INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the uniikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI






THREE ESSAYS ON BARGAINING AND CHEAP TALK

Anna Ilyina

A DISSERTATION

Economics

Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the

Requirement for the Degree of Doctor of Philosophy

2001

M fE

upervisor of Dissertation

Graduate Group Chairperson



UMI Number: 3015324

®

UMI

UMI Microform 3015324

Copyright 2001 by Bell & Howell Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road
P.0O. Box 1346
Ann Arbor, Ml 48106-1346



ABSTRACT
THREE ESSAYS ON BARGAINING AND CHEAP TALK
Anna Ilyina
George Mailath
It is generally impossible to design an ex post efficient mechanism for bilateral trading
when the traders’ valuations for an object of trade are private, there are no outside
subsidies and the traders can refuse to carry out a transaction if they expect to lose
money. The first two essays focus on the problem of bilateral bargaining with multiple
objects and private valuations, where efficiency loss can occur not only due to the failure
to reach an agreement to trade when positive gains from trade exist, but also due to the
failure to fully realize potential gains from trade because of selecting an ex post
inefficient object (not the one with the largest spread between the traders’ valuations).
The problem is studied for general, as well as for the special class of trading mechanisms
(k-double auctions), and also for simple and rich trading environments and under
different assumptions about the information structure of the game. It is proposed to
distinguish between fully ex post efficient mechanisms and the mechanisms, which are ex
post efficient with respect to the object selection (given that trade occurs, the traders
always select the best object, but trade does not always occur when gains from trade
exist). In simple trading environments, the second best mechanism is always ex post
efficient with respect to the object selection. For rich trading environments, the necessary
conditions for the second-best mechanism to be ex post efficient with respect to the
object selection are formulated. When the information structure is such that the optimal
choice of the object depends on the private information of only one of the traders, it is
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always possible to design a mechanism that is ex post efficient with respect to the object

' d

selection.

The third essay develops an epistemic framework for the Sender-Receiver Cheap Talk
Games that is used to formulate sufficient epistemic conditions for credible neologism
(Farrell, 1985) and credible announcement (Matthews et al., 1991). It is shown that the
players’ knowledge of their opponents’ rationality must be bounded in order for them to

accept a message as credible neologism or as credible announcement.
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Chapter 1

Efficient Mechanisms for Bilateral
Trading with Multiple Objects

1.1 Introduction

Most market transactions involve complex negotiations between a buyer and a seller over
various attributes of the object of trade, besides its price, such as quality, technical speci-
fications and delivery date. This paper studies a buyer and a seller negotiating the terms
of trade. The buyer demands at most one good, which is selected from a set of trading
alternatives containing several indivisible objects. As an example, one can think of any
objects that belong to the same product category and have a variety of special features
(like, different models of cars or computers), in which case the seller’s reservation prices (or

the buyer’s willingness to pay) for different goods may not be the same.

In the first-best, ez post efficient, outcome of the bargaining process, the buyer and
seller always trade an object, which generates the highest total gains from trade and they
do not trade only if there are no gains from trade. Thus, the first question to be addressed
in this paper is whether an ez post efficient allocation is generally feasible in sufficiently
realistic trading environments, in which the traders have several alternatives to choose from.

The analysis of the bilateral trading problem presented in this chapter captures the
key features of a typical market environment, where the traders can refuse to carry out
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a transaction if they expect to lose money and there are no outside subsidies. In such
environment, the ex post efficient allocation is always feasible if the trading outcome is
contingent on perfect information about the traders’ preferences. However, when reservation
values are private, the problem of when to trade and which object should be traded becomes
more complicated and the exr post efficient outcome is not always feasible. Intuitively,
because of information asymmetries the traders have incentives to lie about their reservation
values in order to extract informational rents, which often creates distortions leading to the
failure to realize positive gains from trade.

The trading problem, where a buyer and a seller are bargaining over the price of a
single object for which their reservation values are private (independent random variables
distributed with positive continuous probability densities), was studied by Myerson and
Satterthwaite (1983), who showed that ez post efficiency is generally not feasible in a typical
market environment (when the intersection of the supports of the density functions is an
interval). The trading problem analyzed in this paper, where a buyer and a seller trade
only one good and their reservation values for all trading alternatives are independently and
identically distributed, is a natural generalization of the single-object bargaining problem
studied by Myerson and Satterthwaite. The issues addressed in this paper seem to be
important in a variety of contexts in the area of institutional and organizational design
including such problems as the assignment of (technology) licenses and optimal procurement

of goods and services.

Another extension of the single-object bilateral trading problem was analyzed by
McAfee (1991), who studied the possibility of implementing an ez post efficient alloca-
tion in a bilateral asymmetric information environment with continuous quantities and
each trader’s private information represented by a scalar.! His main finding was that the
implementation of ez post efficient quantity requires that ’even the worst type of one agent
will trade with the best type of the other’ (p.52, 1991). In other words, the implementation
of ez post efficient quantity is impossible without outside subsidies when the supports of the

!McAfee assumes that the seller’s possible cost functions are convex nondecreasing and parametrized by
s, the seller’s private information, and that the buyer’s possible value functions are strictly concave and
increasing and parametrized by t, the buyer’s private information.
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buyer’s value functions and the seller’s cost functions coincide (this result is essentially par-
allel to the result of Myerson and Satterthwaite). Other papers on bargaining with multiple
units and dimensions include Spulber (1988), which analyses the interim-efficient mecha-
nisms for a special case of McAfee’s model and Linhart and Radner (1988), which studies
non- Bayesian mechanisms of bilateral trading with several objects. A good overview of the
literature on multidimensional screening can be found in the paper by Rochet and Choné
(1998), which analyses an optimal pricing problem of a multiproduct monopolist facing a

diverse population of consumers.

Besides being more realistic than a single-object bargaining model, the problem of bar-
gaining with several potential objects of trade presents an opportunity to study the trade-
offs between the two types of ex post efficiency loss. When the traders are involved in
bargaining over several objects, they have to decide not only on whether to trade or not,
but also on which object should be exchanged. Therefore, the efficiency loss can occur not
only due to the failure to reach an agreement to trade when positive gains from trade exist,
but also due to the failure to fully realize potential gains from trade because of not choosing
the best possible object (i.e. the one, which maximizes the difference between the traders’
valuations, provided that the latter is positive).

When would it make sense to distinguish between these two types of ez post efficiency
loss? Here is an example of a game, where such distinction may be relevant. Consider a
buyer, who demands only one good and who sequentially faces n sellers, with each seller
offering several models of the same good. The buyer’s reservation values for all possible
trading alternatives are drawn from the same probability distribution prior to each new
interaction. The game ends when trade takes place. Although the analysis of the problem
described above is beyond the scope of the paper, intuitively it seems that in such a game
the buyer may prefer to employ a strategy that increases the probability of selecting the
best object in every interaction with a seller, conditional on the event that trade takes place.

The main distinction between the trading environments studied in this chapter and the
one in McAfee’s paper is that this model assumes that each players’ reservation values for all
potential objects of trade are independently and identically distributed (as, for example, the
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buyer’s tastes and therefore his valuations of different models of cars may be uncorrelated),
while in McAfee’s paper, the traders’ valuations of different quantities are correlated. Thus,
in contrast to the McAfee’s paper, the uncertainty in this model is multidimensional and
so are the players’ types.

Throughout this paper we will study the bilateral trading problem with two potential
objects of trade, i.e. the simplest framework that allows us to see how the presence of several
trading alternatives affects the players’ incentives to reveal their private information.

The first part of the analysis focuses on a relatively simple trading environment, where
each trader’s reservation value for every object is either high or low. It turns out that in
such environment, any incentive feasible mechanism which maximizes total ez ante expected
gains from trade always guarantees an ez post efficient object selection (although the ez post
efficiency is not always incentive feasible). It remains unclear, however, whether the same
property obtains in more general environments, for example, where the players’ valuations
are drawn from the probability distributions defined on the sets containing an arbitrary
finite number of elements. For such trading environments, the necessary conditions for
a second-best mechanism to be er post efficient with respect to the object selection are
presented in the last section of the chapter. |

The plan of the chapter is as follows. Section 1.2 introduces notation and definitions.
Section 1.3 presents the characterization of the first- and second-best mechanisms for bilat-
eral trading with two potential objects of trade in a simple trading environment. Section
1.4 analyses the possibility of designing a second-best mechanism that guarantees the ez
post efficient object selection in more general (rich) environments.

1.2 Notation and Definitions

Let Q = {go,q1,q2} denote the set of all trading alternatives, where qo is the no-trade
option and ¢;,q2 are two distinctly different indivisible objects. The traders’ reservation



values for all potential objects of trade are independent random variables. Each trader’s
private information is represented by a vector, where V = (Vp,V4,V3) and C = (Co,C,,Ca)
denote the buyer’s type and the seller’s type, respectively. The traders’ reservation values
for the no-trade option are type independent and normalized to zero and for any i € {1,2},
Vi, C; are distributed on the interval [0, 1].

The realizations of the traders’ reservation values for both potential objects of trade
¢ and gz are their private information. The joint probability distribution F (V,C), where
2 2
F(V,C) = (_1'[1 FB (V.-)) ( 1 F$ (C.-)), is commonly known.2
= =

We will assume that the traders are involved in some bargaining process, which can be
modeled as an incomplete information game, where players choose their actions conditional
on their private information. The outcome of this Bayesian game is a vector of probabilities
of selecting qo, @ or g2 and a vector of the corresponding transfer payments. As it follows
from the Revelation Principle, in order to characterize an optimal trading procedure we
can focus (without loss of generality) on the class of direct trading mechanisms where an
outcome is directly assigned to every possible list of types and the traders find it optimal
to reveal their types truthfully.3

Let P; be the price of ¢; and let m; be the probability that ¢; is selected. Then, for
any % € {0,1,2}, P; is defined as a mapping from the players’ type space into the set of all
positive real numbers, B; : [0,1]? x [0,1]2> — Ry, and =; is defined as a mapping from the
type space into the interval [0,1], m; : [0,1]% x [0,1]* — [0,1] . We will assume that for any
(v,C) € 0,112 x [0,1}?, gjon’,- (V,C) =1, which implies that only one object can be traded.

Suppose that both traders are risk neutral. The type V buyer’s expected utility defined
as a function of his report V, given the mechanism (P, %), is as follows*

EUS (¥ |V, (P, ) = Eo {g (v-m(e¥)-2(c7))}

2F, f denote the c.d.f and p.d.f , respectively.

3For a comprehensive discussion of Revelation Principle and direct trading mechanisms, see Fudenberg
and Tirole (1991).

“Ev and Ec denote the expectation operators, where expectation is taken over the set of all possible
types of the buyer and seller, respectively.




The type C seller’s expected utility defined as a function of his report C, given the

mechanism (P, ), is
- 2 ~ o,
EUS (C IC’ (P,‘I_I’)) = FEy { Z (R (C, V) —-Ci-m (C,V))}
=0

The traders’ reports can take any values in the interval [0,1].

We will also assume that traders can refuse to participate in the direct revelation game
when their interim expected gains from trade are negative (interim individual rationality).

Definition 1 A direct trading mechanism (P, %) is Bayesian incentive compatible if
for any C € [0,1,C" € [0, 1),

EU®(C |C,(P,®) ) 2 EU® (C'|C, (P, 7)) (ICS)
and for any V € [0,1]%,V' € [0,1)2,
EU® (V |V,(P,7)) 2 EBU® (V'|V,(P,7)) (1c®8)
The trading mechanism is individually rational if for any C € [0,1]% , V € [0,1]?,
EUS (C |C, (P,7)) 20 (IR°)

EUB (v |v,(P,7)) 20 (IRB)

Whenever the mechanism is both incentive compatible and individually rational we will
refer to it as incentive feasible.

When the players are bargaining over several trading alternatives, one can distinguish
between two types of ez post efficiency loss: (1) the traders can fail to reach an agreement to
trade when positive gains from trade exist; and (2) when trade occurs, the traders can fail
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to realize marimal potential gains from trade by not choosing an object which maximizes
the difference between the buyer’s valuation and the seller’s cost.

Thus, we can distinguish between
o fully ez post efficient (the first-best) trading mechanisms;

e trading mechanisms, which are ez post efficient with respect to the object selection
(only), i.e. when trade takes place, the object selection is always ez post efficient, but
the players do not always trade when positive gains from trade exist; and

¢ trading mechanisms which allow for both types of ez post efficiency loss.

The mechanisms described above are formally introduced in Definitions 2 and 3 below.

Definition 2 A trading mechanism is ex post efficient with respect to the object
selection if for any i,5 € {0,1,2}, m; (V,C) > 0 implies that V; — C; > V; — C;.

Full ex post efficiency requires that the players always trade when there are positive
gains from trade and that they always choose an ez post efficient object.

Definition 3 A direct trading mechanism (P,T) is ex post efficient (the first-best),
whenever it is ez post efficient with respect to the object selection and

1, if ;< C; forallie {1,2
m(V,C) = i forallie (1,2}
0, if V; 2 C; for some i€ {1,2}
When it is not possible to ensure that every agent’s type always makes the best trade,
the next best option is to design a trading mechanism, which maximizes the total expected
gains from trade.



Let G (P,) denote the total ez ante expected gains from trade (sum of the buyer’s
and seller’s ez ante expected utilities) that could be achieved through a direct trading
mechanism (P, 7). From our definition of the state-contingent prices and utilities, it follows
that the balanced budget condition is automatically satisfied and G does not depend on the
transfer payments.

Definition 4 (P, %) is a second-best mechanism whenever (P,¥) =argmaz {G (P,7)},
P
subject to all incentive compatibility and individual rationality constraints.

In the next section, we will address the question of whether the second-best mechanism
can be ez post efficient with respect to the object selection in a simple trading environment,
where buyer’s (seller’s) valuation for each object is either high or low.

1.3 Simple Trading Environments

Consider a simple trading environment, where the seller’s cost as well as the buyer’s valu-
ation for an object i, where i € {1,2}, can take one of the two values: high or low.

We will start with a brief overview of the characterization of incentive feasible mecha-
nisms for bargaining with single object (due to Matsuo, 1989). We will use the single object
case as a base of reference for the analysis of the bargaining problem with two objects.

1.3.1 Bilateral Trading with Single Object

Suppose there is only one potential object of trade owned by the seller. And suppose that
the seller’s cost for this object, C, and the buyer’s valuation, V, are independent random
variables such that V is distributed on the set {V#,V2} and C is distributed on the set
{cA, CL}. The players’ beliefs are given by pr{c=C" } =cand Pr{v= VE} =g,
0<e<1,0<pu<l.



The problem of designing an incentive feasible mechanism for negotiating a trade in
this environment was analyzed by Matsuo (1989). There are four possible configurations of
the traders’ reservation values that have to be considered:

(&) VH > VL > CH# > CE, where mutually beneficial trade is always possible;

(ii) CE > VH > VL > CF, where mutually beneficial trade is not possible for the
seller’s high type;

(#ii) VH > CH > CF > VL, where mutually beneficial trade is not possible for the
buyer’s low type;

(iv) VH > C# > VL > C%, where mutually beneficial trade is not always possible for
both players.

Note, that only in (iv) the problem of when to trade is non-trivial, in the sense that
the optimal decision depends on both players’ private information. So, it is not surprising
that (iv) is the only configuration of parameter values for which the first-best mechanism
is not always incentive feasible. In (i), (é¢) or (iii) , the first-best mechanism is always (for
any parameter values) incentive feasible. One can verify that in (i) — (iii) the first-best
mechanism is to trade at every state where the valuation reported by the buyer is greater
than or equal to the cost reported by the seller and not to trade, otherwise. An optimal
transfer payment at all states where trade occurs, p, must be such that in (i) CH <p < V£,
in (#) CL < p < VL and in (iii) C¥ < p < VH and at the state where trade does not
occur, the transfer payment is equal to zero. In (iv), the mechanism design problem is more
complicated and will be discussed below in some detail.

Suppose that VH > CH > VL > CL. The mechanism for bilateral trading presented in
Table 1 specifies the trading decision and the transfer payment for every pair of the players’
reports. One can verify that such mechanism is ez post efficient whenever it satisfies all
incentive compatibility and individual rationality conditions.



Table 1

Seller’s reports
CL CH
Buyer's
VH | p2, trade occurs | p*; trade occurs
reports

VL | p3, trade occurs | p*; (no trade)

Matsuo’s main result, restated in Theorem 5, is that when trade is not always possible,
there is a region of parameter values (beliefs and reservation values), where the first-best

mechanism is not incentive feasible.

Theorem 5 Suppose that VH > CH > VL > CE. Then, Bayesian incentive compatible,
individually rational and ez post efficient mechanism exists if and only if

(l—y)eVH+(1—e)V[‘Z(I—p)CH+p.(1-e)CL (1.1)

The interpretation of (1.1) becomes more transparent if we rewrite it as follows:

a —p)e(V” —C”) +(1 -e)y(VL —C[') +(1-g)(1-p) (VH —CL) > 12)
1-p)(-e) (C¥ -CE) +(1-p) (1 —¢) (VH - VE) '

Inequality (1.2) tells us that the first~-best mechanism is incentive feasible if and only if
the total ez ante expected gains from trade (thé Lh.s. of (1.2)) exceed the total expected
informational rents accruing to the traders (the r.h.s. of (1.2)). Intuitively, the expression
in the r.h.s. of (1.2) can be referred to as informational rents because, whenever the true
state is (VH,CL), the difference (C¥ — C*) is the least the type C¥ can gain (under
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the worst possible price scheme from the seller’s point of view)® by pretending that his
type is C¥ and the difference (VH—VL) is the least the type VZ can gain by pretending
that his type is VZ. Clearly, the higher the probability that the buyer’s valuation is VEH,
the stronger the seller’s incentives to lie to the designer. And, similarly, the higher the
probability that the seller’s cost is CL, the stronger the buyer’s incentives to misrepresent

his private information.

Let’s focus on the region of parameter values where ez post efficiency is not incentive
feasible. Consider the problem of designing a trading mechanism, which maximizes total ez
ante expected gains from trade within the incentive feasible region.

Assuming that 0 < m(V,C) < 1 for any realization (V,C), such that V 2 C, the
inequality (1.1) can be rewritten as follows:

(t-m)(e(V¥-C) - (c# -ct))-= (v#,cH)+
(1-e) (u(v¥-ct) - (V¥ - vE))-w (VECE) + (1.3)
(1-e)(1-p) (Vv -C*) ~1r(V”,CL) >0

Because (1.3) does not depend on the transfer payments, the characterization of the
second-best trading mechanism reduces to solving a simple linear programming (LP) prob-
lem, where we need to find the state contingent probabilities of trade that maximize the
total ex ante expected gains from trade within the incentive feasible region defined by (1.3)
and the non-negativity constraints.

Thus, for any second-best mechanism (P*,#*), 7" is a solution of the following LP

max {(V# - C#) -m (vE,cH) + (VE-CE)-x (VE,CE) + (VE -ct)-x(v4,ct)}

(1.3)

subject to
0 <7 (V,C) <1 for any (V,C)

5The exact gain from such deviation would be equal to the price differential (p* —p%) .
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For any second best mechanism, the probability of trade at state (VH ,CL) is always
equal to one, the probabilities of trade at states (VH ,cH ) , (VL, CL) may be lower than

one depending on parameter values.®

1.3.2 Bilateral Trading with Two Objects: The First-Best Mechanisms

Suppose that there are two potential objects of trade, g1 and g2, which are initially owned
by the seller. The traders’ reservation values for every potential object of trade are drawn
from the same joint probability distribution defined on the set {VH ,VL,CH, C"} . For any
ie{1,2}, Pr{c.- =CH} =¢, Pr{c,- =Ct}=(1-¢),0<e<land Pr{V; =Vt =y,
Pt{V.-=VH} =(l-p),0<p<l

In what follows we will focus on two configurations of the players’ reservation values,
where mutually beneficial trade is always possible and where the seller’s high cost exceeds
the buyer’s low value. 7

First, consider the most simple case, where mutually beneficial trade is possible for any
realization of the players’ types:

[vE > vE>cH > CE|

When VH — CH < VL — CE, the low-cost object is always the best trade. The relevant
price and object-selection schedule is shown in Table 2.

SFor a complete characterization of the solution of the LP program, see the Appendix.
"The analysis of other configurations of the traders’ reservation values is not presented here, as it does
not offer any new insights into the problem.
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Table 2

Seller’s reports

@H’ CL) (CL’ CH) (CL’ CL) (CH’ CH)
(vE,vE) | filel | Filal | Pl Vel | Yo Vel
(vE,vE) |[p%Me]] |sfilml | o5l 7'l
(vEVvE) [ 5la] | [P%a]] | 2%e] s (@]
(vEVE) (55l | Pln]l [ slalvied | 9% @] Viel

In Table 2, each player’s report is a vector, with the first element being his reservation

Buyer’s

reports

value for q; and the second element being his reservation value for g;. For every pair of
reports (V,C), the designer specifies an outcome (p; [q]) , where [g] is the object of trade
and p is its price. When the object selection is denoted [g;], it means that =; (V,C) =1
and when the object selection is denoted [;] V [g2], it means that for any i € {1,2},
m(V,C)€0,1], wlmmi‘_z::1 i (V,C) =18

When V2 — CH > VL — CL, the high-value object is always the best trade. The rele-

vant price and object-selection schedule is shown in Table 3. ?
Table 3

Seller’s reports
for.0) | (e[ fere]_[(o".cn)
(VEVvE) | Blel | pSlal | Pl Vi | philml V(e
(vEvE) | [PSlal| | P5lal | #%slal p’;[m]
(vEvE) [ 2ilel | [pSlml] | o5l ;2]
(VEVE) | ilal | #hlm) | p%lmlVied | o4 (@] Ve

Buyer’s

reports

@] V [g2] will be interpreted as x; = 73 = 1 in the derivation of the incentive feasibilility condition.

®Note that it is possible to focus on the price schedule with only ten (not sixteen) distinctly different prices
(without loss of generality) because both players’ reservation values for the two objects are independently
and identically distributed. Since the conditional probability of the seller's type being either (C¥,CE)
or (C*,C*¥), given that his reservation values for the two objects are different, is , the two cases are
symmetric. Same is true for the buyer’s types (VH, V%) or (VE,VH).
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Note that at states ( (VZ,V%), (C¥,CT)) and ((ct.c®),(V*,VH)), where the
seller’s high-cost realization coincides with the buyer’s high-value realization, it is optimal
to trade the low-value-low-cost object whenever VE —CH < VL —C” (as in Table (2)) and
it is optimal to trade the high-value-high-cost object whenever V¥ —C# > VI — CE (asin
Table (3)). Note, that at these two states the optimal object selection is the same as the
one preferred by the trader with the largest difference between the reservation values for ¢;
and qo.

When VH > VE > CH > CL, the Bayesian incentive compatible, individually rational
and ez post efficient mechanisms ezist for any beliefs and reservation values. The argument
goes as follows. Clearly, the first-best mechanism has to be such that pl=pP=pP=
pt, p® = p7, p° = pP, since otherwise either the buyer’s types (VH ,VH) , (V", VL) or
the seller’s types (C“Ir ,CH ) , (C",CL) would prefer to imitate one another. Also, note
that although p!, p°, p® do not have to be equal, uniform pricing mechanism is always
optimal. Notice, that whenever the price is the same at all states, the only way any of the
traders can gain anything by misrepresenting his type is if he can induce the designer to
choose a different object of trade. However, none of the traders can unilaterally affect the
object selection at any state where any of them would prefer to do so. For instance, when
VH _CH < VL ~CL, the buyer would prefer to trade the high-value-high-cost object at the
state ((C¥,C*), (VH,V%)), but he cannot induce his preferred choice by mistepresenting
his type because the mechanism designer only needs to know the seller’s type to
be able to make an ex post efficient object selection.

Next, suppose that the trade is not always possible, i.e.

[vH > cH > VE > CE|

Here, the mechanism design problem is more complicated. For VA —CH < VL —CL,
the relevant price and object selection schedule is shown in Table 4.
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Table 4

Seller’s reports

(CI{, CL) (CL’ CH) (CL’ CL) (CH’ CH)
(vEvE) 1 iflel | filnl | pilml Vel | 2Ylal Vel
(vE,vE) [|p% ]| |P55la] | #%lal ;o)
(VEVE) | %Ml | 2% (] | 9% lel ?'; lao)
(VvEVE) |flel  [Phla] | P%ila] Vgl | B% no trade

Buyer’s

reports

The incentives of the buyers’ types (V” ,vi ), (V” ,VL), (VL,VH) (and also those
of the seller’s types (C",C"), (C” ,C['), (C",CH ) ) to imitate each other can always
be eliminated by selecting the ’right’ prices (for some parameter values, there exists a
particularly simple first-best mechanism, such that p? = p° = p® = p® = p'0, p! = p” and
p® = p®). However, the buyer’s types (V” JVH ), (V” ,V"), (VL,VH ) may still want to
imitate (VL,V") and the seller’s types (CL,CL), (CH , CL), (CL,C” ) may still want to
imitate (C” ,CH ) for certain configurations of the traders’ reservation values.

Proposition 6 states the incentive feasibility conditions for all possible configurations
of the traders’ reservation values when V¥ > CH > VL > CL.

Proposition 6 Suppose that VH > CH > VL > CL and VH — CH < VL — CL. Then,
Bayesian incentive compatible, individually rational and ez post efficient trading mechanisms
ezist if and only if

(A=) +p0-m -] VF+[1-) - p(-p-ef] VE2

[(1-p) —e(l—e) (1= )] CH + [ (1 -€?) +e(1 —€) (1 - p?)] CE -4

Suppose that VE > CH > VL > CL and VH — CH > VL — CL. Then, Bayesian incentive
compatible, individually rational and ex post efficient trading mechanisms ezist if and only
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(-2 +pl-p) (- VE+[1-) —pl-m (@ -)]VE2

(1.5)
[(1-1®) —c-e) -] CF + [ (1~ +e(1-a) A -] C*

Suppose that VH > CH > VE > CE and VH - CH = VL — CL. Then, Bayesian incentive
compatible, individually rational and ez post efficient trading mechanisms ezist if and only
if

(- +pl-pA-VE+[1-) -p1-mQ-e)VE2

1.6
[(1-p?) —e(l-e) (1 — W] CH + 12 (1 —*) +e(1 —e) (1 - p)] C* 0

Proof: see Appendix.
In order to understand how the presence of the second potential object of trade affects

the players’ incentives to reveal their private information, let's take a closer look at the case
where the low-cost object is always the best trade. Let’s rewrite (1.4) as follows:

(1— @) eVE+ (1-) VE|+ p(1-p) (1 -)* (VF - VE) 2
(1—p?) CH + 2 (1-€2) CE]-e(1-€) (1 - u?) (CF - CF)

(1.7)

Recall that in the single-object case, the first-best mechanism is incentive feasible if
and only if

(1-peVE+(1-g)VE>

(1-p)CH +p(1~e)CE 8

The first two terms on both sides of the inequalities (1.7) and (1.8) look very similar,
except that in (1.7) we have the probability of having at least one high-value object out
of the two potential objects of trade, (1 — u?), instead of the probability of a high value
realization for one potential object of trade, (1 — p) (as in (1.8)).
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The second terms in each side of (1.7) have no analogues in the incentive feasibility
condition for the single object bargaining problem and, therefore, require some explana-
tion. Consider the buyer’s type (VEr , V") reporting problem. If type (VH . V") reports
(VL, V), then, given that the seller’s type is (CL, C*) , there is a fifty percent chance that
he will end up trading the low-value object. So, by misrepresenting his type, the buyer can
(a) gain by paying a lower price for the selected object of trade, and (b) lose by not trading
his preferred (high-value) object. In the latter case, the buyer’s type (VH ,VL) expected
utility loss would be equal to Q—}‘ﬁ (V” - VL). Therefore, x (1 — u) (1 —¢)? (VH - V")
is a measure of the buyer’s expected loss associated with not trading his preferred object.

What is interesting here is that because the mechanism designer can discourage types
(VH ,VH ) and (CL,CL) from reporting (VEr ,VL) and (CH ,CL), respectively, by setting
the 'right’ prices, the expected informational rents do not depend on whether (VEr -cH )
is higher, lower or equal to (V" - C’*).

Let G denote the total ez ante expected gains from trade in the first-best mechanism
for the case when V# — CH > VL — CL| let G; denote the total ez ante expected gains
from trade in the first-best mechanism for the case when V# — CH < VL — CL, and let Gs
denote the total ez ante expected gains from trade in the first-best mechanism for the case

when V# — CH =yL — CL10

One can verify that the inequalities (1.4),(1.5),(1.6) can be rewritten as follows:
Giz(1-p)(1-g)(C¥-Ct) + (1-) (1-n) (v¥ -vE) (1.9)

where j € {1,2,3}. The Lh.s. of (1.9) represents the total ez ante expected gains from
trade and the r.h.s. of (1.9) represents the total informational rents (same expression for

19Eor instance,
G2

V- [a-w*(1-)+2m-p)(1-¢)]
+(VH-c*)(1-p) e+ (VE-CF) [p* (1-¢%) +2u(1-p)e(l—¢)]
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all three configurations of parameter values). Thus, the interpretation of the incentive
feasibility condition in the two-object case is essentially the same as in the single
object case i.e. the total ex ante expected gains from trade should exceed the
total informational rents.

Note that when we add the second potential object of trade, the probability of trade,
the total ez ante expected gains from trade and the expected informational rents become
larger, compared to the single-object bargaining problem.

When trade is not always possible in bilateral bargaining with one good, a more accurate
information towards VH or CL may be detrimental to ez post efficiency. Same is true here,
e.g. higher probability that the seller’s type is (C",CL) gives stronger incentives to the
buyer’s types (VH ,VH ) and (VH ,VL) to report (VL,VL) .

1.3.3 Bilateral Trading with Two Objects: The Second-Best Mechanisms

Consider the configuration of reservation values ( V# > CH# > V% > Ct), such that trade
is not always possible, and suppose that the traders’ beliefs and reservation values are such

that the first-best mechanism is not incentive feasible.

Without loss of generality, we can assume that the probability of trade is equal to one
at any state, where the buyer has high valuation for at least one object or where the seller
has low cost for at least one object (because there is no uncertainty about the existence of
gains from trade at any such state).

Let 7 denote the probability of trade at states ((CH ,cH ) , (VH ,VH )), ((CH ,cl ),
(VH.VL)) and ((cﬁ,cff) ,(VE£,VH)) (we can assume that it is the same at all three
states without loss of generality). At any of these states, the players’ reservation values for
the ez post efficient object of trade are V4 ,CH.

Let n3 denote the probability of trade at states ((VL,VL) , (CE,CE)), ((V", V") ,
(CH,C[‘)) and ((V", VL) , (CL,CH)) (we can assume that it is the same at all three
states without loss of generality). At any of these states, the players’ reservation values for
the ez post efficient object of trade are V£,CEL.
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Let £ denote the probability of trading the ez post efficient object at the states
((CH,CL) , (VH,VL)), ((VL,VH) , (CL'CH)).II

The relevant price and object-selection schedule is shown in Table 512.

Table 5

Seller reports (CH , CL)
(ZEIE

trade ¢; with prob. (1 —¢§)
trade gp with prob. £
(VEvH) | p% )

(VL,VL) 2 trade ¢g» with prob. 74

Buyer'’s (VH, VL) %

reports

trade qy with prob. 0

Seller reports (C[',C'H )
(VH,vE) | 2% [m)

(VvE,VvE) | %l

trade q; with prob. £
trade go with prob. (1 —¢§)
. trade ¢y with prob. 74

" trade g2 with prob. 0

Buyer’s
reports (VL,VH) v

(v

Here, symmetry is assumed without loss of generality.

2Note that we don’t need to specify a transfer payment for the ez post inefficient object that can be
traded at states ((C" C") (vH, V")) ((V" V") (C*,C*H)) with probability (1 — £), because it does
not affect the derivation of the incentive feasibility condition. Same is true for other states where ex post
ineficient object can be traded with positive probability.
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Seller reports (CL,CS
(VE,VE) | i) V (@]

Buyer's | (VH,VE) | #ilai]

reports | (VE,VH) | 9% (g]

; 1
(VL,VL) A trade q; with prob. 373

trade gz with prob. 3ms

Seller reports (CH ,CH )
trade g; with prob. im

(v#,vE) | o4
trade g with prob. im

ps

Buyer’s (VH,VL) ,. trade @ with prob. m
reports trade g2 with prob. 0

trade ¢ with prob. 0
(VL, VH ) pl; Q p
trade g2 with prob. m

(VL,VL) p*; (no trade)

The conditional probability of trading the ez post efficient object, given that trade
oceurs, at all states where the buyer’s type is (V", V") and at all states where the seller’s
type is (C” ,CH ) , is equal to one, because the buyer’s type (V” ,VH ) and the seller’s
type (CL,C") incentive problems can not be mitigated by allowing the ez post inefficient
object to be sometimes traded at these states.

Lowering £ below 1 would make sense only if the mechanism designer wanted to make
honest reporting more rewarding for the type (V” , VL) . Notice, that the buyer’s type
(VH , VL) would actually prefer to trade the e post inefficient object at state ((VH , VL),
(CH ,CL)). However, lower £ weakens the seller’s type (CH , CL) incentives to report
truthfully. Thus, in order to determine the net impact of £ on both traders’ incentives, we
have to take a closer look at the incentive feasibility condition.

When VE > CH > VL > CL and VH — CH < VL — CL, the second-best mechanism



(n%,m3,€°) is a solution of the following LP problem:

max {G (m,m.¢)}
8L
subject to
G (mom,8) 2 m (1= ) (1— ) (CF = C¥) +ms (1) (1= ) (V - V¥)
0<sm<1
0<ms<1
0<f<1

where

Gmme = (VF-CH)(1-p*(1-€)+w-n(-e)
+(vH -cH) (m (1-w)E+2w1-pmel-e)Q ~-9)

+(V[‘ —C"‘) (muz (1 —52) +2p(1—p)e(1—e)§)

Because VH — CH < VL — CL, the objective function is strictly increasing in £ and
lowering £ shifts the boundary of the incentive feasibility region inward. So, in order to

make honest reporting incentive feasible, the mechanism designer has to lower either m or

3.

Proposition 7 summarizes the argument presented above.

Proposition 7 Suppose that VHE > CH > VL > CL. The second-best trading mechanism
is always ez post efficient with respect to the object selection.

~ Notethat when VH_CH £ yL_CL, the player with smaller difference between reserva-

" tion values always prefars to trade the ez post inefficient object at states ((cB.c*),(v5, vE)),
g ((Vn Vs)z (C‘ CH)) while the player with larger difference always prefers to trade the

ex post eﬁment oblect- The:dote, decreamng the probability of trading ez post efficient



object only reduces total expected gains from trade and, at the same time, weakens the
players’ incentives to report truthfully.

Thus, in simple trading environments, where each player’s reservation values for both
potential objects of trade are independently and identically distributed, any second-best
mechanism is ex post efficient with respect to the object selection.!® The next logical
question is under what conditions (if any) this property is generalizable.

1.4 Rich Trading Environments with Finite Types

Consider a trading environment, where the traders’ reservation values are drawn from the
discrete probability distributions defined on the set {0,...,1}. First, we will look at the
single object case.

1.4.1 Bilateral Trading with Single Object: Incentive Feasible Mecha-
nisms

Suppose that there is one potential object of trade. And suppose that the buyer’s valuation

for this object is drawn from the discrete probability distribution FB (V) defined on the

set {0,...,1} and the seller’s cost is drawn from the discrete probability distribution FS (C)
defined on the set {0,...,1}, where 0 < f5(C) <1,0< fB (V) < L.

Consider the following configuration of the players’ reservation values. Suppose that for
every pair of types V®),C® of the same rank k, where k € N, C*+1) > V(¥ > C(*) (which
means that gains from trade are positive whenever the buyer’s type is at least of the same
rank as the seller’s type).!4 Let A y(+1) _ (k) and Bery = c® — ck-1), To
keep things simple, let’s assume that A(vh) = A(ci) = A, for any k € N . The generalized
incentive feasibility condition for the discrete type sets is presented in Proposition 8.

13This result may not hold if we change our assumptions about the distributions of the players’ reservation
values.
14This assumption is needed to make sure that the players’ valuation sets overlap properly.
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Proposition 8 For any incentive feasible mechanism (P,T), such that for any (V,C) €
{o,...,1} x{0,...,1},
0<w(V,C) <1, ifV2C
{ 7 (V,C) =0, otherwise

the following has to be true:

11 1-FB(V S (C -
ZZ((V‘A(_F*‘(%&)‘(C*“AF—f(-sC(—C,ﬂ))w(V,C)fS(C)fB(V)zo

V=0C=0

Proof: see Appendix.

We will refer to the expression (V - A!‘_‘!‘;;V(_)V_)Z)as the buyer’s 'virtual valuation’ and
we will refer to the expression (C +AE j CE)A ) as the seller’s 'virtual cost’.}® Proposition
8 states that the direct mechanism for bilateral trading is incentive feasible if and only if
the total expected gains from trade for the players’ ’virtual types’ are non-negative. The

incentive feasibility condition can be rewritten as follows:

1 1
‘gocgo(V—C)W(K@ e B (L.10)

1 1 1 1
> AY Y (1-FEW) FO)rW,0)+A Y Y FS(C-A)f2 (V) (V,C)
V=0C=0

V=0C=0

The Lh.s of (1.10) is the total ez ante expected gains from trade and the r.h.s. of (1.10)
is the total informational rents. Note, that the structure of informational rents is essentially
the same as in the simple trading environment. The first term in the r.hs of (1.10) is a

15Indeed, the expressions described above are the discrete approximations of the ’virtual’ reservation
values introduced by Myerson and Satterthwaite in their model of bilateral bargaining over the price
of a single object with the continuum of types, (Myerson and Satterthwaite,1983). Assuming that the
buyer’s valuation and the seller’s cost are distributed with strictly positive densities g (V) and ¢° (C),

respectively, the buyer’s "virtual valuation’ is equal to (V—‘—;ﬁ%,,m) and the seller’s 'virtual cost’ is equal

to (c+§§'{§,).



measure of expected gains from all possible downward deviations from the true type for
all possible types of the buyer, and the second term in the r.h.s. of (1.10) is a measure of
expected gains from all possible upward deviations from the true type for all types of the
seller.

1.4.2 Bilateral Trading Model with Two Objects: Incentive Feasible Mech-

anisms

Suppose that there are two potential objects of trade and that the buyer’s valuation for
every object g; is drawn from the discrete probability distribution F2 (V;) defined on the set
{0,...,1}, where 0 < fB(V;) < 1,i € {1,2} . The seller’s cost for every g is drawn from the
discrete probability distribution FS (C;) defined on {0, ...,1}, where 0 < f5(C;) < 1,i €
{1,2} . We will assume that for every pair of V), C(¥) of the same rank k, where k € N,
C+D) > y(B) > C®) and for any k € N, VD — (B = Ck) — Clk-1) = A,

What are the necessary conditions for a second-best mechanism to be ez post efficient

with respect to the object selection?

Define r? to be a mapping from the buyer’s type space into the real line, 72 : {0, ...,1} x
{0,...,1} = R, fori € {1,2}, and, similarly, let 7§ be a mapping from the seller’s type space
into the real line, 7¥ : {0,...,1} x {0, ...,1} — R, fori € {1,2}.

And suppose that given an incentive feasible mechanism (P, ), there exist 5,75, for
i € {1,2}, such that the incentive feasibility condition can be represented as follows (which
is essentially parallel to the incentive feasibility condition for the single object trading
problem described in Proposition 8):

2
IHHI [(FB ) -rf (@) m .0 £ (V)ES(C) 20 (L11)

V i=l

where £5 (C) = f5(C1) f5(C2) , £8 (V) = fB (V1) fB (V2) and 7, (V,C) is the probability
of trading object g; at state (V,C).

We can think of 72 (V) as the type V buyer’s ’virtual valuation’ for object ¢ and,
similarly, we can think of ¥ (C) as the type C seller’s 'virtual cost’ of object ¢;. Here,
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we are assuming that it is possible to eliminate prices from the optimization problem by
collapsing all IC and IR constraints into one inequality which contains only state-contingent
probabilities of trading different objects.

Then, any incentive feasible trading mechanism (P*,7*), which maximizes total ez
ante expected gains from trade, must be such that #* is a solution of the following LP

problem:

maz [ZE [(Vi — C1)m (V,C) + (V2 — Co) 2 (V, C)] £2 (V) £° (C')]
v

C
subject to
2
YT [P - ©)m .0 N (0) 20 (1.12)
C V i=l
m (V,C) +m(V,C) < 1 (1.13)
mWV,C) 2 0
m(V,C) 2 0

for any (V,C) € {0, ., 1}2 x {0, w1}?

Let A denote the dual variable associated with (1.12) and Ay, denote the dual variable
associated with (1.13) . Then, we can write the dual LP problem as follows:

min [—Ao x 0+ ZZA(V'C)]
A v C

subject to

(P -S @)W C) +Mvg 2 -CDEEWESE) (119)
2o (B V) -5 (@) BN (O +iwa 2 a-CIEWEF(C) (115)
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for any (V,C) € {0,-..1}* x {0,.., 1}

Let’s rewrite (1.14) and (1.15) as

(=) +2% (FF ) - (@) 2 (M () (1.16)
Moy 2 ((B-C)+20(f (V) -5 (0))} 2 (VE5(C) (1.17)

=
8
v

Gl Ny = | s, {((4 -G+ (2 )72 @) 2 V)65 @}.0}.

Suppose that (Vi = C1) + o (f (V) — 7§ (©) > (2= C) + Yo (r (V) =75 (0)) -
Then, at the optimum, (1.17) must be satisfied as strict inequality and the corresponding
dual variable 73 (V,C) = 0. Otherwise, it must be the case that (1.16) is satisfied as strict
inequality and the corresponding dual variable m; (V,C) = 0. Note that if the 'virtual’
reservation values are equal to the actual reservation values, ez post inefficient object is

never traded.

Let v; (V) and ¢; (C) denote the buyer’s type V and seller’s type C expected infor-
mational rents, respectively, which arise because of the traders’ incentives to misrepresent

their true valuations for object g;, i.e.
wu (V) =V - (V)

and

«(C)=rf(C) -G

Proposition 9 summarizes the analysis presented above.
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Proposition 9 Consider a state (V,C), where V; > C;,V; > C; and V; —Cj; > V; - C; for
i,j € {1,2} (¢ gj is the ez post efficient object) and a second-best mechanism (P*,7*),
such that 7* solves the LP problem described above. Then, ! (V,C) =0, whenever

OO -0+ -a0) < (522 (G-C)-M-C) @
Thus, the ex post inefficient object ¢; is never traded in a second-best mechanism
(P*,®*) only if the difference between the gains from trading g; and the gains from trading ¢
is large enough to offset the sum of the differences between buyer’s and seller’s informational
rents associated with trading ¢; and ¢;. An immediate and intuitively obvious implication
of Proposition 9 is that if each trader’s 'virtual valuations’ for both objects differ
from his true reservation values by equal amounts, the outcome of the bargaining
process is always ex post efficient with respect to the object selection.

Corollary 10 A second-best mechanism (P*,%") is ez post efficient with respect to the
object selection if and only if V; — C; > V; — C; implies (1.18).

Note, that since the r.h.s. of (1.18) is positive (by construction), in order to show that
the mechanism (P*,#*) is ez post efficient with respect to the object selection, it would be
sufficient to show that the Lh.s. of (1.18) is non-positive for any (V,C), such that V; -C; >
V; — C;. However, the latter cannot be easily demonstrated without explicitly deriving
the incentive feasibility condition. The analysis of a special class of trading mechanisms,
k-double auctions, presented in the next chapter shows that the difference between the
buyer’s valuations for the high and low value objects always exceeds the difference between
his bids for the high and low value object for all types of the buyer and the same is true for
the seller. The latter implies that k-double auction mechanisms are unlikely to be ex post
efficient with respect to the object selection in sufficiently rich trading environments.
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APPENDIX
Proposition A1

Suppose that VE > CH > VL > CL and the first-best mechanism is not incentive
feasible. Let C? = XEVH + (1 XH) CE andlet VE = (1 - AL) VE + ALCE, where
0 < M < 1,0 < AL < 1. Then, for any second-best mechanism (P*,7*) the following
has to be true:

. L) _ H ~HY _ . L\ _ (1-p)(vE—CH
@) = (VE,CE) = 1, = (VH,CH) = 1, = (VE,CF) = eorvmstymrt=c
whenever (p—e) AL > pAH — )L,
ey . 1-e)(vE-CE -
@) 7 (V4,0%) = 1, v (V¥,C¥) = (omageyaony * (VA.CF) = 1,
whenever (u — &) \IAL < pAH — XL,
(i4) whenever (u — €) \IAL = pAH — )L | the optimum can be any point on the interval
connecting the points in (i) and (iz).
Proof.
For any second-best mechanism (P*,7*), ®* is a solution of the following LP problem:

w(VE,CH) x (VH -CH) +
max § 7 (V",C") x (V" -C") +
w (VH,CE) x (VA - ct)
subject to
w (VE,CH) x (1 - p) (e (V¥ - CF) - (¥ - Ct)) +
m(VE,CE) x (1—¢) (u(V¥ -CF) - (VE -VE)) +
n(VH,CE) x (1-€)(1-p) (vE-ct) >0
and

0 < 7 (V,C) < 1, for any realization (V,C)

H_ L i 74 1
Considerthecasewheneﬁ%%;%mdpﬁ%.

Let’s fix the value of the total gains from trade as some level z, and rewrite the objective
function in terms of 7 (V",CL) as follows:
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_ z—(1-e)(1—-p)(VE-CE) (1-p)(VE-CH
7 (VE,CF) = = itawr=on— — 7 (V7.C") x Litswr=e

Similarly, rewrite the incentive feasibility constraint in terms of 7 (V",CL) as well
H_poL H_yL
(since e < {g‘y:g—’;} and u < z _g , all expressions in the parentheses are now positive)

(1-p)(VvH-CE H ~H (1-p)((CH-CL)—e(VH-CL L ~L
VE_VL)—p(vA-CcT)) — ¥ (V 14 ) i =) %‘vﬂ_f?_-v -pévF-"cT%! 2 "(V ,C )

Now, the optimal solution of the LP problem can be described on the (7 (V” ,CH ),
T (V", C")) plane.

- H_H
Let a denote the slope of the objective function, where a = %_——:ggﬂ%and

- H_ol)— " _oL
let b denote the slope of the constraint, where b = ((11_':) ‘c;' _3 _: “: _g . Then,
- H_H
(¢) whenever a > b, ©* (VH,C”) =1, (V",C") == (; ':)VV _”CV —Fry;

.. . _ (1-e)(vEi-CL « (/L _
(#) whenever a < b, (V”,CH) = T=ACF—Ch—evi=cT) ™ (V ,C’L) =1

(##) whenever @ = b, the optimum can be any point on the interval connecting the
points in (£) and (i1) .
The remaining two cases are trivial.

Ife> %Vg:;g;; and p < %:—:—g:)l, the second-best mechanism is such that
H 0H) _ L oL\ — Q-p(vi-cH
= (V¥,CH) =1 sud " (V£,CF) = (oyoryiymri=ony-

- ~cL
prz%;:%gandes%%:_—g-;% , the second-best mechanism must be such that

(1-e)(vE—CE
= (VH,cH) = __"J'l_‘z’_“u—m«c ety —vir—ory ad 7 (VE,CE) = 1. @
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As it follows from Proposition Al, it is optimal to lower the probability of trade at the
state where potential gains from trade are smaller. And whenever the gains from trade at
states (VH CH ) , (VL, C") are equal, it is optimal to lower the probability of trade at state
(VH ,CH ) , if the probability of the buyer’s worst type is higher than the probability of the
seller’s worst type, and it is optimal to lower the probability of trade at state (VL,CL) ,

otherwise.
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Proof of Proposition 6
We will show that (1.4) is both necessary and sufficient condition for the first-best
mechanism to be incentive feasible when V# > C¥ > VL > CL and VE —CH < VE - CL.
The proofs for other configurations are very similar.

(Necessity)

Suppose that (1.4) fails and for some parameter values there exists an ez post efficient

mechanism which is incentive feasible.

Let’s rewrite the buyer’s types (VH , V") and (VH VH ) IC constraints versus ( V£, VL)

as follows:

VH_ 25(1—8) (p5_p8)€:_(1_e)2(p2_p3) > p1(1.19)

a_20-9) (B2 - ) +(1—e):(p6—p3) — Gsel” (v )

v

p’(1.20)

After multiplying both sides of (1.19) by (1 — u)? and both sides of (1.20) by 2 (1 — ),
and then adding them up, we obtain the following inequality:

(- VE +p(1—p) (1 el (VE-VE) + (1-42) (261 —e) PP + (1 -€)*F%) 2
1-w? (21— +(1-eF) +2(1-p) (2 (1 - ) BHE= + (1 - )*5%) +

(1 - p)?e% + 2 (1 — p) %7
(1.21)

Also, let’s rewrite the seller’s types (CH,C'-) and (c"-,c'b) IC constraint versus
(C'H ,CH) as follows:

3 > 2u(1—p) (0" - 2% + (1 —p)* (0 — P +Ct

p 2 (1.22)
_ 7_ 0 2l sy _ (=82) (~H _ AL
£ > m(1-p) (o - 282) + (1 ul (¢! -p°) - 52 (C¥ - CF) L)

I
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After multiplying both sides of (1.22) by (1 — £)? and both sides of (1.23) by 2 (1 — €),
and then adding them up, we obtain the following inequality:

w2 (1-e)’P+2(1-e)f) +e(1—e) (1-p?) (C¥ - CF) 2
(1—e) (261 — ) P" + (1 - )?p') + 42 (1 —&2) CE

~( =) (- + (1 - ) — 26 (1 ~¢) (2 (1 - ) 2= + (1 - ) PF)
(1.24)

Adding (1.21) and (1.24) we have the following inequality:

e(l-e)(1-p?) (CH -CE) +2 (1) VF + p(1 - p) (1 - ¢)? (v¥-vE) >

w2 (1= CF+ (2u(1 - pp" + (1= w)p') - (26 (1-)p° + (1 - )
(1.25)

Adding the buyer’s type (V",VL) and the seller’s type (C” ,CH ) IR conditions we
have the following inequality

(e -mr" +0-p)’p) - (20 -)f +(1-e)'F) 2

(1.26)
(1- ) CH — (1=} VL

(1.24) together with (1.26) are inconsistent with the converse of (1.4) @ @
(Sufficiency)

Suppose that (1.4) holds. Then, we should be able to specify a price vector that satisfies
all incentive compatibility and individual rationality conditions.

Let p® =p® = VL, p! =p" = CH and let p® = CH, then p® can be defined as follows:

min {CH S-pP (VI -CH)+(1-2)1-p)*VE-(1-€)(1-p2) CH 413 (1-€)2(VE~CL) +2u(1~p) (1—e)?p5
? 2e(1—€)(1-p)"

(1.27)
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P° > max {V",P} ,
where
p = 20-m-a’pt420-e)(1-p)CH

2(1-e)(1-p)*
2:(1-;),.2(vb-ab):z(l-';)(l-yz) (CH-CE)+2u(1-p)e2 (VH —CH ) +u(1—p)(1-€)2 (VI -V E) 4+ 2u(1—p) (1-e2)VE
2e(1~¢)(1-p)*
(1.28)

Because (1.4) implies that the Lh.s of (1.27) is greater than or equal to the r.h.s. of
(1.28), pP is well defined.

Then given p® and p, (1.27) must hold and can be rewritten as follows

A-plPe(VE-CH)+ (1 -p)? (1-)VE-(1-p)*2(1-€)p° >
(1—e (1-p?)CH —p2(1-e)* (VE - CF) - 2u(1 - ) (1 - €)?p

which implies that p? is well defined as well

. e (VH_CH)4(1-€2)VE-2e(1—e)p® (1-u?)CH —p3(VE—CE)—-2p(1—p)p®
H L
min {C’ , o > p? > max{ VL, =

(1.29)

Also, given p® and p%, (1.28) must hold and can be rewritten as follows

(1 -p)e? (VE —CH) +2u(1 - p) (1 -€) VE+
pU=-p) A=) (VH -VE) ~2u(1 - ) (1 - &)
>

2e(1—¢) (1 - p?) CH -2 (1 - &) p? (VL - CF) -
e(1-¢) (1-p?) (C7 - CF) ~2e(1-€) (1 - w)* &)

which implies that 2422 is well defined too and



22(1—¢)

min {CH, e’(VH_cH)+(1—e’)v5+.(kf')3LV}1_VL)_(l_e)g p,} S .

2= > max {V", (1) ("‘-C")Q;g—:i?(c"-cb)—u-u)’(p’) } (1.30)

It is easy to verify that for the price vector described above all incentive compatibility
and individual rationality conditions are satisfied. (Example: Suppose that the traders
reservation values are V# =8, VL = 3,CH = 6,CL = 0; and the prior beliefs are uniform
p=¢c=4% Let p® =p® =3, p! =p" =6, p° = 6; then min{6,4} > p® > max{3, 1.5},
min{6,11 — 255} > p? > 3 and min{6,3.75} > Z4° > max{3,3 — 505} and we can set
p0=3)1



Proof of Proposition 8
(Necessity)
Consider the 'upward’ incentive compatibility constraints for the seller’s type C.

Type C, such that C < 1 — A, weakly prefers not to report (C + A) whenever the
following 'one-step’ incentive compatibility constraint holds

EUS(C|C) 2 EUS(C + A|C) (1.31)

Or, equivalently, whenever

EUS(CIC) 2 EUS(C+A|IC+A) +(A) Xl:vr(V,C+A)fB V)
V=0

(In what follows, we will use EUS (C) in place of EUS (C|C) )

Generally, for any k € {0,1,..,K}, type (C + kA) weakly prefers not to report
(C + (k+1)A), whenever

1
EUS(C+kA) 2 EUS (C+ (k+1)A)+(8) Y n(V,C+(k+1)A) fB(V) (1.32)
V=0
One can verify that the seller’s type C would not want to report (C + ¥’A) for any k¥’ €
{0,1,.,K}, as long as for every k < k’ the corresponding 'one-step’ incentive compatibility
constraint (1.32) holds.

Adding all one-step upward incentive compatibility constraints for the seller’s type C,
we obtain the following inequality

1

ESQ2EC M+ Y ()Y 5 () P W) (139

The r.h.s of (1.33) is the expected gains from all possible upward deviations for the
seller’s type C.



Multiplying (1.33) by f5(C) and adding across all possible types we obtain the aggre-
gate incentive compatibility constraint for the seller.

1-A 11-af 1
ZEUS(C)fS(C)ZEUS(I)*'ZZ( > (A)W(V’t'))fs(C)fB(V) (1.34)
c=0 ¢

V=0C=0 \t'=C+A

Consider the ’downward’ incentive compatibility constraints for the buyer’s type V.

Type V, such that V > 0+ A, prefers not to imitate type V — A whenever

EUB(V |v)> EUB(V'V) (1.35)
Or, equivalently, whenever
1
EUB(VIV) 2 EUB(V - AV -A)+(A) Y7 (V-4,0)f5(C)
Cc=0

(In what follows, we will use EUZ (V) in place of EUB (V|V))

Generally, for any k € {0,1,.,K}, type (V — kA) weakly prefers not to report
(V — (k+1) A), whenever

EUB(V - kA) > EUB(V - (k+1)A) +(8) 21: x(V-(k+1)A,C) f5(C) (1.36)
C=0

Type V would weakly prefer not to report (V — ¥’A) for any ¥’ € {0,1,..,K}, as long

as for every k < ¥/, the corresponding one-step downward incentive compatibility constraint
(1.36) holds.

Adding all ’one-step’ "downward’ incentive compatibility constraints for the buyer’s
type V , we have the following inequality

v-A 1

EUR (V)2 EUE(0)+ Y. (4) 3. 7 (t,0) f° (C) (1.37)
t=0 Cc=0
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The r.h.s. of (1.37) is the expected gains from all possible downward deviations for the
buyer’s type V.

Multiplying (1.37) by £B (V') and adding across all possible types of the buyer we obtain
the following aggregate incentive compatibility constraint for the buyer:

1 v-A
Z EUB (V) fB(V) 2 EU® (0) + Z >, (Z (A)= (¢, C)) fwre 1)

V=4 C=0V=A

At the optimum the individual rationality constraints for the agents’ worst types are
binding ( EUZ (0) + EUS(1) = 0 ). Adding up the aggregate incentive compatibility
constraints for the buyer and the seller we obtain the following condition:

(V-C)x(V,C) 5 (C) 2 (V) (1.39)

v-A
(Z &), C)) PV SO+

A\ t=0

\Y}
M- IM- IM-
™ML M- M-

L

1
( > <A)1r<v,e)) SO W)
‘I

=C+A

Then, the r.h.s of (1.39) can be rewritten as follows:

1 1-A 1
(A)zzw(Vﬂ)( > fB(T)) 50

C=0V=0 =V+4

C-A
FAY z;wm(z: fs(f’)) 7 )
V=0C=A
1 1-A

= @Y Yo (1-FPW) 5 (©)

C=0 V=0

NNY D> n(V,C) (FS(C-4)) 2 (V)

V=0C=A
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Finally, we can rewrite (1.39) as follows:
1 1 B
>3 (- S - o+ @ BGR) sma £ @ P (1) 2 0.8

(Sufficiency)

In order to complete the proof we need to construct a transfer payment function.

1 1
- Let #5(C) = Y 7(V,C) fB(V) and #3(V) = Y n(V,C) f5(C). Consider the
V=0 C=0
following discrete type adaptation of the transfer payment function due to Myerson and
Satterthwaite (1983):

Let

%%,when T(V,C)>0

P(V,C)={
p(V,C), when v (V,C) =0

and

v-Aa C

p(V,0) = ViB(v)-(a) Y 2B +Cr5 () -(8) Y 7 (¢) +
=0 t'=0

0*1?B(O)+2C:t’[l—Fs(t')] [- (@) -7 -a))

=0
where the last two terms represent a constant such that

¢
EUB(0)=0+7B(0)- ) p(L.t) fS(¥) =0

=0

One can verify that given this transfer payment function, all individual rationality and
incentive compatibility constraints are satisfied and all seller’s one-step upward incentive
compatibility constraints as well as all buyer’s one-step downward incentive compatibility
constraints are binding. B



Chapter 2

K-double Auction Mechanisms for

Bargaining with Multiple Objects

2.1 Introduction

Consider a bargaining problem where a buyer and a seller negotiate the transfer of a (single)
object to be chosen from several alternatives. The traders’ valuations of different objects
are private. The object selection depends on the prices quoted by the buyer and seller for
all available alternatives. An object, for which the spread between the buyer’s bid and the
seller’s offer is the largest, is traded only if this spread is non-negative. The traders bargain
according to certain rules, which are commonly known.

The analysis of the bargaining process is restricted to a particular class of trading proce-
dures - the sealed-bid k—double auction mechanisms. In the context of bilateral bargaining
over the price of a single object, a sealed-bid k—double auction is a simple price selection
rule that requires both parties to submit their bids for an object in ’sealed envelopes’, the
envelopes are opened simuitaneously and trade occurs if and only if the buyer’s bid is above
the seller’s offer. The price at which the transfer takes place is a convex combination of the
prices quoted by the traders, p = kv+ (1 — k) ¢, where v, ¢ are the buyer’s bid, seller’s offer,
respectively (parameter k € [0, 1] is commonly known). Despite their simplicity, the sealed-
bid k—double auctions capture important features of the bargaining process and, therefore,
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can provide valuable insights into more realistic and complex bargaining procedures.

Because in a typical market environment!, the outcome of any k—double auction is not
ez post efficient?, the k— double auction literature mostly focused on the analysis of the
properties of the ’second-best’ outcomes, i.e. the ex-ante efficiency ratios® (to see what
proportion of potential gains from trade could be realized in a particular k-double auction)
and the allocative efficiency (to see how gains from trade could be divided among the
traders in k-double auctions).

The research on k—double auctions with a single object showed that for generic priors
the ez ante efficient equilibria in k € (0,1) double auctions did not exist and that only
the seller’s offer and buyer’s bid auctions (k = 0 and k = 1) were ez ante efficient (see
Satterthwaite and Williams (1989)). For the special case of uniformly distributed reservation
values, Chatterjee and Samuelson (1983), characterized a linear equilibrium of the ’split-
the-difference’ (k = 0.5) double auction, which allowed the traders to achieve maximal total
ez ante expected gains from trade, given incentive compatibility, individual rationality and
balanced budget constraints (the latter was proven later by Myerson and Satterthwaite
(1983)). Thus, equal bargaining power (k = 0.5) was shown to lead to a smaller efficiency

loss.

The literature on bargaining with 'multiple units and dimensions’ under two-sided
uncertainty is more scarce (see, for example, Linhart and Radner (1989)), because suffi-
ciently realistic trading mechanisms for bargaining with multiple objects tend to be quite
complicated.

In the problem of bargaining with multiple objects, the first best outcome is achieved
when the object of trade is always such that the spread between the buyer’s valuation and

!The term 'typical’, here, refers to a market environment, where (i) the existence of positive gains from
trade is not known to the traders ez ante; (ii) the parties can refuse to participate in the bargaining process
after they receive their private information.

2See Myerson and Satterthwaite (1983).

3Here, the ez ante efficiency ratio refers to the ratio of the maximal ez ante expected gains from trade
that could be achieved in a Bayesian equilibrium of a k—~ double auction to the maximal potential ez ante
expected gains from trade.



the seller’s cost is maximal and non-negative. Depending on the information structure and
the choice of the trading mechanism, the failure to achieve the first best outcome may be
either due to trading an ex post inefficient object or due to not trading at all at some states
where positive gains from trade exist. In Chapter 1, I proposed to distinguish between fully
ex post efficient trading mechanisms and the mechanisms that are ex post efficient
with respect to the object selection only. The latter guarantee the ex post efficient
object selection at any state where trade occurs, but do not guarantee that the players
always trade when gains from trade exist. In this Chapter, we will address the question of
whether/when the k—double auction mechanisms can be ex post efficient with
respect to the object selection given different assumptions about the information
structure of the bargaining problem.

It is a well known fact that when uncertainty about the traders’ valuations is two-sided,
the ez post efficient outcome is generally infeasible and that inefficiency arises because the
traders attempt to use their private information to increase their personal shares in total
gains from trade. The main advantage of working with a k— double auction framework is
that it allows to see how the players bids are distorted away from their true valuations and
determine the type of distortions that lead to ez post inefficient object selection.

In what follows, the analysis will focus on the choice between two potential objects of
trade, denoted q; and g.*

The bargaining process is modeled as a game of incomplete information, I, which
proceeds as follows:

Stage 1: both traders simultaneously submit their bids for all potential objects of
trade. Given the players’ bids, the price for each potential object of trade is set according
to a k-double auction price selection rule.

Stage 2: given the players’ bids for each object ¢;, where i € {1,2}, an object with
the largest spread between the buyer’s bid and the seller’s offer is selected, provided that
the spread is non-negative, and there is no trade, otherwise.

“The generalization to an arbitrary mumber of objects will be presented whenever possible.
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The games I'1,I'2,I'3 and I'4 differ with respect to the information structure of the

basic bargaining game I' described above. The rules of the game as well as the value of
parameter k are common knowledge.

Game | Valuations Information structure
I'i WU (o,1) All valuations are private and the probability
C1,C 2 U(0,1) distributions are commonly known.
T2 Ci=0Wh=1 The seller’s cost of g; and the buyer’s value of ¢,
C, V1 iy (0,1) are commonly known; other valuations are private and

the probability distributions are commonly known.
3 Vi=Va=V ~U(0,1) | All valuations are private and the probability
C,,C iy (0,1) distributions are commonly known

r4 Ci,V1 € [0,1],V; > Cy | Valuations for ¢, are commonly known;

Ce, Vo iy 0,1) valuations for go are private and the distributions

of the traders’ valuations for g are commonly known

If both traders were to quote their true valuations, then the price of any potential object
of trade in a k—double auction would be equal to kV; + (1 — k) C; and the outcome of the
bargaining process would be fully ez post efficient. However, in most cases, the traders
prefer to misreport their private information. The following is an overview of the main
results:

In I'1, none of the traders knows ez ante whether gains from trade exist and which
object is ez post efficient. The analysis of I'l shows that when the optimal choice of the
object of trade depends on both players’ private information, the most common unmediated
trading mechanism (where one party proposes a price schedule (k = 1 or k£ = 0) and the
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other either picks an object of trade or chooses not to trade) does not guarantee an ex post
efficient object selection.

In I'2, the existence of gains from trade is commonly known, but the ez post efficient
object is not known ez ante. Not surprisingly, the outcome of the bargaining process is
not fully er post efficient: although the players always trade, they do not always select
the best object. Interestingly, compared to £k = 1 or £k = 0 auction mechanisms, equal
distribution of the bargaining power (k = 0.5) reduces the range of transactions where the
ez post inefficient object is traded, and thus, results in a relatively smaller efficiency loss.

In I'3, it is commonly known that the buyer is indifferent between two trading alterna-
tives, which implies that the low-cost object is ez ante commonly known to be the ez post
efficient choice. However, none of the players knows ez ante whether positive gains from
trade exist. The analysis of I'3 suggests that for any k € {0,0.5,1}, the outcome is ez post
efficient with respect to the object selection, although it is not fully ez post efficient. This
result is easily generalizable to an arbitrary number of potential objects of trade.

In I'4, there is no uncertainty about the existence of mutually beneficial trade, since
the players’ valuations for q; are common knowledge. In I'4, trade always occurs, but the
ez post efficient object is not always selected for any &k € {0,0.5,1}.

The ez ante efficiency ratio tends to increase when we add a second potential object of
trade.

2.2 The Model

Suppose that there are two potential objects of trade, {q1,¢2} . Each trader’s type is given by
a pair of reservation values. We will assume that each player’s valuation for any potential
object of trade is a random variable distributed on the interval [0,1]. Denote by V €
[0,1]2, the buyer’s type, where V = (V4,V2), and by C € [0,1]2, the seller’s type, where
C=(C,Cy).



The bargaining process is modelled as a two-stage game:

Stage 1: the traders simultaneously submit their bids for all potential objects of trade
(v: denotes the buyer’s bid for ¢; and c; denotes the seller’s bid for ¢). Given the players’
bids, the price schedule is determined by a k-double auction rule, where for any i € {1,2},
such that ¢; < v, pi = kvi + (1 - k) .

Stage 2: given the players’ bids v;,¢;, for i € {1,2}, the object selection procedure «y

is as follows:

v(en,e2,v1,2) = q, fnn-a>n-—cgandy 2
Y(ene2,v,12) = @@, ifnn-—a<w-candwn>c
v(en,c2,0,v2) = 0, iffvi—c; <0, forie {1,2}

where @ denotes the 'no-trade’ option.® We will assume that whenever v; —¢; = vo — 3
and v; > ¢;, for i € {1,2}, the object of trade is selected at random. The object selection
procedure < is a mapping from the players’ bids into Q U {8} .

Whenever trade occurs and g; is selected, the buyer’s profit is (V; — p;) and the seller’s
profit is (p; — G;) .

The player’s bidding strategy maps his type into a pair of bids. Denote by 8 : [0,1]* —
[0,1]? the buyer’s bidding strategy, and by & : [0,1)® — [0,1]2, the seller’s bidding strategy.
For i € {1,2}, define the buyer’s bidding function for an object g;, 5 : [0,1] — [0,1],
where v; = 8; (V) is the buyer’s type V bid for ¢; , and the seller’s bidding function for an
object g, a; : [0,1)% — [0, 1}, where ¢; = a; (C) is the seller’s type C bid for ¢; .

In what follows, we will focus on bidding strategies with the following properties:
for at least one object ¢;, i € {1,2},
(1) B;, ax are twice continuously differentiable on [0, 1]2;

5Note, that in Chapter 1 the 'no-trade’ options was denoted by qu.
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(2) B is strictly increasing in V;; a; is strictly increasing in C;;
(3) 0 < B:(V) < Vi for any V €[0,1)%; C; < (C) <1 for any C € [0,1)2.

(1) and (2) are technical assumptions that we need to ensure the existence of a well-
behaved solution of each player’s optimization problem; (3) is equivalent to the requirement
that the players’ optimal bids must satisfy the interim individual rationality condition.
(Note that assumptions (1)-(3) do not preclude the possibility that the buyer can optimally
bid —oo for some ¢; for all realizations of his type and, similarly, that the seller can optimally
bid +o0 for some ¢; for all realizations of his type).

2.3 The GameI'l

2.3.1 The Buyer’s Bid Double Auction I't\k =1

Suppose that Vi,V3 “%¢ U (0,1) and C,,C; *** U(0,1). Each player’s type is his pri-
vate information and only probability distributions of the players’ valuations are commonly
known. Also, suppose that the buyer proposes the prices for all potential objects of trade.

The bargaining game proceeds as follows:

Stage 1: the buyer announces v;,v2 and the seller announces c), ¢3. The price schedule
is determined according to the k = 1 double auction price selection rule, i.e. p; = v; for any
ie{1,2}.

Stage 2: given the players’ bids, the object of trade is chosen according to the object
selection procedure -y described in Section 2.2.

Without loss of generality, we can think of a game, where the buyer proposes the price
schedule and the seller either picks an object of trade or chooses not to trade. Note that,
when both players’ valuations for all potential objects of trade are private, the trading
decision (whether to trade or not) and the choice of the object of trade depends on both
players’ private information about q; and ¢ in a non-trivial way.
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We will begin by giving a general description of Bayesian-Nash Equilibrium of T1\k = 1.

The seller’s type C optimal trading strategy, given the buyer’s bids v;,v3, is as

follows:

Y (Cu,n) = q,fC;-Ci>wn—-vand vy >C;
Y (Cyvy, 1) = @, iIfC2—~Ci<m—vand >y
7 (C,m,2) = 0, iffv;—Ci <0, forie{1,2}

Whenever v; — ¢; = v — ¢ and v; > g;, for i € {1,2}, the object of trade is selected at

random.

Note that the buyer’s bid v; is relevant only when ¢; is selected by the seller. So, the
buyer’s bidding strategy B is a best response to the seller’s trading strategy v* if for
all V e [0, 1]2 , the buyer’s bid for an object ¢;, »; = B; (V), maximizes the buyer’s type
V expected gains from trade, given that object ¢; is selected by the seller according to
the trading strategy v*. Whenever this is the case, the strategy pair (3, 'y‘) constitutes a
Bayesian-Nash Equilibrium of T1\k = 1.

The derivation of the buyer’s best response bidding strategy.

The buyer’s type V gains from trading ¢;, given that trade occurs and g; is selected by
the seller, is 11,-8 =Vi-w).

Then, the buyer’s type V expected gains from trade are

ETB (v3,11|V) = Pr {q is selected Jvp,v1} I + Pr {g, is selected vz, v, } 12

In order to derive the buyer’s bidding strategy, we partition the space of all action
configurations of the buyer, such that v; € (0,1) and v € (0,1), into two regions:
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REGION I: where vz > v; and, therefore, the probabilities of selecting ¢ and g are®

N -

Pr{q is selected |v2, 11} = v; —wvy + 12

2
Pr {qq is selected |vp,u1} = v — %

REGION II: where v; < v1 and, therefore, the probabilities of selecting q; and g3 are

2
Pr{q is selected |v2,;1} = v; - %

v —van1 +

20

Pr {q, is selected vz, } 3

Then, the buyer’s type V expected utility is

2
ETI (o), V) = (Vi —u1) (v —vgwr + §0d) + (Va—v0) (22— B, when vy 2wy
1 - 2
Vi —n) (o1 - G5) + (o~ vo) (2 —vger + §1) , whenmp <y
In REGION I, where v2 > v, the fo.c.’s of the buyer’s maximization problem are as
follows:

ETIB 1
a&n =0 & -vx+vzvl-51'?+(‘/1—01)(1—vz+v1)—(V2°02)01=0

OENE
ovy

1
=0 & -(m-m)m+§v¥-2vz+vz=o

The buyer’s optimal bidding functions are given by the solution of (2.1)

SFor details, see Appendix.
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{ —n+v - i+ —n)(l-wn+u)-(Vz-wn)un =0

. (2.1)
—Vi—m)n+3vf -2+ =0
and are as follows:
1 1 3
v = §V2 - §V101 + va
and
v=p
where p is a root of the polynomial (2.2)
923 + (-9V; -6) 22 + (—8 +2V2 +4Vi + 2V12) Z - 2ViVi +4W; (2.2)

In REGION II, the solution is symmetric:
v = —4Vove + $v3 + $V4 and vy = p,where p is a root of the following polynomial

973 + (-9V2 - 6) 2% + (-8 + 2Vi + 4V + 21 Z - 2WVi + 4V4

Lemma 11 states that the buyer’s best response bid for the high-value object is always
greater than or equal to his best response bid for the low-value object.”

Lemma 11 The buyer’s best response bids are such that v3 > v} if and only if Vo > V.

The plot of the buyer’s best response bidding function for ¢; (see Figure 1) corresponds
to the numerical solution of the following system equation, assuming that v > v; and
(1) — (3) described in Section 2.2 hold,

TFor the proof, see Appendix.



[ 0u} +(~9V4 — 6) v} + (—8 + 2V + 4V +2V2) vy — 2314 +4V4 =0
<Vle(o,l)
Vs €(0,1)
[ n €(0,1)

Note that the bidding function in Figure 1 is defined only for the region where V3 > V.

Figure 1: The best response bidding function of the buyer for the low-value object.

In order to characterize the Bayesian-Nash Equilibrium of I'l\k = 1, define Vg =
max {V},V2} and V¢ = min {},V3}. The buyer’s bids for the high-value object, vy =
Bu (V), and the low-value object, v = (8 (V), are given by the solution of (2.1) (where
vy corresponds to v and v, corresponds to v ), subject to the restrictions that vg € (0,1)
and v, € (0,1). The bidding functions B (V),B8 (V) together with the trading strategy
v* form a Bayesian-Nash Egquilibrium of the game I'l\k = 1 only if there is no alternative
bidding strategy that yields a strictly better payoff for the buyer. Suppose that the buyer
deliberately precludes the possibility of trading the low-value object by bidding Az, (V) <0
for any realization of his type V. Then, since there is only one feasible trade left (the high-
value object), the buyer’s optimal bid for the high-value object is vg = 1Vjz. One can verify
that every type V of the buyer can do strictly better if he submits the bids vg = }Vi and
v, € (0,1) instead. Thus, the buyer’s optimal bidding strategy configuration must be such
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that vy € (0,1) and vr € (0,1). The best response bidding functions By (V), 8L (V),
restricted to take the values in the (0, 1) interval can be calculated numerically.8

Table 1 presents the numerical values of the best response bids for some types of the
buyer.

Table 1
Vilejnn |n [Ve-V|w-u| &R
1 |1 |.4227| 42270 0
8|1 |.3279 | 4495 | .2 1216 | .6081
S |1 [.1927 ) 4797 | .6 2870 | .5739
2|1 |.0711 .4967 | .8 4256 | .5320
0110 5 1 5 5

It is worth noting that the difference between the buyer’s bids is always smaller than
the difference between his valuations and the ratio 2=y} tends to increase when (V2 — V1)
becomes smaller, which implies that the players are more likely to end up trading the ez
post inefficient object when the difference between the buyer’s valuations is relatively small.

Proposition 12 summarizes the analysis presented above.

Proposition 12 The Bayesian-Nash Egquilibrium outcome of the game I'l\k = 1 is not
always ex post efficient with respect to the object selection.

SFor details, see Appendix.



In order to show that the auction mechanism in I't\k = 1 is not ez post efficient with
respect to the object selection, it is sufficient to present a numerical example. Consider the
players’ types V; = 0.5,V3 = 1 and C) = 0.1,C> = 0.4. Then, the buyer’s optimal bids are
vg = 47968, v; = .19271. Since, V; — C} = 0.4 and V; — C; = 0.6, ¢ is the ex post efficient
choice, but, because v; — C) = .09271 and v2 — C2 = .07968, the seller chooses q;.

Thus, the most common unmediated trading mechanism (where one party proposes the
price schedule and the other party chooses the object of trade) does not guarantee the ez
post efficient object selection when the trading decision and the object selection depend on

both players’ private information in a non-trivial way.

2.3.2 The Split-the-Difference Double Auction I't\k =0.5

Suppose that the traders have equal bargaining power. The sequence of events is the same
asin\k=1.

Stage 1: the buyer announces v;,v2 and the seller announces c;, ¢3. The price schedule
is determined according to the k = 0.5 double auction price selection rule, i.e. for any
i € {1,2}, such that v; > ¢;, pi = (v + &) /2.

Stage 2: given the players’ bids vy, v9, ¢;, 2, the object selection rule is as follows:
v(vi,v,e1,02) = q, iffnn-a>w-candun>¢q

7 (1,v2,01,62) = @, iffnn—aa<n-cgandw>c

’7(’01,’02,61,62) = 0, iﬁ‘l)i < ¢, forie {1,2}

Whenever v; — ¢y = v; — ¢ and v; > ¢;, for i € {1,2}, the object of trade is selected at

random.

The general description of the Bayesian-Nash Equilibrium of the Split-the-Difference

Double Auction game is as follows.

The players choose their bids for an object ¢;, conditional on the event that g; is selected
in the final stage of the game. Therefore, the buyer’s bidding strategy B is a best response
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to the seller’s bidding strategy @, if for all V € [0,1]?, the buyer’s bid for the object g;,
¥ = B (V), maximizes the buyer’s type V expected gains from trade given that (i) the
seller’s bidding strategy is @ ; (i) the seller’s valuation of ¢; has conditional distribution
F;(C:), given that g; is selected according to . And, the seller’s bidding strategy @ is a
best response to the buyer’s bidding strategy B, if for all C € [0, 1]2 , the seller’s bid for the
object ¢;, ¢; = a; (C), maximizes type C seller’s expected gains from trade given that (i)
the buyer’s bidding strategy is 8 ; (¢f) the buyer’s valuation of ¢; has conditional distribution
G: (V;), given that g; is selected according to y. Whenever this is the case, a pair (E,B)
constitutes a Bayesian-Nash Equilibrium of I'\k = 0.5.

Unfortunately, it is not possible to obtain a closed form solution of the game I'l \k = 0.5.
The characterization of the Bayesian-Nash Equilibrium of a simpler split-the-difference
double auction I'2\k = 0.5 (where uncertainty is one-dimensional, given that V3 = 1 and
Cy =0 are commonly known) will be presented in the next section.

2.4 The Game I'2

2.4.1 The Buyer’s Bid Double Auction I'2\k =1

Suppose that V3 = 1 and C) = 0 are commonly known, while V; and C; are distributed
uniformly on the {0, 1] interval independently of each other and, consider the game in which
the buyer proposes the price schedule. Although there is no uncertainty about the existence
of positive gains from trade, the optimal object selection is not known ez ante.

Consider the game I'2\k = 1, where V3 = 1 and C) = 0 are commonly known, ¥}
and C; are distributed uniformly on [0,1] independently of each other. There exists a
Bayesian-Nash Equilibrium of T'2\k = 1, such that for any C; € [0,1},W; € [0, 1}

{ o}(C) =0 23

a3(C)=C;
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{ﬁf(V)=o 20

BV)=3-3%

In the equilibrium described above, the players always trade, but the equilibrium out-
come is not fully ez post efficient, because there is a range of transactions where the ez post
inefficient object is traded. See Figure 2 below.

0s
0.l

C2
04

0.2}

[} 02 0.4 0.6 03
Y,
Figure 2: The range of ex post inefficient transactions in the linear equilibrium of the game
2\k=1.

Thus, whenever the optimal object selection depends on both players’ private informa-
tion in a non-trivial way, the equilibrium in which trade always occurs may not be fully ez
post efficient.

2.4.2 The Split-the-Difference Double Auction I'2\k = 0.5

Consider the game I'2\k = 0.5, where the players have equal bargaining power. Proposition
13 describes the linear equilibria of the game I'2\k = 0.5, in which each object is traded
with positive probability.

Proposition 13 Consider the game I'2\k = 0.5, where Va =1 and C; =0 are commonly
knoum, Vi and C: are distributed uniformly on [0,1] independently of each other.
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(1) The equilibria, in which the seller’s bidding functions o (C) and ag (C) depend on
C2 in a non-trivial way and/or the buyer’s bidding functions By (V) and B2 (V) depend on
V1 in a non-trivial way, do not ezist.

(2) There ezists a linear Bayesian-Nash Equilibrium such that for any C2 € [0,1] , V4 €
[0,1] af (C) =51 (V) =0 and

ai (C)=0 (2.5)
a3 (C)=3Cy+1
A (V)=0 (2.6)
B(V)=§-3vi

(Similarly, one can show that there is a linear equilibrium, where a3 (C) = 83 (V) = 1)?

In order to see that the players’ bidding strategies (2.5) , (2.6) constitute an equilibrium,
it is important to understand the trade-offs that are involved in determining the optimal
bids. Suppose that the seller follows the strategy described in Proposition 13 and consider
the buyer’s problem. Since af (C) = 0, the buyer can set his best response bid v, as close
to 0 as possible. When v, = 0, the buyer captures maximal gains from trading ¢, provided
that ¢, is selected, which would then be the case if and only if v3 < cp. In order to guarantee
that q; is always selected, the buyer could bid v = —oo for any realization of his type, but
the lower V; the higher the buyer’s relative (expected) gains from trading g compared to
the gains from trading ¢;.

Note that in equilibrium described in Proposition 13, ¢ is never traded when V; > %
Consider a buyer, whose valuation for ¢y is Vi < 3. The Lh.s. of (2.7) is the buyer’s expected
gains from trade in the linear equilibrium described in Proposition 12 and the r.h.s. of (2.7)
is the buyer’s expected gains from always trading ¢; for all realizations of the seller’s type
(i.e from bidding v2 = —oo for any value of V3):

*The proof is in Appendix.



P T S f
/ (1-%)#2-? _/ W)dt 2" (2.7)
0

v
Inequality (2.7) holds if and only if

9 1 1
3 + §V12 + ZVI 2V (2.8)

which is true for all V; € [0, %] Thus, the buyer’s strategy (2.6) is the best response to the
seller’s strategy (2.5).

Since g is the ez post efficient choice if and only if 1 — C; > V4, it implies that the ez
post efficient object is not always traded in equilibrium described in Proposition 13. Thus,
although the players always trade, the trading mechanism I'2\k = 0.5 is not fully ez post
efficient .

06

Ce

04

0.2]
0 |

¢ 0.z 0.4 _v.‘ 0.6 03 U
Figure 3: The range of ex post inefficient transactions in the linear equilibrium of the game
ri\k =05

The comparison of the total ez ante expected gains from trade for the linear equilibria
of the games I'l\k = 1 and I'l\k = 0.5 (see Section 2.7) suggests that the ez post efficiency
loss in k = 0.5 double auction is smaller than in k = 1 double auction. Thus, a more equal
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distribution of the bargaining power reduces the range of ez post inefficient transactions,
i.e. the ones where object selection is not ex post efficient.

2.5 The Game I'3

2.5.1 The Buyer’s Bid Auction I'3\k =1

In I'3, the trading decision (whether to trade or not) depends on both players’ private
information about q; and go. However, the ez post efficient object selection, conditional on
the event that trade occurs, depends only on the seller’s private information and the low
cost object is known to be the best choice ez ante.

Suppose that V} = Vo =V ~ U (0, 1) is common knowledge. And let’s assume that the
buyer submits the same bid for both objects, i.e. v1 = v9 = v. Then, the seller’s type C
optimal trading strategy, given the buyer’s bid(s), is as follows:

Y(C,v) = q, ifCa<Ciandv2C;
T*(Cyv) = @, ifCa>Ciandv>C;
v*(C,v) = 0, iff v < CL, where C;, = min{C)},C>}

Whenever v; — Cy = v — C; and v; > C;, for i € {1,2}, the object of trade is selected
at random.

The seller always chooses the low-cost object, and given that V; = V3 =V it implies that
he always chooses an object, which maximizes the difference between the players valuations.

Denote by F the distribution function of Cy, where Fy (t) = 2t — t2.

The buyer’s type V expected profit is

ENB (V) = (V-v)[Pr{C <v,Ci < C}+Pr{C:<v,C2 < C1}
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= (V-v) [%Pt{C'; <4 G =CL}+%Pr{Cg <G = c,,}]
= (V-v)Pr{CL <v}

= (v-v [eu-a)e
(V]

= (V—-'U) (2‘0—‘”2)

Solving the buyer’s optimization problem we obtain the buyer’s best response bidding
strategy, given the seller’s trading strategy 4* and our assumption that v; =v3 = §*(V):
2 1

Vie{l,z},vve[0,11,ﬁ:(V)=§V+§-§ V22V +4) (2.9)

Proposition 14 The game I'3\k = 1 has a unique Bayesian-Nash Equilibrium, where
the seller always chooses the low-cost object, provided that the buyer’s bid is above the
seller’s cost, and the buyer uses the following optimal bidding strategy: Vi € {1,2} ,VV €
0,1,6 (V) =}V +} - }/(TE—WF D

As the number of trading alternatives increases, it is optimal for the buyer to bid
uniformly more aggressively for all objects. Consider the general case when the number of
potential objects of trade is N. The buyer’s best response bid v* is implicitly given by the
following expression:

— (1 —mN
Vo = 1-(1 vN)_1
N(1-v)
where Fp (z) = 1 - (1 -~ z)V is the distribution function of C = min {C},C, ..., Cn}.

Figure 4 shows the buyer’s best response bidding functions for N=1,N =2,N =3.
(Recall that for N =1,v* =3V)

19 The proof is in Appendiz.
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Figure 4: The best response bidding function of the buyer for N=1, N=2, N=3 in the game

I3\k =1.

If Q is a continuum and the seller’s costs for all objects are i.i.d U(0, 1), then the buyer
knows for sure that there is an object for which the seller’s cost is equal to zero and it is,
therefore, optimal for the buyer to bid v = 0 for all potential objects of trade. So, when the
number of potential objects of trade increases, the uncertainty about whether trade occurs

or not decreases and so does the seller’s share of the total gains from trade.

Whenever the buyer is indifferent between q) and gg, the seller always chooses an ez-post
efficient object for any number of potential objects of trade.

In fact, it is easy to show that, given the same information structure (V; = Vo =V ~
U (0,1) and Cy,C; &% U(0,1) ), the seller’s bid double auction I'3\k = 0 is alsc ez post
efficient with the respect to the object selection.

2.5.2 The Split-the-Difference Double Auction I'3\k = 0.5

Suppose that the traders have equal bargaining power and ¥ = Vo = V ~ U(0,1) is
common knowledge. Let’s assume that the buyer submits the same bid for both objects,
ie. vy=v=v.

If the gains from trade are positive, the object selection rule is to trade an object for
which the seller submits the lowest bid, i.e.
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v(a,e2,9) = q, ffx<crandv>c
Y(en,e2,v) = @, iffez>coandv>cp

v(ca,c2,v) = @, iff v < ¢y, where ¢z = min{c, 2}

Whenever v; — ¢; = vp — ¢z and v; > ¢;, for € {1,2}, the object of trade is selected at

random.

Let ar (C) denote the seller’s bidding strategy for the low-cost object and let apr (C)
denote the seller’s bidding strategy for the high-cost object. If for any C €[0,1]2, ay, (C) <
ay (C), then the high-cost object is never traded and the best response bidding functions
can be obtained by solving the following optimization problems for the buyer and seller,
respectively:

max ETI® (v) =max az/(v) (V - ""‘+L(t)) 2(1—t)dt

0

max ETIS (¢z) =max {ﬂ } (m - CL) dz}
cL cL 2

~eg)

A pair of best response strategies (a} (CL), 8% (V)) is a solution of the following system
of differential equations:

ey —
da; (=) _ az‘(z)g‘—:zl(z)) (2'10)
&= = 4{1-a; (@) (V-2)

{ 8@;(:[ - 1-~(=)

Although the system (2.10) does not admit neither linear nor any other higher order
polynomial solutions, there exist a family of solutions of (2.10), where both functions 3(.)
and af, (.) are invertible and strictly increasing on the [0, 1} interval (which can be calculated
numerically).
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Finally, we need to verify that a} (C) < a}; (C) . The argument goes as follows. Suppose
not. Let @} (C) = a}; (C) = ¢* for some C € [0,1]%, such that C; # C3, so that the
likelihood that an object is selected is the same for both objects. Then, given that trade
oceurs ( ¢* < 6*(V)), the seller’s profit is } (245= — Cz )+} (25 - Chr) - Cleatly, the seller
can lower his bid for the low-cost object by €, which would guarantee the selection of the low-
cost object, and increase his gains from trade by the positive amount (  (Cx — Cp) - §¢ ).
So, in equilibrium, o} (C) # a} (C). (Similar argument can be made to show that a} (C)
cannot be higher than af (C) ). An argument for v] = v3 = v* is essentially the same as

the one presented in the previous section.

Thus, whenever one trader is indifferent between all potential objects of trade, the
outcome of the bargaining problem is ez post efficient with respect to the object selection
irrespective of the distribution of the bargaining power.

2.6 The Game I'4

2.6.1 The Buyer’s Bid Double Auction I'{\k =1

Suppose that the players actual valuations of the object q1, V1 € [0,1], C; € [0,1], are
commonly known and V; > C}, but their valuations of the object g2 are private. Suppose
that it is commonly known that V; is distributed uniformly on the [0, 1] interval, indepen-
dently of the value of V; and the seller’s type; and C; is distributed uniformly on the [0, 1]
interval, independently of C; and the buyer’s type.

It is easy to show that since the value of C) is commonly known, the buyer’s optimal
bid for ¢ is v§ = C).

The seller’s optimal trading strategy is trivial: he always chooses g whenever it is
feasible

1T"(Cie) = q, iffre<C;
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T'(C) = @, iffrr>Cy

The buyer’s type V expected gains from trade, given the seller’s trading strategy v*

are as follows:

ETIB (v) 4°, V) = (V3 — %) Pr {qq is selected| vp} + (V; — C1) Pr {q1 is selected| vq}

The buyer’s optimization problem

max [(V2 — v2) v2 + (Vi — C1) (1 - wo)]
has a unique solution
1
vz=3-3(-C) (2.11)
It is straighforward to verify that the strategy (v}, v3) described above is not dominated

by a strategy (—oo, %Vz) (when the latter is implemented, g; is never traded). Let IT; =
Vi — C), then the buyer’s type V would prefer (v}, v3) if and only if

v

1 1 1 1
ZV} + Zn% +1 - 5Wlh ~VE

4
M2 > Y

which holds for all V5 € [0,1].
The following Proposition summarizes the analysis presented above.

Proposition 15 The buyer’s bidding strategy

1} =Cy
po] 100, 2 (V-G
0, otherwise
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and the seller’s trading strategy

7*'(Cim)=q, iff 3 <C;
7T (C,m) =qo, iff v3 > C

constitute a unique Bayesian-Nash Equilibrium of the game ['4\k = 1.

Note that when V2 < (V} — C}), ¢ is selected by default.

However, the object g2 is not always traded when it is ez post efficient. The boundary

separating the region where g2 is traded from the region where ¢y is traded is given by

Va = (Vi — C1) +2C; , while the boundary separating the region where the ez post efficient

object is selected from the region where the ez post inefficient object is selected is given by

Va =W - C1) +Ca.

2.6.2 The Split-the-Difference Double Auction I'{\k = 0.5

Now, suppose that the players have equal bargaining power. An argument similar to the

one presented in Appendix for the game I'2 can be made here to show that 8} (V) = p1,

a} (C1) =p1, where C; <p < V1.

The object selection rule is as follows:

¥ (v2,¢2,C1,V1,;1) = @2, whenever w2 > 2

v (v2,¢2,C1,Vi,;1) = qu, whenever v2 <cz

Then, the buyer’s type V expected profit is

1 az(vs) .
azl(v2) )
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and the seller’s type C expected profit is

1 B3 (c2)
ETS (c2|C.p1,7,8) = / (M’%)ﬂ-cz)dzw [ (p1— C1) dz
B3 Hez) Y

Proposition 168 In the game I'4\k = 0.5, where V; and C; are commonly known, V2 and
C: are distributed uniformly on the interval [0, 1] independently of Vi and C and each other,
there exists a class of linear equilibria such that for any C; € [0,1], V2 € [0, 1],

*(C) =

ai(C)=pn 2.12)
C)=3C+i+m-3C-Iv

Bi(V)=m 3 (2.13)
BV)=3Va+H+m—-3Vi—-{C

where C, <pp <W.I!

The object gz is selected if and only if V2 > C2 + § + 3 (Vi — C1). The boundary
separating the region where the ez post efficient object is selected from the region where
the ez post inefficient object is selected is given by V2 = Ca2 + (V4 — C1). Therefore, the
equilibria characterized in Proposition 16 are not fully ez post efficient.

Thus, whenever the gains from trading ¢; are commonly known, both players adjust
their bidding strategies for g2 so that the latter could not be selected unless the gains from
trading g are at least as large as the gains from trading ¢;. However, since both traders
demand a premium on all possible trades of an object for which their valuations are not
commonly known (the object ga), they end up not always trading g; whenever it is an ez
post efficient choice.

The efficiency properties of the buyer’s bid and split-the-difference double auctions for
the games I'l, I'2, I'3 and I'4 will be presented in the next section.

11 The proof is in Appendiz.



2.7 Efficiency

2.7.1 Bargaining with One Object

We will start with the description of the efficiency properties of the linear equilibria in
k-double auctions with single object and uniform priors. In the split-the-difference double
auction, the famous Chatterjee-Samuelson (1983) linear equilibrium generates the highest
total ez ante expected gains from trade.

Trading mechanism (k—double auction) | k = k=05
Potential gains from trade .16667 | .16667
Maximal equilibrium gains from trade 125 .14063
"Second-best’ gains from trade .14063 | .14063

Expected gains from trade for the buyer | .083333 | .070315
Expected gains from trade for the seller | .041667 | .070315
Ex ante efficiency Ratio .74999 | .84376

The range of trade vVv>2C V_>,C’+%

2.7.2 Bargaining with Two Objects

The Game I'2

The total potential gains from trade in the game I'2, where V2 = 1 and C; = 0 are

commonly known, are as follows:

1 1-Cp 1 2
[(/ a-cavi+ [ (mdvl)dcz=§=.esss7
0 1] 1-Cy
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The following is 2 summary of the efficiency properties of the linear equilibria of the
games I'2\k = 1 and I'2\k = 0.5 (for details, see Appendix)!2:

T2\k=0.5
Trading mechanism (k-—-double auction) | ['2\k =1 \
(Va=1and C; =0)
Potential gains from trade 66667 .66667
Maximal equilibrium gains from trade .625 .640625

Expected gains from trade for the buyer | .58333 .5703125
Expected gains from trade for the seller | .041667 | .0703125
Ex ante Efficiency Ratio 9375 .96094

Not surprisingly, the split-the-difference double auction has a higher ez ante efficiency
ratio than the buyer’s bid auction.

The Game I'3

The total ez ante expected gains from trade obtained in a unique Bayesian-Nash Equilib-

rium of the game I'3\k =1 are

L [ WiV
/ / 2(V —C)(1-C)dC | dv = .19601
J :

0
potential (truth-telling) gains from trade are
1

v
/(ofz(v-(:)a-c')dc)w:.zs

0

Note that the numbers in the table are correspond to the equilibrium of the game I'I\k = 0.5, where
a} (C) = f; (V) =0, which explains why the gains from trade are not equally divided between the traders.
There is also another linear equilbrium in the game Cl\k = 0.5, where a3 (C) =R (V) = 1.
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and the ez ante efficiency ratio is

.19601
E= 25 = .78404

Trading mechanism (k—double auction) [ ['3/k=1

Potential gains from trade 25
Maximal equilibrium gains from trade | .19601
'Second-best’ gains from trade .21039

Expected gains from trade for the buyer | .13733
Expected gains from trade for the seller | .05868
Ex ante Efficiency Ratio .78404

The range of trade C<3iV+3-L/VI-2V +4

Note that when we add a second trading alternative, the total expected gains from trade
increase, the buyer’s gains from trade increase, while the seller’s gains from trade decrease.
The efficiency of £ = 1 double auction rises as well, implying that the effect of having
two alternatives to choose from outweighs the effect of having a tighter trading boundary
(the latter is due to the fact that the buyer is always expecting the seller to choose the
low-cost alternative and therefore, is bidding more aggressively for both objects the higher

his reservation value).

The trading mechanism in I'3\k = 1 is not fully ez post efficient, because there is
a positive probability that trade does not occur even if the seller’s low cost is below the
buyer’s valuation.

The Game I'4
For the special case of the game I'4, when V; = % and C, = 0, the total potential gains
from trade are as follows:
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The following is the summary of the efficiency results for the class of the linear equilibria
of the game T4, given that ¥} = } and C; = 0 are commonly known (for details, see
Appendix):

Trading mechanism (k—double auction) | I3\k =1 | ['3\k = 0.5
Potential gains from trade 625 625

Maximal equilibrium gains from trade | .51563 51758

Buyer’s expected gains from trading q; | .46875 46484 — .92969p,
Buyer’s expected gains from trading g2 | .041667 | .043945 — .070313p,

Seller’s expected gains from tradingq; | 0 92969
Seller’s expected gains from trading ¢o | .0052083 | .0087891 + .070313p;
Ex ante Efficiency Ratio .82501 82813

Note that since in the game I'4\k = 1, the price of ¢; is equal to C}, the seller’s gains
from trading q; are equal to zero.
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APPENDIX

The calculation of the probabilities of trading ¢; and ¢; in the game 'l \k = 1.
Consider REGION I, where vg > v;, then

Pr{q, is selected |v2,11}
= Pr{q is selected, both objects are feasible |vp, v}
+ Pr {q; is selected, only ¢, is feasible jup, 1}

= Pr{Ci <v,C2 <, -1 <C-C <1} +Pr{C <v,C > wn}

u
= /Pr{Cl=t1,C2$vg,vg—vl <Cy-Cildt + (1 —wm)n
0
n
= /Pr{(vz-vl)-l-tl <CLwldh +(1-wm)n
0

un
= /(’UI = t)dt +v; — v
0

1
= v -vu + 5o}

Pr {g, is selected |vz,v1}
= Pr{qzis selected, both objects are feasible |vg, v}
+ Pr {q is selected, only g is feasible vg, 11}

= Pr{C2<1n,C1 £1,C~Ci <n—-0}+Pr{C > 1,02 <wn}

v2
= [Pr{G=t.C <0G -Ci<m-n}in+(1-mn
0

= /pr{tz-(uz—vl)sclSvl}dtz+(1-v1)vz
0

-

"N
(v2 —ta) dta + / (v1)dta +v2 — vy
w—-v 1]



Proof of Lemma 11
Let v3, v} denote the optimal bids.
(<) Suppose that V3 > V;, then v§ > v}, if and only if

.\2
=0 (o -+ o)+ 040 (- )

.\ 2
L 3 » » » L R 3 1
(i —vy) (vl - (v;) ) +(Va —v3) ("2 —vu; + ‘2'”52)

v

» 1 - 1 -, L d 1 *,
0 o) (5 087 —ini + 5o1?) 2 (V- o) (012 —ogoi + Jo5?) =

Vi-v]) (3 -+}) 2 (Va-—v3) (v —v}),
since for any v3,v},(v3 —v{)? > 0 = (v —v}) > (Va - W)
which, given our assumption, implies that v3 > v

(=) Solving (1) for V;, V2 we obtain:

1 —4+2v -3 +3?
Vitw) = gu——ltra
1 -2 + 3vdve — dvp + 402 — 4wy

2 -l4+v— v1+v?

Va(v, ) =

_.,,2 -
Define D = V3 (v1,v2)— Vi (v1,%2) = ”*fﬁ;‘?fﬁ""’"‘ %m'ifx-?fy » then

whenever vo > v, D >0, and whenever v < v1, D < 0. See the illustration below. B
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Figure 7. The spread between the buyer’s valuations in the game I'l\k = 1.

The derivation of the buyer’s best response bidding functions in the game

For the buyer’s type V' = (1, 1 — z), the solution of the maximization problem is such
that

and
sl L1 3,

where p is a root of polynomial (2.2)

92° + (-15+92) 22 + (2? - &) Z +2 -2 (2.14)

In general, the polynomial (2.2) has three roots

p=5-lz+[A(z) - B(z)]
p2=3 -%z—%[(1+i\/§)A($)‘(1"i‘/§)B(z)]
m=§-1o-1[(1-+8)A@ - (1++8) B)]

where



Alz) = (K—%zz + iz + 5 + 51 /(35 + 1825 — 757 ¥ 1805 — 9572 ¥ 1602 — 1620)

B() = 2= A=8

The numerical solution of

9Z3 +(-15+9z) 2% + (222 - 82) Z+2— 22 =0
z € (0,1)
Ze(0,1)

is shown in Figure 8.

04
03
0.2

g 0.2 04 x 06 08 }

Figure 8: The best response bidding function for the buyer’s type V = (1,1 -z).

Proof of Proposition 13

Given that C; = 0 and V; = 1 are commonly known, the buyer’s and seller’s bidding
functions can be expressed in terms of V; and C,, respectively, i.e. the buyer’s bids can be
written as v, = f; (V1) and vz = 52 (V1) and the seller’s bids can be written as ¢; = a; (C3)
and c3 = a9 (Cy).

Consider the buyer’s problem.

Suppose that a; (Cz) is non-incressing, @z (Cy) is strictly increasing and o (Ca) <
a3 (C3) for any C; € [0,1] . Define 7 = ag (a{l (vl)) and let’s partition the subspace of all
configurations of the buyer’s bids, such that v» > vy, into two regions:
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REGION I: where vz > #, which implies that a5 (v2) > o (v1) and
REGION II: where v < #, which implies that 5! (v2) < a7 (v1).

Note, that given our assumptions about the seller’s bidding functions, ¢; is feasible, i.e.
n 2> a; (C2), whenever al'l (n) £ C2 £1 and g is feasible, i.e. v3 > az(C,), whenever
0502502-1('02).

Consider REGION 1. First of all, note that, in REGION I, there is a non-empty interval
[o (v1), 03" (v2)], where both objects ¢; and go are feasible. Let C§ be implicitly defined
by v — a2(C3) = v; — a1 (C3). Also, let’s define a new function &(C2) = a2 (C) —
ay (C2) ,which is also invertible and strictly increasing. Then, we can express C3 in terms
of the difference between the buyer’s bids, i.e. C3 = & (v2 —v;). Clearly, C} must lie
in the interval [a;;1 (1), 05" (v2)] , because it is the only subinterval of [0,1] where both
objects are feasible.

Then, g2 should be selected whenever 0 < C2 < @~ (v — v1) and ¢; should be selected
whenever @ (v2 —11) < C» < 1, and the buyer’s optimization problem can be written as

follows:

a~Yn-u)

1
xurllgm"(vl,vz)mgg( o/ (V2—22++2(t2—))dt2+ / (Vl_m-l-c;u(tz))dt2

&=1(v-n) (2.15)
.15

Differentiating the buyer’s objective function with respect to v;, v9, we obtain the following

fo.c’s
a&;;(z) ((Vg _vta (2&‘1 (x))) —Vi- n+om (2&‘1 (z)) )) = &-—1(23_).:&,16)
-1 -1 &t &~
06 o) (m mre@EiE), o nteElE) )) - &8 o

which imply that @1 (z)~1 = &~! (z) and, therefore, the solution of the system of equations
(2.16),(2.17) does not exist.



Suppose that the seller’s bidding function for g; is constant and such that a; (C;) =0,
for all C; € [0,1]. Then, the buyer’s best response bid for the object ¢ is v} = 0, and
the buyer’s best response bid for the object g2 is a solution of the following optimization

problem:

max ETI® (u;) =max a;](m)(v 2 ta “2)) ] Vi—0)dt b (2.18)
v2 v2 A (

At the points where derivatives exist

1

) (-w-i- B (Dopie)

Bva

E%%(m = 0 characterizes the local maximum of ETI® (v;) if and only if

3 (9925;@’—)-) — a5l (va) (%”i)) >0 (2.20)

(For the configuration of the buyer’s bids in REGION II, there is a non-empty subset
of the values of C3, for which at least one of the objects cannot be traded, therefore, such
configurations are not considered here).

Consider the seller’s problem.

Similarly, after we pin down ¢; = 0, we can re-write the seller’s optimization problem

as follows:

Bz (c2) +Ba(t) 1
max FTIS (o) =max { [ (32—‘—02)dt1+ [ ©-cyan} @)
0 Bz (c2)

At the points where derivatives exist



OETS (c3)
dcp

=) (o, - 0-C) + 25 () 2.22)

and __EL)."EHS %2) = () characterizes the local maximum of ETIS (c;) if and only if

(3»3{1(62))_ Bz (c2) (59_3_3"(62)) <0
dc (8%‘(«»)) dcp

(2.23)

A linear equilibrium of the bargaining problem can be derived using the method of

undetermined coefficients.

Suppose that a3 (Cz2) = a + bCs, then a3!(vz) = 252 and suppose that B (V4) =
d+ fWi, then B3 () = 27‘4‘5. Then, the system of differential equations obtained from the
players’ f.o.c’s (2.19) and (2.22)

82%"(«-*:) _ -g Y(ca)

ez T 2((e2— -2) —-(0~-C1

631"(02) 2 (va)
{(Va—v2)~(V1=0))

can be rewritten as follows

{ (V2 -w) - (1 -0)) =} (B52)

(2.24)
} (2 - C2) - (0-C1) = -} (279)
The solution of (2.24) is
=32§(V2—V1+0)+-a
=id+3(C;+0-C))
which implies that
(a=1d+2(0-C)
d=3(V2+0)+ia
{773 (2 2+0) (2.25)
f=-3%
b= %

Solving (2.25), we obtain
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=%Vz+0—%01
a=3V2+0-3C

which gives us

62=§Cz+(%+0)

= (340) -3 (2.26)

Then, the object qq is feasible, i.e. v > ¢z, if and only if %—-C’z 2> V1. One can verify that the
bidding functions in (2.26) satisfy the second-order conditions of the players’ maximization
problems. B

Proof of Proposition 14

Suppose that the buyer submits different bids for q; and g2, v; and v, respectively,
such that vg > vy.

The best response bids are given by the solution to the following system of equations
(see Section 2.3.1 for details):

—n+vun -+ (V-n)l-n+n)—(V-wn)n=0
—(V-u)n+§f -2 +V=0

There are two solutions:

n=3V-§
w=}V+i- 52

and

Solution 1: {

soluﬁonzz{’" P Where pis a root of 322 + (—2V — 4) Z +2V,
v2=p



W+i+i/VI-2V +9)
V+i-3 —2V+4

However, only one solution satisfies assumptions (1),(2),(3) of Section 2.2, i.e.
n=wn=3V+i-1/VI-2V+o) B

Proof of Proposition 16
The f.o.c’s of the players’ optimization problems form the following system of differential

which has the following two roots:

equations:

faztw) _ 7} (va)
b2 A(~w)-(Vi—;))
Pl = Bt

Assuming that a3 (C2) = a+bC2, which implies that ap ! (v2) = 22, and that 5, (V1) =
d + fVi, which implies that 85! (c2) = 9773. We can rewrite (2.27) as follows:

L((Va - ) - (Vi ~ 1)) = } (252)
L 1 —d (2.28)
}(a-C)-m-C) =4 (1-259)

Solving (2.28), we obtain

a=3iC+if+im-3Ci+}d
w=3W-Vi+in+ia

which implies that

~

a=%f+§p1—§01+%d
‘ d=-3Vi+3im+ia

wIn oo

f=
| b

and that

& o
o
R O

Sy

Mi+m -G
-th+m-iG

)
[
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Therefore, the player’s bidding functions for ¢; and g; are as follows:

2 1 3 1
c = 502‘}'2'!‘(?1-201—2‘,1)
2 1 3 1
vy = §V2+ﬁ+(p1—zvl—zcl)

The calculation of the ex ante expected gains from trade obtained in the
linear equilibrium of the game I'2\k = 1.

The buyer’s ez ante expected gains from trade are

1 -iv - 1 .
(1-——2—1)dcz+ / (V)dC, | aV; =
o \ @ +-hw

The seller’s ez ante expected gains from trade are

1 /120, - 1 .

-V 1
/(/ (———2 -Cz)dVH' / (0)dVy dC2—24
0 0 1-2C3

The total ex ante expected gains from trade are (1—75 +3%=5)

1 [ 4-in

ool n

1
(1-C2)dCy + / (V) dC; | d; =
0 0 %—%Vl

The calculation of the ex ante expected gains from trade obtained in the
linear equilibrium of the game I'2\k = 0.5.

The buyer’s ez ante expected utility is



3/af 3w 1

/ / (I-I—M)mﬁ / (V1) dC; d‘&-f-/l(m)dv,:ﬁ

128
0 1] z"Vl 3/4
The seller’s ez ante expected utility is
eSS

1-3vi+2C;
/ / (———2 -C}dVi +

(1] 0

e

1
[ ©avi|dc; =
~Ca

3
4

and the total ex ante expected gains from trade are (155 + 195 = &), or

3/4 1

3/4-Ca 1 .
/(/ (1-C)dvi + / (W)M)dcza-/(/(w)m)dcvz:%
0 0

3/4-C3 3/4 \0

The calculation of the ex ante expected gains from trade for the special case
of the game I'3 (when C; =0 and V; = })

In the linear equilibrium of the game I'3\k = 0.5, given that C; =0 and V; = §,

the buyer’s ex ante expected utility is

po ),y )
i+%f(%)( / @-Cu+i+m-1(2) - 10 +ic)) iz | oy
1

+ (y [ (%—m)dz)dy
1) w-1-1(D)

i+
1 (@) o

the seller’s ex ante expected utility is



+
O&.Mu

-3(3) (=+1+3((3)-©)
( ! (p1 —(0))dy | d=

¥ fll)({l(m (0))dy)dz S+

-4

and the total ez ante expected gains from trade are (2L —p1 + g + 71 = 3B) or

-1(3) 1 z+{+2((1)-©)
J ] y-zdy+ J (3)dy) dz
o \e+i+i((h)-0) 0
1
RIODESE.

In the linear equilibrium of the game I'3\k = 1 , assuming that C; =0 and V; = }, the
buyer’s ez ante expected gains from trade are (note that since the buyer proposes the price
n=0),

1
~(y-1(2))) =+
(v-(bv-3(3))) %v_i @

+lj/'2((1}( o)dx)dy=%

1 (%v-%(%)
I

1/2

the seller’s ez ante expected gains from trade

i-1(2) 22+}
(L @-10) 9w+ To-0a) e

+1 jl' (}(0—0)dy)dz=-l}ﬁ

0

and the total ez ante expected gains from trade (32 ~ Bm+ gz + Bm=8) or
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Chapter 3

Credibility and Rationality in
Cheap Talk Games

”In each case we are presented with alternative pictures.
The need to choose between these pictures seems very compelling;
but the non-pictorial content of the pictures is unclear...”
Michael Dummet, " The Logical Basis of Metaphysics”

3.1 Introduction

Cheap talk is an exchange of costless and non-verifiable messages. In a game with multiple
equilibria it naturally comes into the picture as a plausible explanation for why a particular
equilibrium is being played. It seems obvious that in a pure coordination game any meaning-
ful communication should lead to the selection of a (unique) Pareto dominant equilibrium.
But even in a game where players have conflicting preferences over different equilibrium
outcomes, the pre-play communication can reveal some information and therefore, lead to
some degree of coordination.

In order to examine the potential of cheap talk as an equilibrium coordination device,
we can add one or more rounds of pre-play communication to the original game and analyze
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the process of the focal beliefs’ formation assuming that the rules, which determine how the
players transmit information and interpret other players’ signals, are commonly known.

After the idea of equilibrium selection through cheap-talk was first introduced by Far-
rell (1985), a variety of new equilibrium refinements appeared in the literature. The early
development of the cheap-talk refinement theories (Neologism-Proofness (Farrell, 1985) and
Announcement-Proofness (Matthews, Okuno-Fujiwara and Postlewaite, 1991) was moti-
vated by the idea that a plausible equilibrium of communication game had to be ’stable’
with respect to potential deviations that could be induced by credible messages. Later on,
the 'non-equilibrium’ refinement theories of credible message rationalizability (Rabin, 1990
and Zapater, 1991) were constructed on the assumptions of common knowledge of rational-
ity and credible messages and were aimed at explaining both equilibrium and off-equilibrium
behavior of the players within a single framework.

This paper considers the class of games known as the Sender-Receiver Cheap Talk
Games, where only the Sender has private information and makes statements in the first
stage of the game and only the Receiver takes actions in the second stage of the game.
Thus, the Sender can affect the outcome of the game only if he convinces the Receiver to
change his beliefs. There is also a common knowledge of 'communication theory’ (the latter
will be referred to as ’common language’) according to which the Receiver interprets the
Sender’s messages. Clearly, according to any reasonable theory the Sender should not be
able to affect the Receiver’s beliefs unless he reveals his information truthfully. Thus, a
’common language’ includes the message credibility conditions that should be used by the
Receiver to determine whether any given statement is true or false.

The main objective of this paper is to develop a unified framework for comparing
different cheap talk refinements in terms of the relative strength of the underlying epistemic
assumptions (what the players know about each others’ conjectures and rationality) and
the complexity of the language of communication. The latter should enable us to make
better judgments about the applicability of cheap talk refinements in different contexts.

Section 3.2 of this paper introduces the Sender-Receiver Cheap Talk Game (SRCTG), as
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well as some definitions and general remarks on the structure of the language of communica-
tion. Section 3.3 presents a brief overview of the Theories of Neologism and Announcement
Proofness. Section 3.4 develops an epistemic framework for the SRCTG and presents the
formalization of the Stiglitz Critique. Section 3.5 presents the epistemic model of fixed
equilibrium rationalizability. The sufficient epistemic conditions for credible neologism and
credible announcement are formulated and proven in Section 3.6. Section 3.7 discusses
the refinements based on the concept of credible message rationalizability and relates them
to the Theories of Neologism and Announcement Proofness. Section 3.8 compares the
communication-proof equilibrium outcomes obtained by applying different refinements to
the SRCTG. And, Section 3.9 concludes the paper.

3.2 The Sender-Receiver Cheap Talk Game

Denote by I'%() the base game, that is the game where only one of the players, who will
be referred to as the Receiver in the extended cheap talk game, takes actions:!

[%(x) = {T,n,A,u*,u"}, where

T = finite set of Sender’s types;

7 = the Receiver’s prior beliefs about the Sender’s type;
A = finite set of actions available to the Receiver;

u® = the Sender’s payoff function, u* : A x T — R;

u" = the Receiver’s payoff function, 4" : AxT — R.

Denote by I'!(n) the original game I'’(7) ’extended’ by adding one stage of pre-play
message exchange.

'In what follows, I will try to follow as closely as possible the notation from Matthews, Oluno-Fujiwara
and Postlewaite (1991).



I'Y(r) = {T,x, 9,9, u’,u"}, where
M = set of messages available to the Sender;
7 = the Sender’s 'talking’ strategy, 7: T — AM; and Q7 is the Sender’s strategy set;

a = the Receiver’s ’action’ strategy, @ : M — AA; and Q" is the Receiver’s strategy
set.?

B : M — AT is the belief revision function by which the Receiver updates his beliefs
about the Sender’s type.

The interim expected payoffs are defined as follows :

Uralt)= 3 3 r(mit)a(alm)u‘(a,t)

meM acA

U(r,alB)=Y_ 3 Y Bltim)r(mit)a(alm)u’(a,t)

teTmeM acA

Denote by £!(7) the set of Perfect Bayesian Equilibria (PBE) of I’} () with o = (7, a, 8)
being the typical element of this set and by £%() the equilibrium set of ['%(r).

Throughout this paper, we will focus on the class of equilibrium refinements of the
Sender-Receiver Cheap Talk Game (SRCT Game) which are based on Farrell’s ’common
language’ and 'rich language’ assumptions. Joseph Farrell was the first who proposed to
analyze the pre-game communication between the players who were using natural language
to communicate the pay-off relevant information. Because in 2 SRCT Game, the language is
used strategically not all statements made by the Sender can (or should) be believed by the
Receiver. According to Farrell (1985), a message should be believed only if it satisfies certain
credibility criteria that are commonly known among the players. A ’common language’
assumption implies that everybody knows that everybody knows that everybody knows ...

2Note that = and o are defined in such a way that both players can employ mixed strategies.
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ad infinitum that the Receiver believes the Sender’s statement only if it is credible and only
then the Receiver adjusts his beliefs according to a particular belief-revision function 8. The
’rich language’ assumption means that there are sufficiently many messages in a common
language to enable the Sender to upset any equilibrium of I'}(r) if the Sender prefers an
out-of-equilibrium action of the Receiver to his equilibrium payoff.

Let’s take a closer look at the structure of the language of communication. In any
language, we can distinguish between the syntax (the set of symbols) and the semantics
(the meanings of symbols).

First, consider a fairly simple language, where the collection of messages (symbols), M,
available to the Sender consists of all subsets of T, excluding @. Using such language, the
Sender can only say that his type belongs to a particular subset of the type space, like
"My type is in {a,b}”. The meaning of every message m € M is given by the beliefs it
induces. Assuming that both players are Bayesian rational, consider the following class of
the Receiver’s belief-revision functions.

Definition 17 Let B(t|m) be a class of conditional probability distributions, where B(tjm) €
B(t|m) is defined as follows:

O] p(t) =1, iftem
Altm) = Yver w(t)p(t')’ where { p(t) € 0,1, ift¢m

Suppose that the prior beliefs are uniform. Then, when using S(t/m), the Receiver
interprets the Sender’s message "My type is in {a,b}” as implying that the Sender’s type
can be either a or b or, possibly, something else.

Denote by BL(tjm) an element of the class B(t|m) such that p(t) = 1, ift € m
and p(t) = 0, if t ¢ m. When using B%(t}m), the Receiver interprets every message m
literally (takes it at its face value), so that his conditional beliefs, given m, are always
concentrated only on the types t € m. For example, the message "My type is in {a,b}”
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would be understood as follows: "It is equally likely that the Sender’s true type is either a
or b, but not c or d or anything else”.

Now, consider a richer syntax, where, in addition to referring to a subset of types, say
{a, b}, the Sender can say something about the relative likelihoods of him being either type
a or type b. For D C T, define a probability distribution § : D — AM and suppose that
the Sender can announce (m,d), where d = (D, 6).

Definition 18 Let B(t|m) be a class of conditional probability distributions, where 3(tim) €
B(t|m) is defined as follows:

Bt (m,d)) = =2 e { p(t)=8(mlt), ifte D

Leer®()p(t')’ p(t) € [0,1], ift¢ D

Similarly, denote by BL(t|m) an element of the class B(t|m) such that p(t) = & (m]t),
ift € D and p(t) =0, if t ¢ D. For instance, given that the prior beliefs are uniform and
the Receiver is using B%(t|m), he would interpret the Sender’s announcement "My type
is in {a,b}, but it is twice more likely to be an a rather than a b” as implying that the
Sender can be of type a with probability % or he can be of type b with probability }, but
not anything else”. Example 1 illustrates the distinction between B(t|m) and B(t|m).

Example 1: Consider a game I'%(x), where T = {t1,t2}, A = {A;, A2, A3, A¢}, 7(t1) =
w(t2) = 1/2 and the pay-off matrix is as follows:

A4 4 A3 A
1 0,35 3,3 0,2 0,0
t2 0,0 3,1 0,2 0,35

The Sender cannot achieve his preferred outcome unless he can induce the Receiver to take
action A2. The Receiver would choose A2 if he believed, for example, that he was facing
type t; with probability 0.6 and that he was facing type t; with probability 0.4. Suppose
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that the Sender could send a signal S that the Receiver would interpret as §(#;|S) = 0.6
and fS(t2}S) = 0.4. Given that the priors are uniform, the latter would be consistent with
the Sender’s talking strategy 7(S|t;) = 0.6 and 7(S}t2) = 0.4. Clearly, if the announcement
S was believed, the Sender would strictly prefer to make it.

For a given syntax, the relative strength of the credibility criteria can only reflect the
level of the players’ sophistication (the level of mutual knowledge of rationality) that would
be required for the players to determine the credibility of any given message. On the other
hand, for a given level of the players’ sophistication, the syntactic differences between the
languages of communication can lead to the selection of different equilibrium outcomes. Asit
will become clear in the next section, the differences between the Farrell’s refinement theory
and the one developed by Matthews et al. are underpinned by the syntactic differences

described above.

3.3 The Theories of Neologism- and Announcement-Proofness

3.3.1 Neologism-Proof Equilibria

The Farrell’s cheap talk refinement is based on the counterfactual reasoning which is fre-
quently used in standard equilibrium refinements. We start with a putative equilibrium
(an equilibrium that is expected to be played) and test its stability against various off-
equilibrium claims that could be made by the Sender in the cheap talk stage of the game.
A statement is considered to be a ” 'neologism’ relative to the putative equilibrium if it is
sent with zero probability in that equilibrium” (Matthews et al (1991), p.254). Credible
neologisms upset the putative equilibrium.

The language of communication in Farrell’s model (1985) is as follows:

The set of messages M consists of all subsets of T, excluding @. For each non-empty
subset m of T, a neologism is a statement, interpreted as 'My type is in m’.

The Receiver believes neologism 'm® whenever it is credible.
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A neologism is believed, if and only if it causes the Receiver to adopt the following
beliefs:

L _ __ w(&)p(t) w pit)=1,iftem
P e R " p(t) =0, if t ¢ m.

Note that the belief revision rule is the same as BE(tjm) discussed in the previous
section.

Definition 19 A neologism 'm’ is credible relative to an equilibrium (1,, 8) of T'l(x) if
(1) U*(m,a*|t) > U(T,alt), Vtem
(2) U(m,a’|t) < U*(7,alt), Vt € m, where o* € Z°(BL(t|m)) is an element of the set
of the Receiver’s optimal responses given his beliefs B%(t|m).

Thus, a credible neologism has the following meaning: "My type is in m, and if my type
wasn’t in m, I would have preferred to stick with the equilibrium instead of sending this

message”.

Finally, an equilibrium is neologism-proof, if there are no neologisms credible relative

to it.

Example 2: Consider the following game (Matthews et al (1991), p.262).

A A A3
ti 3,3 1,0 2,2
t2 1,0 0,3 2,2

T = {t1,t2} and A = {A;, A2, A3} are the type and the action sets, respectively. The priors
are w(t;) = w(tz) = 1/2. Message {t1} is a neologism relative to the no-communication
equilibrium A3. It is credible because only the Sender’s type t; can get strictly higher
payoff by inducing the Receiver to deviate from the no-communication equilibrium.
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3.3.2 Announcement-Proof Equilibria

In the Theory of Announcement-Proofness (Matthews et al (1991)) the credibility of an off-
equilibrium message is determined by considering the entire set of possible statements that
could be used by the Sender to upset a putative equilibrium. The corresponding language

of communication is relatively more complex:

d = (6,D) is the Sender’s announcement strategy in I'}(r), where D C T is the
non-empty subset of deviant types, and § : D — AM is a ’talking’ strategy for the deviant
types. Deviant types are the ones who wish to deviate from a putative equilibrium.

An announcement is a pair (m,d), where m € §(D), and §(D) is the set of messages
sent with positive probability by the types in D according to the ’talking’ strategy 4.

The Receiver believes the announcement whenever it is credible.

An announcement is believed, if and only if it causes the Receiver to adopt the following
beliefs:

n(ep(t) ()= 8(mls),ifte D

- ____®)pt)
B=(tl(m,d)) = Sver T(t)p(t)’ p(t)=0,ift ¢ D.

Note that the belief revision rule is the same as BE(t|m) discussed in the previous section.

Definition 20 The announcement (m,d) is credible relative to the equilibrium (T, a, ) of
r(x) if

(1) U*((m,d), a*|t) > U(7,a|t),Vt € D (strict for somet € D), m € §({t})

(2") U%((m,d),a*|t) < U%(7,alt),Vt € T\D

(3) U*((m,d),a"lt) > U((m",d),e|t), Vt € D, m € 8({t}), m" € 6(D)\{m}, where
a* € Z%(BE(t|(m, d)) and o’ € BO(BE(t|(m",d))

(4) if 3d' = (&,D’) that satisfies (1) — (3') relative to the same equilibrium, then
U*((m,d),a’|t) > U*((m',d"),|t), ¥t € DND', m € 6({t}), m' € &({t}), o € TO(BL(¢|(m’, ).
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Condition (1') is that deviant types should always prefer the announcement to the
putative equilibrium. Condition (2’) is that non-deviant types should prefer equilibrium to
the announcement. Condition (3’) says that each deviant type should prefer the message
that is optimal for that type. Condition (4') says that if there exist two announcement
strategies that both satisfy (1'),(2'),(3'), the one which is at least weakly dominated by
the other should not be credible. In Matthews et al (1991), condition (1') must hold even
for pessimistic deviant types and condition (2’) must hold even for optimistic non-deviant
types of the Sender, provided that there could be more than one optimal response to any
announcement. The interpretation of credible announcement is this: "My type is in D, and
I am sending message m according to strategy 6(.|t). If I had been type ¢’ in D, I would have
made an announcement that differed only in so far as m would have been chosen according
to strategy 6(.|t"). If my type had not been in D, I would not have used announcement
strategy 6.” (Matthews et al (1991), p.259)

An equilibrium is announcement proof, if there are no announcements that are cred-

ible relative to it.

Example 3: Consider the following game (Matthews et al (1991), p.256) and suppose
that the prior beliefs are 7(t;) = w(t3) =1/2

Al A2 As
t1 4,3 3,0 1,2
t2 3,0 4,3 1,2

In this game, there are no credible neologisms that could upset the no-communication equi-
librium. Consider the following announcement (m,d): m € {{t1},{t2}}, D = {t1,t2},
6(t1) = {t1},6(t2) = {t2}. The announcement (m,d) is credible relative to the no-
communication equilibrium Ajg, since both types at least weakly prefer to deviate from
it (condition (1")) and each type chooses the statement that induces the Receiver to take
the Sender’s preferred action (condition (3')). Note, that there are no credible announce-
ments, as well as credible neologisms, that could upset either one of the communication
equilibrium outcomes A3, A3.



In what follows, we will explicitly specify what the players need to know about the
game and each other in order to be able to infer whether a particular message m is credible

neologism and/or credible announcement.

3.4 Two-Player Epistemic Model for the SRCT Game

3.4.1 The Belief System

Let 2 denote the set of all possible states of the World, where a typical element of the set
w € Q is a complete description of all information that the players have in the beginning of
the game (before the Sender learns his type t). Let P2 (.) denote the probability distribution
on Q induced by player i’s Theory (about his opponent’ actions, beliefs and rationality) at
state w. The lower case pf, (E) denotes the probability that player i assigns to event E at
state w, where E is a subset of ).

The Receiver’s conjectures (], at statew is a probability distribution on M conditional on
T (ie. ¢, € [AM]T) and the Sender’s conjecture ¢, at state w is a probability distribution
on A conditional on M (i.e. 2, € [AAJM).

Let 7, € [AM]T be the Sender’s talking strategy at state wg, then the Receiver’s
conjecture ¢, (m|t) can be specified as follows:

ol (mit) = Y ol (k) Ty, (mt)
wi€R

Also, let o, € [AA]M be the Receiver’s action strategy at state wg, then the Sender’s
conjecture 2, (a|m) can be specified as follows:

ws (alm) = Y ot (wi) @, (alm)
wi€ER

Assuming that the Receiver’s prior beliefs w,, about the Sender’s type t € T are com-
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monly known among the players at every state w, the Receiver’s belief-revision function .,
where 8, € [AT]M, can be defined as follows:

—

_ m ()l (mit)
Ao (tim) = EACI AT,

for all t € T and all m € M, such that ¢, (m|t) > 0 for some ¢.

Denote by [m] = {w € Q: =, (m|t) > 0 for some ¢ € T} the event that the Sender an-
nounces message m for some realization of his type t € T.

3.4.2 The Knowledge Operator

For every player i, where ¢ € {s,r}, define the knowledge operator K* : 2% — 22, For every
event E, K*E is the set of all w € Q such that player ¢ knows E (i.e. p}, (E) = 1). We will
assume that the operator K* has the following properties:

[K1 K'ECE (’non-delusion’)

[K2] E C F implies K*E C K'F (Modus Ponens)

[K3] K’E c K'K'E (’knowing that you know’)
[K4] ~K'E C K'~-K'E (knowing that you don't know’)

Assumption [K1] implies that player i cannot know something that is not true. For
instance, at some state w € {2, the Sender cannot know that the Receiver interprets message
m literally unless the Receiver’s beliefs are indeed consistent with the literal interpretation
of message m. Assumption [K2] implies that if player i ever discovers that E then he must
also know F. Assumption {K3] means that if player ¢ knows E then he always knows that
he knows E and assumption [K4] means that if player i does not know E then he always
knows that he does not know E.

Define MKE = K*EN...NK7E, where the superscripts , j refer to different players. If
w € MKE, then event E is mutually known at statew. Define CKE = MKENMK (MKE)
N MK (MK (MKE))N...; f w € CKE, call E commonly known at w.
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In what follows, we will assume that at every state w € ) the game itself as well as the

epistemic model are commonly known among the players.

3.4.3 Bayesian Rationality

The standard definition of extensive form Bayesian rationality requires that each player
chooses a strategy which is a best response to his beliefs at each information set that is not
precluded by the very same strategy. Also, at each decision node, the players’ conjectures
should be consistent with all information they have and upon arrival of new information
they should use some version of Bayes rule to update their beliefs. Thus, some information
sets may never be reached because there are no consistent beliefs that support a strategy
profile that reaches these nodes with positive probability.

In a SRCT Game, any information set of the Receiver could be reached during the
pre-play communication from any t € T. Therefore, in the absence of any restrictions on
how the players interpret messages sent in the cheap-talk stage of the game, any 7 € 9* is
rationalizable.

Let A*(m) = {a* : argmazaca Y ie7 B(tim)u"(a,t)} be the set of Receiver’s optimal
actions in response to message m and let A* = lélM A*(m) be the set of Receiver’s optimal
m

responses to all messages in M.

Suppose that both players, Sender and Receiver, are Bayesian rational and denote by
RF(0) = {a* € [AA*]M} the set of the Receiver’s Bayesian rational action’ strategies and
by R*(0) = {T* € [AM]T} the set of the Sender’s Bayesian rational ’talking’ strategies.

Also, let R"(1) denote the set of Receiver's optimal 'action’ strategies consistent with
the Receiver’s knowing that the Sender is Bayesian rational and R*(1) denote the set of the
Sender’s optimal ’talking’ strategies consistent with the Sender’s knowing that Receiver is
Bayesian rational.

Formally, for any n € Z,, where n corresponds to the number of levels of mutual
knowledge of rationality among the players, R*(n), ¢*(n), where i € {r, s}, can be defined
inductively as follows:
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[R1] R*(n +1) = {T € R*(n) : 3p*(n + 1) € co(R"(n)), such that 7 is optimal against
¢*(n+1)}

[R2] RF(n+1) = {a € R"(n) : p"(n + 1) € co(R*(n)), such that.a is optimal against
¢ (n+1)}

where co(R*(n)) is the convex hull of player i’s mixed strategies and ¢*(n) is a player

i’s nth order conjecture profile.

Also, let Ri(n) = N Ri(k) for i € {r,s}. Then, whenever R"(1) # @ and R*(1) # 0, we
can define -

MKR={weQ:7,e R*(1)}Nn{weQ:a, € R (1)}

which represents the event that Bayesian rationality is mutually known among the players
and where R denotes the event that both players are Bayesian rational. Generally, whenever
Rr(n) # 0 and R*(n) # 0, we can define

MK'R={weQ:7,e R*(n)}INn{weQ:a, € R"(n)}
which represents the event that Bayesian rationality is nth order mutually known among
the players.

Let CK (I'!) denote the event that a particular game I'! is commonly known among the
players. Whenever CK (I'') N MK™RN [m] # 0 , it implies that there is a state w, where
the nth order mutual knowledge of Bayesian rationality is consistent with the Sender’s
announcing m in the game I'l. In the absence of any restrictions on the players’ beliefs, the
set CK (I'') N MK™RN [m] is non-empty for any m € M and for any n € Z,..

3.4.4 Common Language

Suppose that we want to describe a conventional interpretation of messages sent in the
cheap talk stage of the game. For any M C M, define

LM)={weQ: 4, (tm) = B(tm) for all m € M}
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and
LM ={weQ: A (tm) = Bi(tm) forallme M }
where the classes of conditional probability distributions BL(tjm) and BZ(t|m) were defined

in Section 3.2. The set L (m) (as well as L (m)) is a collection of the states of the World,
where the Receiver’s conjectures are consistent with the literal interpretation of message m.

Whenever CK (I'') N MK™RN L (m) # @, it implies that there is a state w, where the
literal interpretation of message m in the game I'! is consistent with the nth order mutual
knowledge of rationality among the players. Note that any interpretation of message m
such that 7, (mi|t) = 0 for all t € T would be consistent with any level of mutual knowledge
of rationality at state w.

3.4.5 The Stiglitz Critique

Example 2 considered in Section 3.3 is often used to illustrate the Stiglitz Critique (also
known as the Stiglitz Paradoz) in the context of the cheap talk games.

Example 2 (revisited): Suppose that the priors are uniform and the pay-off matrix is
as follows:

A A2 A3

t 3,3 1,0 2,2

tz 1,0 0,3 2,2
The question is whether there are any credible statements that the Sender can make dur-
ing the pre-play communication that would induce the Receiver to deviate from the no-
communication equilibrium A3. Here, the Stiglitz Paradoz can be stated as follows: if it
is commonly known that message {t;} is credible, then it is not credible. In order to see
how we arrive at contradiction, let message {t;,f2} be the no-communication equilibrium
message, which is interpreted by the Receiver as uninformative, and suppose that the cred-
ibility of message {¢;} is commonly known. Then, it should be commonly known that the
Receiver would interpret message {t;} literally. But then, the Receiver should also know
that only type t2 of the Sender would announce {t;,f2} and, therefore, his best response
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to message {t;,f2} would be to choose A3. Knowing that, both types of the Sender would
then prefer to announce {t;}, which would imply that the Receiver should not believe {t;}
and message {t;} is not credible.

Using the epistemic model developed in this Section, we can show that at any state of
the world, where both players are rational and the game described in Example 2 together
with the literal interpretation of message {t;} are commonly known, either the Receiver or
the Sender cannot know that his opponent is rational.

Propaosition 21 Any state w € Q, where the game described in Ezample 2 is commonly
known and w € CKL({t:}) N R" N R®, must be such that w ¢ MKR.

Proof.

First of all, note that common knowledge of the literal interpretation of message {t;}
is not sufficient to imply that Receiver should interpret any message m # {t;} as a signal
than could be sent only by type 2 of the Sender.

At any w € CKL({t:}), Bu (bl {t1}) = retfiliqmy = 1 and Ao (02l {t1)) =

T ({t1 }ta

T Ty = 0 Which implies that ¢f, ({t1}t2) = 0 and ¢, ({t1} |t1) > 0. Then,
at any w € CKL ({t1}), the Receiver believes that type t; of the Sender never announces
message {t1}, i.e. for any wg, such that pf, (wx) > 0, 7, ({t1} [t2) = 0 and =, (m]t2) > 0
for some m € M\ {t1} . The latter does not imply that =, (m|t) = 0.

Step I: At any state of the world, where literal interpretation of message {t} is com-
monly known and, in addition, the Receiver is rational and the Sender knows that Receiver
is rational, the type t3 of the Sender who sends any message that could distinguish him

from type tjcannot be rational.

Consider two states of the world wy and wg, as described in Table 1, such that wy,ws €
CKL ({t1}) N MKR". The Receiver’ Theory is such that p"(w;) =1 —¢ and p" (uwn) = ¢,
i.e. at states wy and wp, the Receiver assigns probability (1 — &) to him being at state wy
and he assigns probability € to him being at state wp. The Sender’s Theories at states wy,wq
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are such that pf, (w1) =1 and p;, (w2) =1, i.e. at each state he knows exactly what state
he is at. Note that in Table 1, we simply picked two states where type t2 of the Sender
chooses at least one message other than {¢;} with positive probability.

Table 1

Rl
a(A]{t}) =1
o (Az|{t2}) =1
a(As|{t1,t2}) =1

] 31
T({t1}1t1) =1
4 T({t2}t2) =1/2 1, (1 ~e
| 7({t1,t2} [t2) = 1/2
) )
T({t1} |t1) = 1/2
T({t2} It2) = 1/2
\ l,e
T({tI’tZ} [tl) = 1/2 (w2)
| T({t1,t2} [t2) = 1/2

The imputed beliefs of the Receiver conditional on M are as follows: for k € {1,2}

[ B il {61} =1
) Bun (1] {t2}) =1
Bun (t1| {t1,22}) = 2,; =15

g ﬂ"’k (tzl {tlytZ}) = }}%{ = ch

Fore € [%, 1] , the Receiver’s optimal response to message {t),23} is A3 and the optimal
responses to messages {t;} and {t2} are A; and A2, respectively. So, given that € € [%, 1] ,

97



the Receiver is rational at both states w; and w», while the Sender is irrational at both

states.3

Step II: At any state of the world, where literal interpretation of message {t} is
commonly known, both players are rational and the Sender knows that the Receiver is
rational, the Receiver cannot know that the Sender is rational.

Suppose that at states w; and wy, described in Table 2, the Sender never announces {t,},
conditional on his type being t3, but he can announce either {t;} or {t;,%2} with positive
probability, conditional on his type being t; (see Table 2 below)

Table 2

Rl
a(Al{t}) =1
a(As] {t1,t2}) =1

S1
T({tx} !tl) =1 Ll-¢
({t1, 2} [t2) = 1 (w1)
32

T({t1}{t) =1/3
({t1,t2} 1t1) = 2/3 (lg.f)
T({t1,t2}|t2) =1

*Note that if € € [0,3] , the Receiver is irrational at both states wy and wy, implying that the Sender
cannot kmow that he is rational, which would contradict our assumption.



The imputed beliefs of the Receiver conditional on: M are as follows: for k € {1,2}

Bun (1] {t1}) =1

o (1] t1,a1) = o155
B (t2| {t1,22}) = 3:—“

Forc e [%, 1] , the Receiver’s optimal response to message {t,,t2} is A3 and his optimal
response to message {t1} is A;. So, fore € [%, 1] , the Receiver is rational at both states
wy and wp. The Sender is rational at state w; but not at state we. Moreover, at state ey,
the Sender knows that the Receiver assigns probability € to him being irrational (as state
wy the Sender knows that Receiver does not know that the Sender is rational).

So, we have shown that at any state of the world, where both Sender and Receiver are
rational, the Sender knows that the Receiver is rational and the literal interpretation of
message {t,} is commonly known, the Receiver cannot know that the Sender is rational.
Thus, in Example 2, literal interpretation of message {¢,} is inconsistent with the mutual
knowledge of rationality among the players. B

One important remark that has to be made here is that the inconsistency between the
literal interpretation of message {t,} and the mutual knowledge of rationality among the
players in the game in Example 2 is present irrespective of whether we look at it as a
two-player or as a (T + 1)-player extensive form game.

Consider a (T + 1)-player representation of the SRCT game, where there is only one
Receiver, but the Sender(s) at different information sets ¢ € T of the extensive form game
'l () are viewed as independent players. Define a state space $2 as a cross product of the
players’ belief space Q and the Sender’s type space T, i.e. § =Q x T. A generic element of
Q is @ = (w,t),, where any realization of t € T' can be viewed as a state of Nature observed
only by the Sender.

Consider the game described in Example 2. Suppose that the Receiver is rational and
that he believes that both ¢; and t; are equally likely, but he does not know exactly what
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state he is at, i.e. p” (@1) = 13% , p" (@2) = } and p" (@3) = § (See Table 3 below).

Table 3

R1

a(A|{t}) =1
a(Ag|{t1,t2}) =1

31
({1} lt1) =1 1,152
) 1)
T({t1,t2}t2) = 1 1,1
- (@2)
({t1}|t1) = 1/3 Le
T({t1, 2} [t1) = 2/3 o

As one can see from Table 3, whenever the literal interpretation of message {t;} is
commonly know and both players are rational, then either the Sender’s or the Receiver’s
rationality cannot be mutually known.

In application to the game in Example 2, both theories of Neologism and Announcement
Proofness stipulate that Receiver should believe that message {t;} has been sent by the
Sender’s type t; (i.e. that {¢,} is credible), because it would be irrational for the Sender’s
type ¢ not to send such message knowing that Receiver would interpret it literally, and, on
the other hand, it would be irrational for the Sender’s type t; to send message {t;} knowing
that Receiver would interpret it literally. Thus, the Receiver cannot know that message
{t1} is credible without also knowing that the Sender is rational. The argument underlying
the Stiglitz critique, which implicitly assumes an epistemic framework similar to the one
described above, is that in the game in Example 2 it is impossible for the Receiver to know
that the Sender is rational and, at the same time, continue to believe that message {t,} is
credible. Thus, it appears that by applying the theories of Neologism and Announcement
Proofness to the game in Example 2 we inevitably arrive at contradiction. The reason for
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this is because in the framework of our epistemic model the possibility that the non-deviant
types* could have sent an off-equilibrium message cannot be ruled out unless the Receiver
considers all implications of him believing every off-equilibrium message and the latter being
commonly known among the players.

However, the common languages in both theories implicitly contain certain assumptions
that eliminate this inconsistency. Indeed, the inconsistency pointed out by Stiglitz is elim-
inated if an explicit distinction between equilibrium and off-equilibrium messages becomes
part of the common language used by the players (and is, therefore, itself commonly known).

3.5 Epistemic Model of Fixed-Equilibrium Rationalizability

First, we will introduce the concept of a derived game, similar to the one developed in the
signalling games literature (see Sobel et al (1990)). Suppose that now the Sender can either
choose some (fixed) pay-off and end the game or, alternatively, he can choose to participate
in a derived game I* (), where the pay-off matrix is exactly the same as in the original game
I'! (r), but the set of messages available to the Sender is only a subset of messages of the
original game. Consider a putative equilibrium o¢ of I'} (). Let ['L.(r) be a derived game,
where the set M of messages available to the Sender consists of all messages that are not
in the support of the putative equilibrium talking’ strategy 7¢, i.e. M = M\support (7¢)

Consider Example 2 again and suppose that the Sender has a choice of either taking
the pay-off equal to 2 (which he would have received in the no-communication equilibrium
of the game I'!(7) in Example 2), or he can choose to play the derived game F1.(x), where
he can only send some message identifying himself either as type ¢; or as type t2. Denote
by m® the message that automatically triggers the putative equilibrium response from the
Receiver, i.e. the Receiver’s action set conditional on the Sender’s choosing message m® is
a singleton {A3}. Then, the Receiver’s conjecture % is a probability distribution on the

“The types that prefer to stick with the equilibrium given that Receiver believes every off-equilibrium
message.
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set M conditional on T and the Sender’s conjecture % is a probability distribution on A
conditional on M.

Consider three states of the World, wy,d» and &3, such that the players’ beliefs are as
described in Table 4 below.

Table 4
o (41l f},E) =1
d o
{Q(Azl{tz},f‘) =1 an { a(Asjm®) =1

31

r({t1},0)t) =1 N

e )
52

{ T({tz},f‘|t2) =0 N

173

T(méjtp) =1 3
33

T({tl},f‘ltg) =1 y

T(mejtz) =0 (‘522)

Suppose that the Receiver knows that the Sender is rational (i.e. £ = 0). Then, he
should expect the Sender’s type t; to choose I and announce message {t;}, and he should
expect the Sender’s type t2 to choose the putative equilibrium pay-off. Thus, if £ = 0, both
players are rational and there is also common knowledge of rationality, which is consistent
with the common knowledge of the literal interpretation of message {t;}.

One important point has to be made here is that neither the mutual knowledge of
rationality nor the common knowledge of the literal interpretation of message {t;} are
necessary for the rational Sender’s type t; to announce {t;} and for the rational Receiver
to respond to {t;} by playing A; in the game in Example 2.
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In order to see why the mutual knowledge of rationality is not necessary for the rational
Sender’s type ¢, to announce {¢;} and for the rational Receiver to respond by playing A,,
note that even if Receiver is not certain that the Sender is rational and € < }, his best
response to message {t1} is A; and, knowing that, the rational type t; of the Sender should
announce {t,} (see Table 4)

In order to see why the common knowledge of the literal interpretation of message {t,}
is not necessary either, consider the subset of the states of the world described in Table 5.

Table 5
T W
a(41l{n},I) =1 o (4sl{t:},F) =1
a(Azl{tz},f')=1 a(AgI{tz},f‘)=1
a(As|m®) =1 a(As|lm®) =1
33
T({tl} ,Tif1) =1 1 V,% V,%
7 (m®|t1) =0 @) (@)
r7)
{ T ) =0 1,55 0,0
T(melt) =1 (@) (ax)
)
t.},lta) =1
7({t:},Tlt2) 16,5 X
| T(mt2) =0 @s) (@)

At states @y and wy, the Sender is rational even if ¥ > 0, i.e. if he believes that Receiver
may not always interpret message {t;} literally. Then, at state &, the Receiver assigns
probability % to the Sender’s type t; assigning probability (1 — ») to the event that Receiver
will respond to message {t1} by playing As. The latter implies that at state &y the literal
interpretation of message {t;} is not commonly known. (However, note that at states &g
and @g, the Sender can only be rational if £ = 0, i.e. if he knows that he is at the state
where Receiver does not interpret message {¢;} literally.)
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The sufficient epistemic conditions for a particular off-equilibrium message to be a credi-
ble neologism or a credible announcement will be formulated and proven in the next section.

3.6 Sufficient Epistemic Conditions for Credible Neologism
and Credible Announcement

Consider a putative equilibrium ¢* of I'}(r). Let f‘}w.,.(w) be a derived game, where the
set of messages available to the Sender consists of all messages in M C M, where M =
M\ support (7¢). Let " s o« denote a game where the players can either choose the putative
equilibrium pay-offs by selecting (m*, a®), or they can choose to participate in the derived

game f‘}‘,,',.(w).

Proposition 22 Consider a putative equilibrium 0° of (%) and an off-equilibrium mes-
sagem € M. CK (Cmoe NL(m))N MKRN [m] # O, then message m is a credible
neologism relative to the putative equilibrium o®.

Proof. Suppose that CK (' g« N L(m))N MKRN[m] # 0.

Then, at every state @ € CK (Cmoe NL(m)) N MKRN [m], o € R (1), where
ar (m) € AA*(m) and A*(m) = {a* : argmaz.eca Y7 B(tim)u"(a,t),where B(t|m) €
BE(tim)}, and 72 € R’ (1), where 72 (m|t) > 0 for every t € m. Therefore, it must be the
case that U* (m, a* (m) |t) > U* (7%, af|t) for all t € m. (Condition (1) of the Definition 19
holds)

Suppose that 3’ ¢ m, such that U* (m,a*® (m) |t') > U*® (7%, a®}t') . Then, at every state
@ € CK (Tmge N L(m)) N MKRN [m], the Sender’s talking’ strategy 7% would be such
that 72, (mjt") > 0 and, therefore, the Receiver’s best response af, € R" (1) would be such
that af, (m) ¢ AA* (m). @ (Condition (2) of the Definition 19 holds). B
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Corollary 23 Suppose that a putative equilibrium o° of T}(x) is neologism-proof. Then
it must be the case that for every message m € M, CK (P'm,g« N L(m)) N MKRN [m] = 0.

The main distinction between the Theory of Neologism-Proofness and the Theory of
Announcement-Proofness is that the latter allows the Sender to choose any message from
the set of all off-equilibrium messages M, which could potentially induce the Receiver to
take the Sender’s most preferred action. The syntactic differences between the languages
of communication corresponding to these theories have been discussed in Section 3.2.

Proposition 24 Consider a putative equilibrium o° of I'}(7) and an off-equilibrium mes-
sage m € M. Whenever CK(I‘H',. nk (M)) NMKRN [m] # 0, then message m is a
credible announcement relative to the putative equilibrium o°.

Proof. Suppose that CK (PA?.a' nL (M)) NMKRN [m] #0.

Then at every state & € CK (Fyy,. N L (M)) N MKRN[m], a3 € F (1), where
o3 (m) € AA* (m) and A*(m) = {a" : argmazaea Seer B(tim)u"(a, 1), where f(tlm) €
BL(t}m)} and 75 € R’(1), where Vt € m , 7% (m|t) > 0. Therefore, U* (r*,a"|t) >
U* (v¢, a%|t) for all t € m (Condition (1’) of the Definition 20 holds).

(By contradiction) Suppose that for some t' ¢ m, U* (m,a* (m)|t') > U*(r¢,a%|t'),
then it must be the case that CK (I‘ Mae D L (M)) N MKRN [m] = @ (Condition (2') of
the Definition 20 holds; the argument is the same as in Proposition 22)

(By contradiction) Suppose that for some ¢’ € mnm/, U* (m/, a* (m') [t') > U* (m,a* (m) |t'),
where a* (m) € AA®* (m),a® (m’) € AA* (m’), but then
CK (TjyeNL(M)) N MKRN [m] = @ (given that the Sender is rational and that he
knows how the Receiver would respond to m and m’, the Sender could not have chosen m
over m'). (Condition (3') of the Definition 20 holds)

(By contradiction) Suppose that for some D’ C T, there is a ’talking’ strategy 7/, such
that support (') € M°® and 7' is optimal against some o, such that o/ (m) € AA®*(m)
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for any m € support(7') and that for some D” C T, there is a ’talking’ strategy 7, such
that support (") € M® and 7" is optimal against some o, such that o’ (m) € AA* (m)
for any m € support (") . Also, suppose that for both 7/ and 7 conditions (1), (2),(3')
of the Definition 20 hold. Then, whenever there is a Sender’s type t € D’ N D”, such that
U (7', |t) > U* (1”,d'|t) , it must be the case that 7’ € R° (1), 7’ ¢ R’ (1) and, therefore,
for any m € M, such that 7 (mt) > 0, but ' (mit) =0, CK (T . NL (M)) NMKRN
[m] = 0. (Condition (4’) of the Definition 20 holds). B

Corollary 25 Suppose that a putative equilibrium ¢ of T}(r) is announcement-proof.
Then it must be the case that for every message m € M, CK (I'A?ﬁ. nE(M)) NMKRN
[m]=0.

An equilibrium selection theory for the SRCT Game, where common knowledge of credi-
ble messages is fully consistent with the common knowledge of rationality among the players

without asymmetric treatment of equilibrium and non-equilibrium messages, is discussed in
the next section.

3.7 Credible Message Rationalizability

A ’non-equilibrium’ cheap-talk refinement based on the assumption that rationality is com-
mon knowledge was introduced by Rabin (1990), who showed that existence and common
knowledge of credible messages could reduce the set of rationalizable strategies and allow
to predict when the meaningful communication could develop. The common language cor-
responding to Rabin’s theory of credible message rationalizability is such that ’honesty’
remains the focal policy.

Let X be a collection of mutually exclusive subsets of T, X; € X.
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Denote by A*(Xj;) the set of the Receiver's optimal responses, given that his beliefs are
concentrated on the types ¢ € X;. Also, denote by Y*(Xj;, X) the set of the Sender’s types
that do not belong to the set X, but may want to imitate the types in Xj;.

Definition 26 Y*(Xj;, X) is the set of types in T\Tx (all types that are not in the type
profile X), excluding any type t with the property that either:

(1) A*(X;) = {a* € A : ¢* € argmingea- u*(a, t)} or

(2) 3Xi € X : u¥(a%,t) < u®(a,t) Va* € A*(X;),Va € A*(X}).

Thus, Y*(Xj, X) does not include the types that would obtain their worst possible payoff
by imitating the types in X; or who could do better by imitating the types that belong to

some other subset X.

Definition 27 Let B(X;,X) be a set of probability distributions such that 8 € B(X;, %) is
defined as follows:

it p(t) =1, fteX;

_ w(t)p X

B(tlX;) = Soer ER(E) where Pit; =0, llt»h'f t e Y*(X;, %),
p(t) =0, otherwise

Definition 28 X is a credible message profile if, for all X; € X,
(1) vt € X, A‘(Xj) = arg maxge4- u*(a, t)
(2) VB € B(X;, X), A*(X;) = arg maxeea Teer B(tIX;)u"(a,2)

A message profile is considered credible if given that Receiver believes the literal meaning
of the statements, the types sending these messages obtain their best possible payoffs and
the messages are true enough in the sense that believing that some types other than the
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types in X; might have sent the same message as the types in X; does not affect the
Receiver’s optimal response to those messages.

Let M(X*) denote the maximal credible message profile. For any game I' (), there
exists a unique maximal credible message profile, which is the coarsest partition of the
Sender’s types who could send a credible message. And a Credible Message Equilibrium
(CME), which is an equilibrium formed by the strategies that are consistent with the
Theory of Credible Message Rationalizability, exists for all simple communication games
(See Rabin (1990) for details).

Proposition 29 For every message m ¢ M(%X*), CKRNCK (f, (M )) N[m] = 0.

Proof. (By contradiction) Suppose that for some messagem ¢ M(X*), CKRNCK (1-} M )) N
[m] # 0. Then, at every state w € CKRNCK (1.3 (M )) N[m}, a € R (o), where a2, (m) €
AA* (m), and 72 € R (c0) , where Vt € m, 72 (mt) > 0. Also, CKRNCK (13 (M))n[m] #
@ implies that for any level of mutual knowledge of rationality neither of the types t ¢ m
prefers to be the first, second or any higher order imitator of the types t € m.

Then, all types t € m can send a credible message m consistent with the common
knowledge of rationality and for any m’ € M\ {m}, such that m’ O ¢t and m’ C m,
u*(a,t) > u*(d',t), Va € A*(m), Va' € A*(m’). But then it means that m must belong to
the maximal credible message profile M(X*).® B

Thus, the Theories of Neologism-Proofness and Announcement-Proofness impose weaker
credibility requirements on the off-equilibrium messages than the Theory of Credible Mes-
sage Rationalizability. Indeed, according to the Theories of Neologism-Proofness and An-
nouncement Proofness, some equilibria could be ’defeated’ by a message sent according to
some 'talking’ strategy which is not credible message rationalizable. Therefore, if we were to
rank these refinements according to the relative strength of epistemic conditions reflecting
the level of sophistication required for the players to be able to evaluate the credibility of an
off-equilibrium message, we could refer to NPE and APE as strongly undefeated (compared
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to CME). So, while both approaches attempt to eliminate the implausible equilibria by re-
stricting the set of allowable belief profiles, the Theory of Credible Message Rationalizability
does that by introducing simple language of communication and imposing strong require-
ment on the level of the players’ sophistication (common knowledge of rationality) at all
states of the world, while the Theory of Neologism (or Announcement)-Proofness attempts
to eliminate the implausible equilibria by introducing rather complicated common language
of communication which includes explicit references to (each) putative equilibrium.?

3.8 Communication Equilibria

In this section, we will compare the collections of message that are credible neologisms
and/or credible announcements with the collection of messages that constitute a credible
message profile. Denote by K* the message profile containing all messages that are credible
neologisms relative to some equilibrium o of I'' () and denote by .A* the message pro-
file containing all messages such that for each m there is an announcement (m,d), where
6(mjt) > 0 for ¥Vt € D, D C T, which is a credible relative to some equilibrium ¢ of I'! (x).

Proposition 30 In general, K* # A* # M(X*). For the games which have more than one
PBE, M(%X*) C A*.8

Thus, in a game I'! (1), which has more than one equilibrium, the types that can send
messages which constitute a (unique) maximal credible message profile should also be able
to make credible announcements, therefore, if a putative equilibrium is not a CME, then
it cannot be an APE either.

51t is possible to construct a credible message rationalizability theory that uses richer language and allows
for more communication (See for example, Zapater (1991)).
S For the proof, see Appendiz.
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Corollary 31 If an equilibrium is CME, but not APE, it must be the no-communication
equilibrium.

Corollary 32 IfT'\(r) is a game of pure coordination (where for anyt € T, argmaz,c 4-u*(t, a)
= argmazaca-v' (t,a)), then a separating CME is also APE and NPE.

Corollary 31 states that whenever CME is not APE, communication is ineffective.
Therefore, the Theory of Announcement-Proofness rules out exactly the same 'implausible’
informative equilibrium outcomes as the Theory of Credible Message Rationalizability.

3.9 Discussion

The language of communication used by the players in a strategic interaction reflects how
sophisticated they are and how much they know about each other. If the players share
common background, one would expect them to coordinate successfully in any game of
common interest. Thus, the plausibility of any cheap talk refinement is highly context
dependent.

The Theories of Neologism and Announcement-Proofness follow the logic of forward
induction, treating the deviations from the putative equilibrium as signals (not as trembles
or mistakes). In the context of the cheap talk games, the common language assumption
eliminates the ambiguity in the interpretation of deviations. Each player knows the meaning
of each potential deviation, provided that he knows that his opponent is rational and that
he also knows how each deviation would be interpreted by the Receiver given that certain
(commonly known) conditions are satisfied. Because the Theory of Neologism- Proofness
implicitly assumes that the Receiver is not certain whether the Sender chooses the ’best’
deviation from a putative equilibrium, it seems more appropriate in the context, where the
players do not have enough information about each other and therefore, the Receiver has
to interpret the Sender’s signals with caution.
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By fixing the meaning of the putative equilibrium messages, we implicitly assume
that the players’ knowledge of their opponents’ rationality is bounded.” Suppose that the
Sender has not deviated from the equilibrium path although he had an opportunity to do
so. Shouldn’t the Receiver also interpret the absence of a deviation as a signal? As we
have seen in Example 2, the mutual knowledge of rationality entails exactly this question,
forcing the players to revise the meaning of the putative equilibrium message as well. In
order to get around this problem and avoid the inconsistency between common knowledge
of credible messages and mutual knowledge of rationality, the theory of fixed equilibrium
rationalizability treats equilibrium and non-equilibrium states differently. The story often
used to justify this approach is that the players "arrive at equilibrium behavior following
the period of learning and experimentation”, (Matthews et al. (1990), p.310) and once
the equilibrium behavior becomes a ’routine’, they attempt to conjecture what happens
if they deviate from the equilibrium path. Although such explanation seems plausible in
the context of a learning model, which presents a complete theory of play (on and off-the
equilibrium), it seems less plausible when the theory of equilibrium selection hinges on the

assumption of a commonly known language of communication.

The Theory of Neologism-Proofness is coherent (i.e. it implies the predicted behavior),
if it is commonly known among the players that the equilibrium that is being played is
neologism-proof. In other words, at all neologism-proof equilibrium states of the world, it
should be commonly known that at every off-equilibrium state where some message m € M
is announced and the literal interpretation of message m in Iy ge is commonly known,
the rationality cannot be mutually known among the players (i.e. it should be commonly
known that for any m € M,CK (L' g« N L (m)) " MKRN [m] = 0). Similarly, the Theory
of Announcement-Proofness is coherent, if it is commonly known among the players that
the equilibrium that is being played is announcement-proof (i.e. it should be commonly
known that for any m € M, CK (l‘ﬂ’,, nL (M)) NMKRN[m] = 0). Thus, the coherence
of both refinement theories requires that at every ’credible message proof - equilibrium’
state of the world, it should be commonly known among the players that the common

It has been shown (Reny (1993), Bicchieri (1993)), that the backward induction argument relies on the
bounded rationality assumption as well.
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knowledge of credible off-equilibriumn messages is inconsistent with the mutual knowledge
of rationality. Effectively, it means that the players must know virtually everything about
off-equilibrium states and virtually nothing about equilibrium states in order to be able to
choose between different equilibrium paths.
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APPENDIX
Proof of Proposition 30:

To prove the first part of the Proposition, it is sufficient to show that £* # M(%x*). (To
see that K* # A*, see Matthews et al. (1991) for counterexamples).

Proof. First, we have to show that 3m, such that m € K*, but m ¢ M(X*).

Consider a neologism K, which is credible relative to some . Suppose there ex-
ist some t ¢ K*, such that U*(o|t) > U*(o’|t) for any other ¢’ , including the one
that might be induced by K (t ¢ K). Suppose there exists a* = argmingeys u’(a,t) =
argmazaca Y et B(t) {t})u"(a,t), where {t} is a message that allows the Receiver to iden-
tify the Sender as type t. If we sequentially delete all such messages that might reveal
the Sender’s identity (in fact announcing any such message would be a strictly dominant
strategy for the Sender), then given that there is no other Kj € K : u*(a*,t) < u*(a,t),
Va* € A*(K), Va € A*(K}) pooling with K might be the only remaining undominated
strategy for the Sender , irrespective of the fact that U*(s|t) > U*(s'|t) for any other o’ ,
including the one that might be induced by K. Therefore, K does not belong to a credible

message profile.

We also have to show that Im, such that m € M(%X*), but m ¢K* Consider neologisms
K',K", such that U*(o2|t) > U*(0,|t) and U*(o2|t) > U*(o|t) for all t in K’ and U*(a, |t) >
U*(0,|t) and U*(01|t) > U*(02|t) for all t in K" and also for all t in K’ , U*(01[t) > U*(0o|t)
and for all ¢ in K’, U*(02|t) > U*(0,|t), then none of these neologisms is credible relative
to so , since condition (2) of the definition of credible neologism fails, but {{K"},{K"}} is
a credible message profile, which upsets oo. B

Denote by D* the type profile that contains only those types, who can make credible

announcements.
For the games which have more than one PBE, M(%*) C A®.

Proof. Suppose that the game I'}(x) has more than one equilibrium (if the game has
one equilibrium, then the only messages in the credible message profile are the putative
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equilibrium messages). We have to show that if the types in X; € X*can send messages
that belong to the credible message profile, then the corresponding types D; € D*, where
Dj contains exactly those types that are in X, can make credible announcements.

Consider X; € X* and some equilibrium &, such that precisely the types in D; = Xj
would want to deviate from it. Since for all t in X}, A*(X;) = {a®|a € argmaz,ca-u*(a,t)},
then there must exist some ’talking strategy’ 6, where M(X;) € 6(Dj;), such that for all
t € Dj, there is some message m € M(Xj), such that U*(m, d|t) > U*(o|t) (strict for some

t).

For any m" € §(D;)\{m}, such that m” ¢ M(Xj), it has to be the case that there
exist some t’ in D; ,such that U*(m”,d|t") < U*(m,d}t"), which implies that condi-
tions (1’) and (3') of the definition of credible announcement hold. Since none of the
types outside X; could imitate the types in X; (by definition of the credible message
profile) it has to be the case that condition (2')U*(m,djt) < U*(o|t),,Vt € T\D; holds
as well ( <= Y*(X;,T) = 0 ) Consider some X; # Xj, Xy € X* , such that for
Dy = Xi, 38 : D — AM and conditions (1'),(2'),(3’) of the definition of credible
announcement hold. Suppose that Dx N D; # @, but then it has to be the case that
A*(Xi) = A*(X;) = A*(X;U X}), since otherwise either (X — Xj;) or (X — X}) should not
be in X* which would contradict our assumption. So, condition (4’) trivially holds, since
for any X, X; € X*, such that A*(X;) # A*(Xj), X, X;jand therefore Di, D; have to be
disjoint. B
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