set of empirical findings, including those that may
seem surprising at first blush. We find that, driven by political incentives, governments
assist consumers when an adverse domestic shock raises food prices, but they do the
opposite when an adverse foreign shock raises food prices. These findings are consistent
with our model, but not with a model predicated solely on meeting acute subsistence
needs or ensuring stable prices. Moreover, our model reconciles the vast heterogeneity
in baseline policy stances around the world with the consistent pro-consumer responses
that follow domestic shocks. Our model also rationalizes that redistributive and fiscal
considerations, as proxied by elections and debt burdens, shift governments’ incentives to
intervene.

We use the model to show how policy responses redistribute welfare losses from ex-
treme heat shocks. Within our historical sample, our empirical estimates imply that
government intervention dampens price increases in shocked markets by 29%. This in-
tervention reduces damages for domestic consumers, but it also exacerbates damages for
domestic producers and foreign consumers. Because policy responses occur in an already
second-best world, they sometimes lessen and sometimes amplify pre-existing distortions.
Globally, we find that policy responses have regressive effects, increasing deadweight loss
and reducing total welfare in the poorest and most heat-affected markets. This result
is consistent with the intuition that lower-income countries subsidize food consumption
and tax agriculture at baseline (Anderson et al., 2013), are hit frequently by temperature
extremes, and respond to these shocks by further subsidizing consumption.

Our main contribution is to show that agricultural policy responds to extreme heat

shocks, thereby shaping their aggregate and distributional effects. We build on existing



work studying distortions to agricultural incentives. Others have documented these dis-
tortions around the world (Krueger et al., 1988; Johnson, 1991; Anderson, 2009; Anderson
et al., 2013, 2014) and argued that they are driven by politicians’ desire to redistribute
between the producers and consumers of food (Barrett, 2013; Bates, 2014). We depart
from existing work by focusing on responses to exogenous exposure to temperature ex-
tremes, rather than political trends or static cross-country differences.? We show that
policy responses reshape and, in some cases, worsen the economic impacts of extreme
temperatures.

A large literature quantifies the impacts of extreme heat on agricultural production
(see, e.g., Lobell and Field, 2007; Schlenker and Roberts, 2009; Lobell et al., 2011).
Costinot et al. (2016) study global adaptation via trade and how it might reduce pro-
jected welfare losses from climate change. Others study how trade interacts with other
mechanisms, which include crop switching (Baldos et al., 2019; Hultgren et al., 2022),
land and water use (Carleton et al., 2022), sectoral reallocation (Rudik et al., 2022; Nath,
2023), migration (Cruz and Rossi-Hansberg, 2023; Conte, 2024), technology (Farrokhi
and Pellegrina, 2023), and regulation (Shapiro, 2021; Farrokhi and Lashkaripour, 2024;
Hsiao, 2025). Each treats domestic policy distortions as fixed. We show that policy itself
responds to environmental changes and that these policy responses can create frictions to

adaptation.®
2 Data and Measurement

We construct a panel dataset on agricultural policy, extreme heat shocks, and other

agricultural, political, and economic outcomes.
2.1 Agricultural Policy

We measure distortions in agricultural markets with data from the World Bank “Dis-
tortions to Agricultural Incentives” (DAI) project (Anderson and Valenzuela, 2008; An-
derson, 2009). This dataset reports price distortions for 80 agricultural products and 82
countries from 1955 to 2011 in an unbalanced panel. The sample accounts for over 85% of
agricultural production and employment globally, as well as within each of Africa, Asia,

Latin America, and the OECD (Anderson et al., 2013). In sensitivity analysis, we also use

2Bastos et al. (2013) and Amodio et al. (2024) investigate how rainfall shortages affect agricultural
tariffs. Their findings that rainfall shortages induce tariff reductions are consistent with our first result.
3Similarly, Hsiao (2023) shows that endogenous government intervention complicates adaptation to
rising sea levels by inducing potential moral hazard. Hsiao (2024) takes on distributional consequences.



NRA data from the Aglncentives project, an unofficial continuation of the DAI project
(Aglncentives 2024).

The key statistic of interest is the nominal rate of assistance (NRA). Conceptually, the
NRA measures the extent to which policy intervention drives a wedge between domestic
producer prices and prevailing “free market” international prices. That is, for crop k in

country ¢ at time t,

T
NRA gy = 28— Pt (2.1)

kt
where pg; is the distorted, domestic price per unit of production, and pf, is the undistorted
free-market international price, which is unobserved. Following previous work, we say
that positive values of the NRA correspond to policies of producer assistance, in the sense
that they elevate domestic prices above free-market levels. We say that negative values
correspond to consumer assistance for the opposite reason.

In practice, the NRA is computed by estimating the ratio of total assistance paid
to producers (in dollars) relative to the total value of production driven by policy in-
terventions. This involves compiling granular price and output data along with detailed
qualitative reports about policy changes (Anderson, 2009), including market price sup-
port, payments to producers based on output, payments to producers based on inputs,
and payments to producers based on other indicators (e.g., area cultivated). The goal
is to paint as complete a picture as possible of distortions affecting agricultural markets
around the world, and in turn their implied effects on prices. Recent studies in economics
on agricultural misallocation (Adamopoulos and Restuccia, 2014) and agricultural trade
and resource use (Carleton et al., 2022), as well as work in political science on urban-rural
policy conflict (Wallace, 2013; Bates and Block, 2013), have treated the NRA as the most
comprehensive available data source on agricultural policy interventions.

For our specific research question, the NRA data have two key advantages relative
to other measures of agricultural policy. First, they capture policy instruments other
than border taxes. The NRA measure accounts for quantity restrictions in terms of the
induced price wedge, and so it captures non-tariff policy responses like our motivating
example of India’s export ban in 2022. Similarly, the NRA measure accounts for indirect
assistance through input price distortions or exchange rate manipulation. It therefore
captures agricultural assistance that substitutes for direct export subsidies, which are
prohibited under World Trade Organization rules. Second, the NRA measure can capture

temporary variation in trade policy that is not set by legislation. Together, these features



allow us to observe relevant policy variation and to account for how governments use

different instruments as complements or substitutes for one another.

Additional Data Sources. To investigate how governments use specific policy tools
and to validate our results using alternative, independently collected data, we also as-
semble data on tariffs and export restrictions. We measure crop-specific tariffs using
the United Nations Trade Analysis Information System (TRAINS) database by linking
all relevant Harmonized System (HS) codes in the TRAINS data to individual crops in
our data set (UNCTAD 2025). These data reduce our reliance on the modeling and im-
putation decisions of a single data source, although at the cost of capturing only one
dimension of policy. We also compile data on all import and export restrictions that af-
fect agricultural commodities from the Global Trade Alert (GTA) database (GTA 2025).
The GTA data, which aim for comprehensive coverage since 2008, lists all sector-specific
policy interventions broken down by industry (HS code) and policy type. We identify
all policy activity affecting the HS codes corresponding to crops in our analysis, and we
directly measure changes in the number of export- and import-restricting policies at the

crop-by-country-pair level.*
2.2 Extreme Heat Exposure

We measure agricultural shocks by constructing a global dataset of crop-level exposure to
extreme heat in each country and year. Our measure incorporates information about the
global distribution of temperature extremes, the global geography of crop production, and
crop-specific sensitivity to extreme heat. We can therefore exploit the fact that regions
are differentially exposed to extreme heat and that, even in a given region, crops vary in

their sensitivity to extreme heat exposure.

Data Inputs. We measure historical temperatures using the ERA5 database from the
European Centre for Medium-Range Weather Forecasts (Muflioz-Sabater et al., 2021).
This reanalysis data set combines weather observations from around the world with a
model to generate gridded (0.25-by-0.25 degrees), hour-by-hour measurements since 1979.

We measure the global geography of agricultural production with data from the Farth-
stat database (Monfreda et al., 2008). These data were created by combining national-,
state-, and county-level census data with crop-specific potential yield data to construct a

5-by-b minute grid of the area devoted to each crop circa 2000.

4These policies include bans, tariffs, quotas, tariff quotas, non-tariff measures, and required licensing.



We measure crop-specific temperature sensitivity with data from the United Nations
Food and Agriculture Organization EcoCrop database (FAO 2025). The EcoCrop data
provide information about growing conditions for 2,500 agriculturally important plants,
including tolerance ranges for temperature and rainfall. The data are compiled from
expert surveys and textbooks. The key piece of information for our analysis is the reported

upper temperature threshold for optimal growing.’

Measurement. We measure crop-specific extreme heat exposure for each country-crop
combination as the average exposure to extreme temperatures, in degree-days, on land
cultivating a given crop. Prior work has shown that extreme heat exposure is the
quantitatively most important way in which temperature affects output (e.g., Schlenker
and Roberts, 2009) and that temperature differentially affects productivity across crops
(Ritchie and Nesmith, 1991).5 Following Moscona and Sastry (2023), we partition each

country £ into grid cells ¢ € £, and for each country /¢, crop k, and year ¢ we compute

Area,y,
ExtremeHeat, - DegreeDays,, (T;""" 2.2
kt — CZGE ZC s Areac/k t( ) ( )

DegreeDays,,(x) returns total degree days in excess of threshold x in cell ¢ at time ¢. T;"**
is the maximum optimal growing temperature for crop k& from EcoCrop. Areag is the
area growing crop k in cell ¢ from the EarthStat data.

This method extends existing work on the impact of rising temperatures on global
agricultural production (Lobell and Field, 2007; Lobell et al., 2011). Our contribution is
to incorporate temperature extremes rather than averages, a larger set of crops, and crop-
specific measures of temperature sensitivity. These data may be of independent interest

for research on climate change and agricultural productivity.
2.3 Production, Trade, Elections, and Debt

We compile data on production, prices, exports, and imports at the crop-country-year level
from the Food and Agriculture Organization (FAO) FAOSTAT database (FAO 2025b).
Data on election years in our sample period are from the Database of Political Institutions
(Scartascini et al., 2021), as first introduced by Beck et al. (2001). The database describes

5This database has been used in agronomics and climate science to estimate crop-specific effects of
climate change (e.g., Ramirez-Villegas et al., 2013; Hummel et al., 2018) and in economics to measure
exposure to crop-specific adverse conditions (Moscona and Sastry, 2023; Hsiao, 2025).

6Using panel data from the United States, Moscona and Sastry (2023) document that this crop-
specific extreme heat exposure measure predicts adverse agricultural outcomes and that it outperforms
comparable measures that do not account for crop-specific tolerance.



Figure 1: Agricultural Distortions Across Markets
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This figure displays the distribution of the nominal rate of assistance (NRA) across markets. We plot
country-crop pairs, averaged across years and time periods. We truncate at the 99th percentile. Panel A
shows all 642 markets in the sample. Panel B splits based on trade balance, summed over our sample,
into 331 exporting markets and 302 importing markets.

elections and regimes for 180 countries from 1975 to 2020. Data from the International
Monetary Fund record central government debt as a share of GDP at the country-year level
(Mbaye et al., 2018). To measure crop shares of consumption and income across income
groups within each country, we use data from the World Bank Household Impacts of Tariffs
database, which compiles household-level expenditures and income source information
derived from a broad range of representative surveys (Artug et al., 2019). Total and per
capita GDP come from the Penn World Table (Feenstra et al., 2015), and polity scores
come from the Quality of Government dataset (Dahlberg et al., 2025). World Bank
Development Indicators complete our country-level data (World Bank 2025).

2.4 Summarizing and Visualizing the Data

Agricultural policies vary substantially around the world. Figure 1 shows the distribution
of the NRA across the 642 markets (country-crop pairs) in our sample, averaged across
years. We observe large magnitudes: 52% of all markets have a price wedge larger than
15% in absolute value, and 9% of markets have a price wedge larger than 80%. These
patterns hold for both net exporting and net importing markets in our sample, although
perhaps especially so for net importers. Focusing on staple crops, Figure A.1 maps average
NRA from 2001 to 2010 for all countries with available data for maize, wheat, and rice.
Our interest is in the substantial variation over time in agricultural assistance. Figure

A.2 shows changes in the nominal rate of assistance between the 2000s and the 1980s for



Figure 2: Extreme Heat and Policy for India

(a) Maize (b) Wheat

14 180 .6 {2000 .54 {350

r150 .39 1800 .25+ 300

Extreme Heat Exposure

<
DZC 0- r120 0- | 1600 0- 250
=519 90 -39 r 1400 -.251 200
-14 60 -6 1200 =51 150
T T T T T T T T T T T T
1980 1990 2000 2010 1980 1990 2000 2010 1980 1990 2000 2010
Year Year Year
—— NRA — — Extreme Heat Exposure —— NRA — — Extreme Heat Exposure —— NRA — — Extreme Heat Exposure

This figure displays extreme heat exposure and NRA over time in India for maize, wheat, and rice. We
plot NRA on the left y-axis in dark blue and extreme heat exposure on the right y-axis in light blue.

maize, wheat, and rice. At a glance, this figure is consistent with the documented trend
toward lessening producer protection in Europe and the Americas and lessening food
subsidies in sub-Saharan Africa, South Asia, and East Asia. But there are substantial
differences in these changes both across countries and across crops in the same country.
For example, the United States reduces assistance for wheat, while India increases it, and
India increases assistance for wheat but decreases assistance for maize.

Extreme heat also has heterogeneous incidence. Figure A.3 illustrates changes in
ExtremeHeat, between the 1980s and the 2000s for maize, wheat, and rice. While extreme
heat exposure has increased in most countries for all three crops, there is substantial
variation in the magnitude of the effect. For example, Brazil is in the third quartile for
maize, second quartile for wheat, and fourth quartile for rice. Throughout our analysis,
we exploit variation in extreme heat exposure both within crops and within countries, as
highlighted by Figure A.3. We can therefore absorb any country-specific or crop-specific
trends that may spuriously co-vary with adverse weather conditions.

We highlight this identifying variation by zooming in on staple crops in India. Figure
2 shows the evolution of extreme heat exposure and NRA for Indian maize, wheat, and
rice. While extreme heat exposure has increased over time for all three crops, there remain
large fluctuations from year to year that we will use for identification. Both the level of
extreme exposure and the pattern over time also vary substantially across these three

major crops in the same country.
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Figure 3: Extreme Heat Reduces Agricultural Yields
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This figure shows the relationship between extreme heat exposure and log crop yields. The model is
Equation 2.3, with f parametrized by indicators for quartiles of extreme heat. The first quartile is the
excluded category. The unit of observation is a country-crop-year, and we include all possible two-way
fixed effects. Each set of bars corresponds to a single regression. The left set of bars is the full sample
for which we measure extreme heat and yields. The right set of bars is the sample for which we measure
NRA. We cluster standard errors by market, and we report 90% confidence intervals.

2.5 Validation: Extreme Heat Lowers Crop Yields

Before turning to the main results, we show that extreme heat exposure adversely affects

agricultural productivity. We estimate the following regression:

log(yieldy,) = f(ExtremeHeats) + ver + Ot + pror + €oxe (2.3)

where yield,;, is output per unit of land for crop £ in country ¢ and year t. We include all
possible two-way fixed effects. ExtremeHeat, is defined in Equation 2.2, and we estimate
function f that encodes effects by quartile of ExtremeHeats;. The two-way fixed effects
mean that our estimates only exploit variation across crop within country-years. As a
result, they are not driven by country- or crop-specific trends, or by differences in crop
specialization across countries.

We estimate a large, negative effect of extreme heat exposure on yields (Figure 3).
Compared to the bottom extreme heat quartile, yields in the top extreme heat quartile
are over 20% lower. Our estimates are larger when we restrict attention to the subsample
of observations for which we have policy data. These estimates validate that our measure

of extreme heat exposure has substantial negative effects on agricultural productivity.
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3 Empirical Results

This section presents our main empirical findings. First, extreme heat shocks to local pro-
duction lead to large shifts in agricultural policy that favor domestic consumers. Second,
these effects are driven by policies at the border. Third, foreign shocks that put upward
pressure on global food prices lead to producer assistance. Fourth, policy changes do not
anticipate shocks but do persist for several years, and also respond to longer-run changes
in the climate. Fifth, policy responses respond to short-term political and fiscal incentives,

but seem broadly similar for countries that are more or less developed or democratic.
3.1 Local Extreme Heat Leads to Pro-Consumer Policy

We first investigate the relationship between local extreme heat exposure and crop-specific

policy. Our main estimating equation is
NRAj: = g(ExtremeHeatgkt) + Yer + Ope + fer + Eoxe (31)

where NRAy; is a measure of crop-specific policy for crop k in country ¢ and year t.
We estimate non-parametric function g with indicators for each of the four quartiles
of ExtremeHeats,. All specifications include the full set of two-way fixed effects, fully
absorbing any differences in baseline specialization across countries, as well as country-
specific and crop-specific trends. We report our findings in Figure 4. Each set of three
bars corresponds to estimates from a separate regression, and the coefficients are effects
relative to the left-out category of first-quartile exposure.

Our first finding is that extreme heat exposure induces consumer assistance on our full
sample of countries and crops (dark blue bars). Experiencing fourth-quartile compared
to first-quartile extreme heat reduces NRA by 0.07, corresponding to a 7% reduction
in domestic prices relative to international prices. In our panel data, such a change
corresponds to 0.09 in-sample standard deviations of the NRA variable. The finding is
consistent with our motivating example, in which India banned wheat exports following
a national heatwave in 2022. This first result confirms that such policy reactions are
systematic and quantitatively large relative to baseline variation in agricultural policy.

We next restrict attention to the ten most economically important crops identified by
Costinot et al. (2016): bananas, cotton, maize, rice, soybeans, sugar, tomatoes, wheat,
potatoes, and oil palm. Our estimates using this subsample (light blue bars) are substan-

tially larger in magnitude: experiencing fourth-quartile extreme heat reduces NRA by 28
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Figure 4: Extreme Heat and Agricultural Policy
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This figure shows the relationship between extreme heat exposure and NRA. The model is Equation
3.1, with g parametrized by indicators for quartiles of extreme heat. The first quartile is the excluded
category. The unit of observation is a country-crop-year, and we include all possible two-way fixed effects.
Each set of bars corresponds to a single regression. The sample of crops included in each regression is
noted below the z-axis. We cluster standard errors by market, and we report 90% confidence intervals.

percentage points or 0.36 in-sample standard deviations. Moreover, the fourth-quartile
effect is substantially larger than the third-quartile effect (p = 0.03). This finding suggests
that most extreme shocks may have a disproportionate effect on policy.

Finally, we compare effects for staple and cash crops.” We find large, negative effects
of extreme heat exposure on NRA for staple crops (dark green bars). Quantitatively, these
results are similar to our estimates for major crops: fourth-quartile extreme heat exposure
for staple crops reduces NRA by 32 percentage points or 0.40 standard deviations, and the
effect is statistically distinguishable from the third-quartile effect (p = 0.02). However, we
find no statistically significant evidence that extreme heat exposure affects agricultural
policy for cash crops (light green bars). One possible explanation is that staple crops are
more important in terms of income and consumption for households that the government
prioritizes. By contrast, cash crops are a source of income for a smaller set of constituents
and are consumed primarily by foreigners. The model of Section 4 will formalize potential

drivers of these differences in policy response across products.

"The staple crops we include are maize, soybeans, rice, wheat, tomatoes, potatoes, and onions. The
cash crops are cocoa, coffee, cotton, palm oil, sugar, and tobacco.
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Together, these estimates suggest that exposure to extreme heat reduces NRA, leading
to more consumer-oriented agricultural policy. The effects are particularly pronounced
for staple crops and for the highest levels of exposure to extreme temperatures. Moreover,
the effects are very similar if we exclude any decade from the sample period (Table A.1,
Panels A-C), or if we use alternative data on NRA to extend the sample to the present
(Panel D).® Thus, the findings are not driven by any particular climate or political event,

and instead capture a systematic feature of policy making under environmental stress.

Country-Level Estimates and Cross-Crop Interactions. Our baseline estimates
exploit variation in temperature and policy not only across countries and over time, but
also across crops within the same country. The advantages to this approach are that
(1) the country-crop-year is the level at which policy is set and thus the relevant unit for
measuring extreme heat exposure, (2) there is substantial dynamic variation in both policy
and extreme heat exposure across crops and within countries (Figures A.2 and A.3), and
(3) the country-year fixed effects in our baseline specification fully absorb any country-
level trends or shocks that might spuriously co-vary with policy or temperature. This is
potentially important because of meaningful regional-specific time trends in assistance to
agriculture (Anderson et al., 2013) and in planetary warming.

Nonetheless, we also estimate country-level effects to investigate how our crop-country-
year estimates aggregate. Country-level estimates might exceed our baseline estimates if
governments are more responsive to high overall exposure to extreme heat, rather than
high exposure for a single crop, because overall exposure may be more burdensome for
consumers. But country-level estimates might be smaller if politicians face a political
budget that constrains their ability to change policy across multiple commodities simul-
taneously. Country-level estimates may also capture policy levers that are absorbed by
the inclusion of country-year fixed effects, such as exchange rate manipulation.

We average our baseline data to the country-year level, focusing on the ten major crops
from our baseline analysis and weighting each crop-country-year observation by average
calorie-weighted production during the first decade of our sample period (1980-1989). We

then estimate the following country-year analog of our baseline regression:

NRA = g(ExtremeHeaty) + v¢ + 6 + e (3.2)

8The extended series requires linking our main dataset with NRA measurement from the Aglncentives
project. This is not the baseline specification due to differences in methodology between the two data
sets. The regression on the extended series controls for these differences in methodology by interacting
an Aglncentives indicator with all two-way fixed effects.
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Figure 5: Effects of Extreme Heat on Different Policy Margins
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This figure displays the relationship between extreme heat exposure and different components of NRA.
The model is Equation 3.1, with g parametrized by indicators for quartiles of extreme heat. The first
quartile is the excluded category. We report only fourth-quartile coefficients. Each bar corresponds to a
single regression with the indicated outcome, and each set of bars corresponds to a different sample of
crops. We cluster standard errors by market, and we report 90% confidence intervals.

We report our estimates in Table A.2. Country-level extreme heat exposure leads to
a pro-consumer policy response (column 1). Consistent with our baseline estimates in
Sections 3.2 and 3.4, the effects are driven by border output policies, rather than domestic
output policies or input policies (columns 2-5), and the policy response persists in the
year after the temperature shock takes place (Panel B). These estimates are quantitatively
similar to the estimates from the country-crop-year specification, indicating that cross-
crop interactions do not have large effects on average. We also reproduce our baseline
estimates of Equation 3.1 without any fixed effects, then we add each set of fixed effects
sequentially (Table A.3). While the specific set of controls affects precision, the coefficients
are similar in magnitude across specifications. Our baseline estimates thus do not hinge

on the exact source of temperature variation or spillovers across crops.
3.2 Governments Primarily Respond through Border Policies

We next exploit more granular data on specific types of policy to investigate exactly how
governments intervene in agricultural markets. First, we estimate Equation 3.1 using
each component of NRA as a separate dependent variable (Figure 5). For brevity, we

only report the effect of the top quartile of extreme heat exposure. All components of
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policy respond to adverse shocks in a pro-consumer direction, indicating that our previous
result for the overall rate of assistance does not mask partially offsetting policy changes.
However, our results are primarily driven by output-related policies and, in particular,
policies that affect prices at the border. By contrast, the effect is weaker for policies that
affect output prices at the farm gate (e.g., price support) and absent for policies that
affect agricultural inputs (e.g., fertilizer subsidies).

We now more closely study how governments use trade policy to respond to extreme
heat shocks. In Panel A of Table 1, we study how the response of the nominal rate of
assistance depends on countries’ trade position by estimating versions of Equation 3.1
on different samples. We find negative effects of extreme heat shocks on NRA in the
full sample (column 1), for net importers (column 2), and for net exporters (column 3).
Differences in effect sizes are not statistically significant. The effect is slightly larger for
net importers, but also less precise because of a smaller sample size. The effect is slightly
smaller for net exporters.

Next, we use independently collected data to study specific trade policy interventions.
Panel B presents estimates of Equation 3.1 where the outcome is the import tariff rate
measured in the UN TRAINS database. Governments reduce tariffs in response to extreme
heat shocks in the full sample (column 1), consistent with a desire to reduce domestic
relative to international prices. The effect is twice as large for net importers (column
2), while there is little effect for net exporters (column 3). Intuitively, import tariffs are
more effective in net importing markets because they apply to a larger share of domestic
consumption in these markets.

In Panel C, we study the effect of extreme heat on export restrictions measured in the

Global Trade Alert dataset. Our estimating equation is
NetExportRestrictions,,, = g(ExtremeHeaty) + vor + 0gt + poor + oot + €ooie (3.3)

where ¢ and ¢ denote acting and affected countries, and the outcome is the count of
export restrictions by country pair, crop and year, net of the count of import restric-
tions. Country-pair fixed effects control for underlying differences in the economic and
geopolitical relationships between countries. Export restrictions increase in response to
local extreme heat exposure (column 1), and these estimates are driven by net exporters
(column 3) rather than net importers (column 2). The results are similar for alternative

parameterizations of the outcome variable (Figure A.6).
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Table 1: Extreme Heat and Trade Policies

(1) (2) 3)
Full Net Net
Sample Importers  Exporters
Panel A: Dependent Variable is NRA
Q4 Extreme Heat -0.285 -0.356 -0.222
(0.110) (0.251) (0.102)
Country-Year Fixed Effects Yes Yes Yes
Crop-Year Fixed Effects Yes Yes Yes
Country-Crop Fixed Effects Yes Yes Yes
R-Squared 0.772 0.773 0.656
Observations 7,439 3,636 2,778
Panel B: Dependent Variable is Tariffs
Q4 Extreme Heat -0.036 -0.069 -0.003
(0.017) (0.033) (0.014)
Country-Year Fixed Effects Yes Yes Yes
Crop-Year Fixed Effects Yes Yes Yes
Country-Crop Fixed Effects Yes Yes Yes
R-Squared 0.780 0.869 0.704
Observations 17,645 7,248 9,291
Panel C: Dependent Variable is Net Export Restrictions
Q4 Extreme Heat 0.112 -0.089 0.222
(0.046) (0.059) (0.091)
Country-Year Fixed Effects Yes Yes Yes
Crop-Year Fixed Effects Yes Yes Yes
Country-Crop Fixed Effects Yes Yes Yes
Country-Pair Fixed Effects Yes Yes Yes
R-Squared 0.339 0.349 0.377
Observations 114,504 72,281 41,711

This table reports the relationship between extreme heat exposure and trade policies. In Panels A and B,
the model is a variant of Equation 3.1, and the outcome is at the country-crop-year level. The outcomes,
respectively, are NRA and tariff rates measured in the UN TRAINS database. In Panel C, the model is
Equation 3.3, and the outcome is at the country-pair-by-year level. The outcome is the number of export
restrictions, net of import restrictions, measured in the Global Trade Alert database. In all cases, g is
parametrized by indicators for quartiles of extreme heat. We report only fourth-quartile coefficients. The
sample includes major crops. Column 1 is all markets, while columns 2 and 3 are net importing and net
exporting markets, respectively, during the analysis period. We cluster standard errors by market.

These estimates corroborate our main finding that governments respond to extreme
heat shocks with pro-consumer policy. They are consistent with the important role of
export restrictions, as highlighted in our motivating example. Finally, they illustrate that

all markets respond to domestic heat shocks with trade policy that limits price increases,

even as the exact policy levers depend on a market’s trade position.
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3.3 Foreign Extreme Heat Leads to Pro-Producer Policy

The previous section documents that local extreme heat shocks reduce NRA, leading to
more consumer-oriented policy. But foreign shocks may also affect policy actions in an
interconnected world. Ghosal et al. (2023) discuss the potential for “contagion of food
restrictions,” as countries react to restrictions by their trading partners. For example,
“India banned shipments of some rice earlier this year, resulting in a shortfall of roughly
a fifth of global exports. Neighboring Myanmar, the world’s fifth-biggest rice supplier,
responded by stopping some exports of the grain.” That is, India and Myanmar both enact
export restrictions following the Indian shock. These compounding policy responses could
further exacerbate the impact of temperature shocks on global prices and trade. At the
same time, these examples could represent unique cases that are not representative, or

capture independent responses to correlated domestic shocks among trading partners.

Methods. We study this issue empirically with three strategies for measuring foreign
shocks. First, we construct a global crop-level measure of extreme heat exposure. We
calculate a “leave-one-out” average of crop-specific extreme heat exposure over grid cells

in all countries (L) except the country in question:

Areag

ForeignExtremeHeat,,, = Z

- DegreeDays,, (1}"*") (3.4)
> ey Areagy ¢
cEL\L cdeL\¢

Second, we construct a leave-one-out weighted average of country-specific producer prices
measured by the FAO, weighting by harvested areas measured by Earthstat. The first
approach captures supply shortages from extreme heat, while the second approach isolates
the resulting shifts in international prices.

These two approaches take a comprehensive, global view of supply shortages. A
methodological downside is that both measures vary only at the crop-year level. We must
therefore exclude crop-year fixed effects and rely instead on the identification assumption
that cross-country fluctuations in extreme heat exposure are as good as random. Another
concern is that it seems unlikely that all foreign changes in extreme heat exposure are of
equal relevance to policymakers. Countries may instead be more exposed to shocks that
their trade partners experience.

Our third approach therefore measures heterogeneous exposure to foreign extreme

heat shocks across markets. Using crop-level import and export data from the decade
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preceding our analysis, we compute exposure through import and export networks:

ForeignExtremeHeat ), = Z ImportShare,,;, - ExtremeHeat g, (3.5)
.

ForeignExtremeHeat;,, = Z ExportShare,,;, - ExtremeHeat (3.6)
.

ImportShare,,, is the share of imports of crop k to ¢ that are from ¢', and ExportShare;
is the share of exports of crop k to ¢’ that are from ¢. Each captures that adverse shocks
might affect certain foreign countries more than others, even for a given crop in a given
year. We estimate an augmented version of Equation 3.1 that includes both local and

foreign extreme heat shocks.
NRAy: = g(ExtremeHeat, ) + h(ForeignExtremeHeat,,) + Yo + 0kt + foor + € (3.7)

Functions g and h are spanned by quartile indicators. When we define foreign extreme
heat using Equation 3.4, we remove dy; from the regression. When we use the trade-
weighted versions of foreign extreme heat, we assign export-weighted extreme heat shocks

to net exporting markets and import-weighted shocks to net importing markets.”

Results. In Panel A of Table 2, we report estimates of Equation 3.7 using the foreign
exposure measure of Equation 3.4. While we continue to find a negative effect of adverse
domestic shocks on NRA, we find the opposite effect for foreign shocks. Higher for-
eign extreme heat exposure is associated with an increase in NRA, which indicates more
producer-friendly policy. That is, food shortages induce the opposite policy responses
when they arise from foreign shocks, rather than domestic shocks. Taking the coefficient
estimates at face value, a top-quartile foreign temperature shock leads to a 19.7% policy-
induced increase in domestic prices relative to international prices (column 1). Consistent
with our baseline findings, these changes are driven by output-market policies (column 2)
rather than input-market policies (column 3). The estimates are larger in magnitude if
we focus on the major crops of our baseline analysis (columns 4-6).

Consistent with these findings, Table A.6 shows that NRA responds positively to the

international price (column 1), conditional on domestic shocks. However, the endogeneity

9Table A.5 reports estimates using only the import- or export-weighted version of the shocks. It
verifies that import-weighted shocks disproportionately affect NRA in net importing markets and that
export-weighted shocks disproportionately affect NRA in net exporting markets.
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Table 2: Domestic versus Foreign Extreme Heat

(1) (2) 3) (4) (5) (6)
NRA NRA NRA NRA NRA NRA
Overall  Output Input Overall  Output Input

All Crops Major Crops
Panel A: Aggregate Global Shock

Q2 Extreme Heat (Domestic)  -0.055 -0.052 -0.001 -0.056 -0.055 -0.002
(0.024)  (0.024)  (0.001)  (0.034) (0.034)  (0.001)
Q3 Extreme Heat (Domestic)  -0.061 -0.058 -0.000 -0.087 -0.083 -0.003
(0.032)  (0.032)  (0.001)  (0.047)  (0.047)  (0.002)
Q4 Extreme Heat (Domestic)  -0.098 -0.096 -0.000 -0.267 -0.262 -0.003
(0.051)  (0.051)  (0.002)  (0.111)  (0.111)  (0.003)
Q2 Extreme Heat (Foreign) 0.081 0.081 -0.000 0.004 0.006 -0.000
(0.046)  (0.046)  (0.001)  (0.043)  (0.045)  (0.001)
Q3 Extreme Heat (Foreign) 0.109 0.111 0.000 0.114 0.142 -0.020
(0.047)  (0.047)  (0.001)  (0.068)  (0.081)  (0.018)
Q4 Extreme Heat (Foreign) 0.197 0.198 0.003 0.246 0.269 -0.016
(0.094)  (0.094)  (0.002)  (0.110)  (0.118)  (0.018)

Country-Year Fixed Effects Yes Yes Yes Yes Yes Yes

Crop-Year Fixed Effects No No No No No No

Country-Crop Fixed Effects Yes Yes Yes Yes Yes Yes
R-Squared 0.714 0.712 0.808 0.735 0.736 0.766
Observations 15,191 15,191 15,191 6,838 6,838 6,838

Panel B: Trade-Weighted Shocks

Q2 Extreme Heat (Domestic)  -0.028 -0.028 -0.001 -0.064 -0.064 -0.001
(0.021)  (0.022)  (0.001)  (0.035)  (0.035)  (0.001)
Q3 Extreme Heat (Domestic)  -0.047 -0.046 0.001 -0.091 -0.089 -0.002
(0.026)  (0.026)  (0.001)  (0.043)  (0.044)  (0.002)
Q4 Extreme Heat (Domestic)  -0.136 -0.137 -0.000 -0.254 -0.251 -0.002
(0.057)  (0.058)  (0.002)  (0.114)  (0.113)  (0.004)
Q2 Extreme Heat (Foreign) 0.033 0.033 -0.001 0.048 0.049 -0.001
(0.020)  (0.021)  (0.001)  (0.029)  (0.030)  (0.001)
Q3 Extreme Heat (Foreign) 0.062 0.061 -0.003 0.071 0.072 -0.001
(0.027)  (0.027)  (0.001)  (0.039)  (0.040)  (0.002)
Q4 Extreme Heat (Foreign) 0.085 0.087 -0.001 0.125 0.128 -0.001
(0.032)  (0.032)  (0.002)  (0.060)  (0.060)  (0.005)

All Two-Way Fixed Effects Yes Yes Yes Yes Yes Yes
R-Squared 0.832 0.830 0.786 0.798 0.798 0.768
Observations 11,361 11,361 11,361 5,858 5,858 5,858

This table reports the relationship between NRA and extreme heat in both domestic and foreign markets.
The model is Equation 3.7, with g and h both parametrized by indicators for quartiles of extreme heat.
The first quartile of each is the excluded category. The unit of observation is a country-crop-year. In
Panel A, foreign extreme heat is constructed as global (leave-one-out) area-weighted extreme heat. In
Panel B, foreign extreme heat is weighted by exports for net exporters and by imports for net importers
during the analysis period. Across columns, we vary the outcome variable and the set of crops considered

in the sample. We cluster standard errors by market.
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of international prices may bias our estimates. We show that foreign extreme heat expo-
sure acts as a supply shifter and places upward pressure on international prices (column
2). Instrumenting for international prices with foreign extreme heat, we estimate a larger
and more precise positive response of NRA to international prices (column 3).

In Panel B of Table 2, we study the effect of shocks to trading partners, and we
include crop-year fixed effects. We again find positive responses of NRA to foreign shocks
(column 1) that are driven by output-market policies (columns 2-3) and that are larger
for major crops (columns 4-6). These results imply that cross-market trade linkages are
an important mechanism that ties foreign shocks to domestic policy responses.

Together, these results convey that domestic and foreign shocks induce opposite policy
responses.'? Our results are inconsistent with the “contagion of food restrictions” view of
global policy, which instead suggests that domestic and foreign shocks lead to the same
policy responses. Our results are also inconsistent with a view of the world in which all
shocks induce the same policy response, with the sole objective of protecting consumers
when food is scarce. In Section 4, we present a theoretical model that rationalizes these

findings and draws a contrast with other models of policy conduct.
3.4 Policy Responses are Persistent

Our analysis focuses on how contemporaneous extreme heat shocks affect policy. But
policy may respond to anticipated shocks, and shocks may have persistent effects on

policy. We therefore re-estimate Equation 3.7 with leading and lagged shocks:

3 3
NRA = Z g(EHep p45) + Z R(FEH t45) + Yer + Oe + foor + Eone (3.8)

s5=—2 s=—2

where EHyy, 145 and FEHyy ¢y, are domestic and foreign extreme heat exposure in year
t+s. We use the trade-weighted version of foreign extreme heat so that all two-way fixed
effects can be included in the regression, along with leads and lags of shock quartiles.
Figure 6 presents our estimates. The main outcome is total NRA (Panel A). For
brevity, we only report the top-quartile coefficient estimates for domestic and foreign

extreme heat exposure. All coefficients on leading values are close to zero and statistically

100ne potential concern is that domestic and foreign extreme heat shocks may affect different markets.
If so, differential responses may capture differences across markets rather than differences between do-
mestic and foreign shocks. However, domestic and foreign shocks are positively correlated in our sample,
with many markets exposed to both (Figure A.5). Moreover, the effect of foreign shocks does not seem
to differ for countries that are more exposed to domestic shocks (Table A.4).
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Figure 6: Dynamic Effects of Extreme Heat on Agricultural Policy
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These figures report the dynamic relationship between NRA and extreme heat in both domestic and
foreign markets. The model is Equation 3.8, with g and h parametrized by indicators for quartiles of
extreme heat. The first quartile at each lag is the excluded category. The unit of observation is a country-
crop-year. We report only fourth-quartile coefficients. The outcome variables are total NRA (Panel A),
output-market NRA (Panel B), and input-market NRA (Panel C). We cluster standard errors by market,
and we report 90% confidence intervals.

insignificant, implying no anticipation or pre-existing trends. The coefficients on lagged
values indicate persistent policy effects. The effect of foreign extreme heat remains positive
for one additional year, then reverts to zero two years after the shock. The effect of
domestic extreme heat remains negative and significant, albeit smaller in magnitude,
three years after the shock. Consistent with our previous findings, the policy response is
driven by output-market policy (Panel B) and not input-market policy (Panel C).

To this point, our analysis has focused on how yearly fluctuations in extreme heat
exposure affect yearly changes in policy. This annual variation is useful because it makes
it possible to identify the effect of quasi-random variation in extreme heat exposure on
policy. But the changes in policy due to climate change might be better approximated by
the effects of longer-run changes in weather patterns (see, e.g., Burke and Emerick, 2016).
While policy might respond to weather fluctuations in the short run, adaptation through
production or trade might influence how policy responds to climate change over the long
run. Moreover, the persistent effects documented in Figure 6 suggest that policy changes
may accumulate over time, leading to larger policy effects over longer time horizons.

We investigate these possibilities by collapsing the data to the decade level and esti-

mating versions of Equation 3.1 in which the unit of observation is a country-crop-decade
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Table 3: Extreme Heat and Agricultural Policy at Decadal Frequency

1) (2) (3) (4)
NRA NRA NRA NRA
Overall Overall Output Input
All Crops Major Crops
Panel A: Aggregate Global Shock
Q4 Extreme Heat (Domestic) -0.029 -0.055 -0.053 -0.004
(0.019) (0.031) (0.031) (0.002)
Q4 Extreme Heat (Foreign) 0.024 0.023 0.022 0.001
(0.010) (0.009) (0.009) (0.001)
Country-Decade Fixed Effects Yes Yes Yes Yes
Crop-Decade Fixed Effects No No No No
Country-Crop Fixed Effects Yes Yes Yes Yes
R-Squared 0.707 0.761 0.762 0.742
Observations 2,013 914 914 914
Panel B: Trade-Weighted Shocks
Q4 Extreme Heat (Domestic) -0.027 -0.059 -0.057 -0.004
(0.013) (0.033) (0.033) (0.002)
Q4 Extreme Heat (Foreign) 0.012 0.026 0.026 0.001
(0.010) (0.016) (0.016) (0.001)
Country-Decade Fixed Effects Yes Yes Yes Yes
Crop-Decade Fixed Effects Yes Yes Yes Yes
Country-Crop Fixed Effects Yes Yes Yes Yes
R-Squared 0.803 0.779 0.781 0.738
Observations 1,951 913 913 913

This table reports the relationship between extreme heat and NRA at decadal frequency. The unit of
observation is the country-crop-decade, and the independent variables are the number of fourth-quartile
domestic or foreign extreme heat shocks during the decade. Panel A use shocks constructed from global
(leave-one-out) area-weighted extreme heat, while Panel B uses the trade-weighted version. Panel A
excludes crop-decade fixed effects, while Panel B includes all two-way fixed effects. We cluster standard
errors by market.

triplet. Our independent variables of interest are (1) the number of years in a decade
with high, fourth-quartile local exposure to extreme heat and (2) the number of years in a
decade with high foreign exposure. Table 3 shows that decade-level exposure to domestic
shocks reduces NRA, while exposure to foreign shocks has the opposite effect (column
1). The estimates are again larger in magnitude for economically important crops (col-
umn 2) and driven by output-market rather than input-market policy changes (columns
3-4). These estimates are larger than our annual estimates (Table 2), consistent with the
persistence in policy responses documented in Figure 6. Column 2 suggests that each

additional year of domestic extreme heat exposure at the fourth quartile reduces average
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decadal NRA by 0.055. The standard deviation of decadal NRA is 0.69. Ten years of
such exposure, which occurs in 8% of the sample, induces a 55% pro-consumer wedge in
domestic prices relative to international prices and thus reduces average decadal NRA by
0.80 standard deviations. Long-run shifts in the climate lead to large, long-run changes

in global agricultural policy.
3.5 Mechanisms and Heterogeneity

Our baseline estimates capture the average effect of extreme heat shocks on food policy.
But these estimates could mask substantial heterogeneity in government responses. We
test for heterogeneity on a number of political and economic dimensions and, in doing so,

highlight several important mechanisms linking temperature shocks to policy changes.

Political Incentives. We first study the role of dynamic political incentives. A large
literature on political cycles has documented that upcoming elections reduce fiscal re-
sponsibility and lead to policies designed to win the support of constituents (e.g. Alesina
and Roubini, 1992; Akhmedov and Zhuravskaya, 2004; Balboni et al., 2021). If political
incentives drive policy responses to extreme heat shocks, then we might expect upcoming
elections to strengthen our estimates. To this end, we estimate an augmented version
of Equation 3.1 that includes interaction terms between extreme heat exposure and (1)
indicators for election years and (2) indicators for non-election years.!!

We find substantially larger effects in the lead-up to elections (Table 4, column 1).
Consistent with our main results, election effects are strongest for major and staple crops
(columns 2-3) and muted for cash crops (column 4). In column 2, the effect of a top-
quartile extreme heat shock is five times as large during an election year. Table A.7 shows
that elections also strengthen policy responses to foreign shocks. Electoral incentives and
constituent demands serve to intensify intervention after extreme heat shocks.

We also study the role of political systems. We compile cross-country data on regime
characteristics from the Quality of Government project, which constructs a polity score
that ranges from —10 (most autocratic) to 10 (most democratic). One hypothesis that
would be consistent with our election results, as well as our motivating example of India,
is that the incentives for responsive policies are stronger in democratic states, where
constituents can express their displeasure with high food prices at the ballot box. We

test this hypothesis with an empirical specification that is analogous to our elections

1'We define election years as the year during or immediately prior to any election. The results are
qualitatively similar if we only include the election year itself.
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Table 4: Policy Effects of Extreme Heat by Election Year

(1) (2) (3) (4)

Dependent variable is NRA

All Major  Staple Cash
Crops Crops Crops Crops

Q2 Extreme Heat x No Election -0.041 -0.058 -0.041 -0.009
(0.025)  (0.044) (0.055) (0.057)
Q3 Extreme Heat x No Election -0.014 -0.063 -0.043 -0.014
(0.027)  (0.065) (0.075)  (0.020)
Q4 Extreme Heat x No Election -0.017 -0.076 -0.089 -0.005
(0.037)  (0.095) (0.100) (0.022)
Q2 Extreme Heat x Election -0.010 -0.066 -0.079 0.067
(0.020)  (0.034)  (0.040) (0.090)
Q3 Extreme Heat x Election -0.037 -0.113 -0.149 0.022
(0.025)  (0.052) (0.062) (0.022)
Q4 Extreme Heat x Election -0.104 -0.386 -0.441 0.019
(0.047)  (0.131) (0.147)  (0.036)
p-value, Q4 x Election — Q4 x No Election 0.08 0.02 0.01 0.58
Country-Year Fixed Effects Yes Yes Yes Yes
Crop-Year Fixed Effects Yes Yes Yes Yes
Country-Crop-Election Fixed Effects Yes Yes Yes Yes
R-Squared 0.800 0.766 0.786 0.847
Observations 15,860 7,432 5,671 2,343

This table reports the relationship between extreme heat and NRA during election and non-election
years. The unit of observation is a country-crop-year. The model is a variant of Equation 3.1 in which
the variables that span g (quartiles of extreme heat) are interacted with Election, an indicator that equals
one in the year before or year of an election, and its complement No Election. The variables Election and
No Election vary by country-year and thus are absorbed in the corresponding fixed effect. The sample
used in each specification is noted at the top of each column. Below each set of coefficients, we report
the p-value of the difference between fourth-quartile shocks in election and non-election years. We cluster
standard errors by market.

specification, but with the polity score as the interaction variable.

We find no evidence of heterogeneity along this margin (Table 5, column 1). Our
interpretation is that all governments face strong political incentives to manage food
prices, albeit for potentially different reasons. In democratic systems, unmitigated spikes
in food prices may hurt the performance of democratic incumbents (e.g., Palmer and
Whitten, 1999). In non-democratic systems, they might spur protest and other forms of
opposition (e.g., during the Arab Spring; see Soffiantini, 2020). Marktanner et al. (2019)
find that food price spikes harm incumbents in both democracies and autocracies, but

with larger effect in autocracies, where shocks increase the likelihood of revolt.
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Table 5: Heterogeneous Effects of Extreme Heat on Agricultural Policy

(1) (2) (3) (4) () (6)

Dependent variable is NRA

Country-level characteristic (Zy;)  Polity GDP GDP Agri. Urban  Import
Score  (Total) (PC) Share Share Share

Q2 Extreme Heat x Zg -0.028 -0.049 -0.037 0.081 -0.041 -0.001
(0.034) (0.047)  (0.030) (0.040) (0.031) (0.030)
Q3 Extreme Heat x Zg 0.014 -0.032 -0.062 0.108 -0.075 -0.041
(0.059)  (0.067) (0.050) (0.057) (0.048) (0.053)
Q4 Extreme Heat x Zg 0.033 0.077 -0.038 0.175 -0.254 -0.792
(0.098)  (0.140)  (0.099)  (0.090) (0.101)  (0.265)
Country-Year Fixed Effects Yes Yes Yes Yes Yes Yes
Crop-Year Fixed Effects Yes Yes Yes Yes Yes Yes
Country-Crop Fixed Effects Yes Yes Yes Yes Yes Yes
Crop Fixed Effects x Zy Yes Yes Yes Yes Yes Yes
R-Squared 0.775 0.778 0.776 0.787 0.777 0.774
Observations 7,439 7,439 7,439 6,508 7,435 7,318

This table reports the relationship between NRA and extreme heat, interacted with country-level charac-
teristics. The model is a variant of Equation 3.1 in which the variables that span g (quartiles of extreme
heat) are interacted with the indicated country-level characteristics. The unit of observation is a country-
crop-year. We report only interacted coefficients. Characteristics Zy; are converted to standardized units
and include the polity score (higher values are more democratic), log GDP, log per capita GDP, agri-
cultural share of GDP, urban population share, and value-weighted import share of food consumption.
Country-year fixed effects absorb the direct effects of these characteristics. The sample includes major
crops. We cluster standard errors by market.

Fiscal Incentives. At the same time, policy intervention incurs financial costs, and so
policy responses may be more difficult for fiscally constrained governments. We proxy
for fiscal constraints with countries’ debt-to-GDP ratios, and we investigate whether this
channel mediates policy responses to extreme heat shocks. We again estimate an inter-
acted regression specification. We find that the negative effect of extreme heat exposure
is substantially diminished when central government debt is high (Table A.8), capturing
year-to-year variation in fiscal policy and incumbent political orientation. The estimates
are similar when we control for the interaction of changes in central government debt with
crop fixed effects (column 3) or extreme heat exposure (column 4). Our model in Section

4 will formalize how fiscal and political incentives shape government policy responses.

Economic Development. Broad differences in economic development and specializa-
tion may also shape policy responses to extreme heat shocks. For example, lower-income

countries may respond more forcefully to prevent domestic price increases if a large share
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of the population faces potential food insecurity. However, we find no evidence of hetero-
geneity based on country GDP, either in total (Table 5, column 2) or per capita (column
3). These estimates again suggest that most governments have an incentive to prevent
domestic supply shortages from raising domestic prices.

We next investigate whether policy responses are mediated by interest groups within
countries. First, we find somewhat muted policy responses in countries with larger agri-
cultural sectors (Table 5, column 4). However, the interacted coefficient remains smaller
than the non-interacted coefficient, such that this force does not flip the sign of the base-
line policy response. Second, we find stronger policy responses in countries with higher
urban population shares (column 5), indicating that governments are perhaps especially
responsive to the demands of urban constituents. Indeed, prior work suggests that urban
residents can most effectively lobby and threaten the legitimacy of incumbents (Bates,
2014). Third, we find stronger policy responses in countries that are more dependent
on foreign nations for food consumption (column 6), highlighting the importance of food
availability concerns more broadly.

Finally, we use the Household Impact of Tariffs (HIT) database to investigate whether
policy responses are mediated by their potential distributional consequences across do-
mestic income groups. For a large set of products and countries, we observe how much
each product in each country contributes to the consumption and expenditure of residents
in each income centile. For each country, we link HIT products to crops in our data, and
we compute the share of expenditure on each crop for (1) the top income quartile, (2)
the top two income quartiles, (3) the bottom two income quartiles, and (4) the bottom
income quartile. We also compute the share of income generated by each crop for each of
these four groups. While our estimates are imprecise because of the smaller sample cov-
ered by HIT, policy responses seems to be stronger for crops consumed disproportionately
by lower-income constituents and weaker for crops produced disproportionately by lower-
income constituents (Table A.9, Panels A and B). Governments are perhaps especially

responsive to the subsistence demands of the most needy.
4 Why Does Food Policy React to Shocks?

We next show that our full set of empirical results can be rationalized with a model of
trade policy as an instrument for domestic redistribution. We also discuss why alternative
models predicated on insurance motives and price stabilization are less consistent with

our empirical results.
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4.1 A Model of Food Policy and Redistribution

We model the market for a single agricultural commodity from the perspective of a home
country. Consumers’ inverse demand is ¢ = Q(p) = p~°¢, where g4 > 0 is the elasticity of
demand. Producers’ supply curve is y = Y (p,w) = wp®, where €, > 0 is the elasticity of
supply and w is a productivity shock that increases domestic production. International
markets are summarized by net demand (“exports”) curve x = X (p,w’) = w'p~¢, where
g, > 0 is the elasticity of export demand and «’ is a shock that increases export demand.
We assume that ¢4 < €, < 0o and €, > 1, such that foreign demand is sufficiently price
elastic, but not infinitely so. In Appendix A, we show that all results extend to the case
of a net importer facing isoelastic foreign net supply.

The government can impose an ad valorem border tax v > —1 that places a wedge
between domestic and international prices. That is, p* = (1 + a)p’, where p* is the
domestic equilibrium price and p’ is the international price. Positive o corresponds to an
export subsidy, and negative a to an export tax. Government expenditures are therefore
ap! = T3P per exported unit. The market clears at a domestic equilibrium price p* such
that Y(p*,w) = Q(p*) + X (ﬁ—*a, w’). In the model, border tax a exactly corresponds to
the definition of the nominal rate of assistance (Section 2.1). We focus on a border tax
as the sole policy instrument because governments primarily use trade policy to respond
to extreme heat shocks (Section 3.2).

The government chooses a tax a* to maximize a weighted sum of consumer surplus,

producer surplus, and government revenue:

D p* a p*
a*EargmaX{)\C/ Qp dp+)\P/ Y(p,w dp—)\G—p*X( ,w')}
a€[—1,00) p* ( ) 0 ( ) I+« I+a (41)

s.t. p* = P*(a,w,uw’)

where A\, AP A% > 0 are parameters, p is an (arbitrarily large) maximum price, and P*

describes the mapping from policy and shocks to the equilibrium price.'?

Micro-foundation. We provide an explicit link to a micro-founded production econ-

omy. Consider heterogeneous households indexed by i € {1,..., N} and two goods, the

Y

agricultural good and “money” as numeraire. Each household consumes both goods and

produces the agricultural good with some resource cost. Their payoff in terms of agricul-

I2We assume that primitives are such that this problem is quasi-concave in . The finite limit of
integration p allows us to study preferences that generate non-integrable demand curves (i.e., g4 < 1).
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tural consumption ¢;, money consumption z;, and production y; is

L - 1+
2 i LY
Z/{i: 4=t - i) €S L 5 4.2
; 1_$ (wiy) 11 +z (4.2)

where household heterogeneity is captured in tastes for the agricultural good p; and
agricultural productivity ;. As a normalization, we set Zi\; [ = foil 1; = 1. Each
household has the budget constraint, pg; + z; < py; + T;, where p is the price of the
agricultural good and T is a government transfer. Transfers are determined by the rule
T; = &G, where the & are positive weights such that ZZL & = 1 and G is total tax
revenue. Trade, market clearing, and the government policy instrument are as described
above. The government’s objective is to maximize a social welfare function W = Zfil Al
with Pareto weights \; € [0, 1] and normalization 3 \; = 1. These micro-foundations

map to our original model as follows.

Lemma 1. The competitive equilibrium in this economy coincides with the “supply and de-
mand” representation described above. The government’s preferences coincide with those

in Equation 4.1:

N N N
A = Zﬂi/\i, A = Z%‘)\z‘, A = Zfz‘/\z‘ (4.3)
i=1 i=1 i=1

where ; 1is household 1’s share of domestic consumption and ; is household i’s share of
domestic production. If \; = 1/N for all i, then \C = \F' = \¢,

Proof. See Appendix A.1. m

The parameters (A, AT, \%) are weighted averages of the government’s primitive
weights over individuals. The government has a high A\ if its preferred agents consume
more of the good and are therefore more exposed to changes in its price. The same holds
for A” and production. The government has a high A if its existing transfer schemes
already effectively target its preferred agents.

This framework nests a range of potential political preferences and/or institutions,
which map to different aggregate weights (A\“, A\, A\%). As one example, consider a pro-
gressive government that places higher weights \; on poorer households. If the poor
disproportionately consume a good, as is likely for staple crops, then \¢ is high. If the

poor disproportionately produce a good, as is likely for smallholder-driven production,
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then A" is high. If government transfer policies are particularly effective at reaching the
poor, then A\ is high. As a second example, consider a government that seeks to re-
distribute resources away from from participants in agricultural markets to target other
interest groups, such as corrupt officials or their own patronage network. In this case,
aggregate \¢ would be high relative to A“ and A\”. If, on the other hand, government
transfers are a “leaky bucket” (Okun, 1975) and are unlikely to reach the intended re-
cipient, the opposite would be true. More generally, if countries have different weighting

schemes across individuals for any reason, aggregate weights (A%, A\¥', \%) will also differ.
4.2 Optimal Policy and its Response to Shocks

Optimal Policy. We describe optimal policy in terms of the primitive elasticities, the
government’s welfare weights, and an equilibrium sufficient statistic, the self-sufficiency

ratio r = %.

Proposition 1. The optimal policy satisfies

1 (sx (AP + AC(1 —7) = XC) — G (e,r + sd)> 4)
gx \ AG(egr+eq) — (ANPr + AG(1 —1r) — \O)
Moreover, o increases in X' and decreases in \©.
Proof. See Appendix A.2 n
Under the utilitarian case (A = ¢ = \%), optimal policy reduces to o = —1/¢,.

This “inverse elasticity rule” sets marginal revenue equal to marginal deadweight loss: ex-
porting countries set export taxes (and importing countries set import taxes) proportional
to their ability to manipulate terms-of-trade. Policy would not respond to shocks.

More generally, policy depends on governments’ desire to use agricultural policy as
a tool for redistributing across groups. These policies vary widely. Anecdotally, large
agricultural producers in the United States and European Union exert influence that
leads to large production subsidies, while urban consumers in lower-income countries hold
political sway that leads to large consumer subsidies (Bates, 2014). These observations
are corroborated by cross-sectional patterns in our own data (Figure A.4). Our model
accommodates these distributional motives: high A\¥ favors producers, motivating high o

that elevates domestic prices above world prices, while high \¢ favors consumers.

30



How Policy Responds to Shocks. We study how trade policy responds to shocks.

We first define a key condition on preferences and the elasticities of supply and demand.
Definition 1. The government is redistribution-focused in a given agricultural market if

e N + gg\F

> 29 (4.5)
s+ &4

The government is revenue-focused if the opposite inequality holds.

The government is redistribution-focused if it places relatively high weight on con-
sumers or producers and relatively low weight on revenue. Our micro-foundation of
government preferences (Lemma 1) suggests a natural interpretation: that the govern-
ment is greatly concerned with the redistribution between consumers and producers that
occurs when prices change. The government is revenue-focused if it places relatively high
weight on the fiscal cost of policy intervention. A utilitarian government is exactly be-
tween redistribution and revenue focus, such that Equation 4.5 holds at equality. These

distinctions determine how trade policy responds to shocks.
Proposition 2. Optimal policy responds to shocks as follows.

1. If the government is redistribution-focused, then o increases in w and w'.

2. If the government is revenue-focused, then o decreases in w and w'.
Proof. See Appendix A.3. m

The redistribution-focused case of the model generates predictions that are consistent
with our empirical evidence. In response to domestic extreme heat shocks, which decrease
domestic supply, governments reduce the nominal rate of assistance and lower the price of
food (Section 3.1). In response to foreign extreme heat shocks, which increase foreign net
demand (or equivalently, decrease foreign net supply), governments increase the nominal
rate of assistance and raise the price of food (Section 3.3). The revenue-focused case of

the model makes the opposite predictions.

Intuition for the Result. Shocks affect government incentives through two channels,
which push in opposite directions. We give the intuition for both channels in the case of
a domestic supply shock that lowers production.

First, shocks shift the incidence of prices between domestic and foreign consumers

and producers (the “redistribution channel”). The government places positive weight on
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its own constituents, but zero weight on foreign producers and consumers. Regardless of
whether the government cares more about domestic producers or consumers, this channel
pushes toward more pro-consumer policy following a domestic adverse supply shock. A
pro-consumer government initially taxes exports to assist consumers by lowering domestic
prices. This policy cross-subsidizes foreign producers by raising world prices. An adverse
domestic supply shock reduces exports, lowering the cross-subsidy to foreign producers
and allowing the government to better target domestic consumers. The government re-
sponds by raising the export tax, thereby lowering domestic prices and helping consumers.
A pro-producer government initially subsidizes exports to assist producers by raising do-
mestic prices. An adverse domestic shock reduces production, lowering the marginal
returns to producer price support. The government responds by reducing the export
subsidy, again lowering domestic prices and helping consumers. Thus, the redistribution
channel pushes policy in a more pro-consumer direction following adverse supply shocks,
regardless of whether it places a higher weight on domestic consumers or producers.

Second, shocks affect how marginally profitable trade policy is for the government (the
“revenue channel”). A domestic supply shortage is the least profitable time to marginally
tax exports, or the least costly time to marginally subsidize exports, because the volume
of exports is low. The government responds by reducing export taxes, or raising export
subsidies, thereby raising domestic prices and helping producers. Thus, the revenue chan-
nel pushes in the opposite direction of the redistribution channel.!®> The strength of this
channel depends on the weight that governments place on revenue generation, which in
turn is higher when revenue is redistributed in a more socially valuable way.

Whether the government is redistribution-focused or revenue-focused (Equation 1)
precisely determines which channel is stronger. Following an adverse domestic supply
shock, a redistribution-focused government is more swayed by the marginal incentives
to lower prices, whereas a revenue-focused government is more swayed by the marginal

incentives to raise prices.

Domestic Versus Foreign Shocks. An important corollary is that domestic and for-
eign supply shocks induce opposite policy responses. A domestic supply shock is given

by a low w, which decreases domestic production. A foreign supply shock is given by

13Both channels have a related intuition for an importing country. A pro-consumer importer subsidizes
imports at baseline and does so more aggressively when these subsidies can better target domestic con-
sumers; a pro-producer importer taxes imports at baseline but reduces these taxes when low production
implies low returns to producer price support. Finally, a domestic supply shortage increases the marginal
cost of subsidizing imports and the marginal benefit of taxing them.
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a high ', which increases exports by increasing foreign net demand. By proposition
2, these shocks induce opposite policy responses for both redistribution- and revenue-
focused governments. The reason is that the self-sufficiency ratio r is a sufficient statistic
for how shocks affect optimal policy (Equation 4.4). A domestic supply disruption re-
duces self-sufficiency, while a foreign supply disruption increases it. Opposite impacts on

self-sufficiency imply opposite impacts on policy.
4.3 Rationalizing Our Empirical Results

Our model of trade policy and redistribution can rationalize our full set of empirical
findings in Section 3. First, the model rationalizes government intervention to assist con-
sumers in response to domestic supply shortages, as we found in Section 3.1. While inter-
vention during a domestic supply shortage is particularly costly, a redistribution-focused
government prioritizes redistribution among consumers and producers. Second, the model
formalizes why policy responses are similar across countries that otherwise differ in their
trade balance and initial policies. In particular, countries can be redistribution-focused
whether they are net importers or exporters and whether they are rich or poor, as we
found in Sections 3.2 and 3.5. These determinants of average incentives are separate from
the determinants of marginal incentives. Third, the model predicts that domestic and
foreign supply shocks induce opposite policy responses, as we found in Section 3.3. The
reason is that domestic and foreign shocks have opposite implications for domestic redis-
tribution. Fourth, the model is consistent with the heterogeneity that we document across
crop types, political incentives, and fiscal incentives. The model predicts stronger policy
responses for staple crops (Figure 4) if these crops are essential for more constituents (Sec-
tion 4.1). Moreover, elections and debt burdens strengthen governments’ redistribution
and revenue motives, respectively, consistent with our estimates from Tables 4 and A.8.
Our model of trade policy and redistribution extends related work from the literature
on political economy and trade. These models include the canonical theory of Grossman
and Helpman (1994), which can be understood as one in which government preferences are
endogenously biased toward producers because of political lobbying. In this set of models,
import penetration is a key determinant of policy (see also Goldberg and Maggi, 1999;
Maggi and Rodriguez-Clare, 2000). In our application, extreme heat shocks to domestic

and foreign supply directly affect import penetration, and thereby affect policy.
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4.4 Alternative Models

Alternative models of agricultural policymaking may also predict that governments react
to adverse production shocks. We highlight two such models that are surely relevant in

practice, but cannot by themselves rationalize all of our empirical results.

Helping the Poor. Governments may aim to help poor households by maintaining low
food prices. Poor households spend a larger share of their income on food, and they are
more vulnerable to falling below subsistence levels when food prices rise. Concave utility
implies that poor households suffer larger losses from high food prices more generally. This
might be especially true for staple crops, which could rationalize our heterogeneous effects
across crops. In this model, adverse production shocks—either domestic or foreign—
place upward pressure on domestic prices and, In response, governments tax exports (or
subsidize imports) to maintain low domestic prices.!* Thus, this motive encourages the
same policy response to domestic and foreign shocks. However, we document opposite
policy responses in the data. Moreover, we find no evidence that the results are stronger

for poor countries, where a larger share of the population is close to subsistence.

Price Stabilization. Governments may independently aim to stabilize domestic food
prices around a target level, effectively providing insurance against price volatility. Again,
domestic and foreign shocks place the same upward pressure on domestic prices, and
governments can respond by taxing exports (or subsidizing imports) to maintain low
prices. Thus, this motive encourages the same policy response to domestic and foreign
shocks. By contrast, we find opposite policy responses in the data. That is, governments

stabilize price fluctuations in one case and amplify price fluctuations in another.
5 Quantification

We combine our empirical estimates and model to show how policy responses shape the

aggregate and distributional effects of extreme heat shocks.

UFormally, we can extend our micro-foundation as follows. Household utility is Uf; = v(UY;), where
v is concave and differentiable. We adopt the first-order approximation v(U;) = v'(U;)U; and say that
the government maximizes social welfare W = Zfil A" (U; )U;, which aggregates household payoffs U;
with endogenous Pareto weights i = M\ (U;). If food-price shocks disproportionately raise the marginal
utility of poor consumers, then \“ rises (Lemma 1) and « falls (Proposition 1).
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5.1 Model

We describe an empirical version of the model that allows us to quantify welfare effects in
equilibrium, characterize the incidence of damages, and isolate the role of policy responses.
We keep the model intentionally simple to stay as close as possible to our empirical

estimating equations. We specify isoelastic curves for demand qu; and supply yex:.

10g gert = 10g gy, — 4108 Pet; (5.1)
log Yo = log ygk,t + e5log pue + f(ExtremeHeat ) (5.2)

for countries ¢, crops k, years t, quantities (qe¢, Yokt ), Prices pe, domestic ExtremeHeat g,
intercepts (qh.;, yo;), and elasticities (g4,¢,). Damage function f captures the effect of

domestic extreme heat exposure on production. Government policy oy, is given by
s = afy, + g(ExtremeHeaty,) + h(ForeignExtremeHeat,,, ), (5.3)

where policy functions g and h capture the effects of domestic ExtremeHeat,,; and
ForeignExtremeHeat,,, on policy. Policy takes the form of ad valorem tariffs au, on
international prices pét, such that domestic prices pgp; = (1 + agkt)pit. Markets clear in-
ternationally for each crop in each year. That is, given exposure wy; = {ExtremeHeat,,
ForeignExtremeHeat,,, }, and policy ag; = {au}e across countries ¢, the vector of inter-

national prices {pf, }x: solves

Z Gokt (D Wit k) = Z Yert (Dhos Wrt, we) Y Kyt (5.4)
¢ ¢

Equilibrium world prices give equilibrium domestic prices, quantities, trade flows, and
welfare. Trade flows 7 include the value of imports and exports. Welfare VW sums over
consumer surplus C, producer surplus P, and government revenue G with equal weights.
We take this welfare measure as a utilitarian benchmark, noting that governments may
pursue other objective functions.'® We aggregate as follows. We define expenditure shares
ewt = Pereere/ E as a function of total consumption expenditures £ = >, poxtqere. For
domestic prices p, we compute Stone price indices that are weighted by these expenditure

shares. For trade T, we compute the sum and divide by two (to avoid double counting

1%We compute imports M, = pere(qere — yere) T, exports Xogy = pore(Yere — qere) ™, trade flows T =

Myrs + Xgri, consumer surplus Cppz = %, producer surplus Pgi; = We"’ifi"l“, government revenue

Gorr = (Pext — Phy) (dowt — Yere), and total welfare Wik = Core + Pere + Gore-
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imports and exports). For welfare measures W € {W,C,P,G}, we compute sums.

1
Inp = Z ekt I poe, T = 5 Zﬁkt, W= Z Wik (55)

Lkt Lkt Lkt

Measurement. For each country, crop, and year, we observe consumption g, produc-
tion yeke, policy g (nominal rates of assistance), world prices pﬁt, ExtremeHeat;, and
ForeignExtremeHeat,,,. Our study period is 1991 to 2019.' We further restrict atten-
tion to countries and major crops for which we observe policy. We account for the rest of
the world by computing the differences between observed production and consumption for
each crop-year in our study sample, then holding these differences fixed in counterfactuals.
We recover intercepts (g, Yo, o) as residuals.'”

We calibrate demand elasticities £4 with country-crop-specific estimates compiled by
the USDA Commodity and Food Elasticities database, which draws on demand estimates
from 77 studies covering 117 countries (USDA 2011)."® The average estimate is £, = 0.4.
We set supply elasticities e, = 1 following Alston et al. (1995), which discusses the
fundamental difficulty of estimating agricultural supply elasticities. The main challenge
is the forward-looking nature of agricultural investment, which calls for dynamic modeling
and estimation that goes beyond the scope of our simple framework. We therefore view
our treatment of supply elasticities as particularly stylized.

We otherwise connect closely to the data. We directly incorporate our prior regression
estimates: Section 2.5 estimates damages f from extreme heat exposure, and Section 3
estimates policy responses g and h to domestic and foreign exposure. The benefit of this
approach is that it accommodates any model consistent with our regression estimates.
The cost is that it constrains production and policy to respond only as we observe in the
data. We minimize this cost by restricting attention to shocks that lie within the support

of the data.'® We note that our homogeneous policy response functions are consistent

16Qur regression sample covers 1980 to 2011. For counterfactuals, we draw our price data from the
FAO, which only maintains price data from 1991. We incorporate more recent data from the Aglncentive
project, which extends the NRA series, to reach 2019.

1"We solve for these residuals given our observed data, calibrated elasticities, and regression estimates.

18The database includes 2,803 own-price elasticity estimates, which we assign to four crop groups:
cereals, oils, fruits and vegetables, and other crops. We compute the average estimated elasticity for each
country and crop group.

9Rather than using our empirical estimates § and iL, we could use observed policies to estimate the
structural parameters of governments’ objective functions under a specific dynamic equilibrium concept
for policymaking (e.g., Markov perfect equilibrium). This approach might better extrapolate beyond the
data, but it would be tied to specific and difficult-to-test assumptions.
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with the findings of section 3.5, which documents that countries are broadly similar in
their policy responses. We will nonetheless obtain rich heterogeneity in the incidence of
welfare losses across countries, given differential exposure to domestic and foreign shocks,

as well as differences in observed patterns of consumption and production.

Damages. We evaluate damages from extreme heat shocks, which are given by the
difference between observed exposure and a hypothetical baseline of minimal exposure.
We define baseline domestic exposure to be the lowest domestic exposure that we observe

over time for each country-crop.
BaselineHeat,, = mtin {ExtremeHeaty,} YV, k (5.6)

We then compute baseline foreign exposure with Equation 3.5. Table A.10 converts these
baseline values into quartiles, as defined in our regression specifications, and tabulates
them against observed exposure.

We compare outcomes under observed exposure, as measured in the data, to outcomes
under baseline exposure, as simulated with the model. First, we compute production and
policy under baseline exposure with Equations 5.2 and 5.3. Differences between observed
and baseline values represent shock-induced production losses and policy responses. Sec-
ond, we solve for prices, quantities, trade, and welfare in equilibrium. For each, we
compute standard errors by applying the delta method and the variance-covariance ma-
trix from our regression estimates. We obtain market-specific measures that allow us to

study the incidence of damages across markets.

Decomposition. We isolate the role of policy responses with a decomposition exercise.
Consider outcome z under observed exposure and policy (wq,aq) relative to baseline
exposure and policy (wp, ag), where w = {wes bore and o = {ovps bore. Damages are given

by the difference between observed and baseline outcomes, which we decompose as follows.

gv(wl, ap) — z(wo, ozo)J = :T(wl, aq) — x(wo, a1)1+ir(w0, aq) — z(wo, 040)/ (5.7)

K;R K;U A:):RTAxU
Under responsive policy, policy shifts from ag to a; in response to the shock, which is
given by the change in exposure from wy to w;. Under unresponsive policy, we fix policy
at a; as observed. The change Az’ under responsive policy is the total effect of the

shock. The total effect includes two components. The first component is the change AzY
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under unresponsive policy. This production effect captures the direct impact of the shock
on domestic production, holding policy fixed. The second component is the difference
Az® — AzY in changes under responsive and unresponsive policy. This policy effect

isolates the indirect impact of the shock through the policy responses that it induces.
5.2 Results

Policy responses reshape the economic impacts of extreme heat shocks, redistributing

welfare losses both within and across countries.

Redistribution. Policy responses redistribute welfare losses by affecting market prices.
For markets that experience extreme heat shocks, prices rise by 7.9% under unresponsive
policy, compared to 5.6% under responsive policy (Figure 7a).?’ Policy responses dampen
price increases by 29% on average, shifting welfare losses from consumers to producers.
Consumer surplus losses fall by 31% in shocked markets, and consumers gain $7.6B an-
nually (Figure 7b). However, producer surplus losses rise by 276% (Figure 7c). Without
policy responses, producer losses are modest at $3.0B per year because relatively inelastic
agricultural demand allows for large price spikes that hedge producers against production
losses. Policy responses minimize price increases, leaving producers to bear the double
burden of production losses and policy pressures. The result is an additional $8.4B per
year in losses for producers. Turning to second moments, we find that policy responses
increase price and surplus volatility (Figure A.7).

Policy responses also affect markets that do not themselves experience extreme heat
shocks. Unshocked markets face higher world prices, which rise in equilibrium as shocked
markets respond to domestic shocks with pro-consumer policy. Unshocked markets also
respond to foreign shocks with pro-producer policy, raising domestic prices further. We
find that policy responses amplify price increases in unshocked markets by 51%: extreme
heat shocks increase prices by 4.7% under unresponsive policy, but by a larger 7.0% under
responsive policy (Figure 7a). In turn, foreign consumers suffer 50% larger consumer
surplus losses (Figure 7b), while foreign producers enjoy 56% larger producer surplus
gains (Figure 7c). Even with unresponsive policy, unshocked producers gain as prices rise
with reduced competition from shocked producers. With responsive policy, unshocked

foreign producers gain even more as policy responses amplify the rise in prices. Policy

20Under unresponsive policy, international price effects are equivalent to domestic price effects: 7.9%
in shocked markets and 4.7% in unshocked markets. These effects differ because we report expenditure-
weighted averages, and countries have different expenditures despite facing the same international prices.
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Figure 7: Redistribution through Market Prices
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We compute shock-induced changes under responsive and unresponsive policy. Shocks are observed
extreme heat shocks from 1991 to 2019. Responsive policy adjusts as estimated, and unresponsive policy
is fixed at baseline levels. We aggregate over countries, major crops, and years as follows. For domestic
prices, we compute Stone price indices, which weight by expenditure shares, and we report percentage
changes relative to baseline prices. For consumer surplus, producer surplus, and welfare, we compute
sums and report changes in billions of dollars per year relative to baseline levels. Dollars are inflation-
adjusted, year-2020 USD. We report effects separately for shocked markets, which experience domestic
extreme heat shocks (35% of markets), and for unshocked markets, which do not (65% of markets). We
report standard errors in parentheses.

responses again increase price and surplus volatility (Figure A.7).%!
If the world were one with free trade, then policy responses would decrease social
welfare by introducing policy wedges and reducing efficient trade. But global agricul-

tural markets have significant distortions, which policy responses can either magnify or

2ncorporating the lagged effects of Figure 6 leads to amplified price impacts (Figure A.8).
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diminish. Figure 1 shows large variation in nominal rates of assistance, which creates
both positive and negative price wedges. The magnitude of these wedges in absolute
value terms captures policy distortions. Table A.10 shows that policy responses mag-
nify baseline distortions for 35% of markets and diminish baseline distortions for 65% of
markets. In shocked markets, total welfare losses exceed $24B per year, but are similar
under responsive and unresponsive policy (Figure 7d). Diminished distortions offset mag-
nified distortions and lead to neutral welfare impacts on net. Welfare losses are smaller

in unshocked markets, but again similar under responsive and unresponsive policy.

Country-Level Impacts. Policy responses have vastly different impacts across coun-
tries. We compute country-level policy effects as differences between shock-induced changes
under responsive and unresponsive policy, and we report these differences as percentages
of shock-induced changes under unresponsive policy. The net effect of global policy re-
sponses is to improve utilitarian welfare in 40% of countries, while reducing welfare in
60% (Figure 8a; Figure A.9 maps price and surplus effects). These country-level policy
effects can be large, often exceeding 25% in absolute value.

The country-level effect of responsive policy on welfare is determined by the extent to
which policy amplifies baseline distortions. Figure 8b shows that policy responses induce
larger welfare losses the more they amplify distortions on average. For India, pro-consumer
policy at baseline is intensified by policy responses to extreme heat shocks. Larger price
wedges reduce efficiency and welfare. For the US, the amplification of baseline distortions
is more limited, and policy responses lead to welfare gains.

The resulting impacts are regressive. In Figure 8c, policy responses exacerbate in-
equality in baseline damages. Countries that are most adversely affected by extreme heat
shocks are hurt by policy responses, while countries that are least adversely affected are
helped. Similarly, in Figure 8d, policy responses generate welfare losses for the poorest
countries, while generating welfare gains for the richest.

At the global level, policy responses reduce trade flows but not aggregate welfare. As
extreme heat shocks destroy production, the direct effect under unresponsive policy is to
reduce trade flows by an average of $9.2B annually (Figure 8¢). But the reduction in
trade is 96% larger under responsive policy, echoing our motivating example of export
bans on Indian wheat. At the same time, policy responses continue to have neutral
effects on aggregate welfare (Figure 8f). The reason is that policy responses reduce policy
distortions for many markets, generating welfare gains that offset welfare losses in markets

where distortions are amplified.
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Figure 8: Heterogeneity and Mechanisms
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Panel (a) maps shock-induced changes in welfare under responsive policy, reported as a percentage dif-
ference relative to shock-induced changes in welfare under unresponsive policy. We aggregate to the
country level by summing welfare across major crops and years. Panels (b), (c), and (d) plot the same
policy effects on welfare relative to (b) the percentage share of policy distortions that are amplified under
responsive policy, (c¢) shock-induced changes in welfare under unresponsive policy, and (d) log per capita
GDP. Points are proportional in size to consumption expenditures. We label the top three: China, India,
and the US. Panels (e) and (f) plot shock-induced changes in global trade and welfare over time. Dollars
are inflation-adjusted, year-2020 USD. Shocks are observed extreme heat shocks from 1991 to 2019. We

report standard errors in parentheses.
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6 Conclusion

While international leaders proclaim that “food security rests on trade” (Gurria and
da Silva, 2019), a growing number of examples suggest that governments are willing to al-
ter food policy and restrict trade in response to environmental shocks. We document this
phenomenon systematically with comprehensive data on agricultural policy interventions
and extreme heat exposure since 1980. We find that domestic heat shocks lead govern-
ments to shift policy in a pro-consumer direction, while foreign extreme heat shocks have
the opposite effect. These effects are most pronounced during elections, when politicians
may be especially attuned to constituent demands.

Our results can be rationalized by a model in which trade policy is a tool to achieve
redistribution across different groups in society. Our empirical estimates imply that this
redistribution is meaningful. Policy responses shield domestic consumers from extreme
heat shocks, but they also worsen losses for domestic producers and foreign consumers.
Furthermore, policy responses have globally regressive effects, ultimately harming the
poorest and most heat-affected countries in the world. More broadly, our findings high-
light that economic policy is a crucial mechanism for understanding the aggregate and
distributional impacts of climate change. Climate change will affect economic policy, and

economic policy will in turn affect the consequences of climate change.
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Supplement to “Food Policy in a Warming World”
Allan Hsiao, Jacob Moscona, and Karthik Sastry

A Proofs

A.1 Proof of Lemma 1

We first solve for each household’s choices. Given quasi-linearity, we can substitute for

money 2z; in the household’s objective and write

-+ 1+t
=¢ L
U= ;" = 0y — a) + T — w59 = gy (A1)
1-= 1+ -
The first-order condition for agricultural consumption is
1
pitq " =p = G = pp (A.2)
The first-order condition for agricultural production is:
B R
W Es ¢Z Es y;s =p = Y; = w¢ip85 (AB)

We next aggregate the “demand side” of the economy. Total demand for the agricul-
tural good is Zf\il g = (Zf\il pi)p~ % = p—°4, where the second equality uses our nor-

malization ) ._, u; = 1. Moreover, as claimed, each consumer i’s share of consumption is
qi

= p;. The component of households” payoff deriving directly from consumption is

Zévzl q;
1 1_% 1
= 4 - _ i _
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- 1-= €q—1

We next aggregate the “supply side” of the economy. Total production of the agri-
cultural good is SN 5 = w(d i, w)p™ = wp, where the second equality uses our
normalization Zfil ; = 1. Moreover, as claimed, each consumer i’s share of production

is Yi

= 1);. The component of households’ payoff deriving directly from production
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We next derive consumer and producer surplus. We define consumer surplus in the
economy, at domestic price p*, as the area under the demand curve between p* and some

arbitrarily large reference price p:

p NV N b
= / D miprdp =) / pip~* dp

i=1
N p
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where the constant K = ﬁﬁl_ad is finite and does not depend on equilibrium outcomes.

Thus, for all ¢, C; = u;C — pu; K

A similar calculation yields that producer surplus is
p* N
= / Z Yiwp™ dp = / Yiwp™ dp

(A.7)
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Thus, for all 7, P; = ¢, P
We finally show the equivalence of the social welfare function, W = Zf\il Aild;:

N

N
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where the second equality in the first line uses the representations of individual payoffs
derived above as well as the transfer rule. This is, up to the irrelevant constant K defined

in the last line, the same government objective in Equation 4.1. This concludes the proof.
A.2 Proof of Proposition 1

We prove Propositions 1 and 2 in a generalized model that allows us to study net exporters

and importers together. In particular, we assume that net exports are described by the



function

X(p,w') = Xo(w)p™= (A.9)

where Xy : R — R is an increasing function. We consider two cases. First, X, > 0,
gx, > 0, g4 < €, < 00, and g, > 1. This is the case of a net exporter described in
the main text. Second, Xg < 0, g, < 0, g, < —&, < 00, and —¢, > 1. In this case,
M(p,w') .= =X (p,w’) > 01is an isoelastic foreign supply curve for imports. The additional
assumptions encode that import supply is more elastic than the domestic supply, but not
infinitely so. In all cases, an increase in the shock w’ corresponds to higher net demand
or lower net supply abroad. Finally, for convenience, we reparameterize the problem so
that the choice variable is the additive price wedge T which satisfies p* — 7 = p*/(1 + «).

Program 4.1 becomes

®

o0 P
7" € arg max {)\C/ Q(p)dp + )\P/ Y(p,w)dp — \°7X (p* — T, w')}
p* 0

Te(ioovp*]

(A.10)
s.t. p* = P*(1,w,w’)

where, in some abuse of notation, we still use P* to denote the equilibrium mapping from
policy and shocks to domestic prices. We proceed by deriving the optimal tariff under
the assumption that it is interior; at the end, we show that the assumption ¢, ¢ (0, —1)
is sufficient to guarantee interiority.

We first derive Op/07 by implicitly differentiating market clearing:

Q) o _¥pw) W IXp.w) o Al
op "7 or op TV or op TP\ or '
Rearranging, and suppressing the evaluations, we obtain
y X (pw')
op" _ i1 _ e(1—7) (A.12)
T L R) (e (-3) o)
where we define the elasticities ¢, = g—;f, for z € {x,y,m} and with all prices evaluated

in equilibrium.

The necessary first-order condition of Program A.10 in 7 is
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This rearranges to
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p*(17)—T p* (T
—A¢ dp (1 T or )
Using our expression for % and expressing %—f as an elasticity, we obtain
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Cancelling alike terms in the numerator and denominator, we simplify this to
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Rearranging and simplifying, we obtain
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Equation 4.4 follows by defining oo = p*%.

T

We next check that the conjectured solution lies in the correct domain, or v > —1.

To do this, we write the condition

1 ()\G (res +€q) + €o (/\Pr—i—)\G(l—r)—)\C)) S 1 (A.18)
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Multiplying both sides by —e,(1 — r) > 0, we obtain
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We now split cases. Consider first the case in which the denominator of the left-hand-
side is positive. Then, multiplying both sides by the denominator and simplifying, the
relevant condition simplifies to 1 —r > (1 — r)e,. In the exporting case, this follows from
r>1(y > q) and ¢, > 1. In the importing case, this follows from r < 1 and ¢, < 0.

Consider next the case in which the denominator of Equation A.19 is negative. In this

case, the relevant condition is 1 — r < —(1 — r)e,. In the importing case, this rearranges



to —e, > 1, which was assumed. In the exporting case, this is immediate from e, > 0.

We finally show the comparative statics by direct calculation:

O (eq +12s)NY <0
ONC ey (ANCH(eq— (1 —7) +re)AC —rAP)2 = (A.20)
da*  1-g, NCr(res + eq) -0 '
ONP gx A9+ (ea— (1 —7)+71e) NG —rAP)2 —
where, in both inequalities, we use that ¢, ¢ (0,1), so (1 —¢&,)/e, < 0.
A.3 Proof of Proposition 2
In the arguments below, we let s =1 —1r = —% denote the import share. We first state
and prove two Lemmas.
Lemma 2. A pair (a*, s*) constitutes an equilibrium if
af = A(s")
(A.21)

s = S(a*, w,w)

where (i) S decreases in «, (ii) S increases in w, (iii) S increases inw', and (iv) o = A(s*)

crosses a = S7Y(s*;w, W) once from below.

Proof. Property (i): From market clearing,

*

Q) =y () - X (o) (A22)

and the fact that M is decreasing, Y is increasing, and () is decreasing, it is immediate
that p* increases in . Moreover, since Y increases in p and () decreases in p, we have
that s = 1 — Y/@) decreases in «. Differentiability follows from the differentiability of Y,
() and P*.

Property (ii): Using market clearing, an equivalent expression for S is

X (Fa )

Q(P*(a,w,w))

Sla,w,w') = — (A.23)



Suppose w; > wy. First, consider the case in which z > 0 and therefore s < 0.

P*(a,wi,w’ Ea _
S(aawhwl) _ (P*(a’wé’w/)> _ P*(a7w17w/) o <1 (A 24)
S(a,wy,w’) <P*(a,w1,w’)>_€d A\ P, wo,w) '
P*(o,wo,w’)

where the inequality follows from observing that P*(«a,w;,w’) > P*(o,wp,w’) (P* in-
creases in w) and e4—¢, < 0 (foreign demand is more price elastic than domestic demand).
Therefore, since s < 0, S(a,wy,w’) > S(a,wy,w’) as desired. Next, consider the case in

which 2 < 0 and therefore s > 0.

Sla,wn,w) _ <—P *(O"“’l’“"))sd_ax > 1 (A.25)

S(a, wp,w') P*(a, wp, w')

where the inequality follows from P*(«,wq,w’) > P*(,wp,w’) (P* increases in w) and
g, < —1 and therefore ¢4 — ¢, > 1 (foreign supply is upward sloping). Therefore, since
s> 0, S(a,wy,w) > S(a,wy,w') as desired.
Property (iii): This follows from the same logic as the comparative static in a: a
decrease in w’ perturbs market clearing in the same way as an increase in a.
Property (iv): By direct calculation,
9S (1 —s)(—se,)(es +ea) 1

v A2
da (1 —5s)es —se,+eq (1+a) <0 (4.26)

where the inequality uses se, < 0 and a > —1 (interiority). If %4~ > 0, then the claim
follows from the fact that the government’s problem is globally concave and there must
exist a solution. If % < 0, then we make the following “boundary conditions” argument.
First, lim, ,; S™!(s*;w,w’) = —oo: that is, the policy that supports an import share of 1
is unbounded consumer assistance. Second, lim,_,; A(s) > —oo: an import share of 100%
corresponds to a well-defined policy. Because of the uniqueness of the optimal policy and
concavity of the objective, A and S™! must cross exactly once. If A crossed S~! once
from above, and A(1) > lim,_; S~*(1), then it would have to be the case, by continuity,
that they cross at least once more. This contradicts the uniqueness of the optimal policy.

O

Lemma 3 (Relative Assistance and Import Shares). The following statements are true:

1. If the government is revenue-focused, or e5(AC— X&) 44 A" —=\F) < 0, then A* > 0,



or higher import shares are associated with higher producer assistance.

2. If the government is redistribution-focused, or ,(A¢ — \) +e4(A\F — \¥) > 0, then
A* <0, or higher import shares are associated with higher consumer assistance.

3. If the government is neutral, or (A — A9) 4+ g4(A\F — X&) = 0, then A =0, or

assistance is invartant to the import share.
Proof. By direct calculation, we have that

DA*(s) e, —1 (\%(es +2a) = A%, = Meq) Mg (A.27)
Os e (AG((1—s8)es +eq) + (AP(1 — 5) + XGs — XC))° '

where we observe that 5”;—_1 > (0 under our maintained assumptions. Thus, the sign of this
derivative is determined by the sign of )\G(ss +eq) — A, — Mgy, which is exactly the
condition for revenue versus constituent focus, as indicated. The additional claims follow

from observing that o = A*(s) must hold in any equilibrium. O

We prove the cases in turn. For all cases, we observe that for w; > wp and w| > wy,
then S(ov,wy,w)) > S(a,wp,wy) for all a. We let af, of denote the equilibrium policy in

each case. We observe that a — S™!(s,w,w’) is decreasing for any w,w’.

1. Since A(s) is strictly decreasing (Lemma 3), then f(s) = S™'(s,wy,w]) — A*(s)
crosses the origin once from above and f(s;, ;) > 0. Moreover, for any equilibrium
sm1s f(sy,1) = 0. Therefore, sy, > s, provided that an equilibrium exists
(which has been established earlier) and is unique. Since A* is decreasing, then
ai = Asp,,) < 0.

2. Since A(s) is strictly increasing (Lemma 3), then f(s) = S7(s,w;,w]) — A*(s) is a
decreasing function and f(s}, ;) > 0. Moreover, for any equilibrium s |, f(sy, ;) =

0. Therefore, s, ; > s;

m.0, brovided that an equilibrium exists (which has been

established earlier). Since A* is increasing, then af = A(s}, ;) > of.



B Additional Figures and Tables

Figure A.1: Average Nominal Rates of Assistance for Select Crops

This figure displays the average value from 2001 to 2010 of the nominal rate of assistance (NRA) for
maize, wheat, and rice. Countries are color-coded by quartile. Darker colors are larger values.



Figure A.2: Changes in Nominal Rates of Assistance for Select Crops

This figure displays the change in NRA for maize, wheat, and rice between the 1980s and 2000s. Countries
are color-coded by quartile. Darker colors are larger values.



Figure A.3: Global Changes in Extreme Heat for Select Crops
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This figure displays the change in extreme heat exposure for maize, wheat, and rice between the 1980s and
2000s. The units are killing degree days per year above the critical temperature threshold (see Equation
2.2). Countries are color-coded by quartile. Darker colors are larger values.
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Figure A.4: Income vs.

Policy Distortions
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This figure displays a binned scatter plot of NRA and log per capita GDP, both averaged over the sample.
The unit of observation is a country-crop pair. We control for crop fixed effects, and we cluster standard

errors by country.

Figure A.5: Domestic vs. Foreign Extreme Heat Exposure
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This figure displays a binned scatter plot of average exposure to above-median domestic and foreign
extreme heat. The unit of observation is a country-crop pair. We cluster standard errors by crop.
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Figure A.6: Effects of Extreme Heat on Trade Disruptions

(a) Export Restrictions (b) More Export Than Import Restrictions (c) Export Minus Import Restrictions
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This figure displays the relationship between quartiles of extreme heat exposure and crop-specific policy interventions measured using the
Global Trade Alert database. The unit of observation is a country-pair-crop-year, and all specifications include fixed effects at the origin-crop,
origin-year, crop-year, and origin-destination levels. In Figure A.6a, the outcome variable is an indicator that equals one if there are any
export-restricting policies; in Figure A.6b, it is an indicator that equals one if there are more export-restricting than import-restricting policies;
and in Figure A.6c, it is the total number of export-restricting policies minus the total number of import-restricting policies. Since the GTA
database begins in 2008, the sample period for all estimates is 2008-2019. The sample includes major crops. We report 90% confidence
intervals.
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Figure A.7: Effects of Responsive Policy on Dispersion
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We compute standard deviations of shock-induced changes across markets and time periods under respon-
sive and unresponsive policy. Shocks are observed extreme heat shocks from 1991 to 2019. Responsive
policy adjusts as estimated, and unresponsive policy is fixed at baseline levels. We aggregate over coun-
tries, major crops, and years as follows. For domestic prices, we compute Stone price indices, which
weight by expenditure shares, and we report percentage changes relative to baseline prices. For consumer
surplus, producer surplus, and welfare, we compute sums and report changes in billions of dollars per year
relative to baseline levels. Dollars are inflation-adjusted, year-2020 USD. We report effects separately for
shocked markets, which experience domestic extreme heat shocks (35% of markets), and for unshocked
markets, which do not (65% of markets). We report standard errors in parentheses.
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Figure A.8: Lagged Policy Effects
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We compute shock-induced changes in domestic prices under responsive policy, reported as a percentage
difference relative to shock-induced changes in welfare under unresponsive policy. Shocks are observed
extreme heat shocks from 1991 to 2019. We allow for lagged effects in estimation, and we report cumula-
tive effects over time. The immediate impact captures the contemporaneous effect of a persistent shock.
Cumulative impacts incorporate lagged effects in the years that follow. We aggregate across countries,
major crops, and years by computing Stone price indices, which weight by expenditure shares. We report
effects separately for shocked markets, which experience domestic extreme heat shocks (35% of markets),
and for unshocked markets, which do not (65% of markets).
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Figure A.9: Heterogeneity in Policy Effects
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We map shock-induced changes in welfare under responsive policy, reported as a percentage difference
relative to shock-induced changes in welfare under unresponsive policy. We aggregate to the country level
by summing welfare across major crops and years. Shocks are observed extreme heat shocks from 1991
to 2019.
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Table A.1: Effects of Extreme Heat on Policy, Sensitivity

(1) (2) (3) (4)
Dependent variable is NRA

All Major  Staple Cash
Crops Crops Crops Crops

Panel A: Excluding 1980s

Q4 Extreme Heat -0.055 -0.243 -0.241 0.003
(0.033)  (0.091) (0.098)  (0.021)
R-Squared 0.826 0.836 0.861 0.836
Observations 11,382 5,319 4,118 1,580
Panel B: Excluding 1990s
Q4 Extreme Heat -0.048 -0.272 -0.345 0.009
(0.043)  (0.130) (0.126)  (0.028)
R-Squared 0.778 0.748 0.769 0.872
Observations 10,339 4,951 3,810 1,520
Panel C: Excluding 2000s
Q4 Extreme Heat -0.085 -0.303 -0.296 0.004
(0.044)  (0.135)  (0.159)  (0.022)
R-Squared 0.816 0.767 0.783 0.867
Observations 10,287 4,734 3,542 1,603
Panel D: Extending to 2019 using Aglncentives Data
Q4 Extreme Heat -0.045 -0.230 -0.258 0.005
(0.031)  (0.098) (0.111)  (0.021)
R-Squared 0.780 0.741 0.768 0.809
Observations 20,747 9,944 7,399 3,038
Country-Year Fixed Effects Yes Yes Yes Yes
Crop-Year Fixed Effects Yes Yes Yes Yes
Country-Crop Fixed Effects Yes Yes Yes Yes

This table reports the relationship between NRA and extreme heat exposure under different sample
selections (relative to the baseline estimates in Figure 4). The model is Equation 3.1, and the unit of
observation is a country-crop-year. The outcome in all specifications is NRA, and the sample of crop
used in each column is noted at the top of the column. Each panel focuses on a separate time period. In
Panel A, the 1980s are excluded from the sample; in Panel B, the 1990s are excluded from the sample; in
Panel C, the 2000s are excluded from the sample; and in Panel D, the sample is extended to 2019 using
the Aglncentives Database. We include all two-way fixed effects in each specification, and we cluster
standard errors by market.
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Table A.2: Country-Level Effects of Extreme Heat on Policy

(1) (2) 3) (4) ()

Dependent variable is

NRA NRA NRA NRA NRA
Total Output Border = Domestic Input

Panel A: Contemporaneous Effects

Q4 Extreme Heat -0.196 -0.199 -0.211 0.012 0.003
(0.101) (0.101) (0.095) (0.026) (0.002)
Country Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
R-Squared 0.749 0.748 0.723 0.190 0.488
Observations 1,896 1,896 1,896 1,896 1,896
Panel B: Contemporaneous and Lagged Effects
Q4 Extreme Heat -0.160 -0.163 -0.188 0.025 0.003
(0.107) (0.106) (0.095) (0.037) (0.002)
Q4 Extreme Heat (Lagged)  -0.348 -0.344 -0.324 -0.020 0.002
(0.095) (0.094) (0.093) (0.015) (0.003)
Country Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
R-Squared 0.755 0.755 0.734 0.192 0.497
Observations 1,838 1,838 1,838 1,838 1,838

This table reports the relationship between NRA and extreme heat exposure at the country-year level.
The unit of observation is a country-year, and the baseline estimating equation is

NRA . = g(ExtremeHeaty) + v¢ + 0 + €4t

where NRA and extreme heat exposure are aggregated to the country-year level by taking the sum
across crops. Each crop is weighted by the calorie content of output during the pre-analysis period.
The nonparametric function g is parametrized by indicators for quartiles, where the first quartile is
the excluded category; in all specifications, we report only the coefficient on the fourth quartile for
concision. Country and year fixed effects are included in all specifications. In Panel A, we only include
the contemporaneous value of the quartile shocks. In Panel B, we also include the first lag of all shocks:
g(ExtremeHeaty ;—1). The sample includes major crops. We cluster standard errors by country.
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Table A.3: Effects of Extreme Heat on Policy With Fewer Fixed Effects

(1) (2) (3) (4)

Dependent variable is NRA

Q2 Extreme Heat -0.116 -0.162 -0.127 -0.066
(0.086)  (0.079)  (0.079)  (0.032)
Q3 Extreme Heat -0.162 -0.251 -0.243 -0.098
(0.089) (0.110)  (0.137)  (0.043)
Q4 Extreme Heat -0.177 -0.411 -0.292 -0.285
(0.092) (0.128) (0.170)  (0.110)
Country-Year Fixed Effects No No Yes Yes
Crop-Year Fixed Effects No Yes Yes Yes
Country-Crop Fixed Effects No No No Yes
R-Squared 0.009 0.102 0.486 0.772
Observations 7,699 7,698 7,439 7,439

This table reports the relationship between NRA and extreme heat exposure with fewer fixed effects
(relative to the baseline estimates in Figure 4). The unit of observation is a country-crop-year. The
regression model in each column includes a different set of two-way fixed effects. In column 1, no fixed
effects are included. In the remaining columns, two-way fixed effects are added as listed at the bottom
of each column. The sample includes major crops. We cluster standard errors by market.
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Table A.4: Effects of Foreign Extreme Heat By Domestic Extreme Heat Exposure

M 2) 3)
Dependent variable is NRA
Full Markets Markets
Sample with Q3/4  with Q4
Shock Shock
Q2 Extreme Heat (Domestic) -0.028 -0.049 -0.060
(0.021) (0.052) (0.060)
Q3 Extreme Heat (Domestic) -0.047 -0.050 -0.067
(0.026) (0.050) (0.054)
Q4 Extreme Heat (Domestic) -0.136 -0.116 -0.171
(0.057) (0.076) (0.091)
Q2 Extreme Heat (Foreign) 0.033 0.014 0.061
(0.020) (0.038) (0.049)
Q3 Extreme Heat (Foreign) 0.062 0.034 0.053
(0.027) (0.045) (0.069)
Q4 Extreme Heat (Foreign) 0.085 0.075 0.114
(0.032) (0.047) (0.075)
Country-Year Fixed Effects Yes Yes Yes
Crop-Year Fixed Effects Yes Yes Yes
Country-Crop Fixed Effects Yes Yes Yes
R-Squared 0.832 0.836 0.903
Observations 11,361 6,898 2,239

This table reports the relationship between NRA and domestic and foreign extreme heat exposure under
different sample selections (relative to the baseline estimates in Table 2). The unit of observation is a
country-crop-year. Domestic extreme heat quartile shocks and the trade-weighted version of the foreign
extreme heat quartile shocks are included in all specifications. Columns 2 and 3 restrict the sample to
markets that experience domestic extreme heat shocks during our sample period, including markets that
experience at least one third- or fourth-quartile shock (column 2) or markets that experience at least
one fourth-quartile shock (column 3). We include all two-way fixed effects in each specification, and we
cluster standard errors by market.
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Table A.5: Effects of Import- and Export-Weighted Foreign Extreme Heat

(1) (2) (3) (4)
Dependent variable is NRA
Full Net Full Net
Sample Importer Sample Exporter
Q2 Extreme Heat (Domestic) -0.026 -0.057 -0.035 -0.025
(0.023) (0.042) (0.021) (0.018)
Q3 Extreme Heat (Domestic) -0.045 -0.078 -0.045 -0.043
(0.028) (0.046) (0.026) (0.026)
Q4 Extreme Heat (Domestic) -0.133 -0.226 -0.127 -0.128
(0.064) (0.152) (0.057) (0.045)
Q2 Extreme Heat (Foreign, Import-Weighted) 0.010 0.046
(0.020) (0.033)
Q3 Extreme Heat (Foreign, Import-Weighted) 0.020 0.065
(0.027) (0.050)
Q4 Extreme Heat (Foreign, Import-Weighted) 0.065 0.109
(0.030) (0.051)
Q2 Extreme Heat (Foreign, Export-Weighted) 0.044 0.031
(0.020) (0.037)
Q3 Extreme Heat (Foreign, Export-Weighted) 0.079 0.075
(0.027) (0.039)
Q4 Extreme Heat (Foreign, Export-Weighted) 0.030 0.101
(0.046) (0.042)
Country-Year Fixed Effects Yes Yes Yes Yes
Crop-Year Fixed Effects Yes Yes Yes Yes
Country-Crop Fixed Effects Yes Yes Yes Yes
R-Squared 0.834 0.825 0.839 0.831
Observations 10,722 5,382 10,782 5,244

This table reports the relationship between NRA and import- and export-weighted foreign extreme heat
exposure. The unit of observation is a country-crop-year, and the outcome in all specifications is NRA.
In columns 1 and 2, domestic and import-weighted foreign extreme heat shocks are included on the
right-hand side of the regression. In columns 3 and 4, domestic and export-weighted foreign extreme heat
shocks are included on the right-hand side of the regression. Columns 1 and 3 include the full sample,
while columns 2 and 4 restrict attention to net importing and net exporting markets, respectively. We
include all two-way fixed effects in each specification, and we cluster standard errors by market.
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Table A.6: Effects of International Price Shocks on Policy

(1) (2) (3)

Dependent variable is

NRA Log NRA

Price
Log International Price (Leave One Out)  0.075 0.587
(0.046) (0.308)
Q2 Extreme Heat (Domestic) -0.045 -0.109
(0.029) (0.047)
Q3 Extreme Heat (Domestic) -0.093 -0.202
(0.037) (0.072)
Q4 Extreme Heat (Domestic) -0.092 -0.303
(0.050) (0.097)
Q2 Extreme Heat (Foreign) 0.092
(0.017)
Q3 Extreme Heat (Foreign) 0.177
(0.026)
Q4 Extreme Heat (Foreign) 0.225
(0.040)
Country-Year Fixed Effects Yes Yes Yes
Country-Crop Fixed Effects Yes Yes Yes
R-Squared 0.790 0.934 —
Observations 9,124 42,946 7,071

This table reports the relationship between NRA and international price shocks. The unit of observation
is a country-crop-year. In columns 1 and 3, the estimating equation is

NRA; = g(ExtremeHeaty,) + 3 - log pé;f{oo + Yot + ther + ekt
where log pé;ﬂlzoo is the log of a leave-one-out international average of country-level commodity prices,
weighted by agricultural production, and ¢ is spanned by indicators for quartiles of extreme heat. The
first quartile is the excluded category. Column 1 is an OLS estimate, and column 3 is an IV estimate
using quartiles of foreign extreme heat as instruments. Column 2 shows estimates from the corresponding
first stage regression. We cluster standard errors by market.
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Table A.7: Policy Effects of Domestic and Foreign Extreme Heat by Election Year

(1) (2) (3) (4)
Dependent variable is NRA

All Major Staple Cash
Crops Crops Crops Crops

Q2 Extreme Heat (Domestic) x No Election  -0.034 -0.046 -0.049 0.015
(0.030)  (0.046)  (0.052)  (0.078)
Q3 Extreme Heat (Domestic) x No Election  -0.025 -0.064 -0.083 0.091
(0.039)  (0.066)  (0.072)  (0.095)
Q4 Extreme Heat (Domestic) x No Election  -0.103 -0.125 -0.130 0.109
(0.061)  (0.098)  (0.102)  (0.114)

Q2 Extreme Heat (Domestic) x Election -0.018 -0.075 -0.072 0.114
(0.021)  (0.036)  (0.041)  (0.141)
Q3 Extreme Heat (Domestic) x Election -0.048  -0.105  -0.101 0.068
(0.033)  (0.047)  (0.054)  (0.066)
Q4 Extreme Heat (Domestic) x Election -0.131 -0.330 -0.345 0.137

(0.072)  (0.140)  (0.152)  (0.140)
Q2 Extreme Heat (Foreign) x No Election 0.007 0.002 -0.007 -0.058
(0.031)  (0.040)  (0.040)  (0.060)
Q3 Extreme Heat (Foreign) x No Election 0.015 -0.006 -0.003 -0.112
(0.038)  (0.064)  (0.063)  (0.111)
Q4 Extreme Heat (Foreign) x No Election 0.066 0.071 0.050 -0.099
(0.046)  (0.087)  (0.082)  (0.098)

Q2 Extreme Heat (Foreign) x Election 0.054 0.091 0.108 -0.040
(0.027)  (0.040)  (0.046)  (0.062)
Q3 Extreme Heat (Foreign) x Election 0.090 0.120 0.136 0.028
(0.035)  (0.052)  (0.057)  (0.064)
Q4 Extreme Heat (Foreign) x Election 0.049 0.159 0.173 -0.070
(0.062)  (0.081)  (0.088)  (0.070)
Country-Year Fixed Effects Yes Yes Yes Yes
Crop-Year Fixed Effects Yes Yes Yes Yes
Country-Crop-Election Year Fixed Effects Yes Yes Yes Yes
R-Squared 0.831 0.792 0.796 0.904
Observations 11,351 5,852 4,965 969

This table reports the relationship between NRA and domestic and foreign extreme heat during election
and non-election years (relative to the baseline estimates in Table 4). The unit of observation is a country-
crop-year. The model is a variant of Equation 3.5 in which the variables that span g and h are interacted
with Election, an indicator that equals one in the year before or year of an election, and its complement
No FElection. The variables FElection and No FElection vary by country-year and thus are absorbed in the
corresponding fixed effect. The sample used in each specification is noted at the top of each column. We
cluster standard errors by market.
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Table A.8: Policy Effects of Extreme Heat by Central Government Debt

n @ 6B
Dependent variable is NRA

All Major Major Major

Crops Crops Crops Crops

Q2 Extreme Heat -0.042 -0.074 -0.087 -0.089

(0.036)  (0.064) (0.070) (0.071)

Q3 Extreme Heat -0.065 -0.125 -0.153 -0.145

(0.049)  (0.087)  (0.090)  (0.090)

Q4 Extreme Heat -0.164 -0.402 -0.440 -0.437

(0.065)  (0.148)  (0.152)  (0.151)

Q2 Extreme Heat x Central Govt Debt  0.040 0.002 -0.011 0.000

(0.062)  (0.101)  (0.120)  (0.126)

Q3 Extreme Heat x Central Govt Debt  0.113 0.068 0.080 0.069

(0.087)  (0.142)  (0.147)  (0.146)

Q4 Extreme Heat x Central Govt Debt  0.269 0.331 0.366 0.375

(0.100)  (0.135)  (0.153)  (0.155)
Country-Year Fixed Effects Yes Yes Yes Yes
Crop-Year Fixed Effects Yes Yes Yes Yes
Country-Crop Fixed Effects Yes Yes Yes Yes
Crop Fixed Effects x Change in Debt No No Yes No
Interactions with Change in Debt No No No Yes

R-Squared 0.815 0.790 0.798 0.798

Observations 13,544 6,260 6,020 6,020

This table reports the relationship between NRA and extreme heat exposure as a function of debt pressure.
The model is a variant of Equation 3.1 in which the variables that span g (quartiles of extreme heat, with
the first quartile omitted) are interacted with the debt-to-GDP ratio, as measured with International
Monetary Fund data. We include all two-way fixed effects in each specification. In column 3, we add
interactions of crop fixed effects with the first difference of the debt-to-GDP ratio. In column 4, we add
interactions between quartiles of extreme heat exposure and the first difference of the debt-to-GDP ratio.
The sample used in each specification is noted at the top of each column. We cluster standard errors by

market.
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Table A.9: Effects by Distributional Impacts

1) (2) (3) (4)
Dependent variable is NRA
Income Group (K) is Top Top Bottom  Bottom
Quarter Half Half Quarter
Panel A: Percentage of Crops Consumed by Income Group
Q2 Extreme Heat x % Consumed by K 0.039 0.046 -0.042 -0.057
(0.090) (0.074) (0.075) (0.072)
Q3 Extreme Heat x % Consumed by K 0.209 0.179 -0.186 -0.213
(0.109) (0.091) (0.093) (0.105)
Q4 Extreme Heat x % Consumed by K 0.106 0.093 -0.102 -0.140
(0.136)  (0.125)  (0.127)  (0.141)
Country-Year Fixed Effects Yes Yes Yes Yes
Crop-Year Fixed Effects Yes Yes Yes Yes
Country-Crop Fixed Effects Yes Yes Yes Yes
R-Squared 0.632 0.632 0.636 0.635
Observations 1,887 1,887 1,861 1,861
Panel B: Percentage of Crops Produced by Income Group
Q2 Extreme Heat x % Produced by K 0.062 0.017 -0.019 0.069
(0.130) (0.141) (0.153) (0.160)
Q3 Extreme Heat x % Produced by K 0.122 0.145 -0.158 -0.146
(0.153) (0.167) (0.181) (0.218)
Q4 Extreme Heat x % Produced by K 0.002 -0.031 0.034 0.142
(0.184) (0.200) (0.217) (0.278)
Country-Year Fixed Effects Yes Yes Yes Yes
Crop-Year Fixed Effects Yes Yes Yes Yes
Country-Crop Fixed Effects Yes Yes Yes Yes
R-Squared 0.637 0.649 0.649 0.652
Observations 1,889 1,913 1,913 1,882

This table reports how the relationship between NRA and extreme heat exposure is mediated by distri-
butional incidence. The unit of observation is a country-crop-year, and the outcome in all specifications
is NRA. The model is a variant of Equation 3.1 in which the variables that span g (quartiles of extreme
heat, with the first quartile omitted) are interacted with variables that measure the percent (by value) of
a crop that is produced or consumed by a given income group in that country, as measured by the World
Bank’s Household Impacts of Tariffs database. We report only the interaction coefficients. In Panel A,
we measure consumption shares; in Panel B, we measure production shares. Columns vary the group
for which we measure consumption or production shares. We include all two-way fixed effects in each

specification, and we cluster standard errors by market.
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Table A.10: Observed Extreme Heat Exposure

(a) Domestic Shocks (b) Foreign Shocks
Observed Exposure Observed Exposure
Baseline Q1 Q2 Q3 Q4 Baseline Q1 Q2 Q3 Q4
Q1 1,788 1,216 11 0 Q1 1,445 818 11 0
Q2 0 679 585 6 Q2 0 871 556 29
Q3 0 0 672 237 Q3 0 0 543 322
Q4 0 0 0 714 Q4 0 0 0 1,313

(c) Policy Distortions

Markets
All' Shocked Unshocked

Average Observed Distortion (|[NRA| as %) 32.10  28.27 35.13
Baseline Distortion

Increases Under Responsive Policy (% Share) 35.45  31.10 62.54

Unchanged Under Responsive Policy (% Share)  0.00 0.00 0.00

Decreases Under Responsive Policy (% Share)  64.55  68.90 37.46
Observations 5,908 2,055 3,853

Panel A tabulates baseline and observed domestic extreme heat exposure by quartile. Observed exposure
is as observed from 1991 to 2019. Shocks are given by differences between baseline and observed exposure.
Observations are country-crop-years. Panel B similarly tabulates foreign exposure. Panel C shows the
average magnitude of observed NRA, which captures policy distortions, as well as the expenditure-
weighted shares of country-crop-year markets that, relative to baseline, experience increased, unchanged,
and decreased policy distortions under responsive policy. We report effects separately for shocked markets,
which experience domestic extreme heat shocks, and for unshocked markets, which do not.
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