
Supplementary Appendix

S1 Data Construction

S1.1 Cellphone location records

This subsection details how we construct our sample of trips based on the raw

cellphone data. The raw data is composed of a sequence of pings. Each ping

contains a timestamp, latitude, longitude, and a device identifier. The final output

from this process is a dataset with a fraction of the universe of trips that took place

in Chicago. A sequence of filtering steps leaves us with 5% of devices. We verify

that the owners of these devices are representative and then scale up the number

of trips by a factor such that the aggregate number of car trips is consistent with

what is reported by the Chicago Metropolitan Agency for Planning (CMAP) 2019

Household Travel Survey.44

Data filtering We start by subsetting cellphone pings to a rectangle around the

city of Chicago (i.e., latitude between 41.11512 and 42.494693, longitude between

-88.706994 and -87.527174) for the month of January 2020.

Next, using the cellphone device identifier, the timestamp and geolocation of

each ping, we calculate the time between two consecutive pings as well as the

geodesic distance. These distances allow us to obtain the speed between consec-

utive pings. We then filter out “noisy” pings by using distance, time, and speed

variables. In particular, we remove pings that are moving at an excessive speed

since these pings are likely to be GPS “jumps” resulting from noise in the mea-

surement of the GPS coordinates of the device.45 We also drop “isolated” pings

since they are not helpful for identifying whether people are moving. Addition-

ally, we only keep pings belonging to a “stream” of pings.46 We define a stream
44 Source: My Daily Travel survey (website)
45 40 meters per second, i.e. about 145 kilometers per hour
46 In particular, we only keep pings that satisfy the following two conditions: (i) no more than ten
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of pings as a sequence of pings for the same cellphone identifier such that a ping

always has another ping within the next 15 minutes and within 1,000 meters. We

drop streams with less than 3 pings. Finally, we aggregate pings to the minute

of the day by taking the average location and timestamp across pings within each

minute for a given cellphone identifier. In what follows, we focus on the remaining

filtered pings aggregated at the minute level.

Defining movements, stays, and trips We identify two consecutive (aggregated)

pings as a “movement” for a given cellphone identifier if their distance is at least

50 meters or if their implied speed is at least 3 meters per second (6.7 miles per

hour or 10.8 kilometers per hour). We then define a “stay” as a sequence of two or

more successive pings with no movement.

Finally, we take all streams of pings and define trips as being a stream (i) with

movement, (ii) that starts with a stay, and (iii) that ends with a stay. We remove

all trips with a total geodesic trip distance between the starting and ending point

below 0.25 miles (about 400 meters).

Estimation of home locations and traveler’s income This subsection details how

we assign a home location and an income level to each individual cellphone iden-

tifier.

We start by assigning all cellphone pings to census blocks for the subset of pings

within Chicago during our sample period.47 Next, we focus on pings during night

hours, defined as between 10pm and 8am, when individuals are more likely to be

at home.

Using this subset of pings, we attribute a score system for each hour between

10pm and 8am. Specifically, regardless of the number of pings, scores are assigned

as follows:

• A value of 10 to all census blocks that were pinged between 1 am and 5 am.

minutes to either the next or the previous ping, (ii) no more than 5,000 meters to either the next
or the previous ping.

47 See Appendix S1.1 for the sample restrictions.
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• A value of 5 to all census blocks that were pinged between 11 pm and 1am

or between 5 am and 7 am.

• A value of 2 to all census blocks that were pinged between 10pm and 11pm,

or between 7am and 8am.

The basic idea is to assign a higher score to blocks where the cellphone owner

is more likely to be at home. Finally, we sum the scores across all census blocks for

each cellphone ID - month combination and keep the census block with highest

score. If this highest-score census block appears on at least 3 or more separate

nights during the month, we assign it as the cellphone’s home census block for

that month. Otherwise, we consider the cellphone as having an unknown home

location, which we believe captures occasional Chicago visitors such as tourists.

Throughout the text, we refer to these devices as visitors. Figure S9 plots the share

of visitors by origin locations. We see that, for trips done by visitors, the most

common origin locations are the city center (center right), both airports (top left

and center left), as well as Hyde Park the neighborhood home to the University of

Chicago (right, south of the center).

For all cellphones with an assigned home location, we impute their income by

using the census tract median household income.48

Next, for each market, we estimate traveler’s income distribution.49 First, we

take median income by tracts and divide tracts according to quintiles.50 Next, we

assign an income quintile to each device according to their home location. Since

we can follow how devices travel across space and over time, for each market, we

can measure the quintile from each traveler departing from its destination. Finally,

for each market, we construct shares of traveler’s income quintile. For markets

with less than 5 trips, we impute market-level income shares using the underlying

distribution of census tract-level income for the origin CA of that market.
48 We compute the census-tract median income percentile using the 2010 Census data.
49 Recall, a market is defined as an (origin CA, destination CA, hour of the week)-tuple.
50 For 2010, income quintiles are defined using the following cut-offs: 34, 875, 46, 261, 60, 590 and
85, 762 U.S. Dollars.
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Figure S9: Share of visitors by origin location

Notes: This figure shows the share of trips at the origin CA level made by visitors. In our cellphone
trips data, each market (origin-destination-hour triple) has a share of trips made by visitors. To
construct the shares displayed in the figure, we take the weighted average of the share of trips
made by visitors across destinations and hours of the week, for each origin CA, using inside market
size (number of cellphone trips per market) as weight.
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S1.1.1 Survey Data Sparsity

Survey data Combined data

0 10 100 1,000 10,000 100,000 1,000,000# Trips

Figure S10: Combined vs. Survey Data: Flows Across Community Areas

Notes: These figures show the number of trips from every origin CA to every destination CA in our
combined data (right panel) and in the survey data (left panel). Each row represents an origin CA
and each column represents a destination CA. Grey points represent empty cells.

S1.2 Travel times, routes, and schedules

Travel times and routes Similar to Akbar et al. (2023), we query and geocode

trips using Google Maps. For each mode of transportation, we query 30,796,848

counterfactual trips and obtain their distance, duration, and route.51 Importantly,

we can measure trip duration for the same origin-destination tuple over the time of

the weekday (or weekend) and how this varies with traffic conditions. Moreover,

using the detailed “steps” of the public transit Google Maps queries, we obtain
51 One trip for each (origin census tract, destination census tract, hour of day, weekend dummy)

combination. We use all the 801 Chicago census tracts boundaries for the year 2010 from the
Chicago Data City portal website.
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walk times from the origin latitude/longitude to the “best” train or bus station.52

We also obtain Google Maps data on train trip times by querying Google Maps

three times for each pair of train stations in Chicago. These times represented

three broad time categories: weekday peak, weekday non-peak, and weekend. In

particular, the first query requested a trip time of 8am on Wednesday July 6th,

2022, the second query requested a trip time of 11am on Wednesday July 6th, 2022,

and the third query requested a trip time of 11am on Saturday July 9th 2022.

Public transit schedules We obtain historical GTFS data from Open Mobility

Data. These data contain bus and train schedules for December 2019 through

February 2020.

S1.3 Constructing Mode-Specific Trips

Mode-specific trips are constructed using five main sources: (1) Taxi and TNP trips

data from the City of Chicago, (2) Google Maps data, (3) cellphone trips data, (4)

historical GTFS data containing public transit route schedules, and (5) Chicago

public transit data from the MIT Transit Lab and the CTA.

Taxi and Transportation Network Provider (TNP) data We obtain trip times, dis-

tances, and origin-destination census tracts for both Taxi and Transportation Net-

work Provider (TNP) trips from the City of Chicago’s Data Portal.53

Cellphone trips data We construct cellphone trips from cellphone pings using

the procedure detailed in Appendix S1.1. This procedure results in a trip-level

dataset. Since our cellphone data only captures a portion of the total trips, we ad-

just for this by assigning an inflation factor to each trip. To account for varying

rates of unobserved trips across different city areas, we allow inflation factors to
52 The “best” bus or train station is not necessarily the closest one, depending on the destination

and/or the time of the day.
53 For privacy reasons, during periods of the day and for locations with very few trips, only the

origin and/or destination CA of a trip is reported. See this page for a discussion of the approach
to privacy in this data set.
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vary by the neighborhood of the trip’s origin.54 Specifically, we calibrate these fac-

tors to ensure that the number of car trips beginning in each neighborhood in our

dataset matches the corresponding number in the Chicago Metropolitan Agency

for Planning (CMAP) Household Travel Survey.55

Public transit data We obtain individual public transit trips for the city of Chicago

via a partnership between the MIT Transit Lab and the CTA. Each observation cor-

responds to a a passenger swiping in to access the bus or the train station. For

buses, we observe the specific bus stop, bus line, and boarding time. For trains,

we observe the station and swiping time. Drop-off locations are given to us and

imputed following Zhao et al. (2007).

This data notably excludes trips taken via the Metra, which is a suburban rail

system operating in and around Chicago. Metra is managed by a different agency,

the Regional Transportation Authority. An additional limitation is that we do not

observe trips paid for via cash or trips whose destination could not be imputed. To

account for these sources of missing trips, we assign each observed trip an inflation

factor. This inflation factor is computed at the day-mode level such that

infldmTdm = Rdm,

where dm indexes the day-mode, T is the total number of observed trips, and R is

the observed aggregate daily ridership for the CTA, which we obtain from the City

of Chicago’s Data Portal. The average such inflation factor is 2.0.

We also do not observe travel times for train trips, and so we are forced to

impute these travel times. To do so, we first match each train trip to the historical

GTFS schedule data. To compute the match for a given train trip, we first find all

scheduled trips between the origin and destination stops of that trip. We then take

the match to be the scheduled trip whose boarding time is closest to the observed
54 Each neighborhood is a group of about 8-9 CAs. The exact make-up of neighborhoods can be

found on Wikipedia.
55 Source: My Daily Travel survey (website)
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boarding time. We then take the scheduled travel time as the travel time. This

matching process enables us to compute travel times for close to 90% of train trips.

For trips that have no matches in the schedule data, we impute travel times

using Google Maps data.56 In particular, we first assign each trip one of three time

categorizations: weekend (if Saturday or Sunday), peak weekday (if between 5-

9:59am or 2-6:59pm on a weekday), or non-peak weekday (otherwise). We then

take the time to be the travel time of the matching train trip from the Google Maps

data.

We also compute travel distances for each trip. We use the Haversine formula

to compute distances, with radius equal to 6371.0088, which is the mean radius

of Earth in km. For bus trips, we compute the travel distances as the Manhattan

distance between the boarding and alighting coordinates, while for train trips we

compute the travel distances as the Euclidean distance between the boarding and

alighting coordinates.

S1.4 Market Share Calculations

We first append together the transit, TNP, taxi, and cellphone trips data. We incor-

porate walk times to bus/train stations from the Google Maps data. We drop any

trips that have a negative trip time, trip time exceeding 6 hours, negative prices, or

missing values for origin, destination, distance, duration, mode, trip time, or price.

Since our trip data is at the vehicle level, we account for unobserved vehicle occu-

pancy by scaling trip numbers and prices using the average vehicle occupancy for

that mode, which we report in Appendix D.4.

We calculate market shares at the (origin CA, destination CA, hour-of-the-week)

level using a two-step process. First, we aggregate trips at the (origin CA, destina-

tion CA, hour-of-the-week, date) level. We then let the number of car trips be the

residual after subtracting public transit, taxi, TNP, and shared trips from the cell-
56 Manual inspection suggests these trips typically involve an unobserved transfer between two

lines.
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phone trips.57 Car prices are computed as 0.6374 U.S. Dollars per trip mile, which

is AAA’s estimate of per mile driving costs for an average 2020 model.58 Finally,

we obtain trip counts at the (origin CA, destination CA, hour-of-the-week, date)

level by averaging across dates.

S1.5 Market Size

To compute market shares, we need to take a stance on the size of the market,

which captures how many people could be traveling at a given moment in time.

For simplicity, we assume that market sizes are proportional to the total number

of observed trips. To determine the factor of proportionality, we compare the pop-

ulation of each CA to the total number of trips originating from that CA in the

morning hours (5-9:59am) on weekdays. The median ratio across CAs is 2.61. Im-

plicitly, this factor assumes that the number of potential travelers in each CA in

these morning hours is given by the total population, which is likely an upper

bound. We also compute a more conservative factor by assuming the set of po-

tential travelers is made up of commuters and school-age children, which gives a

median factor of 1.48. Corresponding to roughly the midpoint of these two factors,

we set our proportionality factor to 2.

We restrict ourselves to markets where we observe car trips so that cars are

always an available mode. These markets capture 96% of observed trips.

S2 Additional Empirical Results

S2.1 First-Stage Coefficients

Figure S11 shows a visualization of the first-stage for our free-flow instrument. The

left panel shows free-flow speeds relative to actual travel speeds at 8am for cars.

While actual travel speeds are typically lower than free-flow speeds due to conges-
57 If the residual is negative we assume that there are no car trips.
58 Source: AAA brochure “Your driving costs”.
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tion, there is still a large and positive correlation between the two. That is, markets

with high free-flow speeds still have relatively higher actual travel speeds even

when there is congestion. The right panel additionally shows free-flow speeds rel-

ative to actual travel speeds at 12am for cars. Once again, there is a strong and

positive correlation between the two. Moreover, the fact that these two speeds are

very close provides a measure of validation for our free-flow speeds, as we would

expect there to be very little congestion at this time in most markets. Finally, table

S3 shows the first-stage coefficients for the rest of our instruments.
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Notes: This figure shows a binscatter of car free-flow speeds vs. travel speeds across markets at 8am
(left panel) and 12am (right panel).

Figure S11: Free-Flow Speeds vs. Actual Travel Speeds
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Table S3: First-Stage Coefficients

Time Price

(1) (2)

Free-Flow Time 0.970*** -9.228***
(0.007) (0.090)

Non-TNP Price 0.004*** -0.632***
(0.001) (0.018)

Frac. Transfers 0.280*** -0.306***
(0.003) (0.020)

Frac. Multimodal 0.166*** 0.597***
(0.004) (0.029)

Local Diff. x TNP Indic. -0.014*** -1.445***
(0.001) (0.016)

Quad. Diff. x TNP Indic. 0.013*** 1.946***
(0.004) (0.081)

Local Diff. -0.024*** -0.336***
(0.002) (0.013)

Quad. Diff. 0.055*** 3.063***
(0.006) (0.072)

⇡1 x Non-TNP Price -0.020*** 0.691***
(0.001) (0.021)

⇡2 x Non-TNP Price -0.011*** 0.308***
(0.001) (0.025)

⇡3 x Non-TNP Price -0.013*** 0.234***
(0.001) (0.024)

⇡4 x Non-TNP Price -0.006*** 0.076**
(0.001) (0.028)

Mode Fixed Effects Yes Yes
Market Fixed Effects Yes Yes

F 9,074.944 5,190.973
N 273,833 273,833

Notes: This table presents the first-stage coefficients for the instruments used to estimate demand
in section 4.1. In particular, we regress times and prices on the full vector of instruments as well
as mode and market fixed effects. Singleton observations (markets with only a single mode) are
dropped.

S2.2 Bus Utilization

While our model does not consider capacity constraints for buses when solving for

the optimal policy, we can consider ex-post the extent to which this constraint might

bind. Our results imply frequency reductions for buses that are typically less than
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30%. We consider whether these frequency reductions would result in binding

capacity constraints, holding ridership levels fixed, by computing the fraction of

buses that exceed 70% and 80% utilization across hours of the day. Figure S12

shows that this constraint is unlikely to make a first-order impact on our results as

only 10% of buses reach even 70% utilization, and only during the morning and

afternoon rush hours.
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Figure S12: Bus Capacity

Notes: This figure shows the fraction of buses that exceed 80% (solid) and 70% (dashed) utilization
over the course of the day.

S3 Additional Counterfactual Results

S3.1 Decomposition of welfare effects

In this section, we decompose the change in consumer surplus and in environmen-

tal externalities attributed to different channels. The change in consumer surplus

is a product of two forces: the direct change in prices and the indirect effect in time

due to changes in mode choices. The change in the environmental externalities is

also due to two channels: the change in frequencies and the change in travelers’

mode choices (substitution). Table S4 shows how each of these channels contribute

to the overall aggregate effects across different scenarios.
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Focusing on the counterfactual where the planner only sets public transit prices

and frequencies subject to a budget constraint, column 3, we see that consumers

face two opposing effects. On the one hand, lower prices means an increase in

consumer surplus of $3.8M per week. On the other hand, lower frequencies in-

crease the overall travel times and, in turn, decreases consumer surplus by $3.4M

per week. In terms of externalities, most of the reduction accrues through the re-

duction in frequencies and fewer vehicles running throughout the city.

When the planner only set road pricing, we see a large reduction in consumer

surplus of $25.5M per week. The reason is that consumers face an increase of prices

for the most common mode of transportation, namely private cars. Because, due

to this increase in prices, consumers stop traveling by car, traveling speed goes

up, which translates into lower overall travel times and an increase in consumer

surplus of $2M per week.

Simultaneously setting public transit prices and frequencies as well as road

pricing can be viewed as the combination of the previous two cases. However,

in this case we have two opposing effects for both prices and travel times that net

each other out in the aggregate overall results.

Finally, when the planner sets all prices and reduces ride-hailing prices by 45%,

we see some interactions of these policies accruing through two channels. First,

consumer surplus increases by $14.5M per week relative to the previous scenario.

However, as travelers start substituting toward ride-hail, travel speed decreases

and overall travel time increases, which partially undoes the effect of congestion

of car taxes.

Next, we zoom in on how consumer surplus changes across the income distri-

bution. The results, in percentage terms, can be seen in Figure S13. Observe that

the absolute effect of prices for the public transit counterfactuals is larger for lower

income consumers, as they are the ones who are more likely to use those modes

of transportation. Conversely, the effect of time is more pronounced for higher

income consumers, as they are the ones with the highest VOT.
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Table S4: Decomposition of Consumer Surplus and Environmental Externalities

Status quo Transit Transit,
budget

Road pricing Transit + Road
pricing

Social
planner

� CS ($M/week) Total 0 12.647 0.025 -29.113 -18.536 -9.472

� CS ($M/week) Price 0 11.375 2.476 -31.843 -22.062 -11.093
� CS ($M/week) Time 0 1.272 -2.451 2.730 3.526 1.621

� CS ($M/week) Capacity 0 0.436 -2.480 0 0.429 0.799
� CS ($M/week) Substitution 0 0.837 0.028 2.730 3.097 0.822

� Externality Total 0 -0.616 -0.347 -3.585 -3.692 -3.086

($M/week) Capacity 0 -0.038 -0.220 0 -0.032 -0.010
� Externality Substitution 0 -0.578 -0.127 -3.585 -3.660 -3.076

� Avg. Speed (km/h) 0.00% 0.61% 0.09% 2.93% 3.14% 2.53%

Notes: This table represent the change in consumer surplus and environmental externalities attributed to different channels. Changes in
consumer surplus (first row) are divided into changes in prices (second row) and times (third row). Changes in times are a product in
changes in fleet size (fourth row) and substitution of consumers across modes (fifth row). Total changes in externalities (sixth row) are
decomposed into changes in fleet size (seventh row) and substitution across consumer (eighth row).
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Figure S13: Decomposition of consumer surplus through different channels
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Notes: These graphs presents changes in consumer surplus across income quintiles for four different
counterfactual scenarios scenarios. Each of the lines represent the change in consumer surplus from
each of the channels that affect traveler’s utility.
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