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Abstract

We consider the fixed points of nonlinear operators that naturally arise in

games and general equilibrium models with endogenous networks, dynamic sto-

chastic games, in models of opinion dynamics with stubborn agents, and financial

networks. We study limit cases that correspond to high coordination motives,

infinite patience, vanishing stubbornness in the applications above, and small

exposure to the real sector. Under monotonicity and continuity assumptions,

we provide explicit expressions for the limit fixed points. We show that, under

differentiability, the limit fixed point is linear in the initial conditions and char-

acterized by the Jacobian of the operator at any constant vector with an explicit

and linear rate of convergence. Without differentiability, but under additional

concavity properties, the multiplicity of Jacobians is resolved by a representation

of the limit fixed point as a maxmin functional evaluated at the initial conditions.

In our applications, we use these results to characterize the limit equilibrium ac-

tions, prices, and endogenous networks, show the existence of the asymptotic

value in a class of zero-sum stochastic games with a continuum of actions, com-

pute a nonlinear version of the eigenvector centrality of agents in networks, and

the characterize the equilibrium loss evaluations in financial networks.
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1 Introduction

Nonlinear fixed-point equations are ubiquitous in economic models including the ones

that characterize general equilibrium prices, Nash equilibria, continuation values in

dynamic games (Shapley equation), steady states under social learning, recursive pref-

erences, and equilibrium loss evaluations in financial networks. Often, these fixed points

are indexed by a key economic parameter β ∈ (0, 1) capturing, for example, strength

of coordination motives, patience, and stubbornness, with the comparative statics for

β close to 1 playing a prominent role. The problem of solving for these nonlinear fixed

points has been tackled with different tools across these applications without a unifying

approach.

In this paper, we first highlight a few key mathematical properties shared by all

these classes of nonlinear fixed-point equations: monotonicity, translation invariance,

and normalization. These properties generalize the ones of linear averaging operators

for which the structure of corresponding fixed-point equations is well known. In fact,

for the linear case it is in general possible to derive a closed-form expression for the

fixed point at each β and in particular for the limit as β goes to 1, yielding a rate of con-

vergence as well. These expressions are often interpreted as (Bonacich or eigenvector)

centrality measures of agents within the context of, for example, models of production

networks (e.g., Long and Plosser [30]) or coordination games (e.g., Ballester et al. [6])

and social learning on networks (Golub and Jackson [24]).

However, in all the aforementioned applications nonlinearities naturally arise due

to economic forces. For example, in production network models both relaxing the

assumption of Cobb-Douglas production functions (e.g., Baqaee and Farhi [8]) and/or

allowing for endogenous networks (e.g., Acemoglu and Azar [1] and Kopytov et al.

[29]) generate nonlinearities in the equation describing equilibrium prices. Similarly,

in coordination games on networks when we relax the assumption of quadratic payoffs

and/or allow for endogenous link formation (e.g., Sadler and Golub [35]) the resulting

Nash equilibria are characterized by nonlinear fixed points.

In models of non Bayesian social learning, as soon as we move from the simple

DeGroot heuristic to the class of richer models proposed by Cerreia et al. [12], nonlin-

earities in aggregation arises. Similarly, regulation requires banks not to evaluate loss

at (the linear) expected value, but using robust scenario-conditional loss assesments,

as the one considered in Adrian and Brunnermeier [3].

Moreover, in some other applications such as stochastic games and recursive pref-

erences the maximization defining the value functions already induces nonlinearities

(e.g., Sorin [38]). Yet, in all these cases our three properties are still satisfied. Thus,

we exploit this common structure to derive properties of the nonlinear fixed point the

most important of which is a closed-form expression for the limit as β approaches 1.
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These expressions admit a natural interpretation as nonlinear versions of the (linear)

centrality measures above. Along the way, we derive additional results extending the

conclusions obtained for the linear case.

Formally, in this paper we consider an operator T : Rk → Rk where Rk is endowed
with the supnorm ‖ ‖∞. Let e be the vector whose components are all 1. We assume

that:

1. T is normalized, that is, T (he) = he for all h ∈ R;

2. T is monotone, that is, x ≥ y implies T (x) ≥ T (y) for all x, y ∈ Rk;

3. T is translation invariant, that is, T (x+ he) = T (x) + he for all x ∈ Rk and for
all h ∈ R.

As we already pointed out, these three properties are often satisfied in applications

in Economics and Computer Science where T is seen as either a best-response map,

or a value function, or an opinion aggregator. Clearly, for these maps the set of fixed

points/equilibria of T , denoted by E (T ), contains all the constant vectors, denoted by

D, that is, D ⊆ E (T ).

In these applications, the interest is in the following fixed points equations (with

variable y). Given x ∈ Rk and β ∈ (0, 1),

T ((1− β)x+ βy) = y (1)

and

(1− β)x+ βT (y) = y (2)

it is routine to show that the two equations have each a unique solution (cf. Lemma 1).

We denote such solutions by xβ and x̃β, respectively, to highlight their dependence on x

and β. The goal of this paper is to provide conditions that guarantee that limβ→1 xβ and

limβ→1 x̃β exist, characterize their value, and also comment on the rate of convergence.

We prove and state our results for xβ, the solution of equation (1), but Section 3.3

shows that the results immediately extend to x̃β, i.e., to the solutions of equation (2).

We next introduce the linear case which is well known. This will provide a useful

benchmark to which we can compare our contributions.

Example 1 We begin by observing that further assuming T linear is equivalent to

impose that T (x) = Wx for all x ∈ Rk where W is a (row)-stochastic matrix. Given

x ∈ Rk and β ∈ (0, 1), let xβ,W be the (unique) vector satisfying:

T ((1− β)x+ βxβ,W ) = xβ,W . (3)
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By induction and passing to the limit, it is routine to show that

xβ,W = (1− β)

∞∑
t=0

βtW t+1x ∀x ∈ Rk,∀β ∈ (0, 1) . (4)

By the Hardy-Littlewood Theorem paired with the Mean Ergodic Theorem, this implies

limβ→1 xβ,W exists and belongs to E (T ).

Assume now that the unique fixed points of T are the constant vectors, that is,

D = E (T ). This is equivalent to assume that the matrix W has a unique left Perron-

Frobenius eigenvector γW , that is, γT
WW = γT

W and γW is a probability vector. In

this case, we can conclude that limβ→1 xβ,W is a constant vector whose value can be

computed by observing that

〈γW , xβ,W 〉 = (1− β)
∞∑
t=0

βt
〈
γW ,W

t+1x
〉

= 〈γW , x〉 ∀x ∈ Rk,∀β ∈ (0, 1) . (5)

We conclude by commenting on the rate of convergence of {xβ,W}β∈(0,1). Fix again

x ∈ Rk and β ∈ (0, 1). Since γW is a probability vector, we have that minxβ,W ≤
〈γW , xβ,W 〉 ≤ maxxβ,W . Since 〈γW , xβ,W 〉 = 〈γW , x〉, this implies that minxβ,W ≤
〈γW , x〉 ≤ maxxβ,W and, in particular, ‖xβ,W − 〈γW , x〉 e‖∞ ≤ maxxβ,W − minxβ,W .

In other words, bounding the rate of convergence of xβ,W can be achieved by bounding

the range of xβ,W . N

Thus, the main takeaways of the linear case are three:

1. limβ→1 xβ exists;

2. If E (T ) = D, then we have that

lim
β→1

xβ = 〈γW , x〉 e ∀x ∈ Rk

where γW is the unique left Perron-Frobenius eigenvector of the representing

matrix W ;

3. In this case, the rate of convergence of xβ is controlled by the rate to which the

range of xβ, Rg (xβ), goes to 0.

Our contributions are to generalize these findings well beyond the linear case. We

here discuss an important example. To fix ideas, assume that T is concave, rather than

linear. If E (T ) = D, we again have that limβ→1 xβ exists (cf. Corollary 2). If E (T ) = D

and T is also differentiable around 0 with partial derivatives that are “nicely”bounded

away from 0 when nonnull, then

lim
β→1

xβ = 〈γ, x〉 e ∀x ∈ Rk
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where γ is the unique left Perron-Frobenius eigenvector of the Jacobian of T at 0 (cf.

Corollary 3). Finally, if T has a Jacobian which is Lipschitz continuous, then the rate

of convergence of xβ is controlled by the rate to which Rg (xβ) goes to 0 and Rg (xβ)

goes to 0 at least linearly fast (cf. Theorems 2 and 3). In the paper, we go well beyond

the concave case, which we actually use to study more general functionals (cf. Theorem

1 as well as Corollary 1).

In the second part of the paper we provide economic applications for these results.

First, we consider two models of endogenous network formation applied to general

equilibrium in a production economy and a coordination game. In both cases, the

parameter β captures the intrinsic coordination motives of the agents and, under the

assumptions of Cobb-Douglas production functions and quadratic costs of effort, the

fixed-point equations characterizing the equilibria are linear. However, when the agents

are allowed to choose their neighbors structure, either in a costly or constrained way,

the equilibria fixed-point equations become nonlinear (and in general nondifferentiable)

yet still satisfying all of our assumptions. With this, we completely characterize the

limit equilibrium as β → 1 with respect to (generally nonlinear) measures of central-

ity of the agents. This allows us to extend some of the comparative statics on the

equilibrium from the linear case to the differentiable case and to obtain new ones for

the nondifferentiable case. Second, we study the classic issue of existence and charac-

terization of the asymptotic value for zero-sum stochastic games (cf. Sorin [38]). We

observe that the Shapley equation characterizing the value of the game for every level

of the discount factor is a particular case of our fixed point condition, thereby enabling

us to use our abstract results to provide a novel characterization of the asymptotic

value in terms of the value of a static zero-sum game. We then apply our results to

an extension of the dynamic opinion aggregation model in networks of Cerreia-Vioglio

et al. [12] that allow for vanishing stubbornness. In this case, we also consider a se-

quence of weights {βt}t∈N ⊆ (0, 1) such that βt → 1 that represents the time-varying

and vanishing stubbornness weight that agents assign to their initial opinions. Finally,

we consider an equilibrium model of interconnected financial institutions that evaluate

their losses with respect to coherent risk measures. In this case, the limit β → 1 cap-

tures the idea of increasing financial interconnectedness and our results imply that the

robustness concerns of the banks vanish in this limit, exposing all of them to possible

model misspecification and large unforeseen losses.

2 Operators, matrices, and differentials

Consider a normalized, monotone, and translation invariant operator T . It is immediate

to see that it is Lipschitz continuous of order 1. By Rademacher’s Theorem, T is
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(Frechet) differentiable on a subset D of Rk whose complement has (Lebesgue) measure
0. Denote by Ti : Rk → R the i-th component of T . Since T is monotone, we have

that ∂Ti
∂xj

(x) ≥ 0 for all i, j ∈ {1, ..., k} and for all x ∈ D. Since T is also translation
invariant, we have that

∑k
j=1

∂Ti
∂xj

(x) = 1 for all i, j ∈ {1, ..., k} and for all x ∈ D. With
T , we define an adjacency matrix A (T ) for the operator T , that is, aij ∈ {0, 1}. Given
i, j ∈ {1, ..., k}, we set

aij = 1 ⇐⇒ ∃εij ∈ (0, 1) s.t.
∂Ti
∂xj

(x) ≥ εij ∀x ∈ D. (6)

In words, aij is defined to be 1 if and only if the partial derivative ∂Ti
∂xj

is bounded away

from 0, whenever it exists. We say that A (T ) is regular if and only if it is nontrivial and

its essential indices form a single essential class.1 If we think of A (T ) as representing a

directed graph over k nodes, A (T ) is regular whenever the graph is strongly connected.

Given z ∈ Rk, we denote by ∂CTi (z) the Clarke differential of the i-th component

of T at z. In particular, recall that (see, e.g., [17, Theorem 2.5.1])

∂CTi (z) = co
{
γ ∈ Rk : γ = lim

k
∇Ti

(
zk
)
s.t. zk → z and zk ∈ D

}
. (7)

By [17, Propositions 2.1.2 and 2.1.5], the correspondence ∂CTi : Rk ⇒ Rk is nonempty-
, convex-, compact-valued, and upper hemicontinuous.2 Given the above discussion,

∂CTi (z) is a collection of probability vectors. We denote by ∂CT (z) the collection of

all k × k (stochastic) matrices whose i-th row belongs to ∂CTi (z).3

3 Convergence and limit characterization

In this section, we provide our two main results on the existence and characterization

of the limit fixed point. In particular, we will consider two cases: (i) T star-shaped

(Theorem 1); (ii) T is continuously differentiable at 0 (Corollary 3). Recall that T is

star-shaped if and only if T (λx) ≥ λT (x) for all λ ∈ (0, 1) and for all x ∈ Rk. Clearly,
if T is concave, it is star-shaped.

Theorem 1 Let T be normalized, monotone, and translation invariant. If T is star-
shaped and A (T ) is regular, then limβ→1 xβ exists for all x ∈ Rk.

1Nontriviality amounts to assume that the matrix A (T ) does not have a zero row.
2If Ti is concave, it is well known that ∂CTi (z) coincides with ∂Ti (z) where the latter is the usual

superdifferential of convex analysis (see, e.g., [17, Proposition 2.2.7]). Given a function ϕ : Rk → R
and z ∈ Rk, recall that a vector γ is an element of ∂ϕ (z), that is, a superdifferential of ϕ at z if and

only if 〈γ, y − z〉 ≥ ϕ (y) − ϕ (z) for all y ∈ Rk. We denote by ∂ϕ : Rk ⇒ Rk the superdifferential
correspondence.

3The notion of generalized gradient we use for real-valued functions coincides with the one of

Clarke, but our derived notion of generalized Jacobian for operators is larger than the one of Clarke

(see, e.g., [17, Proposition 2.6.2]). With an abuse of notation, we still denote it by ∂CT (z).
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The proof of this result consists of three major steps. In Section 3.1, we first prove

Theorem 1 under the assumption that T is concave (a stronger assumption compared

to star-shapedness) and assuming E (T ) = D (a weaker assumption compared to A (T )

being regular). This alternative setting allows us to also characterize the limit and

show its easy computability. In Section 3.2, we show that convergence of xβ holds also

for operators which can be rewritten as the max of a family of normalized, monotone,

translation invariant, and concave operators. Finally, we prove Theorem 1 by showing

that star-shaped operators can be rewritten as themax of a family of concave operators.

3.1 Concavity and differentiability

Consider x ∈ Rk and β ∈ (0, 1), the next lemma—a routine application of the Banach

contraction principle—shows that (1) admits a unique solution, denoted by xβ. To this

extent, given T : Rk → Rk, define Tβ,x : Rk → Rk by Tβ,x (y) = T ((1− β)x+ βy).

Clearly, the fixed points of Tβ,x are the solutions of (1).

Lemma 1 Let T be normalized, monotone, and translation invariant. If β ∈ (0, 1)

and x ∈ Rk, then Tβ,x is a β-contraction. In particular, for each β ∈ (0, 1) and for

each x ∈ Rk, there exists unique xβ ∈ Rk such that

T tβ,x (y)→ xβ ∀y ∈ Rk, Tβ,x (xβ) = xβ, and ‖xβ‖∞ ≤ ‖x‖∞ . (8)

Our first result covers the case of continuously differentiable operators.

Corollary 1 Let T be normalized, monotone, and translation invariant. If T is con-
tinuously differentiable in a neighborhood of 0, the Jacobian of T at 0 is regular, and

E (T ) = D, then

lim
β→1

xβ = 〈γ, x〉 e ∀x ∈ Rk

where γ is the unique left Perron-Frobenius eigenvector of the Jacobian of T at 0.

We can dispense with the assumption of differentiability, if we impose concavity.

To this extent, we introduce some notation and terminology. Given a stochastic k × k
matrix W , we denote by

Γ (W ) =
{
γ ∈ ∆ : γTW = γT

}
the collection of all left W -invariant probability vectors. It is routine to show that

Γ (W ) is nonempty, convex, and compact. If W has a unique left Perron-Frobenius

eigenvector γW , then Γ (W ) = {γW}. Given a subset M of stochastic matrices, we

denote by Γ (M) the set ∪W∈MΓ (W ). In particular, if M is closed, then Γ (M) is

compact.
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Corollary 2 Let T be normalized, monotone, and translation invariant. If T is con-
cave and E (T ) = D, then

lim
β→1

xβ = min
γ∈Γ(∂CT (0))

〈γ, x〉 e ∀x ∈ Rk.

Moreover, if A (T ) is regular, then Γ (∂CT (0)) is the collection of left Perron-Frobenius

eigenvectors of the superdifferentials of T at 0.

Concavity allows also to improve Corollary 1. In fact, we can only require differen-

tiability at 0 without explicitly asking the derivative to be continuous near 0.

Corollary 3 Let T be normalized, monotone, and translation invariant. If T is con-
cave, differentiable at 0, and A (T ) is regular, then

lim
β→1

xβ = 〈γ, x〉 e ∀x ∈ Rk

where γ is the unique left Perron-Frobenius eigenvector of the Jacobian of T at 0.

3.2 Star-shaped operators

In this section, we consider a family of normalized, monotone, translation invariant,

and concave operators {Sα}α∈A such that E (Sα) = D for all α ∈ A. Given {Sα}α∈A,
we define T : Rk → Rk by T (x) = supα∈A Sα (x) for all x ∈ Rk.4 It is immediate to
show that T is normalized, monotone, and translation invariant. We say that {Sα}α∈A
is nice if and only if the previous sup is achieved for all x ∈ Rk, that is, for each x ∈ Rk

there exists αx ∈ A such that T (x) = Sαx (x).

Given x ∈ Rk, β ∈ (0, 1), and α ∈ A, we denote by xβ,α the unique point satisfying
Sα ((1− β)x+ βxβ,α) = xβ,α. For each α ∈ A we can define ϕSα : Rk → R by

ϕSα (x) = min
γ∈Γ(∂CSα(0))

〈γ, x〉 ∀x ∈ Rk.

The importance of the maps ϕSα is underlined by Corollary 2, since ϕSα (x) e =

limβ→1 xβ,α for all x ∈ Rk and for all α ∈ A. The next result shows that when

{Sα}α∈A is nice, the net {xβ}β∈(0,1) defined for the operator T , converges and the limit

is given by the sup of the evaluations {ϕSα (x)}α∈A.

Proposition 1 If {Sα}α∈A is nice, then limβ→1 xβ = supα∈A ϕSα (x) e.

The importance of the above result is twofold. First, in some applications, a collec-

tion {Sα}α∈A forms the primitives of the problem and the operator T is derived from it
4Here the sup is performed coordinatewise.
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(see, e.g., Section 5). Second, Proposition 1 is useful in proving our main result (The-

orem 1). For, a normalized, monotone, translation invariant, and star-shaped operator

with regular A (T ) can always be rewritten as the max of a nice collection {Sα}α∈A.

At this point, given that we have presented two distinct results about the existence

of the limit (under differentiability and star-shapedness), the reader may be left to

wonder whether they are just examples of a more general phenomena. That is, it may

be natural to conjecture that the limit fixed point exists for every operator that is

normalized, monotone and translation invariant and for which A (T ) is regular. Unfor-

tunately, this conjecture turns out to be incorrect, and we provide a counterexample

in Online Appendix F.

In the next sections, we consider several applications of the results above. We start

with an application to endogenous network formations in competitive equilibrium and

coordination games models. In that case, the limit β → 1 correspond to the case in

which the important of own idiosyncratic factors becomes negligible when compared,

respectively, to the importance external inputs or coordination with coplayers. We

next move to zero-sum stochastic games. In this case, the limit β → 1 is interpreted

as the limit for infinite patience of the players. After that, we apply the results on

discrete iterations of Section 8.3 to an extension of the dynamic opinion aggregation

model in networks of Cerreia-Vioglio et al. [12]. In this case, the sequence of weights

{βt}t∈N ⊆ (0, 1) represents the vanishing stubbornness weight that agents assign to

their initial opinions. Finally, we consider an application to an equilibrium model

of interconnected financial institutions that use coherent risk measure to evaluate the

riskiness of their positions. Here, the limit β → 1 captures the idea that the institutions

are highly interconnected and that the financial sector dominates the underlying real

one. Some of these applications will feature a slightly different form of fixed point

equation, the next brief subsection explains why our results also apply to that case.

3.3 Alternative fixed point

Consider x ∈ Rk and β ∈ (0, 1). As we mentioned, many applications in Network

Theory (e.g., Sections 4 and 6) feature the alternative fixed point

(1− β)x+ βT (z) = z.

The next lemma shows that the previous results have immediate implications also for

this case. Recall that x̃β denotes the unique solution to (2).
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Lemma 2 Let T be normalized, monotone, and translation invariant. If β ∈ (0, 1)

and x ∈ Rk, then for all β ∈ (0, 1) and for all x ∈ Rk

x̃β = (1− β)x+ βxβ.

In particular, if limβ→1 xβ exists then limβ→1 x̃β exists and limβ→1 xβ = limβ→1 x̃β.

4 Application I: Endogenous networks

In this section, we consider competitive equilibria and coordination games on networks

with endogenous links. In both cases, when we fix a network structure, the induced

equilibrium map is linear, a feature highly exploited in the literature of production

networks (e.g., Long and Plosser [30]) and coordination games (e.g., Ballester et al.

[6] and Golub and Morris [25]). However, the endogeneity of the network structure

introduces nonlinearities in the equilibrium map, thereby complicating the equilibrium

analysis. The nonlinear fixed point equation that we have studied in Section 3 implicitly

defines the equilibrium maps of both applications, allowing us to characterize it for the

limit for high-coordination motives among firms and players respectively.

4.1 Production networks

Following Acemoglu et al. [2] and Kopytov et al. [29], we consider a static and friction-

less model of production network among cost-minimizing firms with Cobb-Douglas pro-

duction functions and endogenous networks. The endogeneity of the network structure

introduces nonlinearities which are not present in the standard fixed-network model (see

Long and Plosser [30]). This makes the analysis considerably less tractable. Thanks

to our results, we completely characterize the equilibrium prices and outputs as the

firms’idiosyncratic shocks vanish.

Consider a finite set of firms {1, ..., k} each of which produces a potentially different
output. Each firm can choose a set of weights wi ∈ ∆ specifying both the set of inputs

from the other firms that are used in production and how these inputs are to be

combined. Moreover, each firm uses an external input that is irreproducible by any of

the other firms and whose productivity and importance in the production function are

fixed. This can be either labor or another factor that is produced outside the economy

we analyze.

As in [29], we fix a productivity shifter Si : ∆→ [0, 1] that depends on the technol-

ogy wi selected. Given the level of inputs from the external factor and from the firms

in the economy Qi =
(
Qi0, (Qij)

k
j=1

)
∈ Rk+1

+ and technology wi ∈ ∆, the production
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function of firm i is

Fi (Qi, wi) = Si (wi) ξ (β, wi) (ZiQi0)(1−β)
k∏
j=1

Q
βwij
ij

where Zi > 0 is the productivity relative to the external factor for firm i, β ∈ (0, 1) is

the common intensity of the external factor, and

ξ (β, wi) = (1− β)−(1−β)
k∏
j=1

(βwij)
−βwij ,

is a normalization constant that only depends on the overall technology (β, wi) of firm

i.5 Each firm selects both a technology wi ∈ ∆ and levels of all inputs Qi needed given

the technology selected. For example, if wij = 0 then the input from j is not relevant

for i’s production. LetW∗ denote the set of strongly connected matrices. We maintain
the following assumptions on the productivity shifters.

Assumption: The profile of productivity shifters S = (Si)
k
i=1 is such that each Si

is upper semicontinuous, log-concave, and there exists W ∈ W∗ such that

Si (wi) = 1 ∀i ∈ {1, .., k} . (9)

Upper semicontinuity and log-concavity are technical conditions that guarantees ex-

istence of equilibrium and always imposed in this literature, often times in the stronger

form of continuity and strict log-concavity. The last part of the assumption involves the

set of most effi cient technologies. For a given profile of productivity shifters S = (Si)
k
i=1,

define the set

argmax (S) = {W ∈ W : Si (wi) = 1 ∀i ∈ {1, .., k}} .

The production networks W ∈ argmax (S) are the most effi cient ones since the pro-

duction of each firm is not being shifted down by a discount factor. Instead, all those

production networks W ∈ W such that Si (wi) = 0 for some i ∈ {1, ..., k} are either
extremely ineffi cient or unfeasible. In turn, equation (9) says that there exist effi cient

technologies and that every effi cient technology induces a strongly connected network.

The next examples illustrate natural settings where our assumption is satisfied.

Example 2 When all the feasible technologies are effi cient, we have that the produc-
tivity shifter of each i is Si = 1Ci an indicator function over a nonempty, convex, and

compact set Ci ⊆ ∆ of technologies. In this case, argmax (S) is the set of all stochastic

5Note that the definition of the normalization constant ξi (β,wi) is the same as the one [29] (see

their Footnote 8). Differently form [29], our productivity shock Zi is relative to the external factor

Qi0 as opposed to be Hicks-neutral.
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matrices whose i-th row belongs to Ci. The condition in equation (9) implies that at

least one effi cient configuration admits a unique LPF eigenvector. When each Ci is a

singleton, {w0
i }, for some W 0 ∈ W∗, we have that argmax (S) = {W 0}, that is, the

production network is exogenously fixed and we get back the standard Cobb-Douglas

model of Long and Plosser [30]. Differently, Kopytov et al. [29] consider a continuously

differentiable and strictly log-concave function productivity shifter. In [29]’s leading

example, they consider

Si (wi) = exp

(
−

k∑
j=1

κij
(
wij − w0

ij

)2

)
∀wi ∈ ∆ (10)

whereW 0 ∈ W∗ is the effi cient production network for the economy and κ is a positive
matrix of weights capturing the cost, in terms of productivity, of moving the j-th input

share away from its ideal value. Following a parallel logic, we can replace the quadratic

distance in equation (10) with another “distance”such as the relative entropy to obtain

Si (wi) = exp
(
−λiR

(
wi||w0

i

))
. (11)

In this case, R (·||·) is the relative entropy while W 0 ∈ W∗ and λi > 0. In both these

smooth cases, we have argmax (S) = {W 0}. In general, this is the case every time that
each Si is strictly log-concave (as in [29]). N

Next, we proceed with the description of the equilibrium of the economy. We assume

that firms are price takers and act in a perfect-competition economy. We normalize

the price of the external factor to 1 and, given a vector P ∈ Rk+ of inputs’prices and
a feasible technology wi ∈ ∆, the cost-minimization problem for firm i, producing at

least 1 unit of output, is defined by

Ki (P,wi) = min
Qi∈Rk+1

+

{
Qi0 +

k∑
j=1

QijPj : Fi (Qi, wi) ≥ 1

}
∀i ∈ {1, ..., k} . (12)

Because each firm can choose its technology wi so to minimize their unitary cost,

the equilibrium zero-profit condition is

Pi = min
wi∈∆

Ki (P,wi) = min
(wi,Qi)∈∆×Rk+1

+

{
Qi0 +

k∑
j=1

QijPj : Fi (Qi, wi) ≥ 1

}
∀i ∈ {1, ..., k} .

(13)

Note that the above equilibria are β dependent. In particular, for each β ∈ (0, 1), an

equilibrium is given by a vector of prices P ∈ Rk+, a matrix of inputs Q ∈ R
k×(k+1)
+ ,

and a network structure W ∈ W. In the triple (P,Q,W ), the vector P solves the fixed

point equation (13) and the pair (Qi, wi) solves the cost-minimization problem in the

right hand-side of equation (13).
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Following the same steps in [29],6 the fixed point condition for equilibrium log-prices

can be written as

pi = (1− β)xi + β min
wi∈∆

{
k∑
j=1

wijpj +
1

β
ci (wi)

}
∀i ∈ {1, ..., k} (14)

where pi = ln (Pi), xi = ln (1/Zi), and ci (wi) = ln (1/Si (wi)). It is standard to show

that, for each β ∈ (0, 1), there exists a unique vector of log-prices pβ that solves the

fixed point equation (14) and therefore a unique vector of equilibrium prices Pβ. Given

these prices, the equilibrium network and quantities are not unique in general due to

the fact that each firm might have multiple optimal technologies, that is,

argmin
wi∈∆

{
k∑
j=1

wijpβ,j +
1

β
ci (wi)

}
(15)

might not be single-valued. When Si is strictly log-concave, as in [29], it follows that

ci is strictly convex and there exists a unique minimizer wβ,i in equation (15). This in

turn uniquely pins down the equilibrium inputs Qβ.

We aim to characterize the vector of equilibrium prices in the limit for a vanishing

intensity of the external factor, that is, we aim to compute limβ→1 pβ. To this extent,

define

Γ (S) =
{
γ ∈ ∆ : ∃W ∈ argmax (S) , γT = γTW

}
,

the set of all LPF eigenvectors of the effi cient production networks. With this, we have

the following result.

Proposition 2 The limit equilibrium vector of prices is constant across firms and

lim
β→1

pβ,i = min
γ∈Γ(S)

〈γ, x〉 ∀i ∈ {1, ..., k} .

Moreover, if Si is continuously differentiable and strictly log-concave for all i ∈ {1, ..., k}
with argmax (S) = {W 0}, then

lim
β→1

pβ,i = 〈γW 0 , x〉 , lim
β→1

wβ,i = w0
i , lim

β→1
Qβ,i0 = 0, and lim

β→1
Qβ,ij = w0

ij.

So far, we considered endogenous production networks under a Cobb-Douglas pro-

duction function. Another potential source of nonlinearity recently studied in the

literature of production networks comes from generalizing the production function to

the class of nested CES (see for example Baqaee and Farhi [8] and Carvalho and

Tahbaz-Salehi [10]). It turns out that our method can also be applied in this case. For

6See Online Appendix E.2.1 for the details.
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simplicity, fix a production networkW ∈ W∗, and assume that the production function
of firm i is

Fi (Qi) = ξ̂i (β, wi) (ZiQi0)(1−β)

(
k∑
j=1

w
1/σi
ij Q

(σi−1)/σi
ij

)βσi/(σi−1)

where σi is the elasticity of substitution among the inputs of the firm and ξ̂i (β, wi) is

a normalization constant (potentially different from the one before) that only depends

on β and the fixed technology wi. It is standard to show that in this case the log prices

are uniquely characterized by the fixed-point condition7

pNCSβ,i = (1− β)xi + β
1

1− σi
ln

(
k∑
j=1

wij exp
(
(1− σi) pNCSβ,j

))
∀i ∈ {1, ..., k} .

Therefore, in that case one obtains that the nonlinear effects emphasized in Baqaee

and Farhi [8] matter only for sizeable dependence on the external factor that is not

tradeable within the production network.

Proposition 3 The limit equilibrium vector of prices is constant across firms and

lim
β→1

pNCSβ,i = 〈γW 0 , x〉 ∀i ∈ {1, ..., k} .

4.2 Coordination games

We consider a finite set of agents N = {1, ..., n} playing a complementary-effort game
on an endogenous network. Each agent chooses how much effort to exercise in the

partnership with other agents: ai ∈ R+. The benefit of effort for agent i is directly

proportional to a linear combination of her ability xi ∈ R+ with a weighted average of

the efforts exercised by her neighbors. The cost of effort is instead quadratic, a feature

that will guarantee linearity of the best response for a given network structure.

Formally, given a fixed weighted and directed network W ∈ W, the payoff of agent
i for every profile of actions a = (ai)

n
i=1 is

ui (a, wi) = ai

(
(1− β)xi + β

n∑
j=1

wijaj

)
− a2

i

2

where β ∈ (0, 1) captures the relative importance of complementary efforts over the

personal skills of every agent. In what follows, we consider two different cases of

endogenous networks. In both cases, we assume that each feasible network structure

W has two features: (i) there is no self-link, that is, wii = 0 and (ii) W is strongly

connected. The first assumption is standard in coordination games on networks (cf.

[6] and [25]). We discuss the relevance of the second assumption below. Let us denote

the set of stochastic matrices satisfying both (i) and (ii) with W∗0 .
7See Online Appendix A of [10].
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Costly link formation Here we assume that, before choosing her effort, each agent

i chooses her weighted links wi ∈ ∆n. This is costly and the cost function of agent i is

denoted by ci : ∆n → [0,∞]. In particular, those weighted networks W ∈ W such that

ci (wi) = 0 for all i ∈ N are the free one. Instead, all those weighted networks W ∈ W
such that ci (wi) = ∞ for some i ∈ N are unfeasible. We maintain the following

assumptions on the cost functions.

Assumption: The profile of cost functions c = (ci)
n
i=1 is such that each ci is lower

semicontinuous and there is W ∈ W∗0 with

wi ∈ co
(
c−1
i (0)

)
∀i ∈ {1, ..., k} . (16)

Lower semicontinuity of the cost functions is a technical condition that guarantees

existence of a well-defined best response map for the coordination game. In turn,

equation (16) says that each agent has at least a free vector of weights and that there

is a strongly connected matrix that can be obtained as the mixture of the free networks.

We let

argmin (c) =
{
W ∈ W : ∀i ∈ N,wi ∈ co

(
c−1
i (0)

)}
denote the set of network structures that can be obtained by mixing vector of weights

that are free for all the players.8 The next example illustrates a setting where our

assumption on the cost functions is satisfied.

Example 3 Assume that the agents are connected on a baseline unweighted and
strongly connected network represented by a graph G ∈ {0, 1}n×n with gii = 0. Main-

taining the links specified in G is free for all the agents. However, they can costly form

new links in additional to the ones in G. In particular, there is a fixed cost k > 0

for each addition link that player i forms on top of the baseline ones. We next show

how this particular case of costly link formation can be represented by a profile of cost

functions (ci)
n
i=1 satisfying our assumption. Let Ni (G) ⊆ {1, ..., n} denote the set of

neighbors of i in the graph G. For every i ∈ N , define the set of uniform weights

Di (G) =

{
1

|Ni|
∑
j∈Ni

δj ∈ ∆n : Ni (G) ⊆ Ni ⊆ N\ {i}
}

and the cost function ci : ∆n → [0,∞] as

ci (wi) = k |{j ∈ N : wij > 0} \Ni (G)|+ IDi(G) (wi)

where IDi(G) is the equal to 0 if wi ∈ Di (G) and ∞ otherwise. On the one hand, it is

easy to see that ci is lower semicontinuous. On the other hand, the uniform network

8For every set K ⊆ ∆n, so for example for K = c−1i (0), we let co (K) denote the convex hull of K.
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W (G) defined by wi (G) = 1
|Ni(G)|

∑
j∈Ni(G) δj for all i ∈ N is fre for every player.

Moreover, given that k > 0, this is the only free network for all the agents, that is

arg min (c) = {W (G)} ⊆ W ∗
0 , were the last inclusion follows from the properties of G.

Therefore (ci)
n
i=1 satisfy our assumption. N

For a fixed profile of cost functions c, we assume that the total payoff of each player

i ∈ N given a profile of efforts a ∈ Rn+ and weighted links wi ∈ ∆n is ui (a, wi) −
aici (wi). In words, the total cost of forming and maintaining the link is increasing and

linear in the effort chosen. The assumption that the effort and the weighted links are

complementary in increasing the total cost of the player has been already considered by

Sadler and Golub [35] in a context of endogenous link formation. Here, we are adding

the linearity assumption which, as we show below, allows us to exploit our previous

results to characterize the limit equilibrium of the game and, in Section 8.1, to study

the epsilon-equilibria of the game for β away from 1.

We next analyze the best response map of the total game of choosing both the

weighted links and the effort. In particular, observe that neither the payoff function ui
nor the cost function ci of i depend on the links chosen by the other agents. Therefore,

given a conjecture a−i ∈ Rn−1
+ about the effort of the other agents, player i solves

max
ai∈R+

max
wi∈∆n

{ui (a, wi)− aici (wi)} .

Observe that the previous maximization problem can be rewritten as

max
ai∈R+

{
ai max

w̃i∈∆n

{
β

n∑
j=1

w̃ijaj − ci (w̃i)
}
− a2

i

2

}
.

Therefore the induced objective function is still quadratic with respect to the choice

variable ai, hence the unique best response can be still characterized by the first-order

conditions. In general, this implies that a profile of efforts a ∈ Rn+ and a weighted

network W ∈ W form a Nash equilibrium of the total game if and only if, for every

i ∈ N ,

ai = (1− β)xi + β max
w̃i∈∆n

{
n∑
j=1

w̃ijaj −
ci (w̃i)

β

}
(17)

and

wi ∈ argmax
w̃i∈∆n

{
n∑
j=1

w̃ijaj −
ci (w̃i)

β

}
.

The first condition is a standard fixed-point equation on the profile actions a. The main

difference with respect to the game with a fixed weighted network is the nonlinearity of

the fixed point equation. However, we show below that it can be still analyzed through

the results of the previous sections. The second condition instead requires that the
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equilibrium network is a best response for each player given the efforts chosen by the

others.

It is not hard to see that, for every β ∈ (0, 1), there exists a unique equilibrium pro-

file of efforts aβ ∈ Rn+ that solves the fixed-point equation (17). We aim to characterize
the limit for high coordination motives limβ→1 aβ. First, define

Γ (c) =
{
γ ∈ ∆n : ∃W ∈ argmin (c) , γT = γTW

}
,

the set of all the eigenvector centralities of networks that are free. With this we have

the following result.

Proposition 4 The limit equilibrium profile of efforts is well defined, constant across

players, and equal to limβ→1 aβ,i = maxγ∈Γ(c) 〈γ, x〉 for every i ∈ {1, ..., k}.

The main implication is that the most central agent in any of the limit equilibrium

networks are those that are at the same time most effi cient (higher xi) and cheaper to

link with.

Example 4 As already established, we have arg min (c) = {W (G)} where wi (G) =
1

|Ni(G)|
∑

j∈Ni(G) δj for all i ∈ N . This implies that W (G) is the unique equilibrium

network consistent with the limit for β → 1. Moreover, it is well known that the

eigenvector centrality of W (G) is given by

γi (G) =
|Ni (G)|∑
j∈N |Nj (G)| ∀i ∈ N .

With this, we have Γ (c) = {γ (G)}, hence that

lim
β→1

aβ,i =

∑
j∈N |Nj (G)|xj∑
j∈N |Nj (G)| .

Therefore, the common equilibrium effort is relatively higher if the agents who are

relatively more effi cient (i.e., high xi) are also those that are more central in the baseline

network. N

5 Application II: Zero-sum stochastic games

In this section, we consider zero-sum stochastic games with finitely many states and a

continuum of actions for both players. We closely follow the textbook formalization of

Sorin [38, Chapter 5].

There are two players repeatedly interacting in a zero-sum game under uncertainty.

We identify the two player as the maximizer and the minimizer. Time is discrete t ∈ N
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and at each period the game is at a state drawn from a finite set Ω. At the end of

each period, an outcome r from a finite set R ⊆ R realizes and the maximizer gets

payoff r and the minimizer gets −r. The set of feasible actions for the maximizer
and the minimizer are respectively denoted by S and Q, two compact metric spaces.

Both the outcome at period t and the state at period t+ 1 depend on players’actions

and the state at period t. Formally, this is described by a continuous transition map

ρ : S ×Q× Ω→ ∆ (R× Ω). With a small abuse of notation, we also use ρ to denote

its linear extension ρ : ∆ (S) × ∆ (Q) × Ω → ∆ (R× Ω) to mixed actions as well as

the corresponding marginal distributions over R and Ω.9 With this, define the state-

dependent one-period expected reward g : ∆ (S)×∆ (Q)× Ω→ R as

g (ŝ, q̂, ω) =
∑
r′∈R

r′ρ (ŝ, q̂, ω) (r′) .

This setting is equivalent to the more standard one where there are no outcomes and

the primitive objects are a transition function ρ : S × Q × Ω → ∆ (Ω) and a one-

period expected reward function g : S ×Q× Ω→ R (e.g., Sorin [38, Chapter 5]). We
explicitly keep track of the outcomes so to obtain a cleaner limit characterization using

our methods.

Following the standard analysis of zero-sum stochastic games, we consider two

different cases: (i) the one-period game is infinitely repeated and the agents maximize

their discounted expected payoffs with common discount factor β ∈ (0, 1); (ii) the one-

period game is repeated only t times and the agents maximize the time average of their

expected payoffs.

In case (i), it is well known that, for each discount factor β ∈ (0, 1), the value of

the game vβ ∈ RΩ exists and is the unique solution of the Shapley equation (see, e.g.,

Neyman and Sorin [33, Theorem 2 of Chapter 8]):

vβω = max
ŝ∈∆(S)

min
q̂∈∆(Q)

{
(1− β) g (ŝ, q̂, ω) + β

∑
ω′∈Ω

vβω′ρ (ŝ, q̂, ω) (ω′)

}
∀ω ∈ Ω. (18)

Similarly, in case (ii), for every length t ∈ N, the value of the game vt ∈ RΩ exists and

satisfies the following recursive equation:

vtω = max
ŝ∈∆(S)

min
q̂∈∆(Q)

{
1

t
g (ŝ, q̂, ω) +

t− 1

t

∑
ω′∈Ω

vt−1
ω′ ρ (ŝ, q̂, ω) (ω′)

}
∀ω ∈ Ω. (19)

9The linear extension of ρ is defined as usual:

ρ (ŝ, q̂, ω) (r, ω′) =

∫
S

∫
Q

ρ (s, q, ω) (r, ω′) dŝ (s) dq̂ (q) ,

for all ŝ ∈ ∆ (S) and q̂ ∈ ∆ (Q).
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We say that the game has an asymptotic value (cf. Sorin [38]) if and only if both

limβ→1 v
β and limt v

t exist and coincide.10 Our abstract analysis of nonlinear fixed

points yields the existence of the asymptotic value and its explicit form under a minimal

connectedness assumption.

We first need some preliminary definitions. Let ΣS = ∆ (S)Ω and ΣQ = ∆ (Q)Ω

denote the set of stationary mixed strategies of the agents and, for all σS ∈ ΣS and

σQ ∈ ΣQ, let W (σS, σQ) denote the transition matrix between state-outcome pairs

with entries given by

w(r,ω),(r′,ω′) (σS, σQ) = ρ (σS (ω) , σQ (ω) , ω) (r′, ω′) ∀ (r, ω) , (r′, ω′) ∈ R× Ω.

Let n = |R× Ω|. Next we state the crucial assumption that allows us to apply our
result to the current stochastic-game setting.

Assumption A: There exists a regular adjacency matrix A ∈ {0, 1}n×n such that
A (W (σS, σQ)) ≥ A for all σS ∈ ΣS and σQ ∈ ΣQ.

In words, we assume that there exist links between outcome-state pairs, the ones

prescribed by A, that cannot be shut down by the actions of the players, no matter

what. Moreover, these baseline links are such that there exists a unique essential

class of essential pairs (r, ω). Importantly, this implies that each W (σS, σQ) admits

a unique Perron-Frobenius eigenvector, denoted by γ (σS, σQ) ∈ ∆ (R× Ω). With the

same abuse of notation as before we use the same symbol γ (σS, σQ) for its marginal

over outcomes.

Proposition 5 Under Assumption A, the game has an asymptotic value that is inde-
pendent of the state and such that

lim
β→1

vβ = lim
t
vt =

(
sup
σS∈ΣS

min
σQ∈ΣQ

∑
r∈R

rγ (σS, σQ) (r)

)
e.

This result extends the standard result on the existence and characterization of

the asymptotic value of zero-sum stochastic games from the finite case to the class of

games considered in the current section (see for example Sorin [38, Propositions 5.12-

5.14]). As in the finite case, the asymptotic value coincides with the value of static

zero-sum game with expected payoffs given by the stationary distributions generated

by the players’strategies.

Whenever Q is a singleton, we obtain a Markov decision process (MDP) where

the minimizer is optimally controlling her cost. With this, Proposition 5 collapses to

average-cost optimality for MDPs with a continuum of actions and finitely many states,

10The derivations of equations (18) and (19) can be found in Sorin [38, Propositions 5.2 and 5.3].
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that is,

lim
β→1

vβ = lim
t
vt =

(
sup
σS∈ΣS

∑
r∈R

rγ (σS) (r)

)
e.

Finally, observe that, in this setting, Theorem 2 can be applied and would deliver an

estimate on how the value of the game depends on the current state for every β ∈ (0, 1).

6 Application III: Opinion aggregation with stub-

bornness

Cerreia-Vioglio et al. [12] consider a finite set of agents i ∈ {1, ..., k} and let x ∈ Rk

denote an arbitrary profile of opinions for the agents. An opinion is just a real number

that can be interpreted as the estimate of agent i about some fundamental parameter

of interest or the intensity with which an individual agrees with a certain policy. Under

this interpretation, they assume that the opinions of the agent evolve according to the

operator T , that is, if the current profile of opinions is x, then the profile of opinions

in the next period is T (x). With this, the sequence of iterates {T t (x)}∞t=1 corresponds

to the sequence of profile of opinions in the population over time. For example, when

T = W is linear, we obtain the celebrated DeGroot’s model [18] of opinion aggregation

of experts.11 In particular, Golub and Jackson [24] interpreted W as a directed and

weighted network where the entry wij represents the weighted link from j to i. In

general, motivated by the fact agents may use opinion aggregators reflecting their

attraction or aversion for extreme opinions, [12] introduce several classes of nonlinear

opinion aggregators T . For example, when

Ti (x) =
1

λi
ln

(
k∑
j=1

wij exp (λixj)

)
(20)

for some fixed set of weighted links wi ∈ ∆ and a parameter λi ∈ R, it is possible
to model agents with heterogeneous attractions for high (λi > 0) or low (λi < 0)

opinions while maintaining the underlying linear network structure. Alternatively, we

can altogether relax the existence of a single network structure and consider opinion

aggregators such as

Ti (x) = αi min
wi∈Ci

〈wi, x〉+ (1− αi) max
wi∈Ci

〈wi, x〉 (21)

where Ci ⊆ ∆ is a compact and convex set of possible weighted links to i and αi ∈ [0, 1]

is a parameter capturing the relative attraction of i for high or low opinions. It is routine

11See for example Golub and Jackson [24] for a detailed analysis of this model.
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to show that if each element Ti of T is defined as in equations (20) or (21), then T is

monotone, normalized, and translation invariant.

Friedkin and Johnsen [20] proposed a variation of the DeGroot’s model where the

agents have a degree of stubbornness with respect to their initial opinions. Here we

extend Friedkin and Johnsen’s model of stubbornness by considering nonlinear opinion

aggregators T with the functional properties introduced above. Formally, we assume

that, for every period t ∈ N, the profile of opinions in the population is

x̃ti = (1− β)xi + βTi
(
x̃t−1

)
∀i ∈ {1, ..., k} (22)

where β ∈ (0, 1) is a fixed parameter capturing the degree of stubbornness in the popu-

lation and x = x̃0 is the profile of initial opinions. In words, each agent i aggregates the

last-period opinions x̃t−1 with her opinion aggregator Ti and then mixes the resulting

aggregate with her original opinion, using the common weight β. When T = W is

linear, we exactly obtain Friedkin and Johnsen’s model. In general, it is easy to see

that the sequence of opinions {x̃t}∞t=1 converges to the unique fixed point x̃β defined in

equation (2), which then corresponds to the long-run profile of opinions of the agent

under stubbornness β. Provided that it exists, the limβ→1 x̃β corresponds to the profile

of long-run opinions of the agents as the stubbornness friction is vanishing.12

The results of Section 3 can be applied to this setting. For example, consider

the standard Friedkin and Johnsen model with linear T = W having a single LPF

eigenvector γW and compare it to an alternative opinion aggregator T̃ where the agents

have the same network structure W but aggregate opinions according to equation (20)

for some profile of parameters (λ1, ..., λk) ∈ Rk. Because T̃ is continuously differentiable
with JT̃ (0) = W , Corollary 1 states that, regardless of the value of (λ1, ..., λk), the

opinions of the agents will converge to the same consensus 〈γW , x〉 for both T and T̃ .
Alternatively, consider the opinion aggregator T defined as in equation (21) such

that, for every i ∈ {1, ..., k}, we have αi = α and

Ci =
{

(1− ε)w0
i + εwi : wi ∈ ∆

}
for some α ∈ [0, 1], ε ∈ [0, 1), and stochastic matrix W ∈ W with A (W ) regular. Also

fix a vector of initial opinions x ∈ Rk and define

x̂ε = ε [I − (1− ε)W ]−1 x.

12Banerjee and Compte [7] provided a game-theoretic foundation for this limit by considering a noisy

version of the Friedkin and Johnsen’s model where the agents choose once and for all the stubbornness

weight to assign to their initial opinion so to maximize the accuracy of their long-run opinion. They

show that as the noise vanishes, the symmetric equilibrium weight converges to zero, that is β → 1,

providing an alternative foundation for the limit we study.
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Observe that T can be written as T = (1− ε)W + εS where

Si (z) = α min
j∈{1,...,k}

zj + (1− α) max
j∈{1,...,k}

zj ∀z ∈ Rk,∀i ∈ {1, ..., k} .

Therefore, Proposition 1 implies that the long-run opinions as the stubbornness van-

ishes converge to the consensus

α min
j∈{1,...,k}

x̂εj + (1− α) max
j∈{1,...,k}

x̂εj.

In words, we first need to compute the vector of opinions of the agents obtained by

applying the matrix of ε-weighted Bonacich centralities of W to x and the linearly

combine the maximum and the minimum of the opinions so obtained.

7 Application IV: Financial networks

In this section, we consider an equilibrium model of systemic risk where a group of

financial institutions are exposed to idiosyncratic losses and hold cross-capital inter-

dependencies. Following the approach of Adrian and Brunnermeier [3] in modeling

systemic risk, we assume that the banks’expected losses conditional on each macroeco-

nomic scenario are given by conditional risk measures (see also Detlefsen and Scandolo

[19]).

Consider a finite number of banks K = {1, ..., |K|} and states of the world Ω =

{1, ..., |Ω|}. We interpret each state ω ∈ Ω as a possible macroeconomic scenario that

determines the nature of the idiosyncratic losses of the banks. Formally, fix x ∈ RK×Ω

and interpret xk,ω as the realization of the idiosyncratic loss in real-economy assets for

bank k in state ω. Each bank k is endowed with a partition Πk ⊆ 2Ω of the states

representing the coarsened scenarios considered by k. In particular, we assume that Πk

is finer than the partition induced by the random variable xk ∈ RΩ representing the

idiosyncratic loss of k, that is, each bank is able to discern the scenarios determining

their own losses in real-economy assets. Moreover, we assume that {Πk}k∈K are com-
mon knowledge. Finally, the banks are connected in a financial network represented

by a strongly connected stochastic matrix M ∈ [0, 1]K×K whose entries correspond to

the financial interdependencies among the banks: mk,k′ ∈ [0, 1] is the exposure of bank

k to bank k′ and mk,k = 0 for all k ∈ K.
Each bank k has to declare their expected total loss in each of the considered

scenarios, that is, for each cell of Πk. The total loss of each bank is a combination of

the realized idiosyncratic loss and the estimated loss induced by the exposures to the

other banks. For every k, k′ ∈ K, let yk,k′ ∈ RΩ denote the state-contingent loss of bank

k′ conjectured by bank k. In particular, yk,k′ is a random variable that is measurable
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with respect to Πk′ . With this, the total conjectured loss of bank k for state ω is

(1− β)xk,ω + β
∑
k′∈K

mk,k′yk,k′,ω, (23)

where β ∈ (0, 1) captures the intensity of cross exposure of the banks.

The total conjectured loss in equation (23) is still a random variable from the point

of view of bank k since each yk,k′ is only measurable with respect to Πk′ . We endow

each bank k with a conditional risk measure Vk : Ω × RΩ → R that quantifies each
possible uncertain prospect in terms of monetary loss, conditional to each scenario

considered by bank k. Following Detlefsen and Scandolo [19], we assume that each

Vk is measurable with respect to Πk and such that, for every ω ∈ Ω, the functional

Vk (ω, ·) is normalized, monotone decreasing, convex, cash invariant, that is

Vk (ω, `+ ke) = V (ω, `)− k ∀ω ∈ Ω,∀` ∈ RΩ,∀k ∈ R,

and information regular, that is,

Vk
(
ω, `1Π(ω) + h1Π(ω)c

)
= V (ω, `) ∀ω ∈ Ω,∀`, h ∈ RΩ.

By [19, Theorem 1], this conditional risk measure admits the following representation

Vk (ω, `) = max
p∈∆(Ω)

{
−
∑
ω̃∈Ω

`ω̃pω̃ − ck,ω (p)

}
∀ω ∈ Ω,∀` ∈ RΩ,

where, for every ω ∈ Ω, the function ck,ω : ∆ (Ω) → [0,∞] is grounded, convex, lower

semicontinuous, and such that ck,ω (p) <∞ implies that p ∈ ∆ (Πk (ω)).

Given conjectures {yk,k′}k′∈K\{k}, the risk of bank k in state ω is given by

Vk

(
ω, (1− β)xk + β

∑
k′∈K

mk,k′yk,k′

)

= − (1− β)xk,ω + β max
p∈∆(Ω)

− ∑
(k′,ω′)∈K×Ω

mk,k′pω′yk,k′,ω′ −
1

β
ck,ω (p)

 ,
where the equality follows from the fact that xk is Πk-measurable and information

regularity.

In equilibrium, each bank has correct conjectures about the loss declared by all the

other banks in every state. Formally, for every level of connectedness β, the vector of

losses xβ ∈ RK×Ω is an equilibrium if and only if

xβk,ω = −Vk

(
ω, (1− β)xk + β

∑
k′∈K

mk,k′x
β
k′

)
∀ (k, ω) ∈ K × Ω. (24)
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Fixed-point conditions such as the one in equation (24) are pervasive in equilibrium

analysis of financial networks (see for example the survey Jackson and Pernoud [28]).

In particular, as β → 1, the losses from financial interdependencies dominate the

idiosyncratic losses from own real assets.

Next, define the concave operator T : RK×Ω → RK×Ω as

T(k,ω) (z) = min
p∈∆(Ω)

 ∑
(k′,ω′)∈K×Ω

mk,k′pω′zk′,ω′ + ck,ω (p)

 ∀z ∈ RK×Ω.

Under the mild connectedness assumption that E (T ) = D ⊆ RK×Ω, Corollary 2 implies

that the limit risk limβ→1 x
β exists and is independent of the realized fundamental state

as well as of the bank’s identity.

This result has particularly strong implications for the case of smooth divergence

risk measures with respect to a common ex-ante probabilistic model. Formally, we

assume that the banks share the same full support probabilistic model p0 ∈ ∆ (Ω)

in the ex-ante stage and then update conditional on their private information. For

example, bank k in state ω has interim belief p0 (·|Πk (ω)). Therefore, in the interim

stage, the conditional risk measure of bank k in state ω is

Vk (ω, `) = max
p∈∆(Ω)

{
−
∑
ω̃∈Ω

`ω̃pω̃ −Dk

(
p||p0 (·|Πk (ω))

)}
∀` ∈ RΩ

where Dk (·||·) : ∆ (Ω) × ∆ (Ω) → [0,∞] is a divergence that is essentially strictly

convex (cf. Maccheroni et al. [32]). The standard example of such divergences is the

relative entropy.

We are now ready for the main result of this section. Let µ ∈ ∆ (K) denote the

unique left Perron-Frobenius eigenvector of M .

Corollary 4 We have that

lim
β→1

xβ =

(∑
k∈K

µk

(∑
ω∈Ω

p0
ωxk,ω

))
e.

This result follows by Corollary 3 and Golub and Morris [25, Proposition 3]. It

shows that the limit equilibrium exists, is independent on the state-bank index, and

coincides with convex linear combination of the ex-ante linear expectation of the banks’

losses with weights given by the eigenvector centrality of the network. Therefore, as

β → 1, the losses declared by all the banks tend to ignore completely their concern

for robustness converging to an aggregated probabilistic evaluation of the losses. This

result is even more surprising when we observe that the concern for robustness, indexed

by the divergences Dk (·||·), can be heterogeneous across the banks.
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The result has also important implications whenever the common ex-ante proba-

bilistic model p0 of the banks is highly misspecified. Indeed, suppose that the banks

are aware of the possibility of misspecification and evaluate their losses with robust risk

measures such as the divergence ones. Even in this case, high connectedness and equi-

librium reasoning can offset the caution used in the evaluations and lead the banks to

declare losses that become closer and closer to their original misspecified expectations.

8 Additional results

In this section, we provide additional results complementary to our main convergence

result and illustrate them by revisiting some of the economic applications proposed.

8.1 Fit of the approximation

The goal of this section is to provide estimates on the rate of convergence of the nets

{xβ}β∈(0,1) and {x̃β}β∈(0,1). In order to achieve this, we observe that all our previous

results are for operators whose fixed points are the constant vectors. Conceptually,

this makes the quantities

max x̃β −min x̃β and maxxβ −minxβ

interesting. In fact, both converge to zero as β goes to 1. We first bound these

two quantities and then use them to provide an estimate for the rate of convergence.

Perhaps interestingly, computing these bounds does not require to know that {xβ}β∈(0,1)

and {x̃β}β∈(0,1) converge.

8.1.1 Range

Given a vector y ∈ Rk, we denote by Rg y the quantity maxi∈{1,...,k} yi−mini∈{1,...,k} yi.

We define

δ = min
i,j:aij=1

inf
x∈D

∂Ti
∂xj

(x) .

Next, consider the adjacency matrix A (T ) ∨ I which coincides with A (T ) with the

possible exception of the diagonal where the diagonal entries of A (T )∨ I are all 1. We

can define the quantity

tT = min
{
t ∈ N : (A (T ) ∨ I)t has a strictly positive column

}
.

It is well known that if A (T ) is regular, then tT is well defined. Moreover, if A (T ) is

strongly connected, one can show that tT ≤ k−1 where k is the dimension of the space

(see, e.g., [27, Theorem 8.5.9]). In proving Theorem 2, we provide a sharper, yet more
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convoluted, bound compared to the one reported below. Nevertheless, in both cases,

the rate to which the ranges of xβ and x̃β shrink to 0 are linear.

Theorem 2 Let T be normalized, monotone, and translation invariant. If A (T ) is

regular, then

Rg (xβ) ≤ Rg (x̃β) ≤ (1− β) (1 + κT ) Rg (x) ∀x ∈ Rk,∀β ∈ (0, 1)

where

κT =
1 + δ

min
{

1
tT
,
(

δ
1+δ

)2tT
} .

8.1.2 Rate of convergence

In this section, we prove that xβ converges at least linearly fast to its limit, provided

some extra conditions of differentiability hold. The constants that appear in the state-

ment below are the same defined in the section above. We consider maps which are

differentiable and their Jacobian is Lipschitz continuous with constant L. More for-

mally, it is natural to view the gradient of each component Ti : Rn → R as an element
of the dual of Rn. Therefore, we use ‖ ‖1 to compute the norm of the gradient of Ti.13

We say that the Jacobian of T is Lipschitz continuous (with constant L) if and only if

‖∇Ti (x)−∇Ti (y)‖1 ≤ L ‖x− y‖∞ ∀x, y ∈ Rk,∀i ∈ {1, ..., k} .

Theorem 3 Let T be normalized, monotone, and translation invariant. If T has a

Lipschitz continuous Jacobian and A (T ) is regular, then

‖xβ − 〈γ, x〉 e‖∞ ≤ (1− β) (1 + κT )

(
1 +

(1 + δ)tT−1

δtT
tTL ‖x‖∞

)
Rg (x)

for all x ∈ Rk and for all β ∈ (0, 1) where γ is the unique left Perron-Frobenius

eigenvector of the Jacobian of T at 0.

In particular, the result above allows us to conclude that convergence happens at

a linear rate.

8.2 Computing the fixed point

For some applications, most notably the production networks one considered in Section

B, it is of independent interest to derive a formula for the fixed points even for values

of β relatively far from 1. The next result provides such a formula in the concave case.

13Recall that ‖x‖1 =
∑k
i=1 |xi| for all x ∈ Rk.
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Proposition 6 Let T be nonexpansive. If there exists a collection {Sα}α∈A such that
Sα is monotone and Sα ≥ T for all α ∈ A and for each x ∈ Rk there exists αx ∈ A
such that Sαx (x) = T (x), then

xβ,T = min
α∈A

xβ,Sα ∀β ∈ (0, 1) ,∀x ∈ Rk.

As in the linear case, the fixed point is not constant across entries and is less clean

than the one from the limit case, but nevertheless turns out to be handy in relevant

examples.

Example 5 Suppose each Sα is such that Sα (x) = Wαx+hα for all x ∈ Rk whereWα ∈
W and hα ∈ Rk. Recall that xβ,Wα = (1− β)

∑∞
t=0 β

tW t+1
α x andWα ((1− β)x+ βxβ,Wα) =

xβ,Wα . Define x̂β,Wα = xβ,Wα +
∑∞

t=0 β
tW t

αhα. We next show that x̂β,Wα = xβ,Sα . Note

that

Sα ((1− β)x+ βx̂β,Wα) = Wα ((1− β)x+ βx̂β,Wα) + hα

= Wα

(
(1− β)x+ βxβ,Wα +

∞∑
t=0

βt+1W t
αhα

)
+ hα

= Wα ((1− β)x+ βxβ,Wα) +
∞∑
t=0

βt+1W t+1
α hα + hα

= xβ,Wα +
∞∑
t=0

βtW t
αhα = x̂β,Wα ,

proving that x̂β,Wα = xβ,Sα . N

8.3 Discrete iterations

The limit limβ→1 xβ that we have studied so far can also be seen as the result of a

double limit. Indeed, observe that, for every β ∈ (0, 1), we have xβ = limt x
t
β, where

xtβ = T
(
(1− β)x+ βxt−1

β

)
∀t ∈ N,

with x0 = x. Therefore, by taking the limit for β → 1, we are implicitly studying

limβ→1 limt x
t
β. Importantly, here the order of limits matter for the limit value. When-

ever we consider the alternative order, we obtain the sequence {T t (x)}t∈N, which was
extensively studied in Cerreia-Vioglio et al. [12]. In general, it is easy to see that

limt T
t (x) and limβ→1 xβ do not coincide outside the linear case.

An intermediate approach that turns out to be useful for using our results in appli-

cations is to consider a single limit that jointly iterates T and let the dependence on x

vanish. Formally, we fix an increasing sequence {βt}t∈N ⊆ (0, 1) such that limt βt = 1,

and consider

xt+1 = T
(
(1− βt+1)x+ βt+1x

t
)

∀t ∈ N0 (25)

26



with x0 = x. Similarly as before, we can consider the alternative iteration

x̃t+1 = (1− βt+1)x+ βt+1T
(
x̃t
)

∀t ∈ N0, (26)

with x̃0 = x. These iterations can be seen as the discrete versions of the nonlinear

fixed points analyzed so far (i.e., of equations (1) and (2) respectively).

In the next proposition, we show that, whenever limβ→1 xβ exists, the two limits

limt x
t and limt x̃

t exist and coincide with the former, provided that βt is asymptoti-

cally equivalent to 1 − 1/g (t) for some function g : [1,∞) → [0,∞) which is strictly

increasing, divergent, concave, continuous, and such that g (z) /z → 0 as z →∞.

Proposition 7 Let g : [1,∞)→ [0,∞) be strictly increasing, divergent, concave, con-

tinuous, and such that g (z) /z → 0 as z →∞, and define βt = 1−1/g (t) for all t ∈ N.
For each x ∈ Rk, if limβ→1 x

β exists, then limt x
t exists and

lim
β→1

x̃β = lim
β→1

xβ = lim
t
xt = lim

t
x̃t.

The previous result includes the case βt = 1− 1/tα for some α ∈ (0, 1) but not the

case βt = t−1
t
, which is in turn relevant for some applications. However, under positive

homogeneity of T , the equivalence result holds true also for this important case. Recall

that T is positively homogenous if and only if T (λx) = λT (x) for all λ ≥ 0 and for all

x ∈ Rk.

Proposition 8 Let βt = t−1
t
for all t ∈ N and let T be normalized, monotone, transla-

tion invariant, and positively homogeneous. For all x ∈ Rk, the following are equivalent:

(i) limβ→1 x̃β exists;

(ii) limβ→1 xβ exists;

(iii) limt x
t exists;

(iv) limt x̃
t exists.

Moreover, in this case, we have limβ→1 x̃β = limβ→1 xβ = limt x
t = limt x̃

t.

The previous result heavily relies on Theorem 1 in Ziliotto [40]. The latter result

is in a sense much more general than Proposition 8 since it deals with the infinite

dimensional case and replaces translation invariance and positive homogeneity with a

different nonexpansivity assumption on xβ as a function of β. However, the fixed-point

condition considered in [40] is different from ours and does not depend on a given

point x ∈ Rk. We show that, under positive homogeneity, the fixed-point condition in
equation (1) is equivalent to the one of [40] and that the corresponding nonexpansivity

assumption is satisfied. Importantly, this is the crucial observation that allows us to

apply our results to zero-sum stochastic games in Section 5.
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8.3.1 Application: Social learning and time varying stubbornness

Here, we apply the results of this section to the model of social learning of Section 6

by allowing for time-varying vanishing stubbornness of the agents. Formally, consider

n agents N = {1, ..., n} aggregating their opinions over time. Initial opinions are

represented by a vector x0 ∈ Rn of real numbers so that x0
i corresponds to agent i’s

initial opinion. At every period t ∈ N, the updated vector of agent’s opinions is given
by

xt = (1− βt)x0 + βtT
(
xt−1

)
.

Here, xt−1 ∈ Rn is the last-period vector of opinions, T : Rn → Rn is an opinion
aggregator, and {βt}t∈N ⊆ (0, 1) is a sequence of stubbornness weights such that βt → 1.

At each period t, each agent i ∈ N first combines the last-period opinions of the group

through an individual aggregator Ti : Rn → R and then linearly combines the aggregate
opinion Ti (xt−1) with her original stance x0

i with weight βt. In particular, the common

level of stubbornness in the group is vanishing as t→∞.
We assume that the opinion aggregator T is normalized, monotone, translation

invariant, and such that A (T ) is regular. Normalization and monotonicity of T capture

the idea that the agents trust each other opinions and try to coordinate. Moreover,

by assuming that T is translation invariant we obtain enough continuity to rule out

expansive dynamics. Finally, following [12], we interpret A (T ) as a network of strong

links among the agents. With this, the regularity assumption on A (T ) amounts to

assume that there exists a unique strongly connected and closed group in the network

of strong links induced by T .

We start with an irrelevance result of the nonlinearity of T under differentiability

and the assumption that the stubbornness is vanishing at a suffi cient slow rate, i.e.,

(1− βt) is asymptotically equivalent to 1/tα for some α ∈ (0, 1).

Corollary 5 If T is continuously differentiable in a neighborhood of 0 and limt (1− βt) tα =

1 for some α ∈ (0, 1), then

lim
t
xt =

〈
γ, x0

〉
e ∀x0 ∈ Rk

where γ is the unique left Perron-Frobenius eigenvector of the Jacobian of T at 0.

This result easily follows by combining Corollary 1 and Proposition 7. It implies

that, under vanishing stubbornness and smoothness, for a large class of opinion ag-

gregation models the long-run outcomes are indistinguishable from the ones of the

DeGroot’s model (cf. Golub and Jackson )

Next, we show that, without differentiability, the nonlinearity of the aggregator

still plays a role for the long-run consensus. Toward this result, we assume that T is
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star-shaped. By Proposition 9 in the Appendix, there exists a family of normalized,

monotone, translation invariant, and concave operators {Sα}α∈A such that A (Sα) is

regular for all α ∈ A and
T (x) = sup

α∈A
Sα (x)

for all x ∈ Rk. In particular, we have
⋃
α∈A ∂CSα (0) ⊆ W and we can interpret each

W ∈
⋃
α∈A ∂CSα (0) as a weighted undirected network among the agents. Moreover,

by construction, each of these networks admits a unique eigenvector centrality γ ∈ ∆

capturing the corresponding long-run influences of the agents. With this, define

Γα = {γ ∈ ∆ : ∃W ∈ ∂CSα (0) , γ = γW} ∀α ∈ A.

The next corollary provides a complete characterization of the consensus opinion in

terms of all the eigenvector centralities in {Γα}α∈A.

Corollary 6 If T is star-shaped and limt (1− βt) tα = 1 for some α ∈ (0, 1), then

lim
t
xt =

(
sup
α∈A

min
γ∈Γα

〈
γ, x0

〉)
e.

This result shows that, in the limit consensus, the nonlinearity of each Sα is greatly

simplified to a pessimistic aggregation with respect to all the eigenvector centralities

of Sα. In contrast, these pessimistic consensus are aggregated over α in an optimistic

fashion, i.e., by taking the maximum over α ∈ A. In addition, the limit consensus
operator is positive homogeneous with respect to the initial opinions. Therefore, for

each x0, there exist α (x0) ∈ A and γ (x0) ∈ Γα(x0) such that

lim
t
xt =

〈
γ
(
x0
)
, x0
〉
,

so that we can interpret γ (x0) as a local centrality measure at x0.

We conclude this section by highlighting that this result has relevant implications

for targeting problems in networks. Assume for simplicity that T is concave, that

is, A = {α}, and that the initial opinions of the agents are binary, that is, x0 ∈
{0, 1}n. Consider a designer optimally choosing m < n agents to endow with the

optimistic opinion x0
i = 1, whereas the rest of the agents j start with the pessimistic

opinion x0
j = 0. The objective of the designer is to obtain the most optimistic long-run

consensus possible under vanishing stubbornness. This implies that she needs to take

into account the centrality of the agents given the seeded initial opinions. In particular,

given Corollary 6, the optimal targeting set solves the maxmin problem

max
M :|M |=m

inf
γ∈Γα

∑
i∈M

γi.

Therefore, the identity of the first agents targeted can change by changing the number

of seeds m due to submodularity, as opposed to the greedy algorithm that would solve

the case for linear T .
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A Appendix: A representation result

In this appendix, we consider a functional g : Rk → R which is normalized, monotone,
translation invariant, and star-shaped.14 The objective is to prove that such a func-

tional can be rewritten as the max of a collection {gα}α∈A of normalized, monotone,
translation invariant, and concave functionals. Results of this form have appeared in

Decision Theory (see, e.g., Chandrasekher, Frick, Iijima, and Le Yaouanq [15]), Math-

ematical Finance (see, e.g., Castagnoli, Cattelan, Maccheroni, Tebaldi, and Wang [11,

Theorem 2]), and Mathematics (see, e.g., Rubinov and Dzalilov [34]). The version we

need for this paper is slightly different from what is available in the literature and it is

a refinement of [11], whose techniques we also exploit. Compared to their Theorem 5,

we obtain a version in which {gα}α∈A “inherits the derivatives”of g: a property which
we badly need for our convergence results.

Proposition 9 Let g : Rk → R. The following statements are equivalent:

(i) The functional g is normalized, monotone, translation invariant, and star-shaped;

(ii) There exists a family {gα}α∈A of normalized, monotone, translation invariant,
and concave functionals such that

g (x) = max
α∈A

gα (x) ∀x ∈ Rk. (27)

Moreover, {gα}α∈A can be chosen to be such that
_
co
(
∂Cgα

(
Rk
))
⊆

_
co
(
∂Cg

(
Rk
))
for

all α ∈ A.

Before proving the statement, we need to introduce an ancillary object. Given

g : Rk → R, define the binary relation %∗g by

x %∗g y
def⇐⇒ g (λx+ (1− λ) z) ≥ g (λy + (1− λ) z) ∀λ ∈ (0, 1] , ∀z ∈ Rk.

It is immediate to see that x %∗g y implies that g (x) ≥ g (y). By Cerreia-Vioglio, Ghi-

rardato, Maccheroni, Marinacci, and Siniscalchi [13] and if g is normalized, monotone,

and continuous, we have that there exists a closed convex set Cg ⊆ ∆ such that

x %∗g y ⇐⇒ 〈γ, x〉 ≥ 〈γ, y〉 ∀γ ∈ Cg. (28)

Moreover, if %◦ is another conic binary relation such that

x %◦ y =⇒ g (x) ≥ g (y) ,

14With a small abuse of terminology, we use the same name for similar properties that pertain to

functionals and operators.
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then %◦ is a subrelation of %∗g, that is, x %◦ y implies x %∗g y.15 Recall that if g is
normalized, monotone, and translation invariant ∂Cg (x) ⊆ ∆ for all x ∈ Rk. By Ghi-
rardato and Siniscalchi [21, Theorem 2], in this case, we have that Cg =

_
co
(
∂Cg

(
Rk
))

where ∂Cg
(
Rk
)

= ∪x∈Rk∂Cg (x).

Proof. (i) implies (ii). Define P =
{
x ∈ Rk : x %∗g 0

}
. It is immediate to see that P

is a nonempty, closed, and convex cone. Define A =
{
z ∈ Rk\ {0} : g (z) = 0

}
. For

each z ∈ A define Uz = co ({0, z}) + P .16 We say that a functional g̃ : Rk → R is

%∗g-monotone if and only if x %∗g y implies g̃ (x) ≥ g̃ (y). Since x ≥ y implies x %∗g y,
we have that %∗g-monotonicity yields standard monotonicity.
Step 1. For each z ∈ A the set Uz is a nonempty, convex, and closed set such that

1. 0, z ∈ Uz;

2. if x ∈ Uz, then g (x) ≥ 0;

3. if y %∗g x ∈ Uz, then y ∈ Uz;

4. if h > 0, then −he 6∈ Uz.

Proof of the Step. Since 0, z ∈ co ({0, z}) and 0 ∈ P and co ({0, z}) is convex and
compact and P is convex and closed, we have that 0, z ∈ Uz = co ({0, z}) + P is

nonempty, convex, and closed, and, in particular, point 1 holds. If x ∈ Uz, then there
exist λ ∈ [0, 1] and y ∈ P such that x = λz + (1− λ) 0 + y. Since g is star-shaped and

g (z) = 0, we have that g (λz + (1− λ) 0) = g (λz) ≥ λg (z) = 0. Since y ∈ P , we have
that x = λz+(1− λ) 0+y %∗g λz+(1− λ) 0, yielding that g (x) ≥ g (λz + (1− λ) 0) ≥
0, proving point 2. Next, consider x, y ∈ Rk such that y %∗g x ∈ Uz, that is, y− x %∗g 0

and x ∈ Uz. Since x ∈ Uz, then there exist λ ∈ [0, 1] and ŷ ∈ P such that x = λz + ŷ.

Since P is a convex cone, it follows that y = x + (y − x) = λz + (ŷ + y − x) ∈
co ({0, z}) + P = Uz. Finally, by contradiction, assume that h < 0 and −he ∈ Uz. By
point 2 and since g is normalized, 0 > −h = g (−he) ≥ 0, a contradiction. �
Step 2. For each z ∈ A the functional gz : Rk → R, defined by

gz (x) = max {h ∈ R : x− he ∈ Uz} ∀x ∈ Rk,

is well defined, normalized, %∗g-monotone, translation invariant, concave, and such that
gz (z) = 0 as well as gz (z′) ≤ 0 for all z′ ∈ A.
Proof of the Step. Fix z ∈ A. Consider x ∈ Rk. Define Ix = {h ∈ R : x− he ∈ Uz}.
Since Uz is convex and closed, Ix is a closed interval. Next we show that Ix is bounded

15The binary relation %◦ is conic if and only if there exists a subset C̃ ⊆ ∆ such that x %◦ y if and
only if 〈γ, x〉 ≥ 〈γ, y〉 for all γ ∈ C̃.
16The construction of [11] differs from ours in that the cone added to co ({0, z}) is Rk+.
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from above. Let h ≥ ‖x‖∞+‖z‖∞. Since z 6= 0 and g is normalized and monotone, note

that g (x− ‖x‖∞ e− ‖z‖∞ e) ≤ g (−‖z‖∞ e) = −‖z‖∞ < 0. By point 2 above, we have

that x−‖x‖∞ e−‖z‖∞ e 6∈ Uz. By point 3 and since x− (‖x‖∞ + ‖z‖∞) e ≥ x−he, we
can conclude that x− he 6∈ Uz, proving that Ix is bounded from above. Since Cg ⊆ ∆

is compact, consider h ∈ R such that −h ≥ maxγ∈C {〈γ, z〉 − 〈γ, x〉} ∈ R. By points 1
and 3 and the characterization of %∗g, it follows that x − he %∗g z ∈ Uz, proving that
x − he ∈ Uz and Ix is nonempty. Since Ix is a nonempty, closed, and bounded from
above interval, we have that sup Ix is well defined and attained, proving that gz is well

defined. In particular, x− gz (x) e ∈ Uz for all x ∈ Rk.
Consider z′ ∈ A. By point 2 and since z′ ∈ A and z′ − gz (z′) e ∈ Uz, we have

that g (z′) − gz (z′) = g (z′ − gz (z′) e) ≥ 0, that is, 0 = g (z′) ≥ gz (z′). By point 1, if

z′ = z, then 0 ∈ Iz and gz (z) ≥ 0. Since z′ was arbitrarily chosen, we can conclude that

gz (z′) ≤ 0 for all z′ ∈ A and gz (z) = 0. Consider x, y ∈ Rk such that x %∗g y. By point
3, (28), and the definition of gz, we have that x− gz (y) e %∗g y− gz (y) e ∈ Uz, yielding
that gz (y) ∈ Ix and gz (x) ≥ gz (y), that is, gz is %∗g-monotone. Consider x ∈ Rk and
h ∈ R. By definition of gz, we can conclude that

(x+ he)− (gz (x) + h) e = x− gz (x) e ∈ Uz.

This implies that gz (x) + h ∈ Ix+he and, in particular, gz (x+ he) ≥ gz (x) + h. Since

x and h were arbitrarily chosen, we have that

gz (x+ he) ≥ gz (x) + h ∀x ∈ Rk,∀h ∈ R.

This yields that gz (x+ he) = gz (x) + h for all x ∈ Rk and for all h ∈ R. Finally, con-
sider x, y ∈ Rk and λ ∈ (0, 1). By definition of gz, we have that x−gz (x) e, y−gz (y) e ∈
Uz. Since Uz is convex, this implies that λx+(1− λ) y−(λgz (x) + (1− λ) gz (y)) e ∈ Uz,
yielding that gz (λx+ (1− λ) y) ≥ λgz (x) + (1− λ) gz (y) and proving that gz is con-

cave.

To sum up, gz is well defined, %∗g-monotone, translation invariant, and concave.
Consider x = 0. By point 1, we have that 0 ∈ Uz, yielding that 0 ∈ I0 and, in

particular, gz (0) ≥ 0. By point 4, we have that I0 ⊆ (−∞, 0], proving that gz (0) ≤ 0,

that is, gz (0) = 0. Since gz is translation invariant and gz (0) = 0, it follows that

gz (he) = gz (0 + he) = gz (0) + h = h for all h ∈ R, that is, gz is normalized, proving
the step. �
We can prove the implication. Consider the family of functionals {gz}z∈A of Step 2.

Each gz is normalized, %∗g-monotone (in particular, monotone), translation invariant,
and concave. Consider x ∈ Rk. Since g and gz are normalized for all z ∈ A, if
x = he for some h ∈ R, we have that g (x) = h = gz (x) for all z ∈ A, that is,
g (x) = maxz∈A gz (x). If x is not a constant vector, define z̄ = x − g (x) e. Note that
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z̄ 6= 0. Since g is translation invariant, we have that z̄ ∈ A. By Step 2, we have that
gz (z̄) ≤ 0 = gz̄ (z̄) = 0 = g (z̄) for all z ∈ A. Since each gz is translation invariant, we
have that

g (x)− g (x) = g (x− g (x) e) = g (z̄) = max
z∈A

gz (z̄) = max
z∈A

gz (x− g (x) e)

= max
z∈A
{gz (x)− g (x)} = max

z∈A
gz (x)− g (x) ,

proving (27).

(ii) implies (i). It is trivial.

Consider {gz}z∈A as in the proof of (i) implies (ii). Fix z ∈ A. By Step 2, we
have that gz is %∗g-monotone. This implies that x %∗g y implies x %∗gz y. By the Hahn-
Banach Theorem, this yields that

_
co
(
∂Cg

(
Rk
))

= Cg ⊇ Cgz =
_
co
(
∂Cgz

(
Rk
))
, proving

the last part of the statement. �

B Appendix: Proofs of Section 3

In this appendix, we prove all the results and few ancillary lemmas which pertain

Section 3. With the exception of Theorem 1, whose proof comes at the end, all the

other proofs follow the order in the main text and are divided accordingly to the

sections of the main text. Theorem 1 is proved last as a consequence of all the other

results.

B.1 Preliminaries

We begin by reporting a few ancillary facts. First, note that if T is concave,

W ∈ ∂CT (z) =⇒ W (y − z) ≥ T (y)− T (z) ∀y ∈ Rk. (29)

Since T is normalized, monotone, and translation invariant, we have that ∂CTi (z + he) =

∂CTi (z) for all i ∈ {1, ..., k}, for all z ∈ Rk, and for all h ∈ R. In particular, we also
have that ∂CT (he) = ∂CT (0) for all h ∈ R. Next, we generalize to the nonlinear case a
well-known fact for stochastic matrices: having a regular adjacency matrix yields that

the only fixed points are the constant vectors. Since the property E (T ) = D is often

used in our results, Proposition 10 provides a condition in terms of the derivatives of

T , which guarantees it is satisfied.

Proposition 10 Let T be normalized, monotone, and translation invariant. If A (T )

is regular, then E (T ) = D.
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Proof. Consider λ ∈ (0, 1). Given T , define Tλ : Rk → Rk by Tλ (x) = λx +

(1− λ)T (x) for all x ∈ Rk. It is immediate to check that E (T ) = E (Tλ) and

A (Tλ) ≥ A (T ) , I where I is the identity matrix. By [12, Proposition 10] and since

E (T ) = E (Tλ), we have that E (T ) = E (Tλ) = D, proving the statement. �
For every normalized, monotone, and translation invariant T , denote as ∂̂CT the

generalized Jacobian of T as defined in [17, Proposition 2.6.2]:

∂̂CT (x) = co
{
γ ∈ Rk : γ = lim

k
JT
(
zk
)
s.t. zk → z and zk ∈ D

}
where for every z ∈ D, JT (z) denotes the (usual) Jacobian of T at z. The next

result shows that, given z ∈ Rk, the value of T (z) can be calculated alternatively by

computingWz whereW is a “replicating”stochastic matrix that belongs to the Clarke

differential of T .

Proposition 11 Let T be normalized, monotone, and translation invariant. For each
z ∈ Rk and for each ĥ ∈ R, there exists a stochastic matrixWz,ĥ such that T (z) = Wz,ĥz

and Wz,ĥ ∈ co
(
∪λ∈[0,1]∂̂CT

(
λz + (1− λ) ĥe

))
.

Proof. Consider z ∈ Rk and ĥ ∈ R. By Clarke [17, Theorem 2.6.5] and since T is nor-
malized and Lipschitz continuous, there existsW ∈ co

(
∪λ∈[0,1]∂̂CT

(
λz + (1− λ) ĥe

))
such that

T (z)− ĥe = T (z)− T
(
ĥe
)

= W
(
z − ĥe

)
= Wz − ĥe

and the statement follows. �
The next preliminary result guarantees that the adjacency matrices of the replicat-

ing matrices and of the generalized Jacobians of T inherit the property of regularity

of A (T ). Moreover, it provides a quantitative lower bound for the entries of the repli-

cating matrices. The first property will be exploited in proving that {xβ}β∈(0,1) and

{x̃β}β∈(0,1) converge while the latter will be useful in the proofs that elaborate on the

rate of such convergence. Given a stochastic matrixW , we define the adjacency matrix

A (W ) to be such that aij = 1 if and only if wij > 0 and aij = 0 otherwise.

Proposition 12 Let T be normalized, monotone, and translation invariant. The fol-
lowing statements are true:

1. If A (T ) is regular, then A
(
Wz,ĥ

)
is regular for all z ∈ Rk and for all ĥ ∈ R.

Moreover, we have that

min
i,j:aij=1

wij ≥ min
i,j:aij=1

inf
x∈D

∂Ti
∂xj

(x) (30)

where wij is the ij-th entry of Wz,ĥ.
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2. If A (T ) is regular, then A (W ) is regular for all W ∈ ∂CT (0). Moreover, we

have that

min
i,j:aij=1

wij ≥ min
i,j:aij=1

inf
x∈D

∂Ti
∂xj

(x) .

As a consequence, if A (T ) is regular, we have that Wz,ĥ has a unique left Perron-

Frobenius eigenvector for all z ∈ Rk and for all ĥ ∈ R. We denote it by γz,ĥ.
Proof. 1. By (6) and (7), we have that γj ≥ εij > 0 for all γ ∈ ∂CTi (z), for all

i, j ∈ {1, ..., k} such that aij = 1, and for all z ∈ Rk. By definition of Wz,ĥ and wij,

and Clarke [17, Proposition 2.6.2], this implies that wij ≥ εij > 0 for all i, j ∈ {1, ..., k}
such that aij = 1 and A

(
Wz,ĥ

)
≥ A (T ) for all z ∈ Rk and for all ĥ ∈ R. Since A (T )

is regular, we can conclude that A
(
Wz,ĥ

)
is regular for all z ∈ Rk and for all ĥ ∈ R.

By (6) and since wij ≥ εij for all i, j ∈ {1, ..., k} such that aij = 1, we have that (30)

follows.

2. By (6) and (7), we have that γj ≥ εij > 0 for all γ ∈ ∂CTi (0), for all i, j ∈
{1, ..., k} such that aij = 1, and for all z ∈ Rk. By definition of ∂CT (0), this implies

that A (W ) ≥ A (T ) for all W ∈ ∂CT (0). Since A (T ) is regular, we can conclude

that A (W ) is regular. Similarly to before, we can conclude that mini,j:aij=1wij ≥
mini,j:aij=1 infx∈D

∂Ti
∂xj

(x). �

B.2 Convergence

B.2.1 Concavity and differentiability

Proof of Lemma 1. Fix β ∈ (0, 1) and x ∈ Rk. We prove that Tβ,x is a β-contraction.
Since T is Lipschitz continuous of order 1, we have that for each y, z ∈ Rk

‖Tβ,x (y)− Tβ,x (z)‖∞ = ‖T ((1− β)x+ βy)− T ((1− β)x+ βz)‖∞ ≤ β ‖y − z‖∞

proving that Tβ,x is a β-contraction. By the Banach contraction principle, for each

y ∈ Rk we have that T tβ,x (y) → xβ as well as Tβ,x (xβ) = xβ where xβ is the unique

fixed point of Tβ,x. Finally, since T is normalized and Lipschitz continuous of order 1,

observe that for all y ∈ Rk

‖Tβ,x (y)‖∞ = ‖T ((1− β)x+ βy)− T (0)‖∞ ≤ ‖(1− β)x+ βy‖∞ ≤ (1− β) ‖x‖∞+β ‖y‖∞ .

By induction, this implies that
∥∥T tβ,x (x)

∥∥
∞ ≤ ‖x‖∞ for all t ∈ N. By passing to the

limit, (8) follows. �

Consider the set L of limit points of {xβ}β∈(0,1).
17 By construction and since

{xβ}β∈(0,1) is bounded, the set L is closed and bounded. We define lim infβ→1 xβ = inf L

and lim supβ→1 xβ = supL where inf and sup are computed coordinatewise.

17That is, x̄ ∈ L if and only if there exists {xβn}n∈N ⊆ {xβ}β∈(0,1) such that βn → 1 and xβn → x̄.
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The next simple lemma yields that the limit points of {xβ}β∈(0,1) are fixed points

of T and so are lim infβ→1 xβ and lim supβ→1 xβ, provided E (T ) = D.

Lemma 3 If T is normalized, monotone, and translation invariant, then L ⊆ E (T ).

Moreover, if E (T ) = D, then lim infβ→1 xβ, lim supβ→1 xβ ∈ E (T ).

We now provide various lower and upper bounds for lim infβ→1 xβ and lim supβ→1 xβ.

Lemma 4 Let T be normalized, monotone, and translation invariant. If E (T ) = D,

then

max
γ∈Γ(∂̂CT (0))

〈γ, x〉 e ≥ lim sup
β→1

xβ ≥ lim inf
β→1

xβ ≥ min
γ∈Γ(∂̂CT (0))

〈γ, x〉 e ∀x ∈ Rk.

Proof. Consider a sequence {xβn}n∈N ⊆ {xβ}β∈(0,1) such that βn → 1 and xβn → x̄,

that is in symbols, x̄ is a limit point of {xβ}β∈(0,1) and x̄ ∈ L. By Lemma 3 and since
E (T ) = D, we have that x̄ ∈ L ⊆ E (T ) and x̄ = h̄e for some h̄ ∈ R. Consider
x̃βn = (1− βn)x + βnxβn for all n ∈ N. For each n ∈ N consider also Wx̃βn ,h̄

as in

Proposition 11. We have that for each n ∈ N

Wx̃βn ,h̄
((1− βn)x+ βnxβn) = Wx̃βn ,h̄

x̃βn = T (x̃βn) = T ((1− βn)x+ βnxβn) = xβn .

By (3) and Example 1, we have that xβn = xβn,Wx̃βn
,h̄
for all n ∈ N. For each n ∈ N

consider γn ∈ Γ
(
Wx̃βn ,h̄

)
. By definition of Γ

(
Wx̃βn ,h̄

)
and (4), we have that

〈γn, xβn〉 =
〈
γn, xβn,Wx̃βn

,h̄

〉
= 〈γn, x〉 ∀n ∈ N. (31)

Since
{
Wx̃βn ,h̄

}
n∈N

is a sequence of stochastic matrices, it admits a subsequence
{
Wx̃βnl

,h̄

}
l∈N

such that Wx̃βnl
,h̄ → W . Similarly, since {γnl}l∈N is a sequence of probability vectors,

it admits a subsequence
{
γnl(r)

}
r∈N

such that γnl(r) → γ̄. Since γnl(r) ∈ Γ
(
Wx̃βnl(r)

,h̄

)
for all r ∈ N, we can conclude that

γ̄TW = lim
r
γT
nl(r)

Wx̃βnl(r)
,h̄ = lim

r
γT
nl(r)

= γ̄T,

that is, γ̄ ∈ Γ (W ).

We next prove that the correspondence z 7→ ∪λ∈[0,1]∂̂CT
(
λz + (1− λ) h̄e

)
is closed.

Let {zn, ρn}n∈N with ρn ∈ ∪λ∈[0,1]∂̂CT
(
λzn + (1− λ) h̄e

)
for all n ∈ N and {zn, ρn}n∈N →

{ẑ, ρ̂}n∈N. Since [0, 1] is compact, there is a susbequence {znl , ρnl}l∈N with ρnl ∈
∂̂CT

(
λnlznl + (1− λnl) h̄e

)
and λnl → λ̂ for all l ∈ N. Since by Clarke [17, Propo-

sition 2.6.2], the correspondence z 7→ ∂̂CT (z) is closed,

ρ̂ ∈ ∂̂CT
(
λ̂ẑ +

(
1− λ̂

)
h̄e
)
⊆ ∪λ∈[0,1]∂̂CT

(
λẑ + (1− λ) h̄e

)
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proving that z 7→ ∪λ∈[0,1]∂̂CT
(
λz + (1− λ) h̄e

)
is closed.

Therefore, by Aliprantis and Border [4, Theorems 17.11 and 17.35],

z 7→ co
(
∪λ∈[0,1]∂̂CT

(
λz + (1− λ) h̄e

))
is upper hemicontinuous. Since x̃βnl(r) → h̄e, we can conclude that

W ∈ co
(
∪λ∈[0,1]∂̂CT

(
λh̄e+ (1− λ) ĥe

))
= ∂̂CT

(
h̄e
)

= ∂̂CTi (0) .

Since γ̄ ∈ Γ (W ), this implies that γ̄ ∈ Γ (W ) ⊆ Γ
(
∂̂CT (0)

)
. By (31) and since

xβnl(r) → x̄ = h̄e, it follows that

h̄ = 〈γ̄, x̄〉 = lim
r

〈
γnl(r) , xβnl(r)

〉
= lim

r

〈
γnl(r) , x

〉
= 〈γ̄, x〉 ,

that is,

sup
γ∈Γ(∂̂CT (0))

〈γ, x〉 e ≥ 〈γ̄, x〉 e = h̄e = x̄ = h̄e = 〈γ̄, x〉 e ≥ inf
γ∈Γ(∂̂CT (0))

〈γ, x〉 e

Since x̄ was arbitrarily chosen, we can conclude that

sup
γ∈Γ(∂̂CT (0))

〈γ, x〉 e ≥ x̄ ≥ inf
γ∈Γ(∂̂CT (0))

〈γ, x〉 e ∀x̄ ∈ L. (32)

Since E (T ) = D, we have that lim infβ→1 xβ, lim supβ→1 xβ ∈ L. By (32) applied to

lim supβ→1 xβ and lim infβ→1 xβ and since lim supβ→1 xβ ≥ lim infβ→1 xβ, we obtain that

supγ∈Γ(∂̂CT (0)) 〈γ, x〉 e ≥ lim supβ→1 xβ ≥ lim infβ→1 xβ ≥ infγ∈Γ(∂̂CT (0)) 〈γ, x〉 e. Since

∂̂CT (0) is closed, we have that Γ
(
∂̂CT (0)

)
is compact, yielding that the above sup

and inf are achieved and thus proving the statement. �

Proposition 13 Let T be normalized, monotone, and translation invariant. If E (T ) =

D, then

max
γ∈Γ(∂CT (0))

〈γ, x〉 e ≥ lim sup
β→1

xβ ≥ lim inf
β→1

xβ ≥ min
γ∈Γ(∂CT (0))

〈γ, x〉 e ∀x ∈ Rk.

Proof. It follows immediately from Lemma 4 and Clarke [17, Proposition 2.6.2]. �

Proof of Corollary 1. Since T is continuously differentiable in a neighborhood of

0, so is each Ti. By [17, p. 32 and Proposition 2.2.4], it follows that ∂CTi (0) is a

singleton for all i ∈ {1, ..., k}. This implies that ∂CT (0) is a singleton and coincides

with the Jacobian of T at 0. In particular, Γ (∂CT (0)) is the singleton given by γ: the
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unique left Perron-Frobenius eigenvector of the Jacobian of T at 0. By Lemma 1 and

Proposition 13 and since E (T ) = D, we can conclude that

〈γ, x〉 e ≥ lim sup
β→1

xβ ≥ lim inf
β→1

xβ ≥ 〈γ, x〉 e,

proving that limβ→1 x̃β = limβ→1 xβ = 〈γ, x〉 e. �

Proposition 14 Let T be normalized, monotone, and translation invariant. If T is

concave and E (T ) = D, then

min
γ∈Γ(∂CT (0))

〈γ, x〉 ≥ min
γ∈Γ(∂CT (0))

〈γ, xβ〉 ∀x ∈ Rk,∀β ∈ (0, 1) (33)

and

min
γ∈Γ(∂CT (0))

〈γ, x〉 e ≥ lim sup
β→1

xβ ∀x ∈ Rk.

Proof of Proposition 14. Let x ∈ Rk. ConsiderW ∈ ∂CT (0) and γ̄ ∈ Γ (W ). Define

S : Rk → Rk by S (y) = Wy for all y ∈ Rk. By (29), it follows that S (y) ≥ T (y) for

all y ∈ Rk. By induction, we have that Stβ,x ≥ T tβ,x for all t ∈ N and for all β ∈ (0, 1).

By Lemma 1, if we define by xβ,W the unique fixed point of Sβ,x, this implies that

xβ,W ≥ xβ for all β ∈ (0, 1). By definition of Γ (W ) and Γ (∂CT (0)) and (4) and since

γ̄ ∈ Γ (W ) and W ∈ ∂CT (0), we also have that γ̄ ∈ Γ (W ) ⊆ Γ (∂CT (0)) and

〈γ̄, x〉 = 〈γ̄, xβ,W 〉 ≥ 〈γ̄, xβ〉 ≥ min
γ∈Γ(W )

〈γ, xβ〉 ≥ min
γ∈Γ(∂CT (0))

〈γ, xβ〉 ∀β ∈ (0, 1) .

Since W , γ̄, and x were arbitrarily chosen, we have that

min
γ∈Γ(∂CT (0))

〈γ, x〉 ≥ min
γ∈Γ(∂CT (0))

〈γ, xβ〉 ∀x ∈ Rk,∀β ∈ (0, 1) ,

proving (33). Fix x ∈ Rk again. Observe that the function ϕ : Rk → R, defined by
ϕ (y) = minγ∈Γ(∂CT (0)) 〈γ, y〉 for all y ∈ Rk, is normalized, monotone, and translation
invariant. In particular, ϕ is Lipschitz continuous. By Lemma 3 and since E (T ) =

D, we have that lim supβ→1 xβ is a limit point of {xβ}β∈(0,1), that is, there exists a

sequence {xβn}n∈N ⊆ {xβ}β∈(0,1) such that βn → 1 and limn xβn = lim supβ→1 xβ and

lim supβ→1 xβ = h̄e for some h̄ ∈ R. By (33) and since ϕ is continuous, we can conclude
that

min
γ∈Γ(∂CT (0))

〈γ, x〉 ≥ lim
n

min
γ∈Γ(∂CT (0))

〈γ, xβn〉 = lim
n
ϕ (xβn) = ϕ

(
h̄e
)

= h̄,

proving the statement. �

Proof of Corollary 2. By Lemma 1 and Propositions 13 and 14, we have that
lim infβ→1 xβ ≥ minγ∈Γ(∂CT (0)) 〈γ, x〉 e ≥ lim supβ→1 xβ and limβ→1 x̃β = limβ→1 xβ =
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minγ∈Γ(∂CT (0)) 〈γ, x〉, proving the first part of the statement. As for the second one, it
follows from Proposition 12. �

Proof of Corollary 3. If T is differentiable at 0, so is each Ti. Since T is concave, so

is each Ti. It follows that ∂CTi (0) = ∂Ti (0) is a singleton for all i ∈ {1, ..., k}. This
implies that ∂CT (0) is a singleton and coincides with the Jacobian of T at 0. By point

2 of Proposition 12 and since A (T ) is regular, the Jacobian of T at 0 is regular, yielding

that Γ (∂CT (0)) is a singleton given by the unique left Perron-Frobenius eigenvector of

the Jacobian of T at 0. By Corollary 2, we can conclude that limβ→1 x̃β = limβ→1 xβ =

〈γ, x〉 e. �

B.2.2 Star-shaped operators

Observe that if T is nice we have that E (T ) = D. To see this, consider x ∈ E (T ).

By construction of T , there exists ᾱ ∈ A such that x = T (x) = Sᾱ (x), yielding that

x ∈ E (Sᾱ) = D. This shows that E (T ) ⊆ D. The opposite inclusion follows from

normalization. In order to prove Proposition 1, we first provide two ancillary lemmas

which give bounds on lim infβ→1 xβ and lim supβ→1 xβ. These bounds are in terms of

the limits of the operators Sα whose sup gives T .

Lemma 5 If {Sα}α∈A is nice, then lim infβ→1 xβ ≥ supα∈A ϕSα (x) e for all x ∈ Rk.

Proof. By construction, we have that T (y) ≥ Sα (y) for all y ∈ Rk and for all α ∈ A.
By induction and since Sα and T are monotone, this implies that T tβ,x (y) ≥ Stα,β,x (y)

for all t ∈ N, for all β ∈ (0, 1), for all x, y ∈ Rk, and for all α ∈ A. By passing
to the limit and Lemma 1, this implies that xβ ≥ xβ,α for all β ∈ (0, 1), for all

x ∈ Rk, and for all α ∈ A. By Corollary 2 and since E (T ) = D, it follows that

lim infβ→1 xβ ≥ lim infβ→1 xβ,α = limβ→1 xβ,α = ϕSα (x) e for all x ∈ Rk and for all
α ∈ A, proving the statement. �

Lemma 6 If {Sα}α∈A is nice, then supα∈A ϕSα (x) e ≥ lim supβ→1 xβ for all x ∈ Rk.

Proof. Fix x ∈ Rk and β ∈ (0, 1). By construction of T and definition of xβ and since

{Sα}α∈A is nice, we have that there exists αβ ∈ A

Sαβ ((1− β)x+ βxβ) = T ((1− β)x+ βxβ) = xβ.

By Lemma 1, it follows that xβ = xβ,αβ . By Proposition 14 and since β was arbitrarily

chosen, we have that for each β ∈ (0, 1)

sup
α∈A

ϕSα (x) ≥ ϕSαβ (x) = min
γ∈Γ(∂CSαβ (0))

〈γ, x〉 ≥ min
γ∈Γ(∂CSαβ (0))

〈
γ, xβ,αβ

〉
= min

γ∈Γ(∂CSαβ (0))
〈γ, xβ〉 .

(34)
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By Lemma 3 and since E (T ) = D, we have that there exists a sequence {xβn}n∈N ⊆
{xβ}β∈(0,1) such that βn → 1 and lim supβ→1 xβ = limn xβn = h̄e for some h̄ ∈ R. For
each n ∈ N consider γn ∈ Γ

(
∂CSαβn (0)

)
such that 〈γn, xβn〉 = minγ∈Γ(∂CSαβn (0)) 〈γ, xβn〉.

We have that supα∈A ϕSα (x) ≥ 〈γn, xβn〉 for all n ∈ N. Since {γn}n∈N ⊆ ∆, there exists

a subsequence {γnl}l∈N ⊆ {γn}n∈N such that γnl → γ̄ ∈ ∆. We can conclude that

sup
α∈A

ϕSα (x) ≥ lim
l

〈
γnl , xβnl

〉
=
〈
γ̄, h̄e

〉
= h̄,

proving that supα∈A ϕSα (x) e ≥ h̄e = lim supβ→1 xβ. Since x ∈ Rk was arbitrarily
chosen, the statement follows. �
Proof of Proposition 1. By Lemmas 5 and 6, we have that limβ→1 xβ = supα∈A ϕSα (x) e

for all x ∈ Rk. �

Proof of Theorem 1.Note that Ti is normalized, monotone, translation invariant, and
star-shaped for all i ∈ {1, ..., k}. By Proposition 9, we have that for each i ∈ {1, ..., k}
there exists a family {Sαi}αi∈Ai of normalized, monotone, translation invariant, and
concave functionals such that

Ti (x) = max
αi∈Ai

Sαi (x) ∀x ∈ Rk (35)

and
_
co
(
∂CSαi

(
Rk
))
⊆

_
co
(
∂CTi

(
Rk
))
for all αi ∈ Ai. Define A = Πk

i=1Ai and for each
α ∈ A define Sα : Rk → Rk to be such that its i-th component coincides with Sαi for
all i ∈ {1, ..., k}. It is immediate to see that Sα is normalized, monotone, translation
invariant, and concave for all α ∈ A. Since

_
co
(
∂CSαi

(
Rk
))
⊆

_
co
(
∂CTi

(
Rk
))
for

all αi ∈ Ai and for all i ∈ {1, ..., k}, it follows that A (Sα) ≥ A (T ) for all α ∈ A.
By Proposition 10 and since A (T ) is regular, this implies that A (Sα) is regular and

E (Sα) = D for all α ∈ A. By (35) and since A has a product structure, we have that

T (x) = sup
α∈A

Sα (x) ∀x ∈ Rk

and for each x ∈ Rk there exists αx ∈ A such that T (x) = Sαx (x). We can conclude

that {Sα}α∈A is nice. By Proposition 1, the statement follows. �

Proof of Lemma 2. Define T̃β,x (y) = (1− β)x + βT (y) for all y ∈ Rk. It is easy
to show that T̃β,x is a β-contraction (see, e.g., [23, Theorem 11.3]). By the Banach

contraction principle and since T̃β,x is also a β-contraction, for each y ∈ Rk we have
that T̃ tβ,x (y)→ x̃β as well as T̃β,x (x̃β) = x̃β where x̃β is the unique fixed point of T̃β,x.

Fix x ∈ Rk and β ∈ (0, 1). Set x̂β = (1− β)x + βxβ. By definition of T̃β,x and x̂β as

well as xβ, we have that

T̃β,x (x̂β) = (1− β)x+βT (x̂β) = (1− β)x+βT ((1− β)x+ βxβ) = (1− β)x+βxβ = x̂β.
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Since x̃β is the unique fixed point of T̃β,x and x and β were arbitrarily chosen, we can

conclude that x̃β = x̂β = (1− β)x + βxβ for all β ∈ (0, 1) and for all x ∈ Rk. The
second part of the staement follows by taking the limit for β when it exists. �

C Appendix: Proofs of Sections 4 and 5

Lemma 7 Let T be normalized, monotone, and translation invariant. If T is concave
and there is W ∈ ∂T (0) such that W is strongly connected, then E (T ) = D.

C.1 Endogenous networks

Proof of Proposition 2. Observe that ci = ln (1/Si) = − ln (Si) and that ln (Si) is

the composition of two upper semicontinuous function where ln is monotone, so it is

upper semicontinuous, and thus ci is lower semicontinuous. It is also convex al Si is

log-concave. Since there is wi with Si (wi), c−1 (0) 6= ∅. Therefore, it is easy to see
that p 7→ minwi:Si(wi)=1

∑k
j=1wijpj and p 7→ minwi∈∆

{∑k
j=1wijpj + ci (wi)

}
are well

defined, normalized, monotone, translation invariant, and concave.

To prove the result, we are going to use two ancillary fixed point equations:

p̂β,i = (1− β)xi + β min
wi∈∆

{
k∑
j=1

wij p̂β,j + ci (wi)

}
∀i ∈ {1, ..., k}

and

p′β,i = (1− β)xi + β min
wi:Si(wi)=1

k∑
j=1

wijp
′
β,j ∀i ∈ {1, ..., k} .

It is easy to see that for all β ∈ (0, 1) and i ∈ {1, ..., k}, p′β,i ≥ pβ,i ≥ p̂β,i. Since

by Corollary 2, equation (9), and Lemmas 2 and 7 for all i ∈ {1, ..., k}, limβ→1 p̂β,i =

limβ→1 p
′
β,i = minγ∈Γ(S) 〈γ, x〉, the first part of the result follows.

For the second part of the result, limβ→1 pβ,i = 〈γW 0 , x〉 immediately follows from
the first part. Suppose by contradiction that for some i ∈ {1, ..., k} we do not have
limβ→1wβ,i = w0

i . Since ∆ is compact, the sequence limβ→1wβ,i admits a converging

subsequence {wβn,i}n∈N with limit ŵi 6= w0
i . But this, by the lower semicontinuity of

ci, means that

〈γW 0 , x〉+ci (ŵi) ≤ lim
n→∞

k∑
j=1

wβn,ij p̂β,j+ci (wβn,i) ≤ lim
n→∞

k∑
j=1

w0
ij p̂β,j+ci

(
w0
i

)
= 〈γW 0 , x〉

a contradiction with ci (ŵi) > 0. With this, that limβ→1Qβ,i0 = 0, and limβ→1Qβ,ij =

w0
ij follows from equations 50. �

Proof of Proposition 3. It follows immediately by 7 and Corollary 3. �
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Proof of Proposition 4. For every i ∈ {1, ..., k}, let c̄i be the convexification of ci.
Observe that for all i ∈ {1, ..., k} and a ∈ Rk

(1− β)xi+β max
w̃i∈∆n

{
n∑
j=1

w̃ijaj −
ci (w̃i)

β

}
= (1− β)xi+β max

w̃i∈∆n

{
n∑
j=1

w̃ijaj −
c̄i (w̃i)

β

}
by Theorem 3 of [14]. To prove the result, we are going to use two ancillary fixed point

equations:

âβ,i = (1− β)xi + β max
w̃i∈∆n

{
n∑
j=1

w̃ij âβ,j − c̄i (w̃i)
}

∀i ∈ {1, ..., k}

and

a′β,i = (1− β)xi + β max
w̃i∈∆n

n∑
j=1

w̃ija
′
β,j ∀i ∈ {1, ..., k} .

It is easy to see that for all β ∈ (0, 1) and i ∈ {1, ..., k}, a′β,i ≤ aβ,i ≤ âβ,i. Since

by Corollary 2, equation (9), and Lemmas 2 and 7 for all i ∈ {1, ..., k}, limβ→1 âβ,i =

limβ→1 a
′
β,i = maxγ∈Γ(c) 〈γ, x〉. �

C.2 Zero-sum stochastic games

Proof of Proposition 5. For every s ∈ SM , define the operator H (·, s) : RR×Ω →
RR×Ω as

Hr,ω (z, s) = min
s̃∈Sm

 ∑
(r′,ω′)∈R×Ω

zr′,ω′ρ (s, s̃, ω) (r′, ω′)

 ∀ (r, ω) ∈ R× Ω,∀z ∈ RR×Ω.

Moreover, define the operator T : RR×Ω → RR×Ω as

Tr,ω (z) = max
s∈SM

Hr,ω (z, s) ∀ (r, ω) ∈ R× Ω,∀z ∈ RR×Ω.

Observe that, for every s ∈ S, the operatorH (·, s) is monotone, normalized, translation
invariant, positive homogeneous, and concave. Moreover, since Sm is compact and ρ

is continuous, it follows by the Maximum theorem that, for every z ∈ RR×Ω, the map

s 7→ H (·, s) is continuous. Given that SM is compact, it follows that {H (·, s)}s∈SM is

nice. Moreover, observe that by construction we have

Hr,ω = Hr′,ω ∀r, r′ ∈ R, ∀ω ∈ Ω.

Therefore, for all s ∈ SM we have

∂CH (0, s) =

{
W ∈ WR×Ω : ∃σ̂ ∈ ∆ (Sm)R×Ω ,∀ (r, ω) , (r′, ω′) ∈ R× Ω,

w(r,ω),(r′,ω′) =
∫
Sm
ρ (s, s̃, ω) (r′, ω′) dσ̂r,ω (s̃)

}

=

{
W ∈ WR×Ω : ∃σ̃ ∈ Σm,∀ (r, ω) , (r′, ω′) ∈ R× Ω,

w(r,ω),(r′,ω′) =
∫
Sm
ρ (s, s̃, ω) (r′, ω′) dσ̃ω (s̃)

}
= {W (s, σ̃) ∈ WR×Ω : σ̃ ∈ Σm} .
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Next, define x ∈ RR×Ω as xr,ω = r. Next, observe that, for every β ∈ (0, 1), the unique

solution vβ of equation (18) does not depend on the realization of r. With this, for

every β ∈ (0, 1), define xβ ∈ RR×Ω as xβr,ω = vβω, and observe that it is the unique

solution of the fixed-point equation: for all (r, ω) ∈ R× Ω,

xβr,ω = Tr,ω
(
(1− β)x+ βxβ

)
.

Also, for every t ∈ N, define xt ∈ RR×Ω as xtr,ω = vtω, and observe that, for all t ∈ N
and for all (r, ω) ∈ R× Ω,

xtr,ω = Tr,ω

(
1

t
x+

t− 1

t
xβ
)
.

Therefore, by Propositions 1 and 8, it follows that

lim
β→1

xβ = lim
t
xt = sup

s∈SM

 min
γ∈Γ(∂CH(0,s))

∑
(r′,ω′)∈R×Ω

xr′,ω′γr′,ω′

 e =

(
sup
s∈SM

min
σ̃∈Σm

∑
r∈R

rγ (s, σ̃) (r)

)
e,

yielding the result. �

D Appendix: Proofs of Section 8

D.1 Range

Given the additivity and homogeneity properties of max and min, it is routine to check

that

Rg (λy + µz) ≤ λRg (y) + µRg (z) ∀λ, µ ∈ R+,∀y, z ∈ Rk. (36)

In particular, since x̃β = (1− β)x + βxβ for all x ∈ Rk and for all β ∈ (0, 1), this

implies that

Rg (x̃β) ≤ (1− β) Rg (x) + β Rg (xβ) ∀x ∈ Rk,∀β ∈ (0, 1) . (37)

If T is normalized and monotone, we have that
(
mini∈{1,...,k} yi

)
e ≤ T (y) ≤

(
maxi∈{1,...,k} yi

)
e

for all y ∈ Rk, thus
Rg (T (y)) ≤ Rg (y) ∀y ∈ Rk. (38)

By definition of x̃β and xβ, we have that T (x̃β) = xβ for all x ∈ Rk and for all β ∈ (0, 1)

and

Rg (xβ) ≤ Rg (x̃β) ∀x ∈ Rk,∀β ∈ (0, 1) . (39)

Thus, for our purposes, (37) and (39) show that we can alternatively either study

Rg (xβ) or Rg (x̃β). Since some results are easier to be derived just focusing on one

of the two, we will extensively use these inequalities to go back and forth Rg (xβ) and

Rg (x̃β). We begin with two ancillary lemmas.
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Lemma 8 Let T : Rk → Rk be such that there exist a stochastic matrix W and

ε ∈ (0, 1] such that

T (y) = εWy + (1− ε)S (y) ∀y ∈ Rk (40)

where S : Rk → Rk is normalized, monotone, and translation invariant. If there exist
h ∈ {1, ..., k} and t̂ ∈ N such that w(t̂)

ih > 0 for all i ∈ {1, ..., k}, then

Rg (xβ) ≤ 1

1 + δt̂(βε)t̂(1−βε)
(1−β)

(
1−(βε)t̂

) Rg (x) ∀β ∈ (0, 1) ,∀x ∈ Rk

where δ = mini,j:wij>0wij.

Proof. Recall that x̃β = (1− β)x + βxβ for all x ∈ Rk and for all β ∈ (0, 1). Given

x ∈ Rk and β ∈ (0, 1), recall also that Tβ,x : Rk → Rk is defined by Tβ,x (y) =

T ((1− β)x+ βy) for all y ∈ Rk. By Lemma 1, xβ is a fixed point of Tβ,x and so of
T tβ,x for all t ∈ N.
Step 1. For each x ∈ Rk, for each β ∈ (0, 1), and for each t ∈ N

T tβ,x (xβ) = (1− β) ε
t−1∑
τ=0

(βε)τ W τ+1x+ (βε)tW txβ + (1− ε)
t−1∑
τ=0

(βε)τ W τS (x̃β) .

Proof of the Step. We proceed by induction.

Initial Step. If t = 1, then

Tβ,x (xβ) = T ((1− β)x+ βxβ)

= (1− β) εWx+ βεWxβ + (1− ε)S ((1− β)x+ βxβ)

= (1− β) ε

t−1∑
τ=0

(βε)τ W τ+1x+ (βε)tW txβ + (1− ε)
t−1∑
τ=0

(βε)τ W τS (x̃β) ,

proving the initial step.
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Inductive Step. Assume the statement holds for t. We show it holds for t+ 1. By (40)

and inductive hypothesis T tβ,x (xβ) = xβ, we have that

T t+1
β,x (xβ) = T

(
(1− β)x+ βT tβ,x (xβ)

)
= εW

(
(1− β)x+ βT tβ,x (xβ)

)
+ (1− ε)S

(
(1− β)x+ βT tβ,x (xβ)

)
= (1− β) εWx+ βεWT tβ,x (xβ) + (1− ε)S ((1− β)x+ βxβ)

= (1− β) εWx

+ βεW

(
(1− β) ε

t−1∑
τ=0

(βε)τ W τ+1x+ (βε)tW txβ + (1− ε)
t−1∑
τ=0

(βε)τ W τS (x̃β)

)
+ (1− ε)S (x̃β)

= (1− β) εWx+ (1− β) ε
t−1∑
τ=0

(βε)τ+1W τ+2x+ (βε)t+1 W t+1xβ

+ (1− ε)
t−1∑
τ=0

(βε)τ+1W τ+1S (x̃β) + (1− ε)S (x̃β)

= (1− β) ε
t∑

τ=0

(βε)τ W τ+1x+ (βε)t+1 W t+1xβ + (1− ε)
t∑

τ=0

(βε)τ W τS (x̃β) ,

proving the inductive step.

Step 1 follows by induction. �
Step 2. For each z ∈ Rk

Rg
(
W t̂z

)
≤
(

1− δt̂
)

Rg (z)

where δ = mini,j:wij>0wij.

Proof of the Step. Let z ∈ Rk and define y = W t̂z. Consider i1, i2 ∈ {1, ..., k} such
that yi1 = maxi∈{1,...,k} yi and yi2 = mini∈{1,...,k} yi. Define also z? = maxi∈{1,...,k} zi and

z? = mini∈{1,...,k} zi. Define δ̃ = mini∈{1,...,h}w
(t̂)
ih ∈ (0, 1) where w

(t̂)
ih is the ih-th entry

of W t̂. Note that

Rg
(
W t̂z

)
= Rg (y) = yi1 − yi2 =

k∑
j=1

w
(t̂)
i1j
zj −

k∑
j=1

w
(t̂)
i2j
zj

≤
(

1− w(t̂)
i1h

)
z? −

(
1− w(t̂)

i2h

)
z? +

(
w

(t̂)
i1h
− δ̃
)
zh + δ̃zh −

(
w

(t̂)
i2h
− δ̃
)
zh − δ̃zh

≤
(

1− w(t̂)
i1h

)
z? −

(
1− w(t̂)

i2h

)
z? +

(
w

(t̂)
i1h
− δ̃
)
z? −

(
w

(t̂)
i2h
− δ̃
)
z?

≤
(

1− δ̃
)

(z? − z?) =
(

1− δ̃
)

Rg (z) .

Next, by induction, it is immediate to see thatmin
i,j:w

(t)
ij >0

w
(t)
ij ≥

(
mini,j:wij>0wij

)t
= δt

for all t ∈ N. Since w(t̂)
ih > 0 for all i ∈ {1, ..., k}, we can conclude that δ̃ ≥ δt̂, proving

the statement. �
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By Steps 1 and 2 as well as (36), (37), and (38) and since T t̂β,x (xβ) = xβ and the

composition of normalized and monotone operators is normalized and monotone, we

have that for each x ∈ Rk and for each β ∈ (0, 1)

Rg (xβ) = Rg
(
T t̂β,x (xβ)

)
= Rg

(1− β) ε

t̂−1∑
τ=0

(βε)τ W τ+1x+ (βε)t̂W t̂xβ + (1− ε)
t̂−1∑
τ=0

(βε)τ W τS (x̃β)


≤ (1− β) ε

t̂−1∑
τ=0

(βε)τ Rg
(
W τ+1x

)
+ (βε)t̂ Rg

(
W t̂xβ

)
+ (1− ε)

t̂−1∑
τ=0

(βε)τ Rg (W τS (x̃β))

≤ (1− β) ε
t̂−1∑
τ=0

(βε)τ Rg (x) + (βε)t̂ Rg
(
W t̂xβ

)
+ (1− ε)

t̂−1∑
τ=0

(βε)τ Rg (x̃β)

≤ (1− β) ε
t̂−1∑
τ=0

(βε)τ Rg (x) + (βε)t̂ Rg
(
W t̂xβ

)
+ (1− ε) (1− β)

t̂−1∑
τ=0

(βε)τ Rg (x)

+ (1− ε) β
t̂−1∑
τ=0

(βε)τ Rg (xβ)

= (1− β)
1− (βε)t̂

1− βε Rg (x) + (βε)t̂ Rg
(
W t̂xβ

)
+ (1− ε) β 1− (βε)t̂

1− βε Rg (xβ)

≤ (1− β)
1− (βε)t̂

1− βε Rg (x) + (βε)t̂
(

1− δt̂
)

Rg (xβ) + (1− ε) β 1− (βε)t̂

1− βε Rg (xβ)

= (1− β)
1− (βε)t̂

1− βε Rg (x) +

(
β − βε− β (βε)t̂ + (βε)t̂ − δt̂ (βε)t̂ + δt̂ (βε)t̂+1

1− βε

)
Rg (xβ) .

Since (βε)t̂
(

1− δt̂
)

+ (1− ε) β 1−(βε)t̂

1−βε ∈ (0, 1), this implies that

Rg (xβ) ≤
(1− β)

(
1− (βε)t̂

)
(1− β)

(
1− (βε)t̂

)
+ δt̂ (βε)t̂ (1− βε)

Rg (x) ∀x ∈ Rk,∀β ∈ (0, 1) ,

proving the statement. �

From the previous lemma, we obtain an estimate on the range of xβ, provided T

admits a decomposition as in (40) andW has eventually a strictly positive column. This

latter property is achieved whenever A (W ) not only is regular, but also “aperiodic”.

As for the former property, by [12, Proposition 7], we have that if T is normalized,

monotone, and translation invariant and A (T ) is nontrivial, then there there exist a

stochastic matrix W and ε ∈ (0, 1] such that

T (y) = εWy + (1− ε)S (y) ∀y ∈ Rk

46



where S : Rk → Rk is normalized, monotone, and translation invariant. Moreover,
W can be chosen to be such that A (W ) = A (T ). Thus, if A (T ) is also regular and

aperiodic, so is A (W ). Since in our statements we have the property of regularity, but

not aperiodicity, we consider an auxiliary operator closely related to T and which will

satisfy the property of aperiodicity.

Given T : Rk → Rk, it will be thus useful to consider the averaged operator Tλ =

λI + (1− λ)T with λ ∈ (0, 1) where I is the identity.18 Note that A (Tλ) ≥ A (T ) and,

in particular, the only difference between A (Tλ) and A (T ) consists in the entries of

the diagonal of A (Tλ) which are all 1, while those of A (T ) might be 0.

Building on Lemma 8, the next result provides a result on the convergence of

Rg (xβ,λ) where for each x ∈ Rk and for each β, λ ∈ (0, 1), xβ,λ is the unique point

satisfying

Tλ ((1− β)x+ βxβ,λ) = xβ,λ.

Lemma 9 Let T : Rk → Rk be normalized, monotone, and translation invariant. If
A (T ) is regular, then

Rg (xβ,λ) ≤
1

1 +
δ̂t̂(βδ̂)

t̂
(1−βδ̂)

(1−β)

(
1−(βδ̂)

t̂
)

Rg (x) ∀x ∈ Rk,∀β, λ ∈ (0, 1) , (41)

where δ̂ = min {λ, (1− λ) δ}, δ = mini,j:aij=1 infx∈D
∂Ti
∂xj

(x), and t̂ ∈ N is the smallest
natural number such that A (Tλ)

t̂ has one column with all positive entries.

Proof. Since T is normalized, monotone, translation invariant and A (T ) is nontrivial,

we have that δ ∈ (0, 1]. Since A (Tλ) ≥ A (T ) and A (T ) is regular, we have that A (Tλ)

is regular. By [12, Proposition 7], we have that there exist a stochastic matrix W and

ε ∈ (0, 1] such that

Tλ (y) = εWy + (1− ε)S (y) ∀y ∈ Rk

where S : Rk → Rk is normalized, monotone, and translation invariant. Moreover, W
can be chosen to be such that A (W ) = A (Tλ). By the proof of Proposition 7 in [12],

it follows that ε can be chosen to be equal to δ̂ and all the strictly positive entries of

W are greater than or equal to δ̂. This implies that A (W ) is regular and A (W ) ≥ I.

In particular (see, e.g., [36, Exercise 4.13]), the set of natural numbers t ∈ N such that
A (W )t̂ = A (Tλ)

t̂ has one column with all positive entries is nonempty and t̂ is well

defined. By Lemma 8, the statement follows. �
18With a small abuse of notation, we denote with I both the identity matrix and the identity

operator.
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Remark 1 Note that

1

1 +
δ̂t̂(βδ̂)

t̂
(1−βδ̂)

(1−β)

(
1−(βδ̂)

t̂
)

=

(1− β)

(
1−

(
βδ̂
)t̂)

(1− β)

(
1−

(
βδ̂
)t̂)

+ δ̂t̂
(
βδ̂
)t̂ (

1− βδ̂
) .

Consider the quantity at the denominator of the fraction on the right-hand side. It is

immediate to see that it is equal to

(
1− βδ̂

)(1− β)
1−

(
βδ̂
)t̂

1− βδ̂
+ δ̂t̂

(
βδ̂
)t̂ =

(
1− βδ̂

)(1− β)
t̂−1∑
τ=0

(
βδ̂
)τ

+ δ̂t̂
(
βδ̂
)t̂

≥
(

1− βδ̂
)(

1− β + δ̂t̂
(
βδ̂
)t̂)

.

Consider now the function h : R → R defined by h (β) = 1 − β + δ̂2t̂β t̂ for all β ∈ R.
Since δ̂ ∈ (0, 1) and t̂ ∈ N, h is convex and differentiable on R with derivative h′ (β) =

−1 + t̂δ̂2t̂β t̂−1 for all β ∈ R. Clearly, h′ is negative in a neighborhood of 0. We thus

have two cases:

1. h′ (β) ≤ 0 for all β ∈ [0, 1]. This happens if and only if δ̂ ≤
(

1
t̂

) 1
2t̂ and, in this

case, h (β) ≥ δ̂2t̂ > 0 for all β ∈ [0, 1].

2. h′ (β) > 0 for some β ∈ [0, 1]. Since h′ (β) > 0 for some β ∈ [0, 1], we have that

δ̂ >
(

1
t̂

) 1
2t̂ . Since h is convex and δ̂ >

(
1
t̂

) 1
2t̂ , that is 1 > 1/t̂δ̂2t̂ > 0, this implies

that h is minimized at β? ∈ (0, 1) where β? =
t̂−1

√
1/t̂δ̂2t̂ ∈ (0, 1) and

h (β?) = 1−
(

1

t̂δ̂2t̂

) 1
t̂−1

+ δ̂2t̂

(
1

t̂δ̂2t̂

) t̂
t̂−1

= 1−
(

1

t̂δ̂2t̂

) 1
t̂−1

+ δ̂2t̂

(
1

t̂δ2t̂

)(
1

t̂δ̂2t̂

) 1
t̂−1

= 1−
(

1

t̂δ̂2t̂

) 1
t̂−1 (

1− 1

t̂

)
≥ 1−

(
1− 1

t̂

)
≥ 1

t̂
> 0.

We can conclude that
1

1 +
δ̂t̂(βδ̂)

t̂
(1−βδ̂)

(1−β)

(
1−(βδ̂)

t̂
)
≤ (1− β)

1(
1− δ̂

)
min

{
1
t̂
, δ̂2t̂
} . (42)

Finally, since δ̂ = min {λ, (1− λ) δ} and λ can be arbitrarily chosen, δ̂ is maximized
for λ = δ/ (1 + δ). In this case, δ̂ = δ/ (1 + δ). We will use (42) with this choice of δ̂

later on. N
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Lemma 9, paired with Remark 1, is instrumental in proving Theorem 2. In fact,

it only provides an estimate for the range of the fixed points of the averaged operator

Tλ with λ = δ/ (1 + δ). The next formula describes the relation between the points x̃β
which solve (2) for the operator T and the points x̃β,λ which solve the same equation,

but for the operator Tλ. In turn, this provides a relation between Rg (x̃β) and Rg (x̃β,λ),

and via (37) and (39), between Rg (xβ) and Rg (xβ,λ).

Lemma 10 If T is normalized, monotone, and translation invariant, then

x̃β = x̃ β
(1−λ)+λβ

,λ ∀x ∈ Rk,∀β, λ ∈ (0, 1) .

Moreover, for each λ ∈ (0, 1) the function fλ : (0, 1) → (0, 1), defined by fλ (β) =

β/ [(1− λ) + λβ] for all β ∈ (0, 1), is strictly increasing and limβ→1 fλ (β) = 1.

Proof. Define the averaged operator Tλ = λI+(1− λ)T with λ ∈ (0, 1). By definition

of x̃β,λ, note that

(1− β)x+ βλx̃β,λ + β (1− λ)T (x̃β,λ)

= (1− β)x+ β [λx̃β,λ + (1− λ)T (x̃β,λ)]

= (1− β)x+ βTλ (x̃β,λ) = x̃β,λ ∀x ∈ Rk,∀β, λ ∈ (0, 1) ,

that is,
1− β

1− βλx+
β (1− λ)

1− βλ T (x̃β,λ) = x̃β,λ ∀β, λ ∈ (0, 1) ,∀x ∈ Rk,

yielding that x̃β,λ solves equation (2) for the operator T with weight β(1−λ)
1−βλ . By the

uniqueness of the solution, we can conclude that x̃β(1−λ)
1−βλ

= x̃β,λ for all x ∈ Rk and
for all β, λ ∈ (0, 1). Fix λ ∈ (0, 1). If we define gλ : (0, 1) → (0, 1) by gλ (β) =

β (1− λ) / (1− βλ) for all β ∈ (0, 1), then gλ is well defined and g′λ > 0. The inverse

of gλ is fλ and shares the same properties and, in particular, limβ→1 fλ (β) = 1. Since

λ was arbitrarily chosen, it follows that

x̃fλ(β),λ = x̃gλ(fλ(β)) = x̃β ∀x ∈ Rk,∀λ, β ∈ (0, 1) ,

proving the statement. �
Proof of Theorem 2. Set λ̄ = δ/ (1 + δ) ∈ (0, 1). By Lemma 9 and Remark 1 and

since A (Tλ̄) = A (T ) ∨ I, we have that for each x ∈ Rk and for each β ∈ (0, 1)

Rg
(
xβ,λ̄

)
≤ (1− β)

1(
1− δ

1+δ

)
min

{
1
t̂
,
(

δ
1+δ

)2t̂
} Rg (x) ≤ (1− β)κT Rg (x) .

By (37), we have that

Rg
(
x̃β,λ̄

)
≤ (1− β) (1 + βκT ) Rg (x) ∀x ∈ Rk,∀β ∈ (0, 1) .
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By Lemma 10, recall that

x̃β = x̃ β

(1−λ̄)+λ̄β
,λ̄ = x̃fλ̄(β),λ̄ ∀β ∈ (0, 1) ,∀x ∈ Rk.

We can conclude that

Rg (x̃β) = Rg
(
x̃fλ̄(β),λ̄

)
≤ (1− fλ̄ (β)) (1 + fλ̄ (β)κT ) Rg (x) ∀x ∈ Rk,∀β ∈ (0, 1) .

By (39), we have that

Rg (xβ) ≤ Rg (x̃β) ≤ (1− fλ̄ (β)) (1 + fλ̄ (β)κT ) Rg (x) ∀x ∈ Rk,∀β ∈ (0, 1) .

Finally, observe that
(
1− λ̄

)
+ λ̄β ∈ (β, 1), that is, 1 > β

(1−δ)+δβ > β for all β ∈ (0, 1).

This implies that 1 > fλ̄ (β) > β > 0 and 0 < 1 − fλ̄ (β) < 1 − β for all β ∈ (0, 1).

Since κT > 0, we can conclude that

(1− fλ̄ (β)) (1 + fλ̄ (β)κT ) ≤ (1− β) (1 + κT ) ∀β ∈ (0, 1) ,

yielding that

Rg (xβ) ≤ Rg (x̃β) ≤ (1− β) (1 + κT ) Rg (x) ∀x ∈ Rk,∀β ∈ (0, 1) ,

proving the statement. �

D.2 Rate of convergence

Proof of Theorem 3. Consider x ∈ Rk and β ∈ (0, 1). As usual, we have that

x̃β = (1− β)x + βxβ. By point 2 of Proposition 12 and since T is continuously

differentiable and A (T ) is regular, Γ (∂CT (0)) consists of only one element, denoted

by γ. Set h̄ = 〈γ, x〉. By definition of Wx̃β ,h̄ (see proof of Proposition 13), we have that

Wx̃β ,h̄ ((1− β)x+ βxβ) = Wx̃β ,h̄x̃β = T (x̃β) = T ((1− β)x+ βxβ) = xβ.

By (3), we have that xβ = xβ,Wx̃β,h̄
. By point 1 of Proposition 12 and since A (T ) is

regular, Γ
(
Wx̃β ,h̄

)
consists of only one element which we denote by γβ. It follows that

‖xβ − 〈γ, x〉 e‖∞ ≤ ‖xβ − 〈γβ, x〉 e‖∞ + ‖〈γβ, x〉 e− 〈γ, x〉 e‖∞
=
∥∥∥xβ,Wx̃β,h̄

− 〈γβ, x〉 e
∥∥∥
∞

+ |〈γβ − γ, x〉|

≤
∥∥∥xβ,Wx̃β,h̄

− 〈γβ, x〉 e
∥∥∥
∞

+ ‖γβ − γ‖1 ‖x‖∞ .

We next bound the two terms on the right-hand side.
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a By Example 1, we have that∥∥∥xβ,Wx̃β,h̄
− 〈γβ, x〉 e

∥∥∥
∞
≤ Rg

(
xβ,Wx̃β,h̄

)
= Rg (xβ) .

b We next bound ‖γβ − γ‖1 = ‖γ − γβ‖1. Consider W = JT (0). By Proposition

12, we have that mini,j:aij=1wij ≥ δ. Set W̃ = λI + (1− λ)W and Ŵ = λI +

(1− λ)Wx̃β ,h̄ where λ can be arbitrarily chosen in (0, 1). It is immediate to see

that γTW̃ t = γT and γT
β Ŵ

t = γT
β for all t ∈ N. Note that A

(
W̃
)
and A

(
Ŵ
)

are both regular and such that A
(
W̃
)
, A
(
Ŵ
)
≥ A (T ) ∨ I. It follows that

there exist h ∈ {1, ..., k} and t̂ ∈ N such that w̃(t̂)
ih > 0 for all i ∈ {1, ..., k} and t̂

can be chosen to be tT . Since mini,j:aij=1wij ≥ δ, mini∈{1,...,k} w̃
(tT )
ih ≥ δ̃tT where

δ̃ = min {λ, (1− λ) δ}. By Seneta [37], this implies that

‖γ − γβ‖1 ≤
1

δ̃tT

∥∥∥W̃ tT − Ŵ tT

∥∥∥
∞
.

Since Since λ can be arbitrarily chosen, we then choose λ = δ/ (1 + δ) so to

maximize δ̃, yielding that

‖γ − γβ‖1 ≤
(1 + δ)tT

δtT

∥∥∥W̃ tT − Ŵ tT

∥∥∥
∞
. (43)

Next, by induction and since the space of matrices endowed with ‖ ‖∞ is a Banach
algebra and

∥∥W̄∥∥∞ = 1 for all stochastic matrices W̄ ,19 we have that∥∥∥W̃ tT − Ŵ tT

∥∥∥
∞
≤ tT

∥∥∥W̃ − Ŵ∥∥∥
∞

=

(
1− δ

1 + δ

)
tT

∥∥∥W −Wx̃β ,h̄

∥∥∥
∞
. (44)

19First, recall that, given a k × k matrix E,

‖E‖∞ = max
i∈{1,...k}

k∑
j=1

|eij | .

In other words, ‖E‖∞ is the dual norm of the operator x 7→ Ex when Rk is endowed with ‖ ‖∞. For
this reason, it can be computed by calculating the ‖ ‖1 of each row of E and then take the maximum of
these values. By induction, we prove that∥∥∥W̃ t − Ŵ t

∥∥∥
∞
≤ t
∥∥∥W̃ − Ŵ∥∥∥

∞
∀t ∈ N.

The statement is trivial for t = 1. Assume it holds for t, we show it holds for t+ 1. Observe that∥∥∥W̃ t+1 − Ŵ t+1
∥∥∥
∞

=
∥∥∥W̃ (

W̃ t − Ŵ t
)

+
(
W̃ − Ŵ

)
Ŵ t
∥∥∥
∞

≤
∥∥∥W̃ (

W̃ t − Ŵ t
)∥∥∥
∞

+
∥∥∥(W̃ − Ŵ) Ŵ t

∥∥∥
∞

≤
∥∥∥W̃∥∥∥

∞

∥∥∥W̃ t − Ŵ t
∥∥∥
∞

+
∥∥∥W̃ − Ŵ∥∥∥

∞

∥∥∥Ŵ t
∥∥∥
∞

=
∥∥∥W̃ t − Ŵ t

∥∥∥
∞

+
∥∥∥W̃ − Ŵ∥∥∥

∞

≤ t
∥∥∥W̃ − Ŵ∥∥∥

∞
+
∥∥∥W̃ − Ŵ∥∥∥

∞
= (t+ 1)

∥∥∥W̃ − Ŵ∥∥∥
∞
,

the statement follows by induction.
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Consider the i-th row of W −Wx̃β ,h̄. By definition of Wx̃β ,h̄ and since ∇Ti (he) =

∇Ti (0) for all h ∈ R, we have that the i-th row of W − Wx̃β ,h̄ is equal to

∇Ti
(
ĥe
)
−∇Ti

(
λi,x̃β ,h̄x̃β +

(
1− λi,x̃β ,h̄

)
h̄e
)
where λi,x̃β ,h̄ ∈ [0, 1] and ĥ we chose

it to be an element of[
min

(
λi,x̃β ,h̄x̃β +

(
1− λi,x̃β ,h̄

)
h̄e
)
,max

(
λi,x̃β ,h̄x̃β +

(
1− λi,x̃β ,h̄

)
h̄e
)]
.

Since the Jacobian of T is Lipschitz continuous, we also have that∥∥∥∇Ti (ĥe)−∇Ti (λi,x̃β ,h̄x̃β +
(

1− λi,x̃β ,h̄
)
h̄e
)∥∥∥

1

≤ L
∥∥∥ĥe− (λi,x̃β ,h̄x̃β +

(
1− λi,x̃β ,h̄

)
h̄e
)∥∥∥
∞
.

By (36) and given our choice of ĥ, we can conclude that∥∥∥ĥe− (λi,x̃β ,h̄x̃β +
(

1− λi,x̃β ,h̄
)
h̄e
)∥∥∥
∞

=
∥∥∥(λi,x̃β ,h̄x̃β +

(
1− λi,x̃β ,h̄

)
h̄e
)
− ĥe

∥∥∥
∞

≤ Rg
(
λi,x̃β ,h̄x̃β +

(
1− λi,x̃β ,h̄

)
h̄e
)

≤ λi,x̃β ,h̄ Rg (x̃β) +
(

1− λi,x̃β ,h̄
)

Rg
(
h̄e
)

≤ Rg (x̃β)

By definition of
∥∥∥W −Wx̃β ,h̄

∥∥∥
∞
and (43) and (44) and since i was arbitrarily

chosen, this implies that

‖γ − γβ‖1 ≤
(1 + δ)tT

δtT

∥∥∥W̃ tT − Ŵ tT

∥∥∥
∞
≤ (1 + δ)tT

δtT

(
1− δ

1 + δ

)
tT

∥∥∥W −Wx̃β ,h̄

∥∥∥
∞

≤ (1 + δ)tT

δtT

(
1− δ

1 + δ

)
tTLRg (x̃β) .

By points a and b and Theorem 2 an since Rg (x̃β) ≤ Rg (xβ), we can conclude that

‖xβ − 〈γ, x〉 e‖∞ ≤ Rg (xβ) +
(1 + δ)tT

δtT

(
1− δ

1 + δ

)
tTL ‖x‖∞Rg (x̃β)

≤ (1− β) (1 + κT )

(
1 +

(1 + δ)tT

δtT

(
1− δ

1 + δ

)
tTL ‖x‖∞

)
Rg (x) ,

proving the statement. �

D.3 Discrete iterations

Lemma 11 For all x ∈ Rk, limt x
t exists if and only if limt x̃

t exists and, in this case,

the two limits coincide.
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Proof. Fix x ∈ Rk. First, we prove by induction that

x̃t = (1− βt+1)x+ βt+1x
t ∀t ∈ N0. (45)

For t = 0, we have x0 = x̃0 = x. Assume that (45) holds true for all τ ≤ t. Next,

observe that

x̃t+1 = (1− βt+1)x+ βt+1T
(
x̃t
)

= (1− βt+1)x+ βt+1T
(
(1− βt+1)x+ βt+1x

t
)

that is
x̃t+1 − (1− βt+1)x

βt+1

= T
(
(1− βt+1)x+ βt+1x

t
)

= xt+1

yielding (45) for t+1. Finally, given that βt → 1, (45) immediately yields the statement.

�

Lemma 12 Let T be nonexpansive and normalized. If s, l ∈ N are such that s ≥ l,

then

‖xs+m − xβl‖∞ ≤ βml ‖xs − xβl‖∞ + 2 ‖x‖∞
m∑
r=1

βm−rl (βs+r − βl) ∀m ∈ N. (46)

Proposition 15 Let T be nonexpansive and normalized and assume that limβ→1 xβ =

x̄ is well defined for all x ∈ Rk. If there exists f : N → N increasing and such that

β
f(l)
l → 0 as well as

βl+f(l)−βl
1−βl → 0, then

lim
β→1

x̃β = lim
β→1

xβ = lim
t
xt = lim

t
x̃t ∀x ∈ Rk.

Proof. Fix x ∈ Rk. By Lemma 12 and since {βl}l∈N is an increasing sequence, we
have that∥∥xl+f(l) − xβl

∥∥
∞ ≤ β

f(l)
l ‖xl − xβl‖∞ + 2 ‖x‖∞

f(l)∑
r=1

β
f(l)−r
l (βl+r − βl)

≤ 2 ‖x‖∞ β
f(l)
l + 2 ‖x‖∞

(
βl+f(l) − βl

) f(l)∑
r=1

β
f(l)−r
l

≤ 2 ‖x‖∞
(
β
f(l)
l +

βl+f(l) − βl
1− βl

)
∀l ∈ N,

yielding that liml

∥∥xl+f(l) − xβl
∥∥
∞ = 0. This implies that for each t ∈ N such that

t ≥ 1 + f (1) there exists a unique lt ∈ N such that lt + f (lt) ≤ t < lt + 1 + f (lt + 1)

and lt →∞ as t→∞.20 Consider t ≥ 1 + f (1). By (46) and since lt + 1 + f (lt + 1) >

20Define N to be the set of all natural numbers ≥ 1 + f (1). For each t ∈ N define D (t) =

{l ∈ N : l + f (l) ≤ t}. It is immediate to see that if t′ ≥ t, then D (t′) ⊇ D (t) 3 1. At the same time,

for each t ≥ 1+f (1) the set D (t) is bounded above. If we define g : N → N by g (t) = maxD (t), then

g is well defined. Moreover, we have that if t′ ≥ t, then g (t′) ≥ g (t) as well as g (l + f (l)) = l + f (l)

for all l ∈ N. This implies that lt can be set to be equal to g (t) and {lt}t∈N ⊆ N is an increasing
sequence which diverges.
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t ≥ lt + f (lt) and f (lt) ≥ 1 for all t ≥ 1 + f (1), if we set s = lt + f (lt), l = lt + 1, and

m = t− lt − f (lt), then we have that s ≥ l and∥∥xt − xβlt+1

∥∥
∞

≤


∥∥xlt+f(lt) − xβlt+1

∥∥
∞ if t = lt + f (lt)

β
t−lt−f(lt)
lt+1

∥∥xlt+f(lt) − xβlt+1

∥∥
∞

+2 ‖x‖∞
∑t−lt−f(lt)

r=1 β
t−lt−f(lt)−r
lt+1

(
βlt+f(lt)+r − βlt+1

) if t > lt + f (lt)

≤
{ ∥∥xlt+f(lt) − xβlt+1

∥∥
∞ if t = lt + f (lt)∥∥xlt+f(lt) − xβlt+1

∥∥
∞ + 2 ‖x‖∞

βt−βlt+1

1−βlt+1
if t > lt + f (lt)

≤
{ ∥∥xlt+f(lt) − xβlt+1

∥∥
∞ if t = lt + f (lt)∥∥xlt+f(lt) − xβlt+1

∥∥
∞ + 2 ‖x‖∞

βlt+1+f(lt+1)−βlt+1

1−βlt+1
if t > lt + f (lt)

Since t was arbitrarily chosen, we have that∥∥xt − xβlt+1

∥∥
∞ ≤

∥∥xlt+f(lt) − xβlt+1

∥∥
∞ + εt

where εt = 2 ‖x‖∞
(
βlt+1+f(lt+1) − βlt+1

)
/ (1− βlt+1) for all t ≥ 1 + f (1). By assump-

tion and since lt → ∞ as t → ∞, it follows that εt → 0 as t → ∞. By Theorem 1,

x̄
def
= limt xβt = limt x̃βt is well defined. We have that for each t ≥ 1 + f (1)∥∥xt − x̄∥∥∞ ≤ ∥∥xt − xβlt+1

∥∥
∞ +

∥∥xβlt+1
− x̄
∥∥
∞

≤
∥∥xlt+f(lt) − xβlt+1

∥∥
∞ + εt +

∥∥xβlt+1
− x̄
∥∥
∞

≤
∥∥xlt+f(lt) − xβlt

∥∥
∞ +

∥∥xβlt − xβlt+1

∥∥
∞ + εt +

∥∥xβlt+1
− x̄
∥∥
∞ → 0,

proving the statement. �

Proof of Proposition 7. We begin by making an observation on g. Since g is strictly
increasing and concave, we have that g (y) − g (x) ≤ g′+ (x) (y − x) for all y ∈ [1,∞)

and for all x ∈ (1,∞), yielding that

0 < g′+ (x) ≤ (g (x)− g (1)) / (x− 1) ∀x ∈ (1,∞) . (47)

In this case, the two conditions of Proposition 15 become:

1.
(

1− 1
g(l)

)f(l)

→ 0 as l→∞;

2. g(l+f(l))−g(l)
g(l+f(l))

=
1− 1

g(l+f(l))
−1+ 1

g(l)
1
g(l)

=
βl+f(l)−βl

1−βl → 0 as l→∞.

Define f : N→ N by f (1) =
⌈
g (2) 1

g(2)−g(1)

⌉
and f (l) =

⌈
g (l)

(
l−1

g(l)−g(1)

) 1
2

⌉
for all

l ≥ 2. We make three observations:
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a. Since g is concave and positive, it follows that, on N\ {1}, l 7→ g(l)−g(1)
l−1

is positive

and decreasing and so is l 7→
(
g(l)−1
l−1

) 1
2
. This implies that l 7→

(
l−1
g(l)−1

) 1
2
is

well defined, positive, and increasing on N\ {1}. Since g is positive and strictly

increasing, l 7→ g (l)
(

l−1
g(l)−g(1)

) 1
2
is increasing on N\ {1} and so is f on N.

b. Since g is divergent, we have that g(l)−g(1)
l−1

∼ g(l)
l
. Since g(l)

l
→ 0 as l → ∞ and

g is positive, this implies that f(l)
g(l)
≥ g (l)

(
l−1

g(l)−g(1)

) 1
2 1
g(l)

=
(

l−1
g(l)−g(1)

) 1
2 → ∞.

Since f(l)
g(l)
→∞ and for each l ∈ N\ {1}

(
1− 1

g (l)

)f(l)

=

((
1− 1

g (l)

)g(l)) f(l)
g(l)

,

we can conclude that liml

(
1− 1

g(l)

)f(l)

= (e−1)
∞

= 0, yielding that condition 1

holds.

c. Since g is increasing, concave, and positive and f is positive, we have that

0 ≤ g (l + f (l))− g (l)

g (l + f (l))
≤

g′+ (l) f (l)

g (l + f (l))
≤
g′+ (l) f (l)

g (l)

≤
g′+ (l)

g (l)

(
g (l)

(
l − 1

g (l)− g (1)

) 1
2

+ 1

)
= g′+ (l)

(
l − 1

g (l)− g (1)

) 1
2

+
g′+ (l)

g (l)
.

By (47) and since g(l)−g(1)
l−1

∼ g(l)
l
and g(l)

l
→ 0 as l→∞, we have that g′+ (l)→ 0

as l→ 0 and, in particular,
g′+(l)

g(l)
→ 0. By (47) and since g(l)−g(1)

l−1
> 0 for all l ≥ 2

as well as g(l)−g(1)
l−1

→ 0 as l→ 0, we have that

g′+ (l)

(
l − 1

g (l)− g (1)

) 1
2

≤
(
g (l)− g (1)

l − 1

) 1
2

→ 0.

We can conclude that g(l+f(l))−g(l)
g(l+f(l))

→ 0 as l→ 0, proving that condition 2 holds.

By Points a—c and Proposition 15, the statement follows. �

Proof of Proposition 8. Fix x ∈ Rk. (i) implies (ii). This immediately follows
from Lemma 1. (ii) implies (iii). Define Ψ : Rk → Rk as

Ψ (z) = T (x+ z) ∀z ∈ Rk.

Observe that, for every β ∈ [0, 1), we have

xβ = T ((1− β)x+ βxβ) = (1− β)T

(
x+

β

1− βxβ
)

= (1− β) Ψ

(
β

1− βxβ
)
.
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For all β, β′ ∈ [0, 1) and for all z ∈ Rk, we have∣∣∣∣∣∣∣∣(1− β) Ψ

(
z

1− β

)
− (1− β′) Ψ

(
z

1− β′

)∣∣∣∣∣∣∣∣
∞

= ||T ((1− β)x+ z)− T ((1− β′)x+ z)||∞

≤ ||(β′ − β)x||∞ = |β′ − β| ||x||∞ .

This shows that Ψ satisfies Assumption 1 in [40]. We next show by induction that, for

every t ∈ N,
xt =

1

t
Ψt (0) . (48)

First, observe that x1 = T (x) = Ψ (0), proving that (48) holds for t = 1. Next, assume

that (48) holds for all τ ≤ t. We have

xt+1 = T

(
1

t+ 1
x+

t

t+ 1

1

t
Ψt (0)

)
=

1

t+ 1
T
(
x+ Ψt (0)

)
=

1

t+ 1
Ψt+1 (0) ,

yielding (48) for t+ 1. With this, (iii) follows from [40, Theorem 1]. (iii) implies (iv).

It follows by Lemma 11. (iv) implies (i). Lemma 11 implies that limt x
t = limt x̃

t

exists. By [40, Theorem 1], it follows that limβ→1 xβ exists. By Lemma 1 it follows

that limβ→1 x̃β = limβ→1 xβ exists.

The second part of the proposition immediately follows by Lemmas 1 and 11. �

D.4 Computing the fixed point

Consider a nonexpansive operator T : Rk → Rk. Given β ∈ (0, 1) and x ∈ Rk, define
Tβ,x, T̃β,x : Rk → Rk by

Tβ,x (y) = T ((1− β)x+ βy) and T̃β,x (y) = (1− β)x+ βT (y) ∀y ∈ Rk.

Lemma 13 Let T be nonexpansive. If β ∈ (0, 1) and x ∈ Rk, then Tβ,x and T̃β,x are
β-contractions. In particular, for each β ∈ (0, 1) and for each x ∈ Rk, there exist
unique xβ, x̃β ∈ Rk such that

T tβ,x (y)→ xβ ∀y ∈ Rk, Tβ,x (xβ) = xβ

and

T̃ tβ,x (y)→ x̃β ∀y ∈ Rk, T̃β,x (x̃β) = x̃β.

Proof. Fix β ∈ (0, 1) and x ∈ Rk. We prove that Tβ,x is a β-contraction. A similar
argument holds for T̃β,x. Since T is nonexpansive, we have that for each y, z ∈ Rk

‖Tβ,x (y)− Tβ,x (z)‖∞ = ‖T ((1− β)x+ βy)− T ((1− β)x+ βz)‖∞
≤ ‖(1− β)x+ βy − (1− β)x− βz‖∞ = β ‖y − z‖∞ ,

56



proving that Tβ,x is a β-contraction. By the Banach contraction principle, for each

y ∈ Rk we have that T tβ,x (y) → xβ as well as Tβ,x (xβ) = xβ where xβ is the unique

fixed point of Tβ,x. �

Consider two nonexpansive operators S, T : Rk → Rk.If for each β ∈ (0, 1) and for

each x ∈ Rk we define xβ,S and xβ,T to be such that

xβ,S = S ((1− β)x+ βxβ,S) and xβ,T = T ((1− β)x+ βxβ,T ) ,

then we have the following simple monotonicity result.

Lemma 14 Let S and T be nonexpansive. If S is monotone and S ≥ T , then

xβ,S ≥ xβ,T ∀β ∈ (0, 1) ,∀x ∈ Rk.

Proof of Proposition 6. Fix β ∈ (0, 1) and x ∈ Rk. By Lemma 14, xβ,T ≤
xβ,Sα for all α ∈ A, proving that xβ,T ≤ infα∈A xβ,Sα . Since for each x ∈ Rk there
exists αx ∈ A such that Sαx (x) = T (x), we have that there exists ᾱ ∈ A such that
Sᾱ ((1− β)x+ βxβ,T ) = T ((1− β)x+ βxβ,T ) = xβ,T , proving that infα∈A xβ,Sα ≥
xβ,T = xβ,Sᾱ ≥ infα∈A xβ,Sα , proving the statement. �
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E Online appendix: omitted proofs

In this section, we first report the proofs of some of the secondary results in the main

text that were omitted by the main appendix. Then, we report the proofs of the

ancillary results stated in the main appendix and whose proofs were omitted.

E.1 Proofs of ancillary results in the main appendix

Proof of Lemma 3. Consider x̄ ∈ L. By definition of L, there exists {xβn}n∈N ⊆
{xβ}β∈(0,1) such that βn → 1 and xβn → x̄. By definition of xβ and since T is Lipschitz

continuous and limn [(1− βn)x+ βnxβn ] = x̄, we have that

x̄ = lim
n
xβn = lim

n
T ((1− βn)x+ βnxβn) = T (x̄) ,

proving that x̄ ∈ E (T ), that is, L ⊆ E (T ). Next, assume that E (T ) = D. By the

previous part of the proof, we have that L ⊆ E (T ) = D. This implies that there

exists a set H ⊆ R such that {he}h∈H = L and, in particular, lim infβ→1 xβ = (inf H) e

as well as lim supβ→1 xβ = (supH) e. Since L is closed and bounded, it follows that

(inf H) e, (supH) e ∈ L ⊆ E (T ), proving the second part of the statement. �

Proof of Lemma 12. We start with a preliminary observation. By induction and
since T is nonexpansive and normalized, it is obvious that ‖xt‖∞ ≤ ‖x‖∞ for all t ∈ N.
Note that for each l, t ∈ N
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∥∥xt+1 − xβl
∥∥
∞ =

∥∥T ((1− βt+1)x+ βt+1x
t
)
− T ((1− βl)x+ βlxβl)

∥∥
∞

≤
∥∥T ((1− βt+1)x+ βt+1x

t
)
− T

(
(1− βl)x+ βlx

t
)∥∥
∞

+
∥∥T ((1− βl)x+ βlx

t
)
− T ((1− βl)x+ βlxβl)

∥∥
∞

≤
∥∥(1− βt+1)x+ βt+1x

t − (1− βl)x− βlxt
∥∥
∞

+
∥∥(1− βl)x+ βlx

t − (1− βl)x− βlxβl
∥∥
∞

=
∥∥(βl − βt+1)

(
x− xt

)∥∥
∞ + βl

∥∥xt − xβl∥∥∞
≤ βl

∥∥xt − xβl∥∥∞ + |βt+1 − βl|
∥∥x− xt∥∥∞

≤ βl
∥∥xt − xβl∥∥∞ + 2 ‖x‖∞ |βt+1 − βl| .

Since {βt}t∈N is an increasing sequence, we have that for each t ≥ l∥∥xt+1 − xβl
∥∥
∞ ≤ βl

∥∥xt − xβl∥∥∞ + 2 ‖x‖∞ (βt+1 − βl) . (49)

We next prove (46) by induction. By (49) and setting s = t, the statement is true for

m = 1. Assume (46) holds for m. We show it holds for m + 1. By (49) and inductive

hypothesis, we have that

‖xs+m+1 − xβl‖∞ ≤ βl ‖xs+m − xβl‖∞ + 2 ‖x‖∞ (βs+m+1 − βl)

≤ βm+1
l ‖xs − xβl‖∞ + 2 ‖x‖∞

m∑
r=1

βm+1−r
l (βs+r − βl) + 2 ‖x‖∞ (βs+m+1 − βl)

= βm+1
l ‖xs − xβl‖∞ + 2 ‖x‖∞

m+1∑
r=1

βm+1−r
l (βs+r − βl) ,

proving the inductive step. �

Proof of Lemma 14. Fix β ∈ (0, 1) and x ∈ Rk. We prove by induction that
Stβ,x (x) ≥ T tβ,x (x) for all t ∈ N. For t = 1, note that S1

β,x (x) = S ((1− β)x+ βx) =

S (x) ≥ T (x) = T ((1− β)x+ βx) = T 1
β,x (x). Next, we assume the statement is true

for t and we prove it holds for t+ 1. Since S is monotone and S ≥ T , we have that

St+1
β,x (x) = Sβ,x

(
Stβ,x (x)

)
= S

(
(1− β)x+ βStβ,x (x)

)
≥ S

(
(1− β)x+ βT tβ,x (x)

)
≥ T

(
(1− β)x+ βT tβ,x (x)

)
= Tβ,x

(
T tβ,x (x)

)
= T t+1

β,x (x) ,

proving the statement. By Lemma 13 and passing to the limit, xβ,S = limt S
t
β,x (x) ≥

limt T
t
β,x (x) = xβ,T . �

Proof of Lemma 7. Suppose by contradiction that there exists y ∈ E (T ) \ D.
Then, by equation (29) we have T (y) ≤ Wy. Let I∗ = argmaxi∈{1,...,k} yi. Since
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y /∈ D, {1, ..., k} \ I 6= ∅. Since W is strongly connected, there is i∗ ∈ I∗ and

j∗ ∈ {1, ..., k} \ I such that wi∗j∗ > 0. But then Ti∗ (y) ≤
∑k

j=1wijyj ≤ wi∗j∗yj∗ +

(1− wi∗j∗) maxi∈{1,...,k} yi = wi∗j∗yj∗+(1− wi∗j∗) yi∗ < yi∗, a contradiction with Ti∗ (y) =

yi∗. �

E.2 Proofs of additional claims in the main text

E.2.1 Computations for Section 4.1

The first-order conditions for the cost-minimization problem given wi ∈ ∆ read as

Qi0 = µ (1− β)Fi (Qi, wi) (50)

Qij =
1

Pj
µβwijFi (Qi, wi) ∀j ∈ {1, ..., k}

where µ is the Lagrange multiplier of the only constraint. Given that Fi (Qi, wi) = 1

in the optimum, by plugging the previous conditions back in the production function

we have:

1 = Si (wi) ξi (β, wi) (Ziµ (1− β)Fi (Qi, wi))
1−β

k∏
j=1

(
1

Pj
µβwijFi (Qi, wi)

)βwij
= µSi (wi) ξi (β, wi) (Zi (1− β))1−β

k∏
j=1

(
1

Pj
βwij

)βwij
= µSi (wi) (Zi)

1−β
k∏
j=1

(
1

Pj

)βwij
which implies that

µ =

(
1

Zi

)1−β k∏
j=1

P
βwij
j

1

Si (wi)
.

Next, observe that, in the optimum, for every i we have

Qi0 = (1− β)

(
1

Zi

)1−β k∏
j=1

P
βwij
j

1

Si (wi)

Qij =
1

Pj
βwij

(
1

Zi

)1−β k∏
j=1

P
βwij
j

1

Si (wi)
∀j ∈ {1, ..., k}

as well as

Ki (P,wi) = Qi0 +

k∑
j=1

PjQij = µ (1− β)Fi (Qi, wi) +

k∑
j=1

Pj

(
1

Pj
µβwijFi (Qi, wi)

)

= µ (1− β) + µβ
k∑
j=1

wij = µ =

(
1

Zi

)1−β k∏
j=1

P
βwij
j

1

Si (wi)
.
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Given that each firm can pick its technology so to minimize their unitary cost, he

zero-profit condition for every i ∈ {1, ..., k} reads

Pi = min
wi∈∆i

Ki (P,wi) = min
wi∈∆

{(
1

Zi

)1−β k∏
j=1

P
βwij
j

1

Si (wi)

}

Taking the logarithms on both sides we get

ln (Pi) = min
wi∈∆

{
(1− β) ln

(
1

Zi

)
+ β

k∑
j=1

wij ln (Pj) + ln

(
1

Si (wi)

)}
.

Next, by defining pi = ln (Pi), xi = ln
(

1
Zi

)
, and ci (wi) = ln

(
1

Si(wi)

)
, we finally get

pi = (1− β)xi + β min
wi∈∆

{
k∑
j=1

wijpj +
1

β
ci (wi)

}
.

Similarly, defining qi0 = ln (Qi0) and qij = ln (Qij) we get

qi0 (β) = ln (1− β) + (1− β)xi + β
k∑
j=1

wij (β) pj (β) + ci (wij (β))

qij (β) = ln (βwij (β))− pβi + (1− β)xi + β
k∑
j=1

wij (β) pj (β) + ci (wij (β))

F Counterexample to general convergence

Consider a normalized, monotone, and translation invariant operator T : Rk → Rk.
Note that if T is such that Ti = Tj for all i, j ∈ {1, ..., k}, then T (y) is a constant

vector for all y ∈ Rk. Fix x ∈ Rk. In this case, this implies that xβ is a constant vector
for all β ∈ (0, 1). In particular, since T is translation invariant, this yields that

xβ = T ((1− β)x+ βxβ) = T ((1− β)x) + βxβ ∀β ∈ (0, 1)

and, in particular,

xβ =
1

1− βT ((1− β)x) ∀β ∈ (0, 1) .

Thus, if our main result were to hold for a generic robust and regular operator, that

is, if limβ→1 xβ were to exist, this would imply that limλ→0+ Ti (λx) /λ would exist for

all x ∈ Rk and for all i ∈ {1, ..., k}. We next exhibit an operator which fails this latter
property, proving that, for this operator, limβ→1 xβ does not exist for all x ∈ Rk.

63



Example 6 Consider a function g : R → R which is Lipschitz continuous, differen-
tiable on R\ {0} with |g′ (t)| ≤ 1

4
for all t 6= 0, and such that g (0) = 0 and limt→0+

g(t)
t

does not exist.21 Define the functional f : R2 → R by

f (x) =
1

2
x1 +

1

2
x2 + g (x1 − x2) ∀x ∈ R2. (51)

Since g (0) = 0, it is easy to see that f is normalized, translation invariant, and Lipschitz

continuous, and, in particular, Clarke differentiable. Since g : R → R is differentiable
on R\ {0}, it follows that f is differentiable on R2\D. In particular, we have that

∇f (x) =

(
1

2
+ g′ (x1 − x2) ,

1

2
− g′ (x1 − x2)

)
≥
(

1

4
,
1

4

)
≥ 0 ∀x ∈ R2\D (52)

and, in particular, ∇f (x) ∈ ∆ for all x ∈ R2\D. By Lebourg’s Mean Value Theorem
and since f is Clarke differentiable, this implies that f is monotone. Finally, consider

x = (1, 0). Note that for each λ > 0

f (λx)

λ
=

1

2
x1 +

1

2
x2 + (x1 − x2)

g (λ (x1 − x2))

λ (x1 − x2)
=

1

2
+
g (λ)

λ
,

which does not converge as λ → 0+. Define now T : R2 → R2 to be such that T1 =

T2 = f . Since f is normalized, monotone, and translation invariant, so is T . By (52),

we can conclude that A (T ) =

(
1 1

1 1

)
and, in particular, regular. Yet, given i {1, 2},

limλ→0+ Ti (λx) /λ = limλ→0+ f (λx) /λ does not exist for x = (1, 0), proving that xβ
does not converge. Incidentally, observe that Rg (xβ) = 0 for all β ∈ (0, 1), so as

suspected, the mere knowledge of the range shrinking to 0 is far from being suffi cient

for the convergence of {xβ}β∈(0,1). N

21Consider the function h : R → R defined by h (t) = 0 for all t ≤ 0 and h (t) = t sin (log t)

for all t > 0. Clearly, h is continuous on its domain and differentiable everywhere apart from 0

(later we will indeed show that limt→0+
h(t)
t does not exist). Note that h′ (t) = 0 for all t < 0 and

h′ (t) = sin (log t) + cos (log t) ∈ [−2, 2] for all t > 0. By the Mean Value Theorem, this implies

that h is Lipschitz continuous of order 2 on (−∞, 0) and (0,∞), separately. Since h (t) = 0 for all

t ≤ 0, it follows that h is Lipschitz continuous of order 2 on its entire domain. Moreover, observe that

h (t) /t = sin (log t) which does not converge as t→ 0+ (take tn = e−(−π2+2kπ) and t′n = e−(π2+2kπ)).

Finally, it is enough to set g = h/8.
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