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Do economies adjust slowly to certain technological innovations and
more rapidly to others? We argue that the adjustment is slower when
innovations mainly benefit production activities requiring skills that
are more different from those used in the rest of the economy. When
such skill specificity is stronger, the adjustment of labor markets is driven
less by the fast reallocation of older incumbent workers and more by
the gradual entry of younger generations. We first document that the
US labor market adjusted differently to early twentieth-century manu-
facturing innovations than to recent information and communication
technologies (ICTs). We then build an overlapping-generations model
of technological transitions and characterize how skill specificity affects
equilibrium dynamics. Skill specificity helps explain why the ICT tran-
sition was slower, driven entirely by the entry of younger generations.
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I. Introduction

Technological transitions follow the arrival of major innovations. In the
past, technologies such as the steam engine, electricity, and computers
have fundamentally changed the organization of economic activity. In
the future, advances in artificial intelligence and robotics hold the prom-
ise to do so once again. When such innovations are biased toward specific
skills, inequality can rise fast (Katz andMurphy 1992). The adjustment of
labormarkets, however, can take decades, as workers reallocate and youn-
ger generations acquire new skills (Chari and Hopenhayn 1991).
But do economies adjust slowly to certain technological innovations

and more rapidly to others? Studies on this question are scarce. The lit-
erature has mainly focused on explaining facts that are common across
episodes of adjustment, as opposed to how different technologies shape
them.1 This is surprising for two reasons. First, much evidence shows that
technologies differ remarkably in both their impact on workers and speed
of diffusion.2 Second, understanding when economies adjust faster is
central for weighing the benefits of technological innovations against
their distributional consequences and for the optimal design of govern-
ment policies.3

In this paper, we show that technological transitions are not all alike.
Labor markets adjust slowly to some technological innovations andmore
rapidly to others. We argue that one important reason is that certain in-
novations may benefit production activities requiring skills that are rather
different from those used by incumbent workers in the rest of the econ-
omy. When such skill specificity is stronger, incumbent workers find it
harder to reallocate, and the relative wage of activities that benefited
from the innovation increases more. As a result, younger generations
of workers entering the labor market have stronger incentives to enter
these activities.4 Therefore, a technological transition is slower when skill
specificity is stronger because it is driven less by the fast reallocation of

1 See Helpman (1998) for a review on the diffusion of general-purpose technologies and
Herrendorf, Rogerson, and Valentinyi (2014) for facts about structural transformation.

2 Goldin and Katz (1998, 2009) and Acemoglu and Autor (2011) provide evidence on
the impact of technologies on different types of workers. Mansfield (1961), Rosenberg
(1972), Jovanovic and Rousseau (2005), and Comin and Mestieri (2018) document differ-
ences in the speed of diffusion of technologies.

3 Guerreiro, Rebelo, and Teles (2022) and Beraja and Zorzi (2024) show that optimal
policy depends on the speed of adjustment.

4 Younger generations can do so, e.g., because they can acquire skills more easily or face
lower mobility costs, compared to older workers (Kambourov andManovskii 2008; Lagakos
et al. 2018).

Dave Donaldson, Oded Galor, Erik Hurst, Greg Kaplan, Larry Katz, Pablo Kurlat, Simon
Mongey, Fabrizio Perri, Tommaso Porzio, Ayşegül Şahin, Dejanir Silva, Christopher
Tonetti, Venky Venkateswaran, Gianluca Violante, and Fabrizio Zilibotti. This paper was
edited by Christopher Tonetti.
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older incumbent workers and more by the gradual entry of younger
generations.
To support this argument, we first provide evidence that the US labor

market adjusted differently to the arrival of information and communica-
tions technologies (ICTs) in the late twentieth century than it did to in-
novations in manufacturing at the beginning of that century. We then
build an overlapping-generations model of technological transitions. It
allows us to sharply characterize the effects of skill specificity on equilib-
rium dynamics, match the evidence in a parsimonious way, and study its
welfare implications.
We begin in section II by establishing three differences between the

transitions triggeredby the recent innovations in ICTs and themanufactur-
ing innovations of the early 1900s. First, the relative wage of ICT-intensive
occupations increased fast between 1980 and 2000, but their relative em-
ployment increased only slowly after 2000. In contrast, relative employ-
ment in manufacturing-intensive occupations increased shortly after
1900. Second, the employment growth of ICT-intensive occupations was
entirely driven by younger workers; older workers did not reallocate to-
ward these occupations. In contrast, older and younger workers contrib-
uted to the expansion of manufacturing-intensive occupations after 1900
and did so to a similar extent. Third, skill specificity was stronger for in-
novations in ICTs than for those inmanufacturing: older incumbent work-
ers in other occupations performed tasks that were more similar to those
required by manufacturing-intensive occupations in 1900 than they were
to ICT-intensive occupations in 1980.5

Motivated by the evidence, section III presents a model of technolog-
ical transitions. Firms use two technologies to produce a final good.
There is a continuum of worker skill types. A type determines workers’
effective labor units when employed in each technology. This allows us
to formalize the notion of skill specificity as a type’s difference in produc-
tivity between the two technologies. There are overlapping generations
of workers, and each generation forms a large household. The household
assigns workers to technologies by comparing their wage in each one,
similar to Roy (1951). This allows themodel to reproduce the reallocation
of older incumbent workers following changes in relative wages across
technologies. Finally, at birth, the household chooses how much labor of
each skill type to supply, given the future path of relative wages. This allows
the model to replicate differences across generations in relative employ-
ment when generations face distinct future paths of relative wages at birth.

5 We further show that the task distance between occupations affects responses to tech-
nological innovations. Given its exposure to the technological innovation, an occupation
with a higher task distance from the rest of the economy experiences responses that are
smaller for relative employment but larger for relative wages.
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In section IV, we turn to the dynamic adjustment of our economy to an
innovation that permanently increases the productivity of one of the
technologies, therefore raising its labor demand. We characterize the
equilibrium adjustment dynamics by first establishing an equivalence re-
sult. To a first-order approximation, the equilibrium dynamics behave as
if they were generated by a reduced-formmodel of relative labor demand
and supply, where the relative labor supply of each generation combines
time- and generation-specific components. The generation-specific term
captures the effect of changes in the present discounted value of the rel-
ative wage (which we dub q) that a generation faces at birth. As such, it
governs the relative labor supply elasticity at longer horizons. In the struc-
tural model, this elasticity is higher when the cost of adjusting the skill
supply of a new generation is lower. The time-specific term captures the
impact that changes in the relative wage at a point in time have on the rel-
ative labor supply of every generation. As such, it governs the short-run
elasticity of relative labor supply. In the structural model, this short-run
elasticity is lower when skill types are more different in terms of their pro-
ductivity in each technology (i.e., when skill specificity is stronger).
The adjustment dynamics follow the economic logic of the seminal q-

theory (Hayashi 1982), albeit applied to labor markets. On impact, the
technological innovation raises the relative wage, which induces the real-
location of older incumbent generations toward the improved technol-
ogy. The increase in current and future relative wages (summarized in
q) causes entering generations of households to increase their relative la-
bor supply, compared to older incumbents. Through the lens of the struc-
turalmodel, this gap results from younger generations choosing to supply
more labor of skill types that are more complementary to the improved
technology. Along the transition, as younger generations replace older
ones, the economy’s relative employment slowly increases and the relative
wage declines. One interpretation of this labor reallocation process is that
innovations slowly diffuse as more workers employ them over time.
Section V establishes our main theoretical result by comparing the ad-

justment in two economies with varying short-run labor supply elastici-
ties. We interpret this as a comparison between two episodes: one in
which the innovation improves a technology intensive in skills that are
markedly different from those used by the rest of the economy (skill spec-
ificity is strong) and another in which they are more similar (skill speci-
ficity is weak). Stronger skill specificity leads to a slower adjustment pro-
cess, in which the increase in relative employment is more back-loaded
and the rise in the relative wage is more front-loaded. On impact, stron-
ger skill specificity directly weakens the reallocation of older incumbent
workers. This results in a stronger increase in the present discounted value
of the relative wage (q), which in turn endogenously strengthens the in-
centives of younger generations to increase their relative labor supply.
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Ultimately, transitional dynamics in relative employment and wages be-
comemore important because the adjustment is driven more by the slow
entry of young generations.
Returning to our evidence, section VI shows that our parsimonious

model can quantitatively match the different adjustment dynamics fol-
lowing both ICTandmanufacturing innovations, purely as a consequence
of varying the short-run elasticity of relative labor supply (or skill specific-
ity in our structural model). In particular, our baseline calibration sets
this elasticity to 0, in line with the lack of reallocation of older workers
during the ICT transition, and feeds a labor demand innovation of amag-
nitude that matches the cumulative relative employment increase in ICT-
intensive occupations after 40 years. We externally calibrate the few re-
maining parameters using standard values from the literature (e.g., the
discount anddeath rates). Themodel successfully replicates the ICT tran-
sition’s fast increase in the relative wage, delayed relative employment in-
crease, muted reallocation of older workers, and large differences in rel-
ative employment responses between younger and older workers. Finally,
in line with the smaller task distance between manufacturing-intensive
occupations and the rest of the economy, we repeat the analysis for a larger
short-run labor supply elasticity, while keeping all other parameters fixed.
The model now can reproduce the transition following the manufactur-
ing innovations of the early 1900s: its muted relative-wage change, fast in-
crease in relative employment and reallocation of older workers, and lack
of differences in relative employment responses between younger and
older workers.
We conclude the paper with a normative analysis in section VII. Since

the model can match the evidence on relative responses, this gives us
some confidence that we can use it to study how skill specificity affects ag-
gregate dynamics following technological innovations. We show that the
welfare gains from technological innovations are smaller when the ad-
justment is slower due to stronger skill specificity, as aggregate consump-
tion increases take longer to materialize andmostly benefit future gener-
ations. In terms of magnitudes, moving from a zero short-run labor
supply elasticity (as in our baseline calibration for the ICT transition) to,
for example, a larger elasticity of 3 implies that the welfare loss from slow
transitional dynamics falls by one-third.
Related literature.—Our paper is related to a literature studying slow

adjustment dynamics. Close to our paper, the within- and between-
generations margins of adjustment have also been shown to be important
for changes in US employment composition (Murphy and Topel 1987;
Autor andDorn 2009) and wage inequality (Violante 2002), as well as struc-
tural transformation (Hobijn, Schoellman, and Vindas 2019; Porzio, Rossi,
and Santangelo 2022). As in our model, Violante (2002) also emphasizes
skill specificity in determining the reallocationof older incumbentworkers,
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and Porzio, Rossi, and Santangelo (2022) highlight skill acquisition in ex-
plaining differences between young and old generations. We add to this lit-
erature by analyzing the dynamics of adjustment after technological inno-
vations, as well as how skill specificity shapes themby varying the strength of
the within- and between-generations margins.
More generally, a strand of the literature has emphasized slow changes

in the supply of labor to particular sectors or occupations (Matsuyama
1992; Heckman, Lochner, and Taber 1998; Lee and Wolpin 2006; Dvorkin
and Monge-Naranjo 2019; Traiberman 2019). To the best of our knowl-
edge, our theoretical results linking how slow the adjustment is to skill
specificity is new to this literature, as is our evidence for the two techno-
logical transitions. That said, we note that stronger skill specificity would
also lead to a slower adjustment in quantitative dynamic Roy models,
where wages are determined in equilibrium, but not in models of labor
reallocation where wages are exogenous. The reason is that, in the latter
models, stronger skill specificity would dampen only the reallocation of
older incumbent workers but leave differences across generations un-
changed because the incentives of entering generations to change their
supply of skills would remain the same.
A complementary literature has analyzed slow adjustment dynamics

coming from gradual changes in labor productivity due to firm learning
by doing (Atkeson and Kehoe 2007), knowledge diffusion (Lucas and
Moll 2014), the creation of new worker tasks (Acemoglu and Restrepo
2018), capital accumulation (Dix-Carneiro and Kovak 2017), or automa-
tion ( Jaimovich et al. 2021; Beraja and Zorzi 2024). We show that gradual
changes in labor productivity along the transition cannot alone account
for the differences across technological transitions that we document. In
particular, they cannot jointly explain the fast rise in relative wage and the
slow increase in relative employment observed during the ICT transition;
neither can they speak to relative employment changes that are larger for
younger workers and weaker for occupations requiring more specific
skills. In contrast, our paper highlights slow adjustment dynamics due
to changes in the relative supply of labor within and between generations
and shows that our parsimonious model can match the features of the
two transitions that we study.
Finally, a literature has focused on the consequences of ICT and man-

ufacturing innovations in the United States. Jovanovic and Rousseau
(2005) show that, despite similar rates of price decline for ICT innova-
tions and electricity (used in manufacturing), diffusion was slower and
productivity gains weaker following the ICTarrival. Adding to these facts,
our findings show that the speed of labor reallocation was different in the
two episodes, too, and that varying skill specificity helps to explain why.
A number of papers have shown evidence of capital skill complementar-
ity during the expansion of both manufacturing in the early 1900s and
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ICT-intensive occupations later in the twentieth century (Autor, Katz, and
Krueger 1998; Goldin and Katz 1998, 2009; Autor, Levy, and Murnane
2003). Our paper also rests on the idea that these new technologies com-
plemented certain skills, thereby raising their demand.However, we show
that manufacturing and ICT innovations affected economic activities
that differed in their task distance from other activities in the economy,
varying the degree to which older incumbent workers could supply the
specific skills whose demand increased and, as a consequence, how slow
the adjustment was.

II. Evidence from Two Technological Transitions

In this section, we document three novel facts about how exposure to
technological innovations affected employment and wages across occu-
pations in the United States during two periods: the introduction of
manufacturing-enhancing technologies in the early twentieth century
and the arrival of ICT innovations in the latter part of that century.

A. Technology Exposure and Occupational Outcomes

We begin by analyzing the dynamic responses of employment and wages
in occupations more exposed to the new technologies in each of the two
episodes. Our focus on occupations follows a recent literature studying
the labor market consequences of new technologies—for a review, see
Acemoglu and Autor (2011). Specifically, we estimate the following spec-
ification for different years t during the period starting at t0 in which new
technologies became available:

logYo,t 2 logYo,t0 5 btExposureo 1 gt 1 eo,t , (1)

where Yo,t is either the employment or the average wage in occupation o at
t, and Exposureo is a standardized measure of occupation o’s exposure to
the main new technologies introduced during the period. Thus, bt is the
estimate of how much higher the t0-to-t growth in employment or wages
was for an occupation with a 1 standard deviation higher shock exposure.
We weight occupations by their t0 employment to obtain representative
economy-wide estimates.
To define occupation o’s exposure in each episode, we rely on the idea

that the relative demand for occupation o should increase when a higher
share of its workers are initially employed in industries that intensively
use the main technologies that became available:

Exposureo ; o
k

‘ko,t0S
k ,
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where ‘ko,t0 is the share of industry k in the total employment of occupation
o at t0, and Sk is the importance for industry k of the main new technolo-
gies of each episode.
For the early twentieth century, we define Sk as the dummy variable that

equals 1 if k is a manufacturing industry. This captures the fact that man-
ufacturing productivity increased substantially in this period as a result of
several innovations such as the introduction of electricity and assembly
lines (David 1990; Gordon 2000; Jovanovic and Rousseau 2005). It yields
the intuitive implication that the most exposed occupations were associ-
ated with blue-collar manufacturing jobs such as millwrights, machinists,
toolmakers, and electrotypers. To address concerns that estimates capture
other simultaneous shocks to manufacturing demand—for example, due
to the Great Depression or the World War I effort—section II.D discusses
the robustness of our conclusions to defining exposure on the basis of the
electricity intensity of manufacturing industries. Note, however, that, as
we discuss below, our main insights remain valid even if technology is
not the sole driver of the relative demand increase for manufacturing-
intensive occupations in this period.
For the late twentieth century, Sk is a measure of k’s share of cost spent

on products and services associated with ICTs in the 1997 detailed input-
output table. This measure builds on the idea that the decline in the ICT
cost of the late twentieth century benefited industries using ICTs intensively
and implies that the most exposed occupations include instructors, scien-
tists, and managers. Our exposure measure is highly correlated with other
measures used in the literature, reviewed by Acemoglu and Autor (2011),
to study the labor market consequences of recent skill-biased technological
innovations, and, for this reason, conclusions are similar whenwe use them.
We measure occupation outcomes using a sample extracted from the

IPUMS US Census database of males aged 16–64 years participating in
the labor force. We use the three-digit 1950 occupation classification
for the early twentieth century and the three-digit occupation classifica-
tion in Autor and Dorn (2013) for the more recent episode. Our wage
measure is the average annual wage income of full-time-employed individ-
uals in each occupation. Appendix A.1 (apps. A–C are available online)
presents more details about the data construction.
Figure 1 reports our estimates of bt for the two transitions. We set t0 as

the earliest year of the US Census following the arrival of the main tech-
nologies in each episode, as defined in Jovanovic and Rousseau (2005)
and Comin and Mestieri (2018): 1900 for the early episode and 1980
for the latter episode. The circles depict responses to ICT exposure for
each decade in the 40-year period following 1980.6 The diamonds are the

6 The final year of the second episode is 2019, to avoid the COVID pandemic in 2020. As
in Autor and Dorn (2013), to increase sample size and measurement precision, we com-
pute outcomes in 2019 by pooling the years 2017–19 of the American Community Survey.
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analogue for manufacturing exposure after 1900. The vertical bars show
the 90% confidence intervals associated with our estimates.
Figure 1A shows that the relative employment growth inmore exposed

occupations was both slower and weaker overall following the ICT inno-
vations of the late twentieth century, compared to that following theman-
ufacturing innovations of the early 1900s. In particular, higher ICTexpo-
sure was not associated with higher relative employment between 1980
and 2000, as indicated by the small and nonsignificant estimates (circles)
for the first two decades of the episode. In contrast, relative employment
in manufacturing-intensive occupations rapidly increased between 1900
and 1920, as indicated by the large and statistically significant estimates
(diamonds). Employment only slowly reallocated toward ICT-intensive

FIG. 1.—Exposure to technological innovations and occupation outcomes in the two ep-
isodes. A and B report estimates of bt obtained from equation (1) for a single group of all
males aged 16–64 years. C and D report bg,t obtained from equation (2) for two groups: a
younger group including male workers aged 16–29 years and an older group including
male workers aged 30–64 years. Circles represent the estimates of the response to ICT ex-
posure obtained from a sample of 310 occupations in the 40-year period following
t0 5 1980. Diamonds represent the estimated responses to manufacturing exposure in
the sample of 201 occupations in the 40-year period following t0 5 1900. Estimates are
weighted by the occupation’s employment at t0. The dependent variable is the change
in the occupation’s average wage in B and employment in A, C, and D. The ICT exposure
is the occupation’s average ICT intensity across industries, and the manufacturing expo-
sure is the occupation’s average manufacturing intensity across industries. Exposure mea-
sures are normalized to have zero mean and unit standard deviation. Vertical bars denote
90% confidence intervals clustered by occupation.
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occupations after the year 2000, but the overallmagnitude of reallocation
during the entire period was half as large, compared to manufacturing-
intensive occupations. Specifically, over the 40-year period, a 1 standard
deviation higher exposure was associated with a 0.1% increase in the rel-
ative employment of ICT-intensive occupations, whereas the correspond-
ing increase was 0.2% for manufacturing-intensive occupations, both sta-
tistically significant.
We then turn to the wage response to ICT exposure in figure 1B. Our

estimates indicate that the path of the relative wage of ICT-intensive oc-
cupations has an inverted-U shape. The relative wage in ICT-intensive oc-
cupations rapidly increased between 1980 and 1990, as can be seen from
the positive and statistically significant estimates for the first decade of
the episode.7 After 2000, the impact on relative wages slowly declines to-
ward zero (albeit more imprecisely estimated). Since the US Census did
not collect income information before 1940, we cannot implement our
occupation-level specification for the first episode. However, we can ana-
lyze the evolution of the US manufacturing wage premium using the
1975Historical Statistics of the United States. Figure A2 (figs. A1–A6 are avail-
able online) shows that the relative wage in manufacturing did not in-
crease much between 1900 and 1930.8

In all, the joint dynamics of employment and wages suggest the follow-
ing: responses observed in the early 1900s are consistent with a labor de-
mand increase inmanufacturing-intensive occupations that wasmatched
by a rapid increase in labor supply. In contrast, during the more recent
period, wage responses suggest a rapid increase in the demand for ICT-
intensive occupations in 1980–90, which induced labor supply responses
only after 2000. That being the case, the slower employment adjustment
to the arrival of ICT in the latter episode is not consistent with stories that
emphasize a slower labor demand increase—for example, because ICTor
other complementary technologies diffused more slowly. The reason is
that a slower labor demand increase would have implied slower increases
in both relative wages and employment, which is not what occurred, as
relative wages increased decades before employment did.

7 Because of the lack of employment responses before 1990, this increase is unlikely to
be biased by selection based on unobserved worker attributes.

8 This is consistent with the evidence in Goldin and Margo (1992) that, in the decades
before 1940, the strong relative expansion of skilled occupations happened while their
wage premium was either relatively constant or moderately increasing—at least in compar-
ison to the strong increase in the returns to skill observed in the 1980s. Similarly, Piketty
and Saez (2003, 1) find that “top income and wages shares display a U-shaped pattern over
the century.”
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B. Responses across Worker Generations

We established above that relative labor supply across occupations ad-
justed at a slower pace to the demand shock induced by post-1980 ICT
innovations than to the shock induced by themanufacturing innovations
of the early 1900s. This is perhaps surprising, given that many sources of
reallocation frictions were likely more severe during the earlier episode.
For instance, search andmatching frictions declined over time (Martellini
and Menzio 2020), reallocation toward manufacturing jobs in the early
1900s also involved a costly move from traditional rural areas to new urban
areas (Michaels, Rauch, and Redding 2012), and consumption smooth-
ing during job transitions likely improved over time as a result of better
access to (social and private) insurance instruments (Chetty 2008).
To investigate further what underlies the difference across the two ep-

isodes in the observed patterns of labor supply adjustment over time, we
next separately estimate employment responses for worker groups repre-
senting younger and older generations. Intuitively, we would expect the
overall labor supply response to be faster when generations already pres-
ent in the labor market move to more exposed occupations, compared
to when the response is mostly driven by younger entrant generations.
Specifically, we estimate the following specification:

logYog ,t 2 logYog ,t0 5 bg ,tExposureo 1 gg ,t 1 eog ,t : (2)

The dependent variable is the log change in employment for individuals
of group g in occupation o between t0 and t. The group-period fixed effect
gg,t absorbs any group-specific shock with a common effect on all occupa-
tions. Accordingly, bg,t measures how much an increase of 1 standard de-
viation in shock exposure affects occupation outcomes among workers of
group g. We estimate this specification in a pooled sample of all groups
and compute standard errors clustered by occupation to account for cor-
related shocks affecting all groups in the same occupation. In our base-
line, the older group includes males aged 30–64, and the younger group
is composed of males aged 16–29.
Figures 1C and 1D report the relative employment response for older

and younger workers, respectively. The expansion of ICT-intensive occu-
pations after 1980 was almost entirely driven by younger workers. Older
workers did not reallocate toward ICT-intensive occupations: the estimates
in figure 1C (circles) are small and nonsignificant during the entire pe-
riod. For younger generations however, the circles in figure 1D show that
the relative employment increase in ICT-intensive occupations was signifi-
cant after 40 years. In terms of magnitudes, the response for younger work-
ers was 124% larger than that for older workers. In contrast, older workers
significantly contributed to the expansion of manufacturing-intensive
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occupations after 1900 and did so to an extent similar to that for younger
workers. The estimates for both generations (diamonds) are positive and
statistically significant in every decade of the early episode. In terms ofmag-
nitude, the relative employment response for younger workers was only
21% larger than that for older workers between 1900 and 1940.9

Overall, our results suggest that the adjustment in labor supply across
occupations in response to the demand shock triggered by ICT innova-
tions was limited and delayed because of the muted reallocation of older
generations. In fact, the post-2000 labor supply adjustment in ICT-intensive
occupations was almost entirely driven by the response in the relative em-
ployment of younger entrant generations. However, in the early twentieth
century, both younger and older generations contributed to the fast labor
supply adjustment to the shock in the relative demand for manufacturing-
intensive occupations.
These patterns are consistent with at least three explanations. The first

is that mobility frictions were less severe in the early 1900s (especially for
older workers), regardless of which occupations workers moved toward.
However, as mentioned above, many sources of mobility frictions likely
were more, not less, severe in the earlier episode. Clearly, this explana-
tion is unappealing, though it cannot be entirely discarded. A second ex-
planation is that ICT innovations increased the demand for younger
workers (but not older ones) inmore exposed occupations. It is, however,
hard to see a reason why, given the same skill set, ICTs benefit younger
workers more than older ones: ICT innovations were not biased toward
age-specific attributes such as physical force or health conditions. In line
with this argument, figure A6 shows that, conditional on a worker’s occu-
pational exposure to ICTs, older and younger workers report similar us-
age of two important ICT innovations, computers and the internet.10 The
last explanation is that it was easier for older incumbent workers to real-
locate toward manufacturing-intensive occupations than it was for them
to reallocate toward ICT-intensive occupations. This could be, for in-
stance, because their skills were more transferable to the manufacturing-
intensive occupations that were expanding in the early episode. The next

9 Table A2 (tables A1–A3 are available online) reports the difference in the relative employ-
ment response of younger and older workers in the two episodes. The between-generations
gap is small and nonsignificant in the case of manufacturing-intensive occupations, whereas
it is positive and statistically significant in the case of ICT-intensive occupations after 2000.

10 We use on-the-job time-use data fromGermany (and not the United States) because of
the availability of this type of data.
We also note that, if ICT innovations were biased toward young workers (given their

skills), one would expect to see an increase in the young-old wage gap within ICT-intensive
occupations. Panel B of table A2 shows that this did not happen: higher ICTexposure had
a similar impact on relative wages for the two groups. Moreover, this story is not consistent
with the finding in sec. II.A that the relative wage in ICT-intensive occupations increased
decades before younger workers started to reallocate toward these occupations.
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section provides evidence that this mechanism helps to explain the differ-
ences across the two episodes.

C. Differences in Task Content between Occupations

Wenow investigate how the two episodes differed in terms of the ability of
older incumbent workers in the rest of economy to supply the skills re-
quired by the occupations whose demand increased. We do so bymeasur-
ing, for each episode, how different the task requirements of the occupa-
tions in high demand were in comparison to those of other occupations.
Our approach builds on a recent literature showing that, in both the
United States and other countries, gross job-to-job flows are higher be-
tween occupations that require similar tasks (Gathmann and Schönberg
2010; Traiberman 2019; Schubert, Stansbury, and Taska 2021). Intuitively,
task requirements capture the common component of the activities that
workers need to perform on the job, and, consequently, reallocation
should be easier across occupations requiring workers to perform similar
activities (for a given change in relative wages). Formally, for any two occu-
pations o and o0, wemeasure the distance between the distributions of their
task requirements using an entropy metric: Do,o 0 5 ovxo,v log xo,v=xo 0,v,
where xo,v is occupation o’s intensity in task v.11 We follow Autor and Dorn
(2013) tomeasure xo,v for v ∈ fmanual, routine, cognitiveg among the oc-
cupations in our sample in each of the two episodes. By using the same oc-
cupation task content in the two periods, we implicitly assume that the task
intensity ranking across occupations in 1900 has a high correlation with
that of 1980. We do so for lack of comprehensive task-content data for
the early twentieth century.12

We start by measuring the average task distance between the occupa-
tions with the highest and the lowest levels of shock exposure in each
of the two episodes. We consider two sets of occupations in each episode:
those in the top 25% (OH) and those in the bottom 75% (OL) of the em-
pirical exposure distribution. We then compute for each occupation
o ∈ OL its average task distance from the occupations in OH, weighted
by their employment at t0.
Figure 2A depicts two histograms, one for each episode, of such a dis-

tance measure across occupations. The key takeaway from the figure is
that the task distance distribution for ICT exposure in the latter episode

11 This is a standard metric of the distance between two distributions. Results are similar
when using alternatives such as the Euclidean metric.

12 We do not require the task content of occupations to be the same in 1900 and 1980.
Instead, we assume that, for instance, occupations that required relatively more cognitive-
intensive tasks than the average in 1980 also required relatively more cognitive-intensive
tasks in 1900. Spitz-Oener (2006) shows that the task intensity ranking across occupations
did not change much over the period of her sample (as the majority of changes happened
within occupations).
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has more mass on higher distance values than the distribution for man-
ufacturing exposure in the earlier episode. In fact, we obtain a p-value
of .00 for the test of whether the distribution of distances in the latter
episode first-order stochastically dominates that of the earlier episode.
Thus, occupations with low and high exposure to the manufacturing
innovations of the early 1900s were much more similar in their task con-
tents than occupations with low and high exposure to the latter ICT
innovations.
To further investigate the relationship between shock exposure and

task distance in the two episodes, we estimate how an occupation’s expo-
sure was associated with its (employment-weighted) average task distance
from all other occupations. Column 1 of table 1 shows that occupations
with higher ICT exposure in 1980 required tasks that were significantly
different from the tasks used in the rest of the economy. However, as col-
umn 4 of table 1 shows, no such relation existed between manufacturing
exposure and task distance in 1900, since the estimated coefficient is
close to 0 (with a similar standard error).
We thus conclude that the new technologies of the early 1900s raised

the relative demand for manufacturing-intensive occupations that re-
quired workers to perform activities using skills that were relatively simi-
lar to those used in other occupations. The opposite was true during the
second episode: ICTs increased the relative demand for occupations re-
quiring skills that were remarkably different from those used in the rest
of the economy.

FIG. 2.—Exposure, task distance, and employment reallocation in the two episodes.
A, histograms of the average task distance from high-exposure occupations in OH across
low-exposure occupations in OL, defined, respectively, as the top 25% and the bottom 75%
of occupations in terms of exposure to either manufacturing industries in 1900 or ICT-
intensive industries in 1980. B, log change, in each episode, in the employment share
in four groups of occupations defined in terms of shock exposure (“high” exposure in OH

and “low” exposure in OL) and average task distance from other occupations (the “high”
group includes occupations with above-median average task distance from other occupa-
tions, and “low” includes all other occupations).
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TABLE 1
Exposure, Task Distance, and Responses in Occupation Outcomes in the Two Episodes

ICT Exposure, 1980–2019 Manufacturing Exposure, 1900–1940

Average
Task Distance

Log Change
in Employment

Log Change
in Average Wage

Average
Task Distance

Log Change
in Employment

(1) (2) (3) (4) (5)

Exposureo .144 .119 2.021 2.006 .187
(.082) (.047) (.031) (.075) (.064)

Exposureo � TaskDistanceo 2.074 .049 2.137
(.043) (.024) (.107)

Note.—Sample of 291 occupations for cols. 1–3 and 193 occupations for cols. 4–5 with positive employment and task-content information in each
episode. Occupation outcomes were built for a single group of all males aged 16–64 years. Estimates are weighted by the occupation’s employment at
t0. The dependent variable is indicated in each column. The occupation exposure in cols. 1–3 is the occupation’s average ICT intensity across industries,
and that in cols. 4–5 is the occupation’s average manufacturing intensity across industries. The task distance is the occupation’s average task distance from
all other occupations, weighted by those occupations’ employment at t0. Exposure and TaskDistance are normalized to have zero mean and unit standard
deviation. Standard errors (in parentheses) are clustered by occupation.



To the extent that relative labor supply is more elastic between occupa-
tions with similar task contents (Traiberman 2019), this distinction be-
tween the two episodes helps to explain why the reallocation of older
incumbent workers was more muted during the adjustment to ICT inno-
vations. Figure 2B provides evidence that indeed this mechanism played
a role. It shows that the employment expansion (contraction) of the oc-
cupations with the highest (lowest) levels of exposure in each episode
happened almost entirely from the occupations with a task content sim-
ilar to those in the rest of the economy, that is, those with a low aver-
age task distance, whose employment growth is denoted by the hatched
bars.
We now complement this evidence by estimating how the responses of

relative employment and wages in more exposed occupations vary with
the occupation’s task distance from the rest of the economy:

logYo,t 2 logYo,t0 5 btExposureo 1 bD
t Exposureo

� TaskDistanceo 1 gt 1 eo,t :
(3)

where Exposureo is the same exposure measure defined above, and
TaskDistanceo is occupation o’s average task distance from all other oc-
cupations, weighted by their employment at t0. We normalize shock ex-
posure and task distance to have zero mean and unit standard deviation
across occupations in each episode. Hence, bD

t measures how much
higher or lower was the response to shock exposure in an occupationwith
a 1 standard deviation higher task distance from the rest of the economy.
Columns 2 and 3 of table 1 indicate that, for an occupation with a higher

task distance from others, the impact of higher ICTexposure on relative
employment was weaker but the impact on relative wages was stronger.
These effects are economically large: the impact of exposure on employ-
ment is close to 0 for occupations with a 1 standard deviation higher av-
erage task distance. For the early twentieth century, the point estimate in
column 5 is even more pronounced but also less precise.
These response patterns are consistent with a lower elasticity of relative

labor supply in occupations requiring tasks that are more different from
those used in the rest of the economy. Together with the fact that ICT-
intensive occupations had a higher task distance from the rest of economy,
we show below that this can jointly explain the different employment re-
sponses of older and younger workers in the two episodes (as documented
in sec. II.B) and, in turn, the different dynamic adjustments of overall rel-
ative employment and wages (as documented in sec. II.A). Finally, while
our empirical findings alone do not speak to aggregate outcomes, we show
that, when combined with themodel below, the distinct observed patterns
of adjustment imply remarkably distinct welfare gains from the new tech-
nologies introduced in the two episodes.
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D. Additional Results

We now summarize additional evidence complementing the empirical
findings above. Appendix A.2 contains all tables and figures discussed
below.
Robustness of figure 1.—Wenote first that our conclusions do not depend

on the exact source of the shock driving the relative demand increase for
manufacturing- and ICT-intensive occupations in each of the episodes as
long as responses are not confounded with the impact of shocks to the rel-
ative supply of workers in such occupations. Table A2 shows that responses
are similar whenwe consider othermeasures of exposure to themain tech-
nological innovations in each period; specifically, we consider alternative
measures of occupation exposure based on electricity intensity in the first
episode and task requirements in the second episode.13 More importantly,
we also attest that our conclusions are robust to shocks in the occupation
supply of immigrant and nonwhite workers. In particular, we show that es-
timates are essentially identical whenwe restrict the sample to include only
natives or whitemales. Thus, our conclusions are not driven by changes in
the share of these demographic groups across occupations, since the rel-
ative responses in employment and wages of incumbents should have
been weaker if this was the case. We also show that responses are similar
when we account for changes in job amenities by controlling for job attri-
butes (e.g., hours, self-employment). Finally, figure A3 shows that the
young-old gap in relative employment responses in the two episodes is
qualitatively robust to the age cutoff used to define the two generations.
However, the stronger reallocation of younger workers to ICT-intensive
occupations becomesmore pronounced as we decrease the age cutoff de-
fining the young group (i.e., as we decrease the average age of the young
group). This is not true for relative employment inmanufacturing-intensive
occupations in the early 1900s.
Decomposition of employment reallocation across cohorts.—An alternative to

estimating responses by age groups is to implement a cohort decomposi-
tion of the transition. We do find that, while somewhat harder to inter-
pret, our conclusions are robust to such an approach. In table A3, we ex-
tract the common and cohort-specific components of the reallocation
toward highly exposed occupations over the decades of each episode.
Our results show that relative employment growth in highly exposed oc-
cupations was entirely driven by cohort-specific effects in themore recent
ICT-driven episode, but period effects common to all cohorts explain
almost entirely the reallocation toward manufacturing-intensive occupa-
tions in the early episode.

13 We note that, in line with the less precise estimated wage responses after 2000, point
estimates across specifications vary in the timing and magnitude of the slowdown in rela-
tive wage growth following the ICT arrival.
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Cross-occupation evidence from other countries.—In figure A4, we use cross-
country data on employment by broad occupation and age groups to doc-
ument that, in all 17 developed countries in our sample, recent growth
in the relative employment of ICT-intensive occupations was stronger
for younger than for older workers.
Robustness of figure 2.—Figure A5 establishes that the takeaway from fig-

ure 2 is robust to alternative choices of distance metric, exposure mea-
sures, weighting schemes, and thresholds for defining highly exposed oc-
cupations. In all cases, the distribution of task distances between the
occupations most and least exposed to ICTs in 1980 first-order stochas-
tically dominates that implied by manufacturing exposure in 1900.
Training in ICT-intensive occupations and relative employment of younger en-

trant generations.—One natural question is why younger entrant genera-
tions were able to increase their relative employment in ICT-intensive oc-
cupations. In Adão, Beraja, and Pandalai-Nayar (2020), we shed light on
this question by leveraging data from Germany, a country with a unique
large-scale vocational training program. We showed that occupations with
a higher ICTexposure were associated with stronger growth in the num-
ber of young trainees. In terms of magnitude, the impact of exposure on
the relative employment of younger generations was similar to the impact
on the relative number of trainees. These findings indicate that acquisi-
tion of occupation-specific human capital by young workers contributed
to the observed between-generations gap in employment responses to
ICT innovations.

III. A Model of Technological Transitions

We now present a model of technological transitions that can generate
the patterns of adjustment across occupations and generations docu-
mented above for the two episodes. We consider a closed economy in
continuous time. There is a single final good whose production uses
two intermediate inputs, the high-tech (k 5 H) and the low-tech (k 5 L)
goods. Input production uses only labor. There is a continuum of worker
skill types i ∈ ½0, 1�. The worker’s skill type determines her effective labor
supply when employed with the H and L production technologies. There
are overlapping generations of workers, and each generation forms a large
household. The household consumes the final good, assigns workers into
a technology, and chooses howmuch labor of each type to supply at birth.
Labor and good markets are competitive.
Firms.—Production of the final good is a CES (constant elasticity of

substitution) aggregator of the two inputs:

Yt 5 ðAtXHtÞ v21ð Þ=v 1 ðXLtÞ v21ð Þ=v� �v= v21ð Þ
, (4)
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where v > 0 is the elasticity of substitution between the low-tech and the
high-tech inputs and At is a shifter of the relative productivity of the high-
tech input.
A skill type determines the effective labor units that a worker supplies

when employed in the production of each of the two inputs.14 Specifically,
the production functions of L and H are, respectively,

XLt 5

ð1

0

aðiÞsLtðiÞ di and (5)

XHt 5

ð1

0

aðiÞjðiÞsHtðiÞ di, (6)

where skt(i) is the mass of workers of type i employed with technology k at
time t, a(i) is the number of efficiency labor units of type i, and j(i) is i’s
differential number of efficiency units in high-tech production. There-
fore, a(i) governs vertical differences in productivity across skill types
(i.e., absolute advantage), whereas j(i) governs horizontal productivity
differences across technologies for a given type (i.e., comparative advan-
tage). Without loss of generality, we assume that j(i) is increasing in i, so
that the skills of higher i-types aremore complementary to theH technol-
ogy than to the L technology.15

Let wkt denote the wage rate of one efficiency unit of labor employed
with technology k at time t. In a competitive environment in which firms
take wages as given, the labor earnings of type i when employed with the
H and L technologies are, respectively,

wHtðiÞ 5 qtjðiÞaðiÞ and wLtðiÞ 5 aðiÞ, (7)

whereqt ; qHt=qLt is the relative wage per efficiency unit in the high-tech
good. In the rest of the paper, we refer toqt simply as the relative wage and
specify the economy’s numeraire as qLt ; 1.
Under perfect competition, qt is also the relative price of the high-tech

input faced by final producers. Thus, their cost-minimization problem
implies that the relative demand for effective labor units in H (or simply
the relative demand in H) is

xt ;
XHt

XLt

5 q2v
t Av21

t , (8)

14 Consistent with the evidence discussed above, we assume that the productivity of a
worker when operating either of the two technologies depends only on their skills and
not on their generation.

15 Appendix C.1 provides one economic interpretation for a skill type. We show that
eqq. (5)–(6) arise when production combines individual-level output of each worker’s
“cognitive” and “noncognitive” task inputs. Differences in productivity across types are a
consequence of differences in their relative ability to perform cognitive tasks and differ-
ences in the importance of cognitive tasks for the two technologies.
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and their zero-profit condition implies that the final-good price is

Pt 5 1 1 qtxtð Þ1= 12vð Þ: (9)

Workers.—We consider overlapping generations of workers whose
birth and death follow a Poisson process with rate d. We assume that each
generation t forms a large household at birth.16

At each time t, the household chooses how to assign workers to tech-
nologies and uses their labor income to buy the final good. The optimal
assignment maximizes static labor income, so that a worker of skill type i
earns

wtðiÞ 5 max qtjðiÞ, 1f gaðiÞ: (10)

At birth, the household of generation t chooses how much labor of
each skill type to supply. It does so to maximize the present discounted
value of total household log consumption, net of the utility cost from la-
bor supply. Specifically, the problem of the household of generation t is

Ut ; max
~stðiÞ,Ct,t ,Lt

ð∞

t

erðt2tÞ log Ct,tð Þdt 2 Lt, subject to

PtCt,t 5

ð1

0

wtðiÞ~stðiÞdi and

Lt 5

ð1

0

~stðiÞ1=n11di

� �1= 1=n11ð Þ
≤ 1,

(11)

where Ct,t is consumption at time t of generation t, Lt is generation t’s
labor supply, and ~stðiÞ is the labor supply of type i from generation t.
Households consume their labor earnings at each point in time—we al-
ready impose that the budget constraint is binding. In addition, the sec-
ond constraint summarizes the household’s cost of allocating its labor
endowment to supply different skill types: it specifies a CES aggregator
of the mass of different types that must be below the household’s labor
endowment, which we normalize to 1. This constraint will be binding in
equilibrium.
Discussion.—At this point, it is worth discussing how three features of

the model relate to the evidence in section II. First, skill heterogeneity,

16 This assumption implies that technological innovations will have only distributional
consequences across generations in terms of welfare. In Adão, Beraja, and Pandalai-Nayar
(2020), we explored an alternative model where individuals workers chose lotteries over
skill types. There, they were exposed to ex post risk from the realization of the lottery, thus
creating welfare differences within generations. This alternative model, however, delivers
identical predictions for the approximate equilibrium dynamics we characterize in the fol-
lowing sections.
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coupled with the skill-technology assignment in equation (10), implies
that, when faced with different relative wages over time, each generation
will choose to reallocate workers across technologies (given their skills).
This allows the model to rationalize the type of within-generation worker
reallocation that we documented for the manufacturing innovations of
the early twentieth century. Second, the skill supply decision of entering
generations implies that, when faced with different future paths of rela-
tive wages upon entry, different generations will choose different skills
to supply and will, therefore, allocate their workers differently across
technologies.17 This allows our model to rationalize the type of between-
generations differences in employment reallocation that we documented
for the ICT innovations of the late twentieth century. It is also consistent
with the observed increase in vocational training in ICT-intensive occupa-
tions by younger workers in Adão, Beraja, and Pandalai-Nayar (2020). Fi-
nally, as discussed in more detail below, the slope of j(i) measures how
different skill types are in terms of relative productivity across technolo-
gies and, thus, controls the elasticity of relative labor supply of incumbent
workers. This will allow us to study how different the economy’s behavior
is when the distance between skill requirements across technologies is
different, such as the differences across the two episodes documented
in section II.C.
Our preferred economic interpretation of these assumptions is that

changes in relative wages induce older workers to move toward sectors
or occupations that require similar skills and thus entail minimal retrain-
ing. Intuitively, in contrast to younger workers, they face a high cost of
fundamentally changing career paths by acquiring completely different
skills. For tractability, we collapse into a one-time decision upon entry
the skill investment that in reality occurs through formal schooling, col-
legemajor choice, on-the-job learning, or vocational training. Note, how-
ever, that this decision goes beyond traditional unidimensional decisions
to acquire more human capital (or whether to attend college) that allow
workers to vertically differentiate. Instead, it is amultidimensional decision
to supply different types of skills, driven by both vertical considerations—
expressed in absolute advantagea(i)—andhorizontal considerations—ex-
pressed through comparative advantage j(i) and relative wage qt.
Equilibrium.—Given our overlapping-generations structure, the aggre-

gate labor supply of a skill type, st(i), follows the Kolmogorov forward
equation,

17 Our baseline model assumes that only new generations choose the supply of specific
skills and that this decision is independent of the skills from previous generations. We relax
both assumptions in sec. VI.D, allowing older generations to retrain and new generations
to learn from others when choosing their skills supply.
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∂stðiÞ
∂t

5 2dstðiÞ 1 d~stðiÞ: (12)

Finally, an equilibriummust satisfy market clearing for all t. ByWalras’s
law, it suffices that the relative demand for effective labor in H produc-
tion in equation (8) is equal to the relative supply of effective labor units
in H, xt implied by the ratio of equations (5)–(6) under the equilibrium
assignment:

xt 5 q2v
t Av21

t 5

ð
GtðiÞ5H

aðiÞjðiÞstðiÞ dið
GtðiÞ5L

aðiÞstðiÞ di
, (13)

where fGtðiÞ : i ∈ ½0, 1�→ fH, Lgg is the equilibrium technology-skill as-
signment implied by equation (10). In the rest of the paper, we refer to
the equilibrium xt as the relative employment of effective labor units in
H or, simply, as “relative employment.”
Definition 1 (Competitive equilibrium). Given an initial s0(i) and a

path for fAtgt≥0, a competitive equilibrium is a path of the technology-skill
assignment fGtðiÞ : i ∈ ½0, 1�→fH, Lggt≥0, the skill type supply fstðiÞgt≥0, a
generation t’s skill type supply f~stðiÞgt≥0, and the relative wage, employ-
ment, and final price index fqt , xt , Ptgt≥0, such that

1. given fqtgt≥0, fGtðiÞ,~stðiÞgt≥0 are determined by equations (10) and
(11);

2. given s0(i) and f~stðiÞgt≥0, fstðiÞgt≥0 is determined by equation (12);
and

3. for all t ≥ 0, the market-clearing condition (13) is satisfied and Pt is
given by equation (9).

In principle, the characterization of the equilibrium dynamics involves
solving a complex infinite-dimensional fixed-point problem. To see this,
consider a conjectured path for the relative wage fqtgt≥0. This path deter-
mines the skill supply decisions of new generations f~stðiÞgt≥0 from equa-
tion (11) and, consequently, the path for the labor supply of skill types
fstðiÞgt≥0 from equation (12), given s0(i). The relative-wage path also de-
termines the assignment of workers from equation (10). Taken together,
the skill supply and assignment decisions determine the relative supply of
effective labor units in H. In an equilibrium, the implied relative supply
must be equal to the relative demand at the conjectured path for the rel-
ative wage—that is, both have to be consistent with market clearing in
equation (13). The next section shows that, up to a first-order approxima-
tion, the equilibrium dynamics can be sharply characterized.
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IV. Equilibrium Dynamics

In this section, we begin by showing that, up to a first order, the equilib-
rium dynamics of relative employment and wages in our structural model
are equivalent to those from a reduced-form model of the relative labor
supply and demand across technologies. We then use this characteriza-
tion to study the economy’s adjustment to a technological innovation.

A. A Reduced-Form Equivalence

In order to provide an analytical characterization of the equilibrium dy-
namics, we consider a log-linear expansion around the stationary equi-
librium.18 We let a hat accent (^) denote variables in log deviations from
their levels in the stationary equilibrium. The following proposition es-
tablishes our main equivalence result for equilibrium dynamics in rela-
tive employment and wages.
Proposition 1 (Reduced-form equivalence). The equilibrium dy-

namics of relative employment and wages fx̂t , q̂tg are identical to those
from a reduced-form model where relative labor demand at time t is

x̂t 5 2vq̂t 1 ðv 2 1ÞÂt (14)

and relative labor supply at time t is a population-weighted average of the
labor supply of different generations t ≤ t at time t, x̂t,t ,

x̂t 5 d

ðt

2∞
e2dðt2tÞx̂t,t dt, (15)

where

x̂t,t 5 hq̂t 1 wq̂t, with q̂t ;
ð∞

t

e2rðt2tÞq̂t dt: (16)

Proof. See appendix B.1.
The proposition shows that relative labor supply across technologies in

the structural model of section III behaves as if it was coming from a
reduced-formmodel in which the relative labor supply of each generation
combines time- and generation-specific components. These components
determine how the relative labor supply elasticity varies over different
horizons. We note that, conditional on the value of the reduced-form pa-
rameters, all structural models admitting the reduced-form representa-
tion in proposition 1 generate isomorphic transitional dynamics follow-
ing technological innovations. In this sense, the structural model of
section III is only one of many microfoundations that yield the positive

18 In Adão, Beraja, and Pandalai-Nayar (2020), we also numerically solve for the equilib-
rium and show that our main insights are not driven by the equilibrium approximation.
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implications about technological transitions outlined in sections IV.B–
VI.19 Our structural model, however, provides a clear link between the
mechanisms driving the economy’s adjustment margins and the param-
eters in the reduced-form representation, which we leverage below when
analyzing how skill specificity shapes the economy’s adjustment to tech-
nological innovations. We discuss such a link in more detail next.
The generation-specific term of relative labor supply, wq̂t, is a forward-

looking component capturing the impact that changes in the present dis-
counted value of the relative wage at birth (q̂t) have on a generation’s rel-
ative labor supply, permanently. In the reduced-form model, w, together
with d, thus governs the elasticity of relative labor supply over long hori-
zons. In the structural model, this generation-specific component arises
from the skill supply choices at birth. In particular, w is inversely propor-
tional to the cost of adjusting the skill supply as governed by 1/n,

w 5 nr:

Intuitively, when the cost of adjusting the skill supply is higher (i.e., 1/n is
higher), skill supply is less responsive to changes in the path of future rel-
ativewages, and so the elasticity of labor supply at longerhorizons is smaller.
The time-specific term of relative labor supply, hq̂t , captures the instan-

taneous impact that changes in the relative wage (q̂t) have on the relative
labor supply of every generation. In the reduced-formmodel, h thus gov-
erns the short-run elasticity of relative labor supply. In the structuralmodel,
this short-run elasticity is intrinsically linked to how similar skill types are
in terms of their productivity in each technology (as governed by the
function j(i)). Formally,

h ∝
∂ log jðiÞ
∂ log i

����
i5l

� �21

with l denoting the marginal skill type that earns the same wage in both
technologies at the stationary equilibrium(as implicitly definedby eq. [10]).
We will say that skill specificity is stronger when ð∂ log jðiÞ=∂ log iÞji5l is
larger because a worker’s productivity changes more when deployed to
the H rather than to the L technology. Intuitively, when skill specificity is
stronger, skill types are less similar and workers become less transferable
across technologies. That being the case, the household requires larger
changes in relative wages to switch them across technologies, and the short-
run elasticity of relative labor supply h is lower. In what follows, we thus asso-
ciate stronger skill specificity with a lower h.

19 See, e.g., Adão, Beraja, and Pandalai-Nayar (2020) for a model featuring individual-
level skill investment choices and Beraja and Zorzi (2024) for a model featuring occupation-
specific costs of job transitions. However, the particular structural model of sec. III does
matter for analyzing normative implications of technological innovations, as we do in
sec. VII.
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The proof of the proposition shows that, up to a first-order approxima-
tion, the elasticity ð∂ log jðiÞ=∂ log iÞji5l summarizes the heterogeneity
between marginal types around the threshold l and, thus, how skill het-
erogeneity shapes the equilibrium dynamics of relative labor supply xt.
The reason is that most workers never switch technologies along an equi-
librium path in which the relative wage remains around its stationary level.
Therefore, when evaluating changes in relative labor supply over time, the
effect of changes in the supply of the marginal types that switch technolo-
gies along the transition is of second order.

B. The Adjustment to a Technological Innovation

We are now ready to characterize the dynamic adjustment of our econ-
omy to a permanent, unanticipated increase in the relative productivity of
high-tech production in the structuralmodel of section III or, equivalently,
an increase in the relative labor demand in the reduced-form model of
section IV.A.
We consider a shock Δ logðAÞ > 0 at t 5 0 in an economy starting from

a stationary equilibrium immediately before the shock at time t 5 02. The
next proposition characterizes the transitional dynamics of fx̂t , q̂t , q̂tg after
the shock. Appendix B.2 completes the characterization by deriving the
short-run and long-run responses.
Proposition 2 (q -theory transitional dynamics). Given the initial con-

dition x̂0 and the terminal condition limt →∞x̂t 5 0, the equilibrium tran-
sitional dynamics of fx̂t , q̂t , q̂tg are described by the following system of
ordinary differential equations:

∂x̂t
∂t

5 2dx̂t 1
vwd

h 1 v
q̂t , (17)

rq̂t 5 q̂t 1
∂q̂t
∂t

, (18)

q̂t 5 2
1

v
x̂t : (19)

The equilibrium fx̂t , q̂t , q̂tgt≥0 is saddle-path stable with a rate of conver-
gence l.
Proof. See appendix B.1.
The system of ordinary differential equations is a rather standard one

in macroeconomics: it has one control variable (qt) and one predeter-
mined variable (xt), as well as one Kolmogorov forward equation (eq. [17])
and one Kolmogorov backward equation (eq. [18]). The system is in fact
mathematically isomorphic to the one in the q-theory of capital investment.
In our model, the present discounted value of relative wages q̂t represents
the shadow price of the human capital “asset” associated with having one
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additional effective unit of labor in high-tech production. As in the q-theory,
we can see in equation (17) that parameters governing the “costs of adjust-
ment” in the economy (d and w) affect the sensitivity of changes in the state
variable (∂x̂t=∂t) to the control variable (q̂t). Moreover, since h and v affect
how changes in relative wages translate into changes in labor supply and
demand, they alsomediate the impact of qt on xt. The last part of the prop-
osition shows that (locally) the equilibrium exists and is unique—a conse-
quence of saddle-path stability. Given an initial condition x̂0, x̂t and q̂t
converge at a constant rate to the stationary equilibrium, where 2l is the
negative eigenvalue of the system of differential equations.
Figure 3 illustrates the economy’s dynamic response relative to the ini-

tial stationary equilibrium after the technological shock at t 5 0. For ex-
ample, the response of relative employment is ΔlogðxtÞ ; logðxt=x02Þ. We
do so for the case of a demand elasticity v larger than 1.
In the short run, the increase in the relative labor demand causes the

relative wage to rise (Δlogðq0Þ > 0). The higher relative wage induces the
reallocation of existing worker generations from the L to the H technol-
ogy (Δlogðx02,0Þ > 0), as governed by the elasticity h. In turn, relative em-
ployment increases too (Δlogðx0Þ > 0).
The persistent increase in the relative wage implies that younger worker

generations entering after the shock face a higher present discounted
value of the relative wage qt, compared to that faced by older generations

FIG. 3.—Dynamic responses to a technological innovation (v > 1).
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born before the shock. This induces younger generations to increase
their relative labor supply in comparison to older generations. To illus-
trate this, figure 3D shows a positive gap Δlogðx0,0Þ > Δlogðx02,0Þ in relative
employment between the initial generation born right after the shock
(t 5 0) and those bornbefore (t 5 02). Through the lens of the structural
model, such a gap results from younger generations of households choos-
ing to supply more labor of skill types that are more complementary to the
H technology.
Finally, along the transition, relative employment xt increases over time

as older generations are replaced with younger generations at rate d, and
the relative wageqt declines in turn. In the long run, relative employment
and wages are higher than in the initial steady state.
We note that the only source of dynamics in our model is the differen-

tial labor supply responses of younger and older generations. If house-
holds do not respond to changes in the present discounted value of wages
(w 5 0) or relative wages do not change (as in partial equilibrium; see
sec. VI.C), there are no transitional dynamics, and the responses in the
long and short runs are identical.
Diffusion.—One interpretation of the above process is that the techno-

logical innovation slowly diffuses in the economy as more workers with
the appropriate skills operate the H technology over time. Our model
thus formalizes the idea in Rosenberg (1972) that the accumulation of
complementary skills shapes the diffusion process. However, this inter-
pretation overlooks the fact that our model does not give rise to an S-
curve, which is a common observed feature in practice (Griliches 1957;
Comin and Mestieri 2018). Instead, as figure 3 shows, relative employ-
ment jumps on impact. The reason is that we have assumed both that
the innovation increases productivity immediately and that existing work-
ers can relocate instantaneously. We have done so for simplicity, to high-
light the dynamics induced by changes in relative labor supply over a time
frame of generations. Without qualitatively changing any of our main in-
sights, one could “smooth out” the initial jump of our economy (and gen-
erate an S-curve) by enriching our model with any of the well-studied el-
ements that produce a sluggish adoption at relatively shorter horizons,
such as the slow increase in productivity due to firm-level learning
(Atkeson and Kehoe 2007) or the slow reallocation of existing workers
(Matsuyama 1992; Beraja and Zorzi 2024).

V. Skill Specificity and Technological Transitions

Through the lens of our model, the evidence in section II can be inter-
preted as showing that the short-run labor supply elasticity h was lower
during the ICT transition in part because of stronger skill specificity. Mo-
tivated by this, we next analyze the effect of skill specificity on equilibrium
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dynamics. In particular, section V.B studies the effect of skill specificity
on how slow technological transitions are. This is our main outcome of
interest for two reasons. First, we wish to speak to the evidence showing
a slower adjustment following ICT innovations. Second, as section VII
shows, the welfare implications substantially differ between fast and slow
technological transitions.
Our main theoretical result establishes that a technological transition

is slower whenever skill specificity is stronger. The reason is that the ad-
justment is driven more by the slow entry of new generations of workers
than by the relatively faster reallocation of generations that are already
present in the economy when the technological innovation arrives.

A. The Adjustment in High- and Low-h Economies

We begin by comparing the adjustment of two economies featuring a
high and a low short-run labor supply elasticity h. We interpret this as a
comparison between two episodes of adjustment triggered by distinct
types of technological innovations that affect different sets of economic
activities. In one episode, the innovation augments the productivity of
the H technology by Δlog(A), where H corresponds to occupations or
sectors intensive in skills that are markedly different from those used in
the rest of the economy (represented by the L technology). That is, this
episode is associated with an economy featuring strong skill specificity (in
our structural model, the elasticity of j(i) is high) where the short-run la-
bor supply elasticity h is low. In the other episode, the productivity of the
H technology is again augmented by Δlog(A), but H instead corresponds
to occupations or sectors intensive in skills similar to those used in the
rest of the economy. That is, this episode is instead associated with an
economy featuring weak skill specificity (in our structural model, the
elasticity of j(i) is low) where the short-run labor supply elasticity h is
high.
Figure 4 illustrates the adjustment in these two economies. The solid

lines show the responses of an economy with a low elasticity h and the
dash-dotted lines those with high h. In appendix B.3, we support the
graphical representation in figure 4 with proposition A.1, formally estab-
lishing how skill specificity affects the short- and long-run responses, the
cumulative impulse response, and the rate of convergence.
In the short run, when skill specificity is weaker (higher h), older work-

ers of generations born before the shock reallocate more (Δlogðx02,0Þ is
larger). That is, the within-generation adjustment margin is stronger.
As a result, relative wages increase less in the short run (Δlog(q0) is
smaller), whereas relative employment increasesmore (Δlog(x0) is larger).
The smaller and less persistent increase in relative wages (and so their
present discounted value q) then implies that young entering generations
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increase their relative labor supply by less compared to older generations
alive before the shock (Δlogðx0,0=x02,0Þ is smaller). In other words, the
cross-generation adjustment margin becomes endogenously weaker. In
our structuralmodel, this is because, when q increases by less, younger en-
tering households have weaker incentives to supply labor of skill types
that are complementary to the H technology.
Ultimately, transitional dynamics in relative employment xt and wages

qt are less important because there are less persistent changes in the rel-
ative labor supply that take place as younger generations replace older
generations. Formally, we measure this as the cumulative impulse re-
sponse function being smaller—graphically, as the shaded areas bounded
by dash-dotted line being smaller than those bounded by solid ones. The
next section shows how the (discounted) cumulative impulse response
connects to how slow the adjustment is.
We emphasize that the elasticity h affects cross-generation employment

differences only because we solve our model in general equilibrium,
where the relative wage is endogenous. If we had instead taken the relative
wage as exogenous, changes in h would affect the labor supply responses
of older workers but not the differential responses of younger genera-
tions (see sec. VI.C). In this case, h would also not affect transitional dyna-
mics or how slow the adjustment is.

FIG. 4.—Comparative statics: strong andweak skill specificity (low andhigh h, respectively).
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B. How Slow Is the Adjustment?

We conclude this section by showing how different degrees of skill spec-
ificity affect our main outcome of interest: how slow technological transi-
tions are. We first define a measure that summarizes the importance of
transitional dynamics and, therefore, gives a formal way of quantifying
whether the economy’s adjustment is fast or whether it slowly plays out
overmany generations. Specifically, we define the discounted cumulative
impulse response (DCIR).
Intuitively, the DCIR is the answer to the question, From the point of

view of generations alive just before the arrival of a technological innova-
tion, how different is the adjustment they expect to see during their life-
time compared to the long-run adjustment? We say that the economy’s
adjustment is slower when existing generations expect to miss more of
the overall adjustment (i.e., the DCIR is larger).
Definition 2 (DCIR). For any variable zt and innovation Δlog(A),

DCIRðzÞ 5
ð∞

0

de2dt ΔlogðztÞ
ΔlogðAÞ dt 2

Δlogðz∞Þ
ΔlogðAÞ

����
����:

Formally, the DCIR is the distance between the long-run response and
the expected response of log(zt) during the initial generation’s lifetime,
since all generations born before the innovation have exponentially dis-
tributed death probabilities with rate d. This is a convenient measure of
the importance of transitional dynamics in our context for two reasons.
First, it encodes not only the convergence ratel but also other relevant fea-
tures of the impulse responses, such as how front-loaded they are. For in-
stance, one couldhave an adjustmentwhere the short- and long-run changes
are almost identical—implying a DCIR close to 0—but the rate of conver-
gence l from the short run to the long run is very low. According to the
DCIR, we would intuitively say that it is a fast adjustment, since almost all
of the overall adjustment is completed on impact, whereas looking at l
alone suggests a slow adjustment. Second, theDCIRdoes notmechanically
scale with the replacement rate of generations. If d is higher, this mechan-
ically increases l (making the adjustment faster), but it also decreases the
expected lifetime of a generation.
The next proposition shows that, according to this measure, techno-

logical transitions are slower whenever skill specificity is stronger. This is
because, as figure 4 illustrates, stronger skill specificity mutes the realloca-
tion of older generations of workers in the short run, causing larger endog-
enous changes in relative wages and, in turn, in the relative labor supply of
younger entrant generations.20 As a result, when technological innovations

20 We conjecture that this intuition holds more generally. After a shock, economies with
a less mobile stock of a factor experience stronger changes in the flow of entrants because
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are biased toward economic activities intensive in skills that differ more
from those used in the rest of the economy, the adjustment in relative em-
ployment is slower, since it is drivenmore by the reallocation across rather
than within generations.
Proposition 3 (DCIR comparative statics with respect to h). Follow-

ing a technological innovation Δlog(A), relative employment (x) and
wages (q) adjust more slowly in economies featuring stronger skill spec-
ificity (lower h). Formally,

∂DCIRðxÞ
∂h

< 0,
∂DCIRðqÞ

∂h
< 0:

Proof. See appendix B.4.

VI. Back to the Evidence

Having established our main theoretical results, we are now ready to
come back to the evidence in section II about how the US economy ad-
justed to ICT and manufacturing innovations. In section VI.A, we show
that the model can match the distinct adjustment paths in both episodes
when the short-run elasticity of labor supply is assumed to be lower in the
ICT transition. Section VI.B shows that potential alternative explanations
deliver predictions that are at odds with the evidence in one or many di-
mensions. Section VI.C discusses the role of key model features in ac-
counting for the evidence. Section VI.D shows that our main results are
robust to a number of extensions of our baseline model.

A. Model versus Evidence

Wemap the set of occupations mostly affected by a technological innova-
tion—that is, ICT- and manufacturing-intensive occupations—to high-
tech production (H) in the model. Likewise, in every time t, we map
the group of “younger” workers to those with an age below 29 years in
themodel (i.e., born between t and t 2 29) andmap the group of “older”
workers to those older than 29. Therefore, the relative employment of
older generations is xolder

t ; d
Ð t229

2∞ edðt2tÞxt,t dt, and that of younger gener-
ations is xyounger

t ; d
Ð t

t229e
dðt2tÞxt,t dt.

Table 2 shows the calibration of the parameters in the reduced-form
model. We set the discount rate to r 5 0:02 so that future wages are dis-
counted at an interest rate of 2% per year. We pick a death rate of d 5
1=36 so that young workers aged 29 expect to work until age 65. We set
the elasticity of relative labor demand to v 5 3 to match the elasticity of

of larger relative price changes—e.g., if old vintages of physical capital are less adaptable to
new sectors, then the flow of entrants with newer capital vintages will be larger.
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substitution across occupations inHsieh et al. (2019).We set the generation-
specific elasticity of relative labor supply to w 5 0:4. In the structural
model, this elasticity is interpreted as the elasticity of occupational choices
of young workers to changes in the present discounted value of relative
earnings. Using experimental variation in beliefs about future earnings
in different college majors, Wiswall and Zafar (2015) estimate that a 1%
increase in expected relative earnings increases the log odds of majoring
in a field by about 0.4% for freshmen and sophomores. Finally, for our
baseline calibration, we set the short-run relative labor supply elasticity h
to 0, consistent with the lack of relative employment responses for older
workers during the ICT episode reported in figure 1 (sec. II.A). In the
structural model, this corresponds to an economy with infinite skill speci-
ficity, where worker skills cannot be transferred across sectors.
The left-hand column of figure 5 shows the empirical estimates of the

impact of 1 standard deviation higher ICTexposure on relative outcomes
across occupations over time (black circles), along with theoretical im-
pulse responses for the same outcomes obtained from our calibrated
model (red squares).We set the shockΔlog(A) so that themodelmatches
the relative employment response between 1980 and 2019. In the model,
we interpret the period between 1980 and 1990 as “the short run” when
the technological innovation arrives. Thus, we associate the year 1990 to
the impact responses at t 5 0, when the shock Δlog(A) hits the economy.
The model matches the magnitude and timing of the empirical re-

sponses remarkably well. It almost perfectly predicts the slow increase
in relative employment (fig. 5A.1) and the inverted-U shape response
in relative wages (B.1). Crucially, the model achieves this through the
right margins of adjustment: it replicates the lack of reallocation of older
workers (C.1) and the increase in the relative employment of younger
workers compared to older ones (D.1). Themodel only slightly overstates
the differences in relative employment across generations and somewhat
understates the increase for older generations (although these are not
significantly different from 0). Finally, we find a DCIR(x) of approximately

TABLE 2
Parameter Calibration

Parameter Value Description Target/Source

r .02 Discount rate 2% annual interest rate
d 1/36 Death rate Workers aged 29 expect

to work until 65
v 3 Labor demand elasticity Hsieh et al. 2019
w .4 Long-run labor

supply elasticity
Wiswall and Zafar 2015

h 0 Short-run labor
supply elasticity

Figure 1
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0.5, implying that generations born before 1980 expect to miss half of the
overall adjustment because of how slow it was.
The right-hand column of figure 5 shows the empirical estimates of the

impact of 1 standard deviation higher manufacturing exposure on rela-
tive outcomes across occupations between 1900 and 1940 (gray diamonds),

FIG. 5.—Dynamic responses to a technological innovation: model versus evidence. Left,
black circles correspond to the estimates of the impact of 1 standard deviation higher ex-
posure to ICT on the log change of outcomes across occupations—employment in A.1,
wages in B.1, employment of older workers in C.1, and the difference in employment of
younger and older workers in D.1. Right, gray diamonds correspond to the analogous esti-
mates associated with higher manufacturing exposure, except in B.2, where the diamonds
depict changes in the manufacturing wage premium (as reported in fig. A2). All estimates
are obtained from specifications described in section II, with vertical bars denoting the as-
sociated 90% confidence intervals. Red squares represent the transitional dynamics pre-
dicted by our model following a shock Δlog(A) that we set to match the long-run relative
employment response in A.1. The left-hand column uses parameters in table 2, and the
right-hand column the same parameters, except that we set h 5 ∞.
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together with the model-implied impulse responses (red squares) when
the short-run relative labor supply elasticity is large (h→∞), instead of
our baseline zero elasticity. In the structural model, a higher value of h
arises from weaker skill specificity, in line with the lower task distance be-
tween the most and least exposed occupations that we documented in
section II.C for manufacturing innovations. The large value that we use
corresponds to an economy with weak skill specificity, where worker skills
are easily transferable across sectors. We use the same values for all other
parameters, as well as the magnitude of the shock Δlog(A).
For h large enough, the model predicts a fast increase in relative em-

ployment (fig. 5A.2), coupled with weak changes in relative wages, follow-
ing the technological innovation (B.2). Again, themargins of adjustment
are consistent with the evidence: the model generates a fast increase in
the relative employment of older workers (C.2) and similar responses
for younger and older generations (D.2). The faster transition implies
a DCIR(x) close to 0, so that generations born before the shock expected
to see the full adjustment within their lifetime.
Taken together, these results show that a lower short-run elasticity h can

quantitatively explain why the adjustment to the ICT innovations of the
late twentieth century was slower, more unequal, and mainly driven by
the entry of young generations, when compared to the adjustment trig-
gered by the innovations inmanufacturing of the early twentieth century.
We note that the model needs a large difference in h between the two ep-
isodes to match the large difference in the magnitude of the reallocation
of older generations. Our evidence in section II.C shows that skill speci-
ficity contributed to reduce the labor supply elasticity of older workers
into ICT-intensive occupations. However, we acknowledge that the exercise
above does not quantify whether the higher task distance of ICT-intensive
occupations (compared to manufacturing-intensive occupations) fully
accounts for the lower h during the ICT transition.

B. Alternative Explanations

We now use our model to evaluate alternative explanations for the differ-
ences across the transitions triggered by innovations in ICTandmanufac-
turing. Specifically, we next redo the analysis above for changes in model
parameters that capture other potential reasons for the distinct adjust-
ment patterns observed during the two transitions. We conclude that
none of them can jointly explain the differences that we document.
Slow-moving At.—Technological transitions may be slower or faster as a

result of factors entirely unrelated to specificity and skills. For instance,
technologies themselves may improve only gradually and their price de-
cline slowly. Or knowledge about how to use new technologies may be
accumulated gradually. In our model, these types of stories would affect
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productivity, and thus relative labor demand, directly. They canbe captured
in reduced form as changes in At happening gradually over time, as op-
posed to our baseline of a permanent one-time shock Δlog(A). If technol-
ogies differ in the speed at which At evolves, so will the adjustment. This
could in part explain why the ICTandmanufacturing transitions differed.21

However, this explanation is at odds with two facts. First, a slower rela-
tive labor demand increase during the ICT transition would have implied
a slower increase not only of relative employment but also of relative
wages. This is not what we observed: the rise in the relative wage of ICT-
intensive occupations happened decades before the rise in their relative
employment. Second, in an economy without skill specificity (h 5 0) or
differences in relative labor supply across generations (w 5 0), slow-
moving changes in labor demandby themselves donot lead to differences
in employment reallocation across generations. This being the case, these
other sources of slow adjustment dynamics cannot explain the observed
differences across younger and older generations that we document. This
suggests thatmechanisms based on slower dynamics of labor demand can-
not alone explain the differences between the two technological transitions.
Changes in w.—One potential reason behind the different responses in

the two episodes is that it was easier for younger workers to acquire the
skills required to operate the new technologies used inmanufacturing in
the early 1900s. That is, the elasticity w used to be higher. Indeed, this
narrative is in line with historical accounts in Goldin and Katz (2009)
and Alon et al. (2018) showing that schooling costs, for example, used
to be lower in the early twentieth century than in recent decades.
The left-hand column of figure 6 shows the model-implied responses

for w 5 2 instead of our baseline 0.4, again together with the empirical
estimates for the impact of higher manufacturing exposure across occu-
pations. A larger w cannot explain the different short-run responses in
the two episodes: namely, the larger employment response and the smaller
wage response over the initial decades of the transition to manufacturing
(figs. 6A.1, 6B.1). That is, a larger w gets the timing of the adjustment
wrong. The reason is that this amplifies the relative employment response
of young generations (D.1) but cannot generate the strong response ob-
served for older incumbent generations (C.1). Thus, any explanation
based on the cost of acquiring skills for younger workers is inconsistent
with the evidence that employment responses were stronger for both older
and younger workers during the manufacturing transition.22

21 For example, ICTs could have been held back by the slow rollout of distribution and
network technologies that were key complementary inputs.

22 Note that, if w was smaller instead, then the model could generate the small differences
across generations that we observe in reallocation toward manufacturing-intensive occupa-
tions. However, this would imply a larger and more persistent relative wage increase and a
smaller employment response at all horizons, the opposite of what we documented.
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Changes in d.—Another possibility is that, early in the twentieth century,
older generations were replaced by younger onesmore often. That is, the
rate d used to be higher because of the shorter life expectancy of workers
in the early 1900s.
Themiddle column of figure 6 shows the model-implied responses for

d 5 1=20 instead of our baseline 1/36. An increase in d has an effect that
is similar to an increase in w. Intuitively, both of these parameters govern
the elasticity of relative labor supply at longer horizons. As such, they
are unable to simultaneously generate the stronger reallocation of older
workers and the smaller between-generations differences in relative em-
ployment responses that we observed during the transition triggered by

FIG. 6.—Alternative explanations of differences across technological transitions. Gray
diamonds and bars are as described in figure 5. Red squares represent the transitional dy-
namics predicted by our model following a shock Δlog(A) that we set to match the long-
run impact of ICTexposure on relative employment. Predictions were obtained with param-
eters in table 2, except that w 5 2 in the left-hand column, d 5 1=20 in the middle column,
and v 5 5 in the right-hand column.
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innovations in manufacturing (figs. 6C.2, 6D.2). Consequently, they are
also unable to generate the smaller (larger) relative wage (employment)
increase that we document at short horizons (A.2 and B.2).
Changes in v.—When the short-run labor supply elasticity h is 0 but the

long-run elasticityw is positive, as in our baseline calibration, ourmodel is
a variant of Katz and Murphy (1992) with an elastic labor supply, similar
to Caselli (1999). In this context, we can interpret the parameter v as the
elasticity of substitution between skilled and unskilled workers. The evi-
dence in Goldin and Katz (2009) suggests that such an elasticity declined
over the course of the twentieth century. In the early 1900s, the relevant
distinction was between workers with and those without a high school de-
gree, with an elasticity of substitution of 5. In the late 1900s, the relevant
distinction was between workers with and those without a college degree,
with a lower elasticity of 1.6.
The right-hand column of figure 6 shows themodel-implied responses

for v 5 5 instead of our baseline 3. An increase in v can explain the larger
relative employment response to the innovations inmanufacturing of the
early 1900s. However, at odds with the evidence, it also implies an even
larger response of relative wages (B.3) and, as a result, of relative employ-
ment differences across generations (D.3). This follows from the usual
demand-supply logic that, for the same demand shock Δlog(A), the rela-
tive wage and employment increases are larger when the relative demand
elasticity is larger.23

C. The Role of Key Model Features

In our model, differences in skill specificity help to explain the observed
differences in the economy’s adjustment during the two technological
transitions. This is because stronger skill specificity reduces the realloca-
tion of older incumbent workers, while it endogenously increases that of
younger entrant workers. We next discuss the ingredients of the model
that are essential to these conclusions.
Endogenous relative wages.—The results above are in contrast to quanti-

tative dynamic Roy models where wages are sometimes taken to be exog-
enous because of the difficulties in computing the general equilibrium
(e.g., Lee and Wolpin 2006). In particular, changes in skill specificity af-
fect the labor supply responses of older workers but not the differential
responses of younger generations when the relative wage qt (and thus its
present discounted value qt) is exogenously given.

23 Suppose instead that v used to be smaller. This could now rationalize the smaller rel-
ative wages and cross-generation differences in relative employment at longer horizons.
However, in contrast with the evidence, it would also imply a smaller employment response
at all horizons and no reallocation of older workers.
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The intuition follows from the discussion around figure 4. Cross-
generation differences arise only when younger generations’ relative labor
supply responds to changes in the present discounted value of wages. In
a model with endogenous relative wages, a higher h leads to a smaller
relative wage increase following the technological innovation Δlog(A)
(because of the stronger reallocation for older workers), which then im-
plies smaller cross-generation differences in relative employment and a
faster overall employment adjustment. This effect is absent when changes
in relative wages are exogenously given, since the incentives of house-
holds of entering generations to supply labor of skill types complementary
to the H technology would not be affected by h. Finally, we note that, for
the same reason, differences in skill specificity do not affect how slow
the adjustment is (as measured by the DCIR) in a model with exogenous
changes in inequality.
Endogenous labor supply of young generations.—Our results are also dis-

tinct from those implied by models with exogenous within-generation
skill heterogeneity—as in static Roy models, for example, Costinot and
Vogel (2010) and Burstein, Morales, and Vogel (2019). Our model fea-
tures a fixed labor supply of young generations when the long-run labor
supply elasticity w is 0. This rules out the type of cross-generational em-
ployment differences implied by ICT innovations. In our model, it also
implies that all responses are instantaneous (i.e., there are no transitional
dynamics).
Heterogenous skills and specificity.—A special case of our model without

transferable skills—that is, infinite skill specificity, h 5 0—implies that old
generations do not reallocate after a technological innovation, which is
inconsistent with the evidence in section II for the manufacturing inno-
vations of the early 1900s. This would also be the case in models without
worker mobility (e.g., Guerreiro, Rebelo, and Teles 2022) or where the in-
novation is biased toward certain observable worker attributes such as ed-
ucation or age (e.g., Katz and Murphy 1992; Caselli 1999; Card and
Lemieux 2001) instead of affecting economic activities using specific skills.
At the other extreme, we can consider a model where skills are perfectly

transferable—that is, no skill specificity, h 5 ∞. This case is similar to ca-
nonical structural transformation models where labor is homogeneous,
reviewed by Herrendorf, Rogerson, and Valentinyi (2014). It implies that
there are no cross-generational employment differences, which is not
consistent with our evidence for the ICTepisode. This would be the case
as well in models where the dynamics of (homogeneous) labor realloca-
tion are driven by shifters of labor demand, such as firms’ investment and
entry decisions (e.g., Atkeson and Kehoe 2007; Dix-Carneiro and Kovak
2017). Note also that this class of models cannot explain our findings
that, upon arrival in the 1980s, ICT innovations triggered a fast increase
in relative wages that preceded relative employment responses by decades.
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D. Additional Determinants of Adjustment Dynamics

The theory so far has ignored several determinants of adjustment dynam-
ics. In appendix C.2, we present three extensions that relax some of the
assumptions of our baseline model. For all extensions, our comparative
statics results with respect to h in proposition 3 and the numerical results
in this section remain valid. However, as we discuss below, the extensions
affect the levels of the DCIRs and the relative employment responses for
older and younger generations.
Learning from others.—Our first extension considers a “learning-from-

others” externality. Specifically, we relax the assumption that the labor
supply choices of young generations depend only on the future path of
wages. Instead, we assume that certain skill types may be easier to supply
because workers can “learn from others” when those types are already
abundant in the economy. This extension introduces a backward-looking
element into the household’s problem and complementarities in the
labor supply decisions across generations. This is similar to the cross-
generation complementarities that arise in the environment considered
by Chari andHopenhayn (1991). In this case, dynamic responses are qual-
itatively similar to those of our baseline economy when w is higher and d is
lower. This makes the adjustment slower, the relative employment re-
sponse of older workers at long horizons smaller, and the cross-generation
differences in relative employment at long horizons larger.
Retraining of old workers.—Our second extension relaxes the assumptions

that households choose their supply of skill types only at birth. We allow
an exogenous fraction of older generations that were present before the
technological innovation to reoptimize their labor supply as if they were a
young generation entering at time t 5 0. One interpretation of this is
that older workers can now retrain after the innovation arrives. This ex-
tension yields responses that are qualitatively similar to our baseline when
the short-run labor supply elasticity h is higher. Thus, it makes the adjust-
ment faster, the employment responses of older generations stronger,
and the cross-generation differences in employment lower.
Population growth.—Our third extension allows for the birth rate to be

higher than the death rate. This raises the convergence rate l, resulting
in a faster adjustment.

VII. Welfare Implications of Skill Specificity

So far, we have shown that the model matches in a parsimonious way the
evidence on relative responses across occupations and generations for
the transitions triggered by innovations in ICTs andmanufacturing. This
gives us confidence that we can use the model to study the aggregate im-
plications of technological innovations. In particular, we next analyze
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how welfare is affected by the economy’s degree of skill specificity. This
normative analysis requires us to move away from the reduced-form
model of section IV and commit to the structural model of section III.
To obtain an average welfare measure across generations W, we take

a utilitarian approach by considering a population-weighted average of
the utility of different generations, where generation t’s weight is dre2rt,
as in Calvo and Obstfeld (1988), and their utility Ut is defined in equa-
tion (11). This implies that aggregate welfare in consumption-equivalent
units is

W 5 rd

ð∞

2∞
e2rtUt dt: (20)

We consider a second-order approximation of the welfare function
around the stationary equilibrium. As usual, this higher-order approxi-
mation allows us to capture households’ preference for smoother con-
sumption paths.24 For the relevant case of a small discount rate r, the fol-
lowing proposition shows that the welfare gains from technological
innovations are smaller when skill specificity is stronger, because the ad-
justment is slower:
Proposition 4 (Welfare gains). Let ΔW be the change in welfare

from a technological innovation Δlog(A), and assume that v > 1. Then,

lim
r→ 0

∂ΔW
∂h

> 0:

Proof. See appendix B.5.
To get a sense ofmagnitudes and provide intuition for the proposition,

figure 7 uses our calibrated model to compute welfare and the DCIR(x)
under different values of the elasticity h. This also allows us to show, nu-
merically, that the result in the proposition still holds for reasonable val-
ues of r away from the limit r→ 0.
The black solid line depicts how the elasticity h affects the welfare loss

from transitional dynamics. We compute this loss as ΔW 2 ΔU∞, that is,
the difference between the actual welfare gains and the gains associated
with the long-run change in utility between the initial and final steady
states. We note that such long-run gains ΔU∞ also correspond to an econ-
omy where the adjustment is instantaneous, such as when the elasticity h
is infinity. Moreover, to ease interpretation, we normalize the loss to 1 for
the economy from our baseline calibration with infinite specificity (h 5 0).
The blue dotted line shows the DCIR(x) as a measure of how slow the
adjustment is. Finally, as a summary measure of the responses across

24 For example, second-order approximations are common in the business-cycles litera-
ture when studying the welfare losses from fluctuations in output and inflation (Woodford
2011).
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generations, the red dashed line in the figure also shows the ratio be-
tween the responses at impact in the relative employment of older and
younger workers Δ logðxolder

0 Þ=Δ logðxyounger
0 Þ, as defined in section VI.A.

For our baseline calibration with h 5 0, the DCIR(x) is 0.5 and older
workers do not reallocate. As h increases, the adjustment becomes faster,
the reallocation of older workers (relative to younger workers) strength-
ens, and the welfare loss from transitional dynamics decreases. For exam-
ple, when h increases to 3, the DCIR(x) is cut in half, to about 0.25, and
the relative log employment response of older workers increases to about
0.3. In turn, this faster adjustment implies that the welfare losses are
about one-third smaller, compared to the baseline. Underlying this wel-
fare calculation are significant consumption differences across genera-
tions.25 Early generations have much smaller consumption than later
ones, which entered the market when average wages were higher and
the relative wage qt lower. Such differences across generations decrease
as h increases because there is a faster and stronger increase in average
wages and a less persistent and smaller increase in relative wages. Taken
together, these results imply that observing a more muted reallocation
of older workers (relative to younger workers) shortly after a technological

FIG. 7.—Welfare in fast and slow technological transitions.

25 Recall that total labor supply is fixed for each generation. Thus, in response to shocks,
welfare changes are entirely driven by consumption changes.
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innovation is a signal of a highdegree of skill specificity and thus (everything
else equal) a slower transitiongoing forward,wherewelfare gains are smaller.

VIII. Conclusions

Technological transitions are not always alike. Labor markets adjust rap-
idly to some technological innovations and more slowly to others. One
important reason is that certain innovations benefit production activities
that require more specific skills. Following such innovations, the adjust-
ment is slower because it relies more on the gradual entry of young gen-
erations of workers to the benefited activities and less by the faster reallo-
cation of older incumbent workers. To support this argument, we first
present evidence on howUS labormarkets adjusted tomanufacturing in-
novations in the early twentieth century and ICT innovations later in that
century. We then build amodel of technological transitions that allows us
to sharply characterize the impact of skill specificity on equilibrium dy-
namics, interpret our evidence, and analyze normative implications.
The evidence shows that the adjustment to ICT innovations was slower

and more unequal. Differences in the reallocation of younger and older
generations account for the slower expansion of ICT-intensive occupa-
tions. While the reallocation to manufacturing occupations in the early
twentieth century was similar for young and old generations, older gen-
erations did notmove toward ICT-intensive occupations. Instead, the ICT
transition was entirely driven by the gradual entry of younger genera-
tions. Stronger skill specificity during the ICT transition can partly ex-
plain these facts.
Going forward, our results raise the question of whether recent ad-

vances in artificial intelligence (AI)—a new general-purpose technology
that could transform multiple sectors and occupations—resemble past
innovations in ICTs ormanufacturing.Will the adjustment be slow, mainly
driven by the entry of younger generations, or will it be fast, as the skills
possessed by older incumbent generations can easily be transferred to
work in activities benefiting from AI?

Data Availability

Code replicating the figures and tables in this article can be found inAdão,
Beraja, andPandalai-Nayar (2024) in theHarvardDataverse, https://doi.org
/10.7910/DVN/YNOZ6Q.
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Online Appendix for:

Fast and Slow Technological Transitions

This appendix contains supplemental material for the article “Fast and Slow Techno-
logical Transitions.” We provide (i) further details on data construction and additional
evidence, (ii) the proofs of all lemmas and propositions in the paper, and (iii) additional
theoretical results.

Any references to equations, figures, tables, assumptions, propositions, lemmas, or
sections that are not preceded “A.” – “C.” refer to the main article.
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Appendix A Evidence from Two Technological Transitions:
Data Construction and Additional Results

This section complements the results presented in Section 2. We provide details about
data construction and then present additional results.

A.1 Data construction

This section outlines in detail the construction of the data used in Section 2.

Employment and average wage by occupation and age group. Our main data source
is the historical data of the U.S. Census from IPUMS. For each Census year, we select
the sample of males in the labor force aged 16-64 years old that have valid occupation
information. Following the guidelines provided by IPUMS, we use the 1950 occupation
classification before 1970, and the 1990 occupation classification after 1980. For the latter
period, we further aggregate occupations into the classification used by Autor and Dorn
(2013). We use sampling weights to compute outcomes by occupation and age group.
Employment is the sum of the number of individuals in each occupation and group.
The average wage is the aggregate annual income (“incwage”) of full-time workers in
an occupation-group divided the total number of such individuals. We define full-time
workers as those working at least 40 weeks in a year and 35 hours in a week.

Figure A1 plots the distribution of employment by occupation in each episode. We
restrict the figure to the top 50 occupations by employment in each period for clarity. Em-
ployment in the early period is largely concentrated in agricultural and manual-intensive
occupations, with nearly 40 percent of employment in “farmers” and “farm laborers,
wage workers.” An additional 13 percent of employment is in “laborers, not elsewhere
classified.” There is substantially less concentration in employment by occupation in the
latter episode (although we note that there are more finely defined occupational cate-
gories in this period). The largest occupation in the second episode is “managers and
administrators, not elsewhere classified” with nearly 7 percent of total employment. The
top 50 occupations account for around 67 percent of employment in the second episode,
and around 90 percent of employment in the first episode.

Occupation exposure to manufacturing industries. We use the U.S. Census classifica-
tion to group industries into a manufacturing sector and a non-manufacturing sector.
The occupation’s exposure is Exposureo ≡ ∑k `

k
o,t0

Sk, where Sk is a dummy that equals
one if industry k is classified as manufacturing (codes 300-500 in the 1950 industry clas-
sification), and `k

o,t0
is the share of industry k in the number of employed individuals in
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Figure A1: Distribution of Employment by Occupation in the Two Episodes

Panel A: Employment by Occupation in 1900

Panel B: Employment by Occupation in 1980

Note. Bars show the shares of employment in the top 50 occupations with positive employment in 1900 (Panel A) and 1980 (Panel B)
for the U.S. Census sample of males aged 16-64yrs in the labor force.

occupation o in the 1900 Census.

Occupation exposure to electricity-intensive industries. To construct an occupation’s
electricity exposure, we begin by obtaining industry electricity exposure from the 1947
BEA input-output tables. These tables are the oldest available, and are coded in 1957
SIC codes. Our occupation-industry data from IPUMS uses Census industry codes. A
concordance between any vintage of Census industry codes and 1957 SIC codes is not
available, so we construct a concordance for this match. For this concordance, we map
each 2-digit SIC code from the IO tables to corresponding Census industry codes. In
the few cases of multiple SIC codes matching to a single Census 1950 industry code, we
assign the simple average of the SIC electricity exposure to the Census industry code.
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The SIC industry’s electricity exposure is defined as the sum of its input spending (as
a share of its output) on “Purchases of Electrical Industrial Equipment and Apparatus,”
“Purchases of Electric lighting and wiring,” “Purchases of Electric components and ac-
cessories,” and “Purchases of Misc. electrical machinery, equipment and supplies.” As
the 1947 IO tables do not separate purchases of electricity from other utilities such as
gas, water and sanitary services, we do not include direct electricity purchases in our ex-
posure measure. Finally, to mitigate noise in the exposure measure, we then average the
exposure measure of each Census 1950 industry in four bins – non-manufacturing, low
electricity usage manufacturing, moderate electricity usage manufacturing, and high
electricity usage manufacturing. The bins within the manufacturing sector are con-
structed as the bottom, middle and top 33% of manufacturing electricity exposure. Fi-
nally, we compute the occupation’s exposure to electricity as Exposureo ≡ ∑k `

k
o,t0

Sk,
where Sk is the electricity input exposure for industry k (computed as described above),
and `k

o,t0
is the share of industry k in the number of employed individuals in occupation

o in the 1900 Census.

Occupation exposure to ICT-intensive industries. For industry ICT exposure, we first
construct for each NAICS industry its spending (as a share of its output) on the following
items related to ICT in the 1997 BEA input-output table: “Audio, visual and communi-
cations equipment,” “Semiconductors and electronic components,” “Software,” “Motion
pictures and sound recordings,” “Radio and television broadcasting,” “Cable networks
and program distribution,” “Telecommunications,” “Information services,” and “Data
processing services.” We use the crosswalk provided by the Census Bureau to map the
NAICS 1997 codes to the 1990 Census industry classification. For each Census industry,
we use the simple average of the ICT exposures of all associated NAICS industries.

We compute the occupation’s exposure following the same steps described above
for the construction of the exposure to electricity-intensive industries. We first group
industries into four bins of ICT exposure based on quartiles of industry spending shares
on ICT, and use the simple average in each bin as the exposure measure for the Census
industries in that bin. We then compute the occupation’s exposure to ICT as Exposureo ≡
∑k `

k
o,t0

Sk, where Sk is the ICT input exposure for industry k (computed as described
above), and `k

o,t0
the share of industry k in the number of full-time employed individuals

in occupation o in the 1980 Census.
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Occupation task requirements and task-based exposure. We use the replication data
from Autor and Dorn (2013) to measure the intensity of each occupation (in the 1990
Census classification) on three types of tasks: manual, routine, and abstract/cognitive.
Autor and Dorn (2013) follow the procedure in Autor et al. (2003) to measure task in-
tensity using the job task requirements published in the fourth edition of the U.S. De-
partment of Labor’s Dictionary of Occupational Titles (DOT) (U.S. Department of Labor
1977) – for details see Section II of Autor and Dorn (2013). For each occupation, the
intensity index in a task is a number that varies between 0 and 10. We define Exposureo
as occupation o’s standardized intensity index in abstract activities. Table A1 above lists
the top 10 exposed occupations by each measure for each period.

A.2 Additional results

A.2.1 Robustness of Figure 1: Responses in occupation outcomes

Manufacturing wage premium, 1900-1926. To shed light on wage responses to the
manufacturing innovations of the early twentieth century, we use wage indices obtained
from the 1975 Historical Statistics of the United States published by the U.S. Census. This
is the same primary data source in Goldin and Margo (1992). We define the manufac-
turing wage premium as the log of the ratio of wage indices for manufacturing workers
(series D-781) and non-farm workers (series D-780). Figure A2 shows that the relative
wage in manufacturing did not increase much between 1900 and 1926. Following an
increase shortly after 1900, the manufacturing wage premium falls until WWI, and then
returns to its 1900 level by the mid 1920s.

Alternative exposure measures. In Table A2, we investigate the robustness of the esti-
mates reported in Figure 1. Panels A and B report respectively the responses of relative
employment and wages in occupations more exposed to ICT innovations in the late twen-
tieth century while Panel C reports the response of relative employment in occupations
more exposed to manufacturing innovations in the early twentieth century. Columns (1)-
(4) report estimates for the first two decades of each episode and columns (5)-(8) for the
entire sample period. The heading of each column indicates whether estimates are for
all workers aged 16-64yrs, older workers aged 30-64yrs, younger workers aged 16-29yrs,
or the difference between older and younger workers. For ease of comparison, the first
set of estimates in all panels replicates the baseline estimates reported in Figure 1.

We start by reporting estimates based on alternative exposure measures for the two
episodes. For the ICT episode, the extensive literature reviewed in Acemoglu and Autor
(2011) has suggested that technology-driven labor demand shocks after 1980 might have
increased the productivity of jobs intensive in cognitive tasks (relative to those inten-

6



Figure A2: Manufacturing Wage Premium, 1900-1926

Note. The manufacturing wage premium is the log of the ratio of the average wage of manufactur-
ing workers and that of all non-farm workers in the 1975 Historical Statistics of the United Stated
(series D-780 and D-781). We normalize the manufacturing wage premium to zero in 1900.

sive in routine tasks). Thus, as described above, we construct an alternative exposure
measure based on each occupation’s cognitive task intensity. For the early episode, mo-
tivated by the link between the spread of electricity and the increase in manufacturing
in this period (David, 1990; Jovanovic and Rousseau, 2005), we construct a measure of
an occupation’s exposure to electricity usage. Appendix A.1 described in detail how we
built these alternative exposure measures.

The second set of estimates in each panel of Table A2 relies on these alternative
exposure measures. Overall, results attest the robustness of our conclusions. In Panels
A and C, we show that the estimated responses in the relative employment of more
exposed occupations are similar to our baseline estimates in both episodes. Panel B
shows that the task-based exposure measure also yields a significant increase in the
relative wage of more exposed occupations shortly after 1980, but this increase is larger
and more persistent, with the slow down only starting in 2010.27

27We note that the alternative exposure measure implies that younger workers actually had lower relative wage
growth in more exposed occupations. This reinforces our conclusion that relative demand did not increase more for
younger than older workers conditional on their occupation’s exposure.
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Table A2: Exposure to Technological Innovations and Occupation Outcomes for Younger and
Older Workers in the Two Episodes – Robustness

Change between t0 and t0 + 20 (mid-period) t0 and t0 + 40 (full-period)

Worker group: All
16-64yrs

Younger
16-29yrs

Older
30-64yrs

Younger -
Older

All
16-64yrs

Younger
16-29yrs

Older
30-64

Younger -
Older

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Effect of ICT exposure on relative employment
Baseline 0.040 0.052 0.015 0.037 0.099** 0.141*** 0.062 0.078***

(0.034) (0.044) (0.032) (0.025) (0.044) (0.050) (0.043) (0.029)

Alternative exposure measure
Cognitive exposure 0.041 0.018 -0.018 0.036* 0.141** 0.163** 0.054 0.109***

(0.046) (0.052) (0.046) (0.020) (0.062) (0.066) (0.064) (0.031)

Alternative sample
Only U.S. natives 0.046 0.057 0.021 0.036 0.099** 0.134*** 0.067 0.067**

(0.034) (0.044) (0.032) (0.025) (0.043) (0.049) (0.042) (0.027)
Only white 0.044 0.050 0.017 0.034 0.090** 0.131*** 0.050 0.082***

(0.034) (0.043) (0.032) (0.024) (0.043) (0.048) (0.042) (0.028)

Alternative controls 0.038 0.030 0.003 0.027 0.105** 0.120** 0.057 0.063**
(0.034) (0.043) (0.031) (0.026) (0.043) (0.047) (0.042) (0.030)

Panel B: Effect of ICT exposure on relative wage
Baseline 0.025* 0.039*** 0.021 0.019 -0.005 0.006 -0.003 0.009

(0.013) (0.012) (0.014) (0.012) (0.032) (0.028) (0.035) (0.018)

Alternative exposure measure
Cognitive exposure 0.076*** 0.074*** 0.086*** -0.011 0.136*** 0.101*** 0.162*** -0.061***

(0.013) (0.013) (0.014) (0.016) (0.040) (0.034) (0.042) (0.020)

Alternative sample
Only U.S. natives 0.021 0.037*** 0.016 0.021* -0.008 0.006 -0.009 0.015

(0.013) (0.012) (0.014) (0.012) (0.034) (0.030) (0.036) (0.018)

Only white 0.022 0.036*** 0.018 0.017 -0.007 0.001 -0.004 0.004
(0.014) (0.012) (0.015) (0.012) (0.035) (0.031) (0.038) (0.018)

Alternative controls 0.033*** 0.048*** 0.030*** 0.018* 0.021 0.029** 0.026* 0.003
(0.011) (0.012) (0.011) (0.011) (0.013) (0.014) (0.014) (0.013)

Panel C: Effect of Manufacturing exposure on relative employment
Baseline 0.153*** 0.167** 0.121*** 0.046 0.190*** 0.205*** 0.169** 0.036

(0.053) (0.070) (0.031) (0.062) (0.069) (0.076) (0.069) (0.058)

Alternative exposure measure
Electricity exposure 0.150*** 0.167** 0.118*** 0.050 0.150** 0.153* 0.134* 0.020

(0.053) (0.070) (0.034) (0.060) (0.075) (0.089) (0.071) (0.070)

Alternative sample
Only U.S. natives 0.153** 0.173** 0.115*** 0.058 0.219*** 0.242*** 0.195*** 0.047

(0.060) (0.075) (0.033) (0.063) (0.075) (0.080) (0.072) (0.058)

Only white 0.153*** 0.163** 0.125*** 0.038 0.188** 0.208*** 0.168** 0.040
(0.052) (0.069) (0.033) (0.060) (0.073) (0.079) (0.072) (0.058)

Note. Sample based on 310 occupations for Panels A-B and 201 occupations for Panel C with positive employment in the initial
and final years of each episode for the U.S. Census sample of males aged 16-64yrs in the labor force. Estimates are weighted by
the occupation’s employment at t0. Dependent variable is the change in the outcome indicated in each panel between years t0 and
t0 + 20 in columns (1)-(4) and between years t0 and t0 + 40 in columns (5)-(8). Estimates in columns (1) and (5) based on equation
(1) for a single group of all males aged 16-64yrs. Estimates in columns (2)-(4) and (6)-(8) based on equation (2) for two groups: a
Younger group including males aged 16-29yrs, and an Older group including males aged 30-64 yrs. Columns (4) and (8) report
the difference between the coefficients for younger and older workers. The occupation exposure in Panels A-B is the occupation’s
average ICT-intensity across industries, except in the second row where it is the occupation cognitive intensity, and in Panel C is
the occupation’s average manufacturing-intensity across industries, except in the second row where it is the occupation’s average
electricity-intensity across industries. Exposure measures are normalized to have a unit standard deviation. Estimates in the middle
two rows of each panel use occupation outcomes computed from the sub-sample of U.S. native and white males. Estimates in the
last row of Panels A and B control for the following occupation variables measured in 1980: hours worked, self employment rate,
and share of full-time workers. Standard errors in parentheses are clustered by occupation. * p < 0.1, ** p < 0.05, *** p < 0.01
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Alternative sample. The third set of estimates in each panel of Table A2 addresses
concerns that two sources of aggregate labor supply shocks during these episodes had
heterogeneous effects across occupations that could have been correlated with our ex-
posure measures. Both the early and the late twentieth centuries were periods in which
immigration changed substantially. To the extent that immigrants differ from natives in
their occupation allocation (Card, 2005), changes in the stock of immigrants may have
affected relative employment in more exposed occupations. We show that this was not
the case, since our estimates are similar when we restrict our sample to include only
U.S. natives. Both periods were also marked by changes in social norms that affected the
employment allocation of minorities across occupations (Hsieh et al., 2019). We show
that this does not affect our conclusions as estimates are similar when we restrict our
sample to include only white males.

Alternative controls. The fourth set of estimates in Panels A and B of Table A2 ad-
dress concerns that our estimates could be biased by job amenities that varied across
occupations in a manner correlated with their shock exposure. The U.S. Census did not
collect much information on job attributes in 1900-1940, so we only report estimates with
additional controls for the more recent ICT episode. Specifically, we estimate equation
(1) including controls for the following occupation variables measured in 1980: hours
worked, self employment rate, and share of full-time workers. Estimates show that our
conclusions are robust to the inclusion of these controls.

Alternative generation definition. We next turn to the robustness of the between-
generation gap in employment responses with respect to the definition of the two worker
generations. We do so by estimating (2) with alternative age cutoffs to define the groups
of younger and older workers. Figure A3 reports our estimates of βyounger,t − βolder,t

for different age cutoffs defining the younger worker generation. For the employment
response to ICT exposure between 1980 and 2019, the black dots show that the young-
old gap becomes smaller as we increase the maximum age of workers included in the
younger group. For the employment response to manufacturing exposure in 1900-1940,
the gray diamonds show that, if anything, the differential reallocation of younger work-
ers becomes stronger as we increase the age cutoff.

A.2.2 Decomposition of employment reallocation across cohorts

We now relate the different patterns of occupation reallocation for older and younger
workers in the two episodes to the occupational choices of successive cohorts. We do
so by decomposing the reallocation of cohorts towards highly exposed occupations in
each decade of an episode into a common decade effect for all cohorts (ζt) and cohort-
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Figure A3: Differential Reallocation of Younger Workers to More Exposed Occupations in the
The Two Episodes – Varying Age Threshold Defining Worker Generations

Note. Figure reports estimates of βyounger,t− βolder,t obtained from the estimation of equation (2), with the dependent variable defined
as the log-change in occupation employment for two groups: a Younger group including males aged between 16 and the age shown
in the horizontal axis, and an Older group including males aged between the age shown in the horizontal axis and 64. Black dots are
the estimates of the response to ICT exposure obtained from a sample of 310 occupations between 1980 and 2019. gray diamonds are
the estimated responses to manufacturing exposure in the sample of 201 occupations between 1900 and 1940. The ICT exposure is
the occupation’s average ICT-intensity across industries and the manufacturing exposure is the occupation’s average manufacturing-
intensity across industries. Exposure measures are normalized to have zero mean and unit standard deviation. Vertical bars denote
90% confidence intervals clustered by occupation.

specific deviations from that common effect (εc,t). In particular, we estimate the following
regression:

log sEmpHc,t − log sEmpHc,t−10 = ζt + εc,t, (A.1)

where the dependent variable is the ten-year log-change in the share of individuals of
cohort c that are employed in occupations with the 25% highest values of exposure (i.e.,
the set of highly exposed occupations that we denote by OH).28 We consider a sample
that includes each of the five U.S. Decennial Census years in the corresponding episode
and, in any given year, each of the 49 cohorts aged 16-64 years old.

When the pattern of reallocation towards highly exposed occupations is more similar
across cohorts, the cohort-period residuals εc,t have a lower dispersion (i.e., the standard
deviation of εc,t is lower), and account for a smaller share of the variation in the de-
pendent variable (i.e., 1− R2 of the regression is lower). In fact, in the extreme case in
which all cohorts were to exhibit exactly the same employment growth in highly exposed
occupations, we would have εc,t = 0 and thus 1− R2 = 0.

In Table A3, we report the statistics associated with the importance of the cohort-
specific components in explaining the employment reallocation towards the highly ex-

28Formally, sEmpHc,t ≡ ∑o∈OH
Empoc,t/ ∑o Empoc,t, where Empoc,t is the number of individuals of cohort c employed in

occupation o at year t.
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Table A3: Importance of Cohort-specific Effects in Reallocation towards Highly Exposed Occu-
pations in the Two Episodes

Reallocation towards occupations intensive in
ICT, 1980-2019 manufacturing, 1900-1940

(1) (2)
Panel A: Importance of cohort-specific components

1− R2 0.969 0.359
St. Dev. of εc,t 0.200 0.087

Panel B: Importance of cohort-specific components (w/ cohort linear trend controls)
1− R2 0.620 0.082
St. Dev. of εc,t 0.186 0.050

Cohort-period obs. 156 156
Cohort obs. 69 69

Note. Statistics obtained from the estimation of (A.1) in Panel A, and (A.1) with cohort-specific linear time trends in Panel B. For each
column, the set of high-exposure occupations, OH , contains the top 25 percent of occupations in terms of the indicated exposure
measure. The occupation exposure in column (1) is the occupation’s average ICT-intensity across industries and in column (2) is the
occupation’s average manufacturing-intensity across industries. Data from U.S. Census sample of males aged 16-64yrs in the labor
force.

posed occupations in each of the two episodes. Panel A shows that, compared to the
recent reallocation to ICT-intensive jobs, cohort-specific effects explain less of the reallo-
cation towards manufacturing-intensive jobs in the early 1900s; that is, both 1− R2 and
the standard deviation of εc,t are lower in the earlier episode. In Panel B, we show that
these results remain valid when we control for cohort-specific time trends in the estima-
tion of the decomposition in (A.1). Thus, our findings are not driven by changes across
cohorts in their life-cycle of transitions to highly exposed occupations.

A.2.3 Cross-occupation evidence from other countries.

We now investigate whether other developed countries experienced patterns of rela-
tive employment growth in ICT-intensive occupations that are similar to those observed
for the United States in recent decades. We rely on data from Eurostat for European
countries and IPUMS International for Canada. Because of the coarseness of the data
that is available for several countries, we consider nine occupation groups (2-digit ISCO
occupations) and define “Younger” workers as those aged 15-39 years (with “Older”
workers defined as those aged 40-64 years). Because direct measures of ICT exposure
are not available for occupations across all countries, we follow Spitz-Oener (2006) in
constructing the cognitive intensity of occupations using the BERUFNET data, which is
highly correlated with our measures of ICT exposure across occupations in the United
States.29 The ICT-intensive occupations are the top three in this ranking: Managers,

29The BERUFNET dataset is based on the knowledge of experts about the skills required to perform tasks in each
occupation. The occupation’s cognitive intensity is the simple average of the time spent on analytical non-routine and
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Figure A4: Recent Trends in ICT-intensive Employment Growth in Developed Countries

Note. Annualized log-change of employment in ICT-intensive occupations between 1997 and 2017 for European coun-
tries, and between 2001 and 2011 for Canada. Sample of males in two age groups: “Younger” aged 15-39yrs and
“Older” aged 40-64yrs. ICT-intensive occupations are Managers, Professionals, Technicians (out of the nine 2-digit ISCO
occupation groups).

Professionals, Technicians and Associate Professionals.30

Figure A4 displays the recent trends of employment in ICT-intensive occupations
for seventeen developed countries. The dashed bars indicate that relative employment
in these occupations has been expanding in almost every country in our sample. This
trend is a reflection of the occupation polarization process documented by Goos et al.
(2009) and Autor and Dorn (2013). The figure also shows that, while older workers
increased their relative employment in more exposed occupations in most countries,
this increase was substantially stronger for younger generations. Across all countries,
the annualized growth in the relative employment of younger workers was 73% higher
than that of older workers. The between-generation gap was higher whenever overall
reallocation was higher: there is a correlation of 0.43 between the young-old gap in
relative employment growth and that of all workers.

A.2.4 Robustness of Figure 2: Differences in task content between occupations

Figure A5 assesses whether the patterns in the left panel of Figure 2 are similar when we
use alternative exposure thresholds, alternative distance metrics, and alternative expo-
sure measures. Panel A defines the set of occupations exposed to the shock OH in each
episode as the top 50% of all occupations in terms of exposure, with OL then defined
as the remaining occupations. Panel B is the histogram of the bilateral distance, Do,o′ ,

interactive tasks in 2011-2013.
30The other occupation groups are Elementary occupations, Plant and machine operators, Craft and related trades

workers, Skilled agricultural and fishery workers, Service and sales workers, and Clerks.
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Figure A5: Task Content Distance Between Occupations with The Lowest and The Highest Levels
of Exposure to the New Technologies in the Two Episodes – Alternative Specifications

A: OH defined for top 50% exposed occ. B: Bilateral distance between all occ.

FOSD test: P-value 0.00, Difference 0.35*** FOSD test: P-value 0.00, Difference 0.06***

C: Alternative exposure measures D: Unweighted task distance
OH defined for top 25% exposed occ. OH defined for top 25% exposed occ.

FOSD test: P-value 0.00, Difference 0.55*** FOSD test: P-value 0.01, Difference 0.19***
Note. The histograms plot the distributions of the average distance from high-exposure occupations in OH for each low-exposure
occupation in OL, except in Panel B that plots the bilateral distance between each pair of occupations in OH and OL. Data from U.S.
Census for employed males aged 16-64yrs. The gray bars for manufacturing exposure use the 1950 Census occupation definitions
with positive employment in 1900 and 1940. The black bars for ICT exposure use the 1990 occupation definition in Autor and
Dorn (2009) with positive employment in 1980 and 2018. Distance between a pair of occupations is computed using an Entropy
metric based on distance between the skill content of the pair of occupations using the Autor and Dorn (2013) measure of skills
as discussed in Section 2. The sets of high and low exposure occupations, OH and OL, are respectively defined as the top 25
percent and the bottom 75 percent of occupations in terms of exposure in Panels B, C and D. In Panel A, the sets are defined as
the top 50% and bottom 50% in terms of exposure. Panel C uses the alternative exposure measure based on electricity-intensity for
manufacturing and cognitive-intensity for ICT. Panel D uses an unweighted average distance for each OL with all occupations in
OH , while Panels A and C report the employment weighted average distance. The reported test for first-order stochastic dominance
is the Kolmogorov-Smirnov test.

between each occupation o ∈ OL and o′ ∈ OH. Panel C presents the histogram of task
distances obtained with the alternative exposure measures in terms of electricity- and
cognitive-intensity for the two episodes. Panel D presents results from considering the
unweighted average task distance, with OH defined as the top 25% in terms of exposure.

In all cases, it is evident that the distribution of task distance for ICT exposure in
1980 has more mass on higher values when compared to that implied by manufacturing
exposure in 1900. For all specifications in Figure A5, we obtain a p-value of zero for
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the formal test of the first-order stochastic dominance of the distribution implied by ICT
exposure in 1980.

A.2.5 Technology usage across occupation and worker generations

We investigate next how the usage of two important ICT innovations, computers and
internet, differed between younger and older workers conditional on the ICT-intensity
of their occupation. This analysis requires time-use information for workers by age
and occupation. While such data is not readily available for the United States, it exists
for Germany. The 2012 Working Condition Survey provides information on whether
German workers intensively use computers and internet on their jobs, as well as the
occupation and the age of each worker. We use this information to build the share of in-
dividuals intensively using computers and internet for each occupation and generation.
We again consider two worker generations, younger and older, but we now define the
younger group as those aged below forty.31 As a measure of ICT exposure, we follow
the same steps described in Appendix A.2.3 to build the cognitive intensity of the 85
occupations in the 2012 Working Condition Survey.

Figure A6 graphically depicts how on-the-job usage of computers and internet varies
with ICT exposure across occupations. It shows that the share of workers in an occu-
pation intensively using both technologies is strongly correlated with the occupation’s
cognitive intensity. Notice that internet and computer usages are not systematically dif-
ferent for younger and older workers conditional on their occupation’s exposure.32 This
suggests that the stronger reallocation of younger workers towards more exposed oc-
cupations that we documented in Section 2.2 was not driven by differential technology
usage by age conditional on the skills used in each occupation.

31We choose a higher threshold than in our baseline for the United States because of the small sample size of
workers below 29 in the data caused by the higher age of labor market entry in Germany. Results are similar (albeit
noisier) when we define the younger group as in our baseline specification for the United States.

32These results complement the finding in Spitz-Oener (2006) that there were small cross-cohort differences in the
change of the task content of German occupations in the 1990s.
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Figure A6: Internet and Computer On-the-job Usage across Occupation

Note. Sample of 85 occupations in the 2012 Working Condition Survey. For each occupation, we compute the share of
individuals of a worker generation reporting intensive on-the-job usage of internet and computers. Figure reports the local
polynomial smooth fit.
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Appendix B Proofs

B.1 Proof of Proposition 1 and Proposition 2

Part 1. Optimal assignment and labor supply of skill types. The optimal assignment
in (10) is characterized by a threshold lt corresponding to a skill type that is indifferent
between working in the two technologies. The threshold satisfies

1 = ωtσ(lt) = A
θ−1

θ
t

 ∫ 1
lt

α(i)σ(i)st(i)di

σ(lt)θ
∫ lt

0 α(i)st(i)di

− 1
θ

, (B.1)

where the last equality comes from market clearing. The right-hand side is strictly
increasing in lt, converges to infinity as lt → 1, and converges to zero as lt → 0. Then,
existence and uniqueness of a solution follows from applying Bolzano’s theorem.

The optimal labor supply of skill types in (11) is characterized by the FOC

∫ ∞

τ
e−ρ(t−τ) wt(i)∫ 1

0 wt(x)s̃τ(x)dx
dt− (1 + λτ)

(∫ 1

0
s̃τ(x)1+ 1

ν dx
) 1

1+ 1
ν
−1

s̃τ(i)
1
ν = 0

(∫ 1

0
s̃τ(x)1+ 1

ν dx
) 1

1+ 1
ν = 1.

Multiplying by s̃τ(i) on both sides and integrating over i ∈ [0, 1], we obtain 1 + λτ =
1
ρ . Therefore,

s̃τ(i) =

(
ρ
∫ ∞

τ
e−ρ(t−τ) wt(i)∫ 1

0 wt(x)s̃τ(x)dx
dt

)ν

. (B.2)

Part 2. The q-theory system of ODEs. We begin by solving for the stationary distribu-
tion s(i) implied by (12) and (B.2):

s(i) = s̃(i) =
w(i)ν(∫ 1

0 w(x)1+νdx
) ν

1+ν
(B.3)

We then take a first order approximation around the stationary equilibrium of equa-

16



tions (12) and (B.1). We obtain

∂ŝt(i)
∂t

= −δŝt(i) + δ ˆ̃st(i) (B.4)

l̂t =
1
κ

η

θ
x̂t (B.5)

l̂t =
1
κ

η

η + θ

(∫ 1

l
ŝt(i)

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0
ŝt(i)

α(i)s(i)∫ l
0 α(i)s(i)di

di

)
(B.6)

where

η = κ

(
d log(σ(x))

d log(x)

∣∣∣∣
x=l

)−1

κ ≡ α(l)s(l)l∫ l
0 α(i)s(i)di

+
α(l)σ(l)s(l)l∫ 1

l α(i)σ(i)s(i)di
.

Differentiating (B.6) with respect to time, we get that

∂l̂t
∂t

=
1
κ

η

η + θ

(∫ 1

l

∂ŝt(i)
∂t

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0

∂ŝt(i)
∂t

α(i)s(i)∫ l
0 α(i)s(i)di

di

)
.

Applying (B.4) to this expression and using the equations (10) and (B.6), we obtain

∂l̂t
∂t

= −δl̂t +
1
κ

η

η + θ
δ

(∫ 1

l
ˆ̃st(i)

w(i)s(i)∫ 1
l w(i)s(i)di

di−
∫ l

0
ˆ̃st(i)

w(i)s(i)∫ l
0 w(i)s(i)di

di

)
. (B.7)

Log-linearizing (B.2), we obtain

ˆ̃sτ(i) = νρ
∫ ∞

τ
e−ρ(t−τ)

(
ŵt(i)−

1∫ 1
0 w(x)s(x)dx

∫ 1

0
w(x)s(x)

(
ŵt(x) + ˆ̃sτ(x)

)
dx

)
dt

= νρ
∫ ∞

τ
e−ρ(t−τ)

(
ŵt(i)−

1∫ 1
0 w(x)s(x)dx

∫ 1

0
w(x)s(x)ŵt(x)dx

)
dt,

where the last equality follows from the fact that
∫ 1

0 w(x)s(x) ˆ̃sτ(x)dx = 0, since (B.3)

holds and
(∫ 1

0 s̃τ(x)1+ 1
ν dx
) 1

1+ 1
ν = 1 for all τ.

Next, to obtain expressions for ŵt(i), we guess and verify that lt converges mono-
tonically along the equilibrium path. We establish this starting from l̂0 < 0. We omit
the analogous proof for l̂0 > 0. Whenever l̂0 < 0 and increases monotonically along the
equilibrium path, we have that for all s > t, types i < lt are employed in technology L
and types i > l are employed in technology H. Also, for workers with i ∈ (lt, l), there
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exist a τ̃(i) such that they work in H for all τ < t < τ + τ̃(i) and in L for all t > τ + τ̃(i).
This implies that

ŵt(i) =
(

Ii≥l + Ii∈(lt,l)It∈(τ,τ+τ̃(i))

)
ω̂t.

Letting qτ be the present discounted value of log-wages
∫ ∞

τ e−ρ(t−τ)log(ωt)dt, we
have that

q̂τ =
∫ ∞

τ
e−ρ(t−τ)ω̂tdt,

and we obtain

ˆ̃sτ(i) = νρ

(
Ii≥l −

∫ 1
l w(x)s(x)dx∫ 1
0 w(x)s(x)dx

)
q̂τ

+ νρ

(
Ii∈(lt,l)

(
q̂τ − q̂τ+τ̃(i)

)
− 1∫ 1

0 w(x)s(x)dx

∫ l

lt
w(x)s(x)

(
q̂τ − q̂τ+τ̃(x)

)
dx

)

Replacing this expression (evaluated at τ = t) in equation (B.7), we obtain

∂l̂t
∂t

= −δl̂t +
1
κ

η

η + θ
δνρ

(
q̂t −

∫ l

lt

w(x)s(x)∫ l
0 w(i)s(i)di

(
q̂t − q̂t+t̃(x)

)
dx

)
.

Then, given our guess that lt increases monotonically along the equilibrium path, from
(B.1) we see that ωt decreases monotonically along the equilibrium path. This implies
that q̂t > q̂t+t̃(i) > 0 for all i and all t. So, we can show that the term inside the integral
is of second order:

0 ≤
∫ l

lt

w(x)s(x)∫ l
0 w(i)s(i)di

(
q̂t − q̂t+t̃(i)

)
≤
∫ l

lt

w(x)s(x)∫ l
0 w(i)s(i)di

q̂t ≤
maxx∈(lt,l) w(x)s(x)l∫ l

0 w(i)s(i)di
l̂tq̂t ≈ 0.

Using (B.6) to replace l̂t, we obtain the law of motion for x̂t

∂x̂t

∂t
= −δx̂t +

θνρ

η + θ
δq̂t (B.8)

Finally, we differentiate the definition of q̂t with respect to time

ρq̂t = ωt +
∂q̂t

∂t
.

Part 3. The equivalence. We are now ready to show the equivalence of approximate
equilibrium dynamics between the reduced-form and the structural models. By defi-
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nition, (18) and (19) hold in both models. It then remains to be shown that (17) holds
too.

Differentiating with respect to time and log-linearizing the relative labor supply equa-
tion in the reduced-form model, we obtain

∂x̂t

∂t
= −δx̂t + δx̂t,t + e−δt ∂x̂0−,t

∂t
+ δ

∫ t

0
e−δ(t−τ) ∂x̂τ,t

∂t
dτ

= −δx̂t + δ(ηω̂t + ψq̂t) + η
∂ω̂t

∂t

= −δx̂t + δ
(
−η

θ
x̂t + ψq̂t

)
− η

θ

∂x̂t

∂t

= −δx̂t +
θψδ

η + θ
q̂t

where the second equality uses (16) and third equality uses (19). The last equation is
(17) and is identical to (B.8) when ψ = νρ; which completes the proof of equivalence.

Part 4. Saddle-path stability. We now show that the equilibrium is saddle-path stable,
and verify that lt increases monotonically along the equilibrium path.

We start by guessing that the policy functions are given by ∂x̂t
∂t = −λx̂t and q̂t = ζ x̂t.

By replacing this guess into (17)–(19), we obtain the following system:

−λ =− δ +
θ

η + θ
δψζ

ρζ =− 1
θ
− ζλ.

The second equation immediately yields the expression for ζ. To get the expression
for λ, notice that substituting the expression for ζ into the first equation implies that

(δ− λ)(ρ + λ) +
ψδ

η + θ
= 0, (B.9)

which yields the following solutions

λ1,2 = −ρ− δ

2
±

√(
ρ− δ

2

)2

+ δ

(
ρ +

ψ

η + θ

)
.

Because the term inside the square root is always positive, two solutions always exist
with one being positive and the other negative. This implies that the equilibrium is
saddle-path stable. The positive solution is the speed of convergence of lt. With some
abuse of notation, we will just denote the positive solution λ.

Finally, the equilibrium threshold is l̂t = l̂0e−λt. Then, if l̂0 < 0, this implies that lt
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increases monotonically along the equilibrium path, which verifies our initial guess and
completes the proof of the proposition.

B.2 Derivation of dynamic responses

Using the definitions xt and qt together with Proposition 2, we have

∆ log(xt) = (θ − 1)∆ log(A)− θ (∆ log(ω) + ω̂t) (B.10)

∆ log(qt) =
1
ρ

∆ log(ω) +
1

ρ + λ
ω̂t (B.11)

Long-run. In this case, the stationary skill distribution is given by (B.3), so that the
equilibrium threshold solves

Aθ−1σ(l)θ
∫ l

0
α(i)(α(i))νdi =

∫ 1

l
α(i)σ(i)

(
α(i)

σ(i)
σ(l)

)ν

di

A log-linear approximation around the stationary equilibrium gives

(θ − 1)∆ log(A) +

((
θ +

ψ

ρ

)
κ

η
+ κ

)
∆ log(l) = 0

Thus,

∆ log(l) = − η

θ + ψ
ρ + η

1
κ
(θ − 1)∆ log(A)

From equation (B.1), ∆ log(ω) = − κ
η ∆ log(l) and, therefore,

∆ log(ω) =
1

θ + ψ
ρ + η

(θ − 1)∆ log(A) (B.12)

Transition. We start by deriving the change in the skill supply across steady states
using (B.3) and the fact that ψ = νρ. We obtain ŝ0(i) = ŝ0(l) if i < l and ŝ0(i) =

ŝ0(l)− ψ
ρ ∆ log(ω) if i > l. Along the transition, the change in the assignment threshold

is determined by (B.1) given the change in the skill distribution:(
θ

η
κ + κ

)
l̂0 = −ψ

ρ
∆ log(ω)

Then,

ω̂0 = −κ

η
l̂0 =

ψ
ρ

θ + η
∆ log(ω) (B.13)
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Dynamic responses. We now use the derivations above to show that

∆ log(xt) =

η +
θ

ψ
ρ

θ + η + ψ
ρ

(
1− e−λt

) θ − 1
θ + η

∆ log(A) (B.14)

∆ log(ωt) =

1−
ψ
ρ

θ + η + ψ
ρ

(1− e−λt)

 θ − 1
θ + η

∆ log(A) (B.15)

∆ log(x0−,t) = η∆ log(ωt) (B.16)

∆ log(xt,t) = η∆ log(ωt) +
ψ

ρ

(
1 +

λ− δ

δ
e−λt

)
∆ log(ω) (B.17)

where, with some abuse of notation, ∆ log(xτ,t) ≡ log(xτ,t)− log(x0−,0−).

B.3 Comparative Statics with respect to η

Proposition A.1 (Comparative statics with respect to η) Assume that θ > 1. Then,

1. Short-run adjustment

∂∆ log(x0)

∂η
> 0,

∂|∆ log(ω0)|
∂η

< 0,
∂∆ log(x0−,0)

∂η
> 0,

∂∆ log(x0,0/x0−,0)

∂η
< 0.

2. Long-run adjustment

∂∆ log(x∞)

∂η
> 0,

∂|∆ log(ω∞)|
∂η

< 0,
∂∆ log(x0−,∞)

∂η
> 0,

∂∆ log(x0,∞/x0−,∞)

∂η
< 0.

3. Rate of convergence

∂λ

∂η
< 0

4. Cumulative impulse response

∂
(∫ ∞

0 |x̂t| dt
)

∂η
< 0,

∂
(∫ ∞

0 |ω̂t| dt
)

∂η
< 0.

Next, we prove each of the items of the proposition above.
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1. Short-run adjustment

∆ log(x0) =
η

θ + η
(θ − 1)∆ log(A)

∆ log(ω0) =
θ − 1
θ + η

∆ log(A)

∆ log(x0−,0) =
η

θ + η
(θ − 1)∆ log(A)

∆ log(x0,0/x0−,0) =
λ

δ

ψ
ρ

θ + η + ψ
ρ

(θ − 1)∆ log(A)

The first and third lines immediately show that ∆ log(x0), ∆ log(x0−,0) increase with
η, and the second line that ∆ log(ω0) decreases with it. Since λ is decreasing in η,
the last line shows that ∆ log(x0,0/x0−,0) decreases with η.

2. Long-run adjustment

∆ log(x∞) =
η + ψ

ρ

θ + η + ψ
ρ

(θ − 1)∆ log(A)

∆ log(ω∞) =
θ − 1

θ + η + ψ
ρ

∆ log(A)

∆ log(x0−,∞) = η
θ − 1

θ + η + ψ
ρ

∆ log(A)

∆ log(x0,∞/x0−,∞) =
ψ

ρ

θ − 1

θ + η + ψ
ρ

∆ log(A)

It is straightforward to see that ∆ log(x∞), ∆ log(x0−,∞) are increasing in η, while
the opposite holds for ∆ log(ω∞) and ∆ log(x0,∞/x0−,∞).

3. Rate of convergence

From the implicit equation for λ in (B.9), it is straightforward to see that is decreas-
ing in η.

4. Cumulative impulse response∫ ∞

0
|x̂t|dt = θ

∫ ∞

0
|ω̂t|dt

∫ ∞

0
|ω̂t|dt =

1
λ

ψ
ρ

θ + η + ψ
ρ

θ − 1
θ + η

∆ log(A)

22



To show that both are decreasing in η, we show that:

∂ log( 1
λ

ψ
ρ

θ+η+
ψ
ρ

θ−1
θ+η )

∂η
=

1
λ

1
ρ + 2λ

ψδ

(θ + η)2 −
1

θ + η + ψ
ρ+δ

− 1
θ + η

= −


1− λ− δ

λ

ρ + λ

ρ + 2λ︸ ︷︷ ︸
<1 because λ>δ

 1
(θ + η)

+
1

θ + η + ψ
ρ+δ

 < 0

B.4 Proof of Proposition 3

We have that DCIR(ω) = λδ
λ+δ

∣∣∣∣ ∫ ∞
0 ω̂tdt

∆ log(A)

∣∣∣∣. From Proposition A.1 in Appendix B.3, we

know that λ and
∣∣∫ ∞

0 ω̂tdt
∣∣ are both smaller when η is larger. Thus, ∂DCIR(ω)

∂η < 0. Since

DCIR(x) = θDCIR(ω), we also have that ∂DCIR(x)
∂η < 0.

B.5 Proof of Proposition 4

We begin by showing the first order approximation to flow consumption utility log(Ct,τ).
This equals the total flow utility log(Cτ,t)− ρLτ since Lτ = 1.

log(Cτ,t) = log
(∫ 1

0
cτ,t(i)di

)
= log

(∫ 1

0
wt(i)s̃τ(i)di

)
− log(Pt)

≈ log(C) +
∫ 1

0

w(i)s(i)∫ 1
0 w(x)s(x)dx

(
ŵt(i) + ˆ̃sτ(i)

)
di− P̂t

= log(C) +
∫ 1

0

w(i)s(i)∫ 1
0 w(x)s(x)dx

ŵt(i)di− P̂t

= log(C) +
∫ 1

l

w(i)s(i)∫ 1
0 w(x)s(x)dx

diω̂t − P̂t

= log(C) +
∫ 1

l

w(i)s(i)∫ 1
0 w(x)s(x)dx

diω̂t −
ωx

1 + ωx
ω̂t

= log(C) +
ωx

1 + ωx
ω̂t −

ωx
1 + ωx

ω̂t

= log(C),
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where ∆ log(C) = ωx
1+ωx ∆ log(A). For the older generations, we have

log(C0−,t) ≈ log(C) +
∫ 1

0

w(i)s(i)∫ 1
0 w(x)s(x)dx

(ŵt(i) + ŝ0(i)− P̂t)di

= log(C) +
∫ 1

0

w(i)s(i)∫ 1
0 w(x)s(x)dx

ŝ0(i)di

= log(C)− ψ
∫ 1

0

w(i)s(i)∫ 1
0 w(x)s(x)dx

(
Ii>l −

∫ 1
l w(i)s(i)di∫ 1

0 w(x)s(x)dx

)
di∆ log(ω)

= log(C).

The second order approximation is

log
(∫ 1

0
cτ,t(i)di

)
≈ log(C) +

∫ 1

0

c(i)
C

ĉτ,t(i)di− 1
2

∫ 1

0

(
c(i)
C

)2

ĉτ,t(i)2di

first order is zero⇒ = log(C)− 1
2

∫ 1

0

(
w(i)s(i)∫ 1

0 w(x)s(x)dx

)2 (
ŵt(i) + ˆ̃sτ(i)− P̂t

)2 di.

This implies

Ĉτ,t = −
1
2

∫ 1

0

(
w(i)s(i)∫ 1

0 w(x)s(x)dx

)2(
Ii≥lω̂t + ν

(
Ii≥l −

ωx
1 + ωx

)
ρq̂τ −

ωx
1 + ωx

ω̂t

)2

di

Ĉτ,t = −
1
2

∫ 1

0

(
w(i)s(i)∫ 1

0 w(x)s(x)dx

)2(
Ii>l −

ωx
1 + ωx

)2

di (ω̂t + ψq̂τ)
2

∝ − (ω̂t + ψq̂τ)
2 .

For older generations, we have

Ĉ0−,t ≈ −
1
2

∫ 1

0

(
w(i)s(i)∫ 1

0 w(x)s(x)dx

)2 (
ŵt(i) + ŝ0(i)− P̂t

)2 di

= −1
2

∫ 1

0

(
w(i)s(i)∫ 1

0 w(x)s(x)dx

)2 (
Ii>l −

ωx
1 + ωx

)2

di
(

ω̂t −
ψ

ρ
∆log(ω)

)2

∝ −
(

ω̂t −
ψ

ρ
∆log(ω)

)2

.
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Then, aggregate welfare for all generations is

∆W = ρ(U0 −U0−) + ρδ
∫ ∞

0
e−ρτUτdτ

= ∆ log(C) + ρ
∫ ∞

0
e−ρtĈ0−,tdt + ρδ

∫ ∞

0
e−ρτ

(
log(C) +

∫ ∞

τ
e−ρ(t−τ)Ĉτ,tdt

)
dτ

= ∆ log(C)(1 + δ) + ρ

(∫ ∞

0
e−ρtĈ0−,tdt + δ

∫ ∞

0
e−ρτ

∫ ∞

τ
e−ρ(t−τ)Ĉτ,tdtdτ

)
.

Using the expressions above, we thus have that

∆W − ∆ log(C)
ρ + δ

ρ
∝ −(ω̂0)

2ρ
∫ ∞

0
e−ρt

(
e−λt − (θ + η)

)2
dt

− (ω̂0)
2ρδ

∫ ∞

0
e−ρτe−2λτ

(∫ ∞

τ
e−ρ(t−τ)

(
e−λ(t−τ) +

ψ

ρ + λ

)2

dt

)
dτ

= −(ω̂0)
2
(

ρ

2λ + ρ
− 2

ρ

ρ + λ
(θ + η) + (θ + η)2

)
− (ω̂0)

2 ρδ

2λ + ρ

(
1

2λ + ρ
+

2
ρ + λ

ψ

ρ + λ
+

1
ρ

(
ψ

ρ + λ

)2
)

Finally, taking the limit ρ→ 0, we obtain

lim
ρ→0

∂∆W
∂η

= lim
ρ→0

∂
(

∆W − ∆ log(C) ρ+δ
ρ

)
∂η

= − ∂

∂η

(
(ω̂0)

2

(
(θ + η)2 +

δ

2λ

(
ψ

λ

)2
))

= − ∂

∂η

(
((θ − 1)∆ log(A))2

(
1 +

δ

2λ

(
λ− δ

δ

)2
))

= − ((θ − 1)∆ log(A))2 1
2δ2

(
− 1

λ2 (λ− δ)2 +
1
λ

2 (λ− δ)

)
∂λ

∂η

= − ((θ − 1)∆ log(A))2 1
2δ2

(λ− δ)

λ2 (λ + δ)
∂λ

∂η
> 0,

which completes the proof of the proposition.
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Appendix C Additional Theoretical Results

C.1 Microfoundation of the production functions in (5)-(6)

Consider two firms: high-tech (k = H) and low-tech (k = L). Assume that the output of
firm k at time t aggregates per-worker output xkt(i),

Xkt =
∫ 1

0
xkt(i)skt(i)di,

where skt(i) is the quantity demanded of workers of type i at time t by firm k.
The output of workers of type i depends on their skills to perform cognitive and

noncognitive tasks, {aC(i), aNC(i)}, as well as how intensely each task is used in the
firm’s production process:

xkt(i) = aC(i)ϕk aNC(i)1−ϕk ,

where ϕk denotes the production intensity of firm k on cognitive tasks.
In our model, technology-skill specificity arises whenever firms are heterogeneous in

terms of task intensity and workers are heterogeneous in terms of their skills bundle.
To see this, suppose that firm H’s technology uses cognitive tasks more intensely than
firm L’s technology, ϕH > ϕL, and that a worker of type i is able to produce a higher
cognitive-noncognitive task ratio than a worker of type j, aC(i)/aNC(i) > aC(j)/aNC(j).
In this case, i has a higher relative output with the cognitive-intensive technology H
than j, xHt(i)/xLt(i) > xHt(j)/xLt(j), and, therefore, type i is more complementary to
the cognitive-intensive technology H than type j.

To map this setting to the production functions in equations (5)-(6), we assume that
high-tech production is more intensive in cognitive tasks than low-tech production,
ϕH > ϕL. We also assume that types differ in terms of their skill bundle and, without
loss of generality, impose that high-i types are relatively better in performing cognitive-
intensive tasks.

1. High-tech technology H uses cognitive tasks more intensely than Low-tech tech-
nology L: ϕH > ϕL.

2. Define σ(i) ≡
(

aC(i)
aNC(i)

)ϕH−ϕL
and α(i) ≡ aC(i)ϕL aNC(i)1−ϕL . Assume that high-i

types have higher cognitive-noncognitive task ratio: σ(i) is increasing in i.

C.2 Extensions

This section discusses the extensions described in Section 6.4.
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C.2.1 Learning-from-others

We now assume that certain skills may be easier to supply because workers can "learn
from others" when such types are already abundant in the economy. Formally, we as-
sume that

Lτ =

(∫ 1

0
s̄τ(i)−

1
ν s̃τ(i)

1
ν+1di

) 1
1
ν +1

where s̄τ(i) is a geometric average of a fixed distribution ε̄(i) and the current skill type
distribution in the economy sτ(i) at the time where generation τ is born,

s̄τ(i) = sτ(i)
γε̄(i)1−γ, γ ∈ [0, 1).

Note that as γ increases it becomes easier for workers to supply skill types that
are already abundant in the economy. As opposed to our benchmark case (γ = 0),
this extension with γ > 0 introduces a backward-looking element to the labor supply
problem and complementarities in decisions across generations.

In what follows, we reproduce the key steps that change in the proofs in Appendix B.1.
First, the optimal labor supply is

s̃τ(i) = s̄τ(i)

(
ρ
∫ ∞

τ
e−ρ(t−τ) wt(i)∫ 1

0 wt(x)s̃τ(x)dx
dt

)ν

,

and the stationary distribution exist and is

s(i) =
ε(i)w(i)

ν
1−γ(∫ 1

0 ε(x)w(x)1+ ν
1−γ dx

) ν
1−γ

1+ ν
1−γ

.

Following the same steps as in Appendix B.1, we show that

∂l̂t
∂t

= −δ(1− γ)l̂t +
1
κ

η

η + θ
(δ(1− γ))

ψ

1− γ
q̂t.

Fourth, since the law of motion for q̂t is the same as in the benchmark model, this
implies that the equilibrium is saddle-path stable where the new λ in the economy with
learning-from-others is the positive solution to

(δ(1− γ)− λ)(ρ + λ) +
ψ

1− γ

δ(1− γ)

η + θ
= 0.

Next, we reproduce the key steps that change in Appendices B.2 and B.3. First, from
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the expression for the stationary distribution above, note that the long-run skill supply
elasticity in the learning-from-others economy is ψ

1−γ as opposed to simply ψ. Likewise,
in the expression for λ, the death rate is δ(1− γ) instead of just δ. In all, the learning-
from-others economy behaves as if it had a higher ψ and lower δ.

C.2.2 Re-training of old workers

We now let a fraction of workers that were present before the shock re-optimize their
labor supplies "as if" they were a young generation entering at time t = 0. Formally, the
skill type distribution on impact now becomes

s0(i) = (1− β)s0−(i) + βs̃0(i),

where β is the fraction of workers in the generation present before the shock that can
re-optimize.

The first thing to note is that this does not change any of the transitional dynamics
given the new initial skill distribution on impact. As such Proposition 2 is unchanged.
However, the initial conditions and the dynamic responses do change. Next, we repro-
duce the key steps that change in Appendix B.2.

The deviation from the skill distribution on impact from the new stationary distribu-
tion is now

ŝ0(i) = ŝ0−(i) + β
(

ˆ̃s0(i)− ŝ0−(i)
)

= (1− β)

(
ŝ0(l)− Ii>l

ψ

ρ
∆ log(ω)

)
+ β

(
Ii>l −

∫ 1

l
s(i)di

)
ψq̂0

where the long-run change ∆ log(ω) is the same as in the benchmark model.
Following the same steps as in the benchmark proof, this then implies that

θ + η

η
κ l̂0 =

∫ 1

l

σ(i)α(i)s(i)∫ 1
l σ(i)α(i)s(i)

ŝ0(i)di−
∫ l

0

α(i)s(i)∫ l
0 α(i)s(i)

ŝ0(i)di

= −(1− β)
ψ

ρ
∆ log(ω) + βψq̂0.
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Thus,

ω̂0 = −κ

η
l̂0

=
1

θ + η

(
ψ

ρ
∆ log(ω)− β

(
ψ

ρ
∆ log(ω) + ψq̂0

))
=

1
θ + η

(
ψ

ρ
∆ log(ω)− β

(
ψ

ρ
∆ log(ω) +

ψ

ρ + λ
ω̂0

))
=

1− β

1 + β
ψ

ρ+λ
1

θ+η

1
θ + η

ψ

ρ
∆ log(ω).

Finally, using the above together with the expression for ∆ log(ω), we obtain:

∆ log(xt) =

η +
θ

ψ
ρ

θ + η + ψ
ρ

(
1− 1− β

1 + β λ−δ
δ

e−λt

) θ − 1
θ + η

∆ log(A)

∆ log(ωt) =

1−
ψ
ρ

θ + η + ψ
ρ

(1− 1− β

1 + β λ−δ
δ

e−λt)

 θ − 1
θ + η

∆ log(A)

∆ log(x0−,t) = η∆ log(ωt)

∆ log(xt,t) = η∆ log(ωt) +
ψ

ρ

(
1 +

λ− δ

δ

1− β

1 + β λ−δ
δ

e−λt

)
∆ log(ω)

Then, mathematically, the dynamic responses in the economy where old generations
can re-train are similar to those in the benchmark economy except that the function e−λt

is now multiplied by 1−β

1+β λ−δ
δ

< 1. This immediately implies that: the long-run responses

are the same in both economies, the short-run responses of x (ω) are now larger (smaller),
and the DCIR of all variables is now smaller. Hence, in many ways, this new economy
behaves similar to an economy with a lower degree of skill specificity (higher η), except
that long-run responses are unchanged.

C.2.3 Population growth

We now assume that the size of entering generations is µ as opposed to δ. This implies
that the population growth rate is µ− δ. The Kolmogorov-Forward equation describing
the evolution of the skill type distribution becomes

∂e(µ−δ)tst(i)
∂t

= −δe(µ−δ)tst(i) + µe(µ−δ)t s̃t(i).
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Then, we have that

∂st(i)
∂t

= −µst(i) + µs̃t(i).

The remaining elements in the model remain the same. Hence, the economy with
population growth is identical to our benchmark economy except that the convergence
rate λ is higher if, and only if, µ > δ since it is now the positive solution to:

(λ− µ)(ρ + λ) =
ψµ

θ + η
.

Then, if µ > δ, the short- and long-run responses for yt, lt remain unchanged, the
short-run response of q is smaller in magnitude, and the DCIR of all variables is lower.
The opposite holds when µ < δ.
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