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Abstract

We propose a restrictiveness measure for economic models based on how well they

fit synthetic data from a pre-defined class. This measure, together with a measure

for how well the model fits real data, outlines a Pareto frontier, where models that

rule out more regularities, yet capture the regularities that are present in real data,

are preferred. To illustrate our approach, we evaluate the restrictiveness of popular

models in two laboratory settings—certainty equivalents and initial play—and in one

field setting—takeup of microfinance in Indian villages. The restrictiveness measure

reveals new insights about each of the models, including that some economic models

with only a few parameters are very flexible.
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1 Introduction

If a parametric model fits the data well, is it because the model captures structure specific to

the observed data, or because the model is so flexible that it would fit almost all conceivable

data? This paper provides a quantitative measure of restrictiveness that can distinguish

between these two explanations, and is easy to compute in a variety of applications.

Our approach for evaluating the restrictiveness of a model is to generate synthetic data

sets, and evaluate how well the model fits this synthetic data. Some models have known

properties, for example Cumulative Prospect Theory requires that certainty equivalents for

lotteries respect first-order stochastic dominance. For these models, the relevant question

may not be whether the model is restrictive at all, but instead how much content it has

beyond these known constraints. We define the eligible data to be those data sets that satisfy

specified background constraints, and measure a model’s restrictiveness by its (normalized)

average error across the eligible data.

We complement the evaluation of restrictiveness, which is based solely on synthetic

data, with an evaluation of the model’s performance on actual data, using the complete-

ness measure proposed in Fudenberg et al. (2022). Restrictiveness and completeness provide

complementary perspectives, and define a Pareto frontier where models that rule out more

regularities, yet capture the regularities that are present in real data, are preferred.1

Section 4 provides axioms for our restrictiveness measure to clarify its theoretical prop-

erties. The main axioms require that the measure is homogeneous in the unit scale used

to quantify model error, and that the measure has a linearity property as the background

constraints are varied. An additional “symmetry” axiom requires that the model’s ability to

approximate different synthetic data sets has the same effect on the restrictiveness measure.

Dropping this axiom returns a broader class of restrictiveness measures, where instead of

1These are not the only considerations that matter for evaluating models, and we do not speak to other
important concerns such as parameter estimation and causal inference. Nevertheless, these two measures
may be relevant to those problems as well: If a model can fit almost any data set, then its good fit to a
specific real data set does not necessarily mean that the model is the “right” model.
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averaging across synthetic data sets, the data sets are weighted by an analyst’s prior. We

develop estimators for both the restrictiveness and completeness measures in Section 5, and

establish their asymptotic properties so that users can compute confidence intervals.

A key feature of our restrictiveness measure is that is computable without the guidance

of theoretical results about the model’s implications or empirical content. This differentiates

restrictiveness from measures such as the model’s VC dimension, or its hit-rate and accuracy-

rate as defined in Selten (1991).2 (Section 3.4 reviews the related literature and relates it

to our work.) The measure’s tractability makes it easy to apply to a variety of contexts,

as we demonstrate by applying it to models from three economic domains: (1) predicting

certainty equivalents for binary lotteries (where we evaluate Cumulative Prospect Theory and

Disappointment Aversion); (2) predicting initial play in matrix games (where we evaluate

the Poisson Cognitive Hierarchy Model (PCHM), Logit PCHM, and Logit Level-1 ); and (3)

predicting takeup of microfinance in Indian villages (where we evaluate linear regression

models based on economically-motivated regressors, and a structural model of diffusion).3

The first two settings use data from the lab, our third application uses field data. In each of

these domains, these measures reveal new insights about the models we examine, which we

now summarize:

Application 1: Certainty Equivalents. We evaluate two models on a set of binary

lotteries from Bruhin et al. (2010): a popular three-parameter specification of Cumulative

Prospect Theory (Tversky and Kahneman, 1992), henceforth CPT, and a two-parameter

specification of Disappointment Aversion (Gul, 1991), henceforth DA. We find that CPT

performs strikingly well on the Bruhin et al. (2010) data, achieving a completeness of 95%,

while DA’s completeness is only 27%.

One explanation for this finding is that CPT is a much better model of risk preferences

2There are representation theorems for many non-parametric theories of individual choice, and some
analytic results for the sets of equilibria in games, but we are unaware of representation theorems for most
functional forms that are commonly used in applied work.

3In addition to these applications, Schwaninger (2022) uses our restrictiveness measure to evaluate models
of bargaining with inequity aversion, Ellis et al. (2022) uses it to evaluate models of consumer demand from
budget sets, and Ba et al. (2023) uses it to evaluate models of reaction to information.
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than DA. Another possibility is that CPT is simply more flexible. We thus evaluate the

restrictiveness of the two models, where our background constraints are that the synthetic

average certainty equivalents must lie within the range of the lotteries’ possible payoffs,

and must respect first-order stochastic dominance (FOSD). We find that CPT is indeed

substantially less restrictive than DA: CPT performs better than DA not only on the real

data set but also on the other eligible data sets. This tells us that FOSD constitutes a large

part of the empirical content of CPT on the domain of binary lotteries, while DA imposes

substantial additional restrictions.4

Besides comparing distinct models such as CPT and DA, restrictiveness and complete-

ness can be compared across nested models to reveal the role played by specific parameters.

Adding a parameter always at least weakly increases completeness and decreases restric-

tiveness, but some parameters achieve greater improvements in completeness for the same

decrease in restrictiveness. We find that several parameters lead to large drops in restric-

tiveness in return for only marginal improvements in completeness, suggesting that these

parameters may add flexibility in the wrong directions. The CPT parameter that governs

the curvature of the probability weighting function, however, achieves a large improvement

in completeness compared to the flexibility it adds, so this parameter seems to capture an

important part of risk preferences. Indeed, it is the curvature of the probability weighting

function that has played a key role in many of the applications of CPT to financial data

(e.g., Barberis and Huang (2008) and Green and Hwang (2012)).

Application 2: Initial Play in Games. Next, we evaluate three models on a set

of 3 × 3 matrix games from Fudenberg and Liang (2019): the Poisson Cognitive Hierarchy

Model, or PCHM (Camerer et al., 2004); Logit PCHM (Wright and Leyton-Brown, 2014),

which allows for logistic best replies in the PCHM; and Logit Level-1, which models the

distribution of play as a logistic best reply to the uniform distribution. We impose the

background constraint that strictly dominant actions are played at least as often as if by

4DA’s low completeness suggests that these restrictions are not supported by the experimental data.
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chance (i.e. with probability at least 1/3) and that strictly dominated actions are played

with probability no more than 1/3. We find that all three models are highly restrictive

relative to these constraints, which shows that the constraints on the frequency of strictly

dominated and strictly dominant strategies are a very small part of their empirical content.

The restrictiveness of Logit PCHM and Logit Level-1 is nearly identical, although Logit

PCHM has two parameters while Logit Level-1 has one.

Application 3: Diffusion on a Social Network. Finally, we consider the prediction

of microfinance takeup rates in the set of Indian villages studied by Banerjee et al. (2013,

2019), and compare the performance of OLS regression on various economically-motivated

regressors with that of an economically-motivated partially linear model built upon “network

gossip centrality.” Here we find that the partially linear model is dominated by a simple

OLS model based on the average eigenvector centrality of leaders: the latter has higher

restrictiveness and higher completeness.

Besides these specific findings about each of these economic domains, our analyses make

the high-level point that it is not sufficient to count parameters to understand a model’s

restrictiveness. Even with just 3 parameters, CPT is not very restrictive on the domain of

binary lotteries, and models with different numbers of parameters (such as Logit PCHM and

Logit Level-1) turn out to be similarly restrictive. These comparisons are not obvious from

the functional forms, but are easy to discover with our restrictiveness measure.

2 Example

Before formally defining our measure, we use a simple example to illustrate it. Suppose

there is a binary covariate x ∈ {x0, x1} and an outcome variable y ∈ [0, 1]. A data set is

an observed outcome for each covariate value, i.e., a point in R2, and the eligible data F is

collection of possible data sets, i.e. a subset of R2. A model is also a subset of R2. The

model explains a data set exactly if the data set is an element of the model.
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Figure 1: Three example models.

Figure 1 considers eligible data [0, 1]2 and depicts three models. Model A includes all of

[0, 1]2, and thus can exactly explain any (eligible) data set. Model B includes all data sets

(y0, y1) satisfying y1 > y0, and so can only explain data sets where the outcome is higher at

covariate x1 than at x0. Model C discretizes the data into a grid and includes every other

element of the grid.

One way of evaluating the restrictiveness of these models is the fraction of eligible data

sets that they can fit exactly (Selten, 1991). But evaluating restrictiveness in this way

obscures important differences between models such as B and C. Both exactly explain 50%

of the data yet Model B appears to impose a more substantive restriction.

Our restrictiveness measure instead takes as given a measure of how well a model approx-

imates the data. This makes it computationally straightforward to estimate in applications

even when we have very little analytical guidance about the model’s predictions (in contrast
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to the Selten (1991) measure, which requires determining exact fit). To estimate restrictive-

ness, we uniformly sample over all eligible data, evaluate the model’s average approximation

error to the realized datasets, and compare it to average approximation error of a benchmark

model. For example, if we use Euclidean distance as our measure of approximation error (as

in Figure 1), and the constant model {(1/2, 1/2)} as the benchmark, the restrictiveness of

Model B is numerically estimated to be about 0.30, while the restrictiveness of Model C is

approximately 0.02. Thus Model B is substantially more restrictive by our measure.

3 Our Methodology

Section 3.2.1 formally defines our measure of restrictiveness. Section 3.2.2 reviews the mea-

sure of completeness from Fudenberg et al. (2022). Section 3.2.3 combines these concepts

with the idea of a Pareto frontier of models that are undominated in completeness and re-

strictiveness. Section 3.3 further discusses the interpretation of our restrictiveness measure.

Section 3.4 describes the relationship to the literature.

3.1 Setup

Our starting point is a data set of observations of (X, Y ), where X is a covariate vector and

Y ∈ Y is an outcome, with Y a compact subset of a finite-dimensional Euclidean space. We

use X to denote the set of covariate vectors, and PX to denote the marginal distribution of X.

We assume that X is finite, and PX is chosen by or known to the researcher.5 A prediction

rule is a function f : X → Y . We denote the set of all such functions by F ≡ Y |X |, and

endow it with the usual topology.

Example 1 (Predicting an Average Outcome). In our application to the prediction of cer-

tainty equivalents (Section 6), the covariate vectors are 25 binary lotteries, each described

5In laboratory experiments the set of features and their relative frequencies are chosen by the experimenter
while in field experiments these are chosen by Nature, but in either case we treat them as known.
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by two prizes and their probabilities, and the outcome space is the observed average (over

subjects) certainty equivalent for each lottery in this data set. A prediction rule is any

function from the 25 lotteries to average certainty equivalents.

Example 2 (Predicting a Distribution). In our application to initial play in 3x3 games

(Section 7), the features are the 18 elements of the payoff matrix, and the outcomes are

distributions over the row player’s actions. A prediction rule is a map from payoff matrices

to probability distributions over row player actions.

3.2 Measures

3.2.1 Restrictiveness

We take as a primitive a discrepancy function d : F × F → R+ where d(f, f ′) measures

how different the two prediction rules f and f ′ are. For example, if Y is a vector in Rn,

a natural choice for d is the expected mean-squared distance between the predictions (with

respect to PX), and if Y is a distribution a natural choice for d is the expected KL-divergence

(again with respect to PX). We allow for functions d that are not distances (such as KL-

divergence), but require that d(f, f ′) = 0 if and only if f = f ′. We also assume that d is

uniformly bounded, and that d(·, f) and d(f, ·) are continuous almost everywhere for each

f ∈ F .6

We will evaluate the restrictiveness of a parametric model FΘ := {fθ}θ∈Θ ⊆ F , where

the prediction rules fθ depend continuously on a parameter θ from a compact set Θ.7 Re-

strictiveness is defined relative to a compact set of “eligible” rules F ⊆ F that reflect any

constraints the model is known to have. For example, if a model is known to imply that

choices respect first-order stochastic dominance, we can define F to be all rules with this

6Given that Y is assumed to be bounded, the uniform boundedness of d is a very weak requirement. The
only reason that we allow for discontinuity in d is to accommodate the case of 1{f = f ′}, the discrepancy
function used in Selten (1991). We recommend in Appendix B that practitioners use a continuous discrepancy
function d.

7Because X is assumed to be finite, Θ can viewed as a subset of a finite-dimensional Euclidean space
without loss of generality.
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property, and measure the model’s additional restrictiveness beyond this. In general, the eli-

gible set F consists of all prediction rules that satisfy user-specified background constraints,

where the special case of F = F corresponds to the question of whether FΘ imposes any

restrictions at all.

We define the restrictiveness of a model to be its expected discrepancy to a prediction rule

f drawn uniformly at random from the eligible set, normalized with respect to the expected

discrepancy of a baseline prediction rule fbase. The baseline prediction rule is chosen to

suit the setting, and we interpret its performance as a lower bound that any sensible model

should outperform.8

Definition 1. The restrictiveness of model FΘ with respect to eligible set F is

r(FΘ,F) =
EλF [d(FΘ, f)]

EλF [d(fbase, f)]
(1)

where λF denotes the uniform distribution on F ,9 and d(FΘ, f) := inffθ∈FΘ
d(fθ, f).10

Normalizing with respect to a baseline has several advantages: First, it makes our measure

invariant to affine rescalings of the units of discrepancy. Second, whenever fbase is chosen

from FΘ, restrictiveness ranges from 0 to 1. A model with r = 0 is completely unrestrictive,

while a model with r = 1 fits synthetic data no better than the baseline prediction rule

does. If a model performs well on real data and is also highly restrictive, then its good

performance occurs not simply because the model can fit any data, but because it precisely

identifies regularities in real behavior.

The ratio in (1) is well-defined as long as the denominator exceed zero, so we will impose

8For example, in our application to predicting initial play in games, we define the baseline prediction
rule to be a uniform distribution over actions. Note that while the choice of baseline affects the value of
restrictiveness, it does not affect the comparative restrictiveness of two models on the same domain.

9Since F is a subset of bounded finite-dimensional Euclidean space, the uniform distribution on F is
well-defined. Section 4 discusses a generalization to other distributions.

10When λF is interpreted as a Bayes prior, then restrictiveness can be interpreted as the ratio of Bayes
risks defined with respect to the discrepancy function d. However, unlike in Bayesian statistics our goal
is not to find a estimator whose “Bayes risk” is small. Indeed, a larger Bayes risk corresponds to higher
restrictiveness, so all else equal we prefer models whose Bayes risk is higher.
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this an assumption going forward:

Assumption 1. EλF [d(fbase, f)] > 0.

Section 4 provides axioms for the restrictiveness measure, which help to clarify the mea-

sure’s theoretical properties.

3.2.2 Completeness

While restrictive models are desirable holding all else equal, a restrictive model is not useful

if it poorly fits real data. To evaluate model fit to real data, we use the completeness

measure introduced in Fudenberg et al. (2022). This takes as a primitive a loss function

l : Y × Y → R+, which is assumed to be continuous. Let PY |X denote the distribution of

Y given X, and P := (PX , PY |X) denote the joint distribution of X and Y . The prediction

rule that minimizes expected loss on the real data is given by

f ∗ ∈ arg min
f∈F

eP (f)

where

eP (f) := EP [l(f(X), Y )] ∀f ∈ F .

For example, if X is a set of lotteries, Y are subjects’ reported certainty equivalents for each

lottery, and l is squared error, then f ∗ takes each lottery into its average certainty equivalent

across subjects. If X is a set of payoff matrices, Y is the set of distributions over actions,

and l(Y, Y ′) is Kullback-Leibler divergence from Y ′ to Y , then f ∗ maps each game to the

corresponding distribution over actions.

Definition 2 (Fudenberg et al., 2022). The completeness of model FΘ is defined by

κ(FΘ) :=
eP (fbase)− inff∈FΘ

eP (fθ)

eP (fbase)− eP (f ∗)
.

By construction, κ lies within the unit interval. A model with κ = 1 matches the
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true f ∗ exactly, while a model with κ = 0 is no better at matching f ∗ than the baseline

prediction rule fbase. In the special case where discrepancy is the expected mean-squared

distance d(f, f ′) = EPX [(f(X) − f ′(X))2] and the baseline prediction rule is constant at

the expectation of Y , fbase = EP [Y ], completeness specializes to the familiar (population)

definition of R2, but completeness is applicable more generally.

We report both restrictiveness r and completeness κ for each application that we consider.

Completeness is defined using the loss function l, while restrictiveness is defined using the

discrepancy function d. When the discrepancy function d and the loss function l are “paired”

in the sense of Online Appendix E,11 then κ(FΘ) = 1−r(FΘ,F), so that completeness is the

complement of the restrictiveness of model FΘ with respect to the (unconstrained) eligible

set F . Our first and third application use mean-squared error as the loss function and

expected squared distance as the discrepancy function; our second application uses negative

log-likelihood as the loss function and expected KL divergence as the discrepancy function.

Both are examples of paired functions.

3.2.3 A “Pareto Frontier”

Our restrictiveness and completeness measures generate a “Pareto frontier” consisting of

models that are undominated in the sense that none of the other models considered are

simultaneously more restrictive and more complete. Although this is a very partial order, it

has bite in our Application 6 (see Figure 2), as well as in the work of Ellis et al. (2022).

Unlike in typical economic problems, the Pareto frontier here need not be concave, so

the preferred model may not maximize a weighted sum of the two scores. For example,

the frontier might consist of 3 points with scores (3/4,1/4), (1/3,1/3), and (1/4,3/4), and

the analyst might prefer the model with scores 1/3 each. Of course, given the estimated

parameter values of two models on the actual and hypothetical data sets, one could make

predictions by taking pointwise combinations of the two model’s predictions, which would

11Loosely speaking, being paired means that d(f, f∗) is the difference between the error of f and the error
of the best mapping f∗.
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mechanically lead to a weakly concave frontier of undominated models, but it seems hard to

interpret this exercise.

While it is natural to prefer undominated models to dominated ones, it is less obvious

how to aggregate the two measures to pick a preferred model, as the tradeoff between the

measures is context-specific and also a matter of taste. Nevertheless, when two models have

completeness-restrictiveness values that cannot be Pareto-ranked, one can consider the size

of the improvement in completeness relative to the size of the reduction in restrictiveness.

In Section 6.4 we show that adding an “elevation” parameter to a Cumulative Prospect

Theory specification leads to a large drop in restrictiveness in return for only a small gain in

completeness, while the parameter that governs the curvature of the probability weighting

function leads to a sizeable improvement in completeness with only a small reduction in

restrictiveness. We take this to mean that the curvature parameter plays a more important

role in capturing risk preferences.12

3.3 Discussion

Context dependence. Restrictiveness is context-specific, in the sense that it depends on

the set of feature vectors X and the outcome to be predicted. For example, we show that the

restrictiveness of Cumulative Prospect Theory depends on the support size of the lotteries

that are considered. Evaluating the restrictiveness of a model across contexts can reveal

that it is very restrictive for one kind of prediction problem but unrestrictive for others.

An interesting direction for followup work would be to develop a measure of restrictiveness

that takes into account how restrictive a model is across different contexts. For example,

we might consider one model to be “generally more restrictive” than a second model if the

distribution of restrictiveness values for the first model first-order stochastically dominates

the distribution for the latter, as we find in Section 6.5.

12Ba, Bohren, and Imas (2023) conduct a similar exercise to compare two models which are not Pareto-
ranked.
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Choosing the eligible set. The restrictiveness of a model is measured with respect to a

specific eligible set F ⊆ F , which is chosen based on what is known about the model. In

Application 3, we investigate the restrictiveness of a structural model of network diffusion for

predicting takeup of microfinance. Since there is relatively little known about the empirical

content of this model, we define the eligible set to include all possible takeup rates, and

study whether the model placed any restrictions at all. In contrast, the model of interest

in Application 1, Cumulative Prospect Theory, implies that any lottery that first order

stochastically dominates another must have a higher certainty equivalent. So we place this

restriction on the eligible set, and see how much additional restrictiveness the model imposes.

In general, there is not a single correct choice of eligible set. While we focus on comparing

the restrictiveness of models with respect to a given eligible set, an interesting complementary

exercise is to fix a model and compare its restrictiveness relative to different eligible sets, as

in Sections 6.5 and 7.3.

Why the uniform distribution? Section 4, which develops and axiomatizes a broader

class of restrictiveness measures, provides an axiom that pins down the uniform distribution.

Besides this axiom, there are many reasons to prefer the uniform distribution. First, once

the eligible set is specified, the uniform distribution on this set is pinned down (under

our assumptions that X is finite and Y is a subset of finite-dimensional Euclidean space).

This reduces the number of primitives to be chosen, and helps prevent cherry-picking with

respect to the distribution on F . Second, the uniform distribution is computationally easy

to implement, even for eligible sets F with potentially complicated structures.13 Finally,

our use of the uniform distribution follows up on Becker (1962)’s proposal of the uniform

distribution over budget-exhausting bundles as a model of irrational consumer behavior, and

parallels Selten (1991)’s use of area (see Section 3.4).

13For example, in our application to prediction of certainty equivalents, we build monotonicity with respect
to FOSD into our definition of F , and it is straightforward to sample uniformly from F by first sampling
from a larger space without the monotonicity constraints, and then only keeping the draws that satisfy the
monotonicity constraints. In contrast, non-uniform weightings over F require additional specification of how
exactly F is parametrized, making the dependence of restrictiveness on F less transparent.
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Why are more restrictive models better? Our paper takes the perspective that re-

strictiveness is inherently desirable: if two models have the same level of predictive accuracy,

we should prefer the one that imposes more restrictions to the more flexible alternative. A

potential reason for this preference is that models are often meant to capture behavior in

related but not-identical domains. Given enough data, models that are very unrestrictive

will fit any specific data set well, but may do so by learning idiosyncratic details of those

datasets that do not in fact transfer across settings. In contrast, if a highly specific and

structured model happens to fit a data set well, this may generate more confidence that the

model’s structure extends to other settings.14

3.4 Relationship to the Literature

Our restrictiveness measure generalizes the notion of “observational restrictiveness” intro-

duced in Koopmans and Reiersol (1950), where a model is observationally restrictive if the

distributions permitted by the model are a proper subset of the distributions that would oth-

erwise be possible.15 A model that is not observationally restrictive can perfectly match all

data and so has r = 0. Our restrictiveness measure allows us to quantify just how restrictive

a model is.

Section 2 already discussed Selten (1991)’s measure of flexibility, and showed how its use

of exact instead of approximate fit can lead to very different conclusions than ours. The

Selten measure has been applied by Beatty and Crawford (2011), Hey (1998), and Harless

and Camerer (1994), and Blow et al. (2021) among others, to understand the restrictiveness

of nonparametric economic models. It is typically difficult to determine whether a parametric

model can exactly fit a given data set without the guidance of prior analytical results, while

14Andrews et al. (2022) compare the transfer performance of highly flexible black box models with less
flexible economic models in a setting similar to our Application 1, and find that the black box models transfer
more poorly.

15As Koopmans and Reiersol (1950) points out, a special case of an observationally restrictive specification
is an overidentifying restriction. See e.g. Sargan (1958), Hausman (1978), Hansen (1982), and Chen and
Santos (2018) for econometric tests of overidentification.
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our measure is easy to compute in a variety of applications.16

In considering approximate rather than exact fit, our approach is related to papers that

measure the distribution of the Afriat index (Choi et al., 2007; Polisson et al., 2020).17 These

approaches are motivated by the testing of rationality of choices; our aim here is to show

that similar techniques can be applied to a substantially broader class of models. Beatty and

Crawford (2011) propose an alternative “smoothed out” version of Selten (1991)’s measure

for the revealed preference setting that resembles restrictiveness, except that it does not

allow for restrictions on the eligible data and normalizes by reference to a worst case.18

Our use of synthetic data to evaluate restrictiveness is similar to the use of simulated data

to evaluate the power of a hypothesis test, as in Bronars (1987) and Andreoni et al. (2013).

Their power measures are based on particular specifications of the alternative hypothesis,

while we focus on an aggregate measure over a class of “alternative hypotheses.” Moreover,

because our objective is to measure the content of a model’s restrictions and not hypothesis

testing, we use approximate rather than exact fit.

Our measure is related to various measures from computer science, statistics, and econo-

metrics, but differs in a few key ways. First, compared to classic measures for the complexity

of function classes, such as VC dimension, Rademacher complexity, and metric entropy, our

measure can be computed without analytical results about the empirical content of the

estimated model.

Second, compared to measures such as empirical Rademacher complexity, AIC, and BIC,

which are often used for model selection, our restrictiveness measure does not depend on the

16Beatty and Crawford (2011) analytically derives the set of budget shares that are consistent with GARP,
and Harless and Camerer (1994) uses results about generalized expected utility theories to determine whether
choices between specially chosen pairs of lotteries (for example, lotteries sharing a common ratio of outcome
probabilities) are consistent with those theories. But we do not know how to analytically determine the
predictions that are consistent with PCHM or the structural model of microfinance takeup in Application 3.

17Choi et al. (2007) and Polisson et al. (2020) relax the implications of expected utility maximization using
Afriat’s “efficiency index” as an analog of our loss function. They compare the distribution of the efficiency
indices of the actual subjects with its counterpart in randomly generated data.

18Another approach for model selection that does not require exact fit is de Clippel and Rozen (2022)’s
suggestion to select models by comparing the ratio of the likelihood of observing the real data under the
specified model to the likelihood under a uniform distribution over all possible models.
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observed data and is not indexed to sample size.19 This reflects a difference in objectives:

A primary goal of model selection is to avoid overfitting a complex model to a finite (and

small) quantity of data, while our objective is to provide a measure of restrictiveness that

does not depend on the quantity of data used to estimate it.20 Relatedly, while previous

metrics aggregate a notion of completeness with some notion of restrictiveness,21 we trace

the associated Pareto frontier (see Section 3.2.3).

4 Axiomatic Foundation for Restrictiveness

This section provides an axiomatixation for the un-normalized version of the restrictiveness

measure (i.e., the numerator of (1)), which we call approximation error. Readers primarily

interested in applications of the measure can skip ahead to the next section.

We endow the set F with the Lebesgue σ-algebra and a σ-finite measure µ, which can

be interpreted as the analyst’s prior. An approximation error e takes as input the model

FΘ ⊆ F , a compact set of eligible prediction rules F ⊆ F , and a discrepancy function d.

The quantity e(FΘ,F , d) is interpreted as the approximation error of the model FΘ to the

eligible set F , where the quality of the approximation is measured using d. We would like

for this approximation error function to satisfy the following axioms. First, approximation

error should always be nonnegative.

Axiom 1 (Nonnegativity). For every model FΘ, eligible set F , and discrepancy d,

e(FΘ,F , d) ≥ 0.

Second, if one model is better able to approximate every eligible prediction rule than

another, the first model has lower approximation error.

19We could loosely interpret our restrictiveness measure as analogous to a limiting case of Rademacher
complexity for large samples, where we use the discrepancy function d, rather than correlation, to measure
the model’s ability to fit the synthetic data.

20Specifically, our measure does not depend on the number of observations (x, y) in the data or on the
values of the y’s, though it does depend on the feature set X .

21For example, the AIC combines the log-likelihood, which is about fitness to real data (corresponding to
“completeness”) and the number of parameters, which is about the flexibility of the model without reference
to real data (corresponding to “restrictiveness”) in an additive way

15



Axiom 2 (Monotonicity). Fix any set of eligible mappings F . If the sets FΘ1 and FΘ2 satisfy

d(FΘ1 , f) ≥ d(FΘ2 , f) for all f ∈ F , then e(FΘ1 ,F , d) ≥ e(FΘ2 ,F , d).

Third, any linear rescaling of the units of d is inherited by the approximation error, and

a linear rescaling of the discrepancy between a model FΘ to each prediction rule f leads to

the same value of approximation error as rescaling the units of the discrepancy d.

Axiom 3 (Homogeneity). (a) Fix any model FΘ, set of eligible prediction rules F , and

discrepancy d. Then e(FΘ,F , α · d) = α · e(FΘ,F , d) for every α ∈ R+

(b) Fix any set of eligible prediction rules F and discrepancy d. If FΘ1 and FΘ2 satisfy

d(F1, f) = α · d(F2, f) for all f ∈ F , then e(FΘ1 ,F , d) = e(FΘ2 ,F , α · d).

Fourth, consider constraining the set of eligible prediction rules F to a subset F1 or its

complement F2. The ex post approximation errors of a model FΘ with respect to either of

these new eligible sets is, respectively, e(FΘ,F1, d) or e(FΘ,F2, d). The subsequent axiom

says that the ex ante approximation error e(FΘ,F , d) is a convex combination of the ex post

approximation errors, where each ex post subset contributes to the ex ante approximation

error in proportion to its measure.

Axiom 4 (Linearity). For any sequence of disjoint measurable sets FΘ1 ,FΘ2 , . . . whose union

FΘ ≡ ∪∞i=1FΘi has strictly positive measure,

e(FΘ,F , d) =
∞∑
i=1

µ(FΘi)

µ(F)
· e(FΘi ,F , d) ∀F , d.

Finally, permuting the various discrepancies between the model and the eligible predic-

tion rules f does not affect the overall approximation error. This reflects a “principle of

indifference” over the eligible prediction rules.

Axiom 5 (Symmetry). Fix any eligible set F and any bijection τ from F to itself. Consider

two sets FΘ1 and FΘ2 where d(FΘ1 , f) = d(FΘ2 , τ(f)) for all f ∈ F . Then e(FΘ1 ,F , d) =

e(FΘ2 ,F , d).
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Proposition 1. An approximation error e satisfies Axioms 1-4 if and only if there is a

function c : F → R such that

e(FΘ,F , d) = Ef∼µF
[
c(f) · inf

g∈F
d(g, f)

]
∀FΘ,F , d (2)

where µF denotes the measure µ conditional on the event F . If additionally e satisfies Axiom

5, then

e(FΘ,F , d) = Ef∼λF
[

inf
g∈F

c · d(g, f)

]
∀FΘ,F , d (3)

for a positive constant c, where λ denotes the Lebesgue measure on F .

Our restrictiveness measure assumes (3), and normalizes the approximation error of model

F relative to the approximation error of the baseline fbase.

5 Computation and Estimation

We now discuss how to implement our approach in practice. Recall that we restrict X to be

finite, so F is finite-dimensional.

Computing Restrictiveness The following is an algorithm for computing r: Sample M

times independently from a uniform distribution on the eligible set F . For each sampled

fm ∈ F , compute d(FΘ, fm) and d(fbase, fm). Then

r̂M :=
1
M

∑M
m=1 d(FΘ, fm)

1
M

∑M
m=1 d(fbase, fm)

is an estimator for restrictiveness r = r(FΘ,F). In principle, the number of simulations we

run, M , can be arbitrarily large, so r̂M can be made arbitrarily close to r. Moreover, it is

straightforward to obtain the formula for the asymptotic standard error of the simulated r,
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based on which confidence intervals can be constructed.22

Estimating Completeness Suppose that the analyst has access to a finite sample of data

{Zi := (Xi, Yi)}Ni=1 drawn from the unknown true distribution P ∗. To estimate completeness,

which is defined based on the loss function l introduced in Section 3.2.2, we use K-fold cross-

validation to estimate the out-of-sample prediction error of the model.

(Our applications make the standard choice of K = 10.) Specifically, we randomly divide

ZN = (Z1, . . . , ZN) into K (approximately) equal-sized groups. To simplify notation, assume

that JN = N
K

is an integer. Let k (i) denote the group number of observation Zi, and fix an

arbitrary set of maps F̃ . In the k-th fold of cross-validation, we will use the observations in

group k for testing and the remaining observations for training.

For each group k = 1, ..., K, define f̂−k := arg minf∈F̃
1

N−JN

∑
k(i) 6=k l(f, Zi) to be the

minimizer in F̃ on the k-th training set (i.e., all observations outside of group k), and êk :=

1
JN

∑
k(i)=k l

(
f̂−k, Zi

)
to be the out-of-sample error on the k-th test set. Then the average

test error across the K folds, êCV

(
F̃
)

:= 1
K

∑K
k=1 êk, is an estimator for the unobservable

expected error of the best prediction rule from class F̃ . Setting F̃ to be F , G, or {fbase},

we can compute êCV
(
F
)
, êCV (G) and êCV (fbase) from the data, leading to the following

estimator for κ:

κ̂ = 1− êCV (G)− êCV (F∗)
êCV (fbase)− êCV (F∗)

.

It is crucial that the denominator in κ̂ does not vanish asymptotically, so we impose the

following assumption:

Assumption 2 (Baseline is Imperfect). eP (fbase)− eP (f ∗) > 0.

This assumption says that the baseline prediction rule performs strictly worse in expec-

22Under Assumption 1,
√
M (r̂M − r) /σ̂r̂

d−→ N (0, 1), where the asymptotic variance estimator σ̂2
r̂ is de-

fined by σ̂2
r̂ :=

[
σ̂2
G − 2r̂σ̂G,fbase

+ r̂2σ̂2
fbase

]
/

[(
1
M

∑M
m=1 d(fbase, fm)

)2]
, with σ̂2

G being the sample variance

of d(G, fm), σ̂2
fbase

the sample variance of d(fbase, fm), and σ̂2
G,fbase the sample covariance of d(G, fm) and

d(fbase, fm), across m = 1, ...,M . We note that the standard error here simply measures the approximation
error of r based on a finite number of simulations and do not reflect randomness in experimental data.
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tation than the best prediction rule so there is some room for a model to do better. We show

that κ̂ is asymptotically normal by adapting Proposition 5 in Austern and Zhou (2020).

Proposition 2. Under Assumption 2 and some regularity conditions,23
√
N (κ̂− κ) /σ̂κ̂

d−→

N (0, 1), where the variance estimator σ̂2
κ̂ is as defined in Appendix C.2.

6 Application 1: Certainty Equivalents

6.1 Setting

Our first application is to the prediction of certainty equivalents for a set of 25 binary lotteries

from Bruhin et al. (2010). Each lottery is described as a tuple x = (z, z, p), where z > z ≥ 0

are the possible prizes, and p is the probability of the larger prize. Each observation consists

of a lottery and a reported certainty equivalent by a given subject, so we can describe the

feature space X by the 25 lottery tuples (z, z, p) in the Bruhin et al. (2010) data, and the

outcome space by Y = R. Note that the residual uncertainty in Y conditional on X reflects

heterogeneity in certainty equivalents reported across subjects for the same lottery.

We predict the average certainty equivalent (over subjects) for each lottery in this data

set. A prediction rule for this problem is any function f : X → R from the 25 lotteries to

their average certainty equivalents, and the discrepancy between two mappings is defined to

be their average mean-squared distance d(f, f ′) = 1
|X |
∑

x∈X (f(x)− f ′(x))2.

We evaluate the restrictiveness and completeness of two economic models. First we

consider a three-parameter version of Cumulative Prospect Theory indexed by θ = (α, γ, δ),

which specifies a utility w(p)v(z) + (1− w(p))v(z) for each lottery (z, z, p), where

v(z) = zα, w(p) =
δpγ

δpγ + (1− p)γ
.24 (4)

The predicted certainty equivalent of a binary lottery is then given by fθ(z, z, p) =

23See Appendix C for details of these assumptions.
24This parametric form for w(p) was used by Goldstein and Einhorn (1987) and Lattimore et al. (1992).
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v−1 (w(p)v(z) + (1− w(p))v(z)) . Following the literature, we restrict α, γ ∈ [0, 1], and δ ≥ 0.

We specify F as the set of all such functions fθ with parameters θ in this range, and refer

to this model simply as CPT. As a baseline, we consider the function fbase that maps each

lottery into its expected value, corresponding to α = γ = δ = 1.

Second, we consider the Disappointment Aversion model of Gul (1991), using a

parametrization proposed in Routledge and Zin (2010) with the parameters λ = (α, η), where

α ∈ [0, 1] and η > −1.25 The value function for money is the same as in (4), but the probabil-

ity weighting function is given instead by w̃(p) = p
1+(1−p)η . There are two parameters: α again

reflects the curvature of the utility function, while η > 0 corresponds to “disappointment

aversion,” i.e. aversion to realizations of the lottery that are worse than its certainty equiva-

lent. Here the predicted certainty equivalent is fλ(z, z, p) = v−1(w̃(p)v(z) + (1− w̃(p))v(z)).

We specify FΛ as the set of all such functions and refer to this model as DA. Again, we use

expected value as the baseline prediction, which corresponds to α = 1 and η = 0 in DA.

6.2 Completeness

We evaluate completeness using mean-squared error as the loss function, i.e., if the reported

certainty equivalent is y when the model predicts ŷ, the loss in that observation is (ŷ−y)2.26

CPT achieves a striking out-of-sample performance for predicting certainty equivalents in

the Bruhin et al. (2010) data: it is 95% complete.27 Thus, the model achieves almost all of

the possible improvement in prediction accuracy over the baseline.28 In contrast, DA is only

27% complete on the same data. One explanation is that CPT more precisely captures the

observed risk preferences in the data than DA, but another possibility is that CPT is flexible

enough to mimic most functions from binary lotteries to certainty equivalents, while DA

25To facilitate comparison with CPT, we depart slightly from Routledge and Zin (2010) by imposing the
functional form v(z) = zα instead of v(z) = zα/α.

26This loss function is paired to the average mean-squared discrepancy function we used for measuring
restrictiveness, see Appendix E for details.

27Fudenberg et al. (2022) reports a similar finding for a sample of gain-domain and loss-domain lotteries.
28This finding is consistent with Peysakhovich and Naecker (2017)’s result that CPT approximates the

predictive performance of lasso regression trained on a high-dimensional set of features.
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imposes more substantial restrictions. These explanations have very different implications

for how to interpret CPT’s empirical success compared to DA’s.

6.3 Restrictiveness

To distinguish between these explanations, we now compute the restrictiveness of the two

models. We define the eligible set to be all prediction rules satisfying the following criteria:

(i) z ≤ f(z, z, p) ≤ z;

(ii) If z ≥ z′, z ≥ z′, and p ≥ p′ with at least one “≥” strict, then f(z, z, p) > f(z′, z′, p′).

Constraint (i) requires that the certainty equivalent is within the range of the possible payoffs,

while (ii) is equivalent to monotonicity with respect to first-order stochastic dominance.29

Table 1 reports the completeness and restrictiveness of both models.

# Param Restrictiveness Completeness

CPT 3 0.28 0.95
(0.003) (0.02)

DA 2 0.47 0.27
(0.006) (0.06)

Table 1: Completeness for both models is estimated on the real data, which includes reported certainty
equivalents by each of 179 subjects. Standard errors for the completeness estimates are computed using a
block bootstrapping procedure that clusters together all observations from the same subjects, see Appendix
D.1. Restrictiveness is estimated from 1000 simulations.

The restrictiveness of CPT is 0.28, so on average CPT’s approximation error is about

one fourth of the error of the expected value. DA is more restrictive, with an average

approximation error almost one half of the error of the baseline. Thus the two models are

not directly comparable: CPT performs substantially better for predicting the real data, but

would have performed well out-of-sample given sufficient data from almost any underlying

data-generating process that respects first-order stochastic dominance. DA rules out more

29The CDF of a binary lottery with z > z and 0 < p < 1 is F (z) = (1− p)1{z ≤ z < z}+1{z ≥ z}, which
is weakly decreasing in (z, z, p) for all z, so (z, z, p) FOSD (z′, z′, p′) if and only if (z, z, p) 	 (z′, z′, p′). There
are many pairs of lotteries in the Bruhin et al. (2010) lottery data that can be compared via (ii), so these
conditions are not vacuous.
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behaviors that satisfy first-order stochastic dominance, but in doing so is unable to well

approximate the actual Bruhin et al. (2010) data.

6.4 The Role of a Parameter

In addition to comparing models such as CPT and DA, our approach can be used to learn

more about the role played by specific parameters. Adding a parameter must at least weakly

decrease restrictiveness and increase completeness, but we find that parameters can differ

substantially in their effectiveness in trading off between these two goals. We also show that

models with the same number of parameters can have very different levels of restrictiveness,

and thus a simple parameter count is substantively less informative than our measure.

Specifically, we consider alternative specifications of CPT and DA with fewer parameters.

Some of these specifications have been studied in the literature: CPT(α, γ), with δ = 1, is

used in Karmarkar (1978)30; CPT(γ, δ), with α = 1, corresponds to a risk-neutral CPT agent

whose utility over money is u(z) = z but exhibits nonlinear probability weighting; CPT(α),

with δ = γ = 1, corresponds to an Expected Utility decision-maker whose utility function

is as given in (4), and is also equivalent to DA(α).31 The model CPT(γ), with α = δ = 1,

and CPT(δ), with α = γ = 1 have not been studied in the literature, but we report them

for comparison. We also consider DA(η) as in Gul (1991), with α = 1, which corresponds to

a disappointment-averse decision maker whose utility is linear in money.

Figure 2 plots restrictiveness and completeness for these alternative specifications, which

reveals that some specifications fall in the interior of the restrictiveness-completeness Pareto

frontier introduced in Section 3.2.3: Each of CPT(α, δ) and DA(α, η) are dominated, in the

sense that another model is simultaneously more complete and also more restrictive.32 The

30This specification with weighting function w(p) = pγ

pγ+(1−p)γ is very similar to one used in Tversky and

Kahneman (1992), where the weighting function was w(p) = pγ

pγ+(1−p)γ)1/γ .
31See the survey Fehr-Duda and Epper (2012) for further discussion of these different parametric forms,

and others which have been used in the literature.
32Each of CPT(α, δ) and DA(α, η) is less complete and less restrictive than the single parameter model

CPT(γ), and these differences are statistically significant. (See also Table 5 in Online Appendix D.1.)
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Figure 2: Comparison of models by their completeness and restrictiveness.

figure also reveals substantial dispersion in the restrictiveness of these specifications (ranging

from r = 0.28 to r = 0.92), even though all of the specifications use only a small number of

parameters. This observation emphasizes the distinction between our method and a simple

parameter count.

By looking more specifically at how restrictiveness and completeness vary across two

nested specifications, we can better understand the role that any specific parameter plays.

Figure 3 shows that the different parameters for probability weighting are not equally ef-

fective. Adding the parameter δ, which governs the elevation of the probability weighting

curve, to any specification of CPT leads to a large drop in restrictiveness in return for only

a small gain in completeness. We find a similar result for the “disappointment aversion”

parameter η in DA, which barely improves upon the completeness of DA(α), but leads to a

substantial drop in restrictiveness. In contrast, the parameter γ, which governs the curva-
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ture of the probability weighting function, appears to play an important role in capturing

risk preferences: Adding γ to any CPT specification leads to a sizeable improvement in

completeness at the cost of a modest reduction in restrictiveness. This supports previous

findings that probability distortions play an important role in fitting experimental and field

data (Snowberg and Wolfers, 2010; Fehr-Duda and Epper, 2012; Barseghyan et al., 2013).
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Figure 3: Impact of the probability weighting parameters on completeness and restrictiveness.

6.5 Robustness Checks

We show that the qualitative findings in this section are robust to certain natural changes in

the eligible set and the feature set. Together with the robustness check in Section 7.3, these
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results also speak to the sensitivity of the restrictiveness measure in general: although the

measure will typically vary with these specifications, it may not be very sensitive in practice

for many economic models of interest.

Different distribution over the eligible set. The uniform distribution is the same

as beta(1, 1), so to test the sensitivity of the restrictiveness measure we consider nearby

beta(a, b) distributions with parameters (a, b) sampled from a uniform distribution over

[0.9, 1.1]× [0.9, 1.1]. For each (a, b) pair, we generate certainty equivalents from a beta(a, b)

distribution over the prize range, again keeping only those functions f that satisfy FOSD.

Over 100 such distributions beta(a, b), the average restrictiveness is 0.29, with a minimum

value of 0.27 and a maximum value of 0.32.

Different eligible set. Next, we compute the restrictiveness of CPT(α, δ, γ) with respect

to an eligible set that imposes the range restriction in (i) but drops the FOSD restrictions

in (ii). The model’s errors are substantially higher when we drop FOSD (increasing from

63.75 to 102.41), but so are the errors of the Expected Value benchmark. The relative

performance of CPT(α, δ, γ) compared to the expected-value baseline is nearly identical

regardless of whether or not we impose FOSD: the model’s restrictiveness relative to this

larger eligible set is 0.29 (compared to 0.28 relative to the original eligible set).

Other sets of binary lotteries. In our main analysis, the feature space X consisted of

25 binary lotteries from Bruhin et al. (2010) data. Below we report the restrictiveness of

CPT(α, γ, δ) and DA(α, η) with respect to alternative sets of binary lotteries, drawn from five

additional papers (see Appendix D.3 for details). Figure 4 shows the CDF of restrictiveness

values across these lotteries (including the Bruhin et al. (2010) lotteries) for both models.

We find that CPT is not very restrictive on any of these sets of lotteries, and that the

distribution of restrictiveness for DA first-order stochastically dominates that of CPT.
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Figure 4: CDF of restrictiveness values

Lotteries over the loss domain. On 25 binary lotteries over the loss domain from Bruhin

et al. (2010), the 3-parameter specification of CPT indexed to (β, γ, δ) predicts the certainty

equivalent v−1 ((1− w(1− p)) · v(z) + w(1− p) · v(z)) for each lottery (z, z, p), where v(z) =

−((−z)β) and w(p) = (δpγ)/(δpγ + (1− p)γ). The restrictiveness of CPT on these lotteries

is 0.31, with a standard error of 0.02.

Lotteries with larger supports. Finally, we evaluate the restrictiveness of CPT(α, δ, γ)

on gains-domain lotteries with more than two possible outcomes. For each lottery

(z1, ..., zn; p1, ...pn), where 0 ≤ z1 < ... < zn, the predicted certainty equivalent is

v−1

(∑
i

u(xi)

[
w

(
i∑

k=1

pk

)
− w

(
i−1∑
k=1

pk

)])
,

where for i = 1 we define
∑0

k=1 pk = 0, and v and w have the same functional forms as used

above. On 18 three-outcome gain-domain lotteries from Bernheim and Sprenger (2020b),

the restrictiveness of CPT is 0.57, with a standard error of 0.02. Thus CPT is about twice as

restrictive for certainty equivalents on three-outcome lotteries as it is on binary lotteries. On

a set of 10 six-outcome lotteries from Fudenberg and Puri (2021), the restrictiveness of CPT

is 0.83, with a standard error of 0.01. These results suggest that CPT is more restrictive on
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lotteries with larger supports.

7 Application 2: The Distribution of Initial Play

7.1 Setting

Our second application is to predicting the distribution of initial play in games. Here the

feature space X consists of the 466 unique 3× 3 payoff matrices from Fudenberg and Liang

(2019).33 The outcome space is the set Y = ∆({a1, a2, a3}) of distributions of row player

actions chosen by the participants in the experiments. The analyst seeks to predict this

distribution for each game.

For any two prediction rules f and f ′, we define d(f, f ′) to be the average Kullback-

Liebler divergence between the predicted distributions: d(f, f ′) = 1
466

∑
x∈X D(f(x)‖f ′(x)),

where D denotes the Kullback-Leibler divergence.

We consider three economic models: The Poisson Cognitive Hierarchy Model (PCHM) of

Camerer et al. (2004), the Level-1 model with logistic best replies (henceforth Logit Level-1 ),

and the PCHM with logistic best replies (henceforth Logit PCHM ). The PCHM supposes

that there is a distribution over players of differing levels of sophistication: The level-0 player

randomizes uniformly over his available actions, the level-1 player best responds to level-0

play (Stahl and Wilson, 1994, 1995; Nagel, 1995); and for k ≥ 2, level-k players best respond

to a perceived distribution

pk(h, τ) =
πτ (h)∑k−1
l=0 πτ (l)

∀ h ∈ N<k (5)

over (lower) opponent levels, where πτ is the Poisson distribution with rate parameter τ ≥ 0.

33These data are an aggregate of three data sets: the first is a meta data set of play in 86 games, collected
from six experimental game theory papers in Wright and Leyton-Brown (2014); the second is a data set
of play in 200 games with randomly generated payoffs, which were gathered on MTurk for Fudenberg and
Liang (2019); the third is a data set of play in 200 games that were “algorithmically designed” for a certain
model (level 1 with risk aversion) to perform poorly, again from Fudenberg and Liang (2019).
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The parameter τ is the single parameter of the model.

The Logit Level-1 prediction is defined as follows. For each row player action ai, let

u(ai) be the expected payoff of ai when the column player uses a uniform distribution. The

predicted frequency with which ai is played is exp (λ · u(ai)) /
∑3

i=1 exp (λ · u(ai)), where the

logit parameter λ ∈ R+ is the single parameter of the model.

The Logit PCHM (see e.g. Wright and Leyton-Brown (2014)) replaces the assumption

of exact maximization in the PCHM with a logit best response. That is, the level-0 player

chooses f0 = (1/3, 1/3, 1/3) as in the PCHM, but we recursively construct the distribution

of play for higher levels as follows. For each k ≥ 1, define

vk(ai) =
k−1∑
h=0

pk(h, τ)

(
3∑
j=1

fh(aj)u(ai, aj)

)

to be the expected payoff of action ai against a player whose type is distributed according

to pk(·, τ), where pk(h, τ) is as given in (5). The distribution of play for a level-k player is

then fk(ai) = exp(λ · vk(ai))/
∑3

j=1 exp(λ · vk(aj)), where λ ∈ R+ is a logit parameter. We

aggregate across levels using a Poisson distribution with rate parameter τ ∈ R+ to yield the

predicted distribution of play.

Finally, we define the baseline prediction rule fbase to predict uniform play in every game

x. This prediction rule is nested in all three models.34

7.2 Completeness

We evaluate completeness using negative log-loss as the loss function, i.e., if the chosen

action is ai when the model predicts distribution (p1, p2, p3), the loss in that observation is

− log(pi).
35 The models PCHM, Logit Level-1, and Logit PCHM are 43.6%, 72.7%, and

72.9% complete. Thus, as observed in a related study by Wright and Leyton-Brown (2014),

34Let τ = 0 in the PCHM or Logit PCHM, and let λ = 0 in Logit Level-1.
35This loss function is paired to the Kullback-Leibler discrepancy function we used for measuring restric-

tiveness, see Appendix E for details.
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Logit PCHM provides much better predictions of the distribution of play than the baseline

PCHM does. Perhaps surprisingly, almost all of Logit PCHM’s improved performance can be

obtained by simply adding the logit parameter to the Level-1 model; the further improvement

from allowing for multiple levels of sophistication is negligible.36

7.3 Restrictiveness

We turn now to evaluating the restrictiveness of these models. We have relatively little

understanding about their empirical content, but we do know that they all imply that if an

action is strictly dominated, then the frequency with which it is chosen does not exceed 1/3,

and that if an action is strictly dominant, then the frequency with which it is chosen is at

least 1/3. We define the eligible set to be all prediction rules that satisfy these conditions.37

All three models are very restrictive relative to this eligible set: Logit Level-1’s restric-

tiveness is 0.970, PCHM’s restrictiveness is 0.992, and Logit PCHM’s restrictiveness is 0.971.

Since the models’ completeness ranges from 0.436 to 0.729, they are much better predictors

of the real data than of the synthetic data. Table 7.3 reports completeness and restrictive-

ness measures for the models. We find that Logit Level-1 and Logit PCHM are substantially

more complete than PCHM and only slightly less restrictive, but none of the models is dom-

inated by another. Moreover, Logit Level-1 and Logit PCHM are almost identical in terms

of completeness and restrictiveness, even though the parametric forms of the two models are

not evidently related.38

Finally, as a robustness check, we consider strengthening the background constraints

imposed on the eligible set F . For each t ∈ [0, 0.3), we define the eligible set F(t) to

include all prediction rules f that satisfy the following conditions: (1) If an action is strictly

36Fudenberg and Liang (2019) found that the Level-1 model provides a good prediction of the modal
action, but this does not imply that Logit Level-1 will perform well in predicting the full distribution of play.
The fact that it does further suggests that initial play in many of these experiments is rather unstrategic.

37In our data, the median frequency of a strictly dominated action is 0.03, and the highest frequency is
0.35; the median frequency for a strictly dominant action is 0.86, and the lowest frequency is 0.69. Payoff
maximization implies that dominant strategies should have probability 1 and dominated strategies have
probability 0, but this is inconsistent with observed play in most game theory experiments.

38No value of τ in the PCHM yields the Level-1 model, so Logit Level-1 is not nested within Logit PCHM.
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Table 2: Restrictiveness and Completeness for Initial Play
# Param Restrictiveness Completeness

PCHM 1 0.992 0.436
(<0.001) (0.017)

logit level-1 1 0.970 0.727
(<0.001) (0.015)

logit PCHM 2 0.971 0.729
(0.003) (0.014)

Restrictiveness estimated from 1000 simulations.

dominated, then the frequency with which it is chosen does not exceed 1/3 − t; (2) If an

action is strictly dominant, then the frequency with which it is chosen is at least 1/3 + t.

The constraint imposed by these conditions increases in t, and t = 0 returns our original

specification of F . We find that across choices of t ∈ [0, 0.3), the restrictivenesses of PCHM,

Logit PCHM, and Logit Level-1 do not fall below 0.89 (see Table 3 below). This tells us

that constraints on the frequency of strictly dominated and strictly dominant strategies are

a very small part of the empirical content of these models.

PCHM Logit Level-1 Logit PCHM

max 0.993 0.969 0.972
min 0.974 0.890 0.957

Table 3: Highest and lowest smallest restrictiveness for t ∈ [0, 0.3).

8 Application 3: Diffusion in Social Networks

8.1 Setting

Our final application is to the prediction of microfinance takeup rates following diffusion

of information in social networks. We use data from a study by Banerjee et al. (2013), in

which certain “leaders” in 43 villages in Karnatka, India were given information about a

microfinance program, and takeup of the program was then tracked.39

39In 2007, the microfinance institution Bharatha Swamukti Samsthe invited leaders within each village to
an information meeting, and asked the leaders to spread the information. The data set contains the resulting
microfinance takeup rate for each village and some measures of social connections between households.
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For each village i, let yi be the average takeup rate among non-leader households.40

Our goal is to predict yi given the observed characteristics Xi of village i. Specifically, a

village configuration Xi := (Ni, Ai, Li) consists of a set Ni of villagers, an ni × ni adjacency

matrix Ai that represents the measured social network, and the set Li of leaders in village

i. The feature space X is the collection of 43 village configurations, and prediction rules are

maps f : X → [0, 1] that from village configurations to the takeup rate among non-leaders.

There are no obvious a priori restrictions on the takeup rates, so we set F to be the set

[0, 1]43 of all possible prediction rules from X to [0, 1]. We set the discrepancy function as

d(f, g) := 1
43

∑43
i=1(f(xi)− g(xi))

2 and the loss function as l(f(x), y) := (f(x)− y)2.

8.2 Models

The first parametric models we consider are OLS regressions with various subsets of the

following eight network statistics as regressors: (1) average eigenvector centrality of leaders;

(2) average degree centrality of leaders; (3) average degree centrality of all villagers; (4)

average betweenness centrality of leaders; (5) clustering coefficient of village network; (6)

average path length in village network; (7) proportion of connected (non-isolated) villagers;

(8) proportion of leaders.

We compute the restrictiveness and completeness of a sequence of OLS models by in-

crementally adding the regressors listed above. We set the baseline as OLS regression on a

constant, which is a special case of all the linear models we consider. With the loss function

l(f(x), y) := (y− f(x))2, an estimator of completeness (computed based on in-sample errors

without the use of cross validations) reduces to the R squared of the OLS regression.41

We also consider a partially linear model built upon the “network gossip centrality”

described in Banerjee et al. (2019). To do this, we model each non-leader household’s takeup

40This is the outcome variable that Banerjee et al. (2013) focus on.
41Recall that the R-squared of an OLS regression is defined by R2 := 1 − SSR/SST , where SSR :=∑
i(yi − x′iβ̂)2 is the expected loss under an OLS regression model and SST :=

∑
i(yi − y)2 is the expected

loss under a constant model.
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probability as a function of its position in the village. We define the “hearing matrix”

of village i by Hi (θ1) :=
∑T

t=1 θ
t
1A

t
i, where T is some given number of time periods for

information diffusion.42 With θ1 = 1, the jk-th entry of Hi (1) can be interpreted as the

expected number of times villager k hears a piece of information that originates from villager

j within T periods of time. The parameter θ0 ∈ (0, 1) discounts longer paths of diffusion. For

each non-leader k in village i, we define xi,k (θ1) :=
∑

j∈Li (Hi (θ1))jk as the “network gossip

centrality” of non-leader k, which counts the (discounted) sum of number of paths from the

leaders of village i to non-leader k. Next, we model the takeup probability of non-leader

k as function of k’s “network gossip centrality” based on a logistic model pi,j (θ0, θ1) :=

exp(θ0+xi,j(θ1))

1+exp(θ0+xi,j(θ1))
, where θ0 is a location parameter.43 The expected village-level takeup rate

among non-leaders can then be derived as the average pi,j(θ0, θ1) among non-leaders. To allow

additional flexibility, and to nest the naive constant model as a special case, we introduce

two additional linear parameters (θ2, θ3), and set: fi (θ) := θ2 + θ3 · 1
|Ni\Li|

∑
j /∈Li pij (θ0, θ1).

This model is very stylized; our purpose is to illustrate how our algorithmic approach can

be used to evaluate the restrictiveness of a structural model whose flexibility is otherwise

difficult to gauge.

8.3 Results

Table 4 reports the restrictiveness and completeness of the models described above.44 The

panel “Linear Models” contains results about a sequence of linear models, with a new regres-

sor added to the OLS regression in each row.45 For example, the row “+ Degree Centrality”

corresponds to an OLS regression of takeup rates on a constant, the leaders’ average eigen-

42
(∑T

t=1A
t
i

)
jk

counts the number of paths from j to k of length up to T . We set T = 5 following Banerjee

et al. (2019).
43Note that we do not include a scale parameter here, since if present, it will be absorbed into θ1.
44Table 4 displays the restrictiveness of the linear models based on M = 10000 simulations, while restric-

tiveness for the partially linear models is computed using M = 100 simulations. Completeness for all models
is computed based the real data with N = 43 villages.

45We add the regressors sequentially according to the ordering above, and omit many other different
orderings of the same set of regressors, since the regressions in Table 4 suffice to illustrate our main point.
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Table 4: Restrictiveness and Completeness for Microfinance Takeup Rates
# Param Restrictiveness Completeness

Linear Models
Eigenvector Centrality of Leaders 1 0.9762 0.2577

(0.0003) (0.1101)
+ Degree Centrality of Leaders 2 0.9526 0.3385

(0.0004) (0.1193)
+ Degree Centrality of All Villagers 3 0.9288 0.3471

(0.0005) (0.1151)
+ Betweenness Centrality of Leaders 4 0.9053 0.3475

(0.0006) (0.1158)
+ Clustering Coefficient 5 0.8816 0.3516

(0.0007) (0.1191)
+ Average Path Length 6 0.8579 0.3516

(0.0007) (0.1191)
+ Proportion of Connected Villagers 7 0.8342 0.3575

(0.0008) (0.1229)
+ Proportion of Leaders 8 0.8101 0.3604

(0.0008) (0.1237)

Partially Linear Model 4 0.9408 0.0674
(0.0036) (0.0452)

vector, and the leaders’ average degree centrality.

The numerical results for linear models are as expected: as more regressors are added

the model becomes more flexible, so restrictiveness decreases while completeness increases.

While restrictiveness seems to be decreasing at an approximately linear rate starting from

the second regression, the corresponding increases in completeness appear less uniform, and

in particular, completeness barely changes when we add the regressor “average path length

in the village.” Note that this does not mean that this additional regressor approximately

lies in the linear span of all previously included regressors, since we do observe a nontrivial

reduction in restrictiveness from the addition of this regressor: New regressors eventually

barely improve fit to the data, but they continue to decrease restrictiveness.

A priori it is unclear how restrictive the partially linear model is. It turns out that its

restrictiveness is very high, 0.94, suggesting that the individual-level modeling of takeup

rates as a function of network gossip centrality imposes substantial restrictions across village
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configurations. However, this model’s completeness is only 0.07, so it does not capture much

of the variation in village takeup rates.

This four-parameter partially linear model is dominated by the simple linear model with

a constant and the average eigenvector centrality of leaders as the single regressor: the latter

has both higher restrictiveness (0.9762 > 0.9408) and higher completeness (0.2577 > 0.0674).

This shows that even a detailed, structured, and economically-motivated model may turn

out to be more flexible than a simple linear model, and that the added flexibility need not

help it fit real data.

9 Conclusion

When a theory fits the data well, it matters whether this is because the theory captures

important regularities in the data, or whether the theory is so flexible that it can explain

any behavior at all. We provide a practical, algorithmic approach for evaluating the re-

strictiveness of a theory, and demonstrate that it reveals new insights into models from two

economic domains. The method is easily applied to models across diverse domains.

As highly flexible machine learning methods become more popular in economics, economic

theory is distinguished in part by the structure it imposes on behaviors. We view these

restrictions as an important part of the value added by economic theory, so it is natural to

ask how restrictive economic models are compared to the highly flexible approaches used in

machine learning. Our restrictiveness measure offers a way to quantify this.
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A Proof of Proposition 1

Throughout this proof, we use Σ to denote the Lebesgue σ-algebra on F , and shorten Σ-

measurable to simply “measurable.”

It is clear that A1-A4 are satisfied by the representation in (2), and A1-A5 are satisfied

by the approximation error measure given in (3). For the other direction, we begin by

demonstrating the following lemma:

Lemma A.1. Suppose e satisfies A1 and A4. Then for every FΘ and d, there exists a

function h : F → R such that e(FΘ,F , d) = E [h(f) : f ∼ µF ] for all measurable sets F .

Proof. Fix an arbitrary FΘ and d, and define e∗ : Σ → R to satisfy e∗(F) ≡ e(FΘ,F , d)

for all measurable F . The lemma follows if we can show that A4 implies the existence of a

function h : F → R such that e∗(F) =
∫
F h(f)dµF for all measurable F , where µF denotes

the measure µ conditional on the event F .

Define ν : Σ→ R to satisfy ν(F) = µ(F) · e∗(F) for all measurable F . Then A4 implies

that for any sequence FΘ1 ,FΘ2 , . . . ,
∑∞

i=1 ν(FΘi) = ν (
⋃∞
i=1FΘi). Also, ν(∅) = 0 (since

µ(∅) = 0) and ν is non-negative (by A1), so ν is a measure on (F ,Σ). Moreover, ν is

absolutely continuous with respect to µ by construction. So the Radon-Nikdoym theorem

implies existence of a function h : F → R such that ν(F) =
∫
F h(f)dµ for all measurable F .

Then µ(F)e∗(F) = µ(F)
∫
F h(f) dµ

µ(F)
= µ(F)

∫
F h(f)dµF , so e∗(F) =

∫
F h(f)dµF .

Now fix any FΘ and d, and let h be the function given in Lemma A.1. We will show that

A2 and A3 imply that for each f ∈ F ,

h(f) = cf · d(FΘ, f) (A.1)

for some constant cf ∈ R+.

Fix an arbitrary f . Lemma A.1 implies e(FΘ, {f}, d) =
∫
h(f ′) · dδf = h(f), where

δf denotes the Dirac measure at f . So it is sufficient for (A.1) to show that there is a

39



constant cf ∈ R+ such that e(FΘ, {f}, d) = cf · d(FΘ, f) for all FΘ, d. By A2, models can be

completely ordered for the eligible set {f}, where e(FΘ1 , {f}, d) ≥ e(FΘ2 , {f}, d) if and only

if d(FΘ1 , f) ≥ d(FΘ2 , f). So there is a monotone increasing function Φ : R→ R such that

e(FΘ, {f}, d) = Φ(d(FΘ, f)). (A.2)

Now we will show that Φ must be linear. Choose an arbitrary α ∈ R+. Define d′ = α · d

and suppose some model FΘ′ satisfies d(FΘ′ , f) = α · d(FΘ, f). Then e(FΘ, {f}, d′) =

α · e(FΘ, {f}, d) = α · Φ (d(FΘ, f)) , where the first equality follows by (A3) and the second

follows by (A.2). Also e(FΘ′ , {f}, d) = Φ(d(FΘ′ , f)) = Φ(α · d(FΘ, f)), where the first

equality follows by (A.2). A3 requires e(FΘ′ , {f}, d) = e(FΘ, {f}, d′), so α · Φ(d(FΘ, f)) =

Φ(α · d(FΘ, f)). Thus we can write e(FΘ, {f}, d) = cf · d(FΘ, f) for some constant cf ∈ R+.

Repeating this argument for every f , there is a function c : F → R such that e(F ,F , d) =

Ef∼µF [c(f) · d(G, f)] for all measurable F , so we have the representation in (2).

Now suppose that A5 is satisfied in addition to the other axioms. The previous arguments

imply that there is a function c : F → R such that

e(FΘ,F , d) = Ef∼µF
[
c(f) · inf

f ′∈FΘ

d(f ′, f)

]
∀FΘ,F , d

Suppose towards contradiction that e cannot be represented by (3). Then there must exist

an eligible set F and f, f ′ ∈ F such that c(f)·µF(f) > c(f ′)·µF(f ′). But then for any models

FΘ1 and FΘ2 with the property that [d(FΘ1 , f) = d(FΘ2 , f
′) > d(FΘ2 , f) = d(FΘ1 , f

′), it

follows that e(FΘ1 , {f, f ′}, d) > e(FΘ2 , {f, f ′}, d), violating A5.
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B A Guide for Practitioners

Below we provide detailed instructions for how to take the proposed measures to other

applications.

B.1 Setup

The Prediction Problem and Model. We suppose that the researcher has a dataset

that can be described as a set of observations (x, y), where x is interpreted as an observable

input, and y is interpreted as the outcome to be predicted. Define

• the set of features X to consist of all unique instances of x in the analyst’s data (thus

by construction finite).

• the set of outcomes Y ⊆ Rk to be the set in which y takes values.

Let F = Y |X | be the set of all mappings from X to Y .

The researcher is interested in studying the properties of some parametric model FΘ =

{fθ}θ∈Θ, where each fθ belongs to F .
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Baseline. Choose a “baseline mapping” fbase from the model FΘ. The purpose of the

baseline is to provide a lower bound for error that any sensible model should outperform.

Some possibilities for how to choose this baseline include:

• choosing a “degenerate” version of the model with the parameters fixed at some default

values (for example, Expected Value as a degenerate case of Cumulative Prospect

Theory, as in our Application 1)

• choosing a mapping that corresponds to “guessing at random” (e.g., predicting a uni-

form distribution over the possible outcomes, as in our Application 2)

• choosing a best constant prediction based on the data (e.g., regressing a linear model

on a constant, as in our Application 3)

The choice of baseline mapping should be reported along with estimates of restrictiveness

and completeness, and a natural robustness check is to verify that these estimates do not

change significantly over different (reasonable) choices of baseline.

B.2 Evaluating Restrictiveness

The Eligible Set. The researcher first determines the eligible set F , which is a subset of

mappings from X to Y that satisfy some given properties. Which and how many properties

to choose depends on what the researcher wants to understand. If the researcher wants to

know whether the model imposes any restrictions at all, then the eligible set should include

all mappings from X to Y . If the researcher wants to know how restrictive the model is

beyond imposing some Property A, then the eligible set should include only mappings that

are consistent with Property A.

The Discrepancy Function d. Next the researcher chooses a discrepancy function d :

F ×F → R+ that tells us how different any two mappings f and f ′ are. Although we leave

this specification open to the researcher, we recommend choice of a continuous d to facilitate

42



computation. Additionally, when the outcome space Y is real-valued, a natural choice is the

expected squared distance between the predictions of f and f ′, namely

d(f, f ′) = EPX
[
(f(X)− f ′(X))2

]
where PX is the empirical distribution on X in the researcher’s dataset. And when the out-

come space Y consists of probability distributions, a natural choice is the expected Kullback-

Liebler divergence between the predictions of f and f ′, namely

d(f, f ′) = EPX [D(f(X)‖f ′(X))]

where D denotes the Kullback-Liebler divergence. Nonstandard choices of d should be ex-

plained and justified.

Computing Restrictiveness. By assumption that Y is a subset of finite-dimensional

Euclidean space, the uniform distribution on any choice of eligible set F is well-defined. To

compute the restrictiveness r(FΘ,F) for a parametric model FΘ, the researcher should:

1. Choose a sample size M ∈ N (for example, set M = 1000).

2. Sample M mappings from the uniform distribution on the eligible set F . Denote each

generated mapping by fm.

3. Compute the estimate of restrictiveness as follows:

r̂ =
1
M

∑M
m=1 d(FΘ, fm)

1
M

∑M
m=1 d(fbase, fm)

.

where d(FΘ, f) ≡ infg∈FΘ
d(g, f).

When d is continuous (as is recommended), then d(FΘ, f) ≡ infg∈FΘ
d(g, f) can be re-

placed by d(FΘ, f) ≡ ming∈FΘ
d(g, f), which can be computed for example by discretizing Θ
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and searching over this grid.

Computing the Standard Error. Let σ̂2
FΘ

be the sample variance of {d(FΘ, fm)}Mm=1,

σ̂{fbase} be the sample variance of {d({fbase}, fm)}Mm=1, and σ̂FΘ,{fbase} be the sample covariance

of {d(FΘ, fm)}Mm=1 and {d({fbase}, fm)}Mm=1. Define

σ̂2
r̂ ≡

σ̂2
FΘ
− 2 · r̂ · σ̂FΘ,{fbase} + r̂2

M · σ̂2
{fbase}(

1
M

∑M
m=1 d(fbase, fm)

)2

Then,
√
M(r̂ − r(FΘ,F))/σ̂r̂

d−→ N (0, 1), so the standard error of r̂ can be estimated by

σ̂r̂/
√
M .

B.3 Evaluating Completeness

The Loss Function `. Choose a continuous loss function ` : F × X × Y → R+ where

`(f, (x, y)) measures how wrong the prediction f(x) is when the true outcome is y. We leave

this specification open to the researcher, but there are natural choices of loss functions to

use depending on the prediction problem and the choice of discrepancy d. As we discuss in

Appendix E, certain choices of discrepancy d and loss ` are “paired,” and thus are natural

to choose with one another. Specifically, when the outcome space Y is real-valued and the

discrepancy d is the expected squared distance, then consider choosing

`(f, x, y) = (y − f(x))2

to be the squared distance between the prediction and the outcome. When the outcome

space Y consists of a set of probability distributions and the discrepancy d is the expected

KL divergence, then consider choosing

`(f, (x, y)) = − log f(y | x)
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to be the negative conditional log-likelihood of observing y given x.

Computing Completeness. Let the researcher’s data be written as {Zi := (Xi, Yi)}Ni=1.

We describe below a K-fold cross-validated estimator for completeness κ(FΘ).

For F̃ ∈ {F ,FΘ, {fbase}}, compute the respective out-of-sample prediction errors

êCV
(
F
)
, êCV (FΘ) and êCV (fbase) as follows:

1. Divide the data (Z1, . . . , ZN) into K (approximately) equal-sized groups. To simplify

notation, assume that JN = N
K

is an integer.

2. Let k (i) denote the group number of observation Zi. In each k-th iteration of cross-

validation, the k-th test set consists of all observations belonging to group k, and the

k-th training set consists of all remaining observations.

3. For each group k = 1, ..., K, define

f̂−k := arg min
f∈F̃

1

N − JN

∑
k(i)6=k

l(f, Zi)

to be the element of F̃ that minimizes error for prediction of the training data in

iteration k. This estimated mapping is used for prediction of the k-th test set, and

êk :=
1

JN

∑
k(i)=k

l
(
f̂−k, Zi

)

is its out-of-sample error.

4. Then,

êCV

(
F̃
)

:=
1

K

K∑
k=1

êk

is the average out-of-sample error across the K choices of test set.

45



The following is an estimator for κ(FΘ):

κ̂ = 1−
êCV (FΘ)− êCV

(
F
)

êCV (fbase)− êCV
(
F
) .

Computing the Standard Error. For the k-th test set, let fθ̂−k and f̂−k be the esti-

mated mappings from models FΘ and F , respectively. The difference in their test errors on

observation Zi is

∆θ,k (Zi) := l (fθ̂−k , Zi)− l
(
f̂−k, Zi

)
,

and the average difference across all observations in test fold k is

∆θ,k :=
1

JN

∑
k(i)=k

∆θ,k (Zi) .

The sample variance of the difference in test errors for the k-th fold is

σ̂2
∆θ,k

:=
1

JN − 1

∑
k(i)=k

(
∆θ,k (Zi)−∆θ,k

)2

which we then average over the K folds and obtain

σ̂2
∆θ

:=
1

K

K∑
k=1

σ̂2
∆θ,k

.

Similarly we define ∆fbase,k (Zi) := l (fbase, Zi) − l
(
f̂−k, Zi

)
, and correspondingly ∆fbase,k,

σ̂2
∆fbase

,k and σ̂2
∆fbase

. Lastly, define the covariance estimator by

σ̂∆θ∆fbase
:=

1

K

K∑
k=1

1

JN − 1

∑
k(i)=k

(
∆θ,k (Zi)−∆θ,k

) (
∆fbase,k (Zi)−∆fbase,k (Zi)

)
.
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Based on σ̂2
∆θ
, σ̂2

∆fbase
and σ̂∆θ∆fbase

, we define the following variance estimator for κ̂:

σ̂2
κ̂ :=

σ̂2
∆θ
− 2κ̂σ̂∆θ∆fbase

+ κ̂2σ̂2
∆fbase[

êCV (fbase)− êCV
(
F
)]2 (B.1)

so the standard error of κ̂ can be estimated by σ̂κ̂/
√
N .

C Proof of Proposition 2

C.1 Preliminary Definitions

We now introduce some definitions and notation that will be useful in the derivation of the

asymptotic distribution of the CV-based completeness estimator.

C.1.1 Finite-Sample Out-of-Sample Error

Let ZN := (Zi)
N
i=1 be a random sample of observations in a given data set, and let ZN+1 ∼ P

denote a random variable with the same distribution P that is independent of ZN . For a

given data set ZN and a given model F̃ , we define the conditional out-of-sample error (given

data set ZN) as

eF̃ (ZN) := E
[
l
(
f̂ZN , ZN+1

)∣∣∣ZN

]
,

where f̂ZN ∈ F̃ is an estimator, or an algorithm, that selects a mapping f̂ZN within the

model F̃ based on data ZN . We also define the out-of-sample error, with expectation taken

over different possible data sets ZN , as eF̃ ,N := E [eF̃ (ZN)] .

From the definition of the K-fold cross-validation estimator, it can be shown that

E
[
êCV

(
F̃
)]

= eF ,K−1
K

N . The asymptotic distribution of êCV

(
F̃
)
− eF̃ ,K−1

K
N has been stud-

ied in the statistics and machine learning literature. Our analysis below will be based on the

results in Austern and Zhou (2020) on the asymptotic distribution of êCV

(
F̃
)
− eF̃ ,K−1

K
N .
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C.1.2 Joint Parametrization of FΘ and F

Recall that the model FΘ is parametrized by θ ∈ Θ, and fθ denotes a generic function in FΘ.

Since X is finite, F can be parameterized by a finite-dimensional parameter β ∈ B ⊆ RdF

and use the notation f[β] ∈ F to denote a generic function in F . Since by assumption f ∗ ∈ F ,

we can define a parameter β∗ to represent it, i.e. f[β∗] = f ∗.

For arbitrary θ and β, write lΘ (θ, Zi) := l (fθ, Zi) and lB (β, Zi) := l
(
f[β], Zi

)
. We

define the estimation mappings by θ̂ (ZN) := arg minθ∈Θ
1
N

∑
lΘ (θ, Zi) and β̂ (ZN) :=

arg minβ∈BM
1
N

∑
lB (β, Zi) . Let α :=

(
θ
′
, β
′)′

denote the concatenation of the parameters

θ ∈ Θ and β ∈ B, α∗ :=
(
θ∗
′
, β∗

′)′
to be the parameters associated with the best mappings

in FΘ and F , and also define

α̂ (ZN) :=
(
θ̂
′
(ZN) , β̂

′
(ZN)

)′
= arg min

θ∈Θ,β∈B

1

N

N∑
i=1

[lΘ (θ, Zi) + lB (β, Zi)]

to be an estimator for α∗. Finally, define

∆l (θ, β;Zi) := l (fθ, Zi)− l
(
f[β], Zi

)
= lΘ (θ, Zi)− lB (β, Zi) .

C.2 Construction of Variance Estimator

To obtain the standard error of the estimator, we use a variance estimator adapted from

Proposition 1 in Austern and Zhou (2020). Specifically, for the k-th test set, let fθ̂−k and

f̂−k be the estimated mappings from models FΘ and F , respectively. The difference in

their test errors on observation Zi is ∆θ,k (Zi) := l (fθ̂−k , Zi) − l
(
f̂−k, Zi

)
, and the average

difference across all observations in test fold k is ∆θ,k := 1
JN

∑
k(i)=k ∆k (Zi) . The sample

variance of the difference in test errors for the k-th fold is

σ̂2
∆θ,k

:=
1

JN − 1

∑
k(i)=k

(
∆θ,k (Zi)−∆θ,k

)2
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which we average over the K folds and obtain σ̂2
∆θ

:= 1
K

∑K
k=1 σ̂

2
∆θ,k

.

Similarly we define ∆fbase,k (Zi) := l (fbase, Zi)− l
(
f̂−k, Zi

)
, and correspondingly ∆fbase,k,

σ̂2
∆fbase

,k and σ̂2
∆fbase

. Lastly, define the covariance estimator by

σ̂∆θ∆fbase
:=

1

K

K∑
k=1

1

JN − 1

∑
k(i)=k

(
∆θ,k (Zi)−∆θ,k

) (
∆fbase,k (Zi)−∆fbase,k (Zi)

)
.

Based on σ̂2
∆θ
, σ̂2

∆fbase
and σ̂∆θ∆fbase

, we define the following variance estimator for κ̂:

σ̂2
κ̂ :=

σ̂2
∆θ
− 2κ̂σ̂∆θ∆fbase

+ κ̂2σ̂2
∆fbase[

êCV (fbase)− êCV
(
F
)]2 . (C.1)

C.3 Material Based on Austern and Zhou (2020)

Assumption 3 (Conditions for Asymptotics of CV Estimator).

1. lΘ (θ, z) and lB (β, z) are twice differentiable and strictly convex in θ and β.

2. E [supθ∈Θ l
4
Θ (θ, Zi)] <∞ and E

[
supβ∈B l

4
B (β, Zi)

]
<∞.

3. There exist open neighborhoods Oθ∗ and Oβ∗ of θ∗and β∗ in Θ and B such that

(a) E
[
supθ∈Oθ∗ ‖∇θlΘ (θ, Zi)‖16] <∞, E

[
supβ∈Oβ∗ ‖∇βlB (β, Zi)‖16

]
<∞.

(b) E
[
supθ∈Oθ∗ ‖∇

2
θlΘ (θ, Zi)‖16

]
<∞, E

[
supβ∈Oβ∗ ‖∇βlB (β, Zi)‖16

]
<∞.

(c) there exists c > 0 such that λmin (∇2
θlΘ (θ, Zi)) ≥ c, λmin

(
∇2
βlB (β, Zi)

)
≥ c a.s.

uniformly on Oθ∗ and Oβ∗.

Lemma C.1. Under Assumption 3:

√
N
[
êCV (FΘ)− êCV

(
F
)
−
(
eFΘ,

K−1
K

N − eF ,K−1
K

N

)]
d−→ N (0,Var (∆l (fθ∗ , f

∗;Zi))) .

Proof. Proposition 5 of Austern and Zhou (2020) establishes the asymptotic normality of

cross-validation risk estimator and its asymptotic variance under parametric settings where
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the loss function used for training is the same as the loss function used for evaluation.

Applying Proposition 5 of Austern and Zhou (2020) under Assumption 3 to θ, β and α =

(θ, β), we obtain:

√
N
(
êCV (FΘ)− eFΘ,

K−1
K

N

)
d−→ N (0,Var (l (fθ∗ , Zi))) ,

√
N
(
êCV

(
F
)
− eF ,K−1

K
N

)
d−→ N (0,Var (l (f ∗, Zi))) ,

√
N
(
êCV (FΘ) + êCV

(
F
)
− eFΘ,

K−1
K

N − eF ,K−1
K

N

)
d−→ N (0,Var (l (fθ∗ , Zi) + l (f ∗, Zi))) .

Using the equality Var (X + Y ) + Var (X − Y ) = 2Var (X) + 2Var (Y ), we then deduce that

√
N
[
êCV (FΘ)− êCV

(
F
)
−
(
eFΘ,

K−1
K

N − eF ,K−1
K

N

)]
d−→ N (0,Var (∆l (fθ∗ , f

∗;Zi))) .

Lemma C.2 (Application of Proposition 1 of Austern and Zhou, 2020). Under Assumption

3, σ̂2
∆

p−→ Var (∆l (fθ∗ , f
∗;Zi)) .

Proof. Applying Proposition 1 of Austern and Zhou (2020) under Assumption 3 to θ, β and

α = (θ, β):

σ̂2
FΘ

:=
1

K

K∑
k=1

1

JN − 1

∑
k(i)=k

l (fθ̂−k , Zi)− 1

JN

∑
k(j)=k

l (fθ̂−k , Zj)

2

p−→ Var (l (fθ∗ , Zi)) ,

σ̂2
F :=

1

K

K∑
k=1

1

JN − 1

∑
k(i)=k

l (f[β̂−k], Zi)− 1

JN

∑
k(j)=k

l
(
f[β̂−k], Zj

)2

p−→ Var (l (f ∗, Zi)) ,

and

σ̂2
FΘ+F
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:=
1

K

K∑
k=1

1

JN − 1

∑
k(i)=k

l (fθ̂−k , Zi) + l
(
f[β̂−k], Zi

)
− 1

JN

∑
k(j)=k

[
l
(
f[β̂−k], Zj

)
+ l (fθ̂−k , Zi)

]2

p−→ Var (l (fθ∗ , Zi) + l (f ∗, Zi)) .

Hence, σ̂2
∆θ

= 2σ̂2
FΘ

+ 2σ̂2
F − σ̂2

FΘ+F
p−→ 2Var (l (fθ∗ , Zi)) + 2Var (l (f ∗, Zi)) −

2Var (l (fθ∗,Zi) + l (f ∗, Zi)) = Var (∆l (fθ∗ , f
∗;Zi)) .

C.4 Finishing the Proof

Lemma C.1 characterizes the limit distribution of

√
N
[
êCV (FΘ)− êCV

(
F
)
−
(
eFΘ,

K−1
K

N − eF ,K−1
K

N

)]

which we show is also the limit distribution of
√
N
[
êCV (FΘ)− êCV

(
F
)
− (eFΘ

− eF)
]
.

To see this, notice that

eFΘ,
K−1
K

N − eFΘ
= E

[
lΘ

(
θ̂−k(i), Zi

)
− lΘ (θ∗, Zi)

]
= E

[
∇lΘ (θ∗, Zi) ·

(
θ̂−k(i) − θ∗

)
+
(
θ̂−k(i) − θ∗

)′
∇2lΘ

(
θ̃, Zi

)
·
(
θ̂−k(i) − θ∗

)]
= 0 + E

[(
θ̂−k(i) − θ∗

)′
∇2lΘ

(
θ̃, Zi

)
·
(
θ̂−k(i) − θ∗

)]
=

1

N − JN
E
[√

N − JN
(
θ̂−k(i) − θ∗

)′
∇2lΘ

(
θ̃, Zi

)
·
√
N − JN

(
θ̂−k(i) − θ∗

)]
= c

1

N − JN
+ o

(
1

N − JN

)
= c

K

K − 1
· 1

N
+ o

(
1

N

)

since JN = N/K. Therefore
√
N
(
eΘ,K−1

K
N − eΘ

)
= op (1) , and

√
N
(
eF ,K−1

K
N − eF

)
=

op (1). Hence:
√
N
[
êCV (FΘ)− êCV

(
F
)
− (eFΘ

− eF)
] d−→ N (0,Var (∆l (fθ∗ , f

∗;Zi))) .

Now, we replicate the previous result with fbase in place of FΘ and obtain

√
N
[
êCV (fbase)− êCV

(
F
)
− (efbase

− eF)
] d−→ N (0,Var (∆l (fbase, f

∗;Zi))) .
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and jointly

√
N

 êCV (FΘ)− êCV
(
F
)
− (eFΘ

− eF)

êCV (fbase)− êCV
(
F
)
− (efbase

− eF)

 d−→ N

0,

 σ2
∆θ

σ∆θ∆fbase

σ∆θ∆fbase
σ2

∆fbase




with σ2
∆θ

:= Var (∆l (fθ∗ , f
∗;Zi)), σ2

∆fbase
:= Var (∆l (fbase, f

∗;Zi)), and σ∆θ∆fbase
:=

Cov (∆l (fθ∗ , f
∗;Zi) ,∆l (fbase, f

∗;Zi)) .

By Lemma C.2, Assumption 2 and the Delta Method, we have

√
N (κ̂− κ)

d−→ N

(
0,

σ2
∆θ
− 2κσ∆θ∆fbase

+ κ∗2σ2
∆fbase

d2 (fbase, f ∗)

)
.

Since σ̂κ̂
p−→
(
σ2

∆θ
− 2κσ∆θ∆fbase

+ κ∗2σ2
∆fbase

)
/d2 (fbase, f

∗), we have
√
N (κ̂− κ) /σ̂κ̂

d−→

N (0, 1).

52



D Supplementary Material to Application 1

D.1 Estimates for Application 1

Table 5: Restrictiveness and Completeness for Certainty Equivalents
# Param Restrictiveness Completeness

CPT Specifications
α, δ, γ 3 0.28 0.95

(0.003) (0.02)
δ, γ 2 0.37 0.95

(0.004) (0.02)
α, γ 2 0.51 0.95

(0.006) (0.02)
α, δ 2 0.49 0.27

(0.005) (0.05)
α 1 0.91 0.25

(0.005) (0.05)
δ 1 0.68 0.26

(0.009) (0.06)
γ 1 0.59 0.71

(0.006) (0.06)
DA Specifications

α, η 2 0.47 0.27
(0.006) (0.06)

η 1 0.69 0.27
(0.009) (0.05)

Restrictiveness is estimated from 1000 simulations and we report the analytic standard errors.

Because of potential dependence among the reported certainty equivalents of subjects, we

compute the standard errors for completeness using a block bootstrapping procedure that

clusters together all observations from the same subject.46 We then carry out our (cross-

validated) estimation of completeness on each bootstrap sample, and compute the standard

errors based on 1000 bootstrap samples. These bootstrapped standard errors are similar

to the analytic standard errors we get under a revision of the formulas in Section 5 to

accommodate clustering on subjects (see the following section).

46When generating a bootstrap sample, we randomly sample the 179 subjects with replacement, and
include all the reported certainty equivalents of the drawn subjects with replacement.
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D.2 Analytical SE with Clustering

We discuss here an alternative method for calculating clustered standard errors for com-

pleteness.

We consider each subject’s reported certainty equivalents for the 25 lotteries as a 25-

dimensional vector. We assume that this 25-dimensional vector is i.i.d. across subjects, but

leave the dependence within this subject-specific vector unrestricted. Specifically, define the

feature space X to be a singleton consisting of the 25×3 matrix whose rows are the different

lottery tuples (z, z, p) in the Bruhin et al. (2010) data. The outcome space is Y = R25, where

a typical element is a vector of 25 certainty equivalents for the 25 lotteries. The expected

certainty equivalent vector over subjects is represented by a mapping f : X → R25, which is

simply a vector in R25.

Finally, let the loss function l be

l(f, Yi, X) :=
1

25
‖Yi − fθ(X)‖2 =

1

25

25∑
h=1

(Yi,h − fh)2.

This loss function groups together the squared losses of each individual subject across the

25 lotteries. Under this setup, the analytical formula for standard errors provided in Section

5 and Appendix C.2 can be directly applied, with sample size N = 179. Table D.2 reports

the standard errors for completeness computed in this way.
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# Param Completeness

CPT Specifications
α, δ, γ 3 0.95

(0.09)
δ, γ 2 0.95

(0.08)
α, γ 2 0.95

(0.09)
α, δ 2 0.27

(0.09)
α 1 0.25

(0.05)
δ 1 0.26

(0.06)
γ 1 0.71

(0.06)
DA Specifications

α, η 2 0.27
(0.06)

η 1 0.27
(0.05)

D.3 Restrictiveness on Alternative Sets of Lotteries

We report here the restrictiveness values used to construct the CDFs in Figure 4 as well as

the papers the corresponding sets of lotteries were derived from, and the number of lotteries

from each paper.

Table 6: Restrictiveness
Source Paper # Lotteries CPT(α, δ, γ) DA(α, η)

Abdellaoui et al. (2015) 3 0.04 0.31
(0.00) (0.01)

Murad et al. (2016) 25 0.25 0.38
(0.00) (0.00)

Sutter et al. (2013) 4 0.46 0.46
(0.01) (0.01)

Fan et al. (2019) 19 0.23 0.25
(0.00) (0.00)

Bernheim and Sprenger (2020a) 7 0.13 0.45
(0.00) (0.01)
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E “Pairing” Completeness and Restrictiveness

In this section, we show that completeness and restrictiveness are related via the equation

κ(FΘ) = 1− r(FΘ,F), (E.1)

when the loss function l used to define eP , and the discrepancy function d used to define r,

are “paired” in a coherent way, which we now explain.

We first provide more details about the formulation of completeness. Suppose that besides

X, there is a random outcome Z. We will consider hypothetical joint distributions P̃ with

different conditional distribution P̃Z|X , where the marginal distribution P̃X is held fixed.

The analyst wants to learn a statistic of the conditional distribution of Z given X, which we

denote by Y ∈ Y . Two leading cases of this problem are: (a) prediction of the conditional

expectation EP̃ [Z|X], and (b) prediction of the conditional distribution P̃Z|X itself. As in

the main text, a prediction is any function f : X → Y , and we define F to be the set of all

such mappings.

Let l : F × X × Z → R be a loss function, where l(f, (x, z)) is the loss assigned to

predicting f(x) when the realized outcome is z. We define the expected error of a prediction

rule f with respect to the distribution P̃ by

eP̃ (f) := EP̃ [l(f, (X,Z))] , (E.2)

and let f ∗
P̃

denote the prediction rule that minimizes the expected error under P̃ :

f ∗
P̃

:= min
f∈F

eP̃ (f).

As in the main text, P denotes the distribution from which real data is generated. Then the
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completeness of a model FΘ as defined in Fudenberg et al. (2022) can be written as

κ(FΘ) =
eP (fbase)− eP (FΘ)

eP (fbase)− eP (F)
≡ 1− eP (FΘ)− eP (F)

eP (fbase)− eP (F)
.

We now formally define the meaning of “pairing” between the discrepancy function d and

the loss function l.

Definition E.1. The loss function l and discrepancy d : F × F → R are paired if

d(f, f ∗
P̃

) = eP̃ (f)− eP̃ (f ∗
P̃

) (E.3)

for every distribution P̃ ∈ ∆(X × Z) whose marginal distribution on X is PX . That is,

d(f, f ∗
P̃

) is the difference between the error of prediction rule f and the error of the best

prediction rule f ∗
P̃

.47

As noted in the main text, if l and d are paired, then (E.1) holds, where f ∗ = f ∗P .

Moreover, as also noted in the main text, the following functions are paired:

• Let Y = R. Then squared loss l (f, (x, z)) := (z − f(x))2 and the squared distance

discrepancy dMSE(f, g) := EPX
[
(f (X)− g (X))2] are paired.

• Let Y be the set of distributions over a finite set Z. Then negative (conditional)

log-likelihood l (f, (x, z)) := − log f (z|x) and the KL-divergence discrepancy

dKL(f, g) := EPX

[∑
z∈Z

g (z|x) [log g (z|x)− log f (z|x)]

]

are paired.

47This relation resembles but differs from the coupling of the “cost of uncertainty” and the “value of
information” in Frankel and Kamenica (2019), which concerns comparisons of different signal structures, as
opposed to comparing model classes.
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E.1 A Loss Function That Cannot be Paired with any Discrepancy

When Y is the set of distributions on Z, then every loss function l has a paired discrepancy

function, since we can define d(f, fP̃ ) := ef
P̃

(f) − ef
P̃

(fP̃ ).48 But in general, for some

prediction problems and loss functions l, there may not exist a discrepancy d such that l and

d are paired, as the next example shows. In these cases, we can still evaluate restrictiveness

and completeness, but they will not have an evident relationship.

Consider a setting where X is degenerate, i.e., X is a singleton, so that the joint distri-

bution P̃ is completely characterized by the distribution of Y . Furthermore, let Y := [0, 1].

If f ∗ := med (Y ) ∈ Y = [0, 1], then a mapping f : X → S is just a number in [0, 1].

When the loss function is the absolute deviation l (f, y) := |y − f | , and the error function

is mean absolute deviation eP̃ (f) := EP̃ [|Y − f |] , the true median f ∗ minimizes the error,

i.e. f ∗ ∈ arg minf∈[0,1] eP̃ (f) . However, it is not true that |f − f ∗| = eP̃ (f)− eP̃ (f ∗) for any

f ∈ [0, 1]. To see this, suppose that Y ∼ U [0, 1] under P̃ . Then f ∗ = 0.5 and eP̃ (f ∗) = 0.25.

However, for f = 0.4, we have eP̃ (f) = 0.26. but |f − f ∗| = 0.1 6= 0.01 = eP̃ (f)− eP̃ (f ∗) .

Moreover, there is no function d : [0, 1]2 → [0, 1] such that decomposability (E.3) holds,

which would require that d
(
f, fP̃

)
= eP̃ (f)− eP̃

(
fP̃
)

for any distribution P of Y supported

on [0, 1]. To see this, suppose that Y ∼ U [0, 1] under P̃1, we have

eP̃1
(f)− eP̃1

(
fP̃1

)
= (f − 0.5)2 =

(
f − fP̃1

)2
, ∀f ∈ [0, 1].

However, supposing that, under P̃2, the probability density function of Y is given by 2y for

y ∈ [0, 1], we have fP̃2
=
√

2/2 and eP̃2

(
fP̃2

)
= (2−

√
2)/3 but

eP̃2
(f)− eP̃2

(
fP̃2

)
=

1

3

(
2f 3 − 3f 2 +

√
2
)
6=
(
f − fP̃2

)2
.

48This is because P̃ is completely pinned down by fP̃ given PX , so eP̃ = efP̃ .
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