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Lotteries in student assignment: An equivalence result
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This paper formally examines two competing methods of conducting a lottery to
assign students to schools, motivated by the design of the centralized high school
student assignment system in New York City. The main result of the paper is that
single and multiple lottery mechanisms are equivalent for the problem of allocat-
ing students to schools in which students have strict preferences and the schools
are indifferent. In proving this result, a new approach is introduced that simpli-
fies and unifies all the known equivalence results in the house allocation litera-
ture. Along the way, two new mechanisms—Partitioned Random Priority and Par-
titioned Random Endowment—are introduced for the house allocation problem.
These mechanisms generalize widely studied mechanisms for the house alloca-
tion problem and may be appropriate for the many-to-one setting such as the
school choice problem.
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1. INTRODUCTION

A large number of school districts around the world employ centralized mechanisms to
assign students to schools.! The design of the current student assignment mechanism
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in New York City (NYC) is inspired by ideas from the mechanism design literature on
the allocation of indivisible goods (e.g., Roth and Sotomayor 1990 and Abdulkadiroglu
and Sénmez 2003).> The mechanism in NYC consists of a main round, followed by a
supplementary round that is meant to assign applicants who are unassigned after the
main round. The assignment process in the main round takes several factors into ac-
count. These include student priorities at each school based on criteria such as geo-
graphic proximity and performance on standardized test scores, and has been studied
as a two-sided matching problem (Abdulkadiroglu et al. 2005a, 2009). In contrast, the
assignment process in the supplementary round is quite simple: all unassigned appli-
cants are invited to rank order high schools with unfilled seats; all students at this stage
have the same priority to attend any school. The supplementary round involves over
8,000 students, a little more than 10% of applicants, who are unassigned after the main
round.

The supplementary round can be modeled as a setting in which agents rank het-
erogenous “objects” for which they have equal claims. This raises the following ques-
tion: if many students rank the same school as their top choice, which of these students
should be assigned to that school? A lottery mechanism is a way to achieve fairness
in the assignment process. In a single lottery mechanism, a single random ordering of
the agents is drawn; any ties (at any school) are broken in favor of the student whose
lottery number is lower. A natural alternative is a multiple lottery mechanism, which al-
lows each school to conduct its own lottery. The actual assignment is made by the core
mechanism applied to the preference profiles of the students and the priority profiles of
the schools (Abdulkadiroglu and S6nmez 2003).

During the course of the design of the new assignment mechanism, policymakers
from the NYC Department of Education (DOE) believed that a mechanism based on
a single lottery is less equitable than lotteries at each school. After deciding on two
rounds, they were still concerned with the question of how to resolve indifferences for
each round. After community forums, one DOE official summarized the discussion:3

Although students might not get their first choices, they were considered separately for
each program. There was a rank order established and each student had an equal chance
to be selected. [...] If we want to give each child a shot at each program, the only way to
accomplish this is to run a new random. [...] I cannot see how the children at the end
of the line are not disenfranchised totally if only one run takes place. I believe that one
line will not be acceptable to parents. When I answered questions about this at training
sessions, (it did come up!) people reacted that the only fair approach was to do multiple
runs.

This quotation motivates our comparison of single and multiple lotteries for student
assignment problems. The main result, in Section 3, is a proof of the equivalence of the

2A large theoretical literature on school choice problems has developed following Abdulkadiroglu and
Sénmez (2003). See Abdulkadiroglu et al. (2005a, 2005b, 2009), Erdil and Ergin (2008), Ergin and S6nmez
(2006), Kesten (2010), and Pathak and S6nmez (2008).

3See Pathak (2007) for additional statements by DOE policymakers about the perceived fairness of mul-
tiple lotteries relative to single lotteries.
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single and multiple lottery mechanisms in a setting where each school may have mul-
tiple seats and each student has strict preferences over schools. To prove this result, we
assume that schools can admit only one student, but instead introduce a new mecha-
nism that we call Partitioned Random Priority (PRP). Under the PRP mechanism, there
is an arbitrary partition $1, S», ..., Sx of the schools: the schools within each §; use a
common lottery and distinct S;’s use an independent lottery.* We show that the distrib-
ution of assignments under the PRP mechanism is the same, regardless of the partition
of the schools.

We prove a similar equivalence result for another new mechanism that we introduce
called Partitioned Random Endowment (PRE), which can be thought of as a general-
ization of both the single lottery mechanism and the Random Endowment (RE) mech-
anism. In the RE mechanism, each agent is endowed with a distinct house, each of
the n! endowments being equally likely; the resulting allocation is the core of the as-
sociated economy, computing using the top trading cycles (TTC) procedure defined by
Shapley and Scarf (1974). In PRE, there is a partition S1, S7, ..., S of the schools; the
students are partitioned—in a particular way that is described in Section 2.2—into sets
N1, N3, ..., Ny such that N; has exactly |S;| students, and every school in S; has a com-
mon ranking of the students in N;. Thus, if each school is in a partition by itself, we
recover the RE mechanism; if all the schools form a single partition, we recover the sin-
gle lottery mechanism. Our equivalence result thus subsumes the earlier equivalence
result, due to Abdulkadiroglu and S6nmez (1998) and Knuth (1996), of the RE and single
lottery mechanisms.

Finally, in contrast to the proofs of earlier equivalence results, our proof technique is
elementary, inductive, and relies on basic properties of the cycle structure of permuta-
tions. We illustrate the usefulness of this approach by providing, in Section 4, an analy-
sis of the house allocation model with existing tenants, where some agents are endowed
with a house. In this context, there is a natural generalization of the RE and RP mecha-
nisms. Sonmez and Unver (2005) illustrate the relationship between the two; our tech-
niques allow us to provide a simple alternative proof of their result. We also establish a
new equivalence result for this model.

2. THE MODEL

Let N denote the set of students and S denote the set of schools, and suppose [N| =
|S| = n. Each student has a strict preference ordering of the schools and wishes to at-
tend exactly one school. Each school wishes to admit exactly one student, but does not
care which one it admits. Because the school preferences exhibit extreme indifference,
we can view this problem as a house allocation problem in which the agents are students
and the houses are schools. This analogy is possible only because the schools are treated
as objects that do not care about their assignment. Not surprisingly, some of the mech-
anisms proposed for the school choice problem have been inspired by the house allo-
cation literature (Abdulkadiroglu and Sénmez 2003, Erdil and Ergin 2008, Pathak 2008,
Abdulkadiroglu et al. 2009).

41f each school is in a partition by itself, we recover the multiple lottery mechanism; if all the schools
belong to a single partition, we recover the single lottery mechanism.
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2.1 Existing mechanisms

Animportantingredient in house allocation mechanisms is the precise manner in which
conflicts between agents are resolved: if many agents rank the same house as their most
preferred house, which one of them gets it? If houses had strict preferences (as would be
the case in a fwo-sided matching problem), such conflicts can be resolved based on the
preference ordering of the house in question. As houses do not have strict preferences,
a natural idea is to generate a priority list of agents for each house that will be used to
resolve conflicts. The various mechanisms proposed for the house allocation problem
differ only in how these priority orderings are generated (equivalently, how such con-
flicts are resolved). We review the prominent mechanisms before describing the two
new mechanisms we propose.

RanpoMm ENnDOwMENT (RE). Each agent is given top priority at a distinct house, with
each of the n! possibilities being equally likely. For a given priority list, the resulting
allocation is the (unique) core of the associated trading game in which the top-priority
agent at any house is said to “own” that house. This allocation can be found using the
TTC algorithm: construct a graph with one node for each agent; there is an arc from
node i to node j if agent j owns agent i’s most preferred house (note that j could be i,
in which case there will be a self-loop). This graph must have a cycle as every node has
out-degree 1 and the graph is finite. Each agent in the cycle is assigned the house owned
by the agent he points to and all these nodes are deleted. The computation is repeated
on the residual problem, which involves only the remaining agents and the remaining
houses, each of which is necessarily owned by a distinct remaining agent.

Ranpom PrioriTy (RP). The agents are ordered randomly, with each of the n! orderings
being equally likely. Every house uses this ordering as its priority list. For any given pri-
ority list, the resulting allocation is found as before by the TTC algorithm, with the mod-
ification that each house is owned by the agent who appears first in its priority list. Note
that, with this new definition, an agent may own multiple houses at a time; moreover, a
house owned by some agent may be owned by a different agent later on. Neither one of
these aspects is present in the RE mechanism. Finally, this mechanism is equivalent to
the more familiar description of the RP mechanism: the agents are ordered uniformly
at random, make their choices according to this ordering, and pick their most preferred
house that is still available when it is their turn.

INDEPENDENT RaANDOM PrioriTY (IRP). Each house draws a random ordering of the
agents, independently of the other houses, with each of the n! orderings being equally
likely. Thus the priority profile of the houses is equally likely to be any one of the (n!)”
possibilities. For any given priority profile, the resulting allocation is found as before by
the TTC algorithm.

The three mechanisms introduced so far—RE, RP, and IRP—all have very different
descriptions. It is therefore remarkable that all of these mechanisms are equivalent.
The RP and RE assignments are obtained by running the TTC algorithm on ! profiles.
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That they find the same distribution over assignments was shown by Abdulkadiroglu
and S6nmez (1998) and Knuth (1996), independently. Both papers construct a bijective
proof—with any given ordering of the agents (RP), they associate a distinct endowment
(RE) such that the resulting final assignment is identical. In contrast, the IRP assignment
is found by running the TTC algorithm on (n!)" profiles. It is also possible to prove the
equivalence of RP and IRP using the following approach: associate with any given or-
dering of the students a set of (n!)"~! priority profiles of schools such that the resulting
final assignment is identical, and such that the sets of priority profiles associated with
distinct student orderings are disjoint (see Pathak 2008 for these details).

2.2 New mechanisms

The mechanisms discussed so far were all for one-to-one allocation problems: each
agent wishes to be assigned a house and each house can be assigned to exactly one
agent. The assignment problems arising in school choice, however, are typically many-
to-one: a school can admit many students, whereas each student still wishes to be as-
signed to one school. We can, of course, formulate an equivalent one-to-one version of
the problem: if a school can admit 13 students, we can make 13 copies of that school and
have each student rank all the copies of this school in an arbitrary (but fixed) way. There
is no difficulty in extending the RP mechanism. But the IRP and the RE mechanisms
are somewhat unnatural in the equivalent one-to-one formulation. Ideally, we would
like the IRP mechanism to allow the priority list of each school to be generated indepen-
dently. In the equivalent one-to-one formulation, IRP allows each “seat” to generate its
own priority list, so that different copies of the same school may have different priority
lists. A similar problem plagues the RE mechanism. To remedy this difficulty, we intro-
duce the following two new mechanisms for the school choice problem. (To emphasize
the application, we switch to students and schools instead of agents and houses.)

PARTITIONED RANDOM PrIORITY (PRP). Fix an arbitrary partition of the schools S into
sets S1, 82, ..., Sk. School priority lists are determined in the following way: For each i,
the schools in S; have identical priority lists, which are generated independently and
uniformly. Thus, each of the (n!)¥ priority profiles is equally likely. The distribution of
assignments under the PRP mechanism can be found by running the TTC algorithm on
each of the (n!)* possible priority profiles. When each school is in a partition by itself,
we recover the IRP mechanism. When all the schools are in one partition, we recover the
RP mechanism.

ParTiTIONED RANDOM ENDOWMENT (PRE). Fix an arbitrary partition of the schools §
into sets S1, 52, ..., Sk. School priority lists are determined in the following way: the stu-
dents are arranged uniformly at random, all n! orderings being equally likely. From this
random ordering, the first || students form the top |S1| choices of each of the schools
in Sy; the next |$;| students form the top |S,| choices of each of the schools in §;, etc.
Again, the distribution of assignments under the PRE mechanism can be found by run-
ning the TTC algorithm on each of the n! possible priority profiles. When each school is
in a partition by itself, we recover the RE mechanism. When all the schools are in one
partition, we recover the RP mechanism.
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Our main result (in Section 3) is that, for both mechanisms, the distribution of as-
signments is the same for any partition of the schools. In particular, the IRP and PRE
mechanisms are equivalent to the RP mechanism. Thus our main result generalizes the
earlier results of Abdulkadiroglu and S6nmez (1998) and Knuth (1996).

3. THE EQUIVALENCE RESULT

Let 1,5, ..., S be a partition of the schools. What does it mean to generate a ran-
dom preference profile with respect to this partition? We start with the PRP mechanism.
Imagine n cards—one for each student—arranged in a sequence next to each school.
The cards are all face down, and the sequences are identical for all the schools in each S;.
Consider now the PRE mechanism. As in the PRP mechanism, all the schools within a
given S; have an identical priority list. The difference is that in the PRE mechanism, the
schools in S; have an identical ranking of |S;| students and these students are not in the
“priority” list of any of the other schools. That is, the students are partitioned so that
exactly |S;| students appear in the priority list of the schools in §; and they are ranked
identically by the schools in S;, with each of the |S;|! rankings being equally likely.

When can the TTC algorithm find a given cycle C = (i, iy, ..., i»)? The TTC algo-
rithm can find C only if, for every 1 < ¢ < m, student i, ; has the top priority at stu-
dent i,’s most preferred school (where i), is to be read as i;). In particular, the m stu-
dents in C should all have distinct most preferred schools. Suppose the TTC algorithm
finds cycle C in the given priority profile. We can delete the students in C along with
their most preferred schools. We can also remove the cards bearing the name of any
student in C from the remaining n — m schools, as these students have no further role to
play in the TTC algorithm. We call the instance thus obtained the residual instance after
eliminating cycle C. Let S}, 5, ..., S, be the partition of the remaining n — m schools
where S’ contains those schools in §; that are still in the residual instance. (Note that
each S; can lose at most one school. Also, if some S}. is empty, it can be deleted, so the
number of nonempty classes in the partition for the residual instance may be strictly
smaller than k.) The critical observation is that—for both PRP and PRE mechanisms—
this residual instance is equally likely to be any of the possible profiles with the partition
81,85, ..., 8}, This follows from the observation that eliminating cycle C does not con-
vey any information about the priority lists of any of the remaining schools with respect
to the remaining students.

It is clear that cycles play an important role in both mechanisms. Moreover, the cy-
cles that could be found as a first cycle are the same for both PRP and PRE, so the dis-
cussion that follows applies to both mechanisms. To make these notions precise, we
introduce some notation. Recall that Sy, Sy, ..., Sy is the given partition of the schools.
Fori=1,2,..., k,let N; be the set of students whose most preferred school is in ;. From
the earlier discussion, any cycle that can be found as a first cycle can have at most one
student from each N;. Let C be the collection of all such cycles. We use C to denote a
generic member of C and let C be the set of students involved in the cycle C. Note that
it is possible for C,C’ € C, C # C’, and C = C'. Given two cycles C, C’' € C, we say that
C and C’ conflict if for some i, N; N C and N; N C’ are both nonempty. For any ¢ > 1, C*
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consists of products of ¢ cycles of C such that no pair of cycles conflicts. Note that C! is
just C, and C* consists of products of ¢ distinct cycles of C, all of which can be simultane-
ously present in some priority profile (and each of which can potentially be uncovered
as a first cycle). We illustrate these definitions in the following example.

ExampLE 1. Consider the following instance with 5 students and 5 schools, each with
one seat. The strict student preferences are

1 2 3 4 5
a a b d c
b d a b e
c ¢ d a a
d b ¢ c¢c b
e e e e d

Suppose the given partition of the schools is S; = {a,d}, S, = {b, e}, and S3 = {c}.
Then N1 =1{1, 2, 4}, N, = {3}, and N3 = {5}. In this case

C={D),(2),3), ), (5),(13),(23), (43), (15),
(25), (45), (35), (135), (153), (235), (253), (435), (453)}.

Note that cycle (3) can be uncovered only if b has 3 as its top-priority student; cy-
cle (25) can be uncovered only if ¢ has 2 as its top-priority student and a has 5 as its
top-priority student; finally (435) can be uncovered only if schools d, b, and ¢ have stu-
dents 3, 5, and 4 as their top-priority students, respectively. We distinguish the cycle
(453) from (435) because (453) can be uncovered only if schools d, b, and ¢ have stu-
dents 5, 3, and 4 as their top-priority choices, respectively. (Thus the top-priority stu-
dents of d and b are switched in these two cycles.) We turn now to c2. By definition, c?
consists of products of two distinct cycles of C that can be simultaneously present in a
priority profile. Thus

C* ={(DA3), (1)(5), (D3, (2)(5), (4)(3), (4)(5), (3)(5), (13)(5),

(23)(5), (43)(5), (15)(3), (25)(3), (45)(3), (35)(1), (35)(2), (35)(4)}.
Note that the product of cycles (1)(4) is not in C?> even though the individual cycles (1)
and (4) are both in C. This is because it is not possible for both agents 1 and 4 to be

part of a cycle in the first iteration (as their most preferred schools both belong to $;).
Similarly, it is easy to check that

= {(DB)(5), 3)(5), (M (3)(5)}
and Cf = o for ¢ > 3. 0

Before stating the main result, we prove the following lemma on the cycle structure
of permutations. This is a well known result, but we present a proof for the sake of com-
pleteness.
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LEMMA 1. Let c(m, £) be the number of permutations of m elements that can be written
as a product of ¢ cycles.® Then, for any m > 1,

m
Z(—l)f—lc(m,z) =0.
=1
Proor. Foranym > 1,
cm,)=cim—-1,—1)+(m—1c(m—1,1%). 1

The left-hand side is, by definition, the number of permutations of m elements that
can be written as a product of ¢ cycles. The right-hand side counts the same set of per-
mutations in a different way: either the element m is in a cycle by itself, in which case
the rest of the elements have to be written as a product of £ — 1 cycles, or the element m
is in a cycle with some other element(s), in which case the remaining elements have to
be written as a product of £ cycles, and element m can be inserted into this product in
(m — 1) ways. We use the recurrence relation (1) to prove the lemma by induction.

It is clear that ¢(2, 1) = ¢(2, 2) = 1, so the lemma is true when m = 2. For any m > 2,
using the recurrence relation (1), we have

Z(—l)e_lc(m, 0) = Z(—n’f—lc(m —1,6—1)+ Z(—l)ﬁ—l(m —De(m—1,0).
=1 =1 =1

Noting that c¢(m — 1,0) = c¢(m — 1, m) = 0, we find that the first of these terms is the
alternating series

—cm—1,D+cm-1,2)—cim—1,3)+---+ (=D le(m-1,m - 1),
whereas the second is the alternating series
(m—"1)(cm—1,1)—c(m—1,2) + c(m—1,3) +---+ (=1)"2c(m — 1,m — 1)).
Adding these two terms, we get
m—1
(m—-2)Y (-1 e(m—1,0),

=1

which is zero by the induction hypothesis. O
We are now ready to state the main result.

THEOREM 2. The distribution of assignments determined by the RP mechanism is identi-
cal to the distribution of assignments under the PRP mechanism, for any partition of the
schools.

5The numbers c(m, £) are known as the unsigned Stirling numbers of the first kind; see Stanley (1997) for
further details.
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Proor. The result is clearly true when there is one student and one school. Consider
an instance with » students and » schools, and suppose the result holds for all smaller
problems. Fix a partition Sy, S5, ..., S, of the schools.

Let RP(X) denote the outcome of the RP mechanism when the agents in N \ X are
removed along with their most preferred schools. Since each agent is equally likely to
be the first agent in the uniform random ordering chosen by the RP mechanism, we can
conclude that

“1
RP(N) = gl —{Yi +RP(N \ (i}, @
where Y; indicates the assignment of student i to his most preferred school.

Now we turn to the PRP mechanism. As discussed earlier, the PRP mechanism works
by finding a cycle (that is necessarily in C by definition). Let P(C) be the probability that
cycle C can be uncovered (i.e., cycle C is present in a priority profile that is drawn uni-
formly at random from all possible priority profiles) and let Y7 indicate the assignment
in which each student in C is allocated his most preferred school. Thus, analogous to (2),
we may be tempted to write

PRP(N) =Y P(C){Yg+PRP(N\C)}.
ceC

This, however, is incorrect: it is possible for cycles C and C’ both to be present in a given
profile, in which case that profile is counted once for C and once for C’ in the expression
above. The profiles that are overcounted are precisely those in which a cycle in C? is
present,® but subtracting these would undercount profiles that contain three distinct
cycles from C: these are counted thrice, once for each cycle, but subtracted thrice as
well, once for each pair of cycles, so we need to add back the profiles that contain a cycle
in C3. Taking this argument to its logical conclusion, we find

k
PRP(N) =) " > (=)' 'P(C){Yz+PRP(N \ O)}, 3)
t=1cCecCt

where Y= and C! are as defined earlier.

Consider any subset X of students and let | X'| = m. Suppose there is a cycle C in C*
such that C = X. Observe that P(C) = 1/n™—for any agent in X, the cycle C assigns his
most preferred school to a particular agent (also in X) and this occurs with probabil-
ity 1/n, independently, for each of the m agents in X. If, alternatively, there is no cycle
in C* involving the agents in X, we can take P(X) = 0. In either case, we can write P(X)
instead of P(C), as this probability depends only on the number of agents in C. Further-
more, the term inside the braces in the right-hand side of (3) depends only on X, noton

6To avoid cumbersome notation, we use C to denote a generic element in C* for any ¢ > 1. Any element
C e C? is a product of two cycles, not a simple cycle.
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the actual cycle involving the agents in X. Using these observations, we can rewrite (3)
as

k
PRP(N)= ) (YX+PRP(N\Y))P(Y){ZZ(—l)‘f—l]. @)
X:XCN e=1cect
C=X

We now focus on the term inside the braces in (4). As X has only m students, it is
clear that for any ¢ > m, no cycle C € C* can have C = X. This means that the upper
limit of the first summation in that term can be changed from k to m. Therefore, we
have

£ i " 1 ifm=1
-1 el -1 _ =
DY EDTEEY Y (=D =) (=D e, ) {0 o
t=1CeCt t=1cCceCt =1
C=X C=X
where the last expression follows from the definition of c(m, ¢) and Lemma 1. Thus the
only terms that survive in the right-hand side of (4) are those for which | X| = 1. In this
case, however, P(X) =1 /n and (4) simplifies to

n
1 .
PRP(N) = le ;{Y,- +PRP(N \ {ih}.
=
By the induction hypothesis, PRP(N \ {i}) = RP(N \ {i}) regardless of the partition of
the schools (in the problem without student i). We see that the expressions that deter-

mine PRP(N) and RP(XV) are identical, establishing the result. O

An important consequence of Theorem 2 is an equivalence result for school choice
in which schools can admit more than one student.

THEOREM 3. Consider a school choice problem with n students and k schools. Suppose
school i can admit q; students, and suppose ) ; q; = n. The distribution of assignments
obtained by the TTC algorithm is the same, whether a common lottery is used for all the
schools or whether each school uses its own independent lottery.

Proor. Make g; copies of school i and replace all occurrences of school i in the student
preference lists by an arbitrary, but consistent ordering of all its copies; this results in an
equivalent one-to-one matching problem. Place all the copies of a given school into one
partition, so that the partition structure of the “schools” for the PRP mechanism is pre-
cisely S1, 82, ..., Sk, where §; consists of all copies of school i. The RP mechanism finds
the outcome when a common ordering is used by all the schools; the PRP mechanism
finds the outcome in which each school uses an independent ordering of the students.
The result now follows from Theorem 2. d

We state and prove a parallel result for the PRE mechanism.
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THEOREM 4. The distribution of assignments determined by the RP mechanism is identi-
cal to the distribution of assignments under the PRE mechanism, for any partition of the
schools.

Proor. The proof is identical to the proof of Theorem 2, the only change being the ex-
pression for P(C). For the PRP mechanism, we saw that P(C) = 1/n™ whenever C is a
cycle involving m students; for the PRE mechanism, however,

1 1 1

P S )
(©) nn—1 n—-m+1

This is so because the most preferred schools of the students involved in the cycle C all
are required to have distinct top-priority students. The exact expression for P(C) does
not matter whenever C has more than one student because of the cancellation of terms
(by Lemma 1). When C has exactly one student or, equivalently, whenm =1, P(C) =1/n
as in the proof of Theorem 2 and the result follows. O

This theorem has a number of implications and extensions. First, Theorem 4 pro-
vides an alternative proof of the equivalence of RP and RE mechanisms: this alternative
proofrelies on induction and counting instead of the original bijective argument due to
Abdulkadiroglu and S6nmez (1998) and Knuth (1996). A similar comment applies to the
alternative equivalence proof of RP and IRP, implicit in Theorem 2.

Moreover, the discussion preceding Lemma 1 suggests a simple equivalence proof
of the RE and IRP mechanisms. Recall that in the IRP mechanism, each school is in a
partition by itself and generates its priority list uniformly at random, independently of
the other schools. As the sets ! are identical for both RE and IRP for any ¢ > 1, we may
conclude that the expressions—like (3)—for the RE and IRP mechanisms are identical,
making Lemma 1 unnecessary. Note, however, that Lemma 1 is still needed: although
RE and IRP are very similar, P(C) is different for these two mechanisms, so the recursive
expressions are different.

Furthermore, we defined the PRP and PRE mechanisms with respect to a fixed parti-
tion of the schools. However, the equivalence proof of Theorem 4 applies more broadly.
Consider a model in which there is an initial partition of the schools and the top-priority
student for each partition is drawn as in the PRP (or PRE) mechanism. The outcome
of the TTC algorithm in this step determines the partition of the remaining schools in
the next step, at which point the top priority student for each partition is determined
again. Thus, the partition at stage ¢ of the algorithm could depend on the entire his-
tory of allocations determined in stages 1,2, ..., ¢t — 1. This and closely related models
are discussed in Pdpai (2000), Chen (2007), and Svensson and Larsen (2005). Theorem 4
establishes the equivalence of all of these mechanisms to the RP mechanism.

Finally, consider the following model for generating priority lists for the schools.
Suppose we are given (N1, Ny, ..., N,) with each N; > 1. Consider a box in which there
are N; balls of color i. A ball is drawn at random from this box, and if the drawn ball is
of color i, then i gets top priority, all balls of color i are removed from the box, and the
procedure is repeated. Note that the probability of agent i having a higher priority than
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12 Pathak and Sethuraman Theoretical Economics 6 (2011)

agent j is N;/(N; + N), regardless of which other agents are present. (If the N; are iden-
tically 1, we get the uniform distribution.) It is a simple matter to check that if all priority
lists are drawn from this distribution, then the uniform lottery mechanism is equivalent
to the multiple lottery mechanism.

4. HOUSE ALLOCATION WITH EXISTING TENANTS

These ideas can be used to obtain a simpler proof of another equivalence result, due to
Sonmez and Unver (2005), on house allocation with existing tenants. In an instance of
this problem there are n agents and » houses; n — r of the agents are existing tenants,
each of whom already occupies a distinct house; the remaining r agents and the r unoc-
cupied houses constitute the new arrivals to the problem. There is a natural generaliza-
tion of the RP and RE mechanisms to this setting. First we describe the RP mechanism:
order the agents uniformly at random and let agents make their choices in this order, ex-
cept that whenever an agent j demands a house already occupied by an agent j/, then j/
gets promoted to just before j in the ordering. In this case, j’ is invited to make his choice
and j picks only after j’ is assigned a house (that may possibly be the one that he already
occupies). For the RE mechanism: endow the new houses uniformly at random to the
new agents, each existing tenant is endowed the house he occupies, and apply the TTC
algorithm to this trading game. It is not hard to see that, as defined, the RE mechanism is
not equivalent to the RP mechanism. This is because the new agents are treated prefer-
entially in the RE mechanism: if j’ is an existing tenant who happens to occupy a house
that is the last choice for all the agents (including himself!), j/ cannot be assigned any
other house under the RE mechanism, but he could get other houses under RP. Sonmez
and Unver (2005) modify the RP mechanism in the following way: the new agents are
ordered uniformly at random and the existing tenants appear after the new agents in an
arbitrary order.” They show that this modified RP mechanism is equivalent to the RE
mechanism. We prove this result next. (To emphasize the distinction in context, we use
the terms “agents” and “houses” in this section instead of students and schools.)

THEOREM 5. For the house allocation mechanism with existing tenants, the RE mecha-
nism (which assigns the new houses randomly to the new agents) is equivalent to the RP
mechanism in which all the new agents are ordered uniformly at random before any of
the existing tenants.

Proor. We prove the result by induction on the number of existing tenants. If there are
no existing tenants, the result follows from Theorem 4.

Suppose there are ¢ existing tenants. We may assume that initially there is no cycle
involving the existing tenants alone: that is, there is no set of existing tenants iy, i, . . ., i
such that the most preferred house of agent i; is the one occupied by i;, (where i,
isread as i1). If there is one, observe that the RE and RP mechanisms will always assign

“We could, of course, look at uniform random orderings of the existing tenants as well, but as it turns out
their exact ordering does not matter as long as they appear after the new applicants. This will be apparent
from the proof.
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these houses to these agents such that each agent in this set gets their most preferred
house; we can then delete these agents and their respective houses, and the result fol-
lows by induction (as we have an instance with fewer existing tenants).

Suppose there are n agents and » houses in all, and suppose there are r new appli-
cants, who, without loss of generality, we assume to be agents 1,2, ..., r. Then, in the
RP mechanism, each of the r new agents is equally likely to be the first. Suppose (new)
agent i is first. As we assume that there is no cycle involving the existing tenants alone,
observe that agent i will necessarily receive his first choice—either i’s first choice is an
unoccupied house or i’s first choice is an occupied house in which case the owner of
that house will ask for his best choice; this latter house is either unoccupied (in which
case the chain stops) or is occupied by another existing tenant, who will now ask for his
best choice, etc. By our assumption, this chain will have to end with an existing tenant
asking for an unoccupied house. The agents involved in this chain, including agent i,
will all get their most preferred house. Let C; be the set of agents involved in the chain
started by agent i. Note that C; contains i and does not contain any other new applicant.
The relevant recursion for the RP mechanism is

r

1
RP(N) =) ;{Yc,« +RP(N \ {CiD},
i=1

where Y, indicates the assignment in which the agents in C; get their most preferred
houses.

Let C be the set of cycles that can be uncovered as a first cycle by the RE mechanism.
As before, we think of cycles as involving just the agents as it is understood that the
houses involved are all the most preferred houses of the agents in the cycle. Let C* be
defined analogously as well, for £ = 1,2, ..., with ! = C. Finally, note that the existing
tenants are always endowed with the houses they occupy. Clearly,

RE(N)=) " Y (=D 'P(O){Yz+RE(N \ O)}, (5)
t=1cCcecCt

where Yz and C* are as defined before.

Consider an arbitrary set X € N of agents. Suppose there is a cycle C in C* such that
C = X. As the endowment of the occupied houses is fixed, it is clear that for any agent
i € C, if i’s most preferred house is an occupied house, then i must be followed by the
existing tenant occupying that house. So the only agents in C for whom a successor is
not already determined are those whose most preferred house is new. Suppose there are
exactly m of these agents in C. Then observe that

11 1
P(C)=- .
© rr—1 r—m+1

This is because the new houses that each of these agents desire must each be endowed
to a distinct new applicant—there are r choices for the first new applicant, » — 1 for the
second, and so on. As before, if there is no cycle in C* involving the agents in X, we can
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take P(X) = 0. In either case, we can write P(X) instead of P(C), as the probability does
not depend on the cycle, but only on the set of agents involved in the cycle (in fact, it
depends only on m and r). Furthermore, the term inside the braces in the right-hand
side of (5) depends only on X, not on the cycle X itself. Using these observations, we
can rewrite (5) as

REN) = ) (Y7+RE(N\Y)>P(Y>{Z Z(—l)f—l}. (6)
X:XCN t=1cect
C=X

We now focus on the term inside the braces in (6). As | X | has only m agents whose most
preferred house is new and as each cycle in C has at least one of these agents, it is clear
that for any ¢ > m, no cycle C e C* can have C = X. This means that the upper limit of
the second summation can be changed from r to m. Therefore, we have

-1 -1 -1 _ 1 ifm=1

Y SR S en =Y ano={g =]
=1 CeC* {=1CecCt
Cc=X C=X

where the last expression follows from the definition of c(m, ¢) and Lemma 1. Thus the
only terms that survive in the right-hand side of (6) are those for which there is exactly
one agent whose most preferred house is new. This also implies that there is exactly one
new applicant in the cycle—as the new houses are all endowed to the new applicants,
the number of new houses in any cycle should equal the number of new applicants in
the cycle. In this case, however, P(C) = 1/r, and (5) simplifies to

r

1
RE(N)=)" —{Yc, + RE(N \{Cih}-
i=1

By the induction hypothesis, RE(N \ {C;}) = RP(N \ {C;}). We see that the expressions
that determine RE(/N) and RP(V) are identical, establishing the result. O

The equivalence of RP and IRP mechanisms can be generalized to this setting as
well. The RP mechanism was defined earlier in this section, but the following equivalent
definition will be convenient: first a common priority ordering of the agents is drawn for
all houses. The priority ordering for each new house is this common priority ordering;
for each of the occupied houses, the existing tenant is moved to the top of the priority
ordering, leaving the relative ordering of the others the same. The TTC algorithm applied
to the given preference profile along with this (random) priority profile finds the same
assignment as the one found by the RP mechanism described by Abdulkadiroglu and
Sonmez (1998). The PRP mechanism works in a similar manner, except that priorities
are drawn uniformly and independently for each house: for each new house, the priority
orderings are drawn uniformly at random from the set of all permutations of all agents;
for each occupied house, the owner of that house appears first in the ordering, and a
random priority ordering of the remaining agents is drawn uniformly. The proof of the
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equivalence of these two mechanisms is very similar to that of Theorem 2 and is omitted.
As in the statement of that theorem, the results extend to situations in which houses are
partitioned arbitrarily, with the caveat that whenever multiple occupied houses belong
to the same block in the partition, the owners of these occupied houses are given top
priority at the houses they occupy (the relative ordering of the other agents will be the
same for all the houses in the partition).

More generally, the philosophical discussion on multiple versus single randomiza-
tion and the perceptions of policymakers that motivate the analysis here may also be
relevant in other distinct contexts, where randomization is applied for fairness reasons.
In the model analyzed here, students do not know their lottery number before submit-
ting their preferences, but they are modeled as knowing their preferences or type. It may
be possible to examine models where a randomization determines a student’s type fol-
lowing a Harsanyi veil of ignorance thought experiment. From a welfare perspective, this
lottery over student identities may not be equivalent to a lottery over outcomes, a point
made by Grant et al. (2010). Another issue raised from this case study is that even though
these two mechanisms are equivalent, policymakers may prefer to conduct multiple lot-
teries because they are perceived as being fairer on procedural grounds. These issues are
likely an important constraint in practice, and developing models of how mechanisms
are perceived is an important area for future work.
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