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B. Additional Technical Results

In this Appendix we collect technical results that are necessary for the proofs of our main

results but that have been omitted from the main text for clarity and brevity.

B.1. Construction of the Allocation

In this section, we establish that we can characterize the allocation of students to schools

under a coarsening Ξ as a conditional probability mass function gΞ(c|θ) that assigns each

type θ a probability of being assigned to each school c. This allocation will serve as the object

over which the planner has preferences and its construction and properties are important for

the analysis.

Under a coarsening Ξ, a school prioritizes student i to student j if i is in a higher

indifference class than j or i and j are in the same indifference class and i has higher

tie-breaker. Hence the priorities of school c become lexicographic with order (p, τ), where

p = Ξ(s) for some score s. By Definition 1, any admissible coarsening map partitions

students into a finite number of partitions or retains a strict priority structure. Moreover,

there is no aggregate uncertainty in the economy: the same measure of students of each

type is assigned to each school with probability one. This is stated rigorously in Lemma 1,

which also establishes that the coarsened economy after tie-breaking inherits the full support

condition that we assumed for the initial economy.

Lemma 1. Let Ξ be a coarsening and F̃ τ∗
Ξ the distribution of students corresponding to a

strict ordinal economy for a given realized distribution of tiebreakers.

1. F̃ τ∗
Ξ = F̃ τ

Ξ almost surely where F̃ τ
Ξ is given by f̃ τΞ(θ̃Ξ, τ) = f̃Ξ(θ̃Ξ) for all θ̃Ξ ∈ Θ̃Ξ, τ ∈

[0, 1]. Moreover, F̃ τ
Ξ has full support.

2. In the coarsened ordinal economy with tie-breakers Ω̃τ
Ξ = (F̃ τ

Ξ , Q, Θ̃
τ
Ξ), for any student

of any induced type θ̃Ξ = (�θ̃Ξ , s
θ̃Ξ
c ) ∈ Θ̃Ξ, there is a unique mapping µ̃θ̃Ξ : [0, 1] → C

that determines the assignment of that student as a function of her realized tie-breaker.

Proof. Part 1 : Each induced type, θ̃Ξ = (�θ̃Ξ , s
θ̃Ξ
c ), draws a random number from U [0, 1], by

the law of large numbers, for any type θ̃Ξ, the distribution of realized tie-breakers F̃ τ∗
Ξ (τ |θ̃Ξ) is
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U [0, 1] almost surely, which gives a unique strict economy type space almost surely.48 As the

interim economy (with induced types) before tie-breaking Θ̃ has full support by Assumption

1, and f̃ τΞ(θ̃Ξ, τ) = f̃Ξ(θ̃Ξ), it follows that (F̃ τ
Ξ , Q, Θ̃

τ
Ξ) has full support.

Part 2 : As Ω̃τ
Ξ has full support, it has a unique stable matching (see Theorem 1 in Azevedo

and Leshno (2016)), denoted by µ̃. Thus for any type θ̃Ξ its assigned school is determined

directly as a function of its tie-breaking number τ , µ(θ̃Ξ, τ). Now define µ̃θ̃Ξ : [0, 1] → C so

that µ̃θ̃Ξ(τ) = µ(θ̃Ξ, τ).

Using this fact, under any coarsening Ξ one can construct the allocation gΞ : Θ × C →
[0, 1], with the probability that type θ is assigned to school c given by gΞ(c|θ). This is stated

formally in Lemma 2.

Lemma 2. For any coarsening Ξ the probability that any student of type θ ∈ Θ is assigned

to a school c ∈ C is well-defined and can be represented by a conditional probability mass

function gΞ(c|θ), which is given by:

gΞ(c|θ) =

∫ 1

0

I
[
µ̃θ̃Ξ(θ)(τ) = c

]
dτ (78)

where θ̃Ξ(θ) is the induced ordinal type of type θ ∈ Θ under the coarsening Ξ, and µ̃θ̃Ξ is the

constructed mapping from Lemma 1 for the coarsened ordinal economy with tie-breakers Ω̃τ
Ξ

corresponding to Ξ.

Proof. As a result of Lemma 1, in the coarsened ordinal economy with tie-breakers Ω̃τ
Ξ

corresponding to Ξ, for any ordinal type θ̃Ξ ∈ Θ̃Ξ we know that their assigned school is

uniquely determined by their tie-breaker τ according to µ̃θ̃Ξ(τ). The probability that type

θ̃Ξ is matched to a school c is then:

µΞ(c|θ̃Ξ) =

∫ 1

0

I
[
µ̃θ̃Ξ(τ) = c

]
dτ (79)

Moreover, given a type θ = (uθ, sθ), we can deduce their induced type under a coarsening Ξ,

or θ̃Ξ(θ) = (�θ̃Ξ(θ), sθ̃Ξ(θ)) by taking the ordinal representation of their cardinal utility and

48This unique economy can be constructed by the following method: for any school, let the number
of equivalence classes that the school has be k and enumerate them in increasing priority, so the i’th
class has measure m(i). Divide the interval [0, 1] to k ordered sub intervals (where the intervals are
[a0, a1), [a1, a2), . . . , [ak−1, ak] with a0 = 0 and ak = 1) with each having measure m(i) and score distri-
bution U [ai, ai+1] (in other words, with density m(i)/(ai−ai−1)). In the unique economy after tie-breaking,
any student who is in priority class i has a uniform probability of having a priority of any number in the i’th
sub interval. So long as the initial economy has full support, the economy after coarsening and tie-breakers
also has full support.
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coarsening their priority according to Ξ. Thus, for a type θ, the probability that they are

assigned to school c is simply µΞ(c|θ̃Ξ(θ)). Consequently, we can define:

gΞ(c|θ) = µΞ(c|θ̃Ξ(θ)) (80)

or, as claimed in the Lemma:

gΞ(c|θ) =

∫ 1

0

I
[
µ̃θ̃Ξ(θ)(τ) = c

]
dτ (81)

If the coarsening map is the identity function, then there is no need for tie breaking and the

economy has full support, so µ̃(θ̃, τ) = c is still unique. As a result, an analogous argument

yields the result.

This construction simply takes the function µ̃ for any student from Lemma 1 and averages

over the distribution of tie-breakers to compute the assignment probabilities.

B.2. Continuity of Allocations

To establish the existence of an optimum, we show that allocations are continuous in the

cutoff vectors corresponding to coarsenings. We first use Theorem 1 to represent coarsenings

as vectors v ∈ V . We refer to gv : Θ × C → [0, 1] as the corresponding allocation. As

highlighted in Footnote 25, the set of potential allocations G is a subset of the space L1(Θ×C)
of functions measurable in the measure space (Θ×C,Σ, F̌ ), where Σ is is the Borel σ-algebra

generated by the product topology on Θ × C and F̌ extends the domain of the measure F

from Θ to Θ×C by stacking |C| copies of F . We now prove that gv is continuous in v in the

sense that for any sequence {vn}n∈N ⊂ V such that vn → v, we have that gvn → gv in the

L1-norm.

Lemma 3. gv is continuous in v in the L1-norm.

Proof. As shown in Lemma 2, we may represent:

gv(c|θ) =

∫ 1

0

I
[
µ̃θ̃v(θ)(τ) = c

]
dτ (82)

Fix any sequence {vn}n∈N ⊂ V such that vn → v. If gvn(c|θ) → gv(c|θ) for any such

sequence for F̌ -almost all (c, θ), then gv is continuous in v in the L1-norm. By the dominated

convergence theorem, this is equivalent to showing the following for F̌ -almost all (c, θ) (as
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L1(Θ× C) is complete):

0 = lim
n→∞

[
g(vn)(c|θ)− gv(c|θ)

]
= lim

n→∞

∫ 1

0

[
I
[
µ̃θ̃vn (θ)(τ) = c

]
− I
[
µ̃θ̃v(θ)(τ) = c

]]
dτ (83)

Now fix (c, θ), to show the above, once again by the dominated convergence theorem, it is

sufficient to show that:

lim
n→∞

[
I
[
µ̃θ̃vn (θ)(τ) = c

]
− I
[
µ̃θ̃v(θ)(τ) = c

]]
= 0, for almost all τ ∈ [0, 1] (84)

Now fix a τ ∈ [0, 1] and consider the sequence of economies with the priority structures

induced by vn. As vn → v, the priority structures converge pointwise. By Lemma 1, the full

support assumption in the ex-ante economy implies that interim economy has full support

for all n, hence the interim economy has a unique stable matching for all vn. Thus, by

Theorem 2.3 of Azevedo and Leshno (2016), we know that the stable matching is continuous

in the induced economy with coarsening vector v ∈ V within the set of economies O. Thus,

for each θ̃v(θ) and almost all τ , there must exist an N such that for all n > N , we have

that I
[
µ̃θ̃vn (θ)(τ) = c

]
= I

[
µ̃θ̃v(θ)(τ) = c

]
for almost all θ ∈ Θ and τ ∈ [0, 1]. Thus, we have

shown that Equation 83 holds for F̌ -almost all (c, θ) and completed the proof.
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C. Priority Design with Aggregate Uncertainty

In the main text we assumed that the mechanism designer knows the distribution of

students’ types. We start with a simple discrete example that shows this is necessary for the

optimality of trinary coarsenings.

Example 3. There are six students, Θ = {θ1, θ2, θ3, θ4, θ5, θ6} and one school with capacity

2, C = {c} and Qc = 2. The scores of the students are given by their index number, i.e.

sθic = i. The designer prefers to admit θ6, θ4 and to a lesser extent, θ2 and has the following

utility function:

Z(µ) =
∑
i∈{4,6}

I{θi ∈ µ(c)}+
1

2
I{θ2 ∈ µ(c)} (85)

There are two states denoted by γ and γ′ and both states have strictly positive probability.

The ordinal preferences of student θi in state j ∈ {γ, γ′} is denoted by �ij. The preferences

are given by:

• �ij= c, θi for i ∈ {1, 2, 3, 6} and j = {γ, γ′}.
• �iγ= c, θi and �iγ′= θi, c for i ∈ {4, 5}.

Under state γ, the unique optimal trinary coarsening is given by:

Ξγ(i) =


3, i = 6

2, i ∈ {4, 5}

1, i ∈ {1, 2, 3}

(86)

This coarsening admits 6 with probability 1 and maximizes the probability of admission

for 4. Note that any other trinary coarsening will result in a strictly lower utility for the

designer. Under state γ′, Ξγ is not optimal as it admits 6 with probability 1 but admits 2

with probability 1/3. As Ξγ is the unique trinary coarsening that is optimal under γ, no

trinary coarsening can attain the optimum under both realizations of uncertainty. Moreover,

the following is an optimal trinary coarsening under γ′:

Ξγ′(i) =


3, i = 6

2, i ∈ {2, 3, 4, 5}

1, i ∈ {1}

(87)

Ξγ′ admits 6 with probability 1 and admits 2 with probability 1/2, and thus performs

strictly better than Ξγ. However, there exists a coarsening with 4 indifference classes that
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attains the optimum under both states:

Ξ∗(i) =



4, i = 6

3, i ∈ {4, 5}

2, i ∈ {2, 3}

1, i ∈ {1}

(88)

Ξ∗ replicates Ξγ under γ and Ξγ′ under γ′, and thus attains the optimal allocation in both

cases. This example shows that trinary coarsenings are not without loss of optimality under

uncertainty.

We now depart from that assumption by considering a mechanism designer who believes

finitely many distributions are possible and has a prior belief over those probability distribu-

tions. Formally, let F denote the set of finitely many possible distributions with a particular

element f . Let p(f) denote the probability measure over this finite set and gf denote the

allocation under f . In this environment, we introduce a new assumption (in place of As-

sumption 3) on the objective function of the planner that they are a subjective expected

utility maximizer with respect to their prior as to the market they face:

Assumption 4. Under uncertainty, the social planner has subjective V.N-M utility Z with

a Bernoulli utility function z : G → R that is continuous in gf .

Notice that in any realization of the student distribution, the same coarsening rule must

be applied. Hence schools must use the same priority structure across realizations of different

market structures. This draws a parallel between uncertainty and our analysis of homoge-

neous coarsening in Online Appendix D: under homogeneity multiple schools must use the

same coarsening rule; under uncertainty, the same rule must be used across multiple states.

First, and analogously to the previous analysis, we provide a result on the maximum

number of partitions needed to achieve an optimal coarsening under uncertainty. This is

stated as Proposition 6:

Proposition 6. There exists an optimal coarsening Ξ with at most 2|F| cutoffs at every

school.

Proof. Fix an arbitrary coarsening Ξ. Divide the schools to two subsets: c ∈ C̃ if Ξc is finite

and c ∈ Ĉ if Ξc is the identity function. Take c ∈ C̃, the coarsening Ξ takes any student with

score sθ̃c to an equivalence class, hence Ξc(s
θ̃
c) ∈ {P c

1 , P
c
2 , . . . , P

c
n} with P c

1 < P c
2 , . . . , < P c

n. By

Theorem 1, for any fi ∈ F , there can be at most one lottery region for school c and denote

that region by P c
fi

and enumerate fi in a way that P c
fi

is increasing in i. Let Pn < Pn+1 <
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. . . < Pm denote the indifference classes that are between two consecutive lottery regions P c
fi

and P c
fi+1

. Define Ξ′ by merging Pn < Pn+1 < . . . < Pm.49 Note that the allocation under Ξ

and Ξ′ are the same under any fi.
50 Repeating this for all schools c ∈ C̃ and lottery regions

results in a coarsening rule Ξ′ that induces same allocation as the arbitrary coarsening Ξ.

Moreover, there is only 1 partition between any two lottery regions for a schools in C̃, hence

there are at most 2|F| cut-offs and 2|F|+ 1 partitions per schools in C̃ under Ξ′.

Next, take c ∈ Ĉ, so Ξc is the identity function. As the economy has full support, there

is a unique stable matching under any fi ∈ F . Let µi denote this stable matching. For any

school c and distribution fi, let tic denote the threshold that the students must clear in order

to gain admission to that school under fi. Formally,

tic = min{sθ̃c : µi(θ̃) = c} (89)

Let Tc = ∪i≤|F|{tic}. Next, define Ξ′ in the following way:

Ξ′c(s
θ̃
c) = max{tic ∈ Tc : sθ̃c ≥ tic} (90)

Note that from the stability of µi under the distribution fi and the definition of matching

(in particular, property (iv) from Footnote 23)) there cannot be a student k such that

c′ �k µi(k) and skc′ ≥ tic′ . To see that µi is stable under Ξ′, assume that student pair l, j

(with scores slc′ and sjc′) blocks it in school c′. Then we have c′ �l µi(l), µi(j) = c′ and

Ξ′c′(l) ≥ Ξ′c′(j). As µi(j) = c′, we have Ξ′c′(j) ≥ tic. As Ξ′c′(l) ≥ Ξ′c′(j) and Ξ′c′(j) ≥ tic, we

have that slc′ ≥ tic′ , which contradicts the stability of µi under Ξ as c′ �l µi(l). By the same

argument as in the first case, it follows that gΞ = gΞ′ . Then non-emptiness follows from the

same argument in Theorem 2 under Assumption 4.

This result generalizes Theorems 1 and 2 to the case with aggregate uncertainty. Instead

of an optimum being attainable with at most 2 cutoffs at each school, now up to 2|F| cutoffs

are required: 2 for each state of the world. This demonstrates how the presence of aggregate

uncertainty can substantially complicate the problem of priority design.

To understand the normative implications of aggregate uncertainty, we characterize when

the presence of uncertainty induces a welfare loss to the planner. We denote the lottery region

cut-offs of school c under distribution f by [P c
f , P

c
f ]. We can define a no-overlap condition in

the case with uncertainty:

Definition 3. For any problem, the set of distributions {f1, f2, . . . , fn} = F satisfies no

49This can be done by setting Ξ′(Pn) = . . . = Ξ′(Pm) = Ξ(Pn).
50The argument for this is exactly same as the one made in the proof of Theorem 1.
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overlap across distributions if for any fi, there exists coarsenings:

Ξi = [P 1
i , . . . , P

|C|
i |P 1

i , . . . , P
|C|
i ] (91)

such that Ξi is optimal under fi and for all c, k and j, [P c
k , P

c
k ] ∩ [P c

j , P
c
j ] = ∅ or [P c

k , P
c
k ] =

[P c
j , P

c
j ].

We can now prove that there is a loss from uncertainty if and only if the no-overlap

condition is not satisfied. This is stated as Proposition 7:

Proposition 7. There is no welfare loss from uncertainty if and only if F satisfies no overlap

across distributions.

Proof. Assume that the problem satisfies no overlap across distributions and fix optimal

trinary coarsenings Ξfi that satisfy no overlap across distributions. Let |F| = n. For

any school c, Ξfi has two cut-offs vfi : denote them by Lcfi and U c
fi

with Lcfi < U c
fi

. As

the trinary coarsening satisfies no overlap across distributions, we can enumerate them as

Lcf1
< U c

f1
< . . . < Lcfn < U c

fn
. Define a new set of cut-offs wc = Lcf1

, U c
f1
, . . . , Lcfn , U

c
fn

. Define

a new coarsening v′ by setting the cut-offs as wc for all c. Notice that for any realization of

fi, the coarsenings vfi and v′ induce the same allocation.51 Hence the coarsening v′ induces

the same allocation as vfi for any fi. As each vfi maximizes the mechanism designer’s utility

under fi, the maximum utility can be replicated by using v′ for any fi and there is no loss

from uncertainty.

For the converse result, fix an arbitrary coarsening w and suppose that the problem does

not satisfy the no overlap across distributions condition. Consider the set of coarsenings that

uses vf = w for all f ∈ F . Notice that this set trivially has no overlap. Clearly, w and {vf}
attain the same utility value for the mechanism designer. As the problem does not satisfy

the no overlap across distributions assumption, there must be a set of coarsenings {v′f} that

attains a strictly higher expected utility than {vf} and w. As w is arbitrary, there is welfare

loss from uncertainty regardless of its choice.

As no overlap is a very strenuous condition, the above result clarifies that generally

uncertainty will lead to welfare losses for the planner. It moreover makes clear that this loss

in welfare stems from the inability of the planner to preserve the lottery classes from the

optimal ex post designs in each state.

51To see why this is true, notice that vfi can be obtained from v′ by merging indifference classes that are
above and below each lottery class for any school, using the construction in the proof of Theorem 1.
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D. Priority Design with Homogeneous Coarsening

In many applications, the assumption that the policymaker can set a school-specific coars-

ening may be unrealistic. For example, in cases where the underlying score represents exam

scores or some measure of student achievement, it is possible that the schools are constrained

to use the same grading criteria. Hence, in this section, we examine optimal coarsenings when

the coarsening rule is constrained to be the same across all schools. Formally, we find the

optimal coarsening in the set H of homogeneous coarsenings:

Definition 4. A homogeneous coarsening rule Ξ is a coarsening rule such that

Ξ(s) = (Ξ1(s1), . . . ,Ξ1(sn)) (92)

Let the set of all homogeneous coarsening maps be Bh. When only homogeneous coars-

enings are allowed, the planner faces the general problem that satisfies Assumption 3:

B∗h = arg max
Ξ∈Bh

Z(gΞ) (93)

where gΞ is the allocation induced by Ξ. We first prove a proposition which shows that

appropriately revised versions of Theorems 1 and 2 continue to hold in this environment:

Proposition 8. B∗h is non-empty. There exists a homogeneous coarsening with 2|C| cutoffs

such that Ξ ∈ B∗h.

Proof. Fix an arbitrary finite homogeneous coarsening Ξ. The coarsening Ξ takes any student

with score sθ̃c to a partition, hence Ξc(s
θ̃
c) ∈ {P c

1 , P
c
2 , . . . , P

c
n} with P c

1 < P c
2 < . . . < P c

n for

all θ̃ ∈ Θ̃. By Theorem 1, for any c ∈ C̃, there can be at most one lottery class.

Without loss of generality, assume the lottery regions are enumerated as Px(1) < Px(2) <

. . . < Px(|C|). Let Pn < Pn+1 < . . . < Pm denote the indifference classes that are between two

consecutive lottery regions Px(z) and Px(z+1). Define Ξ′ by merging Pn < Pn+1 < . . . < Pm.52

Note that gΞ(c|θ) = gΞ(c|θ) for all θ ∈ Θ.53 This process can be repeated for all consecutive

lottery regions without changing the allocation. This results in a coarsening rule Ξ′ where

there is only 1 partition between any two lottery regions for all c ∈ C. Hence the total

number of partitions are at most 2|C|+ 1 and cut-offs are 2|C| for all c ∈ C.
Next, assume the homogeneous coarsening is the identity function, in other words, there

is no coarsening.54 As the economy has full support, there is a unique stable matching. Let

52This can be done by setting Ξ′c(Pn) = . . . = Ξ′c(Pm) = Ξc(Pn).
53The argument for this is exactly same as the one made in the proof of Theorem 1.
54Note that the case where some schools have a finite coarsening while others have no coarsening is ruled

out by assuming the coarsening must be homogeneous.
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µ denote this stable matching. For any school c and distribution, let tc denote the threshold

that the students must clear in order to gain admission to that school. Formally,

tc = min{sθ̃c : µ(θ̃) = c} (94)

Let T = ∪c∈Ctc. Next, define Ξ′ in the following way:

Ξ′c(s
θ̃
c) = max{t ∈ T : sθ̃c ≥ t} (95)

Note that from the stability of µ and the definition of matching (in particular, property

(iv) from Footnote 23)) there cannot be a student k such that c′ �k µi(k) and skc′ ≥ tc′ . To

see that µ is stable under Ξ′, assume that student pair l, j (with scores slc′ and sjc′) blocks it

in school c′. Then we have c′ �l µ(l), µ(j) = c′ and Ξ′c′(l) ≥ Ξ′c′(j). As µ(j) = c′, we have

Ξ′c′(j) ≥ tic. As Ξ′c′(l) ≥ Ξ′c′(j) and Ξ′c′(j) ≥ tic, we have that slc′ ≥ tic′ , which contradicts the

stability of µ under Ξ as c′ �l µ(l). By the same argument as in the first case, it follows that

gΞ = gΞ′ . This shows that a homogeneous coarsening Ξ′ with |C| cut-offs attains the same

allocation as no coarsening.

Then any homogeneous coarsening Ξ can be represented by a vector of cut-offs v =

P1, P2, . . . , P|2C|. The existence of an optimum then follows from the same argument as in

Theorem 2.

Like Theorems 1 and 2, Proposition 8 reduces a possibly infinite dimensional problem to

a 2|C|-dimensional problem and allows us to compute optimal homogeneous coarsenings.

We next study the welfare implications of imposing homogeneity in coarsenings. We show

that there is a loss from imposing homogeneity whenever in the optimal trinary coarsening

the lottery regions of two schools intersect without being equal. To this end, we define a

subclass of problems:

Definition 5. A problem satisfies no overlap across schools if there exists an optimal coars-

ening such that for all lottery regions P c and P c′ either [P c, P c]∩ [P c′ , P c′ ] = ∅ or [P c, P c] =

[P c′ , P c′ ].

We can now characterize exactly the case when imposing homogeneity results in a welfare

loss. This is stated formally in Proposition 9:

Proposition 9. There is no loss from imposing homogeneity if and only if the problem

satisfies no overlap across schools.

Proof. In this environment we can define an object similar to the vector we defined earlier

10



to represent the coarsenings as a vector when there are ni cut-offs for each school i:

w = [P 1
1 , P

1
2 , . . . , P

1
n1
|P 2

1 , . . . , P
2
n2
| . . . |P |C|1 , . . . , P |C|n|C| ]

s.t. w ∈ W = {w ∈ [0, 1]
∑
i ni , P c

j > P c
l ,∀c, j > l}

(96)

Let v be an optimal (i.e. non homogeneous) trinary coarsening that satisfies no overlap

across schools. As above, v is of the form v = {v1
1, v

1
2| . . . |v

|C|
2 , v

|C|
2 } as v is a trinary coarsening.

Enumerate the 2|C| elements of v in increasing order and let z be the vector obtained by

doing this, hence z = {z1, . . . , z2|C|} and it is increasing. Therefore it is a well-defined set of

coarsening cut-offs. Now, form the alternative coarsening v′ by using the cut-offs in z for all

schools:

v′ = [z1, . . . , z2|C|| . . . |z1, . . . , z2|C|] (97)

v′ is a homogeneous coarsening as it uses the same cut-offs. Furthermore, v and v′ induce

the same allocation.55 Hence there is a homogeneous coarsening v′ that induces the same

allocation as the optimal trinary coarsening v and there is no loss from imposing homogeneity.

For the converse result, fix an arbitrary coarsening w and suppose that the problem does

not satisfy the no overlap across schools condition. Consider the set of coarsenings that

uses vc = w for all c ∈ C. Notice that this set trivially has no overlap. Clearly, w and

{vc} attain the same utility value for the mechanism designer. As the problem does not

satisfy the no overlap across schools assumption, there must be a set of coarsenings {v′c}
that attains a strictly higher utility than {vc} and w. As w is arbitrary, there is welfare loss

from homogeneity regardless of its choice.

As no-overlap is an extremely strenuous condition, Proposition 9 would seem to indicate

that in practical contexts, there will very likely be a welfare loss from imposing homogeneity.

As a result, rationalizing the observed homogeneity of many systems is challenging in this

environment. Indeed, it may be the case that one has to appeal to concerns for simplicity

in order to understand observed homogeneity.

55To see why this is true, notice that v can be obtained from v′ by merging indifference classes that are
above and below each lottery class for any school, using the construction in the proof of Theorem 1.
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E. Solving the Dynamic Model of Housing Assignment

In this Appendix, we provide the prerequisites for determining the structure of the op-

timal priority design by first solving the dynamic matching model. Relative to the static

matching models we have so far considered, this features two complications. First, we have

to determine the agents’ optimal stopping rule for when to accept a given house as a function

of their individual characteristics and the allocation. Second, we have to find the steady-

state distribution of agents who are unmatched (which is endogenous to the stopping rule)

to find the steady-state allocation.

We first fix an allocation and solve for the agent’s optimal stopping policy. Denoting by

P (s, v) the steady-state probability that an agent with income s is matched to a house in

any given period given a priority design v, we have that the value function of an unmatched

agent is given by:

V (κ, P (s, v)) = κ+ βδP (s, v)Eṽ
[
max

{
ṽ

1− βδ
, V (κ, P (s, v))

}]
+ βδ(1− P (s, v))V (κ, P (s, v))

(98)

where the first term is simply the agents value of going unmatched this period: their outside

option. The second term is the discounted expected value of being matched to a house,

weighted by the chance that that the agent is matched. The final term simply says that if

the agent goes unmatched, they receive their discounted value of being unmatched.

The agent’s optimal stopping rule is a threshold strategy indexed by v̄(κ, P (s, v)) such

that agents accept any house with v ≥ v̄(κ, P (s, v)) and reject otherwise. It follows that this

reservation value is the unique solution to the following equation:

v̄(κ, P (s, v)) = (1− βδ)κ

+ βδP (s, v)

[
v̄(κ, P (s, v))Λ(v̄(κ, P (s, v))) +

∫ vmax

v̄(κ,P (s,v))

ṽdΛ(ṽ)

]
+ βδ(1− P (s, v))v̄(κ, P (s, v))

(99)

In general this cannot be solved in closed form.56 However, it is simple to see that v̄(κ, P (s, v))

features the following comparative statics: it is increasing in the agent’s outside option κ; it

is increasing in the agent’s patience β; and it is increasing in the probability that an agent

is matched to a house in any given period P (s, v).

Having solved for the agent’s optimal stopping rule as a function of the assignment

56One exception to this is the case where ṽ ∼ U [vmin, vmax]. In this case, Equation 99 becomes quadratic
in v̄(κ, P (s, v)) and can be solved analytically.
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probability, it remains to solve for the assignment probability as a function of a given stopping

rule. To do this, one first needs to find the steady-state distribution of unmatched agents and

the steady state measure of occupied housing. To this end, define the steady-state measure

of unmatched agents as the joint density k(κ, s; v) with marginal cumulative measure over

incomes given by Ks(s; v) and let M(v) be the steady-state measure of matched agents.

Using our more general analysis, we can once again greatly simplify the problem: Theo-

rem 1 directly applies to any steady state of this model. We can therefore restrict to priority

designs v = (v1, v2) that feature three tiers. Given a CDF of incomes in the population in

the steady state, the allocation probability for an agent with income s is given by:

P (s, v) =


1, s ≥ v2,

(Q−δM(v))−(1−Ks(v2;v))
Ks(v2;v)−Ks(v1;v)

, s ∈ [v1, v2),

0, s < v1

(100)

Moreover, the stationary joint distribution at the end of a period kl(κ, s; v) solves the fol-

lowing fixed point equation which balances inflows of new agents and outflows of agents due

to accepting a house and death.

(1− δ)f(κ, s) = (1− δ)kl(κ, s; v)

+ (1− Λ(v̄(κ, P (s, v))))P (s, v)
(
δkl(κ, s; v) + (1− δ)f(κ, s)

) (101)

Thus, the stationary joint distribution of agents at the time of matching is given by:

k(κ, s; v) = δkl(κ, s; v) + (1− δ)f(κ, s) (102)

Finally, the stationary measure of matched agents is given by:

(1− δ)M(v) = (1− Λ(v̄(κ, P (s, v))))P (s, v)
(
δkl(κ, s; v) + (1− δ)f(κ, s)

)
(103)

Having now solved the stopping rule as a function of the allocation and the allocation

as a function of the stopping rule, we have characterized the matching of agents to houses

in this economy. From the steady-state policy function it is moreover simple to compute

welfare from the relationship:

V (κ, P (s, v)) =
v̄(κ, P (s, v))

1− βδ
(104)

This discussion is formalized in Proposition 10:
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Proposition 10. For any coarsening policy v′, there exists a v = (v1, v2) that is outcome

equivalent. Moreover, under this v, welfare is given by:

Z(v) =

∫
U

∫ 1

0

(
v̄(κ,P (s,v))

1−βδ

1− γ

)1−γ

dF (κ, s) (105)

where the reservation value policy solves Equation 99, the allocation is given by Equation

100, the stationary measure of unmatched agents of each type is given by Equations 101 and

102 and the stationary measure of matched agents is given by Equation 103.

Proof. In a steady state of the model, there is a time-invariant assignment probability as

a function of the policy v and one’s score s, P (s, v). Given this, the agent has Bellman

equation given by:

V (κ, P (s, v)) = κ+ βδP (s, v)Eṽ
[
max

{
ṽ

1− βδ
, V (κ, P (s, v))

}]
+ βδ(1− P (s, v))V (κ, P (s, v))

(106)

The first claim is that the optimal stopping solution, where 1 corresponds to accepting a

house and 0 to rejecting is given by:

x∗(κ, ṽ, P (s, v)) =

1, ṽ ≥ v̄(κ, P (s, v)),

0, ṽ < v̄(κ, P (s, v)),
(107)

for some function v̄(κ, P (s, v)). This is immediate: suppose an agent accepts ṽ and rejects

ṽ′ > ṽ. As ṽ′ > ṽ, either accepting ṽ or rejecting ṽ′ must be suboptimal. Moreover, we know

that at this reservation value v̄(κ, P (s, v)), the agent must be indifferent between accepting

and rejecting. It follows that:

V (κ, P (s, v)) =
v̄(κ, P (s, v))

1− βδ
(108)

Combining Equations 106 and 108, we obtain:

v̄(κ, P (s, v))

1− βδ
= κ+ βδP (s, v)Eṽ

[
max

{
ṽ

1− βδ
,
v̄(κ, P (s, v))

1− βδ

}]
+ βδ(1− P (s, v))

v̄(κ, P (s, v))

1− βδ

(109)
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Re-arranging this equation yields:

v̄(κ, P (s, v)) = (1− βδ)κ+ βδP (s, v)Eṽ [max {ṽ, v̄(κ, P (s, v))}]

+ βδ(1− P (s, v))v̄(κ, P (s, v))
(110)

where:

Eṽ [max {ṽ, v̄(κ, P (s, v))}] = v̄(κ, P (s, v))Λ(v̄(κ, P (s, v))) +

∫ vmax

v̄(κ,P (s,v))

ṽdΛ(ṽ) (111)

yielding the claimed equation for the reservation value function:

v̄(κ, P (s, v)) = (1− βδ)κ+ βδP (s, v)

[
v̄(κ, P (s, v))Λ(v̄(κ, P (s, v))) +

∫ vmax

v̄(κ,P (s,v))

ṽdΛ(ṽ)

]
+ βδ(1− P (s, v))v̄(κ, P (s, v))

(112)

As was claimed in the text, this has a unique solution. To see this simply observe that the

slope of the RHS of Equation 112 is given by (suppressing all constants):

RHS ′(v̄) = βδ [1− P (1− Λ(v̄))] < 1 (113)

while the slope of the LHS is 1, and RHS(0) > LHS(0) = 0. We additionally claimed in

the text that the case with ṽ ∼ U [vmin, vmax] has a closed form solution for Equation 112.

To this end, see that we have:

v̄(κ, P (s, v)) = (1− βδ)κ+ βδP (s, v)

[
v̄(κ, P (s, v))

v̄(κ, P (s, v))− vmin

vmax − vmin

+
v2

max − v̄(κ, P (s, v))2

2(vmax − vmin)

]
+ βδ(1− P (s, v))v̄(κ, P (s, v))

(114)

which can be rewritten as a quadratic in v̄(κ, P (s, v)):

0 = av̄(κ, P (s, v))2 + bv̄(κ, P (s, v)) + c (115)
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where:

a =
βδP (s, v)

2(vmax − vmin)

b = −1 + βδ(1− P (s, v))− βδP (s, v)
vmin

vmax − vmin

c = (1− βδ)κ+ βδP (s, v)
v2

max

2(vmax − vmin)

(116)

yielding the standard solution of a quadratic for v̄(κ, P (s, v)).

As a function of the steady-state assignment probability, we have solved the agents’

optimal stopping problems. We now solve for the steady-state assignment probability as

a function of the agents’ optimal stopping problems. To this end, observe that the joint

density of agents at the end of a period must match the inflow of agents to the outflow of

agents:

(1− δ)f(κ, s)︸ ︷︷ ︸
New Agents

= (1− δ)kl(κ, s; v)︸ ︷︷ ︸
Dead Agents

+ (1− Λ(v̄(κ, P (s, v))))P (s, v)︸ ︷︷ ︸
Agents Who Stop

(
δkl(κ, s; v) + (1− δ)f(κ, s)

)︸ ︷︷ ︸
Agents Available to Match This Period

(117)

While the joint density of agents at the time of matching is given by:

k(κ, s; v) = δkl(κ, s; v) + (1− δ)f(κ, s) (118)

Moreover, the steady state measure of occupied housing balances outflows from death and

inflows from new matches:

(1− δ)M(v)︸ ︷︷ ︸
Death of Old Matches

= (1− Λ(v̄(κ, P (s, v))))P (s, v)
(
δkl(κ, s; v) + (1− δ)f(κ, s)

)︸ ︷︷ ︸
New Matches

(119)

Given these equations, each period there are Q − δM(v) houses available. Given the

policy v, agents are allocated houses tier by tier until the first tier such that not all agents

can be allocated housing. Let the first such tier be l where agents are in l if s ∈ [vl−1, vl).

Clearly all agents with s < vl−1 have zero assignment probability and all agents with s ≥ vl

have unit assignment probability. In the steady state there is a mass 1−Ks(vl; v) of agents

with priority above vl. Moreover, there is a mass Ks(vl; v) − Ks(vl−1; v) who have score

s ∈ [vl−1, vl). Thus agents with scores s ∈ [vl−1, vl) are allocated a house with probability
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given by:

pL(v) =
(Q− δM(v))− (1−Ks(vl; v))

Ks(vl; v)−Ks(vl−1; v)
(120)

It follows that the allocation is given by:

P (s, v) =


1, s ≥ vl,

pL(v), s ∈ [vl−1, vl),

0, s < vl−1

(121)

Consider now a new coarsening policy v̂ = (vl−1, vl). The allocations induced by v̂ and v

are equivalent. Thus all other equations describing the steady state are equivalent under

the two policies. This proves the claim that for any v there exists a v′ = (v1, v2) that is

outcome equivalent. Indeed, this is given by v′ = v̂. We have now proved all claims in the

proposition.

This highlights again the usefulness of Theorem 1 in providing a revealing structure to

the optimal design: one can employ a tiered design, but it need contain at most three tiers.

E.1. An Example with Two Income Cutoffs

The main text uses the above result to explore the optimal design, giving sufficient

conditions for there to be at least two income tiers in the optimum. Here, we additionally

provide an explicit example that shows how three income tiers can be optimal when there is

sufficient heterogeneity in outside options.

Example 4. Suppose that there are three levels of outside option κP , κM and κR where an

agent with score s (or equivalently income 1− s) has outside option given by:

κ =


κR, s < s̄1,

κM , s ∈ [s̄1, s̄2),

κP , s ≥ s̄2.

(122)

where s̄1 < s̄2. Moreover, we suppose that outside options are such that:

v̄(κR, 0) > v̄(κM , 1)

v̄(κM , 0) > v̄(κP , 1)
(123)

That is to say, an agent with a better outside option who is never assigned public housing

still has higher welfare than an agent with a lower outside option when they are certain
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of receiving public housing each period. Such an environment is perhaps natural when the

extremely poor have much worse outside options than the moderately poor and the wealthy

have very good outside options.

For intermediate values of Q,57 in the γ →∞ limit the optimal policy is such that:

v∗1 = s̄1, v∗2 = s̄2 (124)

Moreover, agents with score e < s̄1 have zero probability of assignment, agents with score

s ∈ [s̄1, s̄2) have intermediate probability of assignment and agents with score s ≥ s̄2 are

assigned with certainty. This is optimal because assigning agents below s̄1 is always welfare

reducing as they are the richest agents with the best outside options. Similarly, the planner

must give agents above s̄2 unit probability of assignment. Finally, they assign the remaining

houses uniformly among those with intermediate incomes by virtue of the egalitarian motive.

57Formally, we require H is such that in the steady state corresponding to the described optimum, there
are fewer than Q − δM agents with score above s̄1 in the stationary distribution of searching agents and
there are more than Q − δM agents with score above s̄2 in the stationary distribution of searching agents,
where M is the stationary measure of matched agents.
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F. Relaxing the Full Support Assumption

Despite being a fairly weak condition, it is interesting to consider the implications for

our analysis when the full support assumption (Assumption 1) fails. In particular, in this

Appendix, we proceed under the assumption only that there are no mass points in the

distribution of students.58

In this case, the interim economy after tie-breaking may have multiple stable matchings.59

Thus, restricting the mechanism designer to use a stable matching mechanism does not pin

down the allocation as there is a one-to-one correspondence between stable matchings and

allocations. In general, under a stable mechanism, the selected matching may depend on the

entire priority structure, i.e. a mechanism can even return two different stable matchings for

two different priority structures even if the set of stable matchings is the same under those

two priority structures.

To deal with these issues, we focus on two different selection rules: one is a selection rule

that selects the optimal stable matching with respect to the preferences of the mechanism

designer and the other is the student optimal stable matching for any given economy. We

show that with mechanism-designer optimal selection, suitably modified versions of Theo-

rems 1 and 2 continue to hold and that with student-optimal selection, Theorem 1 continues

to hold but Theorem 2 fails.

F.1. The Mechanism Designer Optimal Selection

In this section, we assume whenever multiple stable matchings exist, the mechanism will

implement the best matching with respect to the preferences of the mechanism designer. We

show that suitably modified versions of Theorems 1 and 2 continue to hold without a full

support assumption. First, we prove a modified version of Theorem 1:60

Theorem 3. For any coarsening Ξ with allocation gΞ corresponding to the mechanism

designer optimal stable matching, there is an alternative trinary coarsening Ξ′ with al-

location gΞ′ corresponding to the mechanism designer optimal stable matching such that

Z(gΞ′) ≥ Z(gΞ).

Proof. For any Ξ and matching µ that is selected by the mechanism designer optimal se-

lection, construct a trinary coarsening Ξ′(µ) as in the proof of Theorem 1. Notice that the

matching µ is still stable under Ξ′(µ). Hence the mechanism designer optimal selection picks

a matching that is weakly better than µ under the coarsening Ξ′(µ), thus Z(gΞ′) ≥ Z(gΞ).

58We give an example that shows the necessity of the no mass points assumption in this section.
59See Azevedo and Leshno (2016) for examples.
60Recall that Z is the objective function of the mechanism designer.
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Hence, even if it is not possible to replicate each allocation via a trinary coarsening,

there always exists an alternative trinary coarsening that is preferred by the mechanism

designer under the mechanism designer optimal selection. Thus, restricting attention to

trinary coarsenings is without loss of optimality.

The following result states that under mechanism designer optimal selection, an optimal

coarsening exists, so Theorem 2 holds under this selection.

Theorem 4. Under a stable matching mechanism with mechanism designer optimal selec-

tion, there exists an optimal trinary coarsening Ξ.

Proof. From Theorem 3, we can restrict attention to trinary coarsenings, which we continue

to represent by the coarsenings v ∈ V , which is a compact set. Let ψ : V ⇒ R be the

correspondence mapping each coarsening to the set of utility values of the mechanism designer

under stable selections. We prove first that ψ is upper hemicontinuous (UHC) and then that

it is closed-valued; establishing existence of an upper semi-continuous maximum selection

H(v) = maxψ(v). It then follows by compactness of V that an optimum exists.

Denoting the set of stable matchings (hence the possible allocations) under coarsening v

by S(v), we can write ψ = Z ◦S(v). Azevedo and Leshno (2016) prove that the set of stable

matchings has a cut-off structure and is an upper hemicontinuous function of the economy

(Proposition B1 in the appendix of Azevedo and Leshno (2016)). Moreover, by Assumption

3, Z is a continuous function of the allocation (which is the stable matching selected by the

mechanism), hence ψ is a UHC correspondence of a coarsening as it is a continuous function

of a UHC correspondence.61

We now establish that ψ is closed valued. To this end, fix a coarsening v. Now consider

the set of market clearing cutoffs P that correspond to the set of stable matchings under v.

Consider a sequence {zn} such that zn ∈ ψ(v) for all n that converges to some z∗. We wish

to prove that z∗ ∈ ψ(v). For any zn, the utility value from an admissible stable matching

under v, there must exist a corresponding vector of market clearing cutoffs Pn ∈ R|C|. Then

we can find a subsequence Pnk that is element-wise monotone in R|C|. As the set of market

clearing cut-offs forms a complete lattice (see Azevedo and Leshno (2016) Theorem A1),

limnk Pnk = P ∗ and P ∗ ∈ P . Define νn as the measure of students whose assignment

is different under Pn to P ∗. In the coarsened economy, there are no mass points in the

distribution of students. Thus, for any ε > 0 there exists an N such that νnk < ε for all

nk > N . Hence, as Pnk → P ∗, we have Z(Pnk) → Z(P ∗) = z∗. Thus, as P ∗ ∈ P , we have

shown that z∗ ∈ ψ(v). Hence, ψ is closed-valued.

Finally, as ψ is closed-valued, H(ψ(v)) = maxψ(v) is well-defined. Moreover, H(v)

61See Border (1989) for a proof.
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corresponds to the utility value of the mechanism designer under the mechanism designer

optimal selection. By the UHC property of ψ, H is upper-semicontinuous. Thus, as V is a

compact set, by the extreme value theorem it follows that maxv∈V H(ψ(v)) exists.

F.2. The Student Optimal Selection

In this section we assume whenever multiple stable matchings exist, the mechanism will

implement the student optimal selection. In this case, while it is without loss of optimality

to restrict attention to trinary coarsenings (Theorem 1 continues to hold), we show via an

example that an optimum can fail to exist in the absence of the full support assumption

(Theorem 2 does not hold). First, we prove that Theorem 1 holds under the student optimal

stable selection whether or not the full support assumption holds:

Theorem 5. Under a stable matching mechanism with student optimal selection, for any

coarsening Ξ that induces the allocation gΞ, there is an alternative trinary coarsening Ξ′ such

that gΞ′ = gΞ.

Proof. Fix an arbitrary coarsening Ξ. Divide the schools to two subsets: c ∈ C̃ if Ξc is

finite and c ∈ Ĉ if Ξc is the identity function. For any school c ∈ C̃, the coarsening Ξ

takes any student with score sθ̃c to an equivalence class, hence Ξ(sθ̃c) ∈ {P c
1 , P

c
2 , . . . , P

c
N} with

P c
1 < P c

2 < . . . < P c
N for some N .

Let µ̃ denote the student optimal stable matching and P c
x be the lowest indifference class

that has a student placed in school c, i.e. µ̃(θ̃Ξ, τ) = c for some (θ̃Ξ, τ) with sθ̃Ξc = P c
x and

µ̃(θ̃Ξ, τ) 6= c for all (θ̃Ξ, τ) with sθ̃Ξc = P c
y where y < x. For all c ∈ C̃, define Ξ′c as in the

proof of Theorem 1,

Ξ′c(s
θ̃
c) =


P c

1 , if Ξc(s
θ̃
c) = P c

z , z < x,

P c
x , if Ξc(s

θ̃
c) = P c

x ,

P c
N , if Ξc(s

θ̃
c) = P c

z , z > x.

(125)

Next, for all c ∈ Ĉ, as we did in the proof of Theorem 1, let tc denote the threshold that the

students must clear in order to gain admission to that school. Formally,

tc = inf{sθc : µ̃(θ) = c} (126)

Then, for all c ∈ Ĉ, define Ξ′c in the following way,

Ξ′c(s
θ
c) =

0 , if sθc < tc,

1 , if sθc ≥ tc.
(127)
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Note that Ξ′ is a trinary coarsening. The stability of µ̃ under Ξ′ follows exactly the same

arguments in Theorem 1 and is therefore omitted.

Let µ′ denote the student optimal stable matching under Ξ′. To see why µ′ is stable

under Ξ, assume student pair i, j (with scores sic and sjc and tie-breakers τi and τj) blocks it

in school c′, i.e. c′ �i µ′(i), µ′(j) = c′ and Ξc′(s
i
c′) > Ξc′(s

j
c′) or Ξc′(s

i
c′) = Ξc′(s

j
c′) and τi > τj.

First, assume c′ ∈ C̃ and Ξc′(s
i
c′) > Ξc′(s

j
c′). Then µ′(j) = c′ and Ξc′(s

i
c′) > Ξc′(s

j
c′) imply

that Ξ′c′(s
i
c′) = P c′

N , which means that i belongs to a class strictly higher than P c′
x . From the

definition of P c′
x , we know that there exists k such that Ξ′c′(k) = P c′

x and µ′(k) = c′, which is

a contradiction as i and c′ will block µ′ under Ξ′.

Next, assume c′ ∈ C̃, Ξc′(s
i
c′) = Ξc′(s

j
c′) and τi > τj. There are two cases, either Ξ′c′(s

i
c′) >

P c′
x or Ξ′c′(s

i
c′) = P c′

x . In the first case, from the definition of P c′
x , there exists k such that

µ̃(k) = c′ and Ξ′c′(s
k
c′) = P c′

x , which is a contradiction as i and c′ will block µ′ under Ξ′.

In the second case, as the lottery classes are same under Ξ and Ξ′, Ξ′c′(s
i
c′) = P c′

x and

Ξc′(s
i
c′) = Ξc′(s

j
c′) imply that Ξ′c′(s

j
c′) = P c′

x . However, as τi > τj, this is a contradiction: i

and c′ will block µ′ under Ξ′.

Finally, if c′ ∈ Ĉ, then Ξ is the identity function. There are two cases, sic′ = sjc′ and

τi > τj or sic′ > sjc′ . In the first, case, µ′(j) = c′ implies that sic′ = sjc′ ≥ tc′ , which implies

Ξ′c′(s
i
c′) = Ξ′c′(s

j
c′) = 1. As τi > τj and c′ �i µ′(i), this contradicts the stability of µ′ under

Ξ′. In the second case, as sic′ > tc′ , it must be that µ̃(i) �i c′ (where c �i c′ if c �i c′ or

c = c′), as otherwise µ̃ will not be stable under Ξ. Moreover, we know that µ̃ is stable under

Ξ′. As µ′ is the student optimal stable matching under Ξ′, all students must weakly prefer

their matching under µ′ to µ̃ which is a contradiction as µ̃(i) �i c′ �i µ′(i). Thus, µ′ is

stable under Ξ.

As µ′ is stable under Ξ, µ̃ is stable under Ξ′ and both are student optimal stable match-

ings, they must be equivalent. Thus the same matching is used in the construction of gΞ

and gΞ′ under the student optimal selection and gΞ = gΞ′ . This proves the result as Ξ′ is a

trinary coarsening.

This result implies that even without the full support assumption, if the student optimal

stable mechanism is used to compute the stable matching in the interim economy, then it is

still without loss of optimality to restrict attention to trinary coarsenings.

However, in the absence of the full support assumption, an optimal coarsening can fail

to exist. The intuition for why this is true is that in the limit as the mechanism designer

changes the coarsening thresholds, there can exist multiple stable matchings and the student

optimal selection from the limit set of stable matchings may be worse from the mechanism

designer’s perspective than the matchings attained with arbitrarily close coarsening thresh-

olds. Example 5 provides a concrete example of this phenomenon.
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Example 5. There are four schools C = {c0, c1, c2, c3}, capacities Q = (4, 1, 1, 1), and four

ordinal types of students, each of measure one, with preferences:

�t1 : c1, c2, c0

�t2 : c2, c1, c0

�t3 : c3, c1, c0

�t4 : c3, c0

(128)

The marginal score distributions in the acceptable schools are given by:

sc1(t2) ∼ U [2, 3], sc1(t3) ∼ U [1, 2], sc1(t1) ∼ U [0, 1]

sc2(t1) ∼ U [1, 2], sc2(t2) ∼ U [0, 1]

sc3(t3) ∼ U [1, 2], sc3(t4) ∼ U [0, 1]

(129)

Assume the mechanism designer maximizes the following utility function:

Z(g) =
∑
t

∑
c∈{c1,c2,c3}

ut(c)g(c|t) (130)

with:

ut1(ci) =

1 if i = 2

0 if i = 1
(131)

ut2(ci) =

1 if i = 1

0 if i = 2
(132)

ut3(ci) = 0 for i = 1, 3 (133)

ut4(c3) = −1 (134)

This utility function assumes that the designer prefers assigning type t1 students to school

c2 and type t2 students to the school c1, while assigning the minimal amount of type t4 students

to school c3. The first best outcome for the designer is to match all t1 students to c2, all t2

students to c1 and all t3 students to c3. This yields a payoff of ZFB = 2. Note that without

priority design, the student optimal stable matching assigns all students of types t1 to c1, t2

to c2, t3 to c3, and t4 to c0. The yields a payoff of ZSOSM = 0.

We note that the first-best matching is not attainable as the student-optimal stable match-
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ing under any coarsening. To match all t1 students to c2 and all t2 students to c1 in a stable

matching, a necessary and sufficient condition is to reject a positive measure of t3 students

from school c3 (and assign a positive measure of type t4 students to c3). But this necessarily

leads to a payoff strictly smaller than 2 as some positive measure t4 students are assigned to

c3.

However, the payoff from the first-best matching can be arbitrarily well approximated

through coarsening. Define for any ε ≥ 0, the coarsening:

Ξc3(sc3 ; ε) =


0, sc3 < 1− ε

1, sc3 ∈ [1− ε, 1 + ε),

2, sc3 ≥ 1 + ε

(135)

and Ξc(sc; ε) = sc for all c 6= c3.

Under this coarsening for ε > 0, the unique stable matching assigns ε
2

measure type t4

students are assigned to c3. Thus, ε
2

measure t3 students are assigned to either c1 or c0.

Given that t2 types have the highest priority at c1 and t1 types have the highest priority at c2,

it is not possible under any stable matching that any type t1 or t2 student is assigned to c0.

Therefore, ε
2

type t3 students are assigned to c0. Hence, it is not possible that any t1 student

is assigned to c1 or c1 and any t3 type would form a blocking pair, as t3 students have higher

priority at c1. Thus, in the unique stable matching, all t1 types are assigned to c2, all t2 types

are assigned to c1, and measure ε
2

of t4 types are assigned to c3. For ε = 0, the outcome is

the outcome without coarsening. Thus, the payoff of the mechanism designer is given by:

Z(ε) =

2− ε
2
, ε > 0,

0, ε = 0.
(136)

To conclude, the first-best is not attainable but can be arbitrarily well approximated by

coarsening. Thus, the problem of the designer is not upper semi-continuous and an optimum

does not exist under the student-optimal selection.

As a result, an optimum can cease to exist in the absence of full support under the

student optimal stable matching. This notwithstanding, given the earlier results, it remains

true that if the mechanism-designer optimal and student optimal selections coincide, then

Theorem 2 holds. This is, for instance, true in the natural case with a utilitarian mechanism

designer.
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F.3. The Necessity of the No Mass Points Assumption for Existence of an

Optimum

While we relaxed the full support assumption in this appendix, we retained the no mass

points assumption. To see the necessity of the no mass points assumption for the existence

of an optimum, we introduce the following example. Intuitively, with mass points, changing

the coarsening cutoffs by an arbitrarily small amount can alter the allocation of students to

schools in a way that adversely impacts the objective function of the mechanism designer.

Example 6. Suppose that there is one school c with capacity of unit measure and an outside

option. Suppose all students prefer c to the outside option. There are three types of students,

each of unit measure. Students with score s ∈ [0.5, 1] who give the mechanism designer utility

of 1 when they are assigned to the school (Type 1), those with score s ∈ [0, 0.5), who give

the mechanism designer utility of 2 (Type 2), and those with score s = 0 who give utility -M

to the mechanism designer (Type 3). The first two types are uniformly distributed over their

respective domains. See that there is a mass point of students with score zero.

It is clear here that under any coarsening, if there exists another coarsening such that

more type 2 students attend the school while no type 3 students are admitted, then that initial

coarsening must not be optimal. In particular, suppose that those with scores s ≥ v > 0 are

coarsened into the same indifference class. The mechanism designer’s utility is:

U(v) =
0.5

1− v
× 1 +

0.5− v
1− v

× 2 =
1.5− 2v

1− v
, v ∈ (0, 1] (137)

which is decreasing in v for all v > 0 so no v > 0 can be optimal. Now suppose that the

mechanism designer fully coarsens the students so that v = 0. Their utility is:

U(0) =
1

3
× 1 +

1

3
× 2− 1

3
M (138)

Hence, a sufficient condition that there will not exist an optimal coarsening is that setting

v = 0.5 (i.e. not coarsening) is better than full coarsening. That is:

U(0) = 1− 1

3
M < 1 = U(0.5) (139)

which is satisfied for any M > 0. Hence, whenever M > 0, there does not exist an optimal

coarsening.
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