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Introduction

Each chapter presented in this dissertation is motivated in some wayv by an interest
in learning. The first two chapters are concerned with how people learn. An under-
standing of how people learn is of course crucial for understanding how they behave in
economic situations where information is received over time. For many economists.
“learning” is synonymous with Bayesian updating. Uncertainty is modeled as a set
of possible states of the world over which the agent assigns a subjective probability
measure. Learning is probabilistic conditioning on subsets of this state space. De-
spite its widespread use. this model is at odds with introspection and with a large
body of experimental evidence.

Chapter 1. Learning Through Stories, is motivated by an observation from cog-
nitive psychology: when faced with certain complex situations, people deal with un-
certainty by forming “stories”. A juror may form a story to explain the evidence
presented. A central banker may have a storyv about the current state of the economy-.
Other examples where the idea of a story seems closer to the way we speak and think
about learning include a doctor diagnosing a patient, an investor deciding whether to
purchase stocks in a company. and a teacher assessing her student.

Of course, a juror’s story about a case is very different in content to a doctor’s story

about her patient. or to a teacher’s story about her student’s ability. Nevertheless.



there are common features to stories. Within the theoretical model presented in this
chapter. a story is one possible scenario of “what happened”. or one possible state of
the world. However. it is not just any scenario. A story must be coherent (at least
from the storyteller’s perspective); that is, it must be consistent, both internally—the

different parts of a storv have to “fit”—and externally with the evidence.

The chapter presents a stvlized procedure of how people construct stories. The
model is rich enough to capture the confusion that can be associated with difficult
choices. The main result establishes a set of conditions under which this will not
occur: that is. conditions under which the agent will be able to form a coherent
story. Loosely. the key assumption is that the agent recognizes the contrapostive:

she realizes that alternative ways of stating the same inference are in fact equivalent.

Among the other results. there can be multiple coherent interpretations of the
same evidence. People who construct stories typically do not undo inferences made
from evidence. even after the evidence is discredited. \lore generally. the order
in which evidence is presented can affect the stories that they form. In addition.
apparently weak evidence can trigger large changes in people’s storics.

Though only hinted at in this chapter. these features of the model have important
implications for behavior. The dependence on the order of signals has troubling
consequences for a doctor’s assessment of a patient, or a central banker’s assessment
of the economy. The irreversibility of signals encourages smear campaigns in politics.
and may lead to lasting effects from the release of economic statistics, even when they

are subsequently revised. The discontinuity in the response to signals may account for

(V)



under and overreactions in financial markets. And finally, the model has implications
for the tactics that advocates should use.

Chapter 1 argues that, in many real-world situations. the Bayesian model is lim-
ited in its representation of human learning. Nevertheless, the Bayesian approach is
Jjustified by axioms on preferences which have a great deal of normative appeal. An
alternative approach toward more realistic models of learning is to relax or change
these axioms to be more consistent with the experimental evidence on choice under
uncertainty.  Within this literature, a number of theories attempt to explain the
so-called paradoxes of Elisberg.! Ellsberg’s research indicates that most people ex-
hibit “uncertainty-aversion”. That is. they have a preference for situations where
probabilities are known.

Recent work in decision theory has sought to represent the subjective beliefs of
such individuals in the form of a convex non-additive measure over the state space.
Chapter 2. Revising Non-Additive Priors, considers how these non-Bavesian beliefs
can be updated. It is joint work with Yianis Sarafidis. Consider an employer who
has a subjective prior over the quality of a worker and who knows the distribution
for output conditioned on each level of quality. How does she learn (update her
beliefs) about quality upon observing some output level? If her prior is additive, this
problem is trivial: Baves’s rule suffices. First. a distribution over all possible pairs of

quality and output is constructed. She can then condition on the appropriate subset

'Ellsberg, D. (1961), “Risk. Ambiguity and the Savage Axioms”. Quarterly Journal of Economics,

735. 643-669.



of this product space to calculate the posterior on quality.

When the employver’s beliefs are non-additive. calculating a measure over the prod-
uct space of pairs of quality and output is no longer so simple. We propose two rules:
the first uses the idea of Choquet integration over identity functions and produces
a non-additive measure over the product space: the second converts the initial non-
additive measure to a set of additive priors. and then applies Baves’s rule to each
clement in this set. We argue that the non-equivalence of these two rules highlights
a limitation of non-additive measures. While this limitation does not matter for
the representation of uncertainty-averse preferences. it results in a loss of information
when beliefs have to be revised.

The final chapter is coauthored with Ettore Damiano. It represents the start of
a research project motivated by the question of how learning restricts outcomes in
matching markets. In this chapter. we focus on a special class of matching markets.
termed marriage markets. Theses are trading arrangements where participants be-
long to two disjoints sets. and where trades require one-to-one matches. An obvious
restriction on outcomes is that they be “stable”. Here we have in mind cooperative
concepts such as the core. A large literature has considered stability in the case of
a static market with perfect information. In many real-world situations. however.
the value of a proposed match is not known until after trade has taken place; partici-
pants have to learn about these parameters of the game as it is plaved over time. In
Self-Sustaining Stability in Dynamic Matching Markets, we undertake the first step
toward a more realistic theory of marriage markets by incorporating dvnamics into a
notion of stability. For most of the chapter, however, we maintain the assumption

4



of complete information.

We label our definition “self-sustaining stability”™. This concept can be viewed
as the core with two additional requirements. Loosely, these requirements are the
cooperative counterparts of subgame perfection and coalition proofness. We provide
a justification for the concept. sufficient conditions for its existence. and an algorithm
for computing it. At the end of the chapter. we extend the definition to a dvnamic.
incomplete information setting with learning. Characterizing this new definition is

the subject of ongoing work.



Chapter 1

Learning Through Stories
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[Humans are...] “primates who tell stories”.

Stephen Gould!

1.1 Introduction

An understanding of how agents learn is crucial for understanding how they behave in
cconomic situations where information is received over time. For many economists.
“learning” is synonymous with Bavesian updating.? Uncertainty is modeled as a set
of possible states of the world over which the agent assigns a subjective probability
measure. Learning is probabilistic conditioning on subsets of this state space. De-
spite its widespread use. this model is at odds with introspection and with evidence
from psychology about how we reason.?

In economic theory. the Bavesian approach is justified by placing normative ax-
ioms on preferences and then deriving Baves’s rule as part of a utility-representation
result.  While elegant. this focus on preferences. to the neglect of cognition. implies
that the model sometimes fails to capture essential aspects of people’s internal delib-

crations. More damagingly (perhaps precisely because it does not explicitly model

!Citation from Dawes (1999) who modifies this definition to “primates whose cognitive capacity
shuts down in the absence of a story”. Thanks to Robert Forsythe for bringing this reference to
my attention.

*This is not true in game theory. This paper, however, undertakes the simpler task of studving
learning in non-strategic situations.

*Kahneman, Slovic and Tversky (1982), Rabin (1996), as well as Shiller (1997). summarize a large

body of evidence in support of the claim that people systematically violate the laws of probability.

7



the procedures people use to incorporate information), the implications of the theory
are frequently at odds with observed behavior.

This paper develops a stylized. more “structural”. model of how people reason
when faced with uncertainty. The model is meant to be descriptive rather than
normative. Examples of real-world situations to which it is meant to be applied
include: a juror deciding on a verdict: a manager considering whether to undertake a
merger with another firm: a doctor diagnosing a patient; a teacher assessing a student;

and a central banker trying to form a view of the economy’s current performance.

Common to these examples, objective probabilities are usually unavailable and
there can be a large amount of implication-rich evidence to contemplate. In addition.
we often speak of constructing “stories” to facilitate learning in such situations. A
doctor may form a “story” of the cause of her patient’s svmptoms. A central banker
may have a “story” about the potential sources of inflationaryv pressure over some
time horizon. DBefore the model is presented. I discuss the psychological research
which motivates it.

In a series of experiments. Pennington and Hastie (1986, 1988. 1990. 1992 and
1993) find that jurors in a trial do not form complicated probability distributions over
states of the world—descriptions of the defendant’s guilt or innocence. and all the
evidence that could be presented. Nor do they incorporate information by calculating
posteriors. Instead. they construct “cognitive representations of the evidence in
the form of stories” —scenarios describing “what happened” during the events in

question.  Stories facilitate evidence comprehension and are constructed by jurors



even though evidence is often presented out of temporal and causal order. Moreover,
Pennington and Hastie find that jurors base their verdicts on the story representation
of information. rather than on the raw evidence.

Of course, a juror’s story about a case is very different in content to a doctor’s story
about her patient. or to a teacher’s story about her student’s ability. Nevertheless.
there are common features to stories. The theoretical definition below will capture
two ideas. First, a story is one possible scenario. or state of the world. In the
Jjuror example. it is one possible theory of what happened. Second, it is not just any
scenario. but must be consistent (at least from the storvteller’s perspective). both
internally. and with the evidence. The process of reasoning will place restrictions on

which scenarios are viewed as coherent.?

Outline and Summary

In the next section, I present a theory of how people construct stories. The foundation
of the model is a set of statements that an agent has in her mind. In the trial.
statements may include: “the defendant is guilty”. In order to facilitate reasoning,
the agent assigns attitudes toward statements: each statement is either accepted or
not accepted.

A signal provides, or alters. the attitudes toward some statements. For example.

‘The premise that people like to hold consistent views of the world is supported by research
in psychology. A very influential approach to explaining this human tendency was developed by
Festinger (1957), who proposed that any perceived inconsistency among various aspects of beliefs.
emotions, memory, and behavior, causes an unpleasant state that he termed cognitive dissonance.

which people try to reduce whenever possible.



a convincing account from a witness may lead our juror to accept that “the defendant
has an alibi”.

Statements are related to one another through reasons which [ model as links in
two directed networks. The idea is that the attitude toward a statement can provide
some justification for accepting, or not accepting, another statement. One network

provides reasons from accepted statements: the other from non-accepted statements.

Because of reasons. the initial set of attitudes will typically be modified by a
sequence of inferences. Continuing with the example, the juror's acceptance that
“the defendant has an alibi” may lead her to accept that “the accused did not commit
the crime himself’. This may in turn give her some reason to revise her attitude
toward the sentence “there is an accomplice to the crime”. and toward the statement
“the defendant is innocent™, and so on.

To capture inferences. a function which maps from patterns of attitudes (over
the set of statements) to patterns of attitudes is defined. Iterations of this function
arc interpreted as reasoning on the part of the agent. In this framework, a story
is a coherent pattern of attitudes. with the attitude toward each statement being
supported and built on the attitudes toward other statements. We therefore define
stories to be fixed points in the reasoning function.

In section 3. some theoretical properties of the model are presented. The model
is rich enough to capture the confusion that can be associated with difficult choices.
This occurs when the agent’s inferences lead her to cycle endlessly between patterns

of attitudes. unable to come to a coherent view of the evidence. Surprisingly. if the
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agent satisfies a very weak form of rationality—she recognizes that different ways to
state the same rcasoning are equivalent—then her inferences will always converge to
a story. An upper bound is placed on how long this can take.

Section 4 compares the processing of information in the Story model to the
Bayesian calculus. [ argue that there are elements of both models in how people

learn.

In sections 5. I discuss how an agent who already possesses a story incorporates
new evidence. Formally. I show how multiple signals are accommodated. With this
extension, the theory is able to explain phenomena observed in the psychology and
behavioral economics literatures. The order of signals can affect the story that is
formed. and a discredited piece of evidence can leave lingering effects—signals are
in general irreversible. Incredibly. “fresh thinkers™ —agents who have received less
information——can have an advantage in learning the truth. These properties have

important consequences for many economic applications.

In the model. it is also possible for an apparently “weak™ signal to lead to large
changes in the agent’s story.> This occurs when the signal triggers a long sequence
of reasoning: informally. stories can “collapse”. A prediction of the model, therefore,
is that advocates should use evidence of this tvpe to argue against the stories pre-
sented by their opponents.® In addition. this possibility of a sudden and dramatic

change in an agent’s story captures some aspects of the phenomena of epiphany and

3We will be more precise about what “weakness” means.

®Recall the “if the glove doesn't fit. you must acquit” defense of O.J. Simpson.
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overreaction. The latter, in particular, may prove to be very relevant for economics.

Sections 6 discuss a number of possible extensions to the basic model. The paper

concludes in section 7.

1.2 The Model

1.2.1 Statements and Attitudes

Assume that there exists a set of propositions or statements, P.” This set is subjective
and contains all the sentences which the agent views as relevant for learning about
the situation at hand. It is assumed to be finite.® During the course of learning and

reasoning, the agent assigns an attitude toward each statement. which I group into a

"The mathematics of the model will turn out to be a modification of the Hopfield (1982) network—
an example of an artificial neural network—which has been used to solve combinatorial optimization
and pattern recognition problems. However, the “neurons™ and “synaptic connections” in our model
take on very different interpretations compared with these applications. Moreover. the Story model
requires two “networks™; restrictions between these two networks will be important for many of the

results.

SSentences or statements are also used in models of epistemic states and in propositional logic.
To be formal. they are elements in some object language. It is usually assumed that the language
contains expressions for the standard sentential connectives, such as negation. conjunction and
implication.  An infinite number of statements can then be generated from a set of primitive
statements using these connectives. Rather than thinking of P as the set of all possible sentences,
it is best thought of as a subjective set of statements to which the agent is paying attention. The

finiteness of this set is important for what follows.

12



vector a in {0. 1}#?. Elements in this vector are indexed by P. a(z) = 1 signifies
that statement r is accepted: a(xr) = 0 refers to a statement which is not accepted.?
To simplify notation, I will also use a(r) to denote the acceptance of z, and —a(z) to
denote non-acceptance.

If a certain statement. r. is not accepted. this does not entail that its negation,
—r. be accepted. If r and -z are both in P, then a(z) = 0 and a(—z) = 0 can
be interpreted as the agent feeling indetermined toward statement x. Because inde-
terminacy can only be represented using both a statement and its negation. we may
want to assume that P is closed under negations. However, this is unimportant for

the results which follow.

1.2.2 Modeling Reasons

In this model. the attitude toward one statement can be a reason or a justification for
the acceptance. or non-acceptance. of another. Reasons can come from knowledge
of the physical world. knowledge of human motivations. from logic. as well as from
0

common sense.!

Consider two statements. r and y. in isolation: I will discuss the interaction and

°If the model is viewed as an artificial neural network, then 1 denotes the firing or the activation
of the neuron and 0 represents inactivity. The binary assumption reflects the “all-or-none” law in
neural biology.

1Shafir. Simonson and Tversky (1993) present very convincing experimental evidence which con-
firm that people seek reasons to justify their decisions, to themselves, and to others. The premise

here is that reasons matter. not only to choices. but to attitudes.
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aggregation of reasons subsequently. One can reason from statement y to z in four
ways.  The acceptance of y can be a reason to accept z; or it may inhibit the
acceptance of r. Similarly. the non-acceptance of y can provide the agent with a
Justification to accept. or not to accept. statement r. [ model the first two types of
inferences from accepted statements with one directed and valued network. Inferences
from non-accepted statements are modeled with another. The set of statements. P.
arc the nodes in these networks. The direction of a link corresponds to the direction of
the inference. The magnitude of the value attached to a link represents the strength
of the reason. Its sign denotes whether the attitude toward the first statement
reinforces or inhibits acceptance of the second.

These networks are represented by two #P x #P matrices. R and Q. Assume.
just for now. that all elements in these two matrices are drawn from the binary set
{~1.1}. I index cells in the matrices by statements in P. For example. R(z, y)
refers to the cell in row r and column y.

Let us begin with a discussion of reasons from accepted statements. In the
absence of interaction with other statements. R(z,y) = 1 means that the agent
views the acceptance of statement y as a sufficient reason for the acceptance of r.
That is. a(y) = a(r).!'" Notice that reasoning flows from the column to the row
statement. Reasons can also inhibit acceptance. R(z.y) = —1 denotes the inference
a(y) = —a(r).

Implications in the opposite direction do not hold automatically. The fact that

"'Recall that a(z) represents a(z) = 1 and —-a(z) represents a(z) = 0.

14



accepting y provides reason for accepting x does not mean that accepting r should

provide a reason to accept y. To put this another way, R need not be symmetric.

Now. consider the implication -a(y) = a(z). Ignoring effects from other state-
ments. the agent infers from the non-acceptance of y. that r should be accepted.
Notice that this is not equivalent to a(—-y) = a(z) because the non-acceptance of y
is not the same as the acceptance of its negation. If both —y and z are in P. the
inference a(—y) = a(r) can be modeled as R(z, ~y) = 1. but to model the inference

—a(y) = a(r). the Q matrix needs to defined.

In the absence of interaction with other statements, Q(r.y) = 1 represents
—-a(y) = a(r). A value Q(z.y) = —1 denotes the inference —a(y) = -a(x).!®
One particularly interesting implication which can be captured by the Q matrix is:
—a(—-r) = a(r). which corresponds to Q(z.—z) = 1. Unless the negation of r is
accepted, the agent accepts r. This is essentially saying that r is an presumption. If
x corresponds to the statement: “defendant is innocent”. then a juror with the reason

Q(x. —r) = 1 is one who presumes that the defendant is innocent unless proven guilty.

In order to allow for strength in reasoning. I generalize the above discussion.
Elements in R and Q now lie in the interval [—1.1]. Agents are permitted to have
greater confidence in some inferences than others. For example, blood on the hands
of the defendant is a fairly strong reason for believing that he is guilty of murder. The

lack of an alibi will also contribute to the belief. but probably to a lesser degree. The

2It may be obvious at this point that this inference can also be written as a(r) = a(y) or

R(y.r) = 1. Consistency requirements between R and Q will be discussed shortly.
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bound of 1 on the absolute value merely represents a normalization. What matters
is the magnitude, or strength, of a reason relative to the magnitude of others.'?

One important validation for this generalization is that it allows a chain of rea-
soning to have a “weak” link. In arguments that obey the rules of classical logic. the
idea of weakness does not make sense. As we are about to see. valued links also allow
the agent to trade the magnitude of a reason for a multitude of weak reasons. The
idea of a weak link and the idea of magnitude from multitude are present in everyday

reasoning.

Aggregation of Reasons

Of course. the strength of reasons only matters if the attitude toward any given
statement r is allowed to depend on more than one attitude. [ assume that reasons
from different statements are additive.'* Let R(z..) and Q(r..) denote the rth rows
of the reason matrices. The cumulative reason for accepting a statement r in P.

given the current vector of attitudes a. is:
R(r..)a+ Q(z..)(1 —a) (1.1)

where 1 denotes a (#P x 1) vector of ones. The assumption of additivity is meant

to capture deliberation in the mind of the agent. She contemplates and weighs the

‘3.—\lthough the precise bound does not matter, for some of the theoretical results which follow.

the assumption that elements in these matrices are bounded is important.

If the model were viewed as an artificial neural network. this assumption is consistent with the

observation in physical neural networks that signals from different neurons satisfy spacial summation.
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reasons for, and against, the acceptance of the statement; the cumulative reason is
the result of looking for where the balance lies.'?

An implicit assumption in the way I have formalized reasons is that they are
“independent”™.  Whether the acceptance of y is a good reason to accept r-——that
is. the value of R(r.y)—does not depend on the attitudes toward other statements.
Consider the following. somewhat gruesome. example. The testimony of a witness
who claims that ~the defendant killed the victim with a gun™ (y) is a good reason for
thinking that “the defendant is guilty of murder” (r). Similarly, if another witness
testifies that “the defendant stabbed the victim to death with a knife” (z). then
we have good reason for thinking that the defendant is guiltv. However. if both
testimonies are accepted. it is likely to cause doubt in the juror’'s mind. Essentially.

we would like our reasons to be able to capture the exclusive-or Boolean function.

This example seems to suggest that additivity is a severe limitation. In fact.
because no restrictions are placed on the content of sentences. the assumption is
without loss of generality and does allow for interaction between reasons. In the
above example. the expression “y and z” is a valid statement for the agent to have in

her mind. and its acceptance can be an overriding reason not to accept .

'>Notice that when we allow for aggregation, values of R(x.y) and Q(z.y) in {-1.1} do not
have the simple interpretation of logical deductions. For example, a value of R(z,y) = 1 may be
“canceled” or offset by a value of R(z,z) = —1. To capture a deductive inference which holds by

strict necessity, we need to ensure that the reason outweighs all others.
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Contrapositive Requirement and Irreflexivity

Rationality imposes at least two conditions on the agent’s reasons: they should con-
tain no contradictions and incorporate all deductive consequences. It is clear that
these conditions are not necessarily compatible with human ability. In particular.
this is the case for the latter requirement: we often do not see all the consequences
of what we accept. Moreover. in order to impose these two conditions, the content
of statements must be explicitly specified.

A much weaker rationality criterion—one which does not involve the content of
sentences—will play an important role in the results below. Because an inference can
always be stated in the contrapositive, certain restrictions are necessary for reason
matrices to be sensible. Ignoring effects from other statements.'®* R(r.y) = 1 denotes
the implication a(y) = a(z). This can be rewritten as —~a(z) = —a(y). or Q(y.z) =
—1. A much stronger requirement is that this relationship holds even when we do
not have implications that hold with strict necessity: R(z.y) = r > 0 if and only
if Q(y.r) = —r. If the acceptance of the sentence “the defendant had a motive” is
a reason for accepting that “the defendant is guilty”. then not accepting that “the
defendant is guilty™ should be as good a reason for not accepting that “the defendant
had a motive”. This condition is listed under (C3) below.

Similarly a(y) = -a(r) is equivalent to a(z) = —-a(y), and —a(y) = a(z) is

cquivalent to —a(r) = a(y). The stronger versions of these requirements correspond

'®What I really mean is: “assuming that R(z.y) = 1 overrides all other reasons”. See footnote

15.
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to conditions (C1) and (C2) respectively. They entail that R be symmetric with
respect to its negative elements and Q be symmetric with respect to its positive

clements.

Definition (Contrapositive Condition). An agent’s reasons. R and Q. are said to

satisfy the contrapositive condition if the following hold for all .y € P,

R(x.y) <0 implies R(z.y) = R(y. ) (C1)
Q(r.y) >0 implies Q(r.y) = Q(y. r) (C2)
R(r.y) >0 or Q(y.r) <0 implies R(r.y) = —Q(y. 1) (C3)

In the real world. there are many situations where this definition is not met because
the agent does not realize the equivalence between alternative ways of stating the same
implication. The contrapositive requirement should be viewed as a condition that
we may not always want to impose.

Another restriction on reasons. namely irreflezivity. will also appear in the results

that follow.

Definition (Irreflexivity). An agent’s reasons. R and Q, are said to be irreflexive if

the following hold for all = € P,

R(zr.z) =0 (Cq)

Q(z.z) =0 (C3)
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Equations (C4) and (C53). ensure that there are no self-loops in the two networks.
This is so that no baseless and circular arguments can occur. The acceptance of a
sentence r cannot in itself be a reason for accepting r. Nor can the non-acceptance

of r be a reason to accept .

1.2.3 States, Signals and Reasoning

Having described the agent’s reasons, I now describe how they are used in her internal
deliberations. The vector a assigns to each statement a subjective attitude. There
exists a vector w in {0. 1}#'p that determines whether each statement is objectively
true (1) or false (0). The task of learning involves deducing this pattern of “0”s and
“1"s over the set P. Think of w as the binary representation of the state of the
world.'”

Given the true state w, a signal—denoted by S--is a subset of the statements
in P. The interpretation is that the truth values of sentences in S are revealed
to the agent. Typically. each signal. or each piece of evidence. will be informative
with respect to only one statement. In the criminal trial, the testimony of a forensic

detective may. for example, reveal the truth of the statement: “the defendant’s prints

"Because w refers to objective truth, it should not contain any contradictions. For example. this
would require the following condition on statements and their negation: for any statement z in P.
w(r) = 1 if and only if w(-z) = 0. Further conditions on w would entail knowing more about the
content of the statements. Although intuitive. assumptions on w do not have implications for what

follows.
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were found on the murder weapon”.

Also. there will usually be statements whose truth values are never made known
to the agent. Since the juror was not present when the crime took place. she will
never observe a direct signal regarding: “the defendant is guilty”. She must infer
her attitude toward this statement from her other attitudes.

The remainder of this section describes how the agent processes one signal. S.
[ will consider the processing of multiple signals in section 5. A time subscript
t is introduced in order to model explicitly the inferential process which occurs in
the mind of the agent. For example. a, are the attitudes after the signal has been
processed for ¢ periods. [ will interpret the sequence of vectors {a,}, as the outcome
of reasoning.

One more piece of notation is needed. For any subset of statements £ in P. and
any vector u in R#”_ let u® in R¥ denote the projection of u onto the coordinates
representing statements in £. For example. a¥ is a vector in {0,1}*° that contains
attitudes toward sentences in the set S.

Upon observing the signal S. the agent provisionally assigns attitudes. The only
requirement is that she assigns the correct attitudes toward statements whose truth

values have been revealed.

aj = w® (1.2)

No requirement on the remaining set of attitudes, ag“s. 1s necessary for the results

below.
The vector ag is not what the agent concludes from the signal; it is merely an
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initial view of the world from which she makes inferences. Each period t. the attitudes
toward some subset of the sentences in (P — S) are revised. Naturally. the attitudes
toward statements whose truth values have been revealed—that is, attitudes toward
statements in S—are left unchanged. Consider a statement r from the subset of
the sentences whose attitudes will be revised. The attitude assigned to z depends
on the cumulative reason toward r, which in turn depends on the current vector of
attitudes. If a preponderance of reasons suggests that the statement is true, then it

remains accepted. or is revised to be accepted:

~ 1 if R(r..)a, +Q(z..)(1—a,) >0
al%(z) = (1.3)

0 otherwise

The same procedure is applied to all elements in the subset of sentences whose at-
titudes are to be revised. The resulting vector of attitudes is used to deduce vet
another vector. and so on.

A couple of observations. First. the assumption that attitudes are binarv—and
the associated assumption of a threshold criterion on the cumulative reason (equation
1.3) ‘may appear to be extreme. Acceptance. however. does not correspond to
knowledge. or even to belief with probability one. An attitude is merely a “guess”
about whether the statement is true or false. Because the strength of the cumulative
justification can differ across statements with the same attitude, the agent can feel
more confident, in her (non-)acceptance of one statement than in her (non-)acceptance

of another. In short. degrees of belief are possible even though attitudes are binary.

Obviously the precise subset of statements selected to be updated at each period
will affect the time-path of attitudes. I distinguish between updating attitudes in

2
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sequential mode and in parallel mode.'®

Definition (Modes of Reasoning). If in every period the attitude toward one, and
only one, statement in the set (P — S) is updated, then the agent is said to be
undertaking sequential reasoning. Ifin every period the attitudes toward all sentences

in (P — 8) are updated. then the agent is said to be undertaking parallel reasoning.

When reasoning is in parallel. we can rewrite equation (1.3) in matrix notation:
a’i® = (sgn[Ra + Q(1-a,)))"* (1.4)

where for a scalar u. sgn(u) =1 if u > 0, and sgn{u) = 0 if u < 0; for vectors, sgn
operates element-by-element. Whereas there is only one way of making inferences in
parallel. there are many different ways of carryving out sequential reasoning depending
on the precise order in which sentences are considered. The cyclic mode of serial

reasoning plays a role in one of the results that follow.

Definition (Cyclic Mode of Inference). If the agent is reasoning sequentially, and
if cach of the sentences in (P — S) is revised in every # (P — S) periods, then
the agent is said to be undertaking cyclic reasoning. The order of statements is:
T T2 e Ty #(P=S): T21. T22- oe. T2 2(P-S): ---. Where {a:“. Ty eens I,-,#(p_s)} =(P-3S9)

for everyv cyvcle |.

'8These definitions are borrowed from the artificial neural networks literature.
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Notice that the order through statements in (P — S) may differ with each cycle; all
the definition requires is that each attitude be updated once in each cycle. Before

the dynamics are studied. I define a story.

1.2.4 Stories

In evervday language. when we say that a story “makes sense”, we mean that it is
consistent with the evidence and that its components are compatible with each other.

The following definition provides a way of capturing this in our formal model.

Definition (Story). Given a collection of reasons R and Q. a state of the world w.

and a signal S. a vector of attitudes a constitutes a story if the following conditions

hold:
a’ = w* (1.3)

a"® = (sgn[Ra+Q(1-a)))”* (1.6)

How does this definition correspond to the real-world notion of a storv? First,
notice that a story is one possible scenario. It is not a subjective prior over the state
space. An agent who thinks according to the Story model recognizes that only one
state can correspond to reality and constructs a pattern of attitudes which is her best

“guess” at what this state may be.!?

9This is not to say that the agent does not have an opinion about the likelihood of her story. We

discuss the idea of confidence in section 4.



Second. a story is coherent. It is consistent with evidence because equation (1.5)
provides the attitudes in a%. It is internally consistent because the vector a?~$
satisfies the fixed point condition of (1.6). At a story. if the agent was asked why she
held a particular attitude toward some statement. she would be able to justify it with
the attitudes toward some other statements. These other attitudes can be justified
by vet other attitudes. and so on. At no point would she feel the need to revise her
pattern of acceptances. The sequence of justifications ends when the attitude toward

a statement is given by the external signal. From the agent’s perspective. a story is

a justifiable state of the world.?®

*To further convince the reader that this definition captures some aspect of human reasoning.
consider an observation made by Marvin Minsky (1985): we often speak of beliefs in terms of

structural or architectural expressions. as if they were buildings:

“Your beliefs have no foundation.”
“You must support that with more evidence.”
“That argument is shaky. It will collapse.”

“Your story cannot stand up to scrutiny.”

The definition of a story as a pattern of attitudes, where the attitude assigned to each statement
is supported and built on the attitudes toward other statements, is consistent with the observation.
Also. as we will investigate further in section 6. like buildings. stories can “fall apart” if the attitude
assigned to one of the statements is unsound. Of course. there are other plausible explanations for

Minsky's observation. and we also speak of beliefs in other metaphors.
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1.3 Properties of the Model

1.3.1 Confusion

The first observation to make is that confusion is possible. Recall that we are
considering the processing of one signal. This signal will typically trigger a chain of
inferences. Convergence to a story is the reaching of a conclusion. Non-convergence
is a situation of conflict. The agent is unable to reconcile the evidence with her
knowledge of reasons.

From a Bayesian perspective, it is difficult to explain why a hypothetical juror may
ever have trouble reaching a verdict. At the end of the trial. she merely has to select
the partition of the state space—"guilty” or “not guilty”—with the higher probability.
Value comparisons are easy.?!  However, experience tells us that confusion often
occurs in learning. One can imagine the juror throwing up her hands and exclaiming
that she cannot make sense of the evidence.

What conditions on the agent’s reasons. R and Q. guarantee convergence? Notice
from the definition of a story that attitudes will not alter for any mode of inference
once we are at a story. Whether convergence occurs, however. does depend on the
mode of inference. It turns out that. if reasoning is sequential. sufficient conditions

for convergence are the contrapositive requirement (equations C1, C2 and C3) and

*!'To incorporate the burden of proof required for a guilty verdict, the threshold probability re-
quired for the juror to vote for a guilty verdict may be increased to above 1. But the point remains.
Whether the posterior assigned to the “guilty” event is above this threshold is easy to answer for

a probabilistic thinker.



irreflexivity (equations C4 and C5). I state this claim as theorem 1 below.?2
Although it is certainly true that people are often confused by alternative ways of
stating the same inference. the contrapositive condition is a weak form of rationality
compared with that implied by formal logic. It is an assumption made on the
architecture of the reason networks without any reference to the content of sentences.
In contrast. the rules of logic dictate the relationship between truth values assigned to
sentences derived using propositional connectives. For example, the truth or falsity

of a statement = = “r or y” is determined by the truth values for r and y.

Theorem 1 (Convergence with Serial Reasoning). Assume that the reason matrices
R and Q satisfy the contrapositive requirement and irreflexivity. Then, when rea-
soning is sequential. and the attitude of each statement is updated sufficiently often,

the agent is able to construct a story for any signal S.

Proof. See the appendix. I

In the theorem. there is a requirement that the attitude toward each statement be
updated sufficiently often. This is necessary to rule out certain sequences of revisions.

For example. if the agent considers the same statement in each period. then the set

**There are other sufficient conditions for convergence when inferences are made sequentially.
For example. the contrapositive requirement can be replaced with a requirement that all reasons be
bidirectional: R and Q are symmetric. Clearly this is a restrictive assumption with no normative

appecal. The fact that it implies convergence is of little interest.
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of attitudes will not change after the first iteration, but the attitudes will not in
general constitute a story. Cyclic reasoning satisfies the requirement. Note that the
assumptions in the theorem are not necessary for convergence.

Of course. conditions which establish convergence to a story also establish the

existence of a story.

Remark (Existence of a Story). If the reason matrices R and Q satisfv the contra-

positive requirement and irreflexivity. then a story exists for any signal S.

Looking for a coherent pattern of attitudes among all possible patterns is a dif-
ficult task. Even for a situation involving relatively few sentences. the number of
combinations that need to be considered (2#("=%)) is large. Further complication
arises if the agent has a complex network of reasons. Making inferences sequentially is
an casy procedure to implement. although convergence is not obvious. The eventual
effects of a change in the attitude of one statement on distant parts of the network
are difficult to foresee. Somewhat surprisingly. theorem 1 shows that an agent who
carries out sequential reasoning can only be confused if her reasons contain some
inconsistency.

From introspection. it would seem that conscious thought is sequential. Atten-
tional limitations prevent us from considering multiple inferences at once. Therefore.
the rest of the paper will focus on sequential inferences. Nevertheless. for the sake

of completeness, [ present the following theorem:
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Theorem 2 (Convergence with Parallel Reasoning). If the reason matrices R and
Q satisfy- the contrapositive condition as well as irreflexivity, and if reasoning is in
parallel. then the set of attitudes always converges to a cyvcle of length at most two

for any- signal S.

Proof. See the appendix. B

This theorem implies that parallel inferences may never lead to a story. Interestingly,
however. this conflict in the mind of the agent must be of a relatively simple form:

she can only cyvcle between two sets of attitudes.

1.3.2 Multiplicity

At this point. it is useful to consider a simple example which illustrates the concepts
that have been introduced. The example will also introduce an important feature of

the model: the possibility of multiple stories.

Example

Assume that an agent considers two statements, P = {z.y}, and possesses the fol-

lowing reasons:
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[gnore the signal and assume that the initial set of attitudes is:

ag = * [OJ (1.8)

<

Notice that the reason matrices satisfy equations (C1) to (C5).22 Convergence to a
story is assured with sequential revision. Indeed. in this example, a story is reached
after just one inference. Say that the agent reasons by first updating the attitude

toward statement r.

In period 1. the attitude toward z is given by a preponderance of reasons:

a(z) = sgn[R(z..) a0+ Q(z..) (1 — ag)] (1.9)
= sgn([O 1][(1)J+[0 —l][éJ)
=1
Thus. a;, = [ 1 1]. This is a story: subsequent reasoning results in the same

pair of attitudes. Had statement y been the first statement updated, the opposite
conclusion. a; = [0 0]'. would have been rcached. This is hardly surprising. In this
example. the acceptance of r and of y are mutually supporting. In the absence of
evidence. it is clear that there are two stories. both equally coherent and compelling.
Which one is reached depends on which statement is first updated to be consistent

with the attitude toward the other statement.

#In fact. R and Q are symmetric. This is of course not necessary for the contrapositive condition.
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Multiplicity and the Order of Inferences

This example is trivial but one can imagine more complicated networks where an
agent reasons to a particular story withcut being aware of the existence of other
stories. The possibility of multiple. coherent interpretations of the same evidence is
important to many features of the Story model. In contrast. Bayves's rule ensures
that there is a unique way for a probabilistic agent to incorporate a signal into her
belicfs.

When there are multiple stories. and the agent reasons sequentially, the order in
which attitudes are revised can affect which story is reached. Agents who receive the
same signal, and who have the same reasons, can still form different stories if they
undertake different chains of inferences.

Novelists and scriptwriters frequently take advantage of multiple stories to gen-
erate surprise. For example. throughout the movie. the scriptwriter may steer the
viewer toward one particular story. Only in the final act is it revealed that an al-
ternative scenario is in fact the truth. This is only possible because the evidence
presented prior to the final act is consistent with multiple coherent interpretations.
Interestingly. when the truth is presented, we are often not totally convinced and
think back to earlier parts of the movie to verify that the new story is in fact con-
sistent with what we have seen. This highlights the importance of coherence in our
thinking.

As we will see when the model is extended to consider multiple signals. people

are susceptible to being led toward a particular story partly because they sometimes

31



interpret new evidence to “fit” with their current story.

Back to the Example

Before leaving the example. I use it to illustrate a couple more points. Theorem 2
states that making inferences in parallel leads to a cycle of length at most two periods.

We can verify this for the initial set of attitudes given above:

v ([0 L8]

= [é] (1.10)

Reasoning from this new vector of attitudes leads to a; = [0 1 | = ap. and so on.
The agent cycles between the two scenarios: {1 0} and [0 1]

Finally. I alter the example to illustrate the consequences of violating the contra-
positive condition. This will clarify its role in the convergence theorems. Replace

the above reason matrices by:

01 0 -1
R:[_l OJ Q—_—[l 0] (1.11)

These justifications violate equations (C1) to (C3). It can be shown that no story
can be constructed from any initial set of attitudes. in either sequential or parallel
mode. In fact. no state of the world is coherent. This is obvious if we rewrite the

reasons as the following contradictory chain of inferences:
a(y) = a(r) = -a(y) = —a(z) = a(y) = ... (1.12)
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The agent cycles endlessly without coming to a conclusion.

The next obvious issue to consider is how quickly the agent is able to form a story

after the presentation of a signal.

1.3.3 Time Required for Convergence

Definition (Time to Convergence). Upon the receipt of a signal S. the time to

convergence, 7. is defined as:
T =min{t|a,.; =a;=a forall i >t} (1.13)

where a is a story with respect to the signal S.

Time to convergence’ can be viewed as a measure of the agent's perception of
the difficulty of the situation. It is the number of inferences that she has to make
before being able to construct a story. In general, this will depend on: the mode of

reasoning: the agent’s reasons: and the signal.

Consider a worst-case. upper bound for this time. No upper bound exists in
parallel mode because convergence may not occur. Even with sequential reasoning, no
upper bound exists without further restrictions on the precise sequence of inferences.
The agent might. for example. contemplate the same sentence for some arbitrarily

large number of periods. We therefore derive the upper bound for cyvclic mode.

**In discrete neural computation, the number of iterations required before the network reaches an

cquilibrium is called the transient period.
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Proposition 3 (Time to convergence). Assume that the contrapositive condition
and irreflexivity are met. and that reasoning is in cvclic mode. Then the agent

converges to a story with a time to convergence bounded above by:

> [R(z.y) - Q(z.y)] a(y) + Q(z. ) 1‘

yES i

+% > > IR(I-.y)—Q(I,y)I) (1.14)

reEP~-S yeP~S

T < [——#(P{Sq ( >

reEP~-S

where

5= min IR(z..) a+Q(z..) (1 — a)| (1.15)

(£.aP-S)g(P-8)x{0.1}#P-5)

subject to

R(z..)a+Q(z..)(1—a)] > 0 (1.16)

a’ = w® (1.17)

Proof. See the appendix. @

Notice that the bound is increasing in the number of statements which the agent
has to consider. # (P — §). A learning situation that requires a greater number of
statements. or in which fewer truth values are provided by the signal. is likely to be
more computationally intensive. The upper bound is negatively related to §, which
can be interpreted as the weakest possible inference. A small value of § means that
the story constructed may be very fragile.
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If |[R(zr.y) — Q(z.y)| is small. then the bound on the transient period is tighter.
Consider what it means if R(z.y) = Q(r.y). Abstract from other statements and
say this common value is 1. Then, the agent’s reasons include: a(y) = a(z) and
—a(y) = a(x). But this is simply saying that the sentence r should be accepted
whatever the attitude toward y. If inferences are all of this spurious form. then it

cannot take very long for the agent to reach a coherent set of attitudes.

Because the order in which attitudes are revised can differ across agents, even
agents with identical reasons. who receive the same signal. and who reach the same
story. can have different convergence times. That is. they can have dissimilar opinions
about the difficulty of a problem. We have all been in situations where we took a

roundabout way to reach a conclusion when a more direct route was available.

1.3.4 Local Uniqueness of Stories

It turns out that states of the world which are local to a storv—that is. which differ

from a story only in the attitude toward one statement—are not stories.

Proposition 4 (Local Uniqueness). Assume that the reason matrices R and Q
satisfy irreflexivity. Then for any signal S, two vectors of attitudes which are both

stories must differ in the attitude toward at least two statements.

Proof. See the appendix. B

This result is not surprising from the perspective of a reason-based model. The
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interpretation is as follows. Take two agents with the same set of reasons who have
seen the same evidence, and who have each constructed a story. If these stories are
not identical. they must differ in the attitude they assign to at least two statements.
If this were not the case. then the set of undisputed attitudes would be supporting
both possible attitudes toward the sentence in dispute. One of the agents must not
be justified in her attitude toward this sentence. Put simply. if a trial attorney wants
to change a juror’'s attitude toward. say, “the defendant is guilty”, he must provide

the juror with a reason to do so.

When irreflexivity is not satisfied. the attitude toward a statement can be a reason
for itself. If a difference in opinion can justify itself. then obviously two stories can
differ in only one attitude. This is ruled out by the conditions for the proposition.

As an aside. a similar local-uniqueness result holds for the set of Nash equilibria in
game theory (which are also fixed points of an appropriately defined mapping). For
a generic normal form game. if we begin at a Nash strategy profile and change the
strategy of one of the plavers. then the new profile cannot be an equilibrium unless

some other player also changes her strategy.?®

*Consider a function g which maps from a product space X = I’L’zl X to itself. The property
which ensures that the set of fixed points is locally unique is the following: for all i, g; must only
be a function of I_I,;:. X,. where g, is the ith component of g. Notice that best response mappings
in game theory satisfy this. Equations (C4) and (C5) are needed precisely so that this condition is

satisfied. This observation was pointed out to me by Stephen Morris.

36



1.4 The Bayesian Model

In this section. [ contrast the model presented above with the Bayesian model. For
simplicity. consider an agent who contemplates only two statements, P = {z.y}.

The true state of the world lies in the following product space:

Yy
w(y)=0 wly)=1
wiz)=0[ 0.0 | (0.1
T w@=1] @ | @y

It is clear that a truth value assigned to a statement--for example. w(r) = 1—can
be viewed as an event. a subset of the state space.
The Bayesian model assumes that all information that is relevant for decision

making can be captured by probability measures. In particular. five measures may

be involved:

7 2000 5 00,1 Marginal measure over the truth value of z
7y 2001 (0. 1) Marginal measure over the truth value of y
2000 5, 1] Joint measure over the state space {0.1}?

Tyiw(rj . 2{0.1} [0.1] Measure over y. conditioned on a truth value for r

Triw(y) : 21%11 = [0.1]  Measure over r. conditioned on a truth value for Yy

Bayesian beliefs can be represented in three equivalent ways: (i) by the joint measure

7: (ii) by the marginal 7, and the conditional measures {ﬁylu(,)}w(r)e{o'l} : and (iii)
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by the distribution #, and the conditional measures {7.’,|,.,(,J)}w(y)€{0'l} . Bayesian
beliefs are “coherent” in the sense that Bayes's rule allows us to move among these
representations.

Another way of seeing this point is via the following system of equations. It
should be obvious that these two equations have to hold given Bayes's rule. The first
equation states that the probability of r being true is equal to the probability that x

is true conditioned on y being true, multiplied by the probability that y is true. plus

the probability that r is true given that y is false. multiplied by the probability that

y is false.
7"1(1) — 0 Triw(y)=1 (1) 7‘-1:(1) (1.18)
7y (1) Tylw(z)=1 (1) 0 Ty (1)
0 Wr]w(y):O (1) 1- Tr (1)
i [ Tyiw(z)=0 (1) 0 } [ 1 - Ty (1) J
or
p=Mp+ N(1-p) (1.19)

where p = [ 7, (1) =, (1)) and the matrices M and N have the obvious definitions.
For given matrices of conditional probabilities. M and N. equation (1.19) can be
thought of as a fixed-point condition on the marginal measures 7; and m,. Now,

recall that in the absence of a signal. S = 0, the definition of a story. a, is:
a =sgn[Ra + Q(1 — a)] (1.20)

The similarity with equation (1.19) is obvious. Moreover, notice that the matrices
of conditional probabilities contain “0”s on the diagonals. The is similar to the
irreflexivity requirement, (C4) and (C5). for reason matrices.
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There are at least three important differences between the two models. F irst,
probabilities allow for degrees of belief; attitudes do not. An agent who learns
through stories is concerned with whether states of the world are coherent: a Bayesian
cares about whether probabilities assigned to subsets of the state space are coherent.
Second. for given generic conditional probabilities. the fixed point in equation (1.19)
is L@ue."’6 In contrast. we have seen that multiple stories are possible. The third
difference is that Bayesian learning is not explicitly dvnamic, whereas the Story model
is. A Bayesian does not have to “find” coherent beliefs. Probabilistic beliefs are
coherent—and remain so—as long as changes satisfv Baves’s rule. On the other
hand. the Story model is precisely about how people come to coherent views of the

world.

Reconciling the Two Models
In many real-world circumstances. there are aspects of both models in how people
reason under uncertainty. A juror cares about whether a story constructed by an
attorney is consistent. but the story’s likelihood is also important. It may appear
from the above discussion that the two models are incongruous. One way toward
a reconciliation is to view them as operating at different stages of the processing of
information.

In a typical trial, there are numerous possible scenarios. Most of these either

contain internal inconsistencies. or are inconsistent with the evidence. The procedure

described in this paper allows a juror to limit attention to the small subset of states

*6This is because, the matrix (I ~ M — N} is invertible for generic conditional probabilities.
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that are coherent. This subset can contain more than one story if the juror undertakes
more than one sequence of reasoning. or if she is presented with different coherent
theories by the different trial lawvers.

When aware of multiple stories. the juror is required to assess which is most
plausible. These confidence assessments may of course take the form of probabilities
satisfving Bayes’s rule. One can then view the Storv model as providing the support
for an agent’s subjective probability measure.

and so not in the

There is one important qualification. A state that is not a story
support of the agent’s probabilistic beliefs—may become coherent after a subsequent
signal.?”  Baves's rule. however. does not allow one to update from zero to some
strictly positive probability. This is particularly problematic when the set of stories
after some signal have no elements in common with the set of stories prior to the
signal. A procedural theory of how people make subjective confidence assessments
becomes crucial. Ideas embedded in the Story model could provide the basis for such
a theory. The model suggests a number of dimensions to confidence. (This is in
contrast to the Bayvesian model where confidence has only one aspect: probabilistic

likelihood.) Loosely. an agent assigns high confidence to a story if it is: unique:?®

*"The next section describes how multiple signals can be accommodated.

*The claim that uniqueness increases confidence finds support in Baltser and Pennington’s (1995)
experimental studies. Of course. what is important is the perception of uniqueness. This leads to
the interesting idea of overconfidence. Overconfidence occurs when the agent does not realize that

alternative coherent interpretations exist; she will then attribute too much confidence to her story.
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supported by strong reasons;?® and “simple”30.

1.5 Incorporating New Evidence

I now consider how stories adjust—or fail to adjust—when additional evidence is
introduced. Many of the economically-relevant implications of the model arise when
we allow for multiple signals. I will refer to the processing of each signal as a stage
and index it by a subscript n. S, is the nth signal: a,, is the set of attitudes after
the nth signal has been processed for ¢ periods: and the time to convergence for stage
n is denoted by T,,.

At the end of stage (n — 1). the agent possesses a story a,_1T,_,- Consider the
nth stage. In the initial period of this stage. the agent alters her attitudes to be
consistent with the truth values revealed by the new signal. Attitudes toward the

other sentences are unchanged. The resulting vector of attitudes is denoted by a,,.

WWe have:
afa = wS" (1.21)
N (1.22)

A story for stage n is a vector of attitudes that satisfies equations (1.5) and (1.6).

n

with the signal S replaced by the union of signals Ui, Si. The vector a,q satisfies

**Both in an average sense. and also in the sense that the strength of the weakest link in a story
is large. The latter makes a story less “fragile”. More on this point in section 3.

*%0ne aspect of simplicity is the number of sentences that a story incorporates. To be precise
about this point, one needs a theory of how agents choose the set of statements.
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(1.53). However, it will in general violate the fixed-point condition of (1.6). A

new sequence of reasoning ensues and comes to an end when internal consistency is

n
=1

restored. During this time. only statements in P — (J"_, S, are revised.

Now that the incorporation of new evidence has been described. a number of
results suggest themselves. Although this paper does not undertake the important
next step of developing detailed applications of these results. I will suggest some

applications that appear promising.

The Possibility of “Collapse”

A signal in the Story model is “weak™ if its statements are the causes of weak reasons.
Even weak signals can have large effects on the agent’s story. This occurs when the
truth values revealed by the signal trigger a long sequence of inferences to a very
different fixed point. Informally. stories can “collapse”. This feature of the model
has implications for how advocates should try to convince agents who think with
stories.

More ambitiously, this feature may provide a starting point for thinking about
both underreactions and overreactions in markets. \Without being precise, assume
that a trader possesses a story about the prospects for the market in question. and
that a signal is received. Some attitudes are changed to make them compatible with
the signal. If the reasons emanating from these statements are weak relative to other
reasons. then the news mayv have no effect on other parts of the agent’s story: the
agent appears to underreact. However, a sequence of signals, each being the cause

of the same effect. will finally cause one of the other attitudes to change, possibly
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triggering a “jump” to a very different story: the trader appears to overreact to the
last signal.3!
Finally. this discontinuity in the response to information captures one aspect of

the phenomenon of epiphany.

The Order of Signals Matters

In this model. the order of signals can matter.??-3> The existence of multiple stories
Is central to this: order matters because it affects which of the fixed points is reached.
This occurs because the current story is a starting point from which a new signal is
interpreted and processed. (See equation 1.22.) Contrast this with the fact that

Bayvesian posteriors do not depend on the arrangement of signals over time.

Many applications suggest themselves. The model predicts that a physician’s
conclusion about her patient’s health depends on the order in which the results of
medical tests are presented. A trial lawyver’s scheduling of testimonies can be crucial
to the trial's outcome. A central banker's story about the current state of the

cconomy will depend on the order in which economic statistics are released.

*IThis is suggestive of empirical observations about underreactions and overreactions of stock
prices. Barberis. Shleifer and Vishny (1998) summarize this literature.

32In section 3, we were speaking about the order of inferences in sequential reasoning, not the
order of signals.

33General conditions that determine when early signals matter more than later ones, and when
later signals matter more. remain to be found. Rabin and Schrag (1999) consider some of the

economic implications of the confirmatory bias: the premise that first impressions matter more.
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The Advantage of Fresh Thinkers

Closely related to the observation that the order of signals matters is the idea that
“fresh thinkers™ —agents who have received less information—may have an advantage
in learning the truth. In this model. even a weak signal can lead to a story in which
a subset of attitudes is “entrenched” —that is, mutually supported by strong reasons.
If the truth is in fact different. then the entrenched attitudes put the agent at a
disadvantage. It would now require a very strong signal to change the agent’s mind.

This is one argument frequently cited for why external consultants to corporations

can be very valuable: they bring a fresh perspective to old problems.

Irreversibility of Signals

This result is also related to. but is more specific than. the idea that order matters.
Say that the agent receives a signal. S = {r}, revealing that w(z) = 1. This can
provide some reason to accept or not accept other statements. which in turn can
cause other attitudes to change. and so on. Now imagine that the agent receives a
new signal Sy = {z} with w(zr) = 0: that is, it is revealed that the original signal is
incorrect. In this model. this sequence of two signals will typicallv alter the agent’s
story. This is because inferences which take place after the first signal may not be

undone when the agent subsequently finds out that the signal is wrong.

One interesting consequence of this result is that smear campaigns in politics

can be cffective, even after the facts of the campaign have been discredited.3* The

3)Mullainathan (1997) produces a similar result using a model based on imperfect memory. In

his model, a discredited signal still “influences beliefs because the memories evoked by the signal
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irreversibility of signals may also have economic implications through revisions of

macroeconomic statistics. or of company earnings releases.

1.6 Extensions

This section mentions a number of particularly interesting extensions to the basic

model.

Learning Reasons

Thus far. I have taken the agent’s reasons, R and Q, to be fixed. Fixing reasons
is only valid if they capture persistent knowledge. A more detailed model should
endogenize reasons. One idea would be to allow agents to alter their reasons based

on the stories that they hold at the end of each stage.

Attention and the Order of Inferences

An assumption of the model is that the agent is aware of all statements which are
relevant for reasoning about the problem at hand. What factors determine which
statements are in the agent’s focus of attention? [t would seem natural that a
signal regarding a statement draws attention to the statement. Bevond this. if
reasoning occurs sequentially, then the precise sequence of inferences should affect
which statements are brought into the agent’s focus. One obvious chain of inferences

is along the path of “strongest reasons”: each period, the agent updates the statement

continue to be memorable™.



for which the cumulative reason has the greatest magnitude.3®

Concepts from Social Networks

Graph theory has been used extensively in the study of social networks. In that
literature. various notions exist for social concepts such as cliques and agent centrality.
Do these concepts have natural interpretations when applied to the reason graphs,
R and Q? Central statements in these networks may correspond to the “crux” of a
story. Cliques may correspond to collections of statements that form “episodes”. or

“substories”.

Game Theoretic Refinements

Many refinements of equilibria in extensive-form games are based on placing restric-
tions on playvers™ beliefs off the equilibrium path. For players with Bayesian beliefs.
this is a difficult thing to do because. in equilibrium, “off the equilibrium path” is
an event with zero probability: an event which leads to “confusion™ for a Bavesian.
More importantly. the Bayesian model does not specify how plavers can return to
coherent probabilistic beliefs when such an event occurs. The Story model on the
other hand explicitly models how an agent reaches a coherent scenario from a state of
confusion. If one could model players who construct stories. interesting equilibrium

refinements may result.

% Bringing a new statement into the agent’s focus can dramatically change her story. creating a

“flash of insight”, or epiphany.
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1.7 Conclusion

A cognitive model of how agents reason and learn was introduced. The model is
most applicable to situations where a large body of implication-rich evidence must
be evaluated. and where objective probabilities are unavailable. Many important
decisions have to be made in such environments.

The central premise of the paper is that people like to hold coherent scenarios
in their minds: they like to form “stories”. From this idea, the formal model pro-
duces rich predictions. Among these, agents who think with stories can suffer from
confusion and can also come to different interpretations of the same evidence. They
typically do not undo inferences made from evidence, even after the evidence is dis-
credited. More generally. the order in which evidence is presented can affect their
conclusions. Apparently weak evidence can trigger large changes in their stories.

Though only hinted at in this paper. these features of the model have important
implications for behavior. The dependence on the order of signals has troubling
consequences for a doctor’s assessment of a patient. or a central banker's assessment
of the economy. The irreversibility of signals encourages smear campaigns in politics,
and may lead to lasting effects from the release of economic statistics, even when they
are subsequently revised. The discontinuity in the response to signals may account
for under and overreactions in financial markets. And finally, though not really
discussed in this paper. the model has implications for the tactics that advocates

should use.

Compared with other models of learning. the Story model may be less tractable
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and more difficult to apply. Despite this, it does have attractive features. Foremost
among these, a focus on reasons and stories seems closer to the way we think and

talk about learning.

On a broader level. it is hoped that this paper hints at the possibility that in-
corporating cognitive elements into theories of learning and choice may vield more
realistic. interesting, and testable, implications which complement those from more
traditional theories. Viewed in this light. the Story model is an example of a growing
literature in economics which focuses explicitly on the procedures by which decisions

of economic units are made.3¢

33See Simon (1982) and Rubinstein (1998).
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1.8 Appendix

1.8.1 Proof of Theorem 1
I begin by showing that conditions (C1), (C2). and (C3), imply that R—Q is symmet-
ric. Define R7(z,y) = max {R(z.y).0} and R™(z.y) = min {R(z.y).0}: similarly
for Q¥ and Q™. We have:
R(r.y) - Qr.y) = R7(z.y) +R(z.y) - Q7 (z.y) - Q (r.y)
= R7(z.y) +R(y.1) — Q7 (y.7) — Q (z.y)
= -Q (y.7) +R™(y.7) - Q*(y.7) + R*(y.7)
= R(y.7) - Q(y.z) (1.23)
The second equality follows from (C1) and (C2): the third from (C3).
For a set of statements £ in P. let A* denote the submatrix of the #P x #P matrix
A spanned by the elements in £. For example. RP~Sisa # (P —S) x # (P - S)
matrix formed by removing columns and rows in R corresponding to statements in
S.

By construction. equation (1.3) is satisfied. Rewrite equation (1.6) as:

b = sgn [Wb + k] (1.24)
where:
b = a"s (1.25)
W = RP°_QFS (1.26)
P-S
k = Z (R(..y) a(y) + Q(..y)[1 —a(y)]) +Q771P* (1.27)

yeS
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Define for all ¢, the following function:37

G(t) = —2bk — b;Wh, (1.28)
[ now show that the function G(t) is decreasing. Because reasoning is in sequential
mode. only one statement in P — S will be updated in any given period. say z. It is
casy to show that:

AGH+1) = G(t+1)~-G()
= —2Abe(z)k(z) — W(z, z) [Ab,, (z)]°

—Abe. () (bW (..2) + W(z..)b] (1.29)
From (1.23) above. we know that W(..z) = W{(z..)’. Together with consistency
requirements (C4) and (C3). we have:

AG(t + 1) = =2Ab,. (2) [W(z..) b, + k()] (1.30)

To determine the sign of this expression, notice from equation (1.3) that:

1 if by(xr)=0 and sgn[W(z..) b, + k(z)] =1

b (L) =9 0 if by(r) = sgn [W(z..) b, + k()] (1.31)

-1 if b(r)=1 and sgn[W(z..) b, + k(z)] =

.

0
Thus Abe. () [W(z..) b, + k()] > 0. which implies that AG(t + 1) < 0 for all ¢.

Next I note that the function G is bounded from below. In particular.

minG(t) > -2 Y k7(z) - YooY Wiz > —-x (1.32)

1EP-§ zEP-SyeP-S§

¥"This is known as an energy function in the artificial neural networks literature. The use of
energy functions to prove convergence in artificial neural networks is described in Hopfield (1982)

and Goles, Fogelman and Pellegrin (1985).



where k¥ (r) = max {0, k(r)} and W*(z.y) = max {0. W(z, y)}.

Define the following minimum value:

9= min [W(z,.) b+ k(z)| (1.33)
(£.b)E(P-S)x{0,1}# PS5

subject to [W(z,.) b+ k(z)] > 0 (1.34)

From cquations (1.30) and (1.31). we see that AG(¢+1) < 0 implies that AG(t+1) <
—20 < 0. Because G(t) is bounded from below. after a finite number of inferences.

G(t) must converge to some value.

[t remains to be shown that AG(¢) = 0 for all ¢t > T corresponds to a coherent
sct of attitudes. Recall that each attitude is revised infinitely often. Assume that
AG(t) = 0 for all t > T but that we are not at a story. From equation (1.30).
whenever Ab,.(r) # 0. we must have W(z..) b, + k(z) = 0. which in turn implies
that Ab,. (r) = —1. Because the number of statements in (P — S) is finite, we
cannot have an infinite sequence of such revisions. A final remark. Notice that the
consistency assumption of equations (C4) and (C3) are stronger than necessary for

this proof. R(z.r) 2 0 and Q(z.z) < 0 would have sufficed. @

1.8.2 Proof of Theorem 2

To show that consistency implies convergence in parallel mode. I use theorem 1 to-
gether with a general result in Bruck and Goodman (1988) which enables transfor-
mation of a neural network in parallel mode to a equivalent network in sequential
mode. \What follows is a rephrasing of part of their argument for the transformation
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of such networks. Construct from the original reason matrices the following mapping

involving statements in a set P. This set contains 2# (P — S) statements. For all

rin P.

b1 (z) = sgn [W’(r, ) by + E(r)] (1.35)
where

— 0 W - [k

W—[W 0] k:[kJ (1.36)

Observe that the statements in P can be partitioned into two sets:

P = {zi.1. e T(P=S) } (1.37)
ﬁz = {I#(P—S)+1:I#(P-S)~:—2:----1'2#(17—5)}

where the weight between any two statements in 731 (respectively 152) is zero.

Let the sequence of attitudes resulting from our original reasoning mapping be
{b.},. and set the initial attitudes in the constructed mapping to by = [ b by .
Suppose that reasoning with the constructed mapping is in cvclic mode with the
following order: r,. ,..... T24(P-8)s Ty -

Since the attitudes toward statements in ﬁl do not affect each other, after # (P — S)
sequential inferences, the attitudes toward statements in ﬁl will be the same as the
attitudes resulting from one parallel iteration in the original reasoning mapping.

Applyving this argument inductively:

by = [62#[7’—5# (z4p-s+1) - s Bog(p_sye (iEz#[P—S])] (1.38)

~

by = [E#{P—S]{2z+1] (Il) 3 eeee b#[P—S][2t+l] (l‘#[P—S])J (1-39)
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Under the consistency assumptions, W is symmetric and has a zero diagonal; thus

the proof for theorem 1 holds. B

1.8.3 Proof of Proposition 3

At the end of a cycle of inferences, either the set of attitudes remains unchanged,
or some attitudes have changed. In the first case, we have constructed a story. In
the second, the G function from the proof of theorem 1 must have decreased at some
point during the course of the cycle. From the definition of the stopping time. T. in

equation (1.13). and because AG(t) < 0 has been established. we have the following

inequality:
T .
[7#775——5)} S min 1AG(H)] < G(0) - G(T) (1.40)

Each strict decrease in G can be no smaller than min|AG(t)| and the distance by
which the & function has to fall to reach a story is G(0) — G(T). T is divided by
# (P — S) because. even.prior to convergence, the G function does not necessarily
decrease at every iteration: it only necessarily does so during every cycle.

Now. from the proof of convergence. we know the following:

min |AG(t)| > 20 (1.41)
AG(t)<0

where ¢ is given by (1.33). It is also obvious that:

G0)<-2 ) k(z) - > > W(z.y) (1.42)
reP-§ I€P-S yeP-S

GM2-2 3 kK@)~ Y > Wiay) (1.43)
r€P-S TEP-S yeP-S
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where u* = max {0.u} and u~ = min {0, u}. It follows that:

GO)-G(T)<2 Y [k@I+ Y. DY [W(zy) (1.44)

zeP-§ zEP-SyeP-§
Substituting (1.41) and (1.44) into the inequality in (1.40), we obtain the required

result. B

1.8.4 Proof of Proposition 4

Let a € {0.1}7F and b € {0.1}*” be two stories for a given set of reasons R and
Q. and a given signal §. Obviously, a°= b®. Suppose. contra-hypothesis, that they

only differ over one statement in P — 8, say z. From the definition of equilibrium,

a(r) = sgn ( z W(z,y) a®5(y) + k(:r)) (1.43)
yeEP-8
b(x) = sgn (Z W (z.y) bP~5(y) + k(r)) (1.46)
yeP

By assumption. W{(y.y) = 0 for all y € P, and a(y) = b(y) for all y € P\{z}. Sol

can rewrite (1.45) as:

a(z) = sgn ( > W(z.y) b75(y) +k(r>) = b(z) (1.47)

yeP-S

which contradicts the assumption that a(z) # b(z). B
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2.1 Introduction

In a wide range of dynamic economic situations with incomplete information, agents
are required to update their initial beliefs upon the receipt of some informative signal
or message. For example. an emplover may update her prior on the quality of a
worker after observing the worker’s output. Or the manager of a potential entrant
in an industry may update his prior of being fought. after observing the actions of

the incumbent firm to previous entrants.

In the belief revision process. five different probability measures may be involved.
In order to clarify this. and to illustrate the questions addressed by this paper. we
consider the following concrete example. An employer has just hired an employee.
The worker can either be one who exerts high effort (6) or one who exerts low effort
(8r). Itis assumed that the employer does not observe the worker's type but she does
observe the worker’s output. which again can be either high (yy) or low (y.). Define
the set of possible types and output levels to be © = {fy.0,} and Y = {yy.y.}.
respectively.  The state space is all possible combinations of the worker’s tvpe and
the output produced: we denote this by: S =0 x Y = {(8y.yx). On.yL). Or.yu).

(0..y.)}. The five probability measures are:

v:2° —[0.1] The unconditional prior over types ©
e 2Y =0, 1] The unconditional measure over signals Y
o:2% = 10.1] The joint measure over the product space S =0 x Y

p(.16):2Y - [0.1] Conditional likelihood over signals Y. given a type ¢ in ©

v(.|y):2® — [0.1] Posterior over types ©. given a signal y in ¥

o8



If these measures are all additive, the information contained in them can be sum-
marized in three equivalent ways: (a) by o. the joint probability over the product
space: (b) by the prior for types v, together with the set of likelihoods {u(. | 8)}ce :
and (c) by the unconditional measure over signals p. together with the set of pos-
teriors over tyvpes {v(. ] -‘/)}ye&" Baves’s theorem allows us to move among these
representations.

From the point of view of economic applications, agents typically possess infor-
mation in the form of (b). It is natural to assume that the emplover has initial
beliefs over the quality of the worker, and that her knowledge of the production pro-
cess implies knowledge about the distribution over output. conditioned on each of the
worker’s types.

Now. imagine that the emplover’s knowledge is indeed in the form of (b). and that
a low output (y.) is realized. How does she update her beliefs on the emplovee’s tvpe?
The updating problem is trivial. First. the employer transforms the representation

in (b) to that in (a) by a simple rearrangement of Bayves’s rule. For all § xy in © x Y~
o [(6.y)] = v(6) - u(y|9) (2.1)

Having obtained the joint beliefs over the product space. another application of

Bayes’s rule produces the posterior probability that the employee is type 6:

a[(6.yL)]
(Or.y)] + 0 [(Ou.yL)]

[AV]
(V]
N

v(@ly)=0c[(0.y.) | {(Bu-yr). (Or.yc)}] = =

This is essentially moving from representing the information using (a) to representing

it by (c).



In this updating framework, the prior measure v is subjective while the likelihood
distributions {s(. | 8)},.e are often objective.! Recent work in decision theory has
sought to represent the subjective beliefs of uncertainty-averse agents in the form of
a non-additive measure. Schmeidler (1989) and Gilboa (1987) show that if the de-
cision maker’s preferences satisfy certain axioms that are consistent with uncertainty
aversion. then they choose as if they are maximizing Choquet expected utility. That
is. preferences can be represented by a utility function which requires an expectation

with respect to a non-additive measure.

If our hypothetical employer possesses such a prior, the three ways of representing
information discussed above are no longer equivalent: revising her beliefs over types
in the light of signals is no longer so obvious. This non-equivalence arises because
Bayes’s theorem does not hold for non-additive measures. One may think that the
Dempster-Shafer rule for calculating conditional capacities—which we will describe
subsequently—can be used in place of Bayves's rule. This is partly justified by the work
of Gilboa and Schmeidler (1993). who show that a particular form of “pessimism” in

preferences leads to the rule as an updating device for non-additive measures.?

'In the traditional view among economists. the subjective probability measure should be thought
of as arising from some representation of the decision maker’s preferences. In particular, Savage
(1954) and Anscombe and Aumann (1963) outline the axioms for an expected-utility representation.

Bayes’s rule can also be justified through preferences. (See Myerson 1991.)

*The assumption is that when conditioning preferences on a particular event. the agent assumes
that the best possible outcome obtains in the impossible states. See Gilboa and Schmeidler for

details.
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By analogy to the additive case, one may attempt to use the Dempster-Shafer
rule to construct joint beliefs o and then condition on the relevant partition of the
product space to obtain posterior beliefs over types v(. | y). Unfortunately, the
first stage of this procedure fails. In general. unique beliefs over the state space
S cannot be obtained from the Dempster-Shafer rule alone. This has important
implications because in many economic applications, such as the example here. beliefs
over the state space S are not given in the specification of the problem. Although
the Dempster-Shafer rule can be used to calculate posteriors once the joint measure is
known, our maintained assumption is that information is presented to the economist
in the form of (b).

We propose two rules for defining a measure over the space S. Under the first
proposal. the value of a set in 2% is given by the iterated expectation of the corre-
sponding indicator function. Expectation is first taken with respect to {u(. | ) }oco -
and then with respect to v. We refer to this procedure as the Chogquet-indicator rule.
With additive probability measures. this is of course the correct thing to do because
the expectation of an indicator function over a set is the probability of that set.
When beliefs are non-additive, we show that this rule still has desirable properties.
In the second approach. we recognize that the perception of uncertainty embodied
in v can be equivalently represented by a set of additive measures. which we denote
by 7. Each of these distributions over the type space © can be taken in turn and
used to construct a probability over the state space S. We refer to this rule as the

multiple-priors rule. It produces a set of distributions, denoted by Q.
The two rules are closely related, but not equivalent. This non-equivalence
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arises because non-additive measures are unable to capture certain restrictions on
the relative likelihood of events. While this does not matter for the representation of
uncertaintyv-averse beliefs. it results in a loss of information when beliefs have to be
revised.

The updating problem considered in this paper is in fact closely related to a
theoretical question which has received some attention in the literature.  \When
an individual has non-additive beliefs, whether the objects of choice are Anscombe-
Aumann “horse-lotteries”™ (functions from states to lotteries over consequences) or
Savage acts (functions from states to consequences) affects her preference for ran-
domization. (Eichberger and Kelsey 1996) This in turn has implications for the
desirability of mixed strategies in games with uncertainty-averse players.

To see the relationship between this literature and our paper, note that the signal
processing example has two stages of randomness. The first relates to uncertainty
about which element of © corresponds to reality (no objective probabilities are avail-
able). and the second relates to risk about which signal from Y wiil be received
(objective probabilities). This problem can thus be placed within the Anscombe-
Aumann model. where the objects of choice are precisely such two-stage lotteries.
Within this framework, the non-additive measure over types v should not be viewed
as primitive. but rather arising from the representation of some preference ordering

A4 3

Obtaining beliefs over the state space can now be rephrased in terms of preferences.

*The superscript refers to the Anscombe-Aumann setting.
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We will show how the binary relation =< over two-stage horse-lotteries induces an
ordering over one-stage acts in the Savage framework. Denote this induced relation
by Z°' . Finding a measure over the product space S is then equivalent to finding
a Choquet expected utility representation for the Savage preferences >5'" .

Based on the non-equivalence of the Choquet-indicator rule and the multiple-
priors rule, we argue that the difference between Anscombe-Aumann decision making
and the Savage framework arises, not from inherent differences between one and two-
stage lotteries, but from the inability of non-additive priors to model uncertainty as

precisely as multiple priors.

The rest of the paper is organized as follows. Section 2 provides the notation and
outlines some existing results. Section 3 presents the theoretical framework for our
updating problem. In section 4, we introduce the two rules for constructing beliefs
and discuss the relationship between them. Section 5 makes the case that. at least
within dynamic updating problems. a multiple-priors representation of uncertainty is
more appropriate. A summary. together with some conclusions. are to be found in

section 6.

2.2 Notation and Preliminaries

Let © be a finite set of types and Y™ denote the set of signals. From the specification

of the problem. we have a convex capacity v over ©.
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Definition (Capacity). A capacity or non-additive measure over © is a function
v : 29 — (0. 1] satisfving the following:

(i) v(0) = 0. v(©®) =1

(ii) For 4;. 4, € 0. 4, C 4, = v(4)) < v(4d,y)

If (ii) holds. v is monotone.

We say that v is convex. or supermodular, if in addition, the following holds:

(iii) (AU Az) 2 v(Ay) +v(ds) — v(A1 N Ay). for all 4, 4, € 29

It is superadditive. if (iii) holds for disjoint A; and A,.

For each type @ € ©O. there is an additive probability distribution over the set of
signals }" which may be received. These lotteries represent objective risk and we
denote them by {u(- | 6)}eco.

The most popular scheme for updating a convex capacity is the Dempster-Shafer

rule. For additive measures. this rule corresponds to Bayes's rule.

Definition (Dempster-Shafer). The Dempster-Shafer update of a convex capacity v

conditioned on event is A C © is defined by the following expression. For all A, C A.

v(Ad U A —v(A9)

1 —v(A9) (2.3)

vid [ 4) =

To sec how our problem relates to the literature on decision theory, we need to
introduce preferences. Let 2% represent a preference ordering over horse-lotteries.

A horse-lottery in our notation is simply a mapping from © onto the set of probability

64



distributions over consequences, h : © — AC, where C is the set of consequences.
Denote the set of horse-lotteries by H.

Throughout, we assume that preferences >~ are primitive and that they sat-
isfy the Schmeidler (1989) axioms for representation as a Choquet expected utility

function so that for all h and k' :
h =Y A" if and only if /L' chdv > /U oh' dv (2.4)

where U is a von-Neumann-Morgenstern linear utility function with a Bernoulli utility
function. u : C — R7*. over consequences. The capacity over tvpes v is obtained
from this representation. Calculating utility involves a two-stage expectation. In
the von-Neumann-Morgenstern utility, the expectation is with respect to the lotteries
over consequences. Expectation is then carried out using the Choquet integral which

1s defined as follows:

Definition (Choquet Integral). Let g : © — R be a random variable. The Choquet

integral of g with respect to the capacity v is defined as:

[S™]
ot
~—

/g dv = gyv(dy) + Zg, [V (U;zl-‘lj) -V (U;_:ll'lj)] (2.
=2

where g; is the {*" highest consequence under g and A, € 2° is the event in which

the consequence g; occurs.

Because a preference ordering which admits a Choquet expected utility represen-

tation can always be represented as a maxmin expected utility, we know from Gilboa
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and Schmeidler (1989) that there exists a closed convex set P of additive probability

measures on 6. such that for all A and &' :

h =4 R if and only if min/U ohdp 2 min/(,' oh' dp (2.6)
pEP P

pe

Morcover. the set of multiple priors P is the core of v. We will abuse notation by

referring to p as both a measure and a vector.

Definition (Core). The core of a non-additive measure v. denoted by core(v) is

defined. as in the cooperative theory for transferable-utility games, by:

core(v) = {p = (pi.....D|) € Aiol-t Zpi > v(Ad). forall A C @} (2.7)
i€ A

For the purpose of the signaling problem. the set of probability distributions.
{#n(. | 8)}oco. are objective and fixed. Therefore, to place our problem within the
Anscombe-Aumann decision setting. we have to restrict the set of horse-lotteries to
those in which the second-stage risk is given by some element of {u(. | 6)}sco.- The
consequences attached to these probabilities can differ between horse-lotteries. We
denote this set of restricted horse-lotteries by H, C H. To illustrate in the context
of our motivating example. consider the following capacity and likelihoods:

v(fu) = {. v(0L) = §. and v({Ok.0.}) =1

1

wWyr | Ou) =35, nlyr | 0n) = (2.8)

(ST

wyu 10) =0, p(ye |6L) =1

The employer’s prior over the worker’s type is characterized by ambiguity and results
in a non-additive measure. The production process yields a high output (yg) with
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probability 2 when the worker is a high-effort type (8y). It vields low output (y.)

with probability 1 if the worker is of the low-effort type (6;). With these numbers.

,C2>§

Ut |—

clements of H, take the form of the following pair of lotteries: h(fy) = (% Cr:
h(8r) = (0.c3: 1.¢y) where ¢; € C. for all i € {1.2.3,4}.

In the next section, it is necessary to compare preference orderings under >+
with those under Savage preferences =5 . Call the product space S = © x ¥ the set
of states. Savage preferences are defined over acts. which are mappings from states
to consequences. f : § — C. Denote the set of acts by F. To facilitate comparison

between >4 and %5, we need this additional definition:

Definition (Induced Act). Write Y = {y;.y>.....yn} and consider lotteries over
consequences with the dimension of the support equal to the cardinality of Y: that
is. for all 6 in ©. h(0) = (u(y|6).coy,:---:1t(yn | 0).coy.). The act over states

induced by the horse-lottery h in H, is a mapping. f* : S — C. defined as:

f1(8 x y) = coy (2.9)

Notice that induced acts do not depend on the probabilities which are part of the
specification of horse-lotteries. In the Savage setting, the risk contained in lotteries

over consequences is modeled explicitly as part of the description of the state. Con-

,C;’) - h(8) =

T

tinuing with the example above. the horse-lotterv—h(6y) = (%,cl;
(0.¢3: 1.¢y)—in the Anscombe-Aumann framework induces the following Savage act:

f* = (ci.c3.¢3,¢y). Figure 1 illustrates this example.
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Figure 1

Type Signal State Likelihood Consequence
st =(O0u.yu) plyw | Ou) = ;‘ €1
v
Oy  —  sa=(0On.yL) wy.|Ou)=1% C2
e
pY
0 —  s3=(0r.yw) wlyu|6.)=0 c3
v
se=(0L.y) wlyc|6r)=1 4y

Axiomatizations for both Choquet and maxmin expected utility exist in the Savage
setting. For Choquet expected utility. see Gilboa (1987) and Sarin and Wakker (1992).
Casadesus-Masanell et al. (1998) axiomatize the maxmin expected utility represen-
tation. One final piece of notation. We denote the capacity and the set of multiple

priors over the state space. S =0 x Y by ¢ and Q, respectively.

2.3 Theoretical Framework

As we pointed out in the introduction, updating the capacity over types upon the

receipt of a signal requires the construction of beliefs on the product space S =
© x }. How should this—in general, non-additive—measure be constructed? What
desiderata should o possess?

By placing our problem within the framework of preferences. we obtain a very
natural property that ¢ should satisfv. Assume that the capacity v over O is the

result of a representation of the primitive ordering 22+ over horse lotteries in H,,.

68



Based on this preference ordering, we can define a relation =SV over acts, according

to the following. Forall h. k' € H,,
h 2z b e frzs (2.10)

Having done so. constructing beliefs on the state space S amounts to finding a measure
o that represents Z°*". That is, we want o to satisfy the following utility representa-

tion:
FrSY o L u [f4(5)] dos) > /b u[f¥(s)] do(s) (2.11)

We can obtain another perspective by re-stating the requirement in (2.10) as that
of finding a o such that the expected utility representation of the two preference

orderings are equivalent. For all h in H, we want,

—~
[SV]
p—
[\V]

~

/ U [h(8)] du(9)=/ u[fH(s)] do(s)
(S]

S

The left-hand-side contains the utility function which represents >4: the right-hand-
side contains the representation of 22" . This equation can be written more explicitly

as:

// u [0 x y)] du(y | 6) du(0)=/ u[fMOxy)] do(8 x y) (2.13)
eJYy OxY

Equation (2.13) allows us to restate the problem. The aim is to find a measure. o,
on the product space, S = © x Y. for which part of Fubini's theorem holds. Fubini’s
theorem states that the order of the iterated integrals with respect to two marginal
measures do not matter and that both are equal to integration with respect to the
product measure. Condition (2.13) requires only that integration over Y. then ©, be
equivalent to integration with respect to the product measure.
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Sarin and Wakker (1992) were the first to observe that, in general, it is not possible
to find a capacity o on S which satisfies (2.13). This can be illustrated in the context

of our example. Consider the following three horse-lotteries, k. ko, h3:

hi(@n) = (3.1: 1.0). h(6L)=(0.0: 1.0)
ha(8u) = (3.1: L.0). ha(f.) =(0.0: 1.1) (2.14)
/).3(6”) = <%2 %0> h3(9[_)=(00 1.1)

Recall that each lottery is of the form h(8) = (u(y: | 9).c,: u(y2 | 8).c2) . These are
all elements of H, because the probabilities are identical and given by {u(- | 8)}sco.

Respectively, they induce the following acts in the Savage formulation:

f* = (1.0.0.0)
f* = (1.0.0.1) (2.15)

f= = (2,0.0.1)

Without loss of generality. we assume that consequences are in utils. or that the
Bernoulli utility function is given by u(c) = ¢. To satisfy equation (2.13) for f* and

f":_it can then be verified that we need:

o[(On.yn)] = gig (2.16)

o [{(Bu-yu), OL-y)} = 5%
However. with these values. the Choquet expected utility of the horse lottery h; in the
Anscombe-Aumann framework is given by [, f,. u (f**) dudv = 2 while the Choquet
expected utility of the corresponding induced act f*3 in the Savage framework is given
by fa u(f)do = 2.

20
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This difference between the two frameworks does have important implications.
For example. Eichberger and Kelsev (1996) show that in the Anscombe-Aumann
framework (represented by the left-hand-side of equation 2.13), uncertaintv-averse
agents exhibit a preference for randomization. but they do not necessarily do so when
the objects of choice are Savage acts (the representation of the right-hand-side of
2.13 ). We have shown that the difference also matters when agents are revising

non-additive priors upon the receipt of some signal.

2.4 Obtaining Beliefs Over the State Space

Having established that it is impossible to obtain a capacity ¢ which satisfies the
desideratum of (2.13). we now consider some weaker desirable properties which we
may want a capacity over the state space to satisfv.

One obvious feature which we would like our rule to possess is that it should
correspond to Bayes’'s rule in the special case of additive distributions. In order to
ensure this. rectangular sets formed by partitioning S according to some element of
© that is. sets of the form 8 x B. where # € © and B € 2 —must have measure

given by
c(@ x B)=v(0)-u(B|8) (2.17)

This is of course just Bayes’s rule when v is additive. We will refer to (2.17) as the
multiplicative property. However. this still leaves the measure of many subsets in S,

including many rectangles. unspecified.



From the Dempster-Schafer rule, we have the following:

o (6° U B) — o (6°)

WB160) = = (2.18)
Rearranging.
o(6UB) = u(B|6) [l -0 (6] +0(6°)
= p(B|O)[1-v(6°] + v (6°) (2.19)

The right-hand-side of (2.19) is given by the specification of the problem. Thus
using the Dempster-Shafer rule we can obtain the value of the joint capacity on sets
of the form #€ U B. where B € 2" and § € ©. We say that a capacity o satisfies the
Dempster-Shafer property if it obeys (2.19).

Even if we impose the multiplicative property of (2.17). as well as the Dempster-
Shafer property of (2.19). we do not obtain a unique capacity. In a similar spirit
to Hendon et al. (1991). we can characterize the set of capacities that we do obtain
by some limits if we require that o be monotone. Take for example the set £ =
{(64-yr). (8. yL)} from figure 1. Although equations (2.17) and (2.19) do not provide
a unique value for its measure, we can derive the following bound using a simple set

inclusion argument:

max{c(6y.y.).0(6..y.)} < 6(E) < min{oc(@y UY).0(f, U )} (2.20)

These bounds can be calculated using the multiplicative property and the Dempster-

Shafer property.
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2.4.1 The Choquet-Indicator Rule

We now propose a rule for obtaining a unique capacity over the state space which
satisfies the multiplicative and Dempster-Shafer properties. The definition is as

follows.

Definition (Choquet-Indicator Rule). A capacity o on S with marginal v over ©
and a set of likelihood distributions {u(- | 8)}sce over Y. is said to be generated by

the Choquet-indicator rule if for every E € 29%Y:

o(E)_—./e/Ylg du(y | 6) dv(8) (2.21)

where 1z is an indicator function over E.

Result. Let o be a capacity on © x Y calculated using the Choquet-indicator
rule.  Then o satisfies the multiplicative and Dempster-Shafer properties in (2.17)

and (2.19). respectively.

Remark. By construction, over the set of acts, {f € F | u[f(s)] € {0.1} for all

s in S} . the Choquet-indicator rule satisfies (2.13), our original desideratum.

The result is easy to verify. The remark says that. if one restricts attention to
acts which take on only two consequences, the Choquet-indicator (CI) rule maintains
the cquivalence between the Anscombe-Aumann and the Savage frameworks. It is
constructed to do so. A comparison of equations (2.13) and (2.21) makes this obvious.
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To illustrate how the CI rule works, consider the set {(8y,yx). (8.y.)} from our

example above. Naively, one could make the following calculation:

o [{(Bu.yu). 0. yr)} = v(On)-ulyn | On) +v(0.) - u(ye | 61)
1 4 1 9

This calculation assigns a probability of 11 to each of the two tyvpes. 0y and 6,. It
ignores the fact that. with the residual probability of % either 8y or 6, will necessarily
occur.  The CI rule corrects for this in the most “pessimistic” way. It assigns
the residual probability to that outcome which would produce the lowest Choquet
expectation, in this case (0y.yn). as p(yy | Oy) = $ < p(y, | 6.) = 1.

Despite being intuitive. and despite satisfving the multiplicative property and
the Dempster-Shafer property—both of which seem desirable—the CI rule does not
imply an equivalence between the Anscombe-Aumann and Savage frameworks. As
we pointed out in the previous section. no rule which generates a capacity can. If we
are willing to leave the non-additive framework. and allow uncertainty-averse beliefs
to be represented by a set of multiple additive priors, can we do better? In the next
subsection. we present a rule for calculating multiple priors over states which vields

an equivalence result between the one and two-stage frameworks for decision making.

Before this is done. we discuss the relationship between the Choquet-indicator rule
and the work of Ghirardato (1997). Ghirardato considered a situation where two
non-additive marginal measures are known. He asked what conditions are necessary
to obtain a capacity ¢ on the product space which satisfies the Fubini theorem. He
showed that the theorem will hold if one restricts the set of acts to those which
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are slice comonotonic and imposes on o a strengthening of independence. which he

termed the Fubini property?*.

Definition (Fubini Property). A function g : © x Y — R is slice comonotonic if for
every 6.0 € ©. g(6.-) and g(#'. -) are comonotounic, and if for every y.y' € Y. g(-. y)
and g(-.y') are comonotonic. Define a comonotonic set as one in which the indicator
function over that set is slice-comonotonic. Now, a capacity ¢ is said to satisfv the
Fubini property with respect to marginals, v over © and u over Y. if the following

equation holds for every comonotonic set E € 29<Y .

o(E) = [ [ 16 duty) dvie) (2:

where 1g is the indicator function over E.

[A)
o
W
~—

Our Choquet-indicator (CI) rule can be viewed as a strengthening of the Fubini
property: it imposes that (2.23) hold for all sets E € 25. (The CI rule also differs

from equation (2.23) in that one of the measures in the integral is a conditional one.)

Ghirardato’s definition does not require that equation (2.23) hold for all sets
because. when applied to all elements in 2°. the capacity generated by (2.23) does
not satisfy the -iterated integration” part of the Fubini theorem. It is not clear
whether one should define o(E) as [y [,- 1edudv or Jy- Jo 1edvdp. For comonotonic

sets. these two integrals are equivalent.

1This is not to be confused with the Fubini theorem. The Fubini property is a characteristic of

capacities.



In our updating framework, the order of integration is clear so this part of Fubini’s
theorem is not a desirable restriction. By strengthening the Fubini property. we are
able to obtain a unique capacity over the product space: there are multiple capacities
over the product space S which satisfy the Fubini property. Ghirardato requires the
additional assumption of convexity to obtain uniqueness. In general. our CI rule
does not produce a convex capacity. However. we argue that this is not a weakness
since convexity restricts the kind of uncertainty which one can model. This point
will become clearer when we define the alternative way to obtain beliefs in the next

subsection.

2.4.2 The Multiple-Priors Rule

For an agent with preferences 22 over lotteries h € H who satisfy the axioms for
a Choquet expected utility representation with a convex capacity v over ©. Gilboa
and Schmeidler (1989) showed that the agent is behaviorally equivalent to one with
a maxmin expected utility: that is. one who maximizes minpepfe U o h dp. where
PP = core(v). In the other direction. assume that an agent possesses a maxmin
expected utility representation with a set of multiple priors P. The agent is identical
to one who maximizes Choquet expected utility with a capacity v. defined by v(A4) =
minge pp(A). if and only if v is convex and core(v) = P.

In light of these results. we can convert the capacity v. which is convex by assump-
tion. to the corresponding set of multiple priors P = core(v). Is it then possible to
obtain a set of additive beliefs @ over the product space S = © x Y} so as to obtain
cquivalence between the one and two-stage formulations? More formally, we require
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Q@ to satisfy:

géigé LU [h(8)] dp(6) =2éigé u [f*(s)] dg(s) (2.24)
where again [’ is a von-Neumann-Morgenstern utility function with Bernoulli utility
«. This is simply the multiple priors analogue to equation (2.12). The left-hand-
side is the maxmin expected utility representation of -**: the right-hand-side is the

representation of 2. Consider the following rule for calculating a set of distributions

@ over the state space using the priors over types. P = core(v). and the likelihoods,

{n(. | 9)}069'
Q={q¢=(q1-qs) € 7" [ g, = p(6) x pu(y | §) for all p € P} (2.25)

where s = 6 x y. We refer to this as the multiple-priors (MP) rule. It simply takes
cach prior in P in turn and applies a rearrangement of Bayves's rule. In the case of

our motivating example. we obtain:

Q = {eeNlacs 5] welnnl a6=0 ueld 8] a=1ip}

(V]

(2.26)

Figure 2 illustrates the projection of this set onto the (g;, g2) space. We can com-
pletely represent the set in two dimensions because g3 = 0 and ¢ is on the simplex.

These two restrictions reduce the degrees of freedom to two.

~1
-~
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Proposition (Multiple-Priors Rule). The multiple-priors rule satisfies the Anscombe-

Aumann and Savage equivalence. That is, it satisfies equation (2.24) for all h € H,,.

We omit the proof. since the result is a direct consequence of the fact that the Fubini
theorem holds with additive priors. This result. though simple, is somewhat surpris-
ing given that it cannot be obtained in terms of a capacity on S. Intuition will be

provided in the next subsection.

Remark. The set of additive measures Q) generated from the multiple-priors rule

cannot in general be expressed as the core of any capacity-
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The figure above is an example of this remark. From the definition of equation (2.7).
we can see that a set can only be expressed as the core of some capacity if it can be
defined by a system of linear inequalities of the form ZIEA p:. = v(4). Geometrically,
the set must have sides which are parallel to the sides of the simplex. In figure 2,
the set of distributions, Q, is represented by the line segment connecting the points

(35-26-0.32) and (£2.%.0.2). Since this line is not parallel to any of the sides of

o

the triangle. it cannot be expressed as the core of any capacity.

2.4.3 The Relationship Between the Two Rules

The two procedures for updating beliefs over types can be summarized as follows.
We begin with a convex. non-additive prior v over the set of types ©. One can
think of these beliefs as deriving from some Choquet expected utility representation
of the agent’s preferences in an Anscombe-Aumann setting. To obtain posterior
beliefs after the receipt of some signal from Y. we need to first define beliefs over
the product space. S = © x }. One way to do this is to use a rule based on the
Choquet integration of indicator acts. This vields a measure o which is in general
non-additive, reflecting the transfer of uncertainty and uncertainty aversion over the
tvpes to uncertainty and uncertainty aversion over states. The measure o satisfies
the multiplicative property and the Dempster-Shafer property. It does not, however.
represent an ordering over Savage acts which is equivalent to the Anscombe-Aumann

preference ordering.



An alternative approach is to convert the non-additive measure v to an equivalent
set of multiple priors. P. Multiple probability distributions over states can then be

obtained using Bayes’s rule. The resulting set is labeled Q.

Figure 3

Gilboa-Schmeidler
“— P

Choquet-Indicator L »L Muitiple-Priors
Rule Rule

ag

The main advantage of the multiple-priors approach is that it ensures an equivalence

between the one and two-stage frameworks.

If one wanted to remain within the non-additive framework, then an obvious
question is: which capacity comes “closest™ to representing the uncertainty over states
embodied in the set Q7 It turns out that the capacity which does so is indeed the one
calculated from the CI rule. This idea can best be described graphically using our
example. Figure 2 shows that. among all sets of distributions which can be expressed
as the core of some capacity. the shaded rectangle is the smallest one which contains
Q. One can verify that. if we define o using the CI rule, then this rectangle is precisely

the set core(o). The theorem and corollary below formalize this.
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Theorem (CI and MP Rules). Assume that v on © is convex. Let o be the capacity
on S defined by the Choquet-indicator rule and let Q be the set of multiple additive

measures on S derived from the multiple-priors rule. Then.

7(E) = minq(E) (2.

V]
(3]
~1]
o

forall E € S.

Proof. From Schmeidler (1989). proposition (x). we have:

/ U [R(8)] dv(6) = min / U [h(6)] dp(6) (2.28)
(S} (5]

peP

for any act h where v is convex. From ourrules, o(E) = fe 1gdv(f) and mingeg g(E) =

mingep fe lgdp(6). The result follows, by using the act 1¢ for A in (2.28). @

Corollary. Let o be the capacity on S defined under the Choquet-indicator rule and
let Q be the set on multiple additive measures on S derived from the multiple-priors

rule. Then.

Q C core(o) (2.29)

Proof. Let ¢ € Q. Assume, contra-hypothesis, that ¢ ¢ core(o). Then. there exists

E € S. such that ¢(E) < o(E). But this contradicts the theorem above. B

As an aside. the CI rule produces a capacity ¢ which is not necessarily convex.
This is casy to verify in the example above. Despite this. we have the following
remark.
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Remark. Because Q is always non-empty, the corollary implies that ¢ has a core

which is non-empty.®

The theorem of this section. together with its corollary. provides a formal justifica-
tion for the Choquet-indicator rule. Given that the multiple-priors rule satisfies the
requirement of (2.24). we argue that the agent’s beliefs over the product space should
in fact be given by this rule. The Choquet-indicator rule can then be justified on
the grounds that it produces that capacity which comes the closest to the “correct”

beliefs.

Before concluding this section. we return to the original motivation for this paper
and construct. for our example. the posteriors on types. ©. after the observation of a
low output. y,. Applying the Dempster-Schafer rule to the capacity . generated by

the CT rule. we obtain the following posterior:

v(fu | yL) = 15
v ly) =1

v({0n.0c} | yL) =1

In a recent working paper. Ghirardato and Marinacci (1998) argue that. within the Savage
framework. ambiguity aversion corresponds to nonemptiness of the core. a property strictly weaker
than convexity. In light of this result. the CI rule maintains the initial uncertainty aversion even

though the capacity ¢ on S is not convex.
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This measure has the following core:
core{v(. | y)] ={p=(p1.p2) € A' | p, € [Tlg [—35]} (2.31)

We now wish to construct posterior beliefs over types using the set of additive distri-
butions on the product space calculated from the multiple-priors rule. Gilboa and
Schmeidler (1993) show that, for decision makers who can be represented both by
Choquet expected utility and by maxmin expected utility. the Dempster-Shafer rule
on capacities coincides with the combination of maximum likelihood and Bayes's rule
applied to the set of multiple priors. Therefore. to enable comparison between the
Choquet indicator rule and the multiple-priors rule. we apply maximum likelihood to
the set Q and then use Bayves’s rule. element-by-element. to obtain posterior beliefs

over tvpes. This gives the following unique additive posterior:

{P =(p1.p2) €Al | p = Tlg} (2.32)

Comparing equations (2.31) and (2.32). it is clear that the CI rule vields posterior
beliefs which contain greater uncertainty than those obtained from the multiple-priors

rule.

2.5 The Argument for Multiple Priors

From the work of Gilboa and Schmeidler (1989), we know that the multiple-priors
framework is more general than that of convex capacities. Any convex capacity can
be represented as a set of multiple priors, whereas the converse is not true. What is
surprising about the updating example is that, even though we begin with beliefs on
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tvpes which can be represented equivalently by a capacity v or by a set of multiple
priors P. as soon as we introduce signals and attempt to construct beliefs on the
product space. the two frameworks diverge.

We believe that the updating problem considered in this paper highlights the
importance of the additional generality of multiple priors. A comparison of the core

of o from the CI rule. with Q from the MP rule, makes this point. In the example:

core(o) ={qe N |qe[£.8]. g€ (3] a3=0. g € [2. 213 (2.33)

Q = {9edlaexB] eclmi =0 acd 8] a=1a0}

These two sets are identical except for the equation ¢; = 4q, in (2.34). Capacities are
unable to capture restrictions on the relative likelihood of some events. The capacity
o is unable to restrict the probability of the first state. (84.yy). to be four times
that of the second. (8.y.). Clearly. given that the risk associated with the signal is
objective. no matter what the agent’s original beliefs over types. the likelihood ratio
between these two states should remain 4 to 1. By trving to use capacities to capture
beliefs on the product space. the agent loses some of the information contained in the
signal and attributes to the problem greater uncertainty than is in fact present. In
turn. this leads to greater uncertainty in the posterior, as the sets in (2.31) and (2.32)

demonstrate.

Moreover. the inability of capacities to capture relative likelihoods is the reason

for the non-equivalence between the Anscombe-Aumann and the Savage frameworks.
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(Recall that in the multiple-priors setting, the one and two-stage frameworks are
equivalent.)  As a result, Eichberger and Kelsey’s (1996) claim that the Savage
framework is more appropriate for modeling uncertainty aversion is not justified.
There is really no inherent difference between one and two-stage lotteries as objects

of choice. Differences arise from a limitation of capacities.

2.6 Conclusion

In many dynamic economic situations, beliefs over the relevant state space are not
given by the specification of the problem. With additive measures, Bayes’s rule
usually suffices to define a unique distribution over states. However. with ambiguous
beliefs represented by a non-additive measure, unique beliefs over the state space

cannot be obtained from the Dempster-Shafer rule alone.

We argued that obtaining beliefs over the state space is closely related to the issue
of whether one can move from the Anscombe-Aumann to the Savage setting while
maintaining the “same” preference ordering. This is impossible when capacities are
used to model uncertainty-aversion. However, using multiple additive distributions.
this equivalence between the two frameworks is possible. We then set out to find the
capacity which comes closest to the beliefs obtained using multiple-priors. Such a
capacity can be constructed by taking Choquet expectations of appropriate indicator

functions.

Finally. we showed that the updating problems studied in our paper highlight the

advantage of multiple priors relative to non-additive measures. Capacities are unable
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to place restrictions on the relative likelihood of events. This is a severe limitation

in dynamic problems where such ratios arise naturally from the updating of beliefs.

86



2.7 References

Anscombe, F. and R. Aumann (1963), “A Definition of Subjective Probability”. An-
nals of Mathematical Statistics. 34, 199-205.

Casadesus-Masanell. R.. P. Klibanoff. and E. Ozdenoren (1998). “Maxmin Expected
Utility Over Savage Acts With a Set of Priors”, mimeo.. Northwestern University.

Eichberger. J. and D. Kelsey (1996). “Uncertainty Aversion and Preference for Ran-
domization”. Journal of Economic Theory 71. 31-43.

Ghirardato. P. (1997). “On Independence for Non-Additive Measures With a Fubini
Theorem™. Journal of Economic Theory 73, 261-291.

Ghirardato. P. and M. Marinacci (1998), “Ambiguity Made Precise: A Comparative
Foundation™. mimeo..

Gilboa, [. (1987). “Expected Utility Theory With Purely Subjective Non-Additive
Probabilities”, Journal of Mathematical Economics 16, 635-88.

Gilboa, I. and D. Schmeidler (1989). “Maxmin Expected Utility With a Non-Unique
Prior™. .Journal of Mathematical Economics 18, 141-153.

Gilboa. I. and D. Schmeidler (1993). “Updating Ambiguous Beliefs". Journal of Eco-
nomic Theory 39. 33-49.

Hendon. E.. H. Jacobsen. B. Sloth and T. Tranas (1991). “The Product of Capacities
and Lower Probabilities”. mimeo.. University of Copenhagen.

Mukerji. S. (1997). “Understanding the Non-Additive Probability Decision Model™.
Economic Theory 9. 23-46.

Myerson. R. (1991). Game Theory: Analysis of Conflict. Harvard University Press.
Cambridge. Massachusetts.

Sarin. R. and P. Wakker (1992), A Simple Axiomatization of Non-Additive Expected
Ctility™, Econometrica 60, 1255-1272.

Savage. L. (1954). The Foundations of Statistics. Wiley. New York.

Schmeidler. D. (1989). “Subjective Probability and Expected Utility Without Addi-
tuvity”. Econometrica 57. 371-387.



Chapter 3

Self-Sustaining Stability in
Dynamic Matching Markets

With Ettore Damiano

Many thanks to Dirk Bergemann for introducing us to matching models and for his invaluable
advice and constant encouragement. David Pearce, Herbert Scarf and Abhijit Sengupta provided
helpful comments. Financial support from Nicola Damiano and Fung Ping Lam is most gratefully

acknowledged.



3.1 Introduction

Many trading arrangements in the real world do not satisfy the assumptions of a
Walrasian model of exchange. A special class of such arrangements is two-sided
matching markets. These markets are characterized by two important features. First.
agents belong to two disjoint sets: they cannot switch from one side of the market
to the other no matter what the market condition. A second feature is the bilateral
nature of exchange: the contrast is with centralized goods markets where the identity
of one’s trading partner is a matter of indifference. Examples of two-sided markets

include many labor markets, as well as auction markets.

In this paper. we are concerned with a subclass of two-sided matching markets,
namely those in which matches are one-to-one: each agent may be matched with
at most one partner from the opposite set. Historically. the two sides of the market
have been labeled males and females. and the model termed a marriage market. In
many applications. a many-to-one relationship is more realistic but the issues we are

concerned with can be discussed in the simpler class of markets.

Any testable theory of a matching market must place some restrictions on the kind
of outcomes that one expects to observe. An obvious restriction is that outcomes be
“stable”. In thinking about stability, we have in mind cooperative concepts similar
to the core.  An outcome which is not in the core is. by definition. susceptible to
blocking by rational agents. In general. there will of course be many other restrictions
imposed by the incentives and rules associated with a particular trading institution.

We consider the requirement of stability for two main reasons. First, in markets
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where participation is voluntary, it represents a minimal constraint. Second. the
cooperative notion of stability requires only a very general description of the game!
and so is applicable to many markets. whereas issues of non-cooperative. strategic
behavior depend crucially on the particular trading arrangement and information

structure of the market under consideration.?

A large and very successful literature has considered stability in the special case
of a static market with perfect information. (Roth and Sotomayor 1990 provide
an excellent summary.) Existence of the core has been established and many of its
interesting characteristics noted. In many markets, however, agents trade repeatedly.
In fact. the value from a proposed match is often not known until after trade has taken
place. so that agents have to learn about the parameters in the game as it is playved
over time. This paper takes a first step toward studying stability in such a setting
by considering matching markets where trade occurs repeatedly but where there is

complete information on the value of matches.

In a repeated market. a matching plan specifies a partner for each agent, at each

!Cooperative game theory considers the characteristic form of the game, which specifies the set

of achievable payoffs for all possible coalitions.

*The consideration of stability in matching markets can be of practical importance. In a famous
example in the United States. the market for matching physicians in their first position following
medical school with hospitals was very disorderly until the Association of American Medical Colleges
adapted a centralized mechanism in the 1951-2 market. The procedure is a version of the Gale and
Shapley (1962) algorithm and was successful largely because it implemented matches which were in

the core. See Roth and Sotomayor (1990) for details.
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point in time. An obvious candidate notion for stability in these markets is the
core over the set of feasible matching plans. However, the core has a particularly
unsatisfactory property in a dynamic game: it can admit matching plans which are
not time-consistent. A plan is in the core as long as it is stable at the beginning of
the game: its continuation need not be stable at any other point in time. If agents
cannot make binding agreements. elements in the core may be blocked at some later
point in time. For our definition of stability, we impose a requirement which can be
viewed as the cooperative analogue of subgame-perfection. Becker and Chakrabarti
(1995). impose a similar condition in their definition of the recursive core.

Although time-consistent. there remains an incongruity associated with the re-
cursive core. In judging the stability of the grand coalition’s matching plan-—that
is. the plan for all agents—the recursive core requires that the plan be immune to
blocking by coalitions at every point in time. However. no deviating coalition is
subject to the same requirement. That is. a set of players may be able to block the
grand coalition’s original plan using an “incredible” or unstable plan. This motivates
our second requirement that blocking coalitions be self-enforcing. They must choose
matching plans in which no subset of the coalition can reach an agreement to deviate
from the deviation. These sub-coalitions have to satisfv the same requirement, and
so on. This is the cooperative analogue to Bernheim, Peleg and \Whinston's (1987)
non-cooperative notion of coalition proofness. This condition is independent of the
dynamics of the game and can be applied to static matching markets.

Our definition of stability imposes both of these requirements and we call it self-
sustaining stability. The paper proceeds as follows. We begin by briefly summarizing
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the literature on marriage models in a static, complete-information setting. We then
introduce dynamics by allowing agents to match repeatedly over time. We adapt the
standard definition of the core, as well as Becker and Chakrabarti’s (1995) definition
of the recursive core. to this repeated game and argue that they both have limitations.

In section 3. we formally define and illustrate the concept of self-sustaining stabil-
ity. In sections 4 and 5. we consider its existence and computation. Unfortunately.
existence is only guaranteed with very strong conditions. \When it does exists. the self-
sustaining stable set can be calculated using backward recursion for finitely-repeated
markets. In infinite-horizon games, we propose an algorithm, which employs the idea
of dynamic programming. for computing the set. Section 6 compares self-sustaining

stability to alternative concepts such as the core and the recursive core.

Finally. in section 7. we discuss the limitations of our definition and some ini-
tial thoughts on how our concept can be generalized to a market with incomplete

information on the value of matches.

3.2 Stability in Marriage Markets

3.2.1 Static, Complete-Information Marriage Market

In this subsection. we summarize some of the results in the literature regarding sta-
bility in single-period marriage markets with complete information on the values of
all matches. This will also serve to introduce notation and concepts. We denote the

two disjoint sides of the market, the males and the females, by Af = {mi.my.....my}
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and F = {fi, fa..... fp}. respectively. We will also refer to the set of players, M U F,
as the grand coalition.

Each individual has preferences over the other side of the market. Although none
of the results in this section depend on the cardinality of preferences, we nevertheless
assign actual values to matches; this will be convenient when we consider a dynamic
market and have to aggregate payoffs over time. Throughout the paper. we assume
that the outside option associated with being single is normalized to zero for all
agents. Payoffs can be summarized by a matrix. For example. with three agents on

cach side of the market. we may have the following 3 x 3 matrix:

i fo fs
m; [ 2.313.2]1.3
mo [ 3.111.1}12.1 (3.1)
my{3.212.3]|1,2

The (i. j)** cell contains two numbers, being the pavoffs to male m, and female S
respectively. from a match with each other. In this example. all elements are strictly
positive implying that it is never rational to remain unmatched. An outcome in the

single-period market is referred to as a matching.

Definition (Matching). In a static marriage model, where (M. F) are the two

disjoint sets of plavers, a matching is a one-to-one function u satisfving the following:

g : (MUF)— (MUF) (3.2)
if y(m) # m € M then (m) € F (3.3)
if u(f) # f € F then p(w) e M (3.4)
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1(i) = ¢ implies that individual { is unmatched; we say that agent i is self-matched
or single.

For a group of players. S, we denote the set of all possible matchings by Mg.
Also. let ms(us) be a vector of payoffs for each agent in the set S from matching with
the partner specified under us € Mg. If any element of ms(us) is strictly negative,
we sayv that pg is not individually rational. 1If S is the grand coalition. M U F. we
drop the subscript on 7. ;1 and M for ease of notation. We are now in a position to

define stability in this market.

Definition (Core Matching). A matching u € M is in the core if there does not

exist a coalition of plavers S C (M U F) with a matching s € Mg such that:
ws(us) > w(p)® (3.5)

where 1 is the projection of a vector £ € RIMYF! onto the subspace RS |AM[ U F| >

1S).

If a coalition which satisfies equation (3.5) does exist, it is referred to as the blocking
coalition.

For the example of equation (3.1), the matching {u(m;) = fi. u(ma) = fo.

N
-
—
w
p—
(V]

p—

1{m3) = f3}° is not in the core. It vields a payoff of (i) = ( 9

*We only need to specify the partners of one side of the market because of the two-sidedness of

the game.
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where payoffs are ordered: m,, my, m3, fi, f2, f3. This matching is blocked by a coali-
tion of {m,. f2} which can achieve for its two members w(m, 1} (t{m,.f.}) = (3 2 ) >
(2 1) =a(p)im2t However. {u(m;) = fo, u(ma) = f3, u(ms) = f1} is a core
matching.

An interesting property of the core in this market is that it is equivalent to the set
of matchings which are not blocked by any one or two-player coalitions. That is, no
matching can be blocked by a larger coalition if it is not blocked by a coalition with
cither one player or a pair of players. This result holds because of the “independence”
of preferences: each player’s preference over alternative matchings correspond exactly
to his/her preference over his/her partners at these matchings. Roth and Sotomayor
(1990) give a proof. Note however that. with a repeated matching game. coalitions
of more than two plavers provide the possibility of altering partners and so matter
when considering stability-*

There are a number of other well-known results relating to the static marriage

market. Two important ones are:

Theorem 1 (Gale and Shapley 1962). The core is non-empty for every marriage

game.

In light of this result. and to avoid confusion when we introduce dynamics. we refer

1This point is even more forceful with incomplete information. Agents may learn about parame-
ters from the matches of others and so will in general no longer be indifferent between the alternative

ways in which others are matched.



to the core in the static market as the Gale-Shapley set.

Theorem 2 (Knuth 1976). When all agents have strict preferences. the common
preferences of the two sides of the market are opposed on the Gale-Shapley set. That
is. if p and p' are in the Gale-Shapley set, then all males in M like u at least as well

as ' if and only if all females in F like y' at least as well as .

Theorem 1 is self-explanatory. One possible proof employs Scarf’s (1967) theorem
on the existence of a core. Gale and Shapley (1962) prove the claim by constructing
an algorithm which always leads to a matching in the Gale-Shapley set. Theorem 2
is less intuitive. It says that over matchings in the Gale-Shapley set, agents on the
same side of the market have a coincidence of preferences. while agents on different
sides of the market have a conflict of interests. We will see that the analogue of this

theorem does not hold in the dvnamic market.

3.2.2 Stability in Dynamic Markets

We now consider two possible definitions of stability when a marriage game, such as
that in equation (3.1), is played repeatedly over time. with players receiving payoffs

each period.

Definition (Matching Plan). In a marriage market repeated for T periods, a match-
ing plan for a group of players, S. is a function pg : N — Mg, where we define Nt
to be the set of natural numbers up to and including T: {1.2.....T}.
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Thus pg specifies a matching at each point in time. The definition applies to both
finite and infinite T.

An obvious notion of stability in this game is the core over the set of matching
plans. Let 3 € [0.1] be the discount factor and define the payoff function 7 s> over

matching plans as the sum of discounted period payvoffs:

T

ws(ps) = Y 37w (us(t)) (3.6)

t=1

As before. the absence of a subscript implies that the grand coalition. M U F, is being

referred to.

Definition (Core Matching Plan). A matching plan u : Ny — M for a group of

agents. M UF, is in the core if there does not exist a coalition S C M UF such that:
Ts(ps) > w(p)® (3.7)

for some matching plan pg : Ny — Mg.

Consider this definition applied to the following 2 x 2 marriage game, plaved

repeatedly for two periods with no discounting (3 = 1):

my {5 —1]-1,5 (3.8)

*In our notation. y is a particular element of .M; while a bold 4 is a mapping from time onto .M.

Similarly. 7 is a function over the set of matchings u: while 7 is function over the set of matching

plans p.



Re that all agents receive a payoff of zero when they remain single. In the single-
period game. the above matrix implies that males prefer the matching {u(m,) = fi.
it(ma) = fo} where they both receive a payoff of 5. Under this matching. females
receive —1: they prefer the matching {i(m,) = fo. u(ms) = f1}. Neither of these two
matchings are individually rational in the one-shot game: they are both blocked by
some singleton coalition. The unique element of the Gale-Shapley set specifies that
players remain self-matched: {pS"8'(7) = i,i € (M U F)}. which vields 7 (usi"gl) =
(o 00 0)

In the two period version of this game, it is easy to see that all players can do better
by agrecing to implement the male-preferred matching {u(m,) = fi. u(m») = fo} in
one period and the female-preferred matching {i(m,) = f». u(my) = f1} in the other.
At the beginning of the game, such a plan cannot be blocked by any coalition. There
are of course two matching plans which do this and they make up the core for this
two-period game. Both plans yield a payoff vector: w(p®™®) =( 4 4 4 4 ). where
p°°™ is one of the core matching plans.

Unfortunately. one would not expect to observe such an outcome in any play of the
game if matching plans are not binding. In the second period. one side of the market
always has an incentive to withdraw participation and to renege on the plan agreed
upon in period 1. For example, assume that the plan requires that the “female-
preferred” stage-matching be played in period 1, followed by the “male-preferred”
stage-matching in the second period. Come period 2, the females would withdraw

from the market rather than receive a payoff of —1. Knowing this, the males will
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never agree to the female-preferred matching in period 1; the core matching plan
unravels. In a dynamic setting, the core is unsatisfactory because it does not impose
stability at each point in time.5

One candidate notion, which does impose stability at every point in time, is the
recursive core of Becker and Chakrabarti (1995). This concept is closely related to
the sequential core of Gale (1978). Both of these two concepts are motivated by the
lack of trust in a general equilibrium model. The Arrow-Debreu treatment of time
and uncertainty implicitly assumes that a promise to deliver a commodity is as good
as the commodity itself. When this is not the case, Gale argues that only allocations
in the sequential core are “trustworthy” and that the institution of money could act
as a substitute for trust. Becker and Chakrabarti show that real capital goods can
also provide a trust mechanism.

Let pg |;: Np\{1.2.....t = 1} — M. where ¢t < T, be the matching function
induced by pg on the continuation game from time ¢ onward. The idea of Becker

and Chakrabarti (1993) can be adapted for our matching model according to the

following definition.

It may be thought that randomization could provide the solution. Players could agree to
implement matchings based on a publicly observable flip of a coin each period. This will give each
playver an expected payoff equal to the payoff from p°*¢. However, this requires that the outcome
specified by the coin flip be enforceable. which is counter to the spirit of the paper. We want to
place some restrictions on the matching plans which may be observed when enforceability is assumed

not to be possible.
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Definition (Recursive Core). A matching plan pu : Ny — M., for a group of player,
M U F. is in the recursive core if p|;: Nr\{1,2,...,t — 1} = M is in the core of the

continuation game from t onward. for all t € Np.

It is clear from this definition that the recursive core is a refinement. or a subset. of
the core.

In terms of the two-period example in equation (3.8). this implies that the only
candidate elements in the recursive core are the two core matching plans which specify
either the male or the female-preferred matching in one period and an exchange of
partners in the second. Neither of these two plans are in the recursive core. No
matter which matching is carried out in the first period. in the second. the only stable
matching for the remaining (one-shot) game is for all plavers to remain single. This is

inconsistent with both matching plans. so the recursive core is empty in this example.

Once again this result seems unsatisfactory. Intuitively, the matching plan which
specifies that agents remain unmatched in both periods appears to be robust to
“blocking by rational agents”. Yet. this matching plan is not in the recursive core.
Denote this matching plan by psing'e: ( psirgley = (6 o o o ). In period 2, the
continuation of p5"8!® is consistent with the recursive core since it specifies a Gale-
Shapley matching in the final stage. However, in period 1. g%"8* is blocked by the
grand coalition agreeing to play one of the core matching plans. This highlights
an inconsistency associated with the recursive core: coalitions are allowed too much

freedom in choosing the deviating matching plan. In judging the original matching
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plan. the recursive core requires that the plan be immune to blocking by coalitions.
However, no deviating group of players (including a deviation of the grand coalition)
is subject to the same requirement. In the example above, the grand coalition which
blocks ps"8'¢ does so by agreeing to an alternative matching plan (namely pc°r®)
which we’ve already argued does not satisfy the requirement of time-consistency.

This observation motivates our definition of self-sustaining stability.

3.3 Self-Sustaining Stability

In addition to time-consistency. the idea behind self-sustaining stability is to limit
the set of possible plans plaved by blocking coalitions. It does so by requiring that
these plans be self-enforcing. Coalitions must choose matching plans in which. at all
points in time. no subset of the coalition can reach an agreement to deviate from the
deviation. The sub-coalitions have to satisfv the same requirement, and so on. This
implies that we have to define self-sustaining stability inductively beginning with the

smallest coalition and ending with the grand coalition.
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Definition (Self-sustaining Stability).

(1) For a coalition of 1 playver, {1}, the matching plan Ky o Npo— My, which
specifies that the player remains single forever, satisfies self-sustaining stability.

(2) Assume that self-sustaining stability has been defined for all proper sub-coalitions,
C'. of some set of plavers. S. A matching plan pg : Nt — Mg satisfies self-sustaining
stability if:

(a) There does not exist a coalition C C S with a continuation matching plan from
some t € Np. pue | Np\{1.2. ...t —1} — M. which satisfies self-sustaining stability

for coalition C' from time t onward. and which satisfies the inequality:

e i) > ws(ps l:)c (3.9)

(b) There does not exist another matching plan u's : Zr — Mg, satisfving condition
g s

(a). such that:
ws(ps ) > ms(pg |e) (3.10)

at some t € Nr.

The set of matching plans which satisfy self-sustaining stability (S®) is labeled the S3
set.

Condition (1) in this definition serves to initialize the recursion. (2) is the in-
ductive step. (a) ensures that at no point in time can member of a proper coalition

do better by leaving the larger market and trading amongst themselves thereafter’.

“Note that in the definition, coalitions which leave the game do not have the possibility of
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assuming that they agree to implement self-sustaining stable plans in this smaller
market. The final condition (b) simply requires that the S* contain no elements

which can be dominated by a coalition consisting of all plavers in S.

Bernheim. Peleg and Whinston’s (1987) non-cooperative concept of coalition proof-
ness is motivated by the same considerations. They argue that in games with non-
binding preplay communication. the Nash best-response property is a necessary. but
not sufficient, condition for self-enforceability. An earlier concept which addresses
this issue is strong Nash equilibrium. While Nash equilibrium is robust to unilat-
eral deviations, a strong Nash equilibrium allows for deviations by every conceivable
coalition of players. Bernheim. Peleg and Whinston argue that this is inconsistent
because deviating coalitions are not subject to the same requirement as the grand
coalition. Coalition proofness addresses this. In extensive form games. they further
require that equilibria be dynamically consistent and define perfect coalition-proof
equilibrium. This concept is the precise analogue to ours.

As an aside. if the S* is the counterpart of perfect coalition proof equilibria, we
can usecfully think of the core as the counterpart of strong Nash equilibria. Similarly,
the recursive core can be thought of as the analogue to Rubinstein’s (1980) concept
of strong perfect equilibrium.

Although we will continue to discuss S® in the context of a two-sided matching

market, it can of course be applied to any dvnamic cooperative game. and we intend to

rejoining it in a subsequent period. It can be argued that this is an undesirable assumption. We

will illustrate the weakness of this assumption in the example of (3.11).

103



analyze its properties in the context of these other models—such as a simple exchange
economy—in subsequent research. At this point, it is worth noting a characteristic

of 8% which arises in the special case of marriage game:

Proposition 3 (S* in Static Marriage Markets). In a static marriage market. the

self-sustaining stable set is equivalent to the Gale-Shapley set.

Proof. As we have already mentioned. in a static game only deviations by one or
two-player coalitions matter for the Gale-Shapley set. If the matching y is not in
the Gale-Shapley set and gives one agent a negative payoff, then it is dominated by
a singleton coalition, which by definition satisfies S3. If p vields positive pavoffs but
is not in the Gale-Shapley set because of some coalition {m. f}. then the coalition
{m.f} can achieve a payoff greater than [m(m;(r).7(s;(p)]. This vector is in turn
greater than (0.0). so that the blocking coalition satisfies the self-sustaining criterion.
It follows that p does not satisfv S3. In the other direction. if x4 is not in the S set.

then 4 is dominated by some matching y' so it cannot be in the Gale-Shapley set. B

Put another way. the proposition states that neither time-consistency, nor self-enforceability,
have any impact on the Gale-Shapley set. The restriction of time-consistency is triv-
ially satisfied in a static game. However, the ineffectiveness of self-enforceability in
modifying the Gale-Shapley set is not true in a general static game. It arises only

because of the two-sidedness of marriage markets.
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3.4 S3 in Finitely-Repeated Markets

3.4.1 Computation

In a finite-horizon repeated game. we can construct a S* matching plan via backward
induction. The recursion is through both time and coalition size. In a marriage
market. this task is made slightly easier by the above proposition, which implies that
we can begin the recursion at the final stage game with a Gale-Shapley matching.
Next. consider the single-agent coalitions in the subgame consisting of the final two
time periods. For these singletons. remaining unmatched for two periods satisfies
self-sustaining stability. For coalitions of two agents, a matching plan consistent with
S? must satisfv two requirements. First. it must specify a Gale-Shapley matching
in the final period. Second. it must not be blocked by any single agent leaving the

game and remaining unmatched for two periods.

Having derived S* matching plans for all two-player coalitions in this two-period
game. we proceed by considering larger and larger coalitions, until we reach the grand
coalition. Along the way we always require that matching plans induce continuations
that satisfy S® for the continuation game. and that they be undominated bv proper
coalitions specifyving plans from their corresponding S3 set. The only complication
arises when multiple matching plans satisfv these two conditions. When this occurs,

all matching plans on the Pareto frontier are in the S set.® Having reached the grand

8If there are multiple elements in the S3 set, we consider these in turn, much like one does when

finding multiple subgame-perfect equilibria by backward recursion.
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coalition in the two-period game. we then solve for S® in the continuation subgame
beginning at the third-last period, and so on.

Applying this concept to the two-period example of equation (3.8) is relatively
simple. Any element of the S® set must specify that agents remain single in the last
period since this is the unique Gale-Shapley matching. At the beginning of the game,
remaining unmatched for both periods is the only matching plan that satisfies S* for
two-plaver coalitions. If a match were to occur in the first period, the requirement
that players remain single in the second period would cause one agent to receive a
negative payoff from the plan. Because of strict preferences in this example. coalitions

of three agents cannot block any plan not blocked by coalitions of two or less players.?

[t follows that for the grand coalition, we only need to ensure that matching plans:
satisfy individual rationality: have continuations which are stable: and are not Pareto
dominated by other plans which satisfy these two criteria. The only matching plan
which meets these requirements is p"8'®. This plan survives because the deviating

plan which blocks p*"8' from the recursive core is not admitted under S3.

9With three players. the agent on the side of the market in short supply determines the matching

plan.

106



3.4.2 Existence

Theorem 4 (Existence in a Finitely-Repeated Market). There exists a matching
plan which satisfies S* in a finitely-repeated marriage market if one of the following
conditions hold:

(a) The discount rate. 3. is sufficiently close to zero.

(b) There are less than, or equal to, two agents on each side of the market and each

player has strict preferences.

The proof of this theorem is deferred until the infinite horizon model where we have

a similar theorem.

Proposition 5 (Non-existence in a Finitely-Repeated Market). More generallv. there

may be no S* matching plan in a finitely-repeated marriage market.

The following example illustrates the possibility of non-existence. Consider the

following stage-game repeated twice, with no discounting:

N fo fs S
m; [1.1]1,13.2]21
m, [1.1]1,1]2.1]3,2 (3.11)
my|2.3]1.15.1]1.5
myl 1.2 2.3]1.5]5,1

This stage game has a unique Gale-Shapley matching: {u5(m;) = f3, u®S(my) = fi.

1 (m3) = fi, u%(my) = fo}.'° Any candidate for inclusion in the S* must spec-

'9This can be found by applying the Gale and Shapley (1962) algorithm.
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ify this matching in the final stage. Consider. for example, a matching plan which
specifies the Gale-Shapley matching in both periods. We denote this by u®5. This
plan is blocked by the coalition of {ms3 my, f3. f1}. which has a self-sustaining, stable
matching plan, namely matching in both periods with a switch of partners in the sec-
ond. This yields its members: ®(mymipr}(-) =(6 6 6 6)>(4 4 4 4)=
w(puCS){msmafs.fib 11 Other candidates for S® can be similarly eliminated.

In addition to demonstrating non-existence, this example is important because it
highlights a weakness in the S* concept. The candidate plan u%S is blocked by a
coalition agreeing to a plan which is “credible” only because self-sustaining stability
does not allow deviating coalitions to rejoin the original set. If it did, the coalition
{m3.my. f35. f;} would fall apart in the second period since the Gale-Shapley matching

does not involve these plavers matching amongst themselves.

3.5 S3in Infinitely-Repeated Markets

3.5.1 Characterization

Solving for S* in an infinite horizon game is more difficult. In order to solve for S3
at any point in time, we have to have solved for S* in the continuation game, which
is of course impossible with an infinite horizon. Fortunately the idea of dvnamic

programming suggests a solution. The work of Abreu. Pearce and Stacchetti (1986,

'In contrast to the example in (2.8), this plan, which involves switching partners. satisfies S

because all values in the matrix are strictly positive.
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1990), henceforth APS, in the context of looking for sequential equilibria in infinitely-
repeated games. employs a similar idea. What is different about the problem here
is that the usual maximization operator has to be replaced by a “non-blocking”
condition.

We now give an alternative definition of dvnamic stability for an infinitely-repeated
matching market. This definition makes the recursion through time more explicit
than in the earlier definition and is written in terms of conditions on the value set,

rather than on matching plans. It provides some additional insights.
Definition (Self-Sustaining Stable Value Set. S*\'S). In an infinite-horizon game

with a group of agents S, the self-sustaining stable value set, 15 C RISI. js the set of

pavoff vectors associated with the S3 set for coalition S :

s = {ms(p) | : NT = Mg satisfies S*} (3.12)

The following definition is adapted from APS (1986).

109



Definition (Admissibility). For a group of agents S, a pair (us,ws) is admissible
with respect to Wy C RISt if
('d) Hs € Mg and wg € g

(b) There does not exist a proper subset C C S such that:
ve > ws(us)€ + 3uf§ (3.13)

for some ve € V.

(c) There does not exist a (. vs) satisfving (a) and (b) such that:

(i) + 3vg > w(us) + 3vs (3.14)

Definition (S* Mapping). For each Ws C RISl let the S® mapping be:

Fs(Ws) = {ms(us) + 3vs | (ps. vs) is admissible with respect to W} (3.13)

Proposition 6 (Bellman Equation). In an infinitelv-repeated game, the S®VS for a
groups of plavers. M U F. V" C R<Fl_js the largest compact set in R'*“F! which

satisfies the following fixed-point condition:
V=TI (1) (3.16)
Proof. By definition. @
It is worth restating the intuition behind S* in this new context. Notice first that

the above formulation essentially converts an infinite-horizon problem into an infinite
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sequence of static games. The payoffs in these static games are not given by 7 alone
but rather by = augmented with some discounted element of V.

Recall that S® imposes time consistency and self-enforceability in addition to the
core requirement. Notice from equation (3.16) that 1" is the argument in ', which
implies that continuation payoffs have to come from the S*V'S (time consistency). and
from condition (b) in definition 5.2 that proper coalitions have to take values from
their S*VS, v € V¢ (self-enforceability).

The recursive core for an infinitely-repeated game can also be written as conditions
on the value set. The definitions would be identical except that in part (b), we

dispense with the requirement that vc € V¢ and replace it by:
ve € {me(pc) | Be : Zs — Mc} (3.17)

With this reformulation. it is clear that the recursive core has to be a subset of the
S* set because blocking coalitions are allowed more freedom in forming their plans in
the recursive core.

In the appendix. we outline how this dynamic programming approach can be used

to compute the S3V'S.
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3.5.2 Existence

Theorem 7 (Existence in Infinitely-Repeated Market). There exists a matching
plan which satisfies S* exits in an infinitely-repeated marriage market if one of the
following conditions hold:

(a) The discount rate, 3 € [0.1). is sufficiently close to zero.

(b) The limit-of-means criterion is used to aggregate pavoffs over time.'2

(¢) There are less than, or equal to, two agents on each side of the market and each

player has strict preferences.

Proof. (a) We prove the stronger result that. for sufficiently small discount factor,
the recursive core is non-empty. With a sufficiently small discount factor. agents
view the repeated game as a sequence of static games and we know from theorem 2.4
that the Gale-Shapley set is non-empty. More formally, consider a matching plan g
such that p(t) is an element of the Gale-Shapley set for all ¢t = 1..... . That is. for
all ¢. there does not exist S € M U F with us € Mg, such that ns(us) > m(u(t))S.
For sufficiently small 3 € [0.1), the following inequality must also not hold for any
coalition S and for any pg [,,,: 7s(us) > 7(u(t))® + 8 [m(p |,.,)° — *s(us lee)] -

¥ cannot hold at any ¢. That is. g is in the recursive

This implies that ws(pugs) > 7w(u)
core and the proof is completed by recalling that the recursive core is a subset of the

S set.

(b) Let u™ be a core-matching plan when the payoffs are evaluated according to

'?The limit-of-means criterion cannot be replaced with “8 € [0,1) is sufficiently large”.
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the limit-of-means criterion'®. We will show that such a plan exists in theorem 12.

Consider the payoff to a continuation plan for some ¢ € {1,2,...} :

1 s
m core — l' T core
(1™ 1) sl."o‘c_——'"s_t+1§‘(" (7))

t—1

1
= m(p ") — lim ———E (e (7)) (3.18)
s—ocs —t+1 s

COl’e)

= w(p

Since p™ is. by assumption. not blocked by any coalition. g™ |, is also in the
core of the continuation game. for all ¢ € {1,2....}. This implies that & is in the
recursive core and hence satisfies S3.
(c) This proposition is obvious when we have less than two agents on either side
of the market. The only agent in its side of the market matches with its preferred
partner every period if individual rationality is satisfied. Otherwise. everyvone remains
single. This plan is consistent with S3. Consider the 2 x 2 market with M UF =
{myi.m,. fi. fa} . We have just said that the S® set is non-empty for all proper sub-
coalitions S C M U F and in fact V% is a singleton for all S. Let P = {....C....} be
a partition of M U F so that the sets in P are disjoint, exhaustive and non-empty.
Now. define v(P) to be a stacking of the self-sustaining stable payoff vectors for
cach C € P. That is, v(P)¢ € V¢. for all C € P.1* By definition. ¢(P) > 0 because
individual rationality must be satisfied for elements in V. Suppose contra-hypothesis

that 17 = 0. then it must be the case that for any v(P), there is another partition P’

Bar(p) = limeoac 1300w (p(7)

"This point is unique because V¢ is a singleton for each C C P.
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such that v(P")¢" > v(P)<" for some C’' € P'. Otherwise v(P) € V, contradicting the
emptiness of V. [t turns out that this implication cannot be satisfied when there are
only two plavers on each side of the market.

To see this. first consider a partition P which contains a coalition of three play-
ers.  We can always find another partition P’. which contains no three-plaver coali-
tion. such that ¢(P’) 2 v(P). The same is true for partitions containing single-
tons. or partitions where no coalition contains members of both sides of the mar-
ket. We can therefore ignore all partitions except for P = {{m. f. }. {m., fo}} and
P = {{my. fo. }. {m2. fi}}. Without loss of generality, say that v(P) is blocked
by {m. fo}: that is. v(P"){m-2} > ¢(P){mif2} Now, because | is assumed to be
empty. v(P’) must be blocked by either {m;, fi} or {ma. fo}. say {m,, f}. so that
e(P)imiSik 5 p(Py{mii} . For this to be consistent with the inequality above. we
must have ¢(P"){™} = ¢(P){™}  This contradicts the assumption of strict prefer-

ences stated in the theorem. It is thus not possible to block all partitions.!> B

Proposition 8 (Non-existence in Infinitely-Repeated Markets). There may- not exists

a matching plan which satisfies S? in an infinitely-repeated, one-to-one, two-sided

matching market.

Even though condition (a). (b) or (c) in theorem 7 guarantees existence in special

3Notice that the proof only considers a subset of the possible values in V'; V" will in general
contain points which are not in the set of v(P) values, but we show that under the assumptions of

the theorem. for at least one partition P, v(P) € V.
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classes of infinitely-repeated matching games, it is not possible to extend the proof
of existence to a generic game. The following example is one in which no matching
plan satisfies S3.

Consider the matching market in equation (3.8) with the addition of an extra male

who has positive value only when matched with player f;. The matrix of pavoffs is:

fl f‘2
my 5. -1 -'1.5
mp | —1,9] 3. -1 (3-19)
msa %gx —'2,—2

Assume that this stage market is repeated infinitely with a discount factor of 3 =

U |—

To find the S*V'S for the game, we need to first compute the value sets for all proper
coalitions S. To allow for comparison, we represent elements of these value sets as
vectors in R® instead of R!SI. The values for players not in the coalition in question

are set to zero. Each vector contains payoffs ordered according to: m,, ms. ms, fi. fo.

(5 5000), (000535 5),

(5 0001) (05 01 0),
Vimimafifo) = (1 00 50), (01 00 35). (3.20)

5% 0 0 00). (0O 5% 0 0 0)

(0 0 O 5% 0). (00 00O 5%— )

V{mz.fx} = ":{m:,mz.h} = ":{mx,ms.fx} = "‘:{mx.mz.ms.fl}
= ‘{ma-fl-fz} = “"{mz,msJuf:} = "{mx.ma-fx-fz} (3.21)
={(0 011 0)}

Vs={(0 0 0 0 0)} for all other S C {m,, my. m3, f1. fo} (3.22)



Consider the first clement of 1{;m, m,.f,.12}- It is obtained from a matching plan which
alternates forever between the male-preferred {u(m,) = f. u(m,) = f2} and the
female-preferred {i(m,) = f>, u(m2) = f1}. beginning with the male-preferred match-
ing. The second element of Vim, m, .1} is associated with the same matching plan,
except beginning with the female-preferred matching.!® The third element derives
from a plan with the following first-period matching: {u(m,) = fi. u(m,) = ma}
and thereafter alternating between the male and the female-preferred matchings. be-
ginning with the female-preferred one. The next three vectors come from similar
plans. The seventh element comes from the following two matchings: {u(m,) = fi.
u(mz) = ma} and {u(m;) = mi p(my) = f,}. followed by alternating male and
female-preferred matchings, beginning with the male preferred. This vields the fol-

lowing sequence of period payoffs:

1 2 3 4
12253 0 -1 3 -1
2 D
ms 0 0 0 0 (3.23)
fHi| -1 5 -1 )
fa 0 0 -1 5

which has the required present value. The final three vectors in Vim, m, 5.5} are
obtained using analogous plans. It can be verified that these plans all satisfy the
requirements for S3. The S® matching plans for this four-player coalition is easy to

derive because all proper subsets of {m;, m,. fi. fo} have singleton S3 sets, namely

'®Switching partners is sustainable here because the game is infinite. A backward recursion

argument does not apply.
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to remain unmatched. Thus we only have to ensure that the present value of con-
tinuation payoffs are positive at every point in time. The S3V'S’s for the remaining
coalitions in equations (3.21) and (3.22) are obvious.

Now. consider any matching plan g for the grand coalition which involves. at some
point in time. a match between i € {m;.my} and j € {f,. f,}. This match will vield

one of the two playvers a period payoff of —1. Take, for example. a match between

e
..

my and fs, where m, receives a payoff of —1. Given the low discount factor of
m) has to receive a payoff of 5 in the next period in order for the matching plan to
satisfy S3.  So m; must be matched with f giving f, a stage pavoff of —1. It can
be shown that starting with any i € {m,.m»} and j € {f,. fo}. a candidate $3 plan
will eventually lead to a payoff of —1 for f;. Let t be the time at which this occurs.
It can further shown that the most favorable sequence of matchings for fi which is

consistent with S? is:

t t+1 t+2 t+3 t+4
5 0 0 -1 3
mal 0 -1 5 0 0
2 9.
me| 0 0 & & g (3.24)
fil-10s 3
Al o o -1 5 0

which implies that 7 (pf,) 1}t 5. However, a coalition {m;. f1}. deviating from the
game forever can achieve a discounted payoff of #(;m, 1,}(.) = (1 1 ). We therefore
conclude that any S* plan must involve {m,.m,, fo} remaining single forever.

The only remaining possible matching plan is between f; and m;. But again

a S% plan which matches f; and mj all the time would be blocked by the coalition
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{fi. fa.m.my} playing any plan in its S* set that gives f, a pavoff greater than 1.
Obviously. a plan in which all agents remain single in all periods is blocked. So no

plans are consistent with S3 for this game.
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3.6 Comparing Alternative Notions of Stability

In the process of defining S*. we have already discussed the relationship between the
core, the recursive core, and S3. To summarize, the recursive core imposes the core
condition at each point in time. S* imposes. in addition, that deviating coalitions be
sclf-enforcing.

We can define a fourth concept. namely one which requires that coalitions be self-
enforcing but which does not require dynamic consistency; call this set of matching

plans. the self-enforcing core.

Definition (Self-Enforcing Core).

(1) For a coalition of 1 plaver {i}, the matching plan By o Nro— My, which
specifies that the player remain single forever. is in the self-enforcing core.

(2) Assume that the self-enforcing core has been defined for all proper sub-coalitions
C CS. A matching plan pg : Zr+ — Mg is in the self-enforcing core if:

(a) There does not exist a matching plan p : Zr — Mc which is in the self-enforcing

core for the set of player in C, such that:
welpe) > 7s(ps) (3.25)

for some proper subset C C S.

(b) There does not exist another matching plan p's : Ny — Mg, satisfving condition

(a), such that:

ws(ps) > ws(ps) (3.26)
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Now. these four concepts of stability can be summarized by the table below.

Does Not Impose Imposes
Time Consistency Time Consistency
CORE RECURSIVE
. CoORE
Does Not Impose ; )
Self-Enforceability Non-empty May be empty
Pareto optimal Pareto optimal
- -
SELF-ENFORCING S3
Imposes
Self-Enforceability ) CORE
Non-empty Non-empty under conditions
May not be Pareto optimal May not be Pareto optimal

Some of the following properties have already been mentioned. but for the sake of

clarity. we re-express them in the following propositions and remarks.

Proposition 9 (Core and Self-Enforcing Core). The core is a subset of the self-

enforcing core.

Proposition 10 (Recursive Core and S®). The recursive core is a subset of the S

set.

Proposition 11 (Core and Recursive Core). The recursive core is a subset of the

core.
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Remark (Self-Enforcing Core and S*). The self-sustaining stable set is not necessarily

a subset of the self-enforcing core.

Remark (Non-Pareto Optimality). In contrast to the core and the recursive core.

the S® set can contain matching plans that are not Pareto optimal.'”

The first two propositions are not particularly surprising. The requirement of
self-enforceability limits the feasible set of coalitional deviations and so enlarges the
set of matching plans which are “stable”. The third proposition is also obvious. The
imposition of dynamic consistency reduces the set of “stable” matching plans. The
lack of an inclusion result between S* and the self-enforcing core is perhaps more sur-
prising since S* imposes dynamic consistency in addition to self-enforceability. The
explanation lies in the interaction between the two requirements. Although time
consistency tends to reduce admissible matching plans for the grand coalition, it also
limits the set of coalitional deviations which are possible. This is true because coali-
tions are also required to satisfy dynam_ic consistency. The first effect tends to make
the S* set smaller relative to the self-enforcing core, while the second tends to make

it larger. Of course one could define yet another notion of stability which imposes

'"Note that this remark does not contradict condition (c) in the definition of admissibility. That
condition simply imposes that no element that satisfies S* be dominated by another element that
p p

satisfies S3.
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time consistency on the original grand coalition, but not on blocking coalitions; this
is not pursued here.!®

In the second remark. the Pareto optimality of the recursive core stems from the
fact that it is a refinement/subset of the core. The non-Pareto optimality of S3 is
illustrated by the example in equation (3.8) where the unique plan that is consistent
with S3, psinele_is Pareto dominated by pcore

In a static game. the recursive core is equivalent to the core, and S® to the self-
enforcing core, because dynamic consistency is trivially satisfied. In the context
of a two-sided. static. matching market, proposition 3 implies that all four sets are
equivalent. The ineffectiveness of self-enforceability in modifving the core is not true
in a general static game.

Finally. there is no inclusion relation between the core and S®. Compared with the
core. S? restricts continuation payoffs. Thus S* has a tendency to eliminate elements
from the core. On the other hand, S?® also restricts candidate blocking plans which

tends to admit matching plans not in the core.

For completeness, we state the existence results for the other stability concepts.

Theorem 12 (Existence of the Core). The core is alwayvs non-empty in a finitelv. as

well as infinitelv-repeated. marriage market.

!8These inclusion results apply also to the non-cooperative notions of: strong Nash, perfect strong,

coalition proof, and perfect coalition proof equilibrium.
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Proof. 1t is not difficult to show that the matching game is balanced. so that we can

apply directly Scarf’s (1967) proof for the existence of the core. B

Proposition 13 (Non-existence of the Recursive Core). The recursive core may
be empty in finitely. as well as infinitely-repeated, one-to-one. two-sided matching

markets.

owever. in both finitely and infinitely-repeated games. the S® set mav be non-empty
H both finitely and infinitely-repeated g the S* set may b pt)

even when the recursive core is empty.

Theorem 14 (Existence of Self-Enforcing Core). The self-enforcing core is alwavs
non-empty in a finitely, as well as an infinitely-repeated, one-to-one, two-sided match-

ing market.

Proof. This follows immediately because the core is a subset of the self-enforcing core.

3.7 Extensions

The definition of S® can be extended without too much difficulty to matching markets
where the value of some matches are only known after trade has taken place. We
assume that information is common knowledge and once revealed is never forgotten.
We model information as a state 6 in © and we use the following terminology. If ¢’

is a successor to 6. then it contains weakly more information. If @' is a successor to
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6. and it is not equal to 6, then ¢ contains strictly more information than 6.

A matching plan is now a mapping from both time and a state of information
onto the set of feasible matchings. The definition of S? is again inductive through
time and the size of the coalition. but now we add the dimension of information to

this recursion.

Definition (Self-sustaining Stability Under Incomplete Information).

(1) Self-sustaining stability has been defined for all coalitions at information nodes
with complete information.

(2) Assume that we are at an information node 6 € © which has successors &' U {8}
where ©' C © does not contain 6. For a coalition of one plaver, {i}. the matching
function IJ'({);} : (©'U{6}) xN; — My;;. which specifies that the plaver remain single at
every information node. and at every point in time, satisfies self-sustaining stability.
(3) Assume that self-sustaining stability for all coalitions at successor information
nodes. ©'. has been defined. Further assume that self-sustaining stabilitv at node
0 has been defined for all proper coalitions, C C S. A matching function p% :
(© U {6}) x Nr — Mg satisfies self-sustaining stability if

(a) There does not exist a matching function p |g ,which satisfies self-sustaining
stability for coalition C from time t € Np and information node ¢' € (©' U {8}

onward, such that
wo(pe o) > ms(ph o) (3.27)

for some proper subset C C S and for some (¢'.t) € (©' U {6}) x Ny.
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(b) There does not exist another ﬁg, satisfving the condition above, such that

Ts(f% loe) > 751l |oy) (3.28)

at some (0.t) € (©'U {6}) x Nr.

We have yet to examine the properties of this definition.

Despite its advantages. S® still has a number of significant weaknesses. As the
example of non-existence in equation (3.11) shows. one may want to allow for devi-
ating subsets to rejoin the coalition under consideration. This would limit the set of
feasible deviations and may provide a concept which exists under more general condi-
tions. A related criticism is that in considering sub-coalitions which deviate from a
coalitional deviation. we do not allow for the possibility that these sub-coalitions can
consist of both members of the coalition and those outside the coalition. Allowing
for this possibility is appealing since there seems to be no satisfactory reason to limit
sub-coalition plans in the way that we do. However. the major disadvantage is that it
eliminates the recursive structure of S. Both of these criticisms apply to the concept
of coalition-proof Nash equilibria. We are currently thinking about how they can be

incorporated into the definition or ameliorated.

3.8 Conclusion

In this paper, we introduced a new concept of equilibrium for cooperative games and
illustrated it within the context of repeated matching markets. The concept imposes
time-consistency and self-enforceability, together with the standard core idea. We

125



believe that this self-sustaining stable set is a more appropriate idea of “stability”
than both the core and the recursive core in a dynamic environment. Although the
set is empty in some games. it does exist in many cases where the recursive core does

not.
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3.9 Appendix: Computing the S3VS in
Infinitely-Repeated Markets

In applications, it is important to have an algorithm capable of computing the S3V'S.
In a finitely-repeated game. we have already shown how backward induction can be
used to compute this set. This section provides a method for computing the value
set in an infinitely-repeated marriage market with discounting. The algorithm, as in
the finite-korizon case, has a recursive structure. We begin by computing the S3VS
for single agents. and then proceed with larger and larger coalitions until the grand

coalition is reached.

For each of these coalitions. we need to compute an approximation to the fixed
point given by equation (3.16). Essentially. the approach is to use value-iteration of
the S* mapping in equation (3.15). The algorithm will differ from standard value
iteration in two important ways. First. the mapping used is set-to-set. rather than
function-to-function. Second. the mapping does not involve a standard maximization
or supremum operator but rather the requisite of non-blocking by coalitions. As will
be seen. the second fact turns out to be helpful because it implies that a Pareto
criterion can be used to reduce the number of points for which we have to apply the
mapping.

The algorithm outlined here has many similarities with the procedure described in
APS (1990) for finding the value set associated with sequential equilibria in infinitely-
repeated games. In fact. our I mapping exhibits many of the same properties as the

“B” operator in APS. For the approach to be valid we need to show that iterating the



S* mapping from a sufficiently large initial value set will lead to the largest fixed-point
of the I' mapping. The following theorem establishes this claim and is analogous to

theorem 5 in APS (1990).

Define the set of feasible payoff vectors, for a coalition S, to be:

Us =[1/(1 = 3)]co l: () w(p2) o w(ppug) (3.29)

where {1, po. ... g1} = Ms. The value set, 15 is obviously a subset of Us. This
set. together with the Euclidean norm. (Us. ||.]|) represents a complete metric space.
Let H (Us) be the Hausdorff space: that is the collection of all compact subsets of
Us. It can be shown that the pair [H (Ls) . h]. with h being the Hausdorff metric. is

also a complete metric space.

h(X.Y) = max {g}g min [z -y - max min [z — yll} (3.30)

Theorem 15 (Theorem 5. APS 1990). Define Wy = Usg and for n = 1.2, .... let

W, =T W,_)). Then {W.} is a decreasing sequence and V5 = lim, . 1175,

Proof. See APS (1990) lemmata 1 through 3 and theorems 4 and 5. B

3.9.1 The Algorithm

Because the recursion through the size of the coalition has already been described
in the dynamic-programming definition of S®, the discussion here will focus on the
iteration required to calculate an approximation to 1, assuming that value sets 1.

have been computed for all C C S.



Step 1. Approximate Us by a grid of points =.

Step 2. Let (Z,.=,,....,=,) be a partition of = such that, for all je{1.2 .,p-1}.
there does not exists a £ € Z;,,U...U=, and a £ ¢ =;. such that £ > &'. Put
more simply. =, is the Pareto frontier of =, U...UZ,."* Now, begin with j = 1 and

normalize a set =/ =

Step 3. For each £ € =,. compute ['s({€}). If Ts({€}) = 0. eliminate from the grid

all points £’ € =, U ... U Z,. for which £ > €. Otherwise, add ['s({£}) to ='.
Step 4. Repeat Step 3 for each j € {2, ....p}.

Step 5. If =’ = 0. then the value set is empty and the algorithm stops. If h(Z,Z') is
sufficiently small. the approximation to the value set is the Pareto frontier of =’and

the algorithm stops. Otherwise set = = =’ and return to Step 2.
g p p

This algorithm finds the largest fixed point of the [s. which is by definition the
S3\V'S for coalition S. Notice that in step 3. we use the fact that if £ € = is not in
the S?\'S. then any element £ € =, which is dominated by &, cannot be in the S?VS.

This elimination substantially reduces computational time.

19The magnitude of p is obviously inversely related to the gridsize.
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