Informational Robustness and Solution Concepts

Stephen Morris

28th Jerusalem School in Economic Theory 2017

Why Informational Robustness?

- we do not know a lot about the information that economic agents have
- we would like to do economic analysis that is not too sensitive to information that they have
- informational robustness closely related to solution concepts in game theory
- this lecture will discuss this connection
- my next lecture (and also ben's earlier lectures) will use (and did use) this connection in mechanism design

Complete Information

- n players
- A game \mathcal{G} specifies for each player i...
- a finite set of actions A_{i}
- a utility function $u_{i}: A \rightarrow \mathbb{R}$ where $A=A_{1} \times \ldots \times A_{n}$

Solution Concept: Correlated Equilibrium

A correlated equilibrium is a joint distribution over actions $\sigma \in \Delta(A)$ such that a player knowing only his action recommendation has no incentive to deviate, i.e.,

$$
\begin{aligned}
& \sum_{a-i} \sigma\left(a_{-i} \mid a_{i}\right) u_{i}\left(a_{i}, a_{-i}\right) \\
\geq & \sum_{a_{-i}} \sigma\left(a_{-i} \mid a_{i}\right) u_{i}\left(a_{i}^{\prime}, a_{-i}\right)
\end{aligned}
$$

for each i, a_{i} and a_{j}^{\prime}.

Solution Concept: Rationalizability

- An action is (correlated) rationalizable if it survives iterative deletion of never best responses
- Iterative Construction:
- Let $R_{i}^{0}=A_{i}$
- Let R_{i}^{k+1} be the set of actions such that there exists $v_{i} \in \Delta\left(R_{-i}^{k}\right)$ such that

$$
a_{i} \in \underset{a_{i}^{\prime}}{\arg \max } \sum_{a_{-i}} v_{i}\left(a_{-i}\right) u_{i}\left(a_{i}^{\prime}, a_{-i}\right)
$$

- Let $R_{i}^{\infty}=\cap_{k \geq 0} R_{i}^{k}$
- Action a_{i} is rationalizable if $a_{i} \in R_{i}^{\infty}$

Adding Correlating Device (Payoff Irrelevant Information)

- An expansion of the game specifies for each player $i \ldots$
- a finite set of possible signals S_{i}
- a belief $\phi_{i} \in \Delta(S)$
- maintained full support assumption: for all s_{i},

$$
\phi_{i}\left(s_{i}\right) \equiv \sum_{s_{-i}} \phi_{i}\left(s_{i}, s_{-i}\right)>0
$$

- The expanded game is a game of incomplete information
- It is a common prior expansion if ϕ_{i} is the same for all players

Equilibrium of the Expanded Game

- A pure strategy is a mapping $\beta_{i}: S_{i} \rightarrow A_{i}$
- A pure strategy profile $\beta=\left(\beta_{i}\right)_{i=1}^{n}$ is a Bayes Nash equilibrium of the expanded game if

$$
\begin{aligned}
& \sum_{s_{-i}} \phi_{i}\left(s_{-i} \mid s_{i}\right) u_{i}\left(\beta_{i}\left(s_{i}\right), \beta_{-i}\left(s_{-i}\right)\right) \\
\geq & \sum_{s_{-i}} \phi_{i}\left(s_{-i} \mid s_{i}\right) u_{i}\left(a_{i}, \beta_{-i}\left(s_{-i}\right)\right)
\end{aligned}
$$

for each i, s_{i} and a_{i}

Informational Robustness Foundation of Correlated Equilibrium

A distribution $\sigma \in \Delta(A)$ is a correlated equilibrium if and only if there is a common prior expansion $\left(\left(S_{i}\right)_{i=1}^{n}, \phi\right)$ and a Bayes Nash equilibrium β of the expanded game that induces σ, i.e.,

$$
\sigma(a)=\sum_{\{s: \beta(s)=a\}} \phi(s)
$$

Correlated Equilibrium: Proof

- Suppose that $\sigma \in \Delta(A)$ is a correlated equilibrium. Consider the common prior expansion with $S_{i}=A_{i}$ for each i and $\phi=\sigma$. Consider the strategy profile with $\beta_{i}\left(s_{i}\right)=s_{i}$. The latter is an equilibrium and induces σ
- Consider an expansion $\left(\left(S_{i}\right)_{i=1}^{n}, \phi\right)$ and a Bayes Nash equilibrium β of the expanded game that induces σ.
- We have ex ante statement of equilibrium conditions:

$$
\begin{aligned}
& \sum_{s} \phi\left(s_{i}\right) \phi\left(s_{-i} \mid s_{i}\right) u_{i}\left(\beta_{i}\left(s_{i}\right), \beta_{-i}\left(s_{-i}\right)\right) \\
\geq & \sum_{s} \phi\left(s_{i}\right) \phi\left(s_{-i} \mid s_{i}\right) u_{i}\left(\beta_{i}^{\prime}\left(s_{i}\right), \beta_{-i}\left(s_{-i}\right)\right)
\end{aligned}
$$

for each i and β_{i}^{\prime}.

Correlated Equilibrium: Proof

But

$$
\begin{aligned}
& \sum_{s} \phi\left(s_{i}\right) \phi\left(s_{-i} \mid s_{i}\right) u_{i}\left(\beta_{i}\left(s_{i}\right), \beta_{-i}\left(s_{-i}\right)\right) \\
\geq & \sum_{a} u_{i}\left(a_{i}, a_{-i}\right) \sum_{\{s: \beta(s)=a\}} \phi\left(s_{i}\right) \phi\left(s_{-i} \mid s_{i}\right) \\
= & \sum_{a} u_{i}\left(a_{i}, a_{-i}\right) \sigma\left(a_{i}, a_{-i}\right)
\end{aligned}
$$

where

$$
\sigma\left(a_{i}, a_{-i}\right)=\sum_{\{s: \beta(s)=a\}} \phi\left(s_{i}\right) \phi\left(s_{-i} \mid s_{i}\right)
$$

Correlated Equilibrium: Proof

But now

$$
\begin{aligned}
& \sum_{a} \sigma\left(a_{i}\right) \sigma\left(a_{-i} \mid a_{i}\right) u_{i}\left(a_{i}, a_{-i}\right) \\
\geq & \sum_{a} \sigma\left(a_{i}\right) \sigma\left(a_{-i} \mid a_{i}\right) u_{i}\left(\gamma\left(a_{i}\right), a_{-i}\right)
\end{aligned}
$$

for each i and $\gamma: A_{i} \rightarrow A_{i}$; so

$$
\begin{aligned}
& \sum_{a_{-i}} \sigma\left(a_{-i} \mid a_{i}\right) u_{i}\left(a_{i}, a_{-i}\right) \\
\geq & \sum_{a_{-i}} \sigma\left(a_{-i} \mid a_{i}\right) u_{i}\left(a_{i}^{\prime}, a_{-i}\right)
\end{aligned}
$$

for each i, a_{i} and a_{i}^{\prime}.

Informational Robustness Foundation of Rationalizability

An action a_{i} is rationalizable if and only if there is an expansion $\left(\left(S_{i}, \phi_{i}\right)_{i=1}^{n}\right)$ and a Bayes Nash equilibrium β of the expanded game such that

$$
\beta_{i}\left(s_{i}\right)=a_{i}
$$

for some s_{i}.

Rationalizability: Proof

- Suppose that action a_{i} is rationalizable for player i. Consider the expansion with $S_{j}=R_{j}^{\infty}$ for each j. Let $\phi_{j}\left(a_{-j} \mid a_{j}\right)$ be any belief that rationalizes action a_{j}. Consider the strategy profile with $\beta_{j}\left(a_{j}\right)=a_{j}$ for all j. The latter is an equilibrium and

$$
\beta_{i}\left(a_{i}\right)=a_{i}
$$

- Consider an expansion $\left(S_{j}, \phi_{j}\right)_{j=1}^{n}$ and a Bayes Nash equilibrium β of the expanded game with $a_{i}=\beta_{i}\left(s_{i}\right)$ for some i and s_{i}.
- Let \widehat{A}_{j} be the range of β_{j}, i.e.,

$$
\widehat{A}_{j}=\left\{a_{j} \mid \beta_{j}\left(s_{j}\right)=a_{j} \text { for some } s_{j} \in S_{j}\right\}
$$

- Each $a_{j} \in \widehat{A}_{j}$ is rationalized by some belief over \widehat{A}_{-j}.
- So $\widehat{A}_{j} \subseteq R_{j}^{\infty}$ for each j and so $a_{i} \in R_{i}^{\infty}$

First Change: Add Uncertainty

- n players and finite states Θ
- A game \mathcal{G} specifies for each player $i \ldots$
- a finite set of actions A_{i}
- a utility function $u_{i}: A \times \Theta \rightarrow \mathbb{R}$ where $A=A_{1} \times \ldots \times A_{n}$

Second Change: Informed Players

add information about Θ :

- type space consists for each player i of
- a finite set of types T_{i}
- a belief $\pi_{i}: T_{i} \rightarrow \Delta\left(T_{-i} \times \Theta\right)$
- common prior: interim beliefs generated from common prior $\pi^{*} \in \Delta(T \times \Theta)$

Adding Information

- An expansion of the game specifies for each player $i \ldots$
- a finite set of possible signals S_{i}
- a belief $\phi_{i}: T \times \Theta \rightarrow \Delta(S)$
- maintained full support condition: each player j assigns positive probability only to signals of player i that player i assigns positive probability to
- The expanded game is a game of incomplete information (with strategies depending on types and signals)

Support Condition

Let

$$
\bar{S}_{i}\left(t_{i}\right)=\left\{s_{i} \mid \sum_{s_{-i}, t_{-i}, \theta} \phi_{i}(s \mid t, \theta) \pi_{i}\left(t_{-i}, \theta \mid t_{i}\right)\right\}
$$

Now $\phi_{i}(s \mid t, \theta)=0$ if $s_{i} \notin \bar{S}_{i}\left(t_{i}\right)$

Solution Concept: Belief-Free Rationalizability in Words

- Iteratively define k th level rationalizable actions for each type
- An action is $(k+1)$ th level rationalizable if it is a best response to a conjecture assigning zero probability to...
- (action + type) pairs of each other player that have been deleted
- (state + other players' types) profiles that are assigned probability zero by that type on the original type space
- depends only on support of beliefs in type space
- intuition: signals cannot make a player assign (state + other players' types) profiles that are assigned probability zero on the type space; otherwise, there are no restrictions on how beliefs can be changed

Solution Concept: Belief-Free Rationalizability Formal Definition

- Iterative Construction:
- Let $B F R_{i}^{0}\left(t_{i}\right)=A_{i}$
- Let $B F R_{i}^{k+1}\left(t_{i}\right)$ be the set of actions such that there exists $v_{i} \in \Delta\left(A_{-i} \times T_{-i} \times \Theta\right)$ such that

$$
\begin{aligned}
& \text { (1) } v_{i}\left(a_{-i}, t_{-i}, \theta\right)>0 \Rightarrow a_{j} \in B F R_{j}^{k}\left(t_{j}\right) \text { for each } j \neq i \\
& \text { (2) } \sum_{a_{-i}} v_{i}\left(a_{-i}, t_{-i}, \theta\right)>0 \Rightarrow \pi_{i}\left(t_{-i}, \theta \mid t_{i}\right)>0 \\
& \text { (3) } a_{i} \in \underset{a_{i}^{\prime}}{\arg \max } \sum_{a_{-i}} v_{i}\left(a_{-i}, t_{-i}, \theta\right) u_{i}\left(\left(a_{i}^{\prime}, a_{-i}\right), \theta\right)
\end{aligned}
$$

- Let $B F R_{i}^{\infty}\left(t_{i}\right)=\cap_{k \geq 0} B F R_{i}^{k}\left(t_{i}\right)$

Informational Robustness Foundation of Belief-Free Rationalizability

An action a_{i} is belief-free rationalizable for t_{i} if and only if there is an expansion $\left(S_{j}, \phi_{j}\right)_{j=1}^{n}$ and a Bayes Nash equilibrium β of the expanded game such that

$$
\beta_{i}\left(t_{i}, s_{i}\right)=a_{i}
$$

for some s_{i}.

Idea of Constructing the Expansion

- If a_{i} is belief-free rationalizable for t_{i}, we can find a conjecture rationalizing the choice of a_{i} from the definition of belief-free rationalizability (property 3: best response)
- we can construct a signal space S_{i} where each $\left(t_{i}, s_{i}\right)$ will play a belief-free rationalizable action for t_{i} (property 1: support on actions)
- because of the support condition, we can construct a signal generating that conjecture by property (2: support on $\left(t_{-i}, \theta\right)$)

Additional Important Assumptions

1. Impose the common prior assumption
2. Require the expansion to be payoff-irrelevant (i.e., a correlating device)
3. Impose "payoff type environment" on the type space

Solution Concept: Bayes Correlated Equilibrium

- A Bayes correlated equilibrium (of a common prior game) is a decision rule $\sigma: T \times \Theta \rightarrow \Delta(A)$ such that a player knowing only his type and recommended action has no incentive to deviate, i.e.,

$$
\begin{aligned}
& \sum_{a, t, \theta} u_{i}\left(\left(a_{i}, a_{-i}\right), \theta\right) \sigma(a \mid t, \theta) \pi^{*}(t, \theta) \\
\geq & \sum_{a, t, \theta} u_{i}\left(\left(\gamma_{i}\left(a_{i}\right), a_{-i}\right), \theta\right) \sigma(a \mid t, \theta) \pi^{*}(t, \theta)
\end{aligned}
$$

for each i and $\gamma_{i}: A_{i} \rightarrow A_{i}$.

- A decision rule $\sigma: T \times \Theta \rightarrow \Delta(A)$ is a Bayes correlated equilibrium if and only if there is a common prior expansion $\left(\left(S_{i}\right)_{i=1}^{n}, \phi\right)$ and a Bayes Nash equilibrium β of the expanded game that induces σ, i.e.,

$$
\sigma(a \mid t, \theta)=\sum_{\{s: \beta(t, s)=a\}} \phi(s \mid t, \theta)
$$

Correlating Devices and Belief Invariant Information

- Expansion is belief-invariant if

$$
\sum_{s_{-i}} \phi_{i}\left(\left(s_{i}, s_{-i}\right) \mid\left(t_{i}, t_{-i}\right), \theta\right)
$$

is independent of $\left(t_{-i}, \theta\right)$;

- from player i's point of view, it is noise; but allows correlation
- incomplete information version of a correlation device

Solution Concept: Interim Correlated Rationalizability

- Interim Correlated Rationalizability: Iteratively delete actions for a type that cannot be rationalized by a conjecture that (1) puts zero probability on already deleted actions and (2) is consistent with that type's beliefs on the type space
- Iterative Construction:
- Let $I C R_{i}^{0}\left(t_{i}\right)=A_{i}$
- Let $I C R_{i}^{k+1}\left(t_{i}\right)$ be the set of actions such that there exists $v_{i} \in \Delta\left(T_{-i} \times A_{-i} \times \Theta\right)$ such that

$$
\text { (1). } v_{i}\left(a_{-i}, t_{-i}, \theta\right)>0 \Rightarrow a_{j} \in B F R_{j}^{k}\left(t_{j}\right) \text { for each } j \neq i
$$

$$
\text { (2) } \sum_{a_{-i}} v_{i}\left(a_{-i}, t_{-i}, \theta\right)=\pi_{i}\left(t_{-i}, \theta \mid t_{i}\right)
$$

$$
\text { (3) } a_{i} \in \underset{a_{i}^{\prime}}{\arg \max } \sum_{a_{-i}, t_{-i}, \theta} v_{i}\left(t_{-i}, a_{-i}, \theta\right) u_{i}\left(\left(a_{i}^{\prime}, a_{-i}\right), \theta\right)
$$

- Let $I C R_{i}^{\infty}\left(t_{i}\right)=\cap_{k \geq 0} I C R_{i}^{k}\left(t_{i}\right)$

Correlating Devices and Belief Invariant Information

- Expansion is belief-invariant if

$$
\sum_{s_{-i}} \phi_{i}\left(\left(s_{i}, s_{-i}\right) \mid\left(t_{i}, t_{-i}\right), \theta\right)
$$

is independent of $\left(t_{-i}, \theta\right)$;

- from player i's point of view, it is noise; but allows correlation
- incomplete information version of a correlation device

Informational Robustness Foundation of Interim Correlated Rationalizability

An action a_{i} is interim correlated rationalizable at t_{i} if and only if there is a belief invariant expansion $\left(S_{i}, \phi_{i}\right)_{i=1}^{n}$ and a Bayes Nash equilibrium β of the expanded game such that

$$
\beta_{i}\left(t_{i}, s_{i}\right)=a_{i}
$$

for some $\left(t_{i}, s_{i}\right)$.

No Learning from Actions

An implication of belief-invariance is that action a_{i} will add no information to t_{i} about $\left(t_{-i}, \theta\right)$, i.e.,

$$
\operatorname{Pr}\left(t_{-i}, \theta \mid a_{i}, t_{i}\right)=\pi_{i}\left(t_{-i}, \theta \mid t_{i}\right)
$$

Taxonomy

	BI	not BI
CPA	BI bayes correlated equilibrium	bayes correlated equilibrium
not CPA	interim correlated rationalizability	belief free rationalizability

Binary Action Examples

1. Trade:

- $\mathrm{BCE}=\mathrm{BIBCE}=$ no trade
- no trade under BFE and ICR if and only if there is not common possibility of no gains from trade

2. Coordination: $\mathrm{BIBCE}=I C R$ by supermodularity

Payoff Type Space

- Assume $\Theta=\Theta_{1} \times . . \times \Theta_{n}$
- Each player i....
- knows his "payoff type" $\theta_{i} \in \Theta_{i}$
- knows nothing else
- has full support on others' payoff types

Solution Concept: Belief-Free Rationalizability

- Belief-free rationalizability: Iteratively delete actions for a payoff type that cannot be rationalized by a conjecture that puts zero probability on already deleted actions for any payoff type of others
- Iterative Construction:
- Let $B F R_{i}^{0}\left(\theta_{i}\right)=A_{i}$
- Let $B F R_{i}^{k+1}\left(\theta_{i}\right)$ be the set of actions such that there exists $v_{i} \in \Delta\left(A_{-i} \times \Theta_{-i}\right)$ such that
(1) $v_{i}\left(a_{-i}, \theta_{-i}\right)>0 \Rightarrow a_{j} \in B F R_{j}^{k}\left(\theta_{j}\right)$ for each $j \neq i$
(2). $a_{i} \in \underset{a_{i}^{\prime}}{\arg \max } \sum_{a_{-i}, \theta} v_{i}\left(a_{-i}, \theta\right) u_{i}\left(\left(a_{i}^{\prime}, a_{-i}\right), \theta\right)$
- Let $B F R_{i}^{\infty}\left(\theta_{i}\right)=\cap_{k \geq 0} B F R_{i}^{k}\left(\theta_{i}\right)$

Linear Best Response Example

- Players have payoff types $[0,1]$
- Players have actions $[0,1]$
- Let each player have best response:

$$
a_{i}=\theta_{i}-\gamma \mathbb{E}\left(\sum_{j=1}^{n}\left(a_{j}-\theta_{j}\right)\right)
$$

(subject to $a_{i} \in[0,1]$)

- An example of a game with this best response is a common interest game

$$
v(a, \theta)=-\sum_{j=1}^{n}\left(a_{j}-\theta_{j}\right)^{2}-\gamma \sum_{j=1}^{n}\left(a_{j}-\theta_{j}\right) \sum_{k \neq j}\left(a_{k}-\theta_{k}\right)
$$

Belief-Free Rationalizability in the Linear Best Response Example

- If player i thought that all his opponents were going to choose actions within c of their payoff types, then he would have an incentive to choose an action within $|\gamma|(n-1) c$ of his payoff type
- We have $B F R_{i}^{0}\left(\theta_{i}\right)=[0,1]$; by induction we have

$$
\begin{aligned}
& B F R_{i}^{k}\left(\theta_{i}\right) \\
= & {\left[\min \left\{0, \theta_{i}-[|\gamma|(n-1)]^{k}\right\}, \max \left\{1, \theta_{i}+[|\gamma|(n-1)]^{k}\right\}\right] }
\end{aligned}
$$

Belief-Free Rationalizability in the Linear Best Response Example

- So unique belief-free rationalizable action to set $a_{i}=\theta_{i}$ if $|\gamma|<\frac{1}{n-1}$
- Every action in $[0,1]$ is belief-free rationalizable for every payoff type in $[0,1]$ if $|\gamma| \geq \frac{1}{n-1}$.

Bayes Correlated Equilibrium in the Linear Best Response Example

- If $-\frac{1}{n-1}<\gamma<1$, one can show that the "potential" function is strictly concave and there is a unique Bayes correlated equilibrium,
- If $\gamma \leq 0$, we have strategic complementarities...
- unique Bayes correlated equilibrium if $|\gamma|<\frac{1}{n-1}$
- Extremal Bayes correlated equilibria where all players choose 0 , and where all players choose 1 , if $|\gamma| \geq \frac{1}{n-1}$

Binary Action Examples

1. Trade:

- $\mathrm{BCE}=\mathrm{BIBCE}=$ no trade
- no trade under BFE and ICR if and only if there is not common possibility of no gains from trade

2. Coordination: $\mathrm{BIBCE}=I C R$ by supermodularity

Belief-Free Rationalizability: Proof

- Suppose that action a_{i} is belief-free rationalizable for t_{i}.
- By definition of belief-free rationalizability, if a_{j} is belief-free rationalizable for t_{j}, there exists a conjecture $v_{j}^{a_{j}, t_{j}} \in \Delta\left(A_{-i} \times T_{-i} \times \Theta\right)$ such that (1) $v_{j}^{a_{j}, t_{j}}\left(a_{-j}, t_{-j}, \theta\right)>0 \Rightarrow a_{k} \in B F R_{k}\left(t_{k}\right)$ for each $k \neq j$
(2) $\sum_{a_{-j}} v_{j}\left(a_{-j}, t_{-j}, \theta\right)>0 \Rightarrow \pi_{j}\left(t_{-j}, \theta \mid t_{j}\right)>0$
(3) $a_{j} \in \underset{a_{j}^{\prime}}{\arg \max } \sum_{a_{-j}, t_{-j, \theta}} v_{j}\left(a_{-j}, t_{-j}, \theta\right) u_{j}\left(\left(a_{j}^{\prime}, a_{-j}\right), \theta\right)$

Belief-Free Rationalizability: Proof

- Now consider expansion $\left(S_{j}, \phi_{j}\right)_{j=1}^{n}$ with $S_{j}=A$ Suppose that action a_{i} is belief-free rationalizable for t_{i}.
- By definition of belief-free rationalizability, if a_{j} is belief-free rationalizable for t_{j}, there exists a conjecture $v_{j}^{a_{j}, t_{j}} \in \Delta\left(A_{-i} \times T_{-i} \times \Theta\right)$ such that

$$
\text { (1) } v_{j}^{a_{j}, t_{j}}\left(a_{-j}, t_{-j}, \theta\right)>0 \Rightarrow a_{k} \in B F R_{k}\left(t_{k}\right) \text { for each } k \neq j
$$

$$
\text { (2) } \sum_{a_{-j}} v_{j}\left(a_{-j}, t_{-j}, \theta\right)>0 \Rightarrow \pi_{j}\left(t_{-j}, \theta \mid t_{j}\right)>0
$$

$$
\text { (3) } a_{j} \in \underset{a_{j}^{\prime}}{\arg \max } \sum_{a_{-j}} v_{j}\left(a_{-j}, t_{-j}, \theta\right) u_{j}\left(\left(a_{j}^{\prime}, a_{-j}\right), \theta\right)
$$

- Consider the expansion with

$$
S_{j}=\left\{\left(t_{j}, a_{j}\right): a_{j} \in B F R_{j}^{k}\left(t_{j}\right)\right\}
$$

Let $v_{i}\left(s_{-i}, \theta \mid a_{i}\right)$ be a belief under which a_{i} is optimal, that hthe belief that rationalizes action a_{i}. Consider the strategy profile with $\beta_{i}\left(s_{i}\right)=s_{i}$. The latter is an equilibrium and

