# Nonlinear Fixed Points and Stationarity: Economic Applications* 

Simone Cerreia-Vioglio ${ }^{a}$, Roberto Corrao ${ }^{b}$, Giacomo Lanzani ${ }^{c}$<br>${ }^{a}$ Università Bocconi and Igier, ${ }^{b}$ MIT, ${ }^{a}$ Harvard University

November 2023


#### Abstract

We consider the fixed points of nonlinear operators that naturally arise in games and general equilibrium models with endogenous networks, dynamic stochastic games, in models of opinion dynamics with stubborn agents, and financial networks. We study limit cases that correspond to high coordination motives, infinite patience, vanishing stubbornness in the applications above, and small exposure to the real sector. Under monotonicity and continuity assumptions, we provide explicit expressions for the limit fixed points. We show that, under differentiability, the limit fixed point is linear in the initial conditions and characterized by the Jacobian of the operator at any constant vector with an explicit and linear rate of convergence. Without differentiability, but under additional concavity properties, the multiplicity of Jacobians is resolved by a representation of the limit fixed point as a maxmin functional evaluated at the initial conditions. In our applications, we use these results to characterize the limit equilibrium actions, prices, and endogenous networks, show the existence of the asymptotic value in a class of zero-sum stochastic games with a continuum of actions, compute a nonlinear version of the eigenvector centrality of agents in networks, and the characterize the equilibrium loss evaluations in financial networks.


[^0]
## 1 Introduction

Nonlinear fixed-point equations are ubiquitous in economic models including the ones that characterize general equilibrium prices, Nash equilibria, continuation values in dynamic games (Shapley equation), steady states under social learning, recursive preferences, and equilibrium loss evaluations in financial networks. Often, these fixed points are indexed by a key economic parameter $\beta \in(0,1)$ capturing, for example, strength of coordination motives, patience, and stubbornness, with the comparative statics for $\beta$ close to 1 playing a prominent role. The problem of solving for these nonlinear fixed points has been tackled with different tools across these applications without a unifying approach.

In this paper, we first highlight a few key mathematical properties shared by all these classes of nonlinear fixed-point equations: monotonicity, translation invariance, and normalization. These properties generalize the ones of linear averaging operators for which the structure of corresponding fixed-point equations is well known. In fact, for the linear case it is in general possible to derive a closed-form expression for the fixed point at each $\beta$ and in particular for the limit as $\beta$ goes to 1 , yielding a rate of convergence as well. These expressions are often interpreted as (Bonacich or eigenvector) centrality measures of agents within the context of, for example, models of production networks (e.g., Long and Plosser [30]) or coordination games (e.g., Ballester et al. [6]) and social learning on networks (Golub and Jackson [24]).

However, in all the aforementioned applications nonlinearities naturally arise due to economic forces. For example, in production network models both relaxing the assumption of Cobb-Douglas production functions (e.g., Baqaee and Farhi [8]) and/or allowing for endogenous networks (e.g., Acemoglu and Azar [1] and Kopytov et al. [29]) generate nonlinearities in the equation describing equilibrium prices. Similarly, in coordination games on networks when we relax the assumption of quadratic payoffs and/or allow for endogenous link formation (e.g., Sadler and Golub [35]) the resulting Nash equilibria are characterized by nonlinear fixed points.

In models of non Bayesian social learning, as soon as we move from the simple DeGroot heuristic to the class of richer models proposed by Cerreia et al. [12], nonlinearities in aggregation arises. Similarly, regulation requires banks not to evaluate loss at (the linear) expected value, but using robust scenario-conditional loss assesments, as the one considered in Adrian and Brunnermeier [3].

Moreover, in some other applications such as stochastic games and recursive preferences the maximization defining the value functions already induces nonlinearities (e.g., Sorin [38]). Yet, in all these cases our three properties are still satisfied. Thus, we exploit this common structure to derive properties of the nonlinear fixed point the most important of which is a closed-form expression for the limit as $\beta$ approaches 1 .

These expressions admit a natural interpretation as nonlinear versions of the (linear) centrality measures above. Along the way, we derive additional results extending the conclusions obtained for the linear case.

Formally, in this paper we consider an operator $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ where $\mathbb{R}^{k}$ is endowed with the supnorm $\left\|\|_{\infty}\right.$. Let $e$ be the vector whose components are all 1 . We assume that:

1. $T$ is normalized, that is, $T(h e)=h e$ for all $h \in \mathbb{R}$;
2. $T$ is monotone, that is, $x \geq y$ implies $T(x) \geq T(y)$ for all $x, y \in \mathbb{R}^{k}$;
3. $T$ is translation invariant, that is, $T(x+h e)=T(x)+h e$ for all $x \in \mathbb{R}^{k}$ and for all $h \in \mathbb{R}$.

As we already pointed out, these three properties are often satisfied in applications in Economics and Computer Science where $T$ is seen as either a best-response map, or a value function, or an opinion aggregator. Clearly, for these maps the set of fixed points/equilibria of $T$, denoted by $E(T)$, contains all the constant vectors, denoted by $D$, that is, $D \subseteq E(T)$.

In these applications, the interest is in the following fixed points equations (with variable $y$ ). Given $x \in \mathbb{R}^{k}$ and $\beta \in(0,1)$,

$$
\begin{equation*}
T((1-\beta) x+\beta y)=y \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\beta) x+\beta T(y)=y \tag{2}
\end{equation*}
$$

it is routine to show that the two equations have each a unique solution (cf. Lemma 1). We denote such solutions by $x_{\beta}$ and $\tilde{x}_{\beta}$, respectively, to highlight their dependence on $x$ and $\beta$. The goal of this paper is to provide conditions that guarantee that $\lim _{\beta \rightarrow 1} x_{\beta}$ and $\lim _{\beta \rightarrow 1} \tilde{x}_{\beta}$ exist, characterize their value, and also comment on the rate of convergence. We prove and state our results for $x_{\beta}$, the solution of equation (1), but Section 3.3 shows that the results immediately extend to $\tilde{x}_{\beta}$, i.e., to the solutions of equation (2).

We next introduce the linear case which is well known. This will provide a useful benchmark to which we can compare our contributions.

Example 1 We begin by observing that further assuming $T$ linear is equivalent to impose that $T(x)=W x$ for all $x \in \mathbb{R}^{k}$ where $W$ is a (row)-stochastic matrix. Given $x \in \mathbb{R}^{k}$ and $\beta \in(0,1)$, let $x_{\beta, W}$ be the (unique) vector satisfying:

$$
\begin{equation*}
T\left((1-\beta) x+\beta x_{\beta, W}\right)=x_{\beta, W} \tag{3}
\end{equation*}
$$

By induction and passing to the limit, it is routine to show that

$$
\begin{equation*}
x_{\beta, W}=(1-\beta) \sum_{t=0}^{\infty} \beta^{t} W^{t+1} x \quad \forall x \in \mathbb{R}^{k}, \forall \beta \in(0,1) \tag{4}
\end{equation*}
$$

By the Hardy-Littlewood Theorem paired with the Mean Ergodic Theorem, this implies $\lim _{\beta \rightarrow 1} x_{\beta, W}$ exists and belongs to $E(T)$.

Assume now that the unique fixed points of $T$ are the constant vectors, that is, $D=E(T)$. This is equivalent to assume that the matrix $W$ has a unique left PerronFrobenius eigenvector $\gamma_{W}$, that is, $\gamma_{W}^{\mathrm{T}} W=\gamma_{W}^{\mathrm{T}}$ and $\gamma_{W}$ is a probability vector. In this case, we can conclude that $\lim _{\beta \rightarrow 1} x_{\beta, W}$ is a constant vector whose value can be computed by observing that

$$
\begin{equation*}
\left\langle\gamma_{W}, x_{\beta, W}\right\rangle=(1-\beta) \sum_{t=0}^{\infty} \beta^{t}\left\langle\gamma_{W}, W^{t+1} x\right\rangle=\left\langle\gamma_{W}, x\right\rangle \quad \forall x \in \mathbb{R}^{k}, \forall \beta \in(0,1) \tag{5}
\end{equation*}
$$

We conclude by commenting on the rate of convergence of $\left\{x_{\beta, W}\right\}_{\beta \in(0,1)}$. Fix again $x \in \mathbb{R}^{k}$ and $\beta \in(0,1)$. Since $\gamma_{W}$ is a probability vector, we have that $\min x_{\beta, W} \leq$ $\left\langle\gamma_{W}, x_{\beta, W}\right\rangle \leq \max x_{\beta, W}$. Since $\left\langle\gamma_{W}, x_{\beta, W}\right\rangle=\left\langle\gamma_{W}, x\right\rangle$, this implies that $\min x_{\beta, W} \leq$ $\left\langle\gamma_{W}, x\right\rangle \leq \max x_{\beta, W}$ and, in particular, $\left\|x_{\beta, W}-\left\langle\gamma_{W}, x\right\rangle e\right\|_{\infty} \leq \max x_{\beta, W}-\min x_{\beta, W}$. In other words, bounding the rate of convergence of $x_{\beta, W}$ can be achieved by bounding the range of $x_{\beta, W}$.

Thus, the main takeaways of the linear case are three:

1. $\lim _{\beta \rightarrow 1} x_{\beta}$ exists;
2. If $E(T)=D$, then we have that

$$
\lim _{\beta \rightarrow 1} x_{\beta}=\left\langle\gamma_{W}, x\right\rangle e \quad \forall x \in \mathbb{R}^{k}
$$

where $\gamma_{W}$ is the unique left Perron-Frobenius eigenvector of the representing matrix $W$;
3. In this case, the rate of convergence of $x_{\beta}$ is controlled by the rate to which the range of $x_{\beta}, \operatorname{Rg}\left(x_{\beta}\right)$, goes to 0 .

Our contributions are to generalize these findings well beyond the linear case. We here discuss an important example. To fix ideas, assume that $T$ is concave, rather than linear. If $E(T)=D$, we again have that $\lim _{\beta \rightarrow 1} x_{\beta}$ exists (cf. Corollary 2). If $E(T)=D$ and $T$ is also differentiable around 0 with partial derivatives that are "nicely" bounded away from 0 when nonnull, then

$$
\lim _{\beta \rightarrow 1} x_{\beta}=\langle\gamma, x\rangle e \quad \forall x \in \mathbb{R}^{k}
$$

where $\gamma$ is the unique left Perron-Frobenius eigenvector of the Jacobian of $T$ at 0 (cf. Corollary 3). Finally, if $T$ has a Jacobian which is Lipschitz continuous, then the rate of convergence of $x_{\beta}$ is controlled by the rate to which $\operatorname{Rg}\left(x_{\beta}\right)$ goes to 0 and $\operatorname{Rg}\left(x_{\beta}\right)$ goes to 0 at least linearly fast (cf. Theorems 2 and 3 ). In the paper, we go well beyond the concave case, which we actually use to study more general functionals (cf. Theorem 1 as well as Corollary 1).

In the second part of the paper we provide economic applications for these results. First, we consider two models of endogenous network formation applied to general equilibrium in a production economy and a coordination game. In both cases, the parameter $\beta$ captures the intrinsic coordination motives of the agents and, under the assumptions of Cobb-Douglas production functions and quadratic costs of effort, the fixed-point equations characterizing the equilibria are linear. However, when the agents are allowed to choose their neighbors structure, either in a costly or constrained way, the equilibria fixed-point equations become nonlinear (and in general nondifferentiable) yet still satisfying all of our assumptions. With this, we completely characterize the limit equilibrium as $\beta \rightarrow 1$ with respect to (generally nonlinear) measures of centrality of the agents. This allows us to extend some of the comparative statics on the equilibrium from the linear case to the differentiable case and to obtain new ones for the nondifferentiable case. Second, we study the classic issue of existence and characterization of the asymptotic value for zero-sum stochastic games (cf. Sorin [38]). We observe that the Shapley equation characterizing the value of the game for every level of the discount factor is a particular case of our fixed point condition, thereby enabling us to use our abstract results to provide a novel characterization of the asymptotic value in terms of the value of a static zero-sum game. We then apply our results to an extension of the dynamic opinion aggregation model in networks of Cerreia-Vioglio et al. [12] that allow for vanishing stubbornness. In this case, we also consider a sequence of weights $\left\{\beta_{t}\right\}_{t \in \mathbb{N}} \subseteq(0,1)$ such that $\beta_{t} \rightarrow 1$ that represents the time-varying and vanishing stubbornness weight that agents assign to their initial opinions. Finally, we consider an equilibrium model of interconnected financial institutions that evaluate their losses with respect to coherent risk measures. In this case, the limit $\beta \rightarrow 1$ captures the idea of increasing financial interconnectedness and our results imply that the robustness concerns of the banks vanish in this limit, exposing all of them to possible model misspecification and large unforeseen losses.

## 2 Operators, matrices, and differentials

Consider a normalized, monotone, and translation invariant operator $T$. It is immediate to see that it is Lipschitz continuous of order 1. By Rademacher's Theorem, $T$ is
(Frechet) differentiable on a subset $\mathcal{D}$ of $\mathbb{R}^{k}$ whose complement has (Lebesgue) measure 0 . Denote by $T_{i}: \mathbb{R}^{k} \rightarrow \mathbb{R}$ the $i$-th component of $T$. Since $T$ is monotone, we have that $\frac{\partial T_{i}}{\partial x_{j}}(x) \geq 0$ for all $i, j \in\{1, \ldots, k\}$ and for all $x \in \mathcal{D}$. Since $T$ is also translation invariant, we have that $\sum_{j=1}^{k} \frac{\partial T_{i}}{\partial x_{j}}(x)=1$ for all $i, j \in\{1, \ldots, k\}$ and for all $x \in \mathcal{D}$. With $T$, we define an adjacency matrix $\underline{A}(T)$ for the operator $T$, that is, $\underline{a}_{i j} \in\{0,1\}$. Given $i, j \in\{1, \ldots, k\}$, we set

$$
\begin{equation*}
\underline{a}_{i j}=1 \Longleftrightarrow \exists \varepsilon_{i j} \in(0,1) \text { s.t. } \frac{\partial T_{i}}{\partial x_{j}}(x) \geq \varepsilon_{i j} \quad \forall x \in \mathcal{D} . \tag{6}
\end{equation*}
$$

In words, $\underline{a}_{i j}$ is defined to be 1 if and only if the partial derivative $\frac{\partial T_{i}}{\partial x_{j}}$ is bounded away from 0 , whenever it exists. We say that $\underline{A}(T)$ is regular if and only if it is nontrivial and its essential indices form a single essential class. ${ }^{1}$ If we think of $\underline{A}(T)$ as representing a directed graph over $k$ nodes, $\underline{A}(T)$ is regular whenever the graph is strongly connected.

Given $z \in \mathbb{R}^{k}$, we denote by $\partial_{C} T_{i}(z)$ the Clarke differential of the $i$-th component of $T$ at $z$. In particular, recall that (see, e.g., [17, Theorem 2.5.1])

$$
\begin{equation*}
\partial_{C} T_{i}(z)=\operatorname{co}\left\{\gamma \in \mathbb{R}^{k}: \gamma=\lim _{k} \nabla T_{i}\left(z^{k}\right) \text { s.t. } z^{k} \rightarrow z \text { and } z^{k} \in \mathcal{D}\right\} \tag{7}
\end{equation*}
$$

By [17, Propositions 2.1.2 and 2.1.5], the correspondence $\partial_{C} T_{i}: \mathbb{R}^{k} \rightrightarrows \mathbb{R}^{k}$ is nonempty, convex-, compact-valued, and upper hemicontinuous. ${ }^{2}$ Given the above discussion, $\partial_{C} T_{i}(z)$ is a collection of probability vectors. We denote by $\partial_{C} T(z)$ the collection of all $k \times k$ (stochastic) matrices whose $i$-th row belongs to $\partial_{C} T_{i}(z) .^{3}$

## 3 Convergence and limit characterization

In this section, we provide our two main results on the existence and characterization of the limit fixed point. In particular, we will consider two cases: (i) $T$ star-shaped (Theorem 1); (ii) $T$ is continuously differentiable at 0 (Corollary 3). Recall that $T$ is star-shaped if and only if $T(\lambda x) \geq \lambda T(x)$ for all $\lambda \in(0,1)$ and for all $x \in \mathbb{R}^{k}$. Clearly, if $T$ is concave, it is star-shaped.

Theorem 1 Let $T$ be normalized, monotone, and translation invariant. If $T$ is starshaped and $\underline{A}(T)$ is regular, then $\lim _{\beta \rightarrow 1} x_{\beta}$ exists for all $x \in \mathbb{R}^{k}$.

[^1]The proof of this result consists of three major steps. In Section 3.1, we first prove Theorem 1 under the assumption that $T$ is concave (a stronger assumption compared to star-shapedness) and assuming $E(T)=D$ (a weaker assumption compared to $\underline{A}(T)$ being regular). This alternative setting allows us to also characterize the limit and show its easy computability. In Section 3.2, we show that convergence of $x_{\beta}$ holds also for operators which can be rewritten as the max of a family of normalized, monotone, translation invariant, and concave operators. Finally, we prove Theorem 1 by showing that star-shaped operators can be rewritten as the max of a family of concave operators.

### 3.1 Concavity and differentiability

Consider $x \in \mathbb{R}^{k}$ and $\beta \in(0,1)$, the next lemma-a routine application of the Banach contraction principle-shows that (1) admits a unique solution, denoted by $x_{\beta}$. To this extent, given $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$, define $T_{\beta, x}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ by $T_{\beta, x}(y)=T((1-\beta) x+\beta y)$. Clearly, the fixed points of $T_{\beta, x}$ are the solutions of (1).

Lemma 1 Let $T$ be normalized, monotone, and translation invariant. If $\beta \in(0,1)$ and $x \in \mathbb{R}^{k}$, then $T_{\beta, x}$ is a $\beta$-contraction. In particular, for each $\beta \in(0,1)$ and for each $x \in \mathbb{R}^{k}$, there exists unique $x_{\beta} \in \mathbb{R}^{k}$ such that

$$
\begin{equation*}
T_{\beta, x}^{t}(y) \rightarrow x_{\beta} \quad \forall y \in \mathbb{R}^{k}, T_{\beta, x}\left(x_{\beta}\right)=x_{\beta}, \text { and }\left\|x_{\beta}\right\|_{\infty} \leq\|x\|_{\infty} \tag{8}
\end{equation*}
$$

Our first result covers the case of continuously differentiable operators.
Corollary 1 Let $T$ be normalized, monotone, and translation invariant. If $T$ is continuously differentiable in a neighborhood of 0 , the Jacobian of $T$ at 0 is regular, and $E(T)=D$, then

$$
\lim _{\beta \rightarrow 1} x_{\beta}=\langle\gamma, x\rangle e \quad \forall x \in \mathbb{R}^{k}
$$

where $\gamma$ is the unique left Perron-Frobenius eigenvector of the Jacobian of $T$ at 0.
We can dispense with the assumption of differentiability, if we impose concavity. To this extent, we introduce some notation and terminology. Given a stochastic $k \times k$ matrix $W$, we denote by

$$
\Gamma(W)=\left\{\gamma \in \Delta: \gamma^{\mathrm{T}} W=\gamma^{\mathrm{T}}\right\}
$$

the collection of all left $W$-invariant probability vectors. It is routine to show that $\Gamma(W)$ is nonempty, convex, and compact. If $W$ has a unique left Perron-Frobenius eigenvector $\gamma_{W}$, then $\Gamma(W)=\left\{\gamma_{W}\right\}$. Given a subset $\mathcal{M}$ of stochastic matrices, we denote by $\Gamma(\mathcal{M})$ the set $\cup_{W \in \mathcal{M}} \Gamma(W)$. In particular, if $\mathcal{M}$ is closed, then $\Gamma(\mathcal{M})$ is compact.

Corollary 2 Let $T$ be normalized, monotone, and translation invariant. If $T$ is concave and $E(T)=D$, then

$$
\lim _{\beta \rightarrow 1} x_{\beta}=\min _{\gamma \in \Gamma\left(\partial_{C} T(0)\right)}\langle\gamma, x\rangle e \quad \forall x \in \mathbb{R}^{k}
$$

Moreover, if $\underline{A}(T)$ is regular, then $\Gamma\left(\partial_{C} T(0)\right)$ is the collection of left Perron-Frobenius eigenvectors of the superdifferentials of $T$ at 0 .

Concavity allows also to improve Corollary 1 . In fact, we can only require differentiability at 0 without explicitly asking the derivative to be continuous near 0 .

Corollary 3 Let $T$ be normalized, monotone, and translation invariant. If $T$ is concave, differentiable at 0 , and $\underline{A}(T)$ is regular, then

$$
\lim _{\beta \rightarrow 1} x_{\beta}=\langle\gamma, x\rangle e \quad \forall x \in \mathbb{R}^{k}
$$

where $\gamma$ is the unique left Perron-Frobenius eigenvector of the Jacobian of $T$ at 0.

### 3.2 Star-shaped operators

In this section, we consider a family of normalized, monotone, translation invariant, and concave operators $\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ such that $E\left(S_{\alpha}\right)=D$ for all $\alpha \in \mathcal{A}$. Given $\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{A}}$, we define $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ by $T(x)=\sup _{\alpha \in \mathcal{A}} S_{\alpha}(x)$ for all $x \in \mathbb{R}^{k}$. ${ }^{4}$ It is immediate to show that $T$ is normalized, monotone, and translation invariant. We say that $\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is nice if and only if the previous sup is achieved for all $x \in \mathbb{R}^{k}$, that is, for each $x \in \mathbb{R}^{k}$ there exists $\alpha_{x} \in \mathcal{A}$ such that $T(x)=S_{\alpha_{x}}(x)$.

Given $x \in \mathbb{R}^{k}, \beta \in(0,1)$, and $\alpha \in \mathcal{A}$, we denote by $x_{\beta, \alpha}$ the unique point satisfying $S_{\alpha}\left((1-\beta) x+\beta x_{\beta, \alpha}\right)=x_{\beta, \alpha}$. For each $\alpha \in \mathcal{A}$ we can define $\varphi_{S_{\alpha}}: \mathbb{R}^{k} \rightarrow \mathbb{R}$ by

$$
\varphi_{S_{\alpha}}(x)=\min _{\gamma \in \Gamma\left(\partial_{C} S_{\alpha}(0)\right)}\langle\gamma, x\rangle \quad \forall x \in \mathbb{R}^{k}
$$

The importance of the maps $\varphi_{S_{\alpha}}$ is underlined by Corollary 2, since $\varphi_{S_{\alpha}}(x) e=$ $\lim _{\beta \rightarrow 1} x_{\beta, \alpha}$ for all $x \in \mathbb{R}^{k}$ and for all $\alpha \in \mathcal{A}$. The next result shows that when $\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is nice, the net $\left\{x_{\beta}\right\}_{\beta \in(0,1)}$ defined for the operator $T$, converges and the limit is given by the sup of the evaluations $\left\{\varphi_{S_{\alpha}}(x)\right\}_{\alpha \in \mathcal{A}}$.

Proposition 1 If $\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is nice, then $\lim _{\beta \rightarrow 1} x_{\beta}=\sup _{\alpha \in \mathcal{A}} \varphi_{S_{\alpha}}(x) e$.
The importance of the above result is twofold. First, in some applications, a collection $\left\{S_{\alpha}\right\}_{\alpha \in A}$ forms the primitives of the problem and the operator $T$ is derived from it

[^2](see, e.g., Section 5). Second, Proposition 1 is useful in proving our main result (Theorem 1). For, a normalized, monotone, translation invariant, and star-shaped operator with regular $\underline{A}(T)$ can always be rewritten as the max of a nice collection $\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{A}}$.

At this point, given that we have presented two distinct results about the existence of the limit (under differentiability and star-shapedness), the reader may be left to wonder whether they are just examples of a more general phenomena. That is, it may be natural to conjecture that the limit fixed point exists for every operator that is normalized, monotone and translation invariant and for which $\underline{A}(T)$ is regular. Unfortunately, this conjecture turns out to be incorrect, and we provide a counterexample in Online Appendix F.

In the next sections, we consider several applications of the results above. We start with an application to endogenous network formations in competitive equilibrium and coordination games models. In that case, the limit $\beta \rightarrow 1$ correspond to the case in which the important of own idiosyncratic factors becomes negligible when compared, respectively, to the importance external inputs or coordination with coplayers. We next move to zero-sum stochastic games. In this case, the limit $\beta \rightarrow 1$ is interpreted as the limit for infinite patience of the players. After that, we apply the results on discrete iterations of Section 8.3 to an extension of the dynamic opinion aggregation model in networks of Cerreia-Vioglio et al. [12]. In this case, the sequence of weights $\left\{\beta_{t}\right\}_{t \in \mathbb{N}} \subseteq(0,1)$ represents the vanishing stubbornness weight that agents assign to their initial opinions. Finally, we consider an application to an equilibrium model of interconnected financial institutions that use coherent risk measure to evaluate the riskiness of their positions. Here, the limit $\beta \rightarrow 1$ captures the idea that the institutions are highly interconnected and that the financial sector dominates the underlying real one. Some of these applications will feature a slightly different form of fixed point equation, the next brief subsection explains why our results also apply to that case.

### 3.3 Alternative fixed point

Consider $x \in \mathbb{R}^{k}$ and $\beta \in(0,1)$. As we mentioned, many applications in Network Theory (e.g., Sections 4 and 6) feature the alternative fixed point

$$
(1-\beta) x+\beta T(z)=z
$$

The next lemma shows that the previous results have immediate implications also for this case. Recall that $\tilde{x}_{\beta}$ denotes the unique solution to (2).

Lemma 2 Let $T$ be normalized, monotone, and translation invariant. If $\beta \in(0,1)$ and $x \in \mathbb{R}^{k}$, then for all $\beta \in(0,1)$ and for all $x \in \mathbb{R}^{k}$

$$
\tilde{x}_{\beta}=(1-\beta) x+\beta x_{\beta} .
$$

In particular, if $\lim _{\beta \rightarrow 1} x_{\beta}$ exists then $\lim _{\beta \rightarrow 1} \tilde{x}_{\beta}$ exists and $\lim _{\beta \rightarrow 1} x_{\beta}=\lim _{\beta \rightarrow 1} \tilde{x}_{\beta}$.

## 4 Application I: Endogenous networks

In this section, we consider competitive equilibria and coordination games on networks with endogenous links. In both cases, when we fix a network structure, the induced equilibrium map is linear, a feature highly exploited in the literature of production networks (e.g., Long and Plosser [30]) and coordination games (e.g., Ballester et al. [6] and Golub and Morris [25]). However, the endogeneity of the network structure introduces nonlinearities in the equilibrium map, thereby complicating the equilibrium analysis. The nonlinear fixed point equation that we have studied in Section 3 implicitly defines the equilibrium maps of both applications, allowing us to characterize it for the limit for high-coordination motives among firms and players respectively.

### 4.1 Production networks

Following Acemoglu et al. [2] and Kopytov et al. [29], we consider a static and frictionless model of production network among cost-minimizing firms with Cobb-Douglas production functions and endogenous networks. The endogeneity of the network structure introduces nonlinearities which are not present in the standard fixed-network model (see Long and Plosser [30]). This makes the analysis considerably less tractable. Thanks to our results, we completely characterize the equilibrium prices and outputs as the firms' idiosyncratic shocks vanish.

Consider a finite set of firms $\{1, \ldots, k\}$ each of which produces a potentially different output. Each firm can choose a set of weights $w_{i} \in \Delta$ specifying both the set of inputs from the other firms that are used in production and how these inputs are to be combined. Moreover, each firm uses an external input that is irreproducible by any of the other firms and whose productivity and importance in the production function are fixed. This can be either labor or another factor that is produced outside the economy we analyze.

As in [29], we fix a productivity shifter $S_{i}: \Delta \rightarrow[0,1]$ that depends on the technology $w_{i}$ selected. Given the level of inputs from the external factor and from the firms in the economy $Q_{i}=\left(Q_{i 0},\left(Q_{i j}\right)_{j=1}^{k}\right) \in \mathbb{R}_{+}^{k+1}$ and technology $w_{i} \in \Delta$, the production
function of firm $i$ is

$$
F_{i}\left(Q_{i}, w_{i}\right)=S_{i}\left(w_{i}\right) \xi\left(\beta, w_{i}\right)\left(Z_{i} Q_{i 0}\right)^{(1-\beta)} \prod_{j=1}^{k} Q_{i j}^{\beta w_{i j}}
$$

where $Z_{i}>0$ is the productivity relative to the external factor for firm $i, \beta \in(0,1)$ is the common intensity of the external factor, and

$$
\xi\left(\beta, w_{i}\right)=(1-\beta)^{-(1-\beta)} \prod_{j=1}^{k}\left(\beta w_{i j}\right)^{-\beta w_{i j}}
$$

is a normalization constant that only depends on the overall technology $\left(\beta, w_{i}\right)$ of firm $i .{ }^{5}$ Each firm selects both a technology $w_{i} \in \Delta$ and levels of all inputs $Q_{i}$ needed given the technology selected. For example, if $w_{i j}=0$ then the input from $j$ is not relevant for $i$ 's production. Let $\mathcal{W}^{*}$ denote the set of strongly connected matrices. We maintain the following assumptions on the productivity shifters.

Assumption: The profile of productivity shifters $S=\left(S_{i}\right)_{i=1}^{k}$ is such that each $S_{i}$ is upper semicontinuous, log-concave, and there exists $W \in \mathcal{W}^{*}$ such that

$$
\begin{equation*}
S_{i}\left(w_{i}\right)=1 \quad \forall i \in\{1, . ., k\} . \tag{9}
\end{equation*}
$$

Upper semicontinuity and log-concavity are technical conditions that guarantees existence of equilibrium and always imposed in this literature, often times in the stronger form of continuity and strict log-concavity. The last part of the assumption involves the set of most efficient technologies. For a given profile of productivity shifters $S=\left(S_{i}\right)_{i=1}^{k}$, define the set

$$
\operatorname{argmax}(S)=\left\{W \in \mathcal{W}: S_{i}\left(w_{i}\right)=1 \quad \forall i \in\{1, . ., k\}\right\} .
$$

The production networks $W \in \operatorname{argmax}(S)$ are the most efficient ones since the production of each firm is not being shifted down by a discount factor. Instead, all those production networks $W \in \mathcal{W}$ such that $S_{i}\left(w_{i}\right)=0$ for some $i \in\{1, \ldots, k\}$ are either extremely inefficient or unfeasible. In turn, equation (9) says that there exist efficient technologies and that every efficient technology induces a strongly connected network. The next examples illustrate natural settings where our assumption is satisfied.

Example 2 When all the feasible technologies are efficient, we have that the productivity shifter of each $i$ is $S_{i}=1_{C_{i}}$ an indicator function over a nonempty, convex, and compact set $C_{i} \subseteq \Delta$ of technologies. In this case, $\operatorname{argmax}(S)$ is the set of all stochastic

[^3]matrices whose $i$-th row belongs to $C_{i}$. The condition in equation (9) implies that at least one efficient configuration admits a unique LPF eigenvector. When each $C_{i}$ is a singleton, $\left\{w_{i}^{0}\right\}$, for some $W^{0} \in \mathcal{W}^{*}$, we have that $\operatorname{argmax}(S)=\left\{W^{0}\right\}$, that is, the production network is exogenously fixed and we get back the standard Cobb-Douglas model of Long and Plosser [30]. Differently, Kopytov et al. [29] consider a continuously differentiable and strictly log-concave function productivity shifter. In [29]'s leading example, they consider
\[

$$
\begin{equation*}
S_{i}\left(w_{i}\right)=\exp \left(-\sum_{j=1}^{k} \kappa_{i j}\left(w_{i j}-w_{i j}^{0}\right)^{2}\right) \quad \forall w_{i} \in \Delta \tag{10}
\end{equation*}
$$

\]

where $W^{0} \in \mathcal{W}^{*}$ is the efficient production network for the economy and $\kappa$ is a positive matrix of weights capturing the cost, in terms of productivity, of moving the $j$-th input share away from its ideal value. Following a parallel logic, we can replace the quadratic distance in equation (10) with another "distance" such as the relative entropy to obtain

$$
\begin{equation*}
S_{i}\left(w_{i}\right)=\exp \left(-\lambda_{i} R\left(w_{i} \| w_{i}^{0}\right)\right) \tag{11}
\end{equation*}
$$

In this case, $R(\cdot \| \cdot)$ is the relative entropy while $W^{0} \in \mathcal{W}^{*}$ and $\lambda_{i}>0$. In both these smooth cases, we have $\operatorname{argmax}(S)=\left\{W^{0}\right\}$. In general, this is the case every time that each $S_{i}$ is strictly log-concave (as in [29]).

Next, we proceed with the description of the equilibrium of the economy. We assume that firms are price takers and act in a perfect-competition economy. We normalize the price of the external factor to 1 and, given a vector $P \in \mathbb{R}_{+}^{k}$ of inputs' prices and a feasible technology $w_{i} \in \Delta$, the cost-minimization problem for firm $i$, producing at least 1 unit of output, is defined by

$$
\begin{equation*}
K_{i}\left(P, w_{i}\right)=\min _{Q_{i} \in \mathbb{R}_{+}^{k+1}}\left\{Q_{i 0}+\sum_{j=1}^{k} Q_{i j} P_{j}: F_{i}\left(Q_{i}, w_{i}\right) \geq 1\right\} \quad \forall i \in\{1, \ldots, k\} \tag{12}
\end{equation*}
$$

Because each firm can choose its technology $w_{i}$ so to minimize their unitary cost, the equilibrium zero-profit condition is
$P_{i}=\min _{w_{i} \in \Delta} K_{i}\left(P, w_{i}\right)=\min _{\left(w_{i}, Q_{i}\right) \in \Delta \times \mathbb{R}_{+}^{k+1}}\left\{Q_{i 0}+\sum_{j=1}^{k} Q_{i j} P_{j}: F_{i}\left(Q_{i}, w_{i}\right) \geq 1\right\} \quad \forall i \in\{1, \ldots, k\}$.
Note that the above equilibria are $\beta$ dependent. In particular, for each $\beta \in(0,1)$, an equilibrium is given by a vector of prices $P \in \mathbb{R}_{+}^{k}$, a matrix of inputs $Q \in \mathbb{R}_{+}^{k \times(k+1)}$, and a network structure $W \in \mathcal{W}$. In the triple $(P, Q, W)$, the vector $P$ solves the fixed point equation (13) and the pair $\left(Q_{i}, w_{i}\right)$ solves the cost-minimization problem in the right hand-side of equation (13).

Following the same steps in [29], ${ }^{6}$ the fixed point condition for equilibrium log-prices can be written as

$$
\begin{equation*}
p_{i}=(1-\beta) x_{i}+\beta \min _{w_{i} \in \Delta}\left\{\sum_{j=1}^{k} w_{i j} p_{j}+\frac{1}{\beta} c_{i}\left(w_{i}\right)\right\} \quad \forall i \in\{1, \ldots, k\} \tag{14}
\end{equation*}
$$

where $p_{i}=\ln \left(P_{i}\right), x_{i}=\ln \left(1 / Z_{i}\right)$, and $c_{i}\left(w_{i}\right)=\ln \left(1 / S_{i}\left(w_{i}\right)\right)$. It is standard to show that, for each $\beta \in(0,1)$, there exists a unique vector of $\log$-prices $p_{\beta}$ that solves the fixed point equation (14) and therefore a unique vector of equilibrium prices $P_{\beta}$. Given these prices, the equilibrium network and quantities are not unique in general due to the fact that each firm might have multiple optimal technologies, that is,

$$
\begin{equation*}
\underset{w_{i} \in \Delta}{\operatorname{argmin}}\left\{\sum_{j=1}^{k} w_{i j} p_{\beta, j}+\frac{1}{\beta} c_{i}\left(w_{i}\right)\right\} \tag{15}
\end{equation*}
$$

might not be single-valued. When $S_{i}$ is strictly log-concave, as in [29], it follows that $c_{i}$ is strictly convex and there exists a unique minimizer $w_{\beta, i}$ in equation (15). This in turn uniquely pins down the equilibrium inputs $Q_{\beta}$.

We aim to characterize the vector of equilibrium prices in the limit for a vanishing intensity of the external factor, that is, we aim to compute $\lim _{\beta \rightarrow 1} p_{\beta}$. To this extent, define

$$
\Gamma(S)=\left\{\gamma \in \Delta: \exists W \in \operatorname{argmax}(S), \gamma^{\mathrm{T}}=\gamma^{\mathrm{T}} W\right\}
$$

the set of all LPF eigenvectors of the efficient production networks. With this, we have the following result.

Proposition 2 The limit equilibrium vector of prices is constant across firms and

$$
\lim _{\beta \rightarrow 1} p_{\beta, i}=\min _{\gamma \in \Gamma(S)}\langle\gamma, x\rangle \quad \forall i \in\{1, \ldots, k\}
$$

Moreover, if $S_{i}$ is continuously differentiable and strictly log-concave for all $i \in\{1, \ldots, k\}$ with $\operatorname{argmax}(S)=\left\{W^{0}\right\}$, then

$$
\lim _{\beta \rightarrow 1} p_{\beta, i}=\left\langle\gamma_{W^{0}}, x\right\rangle, \lim _{\beta \rightarrow 1} w_{\beta, i}=w_{i}^{0}, \lim _{\beta \rightarrow 1} Q_{\beta, i 0}=0, \text { and } \lim _{\beta \rightarrow 1} Q_{\beta, i j}=w_{i j}^{0}
$$

So far, we considered endogenous production networks under a Cobb-Douglas production function. Another potential source of nonlinearity recently studied in the literature of production networks comes from generalizing the production function to the class of nested CES (see for example Baqaee and Farhi [8] and Carvalho and Tahbaz-Salehi [10]). It turns out that our method can also be applied in this case. For

[^4]simplicity, fix a production network $W \in \mathcal{W}^{*}$, and assume that the production function of firm $i$ is
$$
F_{i}\left(Q_{i}\right)=\hat{\xi}_{i}\left(\beta, w_{i}\right)\left(Z_{i} Q_{i 0}\right)^{(1-\beta)}\left(\sum_{j=1}^{k} w_{i j}^{1 / \sigma_{i}} Q_{i j}^{\left(\sigma_{i}-1\right) / \sigma_{i}}\right)^{\beta \sigma_{i} /\left(\sigma_{i}-1\right)}
$$
where $\sigma_{i}$ is the elasticity of substitution among the inputs of the firm and $\hat{\xi}_{i}\left(\beta, w_{i}\right)$ is a normalization constant (potentially different from the one before) that only depends on $\beta$ and the fixed technology $w_{i}$. It is standard to show that in this case the log prices are uniquely characterized by the fixed-point condition ${ }^{7}$
$$
p_{\beta, i}^{N C S}=(1-\beta) x_{i}+\beta \frac{1}{1-\sigma_{i}} \ln \left(\sum_{j=1}^{k} w_{i j} \exp \left(\left(1-\sigma_{i}\right) p_{\beta, j}^{N C S}\right)\right) \quad \forall i \in\{1, \ldots, k\}
$$

Therefore, in that case one obtains that the nonlinear effects emphasized in Baqaee and Farhi [8] matter only for sizeable dependence on the external factor that is not tradeable within the production network.

Proposition 3 The limit equilibrium vector of prices is constant across firms and

$$
\lim _{\beta \rightarrow 1} p_{\beta, i}^{N C S}=\left\langle\gamma_{W^{0}}, x\right\rangle \quad \forall i \in\{1, \ldots, k\}
$$

### 4.2 Coordination games

We consider a finite set of agents $N=\{1, \ldots, n\}$ playing a complementary-effort game on an endogenous network. Each agent chooses how much effort to exercise in the partnership with other agents: $a_{i} \in \mathbb{R}_{+}$. The benefit of effort for agent $i$ is directly proportional to a linear combination of her ability $x_{i} \in \mathbb{R}_{+}$with a weighted average of the efforts exercised by her neighbors. The cost of effort is instead quadratic, a feature that will guarantee linearity of the best response for a given network structure.

Formally, given a fixed weighted and directed network $W \in \mathcal{W}$, the payoff of agent $i$ for every profile of actions $a=\left(a_{i}\right)_{i=1}^{n}$ is

$$
u_{i}\left(a, w_{i}\right)=a_{i}\left((1-\beta) x_{i}+\beta \sum_{j=1}^{n} w_{i j} a_{j}\right)-\frac{a_{i}^{2}}{2}
$$

where $\beta \in(0,1)$ captures the relative importance of complementary efforts over the personal skills of every agent. In what follows, we consider two different cases of endogenous networks. In both cases, we assume that each feasible network structure $W$ has two features: (i) there is no self-link, that is, $w_{i i}=0$ and (ii) $W$ is strongly connected. The first assumption is standard in coordination games on networks (cf. [6] and [25]). We discuss the relevance of the second assumption below. Let us denote the set of stochastic matrices satisfying both (i) and (ii) with $\mathcal{W}_{0}^{*}$.

[^5]Costly link formation Here we assume that, before choosing her effort, each agent $i$ chooses her weighted links $w_{i} \in \Delta_{n}$. This is costly and the cost function of agent $i$ is denoted by $c_{i}: \Delta_{n} \rightarrow[0, \infty]$. In particular, those weighted networks $W \in \mathcal{W}$ such that $c_{i}\left(w_{i}\right)=0$ for all $i \in N$ are the free one. Instead, all those weighted networks $W \in \mathcal{W}$ such that $c_{i}\left(w_{i}\right)=\infty$ for some $i \in N$ are unfeasible. We maintain the following assumptions on the cost functions.

Assumption: The profile of cost functions $c=\left(c_{i}\right)_{i=1}^{n}$ is such that each $c_{i}$ is lower semicontinuous and there is $W \in \mathcal{W}_{0}^{*}$ with

$$
\begin{equation*}
w_{i} \in c o\left(c_{i}^{-1}(0)\right) \quad \forall i \in\{1, \ldots, k\} \tag{16}
\end{equation*}
$$

Lower semicontinuity of the cost functions is a technical condition that guarantees existence of a well-defined best response map for the coordination game. In turn, equation (16) says that each agent has at least a free vector of weights and that there is a strongly connected matrix that can be obtained as the mixture of the free networks. We let

$$
\operatorname{argmin}(c)=\left\{W \in \mathcal{W}: \forall i \in N, w_{i} \in c o\left(c_{i}^{-1}(0)\right)\right\}
$$

denote the set of network structures that can be obtained by mixing vector of weights that are free for all the players. ${ }^{8}$ The next example illustrates a setting where our assumption on the cost functions is satisfied.

Example 3 Assume that the agents are connected on a baseline unweighted and strongly connected network represented by a graph $G \in\{0,1\}^{n \times n}$ with $g_{i i}=0$. Maintaining the links specified in $G$ is free for all the agents. However, they can costly form new links in additional to the ones in $G$. In particular, there is a fixed cost $k>0$ for each addition link that player $i$ forms on top of the baseline ones. We next show how this particular case of costly link formation can be represented by a profile of cost functions $\left(c_{i}\right)_{i=1}^{n}$ satisfying our assumption. Let $N_{i}(G) \subseteq\{1, \ldots, n\}$ denote the set of neighbors of $i$ in the graph $G$. For every $i \in N$, define the set of uniform weights

$$
D_{i}(G)=\left\{\frac{1}{\left|N_{i}\right|} \sum_{j \in N_{i}} \delta_{j} \in \Delta_{n}: N_{i}(G) \subseteq N_{i} \subseteq N \backslash\{i\}\right\}
$$

and the cost function $c_{i}: \Delta_{n} \rightarrow[0, \infty]$ as

$$
c_{i}\left(w_{i}\right)=k\left|\left\{j \in N: w_{i j}>0\right\} \backslash N_{i}(G)\right|+\mathbf{I}_{D_{i}(G)}\left(w_{i}\right)
$$

where $\mathbf{I}_{D_{i}(G)}$ is the equal to 0 if $w_{i} \in D_{i}(G)$ and $\infty$ otherwise. On the one hand, it is easy to see that $c_{i}$ is lower semicontinuous. On the other hand, the uniform network

[^6]$W(G)$ defined by $w_{i}(G)=\frac{1}{\left|N_{i}(G)\right|} \sum_{j \in N_{i}(G)} \delta_{j}$ for all $i \in N$ is fre for every player. Moreover, given that $k>0$, this is the only free network for all the agents, that is $\arg \min (c)=\{W(G)\} \subseteq W_{0}^{*}$, were the last inclusion follows from the properties of $G$. Therefore $\left(c_{i}\right)_{i=1}^{n}$ satisfy our assumption.

For a fixed profile of cost functions $c$, we assume that the total payoff of each player $i \in N$ given a profile of efforts $a \in \mathbb{R}_{+}^{n}$ and weighted links $w_{i} \in \Delta_{n}$ is $u_{i}\left(a, w_{i}\right)-$ $a_{i} c_{i}\left(w_{i}\right)$. In words, the total cost of forming and maintaining the link is increasing and linear in the effort chosen. The assumption that the effort and the weighted links are complementary in increasing the total cost of the player has been already considered by Sadler and Golub [35] in a context of endogenous link formation. Here, we are adding the linearity assumption which, as we show below, allows us to exploit our previous results to characterize the limit equilibrium of the game and, in Section 8.1, to study the epsilon-equilibria of the game for $\beta$ away from 1.

We next analyze the best response map of the total game of choosing both the weighted links and the effort. In particular, observe that neither the payoff function $u_{i}$ nor the cost function $c_{i}$ of $i$ depend on the links chosen by the other agents. Therefore, given a conjecture $a_{-i} \in \mathbb{R}_{+}^{n-1}$ about the effort of the other agents, player $i$ solves

$$
\max _{a_{i} \in \mathbb{R}_{+}} \max _{w_{i} \in \Delta_{n}}\left\{u_{i}\left(a, w_{i}\right)-a_{i} c_{i}\left(w_{i}\right)\right\} .
$$

Observe that the previous maximization problem can be rewritten as

$$
\max _{a_{i} \in \mathbb{R}_{+}}\left\{a_{i} \max _{\tilde{w}_{i} \in \Delta_{n}}\left\{\beta \sum_{j=1}^{n} \tilde{w}_{i j} a_{j}-c_{i}\left(\tilde{w}_{i}\right)\right\}-\frac{a_{i}^{2}}{2}\right\}
$$

Therefore the induced objective function is still quadratic with respect to the choice variable $a_{i}$, hence the unique best response can be still characterized by the first-order conditions. In general, this implies that a profile of efforts $a \in \mathbb{R}_{+}^{n}$ and a weighted network $W \in \mathcal{W}$ form a Nash equilibrium of the total game if and only if, for every $i \in N$,

$$
\begin{equation*}
a_{i}=(1-\beta) x_{i}+\beta \max _{\tilde{w}_{i} \in \Delta_{n}}\left\{\sum_{j=1}^{n} \tilde{w}_{i j} a_{j}-\frac{c_{i}\left(\tilde{w}_{i}\right)}{\beta}\right\} \tag{17}
\end{equation*}
$$

and

$$
w_{i} \in \underset{\tilde{w}_{i} \in \Delta_{n}}{\operatorname{argmax}}\left\{\sum_{j=1}^{n} \tilde{w}_{i j} a_{j}-\frac{c_{i}\left(\tilde{w}_{i}\right)}{\beta}\right\}
$$

The first condition is a standard fixed-point equation on the profile actions $a$. The main difference with respect to the game with a fixed weighted network is the nonlinearity of the fixed point equation. However, we show below that it can be still analyzed through the results of the previous sections. The second condition instead requires that the
equilibrium network is a best response for each player given the efforts chosen by the others.

It is not hard to see that, for every $\beta \in(0,1)$, there exists a unique equilibrium profile of efforts $a_{\beta} \in \mathbb{R}_{+}^{n}$ that solves the fixed-point equation (17). We aim to characterize the limit for high coordination motives $\lim _{\beta \rightarrow 1} a_{\beta}$. First, define

$$
\Gamma(c)=\left\{\gamma \in \Delta_{n}: \exists W \in \operatorname{argmin}(c), \gamma^{\mathrm{T}}=\gamma^{\mathrm{T}} W\right\}
$$

the set of all the eigenvector centralities of networks that are free. With this we have the following result.

Proposition 4 The limit equilibrium profile of efforts is well defined, constant across players, and equal to $\lim _{\beta \rightarrow 1} a_{\beta, i}=\max _{\gamma \in \Gamma(c)}\langle\gamma, x\rangle$ for every $i \in\{1, \ldots, k\}$.

The main implication is that the most central agent in any of the limit equilibrium networks are those that are at the same time most efficient (higher $x_{i}$ ) and cheaper to link with.

Example 4 As already established, we have $\arg \min (c)=\{W(G)\}$ where $w_{i}(G)=$ $\frac{1}{\left|N_{i}(G)\right|} \sum_{j \in N_{i}(G)} \delta_{j}$ for all $i \in N$. This implies that $W(G)$ is the unique equilibrium network consistent with the limit for $\beta \rightarrow 1$. Moreover, it is well known that the eigenvector centrality of $W(G)$ is given by

$$
\gamma_{i}(G)=\frac{\left|N_{i}(G)\right|}{\sum_{j \in N}\left|N_{j}(G)\right|} \quad \forall i \in N
$$

With this, we have $\Gamma(c)=\{\gamma(G)\}$, hence that

$$
\lim _{\beta \rightarrow 1} a_{\beta, i}=\frac{\sum_{j \in N}\left|N_{j}(G)\right| x_{j}}{\sum_{j \in N}\left|N_{j}(G)\right|}
$$

Therefore, the common equilibrium effort is relatively higher if the agents who are relatively more efficient (i.e., high $x_{i}$ ) are also those that are more central in the baseline network.

## 5 Application II: Zero-sum stochastic games

In this section, we consider zero-sum stochastic games with finitely many states and a continuum of actions for both players. We closely follow the textbook formalization of Sorin [38, Chapter 5].

There are two players repeatedly interacting in a zero-sum game under uncertainty. We identify the two player as the maximizer and the minimizer. Time is discrete $t \in \mathbb{N}$
and at each period the game is at a state drawn from a finite set $\Omega$. At the end of each period, an outcome $r$ from a finite set $R \subseteq \mathbb{R}$ realizes and the maximizer gets payoff $r$ and the minimizer gets $-r$. The set of feasible actions for the maximizer and the minimizer are respectively denoted by $S$ and $Q$, two compact metric spaces. Both the outcome at period $t$ and the state at period $t+1$ depend on players' actions and the state at period $t$. Formally, this is described by a continuous transition map $\rho: S \times Q \times \Omega \rightarrow \Delta(R \times \Omega)$. With a small abuse of notation, we also use $\rho$ to denote its linear extension $\rho: \Delta(S) \times \Delta(Q) \times \Omega \rightarrow \Delta(R \times \Omega)$ to mixed actions as well as the corresponding marginal distributions over $R$ and $\Omega .{ }^{9}$ With this, define the statedependent one-period expected reward $g: \Delta(S) \times \Delta(Q) \times \Omega \rightarrow \mathbb{R}$ as

$$
g(\hat{s}, \hat{q}, \omega)=\sum_{r^{\prime} \in R} r^{\prime} \rho(\hat{s}, \hat{q}, \omega)\left(r^{\prime}\right)
$$

This setting is equivalent to the more standard one where there are no outcomes and the primitive objects are a transition function $\rho: S \times Q \times \Omega \rightarrow \Delta(\Omega)$ and a oneperiod expected reward function $g: S \times Q \times \Omega \rightarrow \mathbb{R}$ (e.g., Sorin [38, Chapter 5]). We explicitly keep track of the outcomes so to obtain a cleaner limit characterization using our methods.

Following the standard analysis of zero-sum stochastic games, we consider two different cases: (i) the one-period game is infinitely repeated and the agents maximize their discounted expected payoffs with common discount factor $\beta \in(0,1)$; (ii) the oneperiod game is repeated only $t$ times and the agents maximize the time average of their expected payoffs.

In case (i), it is well known that, for each discount factor $\beta \in(0,1)$, the value of the game $v^{\beta} \in \mathbb{R}^{\Omega}$ exists and is the unique solution of the Shapley equation (see, e.g., Neyman and Sorin [33, Theorem 2 of Chapter 8]):

$$
\begin{equation*}
v_{\omega}^{\beta}=\max _{\hat{s} \in \Delta(S)} \min _{\hat{q} \in \Delta(Q)}\left\{(1-\beta) g(\hat{s}, \hat{q}, \omega)+\beta \sum_{\omega^{\prime} \in \Omega} v_{\omega^{\prime}}^{\beta} \rho(\hat{s}, \hat{q}, \omega)\left(\omega^{\prime}\right)\right\} \quad \forall \omega \in \Omega . \tag{18}
\end{equation*}
$$

Similarly, in case (ii), for every length $t \in \mathbb{N}$, the value of the game $v^{t} \in \mathbb{R}^{\Omega}$ exists and satisfies the following recursive equation:

$$
\begin{equation*}
v_{\omega}^{t}=\max _{\hat{s} \in \Delta(S)} \min _{\hat{q} \in \Delta(Q)}\left\{\frac{1}{t} g(\hat{s}, \hat{q}, \omega)+\frac{t-1}{t} \sum_{\omega^{\prime} \in \Omega} v_{\omega^{\prime}}^{t-1} \rho(\hat{s}, \hat{q}, \omega)\left(\omega^{\prime}\right)\right\} \quad \forall \omega \in \Omega . \tag{19}
\end{equation*}
$$

[^7]for all $\hat{s} \in \Delta(S)$ and $\hat{q} \in \Delta(Q)$.

We say that the game has an asymptotic value (cf. Sorin [38]) if and only if both $\lim _{\beta \rightarrow 1} v^{\beta}$ and $\lim _{t} v^{t}$ exist and coincide. ${ }^{10}$ Our abstract analysis of nonlinear fixed points yields the existence of the asymptotic value and its explicit form under a minimal connectedness assumption.

We first need some preliminary definitions. Let $\Sigma_{S}=\Delta(S)^{\Omega}$ and $\Sigma_{Q}=\Delta(Q)^{\Omega}$ denote the set of stationary mixed strategies of the agents and, for all $\sigma_{S} \in \Sigma_{S}$ and $\sigma_{Q} \in \Sigma_{Q}$, let $W\left(\sigma_{S}, \sigma_{Q}\right)$ denote the transition matrix between state-outcome pairs with entries given by

$$
w_{(r, \omega),\left(r^{\prime}, \omega^{\prime}\right)}\left(\sigma_{S}, \sigma_{Q}\right)=\rho\left(\sigma_{S}(\omega), \sigma_{Q}(\omega), \omega\right)\left(r^{\prime}, \omega^{\prime}\right) \quad \forall(r, \omega),\left(r^{\prime}, \omega^{\prime}\right) \in R \times \Omega
$$

Let $n=|R \times \Omega|$. Next we state the crucial assumption that allows us to apply our result to the current stochastic-game setting.

Assumption A: There exists a regular adjacency matrix $A \in\{0,1\}^{n \times n}$ such that $\underline{A}\left(W\left(\sigma_{S}, \sigma_{Q}\right)\right) \geq A$ for all $\sigma_{S} \in \Sigma_{S}$ and $\sigma_{Q} \in \Sigma_{Q}$.

In words, we assume that there exist links between outcome-state pairs, the ones prescribed by $A$, that cannot be shut down by the actions of the players, no matter what. Moreover, these baseline links are such that there exists a unique essential class of essential pairs $(r, \omega)$. Importantly, this implies that each $W\left(\sigma_{S}, \sigma_{Q}\right)$ admits a unique Perron-Frobenius eigenvector, denoted by $\gamma\left(\sigma_{S}, \sigma_{Q}\right) \in \Delta(R \times \Omega)$. With the same abuse of notation as before we use the same symbol $\gamma\left(\sigma_{S}, \sigma_{Q}\right)$ for its marginal over outcomes.

Proposition 5 Under Assumption A, the game has an asymptotic value that is independent of the state and such that

$$
\lim _{\beta \rightarrow 1} v^{\beta}=\lim _{t} v^{t}=\left(\sup _{\sigma_{S} \in \Sigma_{S}} \min _{\sigma_{Q} \in \Sigma_{Q}} \sum_{r \in R} r \gamma\left(\sigma_{S}, \sigma_{Q}\right)(r)\right) e .
$$

This result extends the standard result on the existence and characterization of the asymptotic value of zero-sum stochastic games from the finite case to the class of games considered in the current section (see for example Sorin [38, Propositions 5.125.14]). As in the finite case, the asymptotic value coincides with the value of static zero-sum game with expected payoffs given by the stationary distributions generated by the players' strategies.

Whenever $Q$ is a singleton, we obtain a Markov decision process (MDP) where the minimizer is optimally controlling her cost. With this, Proposition 5 collapses to average-cost optimality for MDPs with a continuum of actions and finitely many states,

[^8]that is,
$$
\lim _{\beta \rightarrow 1} v^{\beta}=\lim _{t} v^{t}=\left(\sup _{\sigma_{S} \in \Sigma_{S}} \sum_{r \in R} r \gamma\left(\sigma_{S}\right)(r)\right) e .
$$

Finally, observe that, in this setting, Theorem 2 can be applied and would deliver an estimate on how the value of the game depends on the current state for every $\beta \in(0,1)$.

## 6 Application III: Opinion aggregation with stubbornness

Cerreia-Vioglio et al. [12] consider a finite set of agents $i \in\{1, \ldots, k\}$ and let $x \in \mathbb{R}^{k}$ denote an arbitrary profile of opinions for the agents. An opinion is just a real number that can be interpreted as the estimate of agent $i$ about some fundamental parameter of interest or the intensity with which an individual agrees with a certain policy. Under this interpretation, they assume that the opinions of the agent evolve according to the operator $T$, that is, if the current profile of opinions is $x$, then the profile of opinions in the next period is $T(x)$. With this, the sequence of iterates $\left\{T^{t}(x)\right\}_{t=1}^{\infty}$ corresponds to the sequence of profile of opinions in the population over time. For example, when $T=W$ is linear, we obtain the celebrated DeGroot's model [18] of opinion aggregation of experts. ${ }^{11}$ In particular, Golub and Jackson [24] interpreted $W$ as a directed and weighted network where the entry $w_{i j}$ represents the weighted link from $j$ to $i$. In general, motivated by the fact agents may use opinion aggregators reflecting their attraction or aversion for extreme opinions, [12] introduce several classes of nonlinear opinion aggregators $T$. For example, when

$$
\begin{equation*}
T_{i}(x)=\frac{1}{\lambda_{i}} \ln \left(\sum_{j=1}^{k} w_{i j} \exp \left(\lambda_{i} x_{j}\right)\right) \tag{20}
\end{equation*}
$$

for some fixed set of weighted links $w_{i} \in \Delta$ and a parameter $\lambda_{i} \in \mathbb{R}$, it is possible to model agents with heterogeneous attractions for high $\left(\lambda_{i}>0\right)$ or low $\left(\lambda_{i}<0\right)$ opinions while maintaining the underlying linear network structure. Alternatively, we can altogether relax the existence of a single network structure and consider opinion aggregators such as

$$
\begin{equation*}
T_{i}(x)=\alpha_{i} \min _{w_{i} \in C_{i}}\left\langle w_{i}, x\right\rangle+\left(1-\alpha_{i}\right) \max _{w_{i} \in C_{i}}\left\langle w_{i}, x\right\rangle \tag{21}
\end{equation*}
$$

where $C_{i} \subseteq \Delta$ is a compact and convex set of possible weighted links to $i$ and $\alpha_{i} \in[0,1]$ is a parameter capturing the relative attraction of $i$ for high or low opinions. It is routine

[^9]to show that if each element $T_{i}$ of $T$ is defined as in equations (20) or (21), then $T$ is monotone, normalized, and translation invariant.

Friedkin and Johnsen [20] proposed a variation of the DeGroot's model where the agents have a degree of stubbornness with respect to their initial opinions. Here we extend Friedkin and Johnsen's model of stubbornness by considering nonlinear opinion aggregators $T$ with the functional properties introduced above. Formally, we assume that, for every period $t \in \mathbb{N}$, the profile of opinions in the population is

$$
\begin{equation*}
\tilde{x}_{i}^{t}=(1-\beta) x_{i}+\beta T_{i}\left(\tilde{x}^{t-1}\right) \quad \forall i \in\{1, \ldots, k\} \tag{22}
\end{equation*}
$$

where $\beta \in(0,1)$ is a fixed parameter capturing the degree of stubbornness in the population and $x=\tilde{x}^{0}$ is the profile of initial opinions. In words, each agent $i$ aggregates the last-period opinions $\tilde{x}^{t-1}$ with her opinion aggregator $T_{i}$ and then mixes the resulting aggregate with her original opinion, using the common weight $\beta$. When $T=W$ is linear, we exactly obtain Friedkin and Johnsen's model. In general, it is easy to see that the sequence of opinions $\left\{\tilde{x}^{t}\right\}_{t=1}^{\infty}$ converges to the unique fixed point $\tilde{x}_{\beta}$ defined in equation (2), which then corresponds to the long-run profile of opinions of the agent under stubbornness $\beta$. Provided that it exists, the $\lim _{\beta \rightarrow 1} \tilde{x}_{\beta}$ corresponds to the profile of long-run opinions of the agents as the stubbornness friction is vanishing. ${ }^{12}$

The results of Section 3 can be applied to this setting. For example, consider the standard Friedkin and Johnsen model with linear $T=W$ having a single LPF eigenvector $\gamma_{W}$ and compare it to an alternative opinion aggregator $\tilde{T}$ where the agents have the same network structure $W$ but aggregate opinions according to equation (20) for some profile of parameters $\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in \mathbb{R}^{k}$. Because $\tilde{T}$ is continuously differentiable with $J_{\tilde{T}}(0)=W$, Corollary 1 states that, regardless of the value of $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, the opinions of the agents will converge to the same consensus $\left\langle\gamma_{W}, x\right\rangle$ for both $T$ and $\tilde{T}$.

Alternatively, consider the opinion aggregator $T$ defined as in equation (21) such that, for every $i \in\{1, \ldots, k\}$, we have $\alpha_{i}=\alpha$ and

$$
C_{i}=\left\{(1-\varepsilon) w_{i}^{0}+\varepsilon w_{i}: w_{i} \in \Delta\right\}
$$

for some $\alpha \in[0,1], \varepsilon \in[0,1)$, and stochastic matrix $W \in W$ with $A(W)$ regular. Also fix a vector of initial opinions $x \in \mathbb{R}^{k}$ and define

$$
\hat{x}^{\varepsilon}=\varepsilon[I-(1-\varepsilon) W]^{-1} x .
$$

[^10]Observe that $T$ can be written as $T=(1-\varepsilon) W+\varepsilon S$ where

$$
S_{i}(z)=\alpha \min _{j \in\{1, \ldots, k\}} z_{j}+(1-\alpha) \max _{j \in\{1, \ldots, k\}} z_{j} \quad \forall z \in \mathbb{R}^{k}, \forall i \in\{1, \ldots, k\}
$$

Therefore, Proposition 1 implies that the long-run opinions as the stubbornness vanishes converge to the consensus

$$
\alpha \min _{j \in\{1, \ldots, k\}} \hat{x}_{j}^{\varepsilon}+(1-\alpha) \max _{j \in\{1, \ldots, k\}} \hat{x}_{j}^{\varepsilon} .
$$

In words, we first need to compute the vector of opinions of the agents obtained by applying the matrix of $\varepsilon$-weighted Bonacich centralities of $W$ to $x$ and the linearly combine the maximum and the minimum of the opinions so obtained.

## 7 Application IV: Financial networks

In this section, we consider an equilibrium model of systemic risk where a group of financial institutions are exposed to idiosyncratic losses and hold cross-capital interdependencies. Following the approach of Adrian and Brunnermeier [3] in modeling systemic risk, we assume that the banks' expected losses conditional on each macroeconomic scenario are given by conditional risk measures (see also Detlefsen and Scandolo [19]).

Consider a finite number of banks $K=\{1, \ldots,|K|\}$ and states of the world $\Omega=$ $\{1, \ldots,|\Omega|\}$. We interpret each state $\omega \in \Omega$ as a possible macroeconomic scenario that determines the nature of the idiosyncratic losses of the banks. Formally, fix $x \in \mathbb{R}^{K \times \Omega}$ and interpret $x_{k, \omega}$ as the realization of the idiosyncratic loss in real-economy assets for bank $k$ in state $\omega$. Each bank $k$ is endowed with a partition $\Pi_{k} \subseteq 2^{\Omega}$ of the states representing the coarsened scenarios considered by $k$. In particular, we assume that $\Pi_{k}$ is finer than the partition induced by the random variable $x_{k} \in \mathbb{R}^{\Omega}$ representing the idiosyncratic loss of $k$, that is, each bank is able to discern the scenarios determining their own losses in real-economy assets. Moreover, we assume that $\left\{\Pi_{k}\right\}_{k \in K}$ are common knowledge. Finally, the banks are connected in a financial network represented by a strongly connected stochastic matrix $M \in[0,1]^{K \times K}$ whose entries correspond to the financial interdependencies among the banks: $m_{k, k^{\prime}} \in[0,1]$ is the exposure of bank $k$ to bank $k^{\prime}$ and $m_{k, k}=0$ for all $k \in K$.

Each bank $k$ has to declare their expected total loss in each of the considered scenarios, that is, for each cell of $\Pi_{k}$. The total loss of each bank is a combination of the realized idiosyncratic loss and the estimated loss induced by the exposures to the other banks. For every $k, k^{\prime} \in K$, let $y_{k, k^{\prime}} \in \mathbb{R}^{\Omega}$ denote the state-contingent loss of bank $k^{\prime}$ conjectured by bank $k$. In particular, $y_{k, k^{\prime}}$ is a random variable that is measurable
with respect to $\Pi_{k^{\prime}}$. With this, the total conjectured loss of bank $k$ for state $\omega$ is

$$
\begin{equation*}
(1-\beta) x_{k, \omega}+\beta \sum_{k^{\prime} \in K} m_{k, k^{\prime}} y_{k, k^{\prime}, \omega}, \tag{23}
\end{equation*}
$$

where $\beta \in(0,1)$ captures the intensity of cross exposure of the banks.
The total conjectured loss in equation (23) is still a random variable from the point of view of bank $k$ since each $y_{k, k^{\prime}}$ is only measurable with respect to $\Pi_{k^{\prime}}$. We endow each bank $k$ with a conditional risk measure $V_{k}: \Omega \times \mathbb{R}^{\Omega} \rightarrow \mathbb{R}$ that quantifies each possible uncertain prospect in terms of monetary loss, conditional to each scenario considered by bank $k$. Following Detlefsen and Scandolo [19], we assume that each $V_{k}$ is measurable with respect to $\Pi_{k}$ and such that, for every $\omega \in \Omega$, the functional $V_{k}(\omega, \cdot)$ is normalized, monotone decreasing, convex, cash invariant, that is

$$
V_{k}(\omega, \ell+k e)=V(\omega, \ell)-k \quad \forall \omega \in \Omega, \forall \ell \in \mathbb{R}^{\Omega}, \forall k \in \mathbb{R},
$$

and information regular, that is,

$$
V_{k}\left(\omega, \ell 1_{\Pi(\omega)}+h 1_{\Pi(\omega)^{c}}\right)=V(\omega, \ell) \quad \forall \omega \in \Omega, \forall \ell, h \in \mathbb{R}^{\Omega}
$$

By [19, Theorem 1], this conditional risk measure admits the following representation

$$
V_{k}(\omega, \ell)=\max _{p \in \Delta(\Omega)}\left\{-\sum_{\tilde{\omega} \in \Omega} \ell_{\tilde{\omega}} p_{\tilde{\omega}}-c_{k, \omega}(p)\right\} \quad \forall \omega \in \Omega, \forall \ell \in \mathbb{R}^{\Omega}
$$

where, for every $\omega \in \Omega$, the function $c_{k, \omega}: \Delta(\Omega) \rightarrow[0, \infty]$ is grounded, convex, lower semicontinuous, and such that $c_{k, \omega}(p)<\infty$ implies that $p \in \Delta\left(\Pi_{k}(\omega)\right)$.

Given conjectures $\left\{y_{k, k^{\prime}}\right\}_{k^{\prime} \in K \backslash\{k\}}$, the risk of bank $k$ in state $\omega$ is given by

$$
\begin{aligned}
& V_{k}\left(\omega,(1-\beta) x_{k}+\beta \sum_{k^{\prime} \in K} m_{k, k^{\prime}} y_{k, k^{\prime}}\right) \\
& =-(1-\beta) x_{k, \omega}+\beta \max _{p \in \Delta(\Omega)}\left\{-\sum_{\left(k^{\prime}, \omega^{\prime}\right) \in K \times \Omega} m_{k, k^{\prime}} p_{\omega^{\prime}} y_{k, k^{\prime}, \omega^{\prime}}-\frac{1}{\beta} c_{k, \omega}(p)\right\},
\end{aligned}
$$

where the equality follows from the fact that $x_{k}$ is $\Pi_{k}$-measurable and information regularity.

In equilibrium, each bank has correct conjectures about the loss declared by all the other banks in every state. Formally, for every level of connectedness $\beta$, the vector of losses $x^{\beta} \in \mathbb{R}^{K \times \Omega}$ is an equilibrium if and only if

$$
\begin{equation*}
x_{k, \omega}^{\beta}=-V_{k}\left(\omega,(1-\beta) x_{k}+\beta \sum_{k^{\prime} \in K} m_{k, k^{\prime}} x_{k^{\prime}}^{\beta}\right) \quad \forall(k, \omega) \in K \times \Omega . \tag{24}
\end{equation*}
$$

Fixed-point conditions such as the one in equation (24) are pervasive in equilibrium analysis of financial networks (see for example the survey Jackson and Pernoud [28]). In particular, as $\beta \rightarrow 1$, the losses from financial interdependencies dominate the idiosyncratic losses from own real assets.

Next, define the concave operator $T: \mathbb{R}^{K \times \Omega} \rightarrow \mathbb{R}^{K \times \Omega}$ as

$$
T_{(k, \omega)}(z)=\min _{p \in \Delta(\Omega)}\left\{\sum_{\left(k^{\prime}, \omega^{\prime}\right) \in K \times \Omega} m_{k, k^{\prime}} p_{\omega^{\prime}} z_{k^{\prime}, \omega^{\prime}}+c_{k, \omega}(p)\right\} \quad \forall z \in \mathbb{R}^{K \times \Omega} .
$$

Under the mild connectedness assumption that $E(T)=D \subseteq \mathbb{R}^{K \times \Omega}$, Corollary 2 implies that the limit risk $\lim _{\beta \rightarrow 1} x^{\beta}$ exists and is independent of the realized fundamental state as well as of the bank's identity.

This result has particularly strong implications for the case of smooth divergence risk measures with respect to a common ex-ante probabilistic model. Formally, we assume that the banks share the same full support probabilistic model $p^{0} \in \Delta(\Omega)$ in the ex-ante stage and then update conditional on their private information. For example, bank $k$ in state $\omega$ has interim belief $p^{0}\left(\cdot \mid \Pi_{k}(\omega)\right)$. Therefore, in the interim stage, the conditional risk measure of bank $k$ in state $\omega$ is

$$
V_{k}(\omega, \ell)=\max _{p \in \Delta(\Omega)}\left\{-\sum_{\tilde{\omega} \in \Omega} \ell_{\tilde{\omega}} p_{\tilde{\omega}}-D_{k}\left(p \| p^{0}\left(\cdot \mid \Pi_{k}(\omega)\right)\right)\right\} \quad \forall \ell \in \mathbb{R}^{\Omega}
$$

where $D_{k}(\cdot \| \cdot): \Delta(\Omega) \times \Delta(\Omega) \rightarrow[0, \infty]$ is a divergence that is essentially strictly convex (cf. Maccheroni et al. [32]). The standard example of such divergences is the relative entropy.

We are now ready for the main result of this section. Let $\mu \in \Delta(K)$ denote the unique left Perron-Frobenius eigenvector of $M$.

Corollary 4 We have that

$$
\lim _{\beta \rightarrow 1} x^{\beta}=\left(\sum_{k \in K} \mu_{k}\left(\sum_{\omega \in \Omega} p_{\omega}^{0} x_{k, \omega}\right)\right) e .
$$

This result follows by Corollary 3 and Golub and Morris [25, Proposition 3]. It shows that the limit equilibrium exists, is independent on the state-bank index, and coincides with convex linear combination of the ex-ante linear expectation of the banks' losses with weights given by the eigenvector centrality of the network. Therefore, as $\beta \rightarrow 1$, the losses declared by all the banks tend to ignore completely their concern for robustness converging to an aggregated probabilistic evaluation of the losses. This result is even more surprising when we observe that the concern for robustness, indexed by the divergences $D_{k}(\cdot \| \cdot)$, can be heterogeneous across the banks.

The result has also important implications whenever the common ex-ante probabilistic model $p^{0}$ of the banks is highly misspecified. Indeed, suppose that the banks are aware of the possibility of misspecification and evaluate their losses with robust risk measures such as the divergence ones. Even in this case, high connectedness and equilibrium reasoning can offset the caution used in the evaluations and lead the banks to declare losses that become closer and closer to their original misspecified expectations.

## 8 Additional results

In this section, we provide additional results complementary to our main convergence result and illustrate them by revisiting some of the economic applications proposed.

### 8.1 Fit of the approximation

The goal of this section is to provide estimates on the rate of convergence of the nets $\left\{x_{\beta}\right\}_{\beta \in(0,1)}$ and $\left\{\tilde{x}_{\beta}\right\}_{\beta \in(0,1)}$. In order to achieve this, we observe that all our previous results are for operators whose fixed points are the constant vectors. Conceptually, this makes the quantities

$$
\max \tilde{x}_{\beta}-\min \tilde{x}_{\beta} \text { and } \max x_{\beta}-\min x_{\beta}
$$

interesting. In fact, both converge to zero as $\beta$ goes to 1 . We first bound these two quantities and then use them to provide an estimate for the rate of convergence. Perhaps interestingly, computing these bounds does not require to know that $\left\{x_{\beta}\right\}_{\beta \in(0,1)}$ and $\left\{\tilde{x}_{\beta}\right\}_{\beta \in(0,1)}$ converge.

### 8.1.1 Range

Given a vector $y \in \mathbb{R}^{k}$, we denote by $\operatorname{Rg} y$ the quantity $\max _{i \in\{1, \ldots, k\}} y_{i}-\min _{i \in\{1, \ldots, k\}} y_{i}$. We define

$$
\delta=\min _{i, j: a_{i j}=1} \inf _{x \in \mathcal{D}} \frac{\partial T_{i}}{\partial x_{j}}(x)
$$

Next, consider the adjacency matrix $\underline{A}(T) \vee I$ which coincides with $\underline{A}(T)$ with the possible exception of the diagonal where the diagonal entries of $\underline{A}(T) \vee I$ are all 1 . We can define the quantity

$$
t_{T}=\min \left\{t \in \mathbb{N}:(\underline{A}(T) \vee I)^{t} \text { has a strictly positive column }\right\} .
$$

It is well known that if $\underline{A}(T)$ is regular, then $t_{T}$ is well defined. Moreover, if $\underline{A}(T)$ is strongly connected, one can show that $t_{T} \leq k-1$ where $k$ is the dimension of the space (see, e.g., [27, Theorem 8.5.9]). In proving Theorem 2, we provide a sharper, yet more
convoluted, bound compared to the one reported below. Nevertheless, in both cases, the rate to which the ranges of $x_{\beta}$ and $\tilde{x}_{\beta}$ shrink to 0 are linear.

Theorem 2 Let $T$ be normalized, monotone, and translation invariant. If $\underline{A}(T)$ is regular, then

$$
\operatorname{Rg}\left(x_{\beta}\right) \leq \operatorname{Rg}\left(\tilde{x}_{\beta}\right) \leq(1-\beta)\left(1+\kappa_{T}\right) \operatorname{Rg}(x) \quad \forall x \in \mathbb{R}^{k}, \forall \beta \in(0,1)
$$

where

$$
\kappa_{T}=\frac{1+\delta}{\min \left\{\frac{1}{t_{T}},\left(\frac{\delta}{1+\delta}\right)^{2 t_{T}}\right\}}
$$

### 8.1.2 Rate of convergence

In this section, we prove that $x_{\beta}$ converges at least linearly fast to its limit, provided some extra conditions of differentiability hold. The constants that appear in the statement below are the same defined in the section above. We consider maps which are differentiable and their Jacobian is Lipschitz continuous with constant L. More formally, it is natural to view the gradient of each component $T_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ as an element of the dual of $\mathbb{R}^{n}$. Therefore, we use $\left\|\|_{1}\right.$ to compute the norm of the gradient of $T_{i}{ }^{13}$ We say that the Jacobian of $T$ is Lipschitz continuous (with constant $L$ ) if and only if

$$
\left\|\nabla T_{i}(x)-\nabla T_{i}(y)\right\|_{1} \leq L\|x-y\|_{\infty} \quad \forall x, y \in \mathbb{R}^{k}, \forall i \in\{1, \ldots, k\}
$$

Theorem 3 Let $T$ be normalized, monotone, and translation invariant. If $T$ has a Lipschitz continuous Jacobian and $\underline{A}(T)$ is regular, then

$$
\left\|x_{\beta}-\langle\gamma, x\rangle e\right\|_{\infty} \leq(1-\beta)\left(1+\kappa_{T}\right)\left(1+\frac{(1+\delta)^{t_{T}-1}}{\delta^{t_{T}}} t_{T} L\|x\|_{\infty}\right) \operatorname{Rg}(x)
$$

for all $x \in \mathbb{R}^{k}$ and for all $\beta \in(0,1)$ where $\gamma$ is the unique left Perron-Frobenius eigenvector of the Jacobian of $T$ at 0 .

In particular, the result above allows us to conclude that convergence happens at a linear rate.

### 8.2 Computing the fixed point

For some applications, most notably the production networks one considered in Section B , it is of independent interest to derive a formula for the fixed points even for values of $\beta$ relatively far from 1 . The next result provides such a formula in the concave case.

[^11]Proposition 6 Let $T$ be nonexpansive. If there exists a collection $\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ such that $S_{\alpha}$ is monotone and $S_{\alpha} \geq T$ for all $\alpha \in \mathcal{A}$ and for each $x \in \mathbb{R}^{k}$ there exists $\alpha_{x} \in \mathcal{A}$ such that $S_{\alpha_{x}}(x)=T(x)$, then

$$
x_{\beta, T}=\min _{\alpha \in \mathcal{A}} x_{\beta, S_{\alpha}} \quad \forall \beta \in(0,1), \forall x \in \mathbb{R}^{k}
$$

As in the linear case, the fixed point is not constant across entries and is less clean than the one from the limit case, but nevertheless turns out to be handy in relevant examples.

Example 5 Suppose each $S_{\alpha}$ is such that $S_{\alpha}(x)=W_{\alpha} x+h_{\alpha}$ for all $x \in \mathbb{R}^{k}$ where $W_{\alpha} \in$ $W$ and $h_{\alpha} \in \mathbb{R}^{k}$. Recall that $x_{\beta, W_{\alpha}}=(1-\beta) \sum_{t=0}^{\infty} \beta^{t} W_{\alpha}^{t+1} x$ and $W_{\alpha}\left((1-\beta) x+\beta x_{\beta, W_{\alpha}}\right)=$ $x_{\beta, W_{\alpha}}$. Define $\hat{x}_{\beta, W_{\alpha}}=x_{\beta, W_{\alpha}}+\sum_{t=0}^{\infty} \beta^{t} W_{\alpha}^{t} h_{\alpha}$. We next show that $\hat{x}_{\beta, W_{\alpha}}=x_{\beta, S_{\alpha}}$. Note that

$$
\begin{aligned}
S_{\alpha}\left((1-\beta) x+\beta \hat{x}_{\beta, W_{\alpha}}\right) & =W_{\alpha}\left((1-\beta) x+\beta \hat{x}_{\beta, W_{\alpha}}\right)+h_{\alpha} \\
& =W_{\alpha}\left((1-\beta) x+\beta x_{\beta, W_{\alpha}}+\sum_{t=0}^{\infty} \beta^{t+1} W_{\alpha}^{t} h_{\alpha}\right)+h_{\alpha} \\
& =W_{\alpha}\left((1-\beta) x+\beta x_{\beta, W_{\alpha}}\right)+\sum_{t=0}^{\infty} \beta^{t+1} W_{\alpha}^{t+1} h_{\alpha}+h_{\alpha} \\
& =x_{\beta, W_{\alpha}}+\sum_{t=0}^{\infty} \beta^{t} W_{\alpha}^{t} h_{\alpha}=\hat{x}_{\beta, W_{\alpha}}
\end{aligned}
$$

proving that $\hat{x}_{\beta, W_{\alpha}}=x_{\beta, S_{\alpha}}$.

### 8.3 Discrete iterations

The limit $\lim _{\beta \rightarrow 1} x_{\beta}$ that we have studied so far can also be seen as the result of a double limit. Indeed, observe that, for every $\beta \in(0,1)$, we have $x_{\beta}=\lim _{t} x_{\beta}^{t}$, where

$$
x_{\beta}^{t}=T\left((1-\beta) x+\beta x_{\beta}^{t-1}\right) \quad \forall t \in \mathbb{N},
$$

with $x^{0}=x$. Therefore, by taking the limit for $\beta \rightarrow 1$, we are implicitly studying $\lim _{\beta \rightarrow 1} \lim _{t} x_{\beta}^{t}$. Importantly, here the order of limits matter for the limit value. Whenever we consider the alternative order, we obtain the sequence $\left\{T^{t}(x)\right\}_{t \in \mathbb{N}}$, which was extensively studied in Cerreia-Vioglio et al. [12]. In general, it is easy to see that $\lim _{t} T^{t}(x)$ and $\lim _{\beta \rightarrow 1} x_{\beta}$ do not coincide outside the linear case.

An intermediate approach that turns out to be useful for using our results in applications is to consider a single limit that jointly iterates $T$ and let the dependence on $x$ vanish. Formally, we fix an increasing sequence $\left\{\beta_{t}\right\}_{t \in \mathbb{N}} \subseteq(0,1)$ such that $\lim _{t} \beta_{t}=1$, and consider

$$
\begin{equation*}
x^{t+1}=T\left(\left(1-\beta_{t+1}\right) x+\beta_{t+1} x^{t}\right) \quad \forall t \in \mathbb{N}_{0} \tag{25}
\end{equation*}
$$

with $x_{0}=x$. Similarly as before, we can consider the alternative iteration

$$
\begin{equation*}
\tilde{x}^{t+1}=\left(1-\beta_{t+1}\right) x+\beta_{t+1} T\left(\tilde{x}^{t}\right) \quad \forall t \in \mathbb{N}_{0} \tag{26}
\end{equation*}
$$

with $\tilde{x}_{0}=x$. These iterations can be seen as the discrete versions of the nonlinear fixed points analyzed so far (i.e., of equations (1) and (2) respectively).

In the next proposition, we show that, whenever $\lim _{\beta \rightarrow 1} x_{\beta}$ exists, the two limits $\lim _{t} x^{t}$ and $\lim _{t} \tilde{x}^{t}$ exist and coincide with the former, provided that $\beta_{t}$ is asymptotically equivalent to $1-1 / g(t)$ for some function $g:[1, \infty) \rightarrow[0, \infty)$ which is strictly increasing, divergent, concave, continuous, and such that $g(z) / z \rightarrow 0$ as $z \rightarrow \infty$.

Proposition 7 Let $g:[1, \infty) \rightarrow[0, \infty)$ be strictly increasing, divergent, concave, continuous, and such that $g(z) / z \rightarrow 0$ as $z \rightarrow \infty$, and define $\beta_{t}=1-1 / g(t)$ for all $t \in \mathbb{N}$. For each $x \in \mathbb{R}^{k}$, if $\lim _{\beta \rightarrow 1} x^{\beta}$ exists, then $\lim _{t} x^{t}$ exists and

$$
\lim _{\beta \rightarrow 1} \tilde{x}_{\beta}=\lim _{\beta \rightarrow 1} x_{\beta}=\lim _{t} x^{t}=\lim _{t} \tilde{x}^{t}
$$

The previous result includes the case $\beta_{t}=1-1 / t^{\alpha}$ for some $\alpha \in(0,1)$ but not the case $\beta_{t}=\frac{t-1}{t}$, which is in turn relevant for some applications. However, under positive homogeneity of $T$, the equivalence result holds true also for this important case. Recall that $T$ is positively homogenous if and only if $T(\lambda x)=\lambda T(x)$ for all $\lambda \geq 0$ and for all $x \in \mathbb{R}^{k}$.

Proposition 8 Let $\beta_{t}=\frac{t-1}{t}$ for all $t \in \mathbb{N}$ and let $T$ be normalized, monotone, translation invariant, and positively homogeneous. For all $x \in \mathbb{R}^{k}$, the following are equivalent:
(i) $\lim _{\beta \rightarrow 1} \tilde{x}_{\beta}$ exists;
(ii) $\lim _{\beta \rightarrow 1} x_{\beta}$ exists;
(iii) $\lim _{t} x^{t}$ exists;
(iv) $\lim _{t} \tilde{x}^{t}$ exists.

Moreover, in this case, we have $\lim _{\beta \rightarrow 1} \tilde{x}_{\beta}=\lim _{\beta \rightarrow 1} x_{\beta}=\lim _{t} x^{t}=\lim _{t} \tilde{x}^{t}$.
The previous result heavily relies on Theorem 1 in Ziliotto [40]. The latter result is in a sense much more general than Proposition 8 since it deals with the infinite dimensional case and replaces translation invariance and positive homogeneity with a different nonexpansivity assumption on $x_{\beta}$ as a function of $\beta$. However, the fixed-point condition considered in [40] is different from ours and does not depend on a given point $x \in \mathbb{R}^{k}$. We show that, under positive homogeneity, the fixed-point condition in equation (1) is equivalent to the one of [40] and that the corresponding nonexpansivity assumption is satisfied. Importantly, this is the crucial observation that allows us to apply our results to zero-sum stochastic games in Section 5.

### 8.3.1 Application: Social learning and time varying stubbornness

Here, we apply the results of this section to the model of social learning of Section 6 by allowing for time-varying vanishing stubbornness of the agents. Formally, consider $n$ agents $N=\{1, \ldots, n\}$ aggregating their opinions over time. Initial opinions are represented by a vector $x^{0} \in \mathbb{R}^{n}$ of real numbers so that $x_{i}^{0}$ corresponds to agent $i$ 's initial opinion. At every period $t \in \mathbb{N}$, the updated vector of agent's opinions is given by

$$
x^{t}=\left(1-\beta_{t}\right) x^{0}+\beta_{t} T\left(x^{t-1}\right) .
$$

Here, $x^{t-1} \in \mathbb{R}^{n}$ is the last-period vector of opinions, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an opinion aggregator, and $\left\{\beta_{t}\right\}_{t \in \mathbb{N}} \subseteq(0,1)$ is a sequence of stubbornness weights such that $\beta_{t} \rightarrow 1$. At each period $t$, each agent $i \in N$ first combines the last-period opinions of the group through an individual aggregator $T_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and then linearly combines the aggregate opinion $T_{i}\left(x^{t-1}\right)$ with her original stance $x_{i}^{0}$ with weight $\beta_{t}$. In particular, the common level of stubbornness in the group is vanishing as $t \rightarrow \infty$.

We assume that the opinion aggregator $T$ is normalized, monotone, translation invariant, and such that $\underline{A}(T)$ is regular. Normalization and monotonicity of $T$ capture the idea that the agents trust each other opinions and try to coordinate. Moreover, by assuming that $T$ is translation invariant we obtain enough continuity to rule out expansive dynamics. Finally, following [12], we interpret $\underline{A}(T)$ as a network of strong links among the agents. With this, the regularity assumption on $\underline{A}(T)$ amounts to assume that there exists a unique strongly connected and closed group in the network of strong links induced by $T$.

We start with an irrelevance result of the nonlinearity of $T$ under differentiability and the assumption that the stubbornness is vanishing at a sufficient slow rate, i.e., $\left(1-\beta_{t}\right)$ is asymptotically equivalent to $1 / t^{\alpha}$ for some $\alpha \in(0,1)$.

Corollary 5 IfT is continuously differentiable in a neighborhood of 0 and $\lim _{t}\left(1-\beta_{t}\right) t^{\alpha}=$ 1 for some $\alpha \in(0,1)$, then

$$
\lim _{t} x^{t}=\left\langle\gamma, x^{0}\right\rangle e \quad \forall x^{0} \in \mathbb{R}^{k}
$$

where $\gamma$ is the unique left Perron-Frobenius eigenvector of the Jacobian of $T$ at 0.

This result easily follows by combining Corollary 1 and Proposition 7. It implies that, under vanishing stubbornness and smoothness, for a large class of opinion aggregation models the long-run outcomes are indistinguishable from the ones of the DeGroot's model (cf. Golub and Jackson )

Next, we show that, without differentiability, the nonlinearity of the aggregator still plays a role for the long-run consensus. Toward this result, we assume that $T$ is
star-shaped. By Proposition 9 in the Appendix, there exists a family of normalized, monotone, translation invariant, and concave operators $\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ such that $\underline{A}\left(S_{\alpha}\right)$ is regular for all $\alpha \in \mathcal{A}$ and

$$
T(x)=\sup _{\alpha \in \mathcal{A}} S_{\alpha}(x)
$$

for all $x \in \mathbb{R}^{k}$. In particular, we have $\bigcup_{\alpha \in \mathcal{A}} \partial_{C} S_{\alpha}(0) \subseteq \mathcal{W}$ and we can interpret each $W \in \bigcup_{\alpha \in \mathcal{A}} \partial_{C} S_{\alpha}(0)$ as a weighted undirected network among the agents. Moreover, by construction, each of these networks admits a unique eigenvector centrality $\gamma \in \Delta$ capturing the corresponding long-run influences of the agents. With this, define

$$
\Gamma_{\alpha}=\left\{\gamma \in \Delta: \exists W \in \partial_{C} S_{\alpha}(0), \gamma=\gamma W\right\} \quad \forall \alpha \in \mathcal{A}
$$

The next corollary provides a complete characterization of the consensus opinion in terms of all the eigenvector centralities in $\left\{\Gamma_{\alpha}\right\}_{\alpha \in \mathcal{A}}$.

Corollary 6 If $T$ is star-shaped and $\lim _{t}\left(1-\beta_{t}\right) t^{\alpha}=1$ for some $\alpha \in(0,1)$, then

$$
\lim _{t} x^{t}=\left(\sup _{\alpha \in \mathcal{A}} \min _{\gamma \in \Gamma_{\alpha}}\left\langle\gamma, x^{0}\right\rangle\right) e .
$$

This result shows that, in the limit consensus, the nonlinearity of each $S_{\alpha}$ is greatly simplified to a pessimistic aggregation with respect to all the eigenvector centralities of $S_{\alpha}$. In contrast, these pessimistic consensus are aggregated over $\alpha$ in an optimistic fashion, i.e., by taking the maximum over $\alpha \in \mathcal{A}$. In addition, the limit consensus operator is positive homogeneous with respect to the initial opinions. Therefore, for each $x^{0}$, there exist $\alpha\left(x^{0}\right) \in \mathcal{A}$ and $\gamma\left(x^{0}\right) \in \Gamma_{\alpha\left(x^{0}\right)}$ such that

$$
\lim _{t} x^{t}=\left\langle\gamma\left(x^{0}\right), x^{0}\right\rangle,
$$

so that we can interpret $\gamma\left(x^{0}\right)$ as a local centrality measure at $x^{0}$.
We conclude this section by highlighting that this result has relevant implications for targeting problems in networks. Assume for simplicity that $T$ is concave, that is, $\mathcal{A}=\{\alpha\}$, and that the initial opinions of the agents are binary, that is, $x^{0} \in$ $\{0,1\}^{n}$. Consider a designer optimally choosing $m<n$ agents to endow with the optimistic opinion $x_{i}^{0}=1$, whereas the rest of the agents $j$ start with the pessimistic opinion $x_{j}^{0}=0$. The objective of the designer is to obtain the most optimistic long-run consensus possible under vanishing stubbornness. This implies that she needs to take into account the centrality of the agents given the seeded initial opinions. In particular, given Corollary 6, the optimal targeting set solves the maxmin problem

$$
\max _{M:|M|=m} \inf _{\gamma \in \Gamma_{\alpha}} \sum_{i \in M} \gamma_{i} .
$$

Therefore, the identity of the first agents targeted can change by changing the number of seeds $m$ due to submodularity, as opposed to the greedy algorithm that would solve the case for linear $T$.

## A Appendix: A representation result

In this appendix, we consider a functional $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$ which is normalized, monotone, translation invariant, and star-shaped. ${ }^{14}$ The objective is to prove that such a functional can be rewritten as the max of a collection $\left\{g_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ of normalized, monotone, translation invariant, and concave functionals. Results of this form have appeared in Decision Theory (see, e.g., Chandrasekher, Frick, Iijima, and Le Yaouanq [15]), Mathematical Finance (see, e.g., Castagnoli, Cattelan, Maccheroni, Tebaldi, and Wang [11, Theorem 2]), and Mathematics (see, e.g., Rubinov and Dzalilov [34]). The version we need for this paper is slightly different from what is available in the literature and it is a refinement of [11], whose techniques we also exploit. Compared to their Theorem 5, we obtain a version in which $\left\{g_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ "inherits the derivatives" of $g$ : a property which we badly need for our convergence results.

Proposition 9 Let $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$. The following statements are equivalent:
(i) The functional $g$ is normalized, monotone, translation invariant, and star-shaped;
(ii) There exists a family $\left\{g_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ of normalized, monotone, translation invariant, and concave functionals such that

$$
\begin{equation*}
g(x)=\max _{\alpha \in \mathcal{A}} g_{\alpha}(x) \quad \forall x \in \mathbb{R}^{k} \tag{27}
\end{equation*}
$$

Moreover, $\left\{g_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ can be chosen to be such that $\overline{\operatorname{co}}\left(\partial_{C} g_{\alpha}\left(\mathbb{R}^{k}\right)\right) \subseteq \overline{\operatorname{co}}\left(\partial_{C} g\left(\mathbb{R}^{k}\right)\right)$ for all $\alpha \in \mathcal{A}$.

Before proving the statement, we need to introduce an ancillary object. Given $g: \mathbb{R}^{k} \rightarrow \mathbb{R}$, define the binary relation $\succsim_{g}^{*}$ by

$$
x \succsim_{g}^{*} y \stackrel{\text { def }}{\Longleftrightarrow} g(\lambda x+(1-\lambda) z) \geq g(\lambda y+(1-\lambda) z) \quad \forall \lambda \in(0,1], \forall z \in \mathbb{R}^{k}
$$

It is immediate to see that $x \succsim_{g}^{*} y$ implies that $g(x) \geq g(y)$. By Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi [13] and if $g$ is normalized, monotone, and continuous, we have that there exists a closed convex set $C_{g} \subseteq \Delta$ such that

$$
\begin{equation*}
x \succsim_{g}^{*} y \Longleftrightarrow\langle\gamma, x\rangle \geq\langle\gamma, y\rangle \quad \forall \gamma \in C_{g} \tag{28}
\end{equation*}
$$

Moreover, if $\succsim^{\circ}$ is another conic binary relation such that

$$
x \succsim^{\circ} y \Longrightarrow g(x) \geq g(y)
$$

[^12]then $\succsim^{0}$ is a subrelation of $\succsim_{g}^{*}$, that is, $x \succsim^{0} y$ implies $x \succsim_{g}^{*} y .^{15}$ Recall that if $g$ is normalized, monotone, and translation invariant $\partial_{C} g(x) \subseteq \Delta$ for all $x \in \mathbb{R}^{k}$. By Ghirardato and Siniscalchi [21, Theorem 2], in this case, we have that $C_{g}=\overline{\operatorname{co}}\left(\partial_{C} g\left(\mathbb{R}^{k}\right)\right)$ where $\partial_{C} g\left(\mathbb{R}^{k}\right)=\cup_{x \in \mathbb{R}^{k}} \partial_{C} g(x)$.
Proof. (i) implies (ii). Define $P=\left\{x \in \mathbb{R}^{k}: x \succsim_{g}^{*} 0\right\}$. It is immediate to see that $P$ is a nonempty, closed, and convex cone. Define $\mathcal{A}=\left\{z \in \mathbb{R}^{k} \backslash\{0\}: g(z)=0\right\}$. For each $z \in \mathcal{A}$ define $U_{z}=\operatorname{co}(\{0, z\})+P .{ }^{16}$ We say that a functional $\tilde{g}: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is $\succsim_{g}^{*}$-monotone if and only if $x \succsim_{{ }_{g}^{*}}^{*} y$ implies $\tilde{g}(x) \geq \tilde{g}(y)$. Since $x \geq y$ implies $x \succsim_{{ }_{g}^{*}}^{*} y$, we have that $\succsim_{g}^{*}$-monotonicity yields standard monotonicity.
Step 1. For each $z \in \mathcal{A}$ the set $U_{z}$ is a nonempty, convex, and closed set such that

1. $0, z \in U_{z}$;
2. if $x \in U_{z}$, then $g(x) \geq 0$;
3. if $y \succsim_{g}^{*} x \in U_{z}$, then $y \in U_{z}$;
4. if $h>0$, then -he $\notin U_{z}$.

Proof of the Step. Since $0, z \in \operatorname{co}(\{0, z\})$ and $0 \in P$ and co $(\{0, z\})$ is convex and compact and $P$ is convex and closed, we have that $0, z \in U_{z}=\operatorname{co}(\{0, z\})+P$ is nonempty, convex, and closed, and, in particular, point 1 holds. If $x \in U_{z}$, then there exist $\lambda \in[0,1]$ and $y \in P$ such that $x=\lambda z+(1-\lambda) 0+y$. Since $g$ is star-shaped and $g(z)=0$, we have that $g(\lambda z+(1-\lambda) 0)=g(\lambda z) \geq \lambda g(z)=0$. Since $y \in P$, we have that $x=\lambda z+(1-\lambda) 0+y \succsim_{g}^{*} \lambda z+(1-\lambda) 0$, yielding that $g(x) \geq g(\lambda z+(1-\lambda) 0) \geq$ 0 , proving point 2 . Next, consider $x, y \in \mathbb{R}^{k}$ such that $y \succsim_{g}^{*} x \in U_{z}$, that is, $y-x \succsim_{g}^{*} 0$ and $x \in U_{z}$. Since $x \in U_{z}$, then there exist $\lambda \in[0,1]$ and $\hat{y} \in P$ such that $x=\lambda z+\hat{y}$. Since $P$ is a convex cone, it follows that $y=x+(y-x)=\lambda z+(\hat{y}+y-x) \in$ co $(\{0, z\})+P=U_{z}$. Finally, by contradiction, assume that $h<0$ and $-h e \in U_{z}$. By point 2 and since $g$ is normalized, $0>-h=g(-h e) \geq 0$, a contradiction.
Step 2. For each $z \in \mathcal{A}$ the functional $g_{z}: \mathbb{R}^{k} \rightarrow \mathbb{R}$, defined by

$$
g_{z}(x)=\max \left\{h \in \mathbb{R}: x-h e \in U_{z}\right\} \quad \forall x \in \mathbb{R}^{k}
$$

is well defined, normalized, $\succsim_{g}^{*}$-monotone, translation invariant, concave, and such that $g_{z}(z)=0$ as well as $g_{z}\left(z^{\prime}\right) \leq 0$ for all $z^{\prime} \in \mathcal{A}$.
Proof of the Step. Fix $z \in \mathcal{A}$. Consider $x \in \mathbb{R}^{k}$. Define $I_{x}=\left\{h \in \mathbb{R}: x-h e \in U_{z}\right\}$. Since $U_{z}$ is convex and closed, $I_{x}$ is a closed interval. Next we show that $I_{x}$ is bounded

[^13]from above. Let $h \geq\|x\|_{\infty}+\|z\|_{\infty}$. Since $z \neq 0$ and $g$ is normalized and monotone, note that $g\left(x-\|x\|_{\infty} e-\|z\|_{\infty} e\right) \leq g\left(-\|z\|_{\infty} e\right)=-\|z\|_{\infty}<0$. By point 2 above, we have that $x-\|x\|_{\infty} e-\|z\|_{\infty} e \notin U_{z}$. By point 3 and since $x-\left(\|x\|_{\infty}+\|z\|_{\infty}\right) e \geq x-h e$, we can conclude that $x-h e \notin U_{z}$, proving that $I_{x}$ is bounded from above. Since $C_{g} \subseteq \Delta$ is compact, consider $h \in \mathbb{R}$ such that $-h \geq \max _{\gamma \in C}\{\langle\gamma, z\rangle-\langle\gamma, x\rangle\} \in \mathbb{R}$. By points 1 and 3 and the characterization of $\succsim_{g}^{*}$, it follows that $x-h e \succsim_{g}^{*} z \in U_{z}$, proving that $x-h e \in U_{z}$ and $I_{x}$ is nonempty. Since $I_{x}$ is a nonempty, closed, and bounded from above interval, we have that $\sup I_{x}$ is well defined and attained, proving that $g_{z}$ is well defined. In particular, $x-g_{z}(x) e \in U_{z}$ for all $x \in \mathbb{R}^{k}$.

Consider $z^{\prime} \in \mathcal{A}$. By point 2 and since $z^{\prime} \in \mathcal{A}$ and $z^{\prime}-g_{z}\left(z^{\prime}\right) e \in U_{z}$, we have that $g\left(z^{\prime}\right)-g_{z}\left(z^{\prime}\right)=g\left(z^{\prime}-g_{z}\left(z^{\prime}\right) e\right) \geq 0$, that is, $0=g\left(z^{\prime}\right) \geq g_{z}\left(z^{\prime}\right)$. By point 1 , if $z^{\prime}=z$, then $0 \in I_{z}$ and $g_{z}(z) \geq 0$. Since $z^{\prime}$ was arbitrarily chosen, we can conclude that $g_{z}\left(z^{\prime}\right) \leq 0$ for all $z^{\prime} \in \mathcal{A}$ and $g_{z}(z)=0$. Consider $x, y \in \mathbb{R}^{k}$ such that $x \succsim_{g}^{*} y$. By point $3,(28)$, and the definition of $g_{z}$, we have that $x-g_{z}(y) e \succsim_{g}^{*} y-g_{z}(y) e \in U_{z}$, yielding that $g_{z}(y) \in I_{x}$ and $g_{z}(x) \geq g_{z}(y)$, that is, $g_{z}$ is $\succsim_{g^{*}}$-monotone. Consider $x \in \mathbb{R}^{k}$ and $h \in \mathbb{R}$. By definition of $g_{z}$, we can conclude that

$$
(x+h e)-\left(g_{z}(x)+h\right) e=x-g_{z}(x) e \in U_{z}
$$

This implies that $g_{z}(x)+h \in I_{x+h e}$ and, in particular, $g_{z}(x+h e) \geq g_{z}(x)+h$. Since $x$ and $h$ were arbitrarily chosen, we have that

$$
g_{z}(x+h e) \geq g_{z}(x)+h \quad \forall x \in \mathbb{R}^{k}, \forall h \in \mathbb{R}
$$

This yields that $g_{z}(x+h e)=g_{z}(x)+h$ for all $x \in \mathbb{R}^{k}$ and for all $h \in \mathbb{R}$. Finally, consider $x, y \in \mathbb{R}^{k}$ and $\lambda \in(0,1)$. By definition of $g_{z}$, we have that $x-g_{z}(x) e, y-g_{z}(y) e \in$ $U_{z}$. Since $U_{z}$ is convex, this implies that $\lambda x+(1-\lambda) y-\left(\lambda g_{z}(x)+(1-\lambda) g_{z}(y)\right) e \in U_{z}$, yielding that $g_{z}(\lambda x+(1-\lambda) y) \geq \lambda g_{z}(x)+(1-\lambda) g_{z}(y)$ and proving that $g_{z}$ is concave.

To sum up, $g_{z}$ is well defined, $\succsim_{g^{*}}^{*}$-monotone, translation invariant, and concave. Consider $x=0$. By point 1 , we have that $0 \in U_{z}$, yielding that $0 \in I_{0}$ and, in particular, $g_{z}(0) \geq 0$. By point 4 , we have that $I_{0} \subseteq(-\infty, 0]$, proving that $g_{z}(0) \leq 0$, that is, $g_{z}(0)=0$. Since $g_{z}$ is translation invariant and $g_{z}(0)=0$, it follows that $g_{z}(h e)=g_{z}(0+h e)=g_{z}(0)+h=h$ for all $h \in \mathbb{R}$, that is, $g_{z}$ is normalized, proving the step.

We can prove the implication. Consider the family of functionals $\left\{g_{z}\right\}_{z \in \mathcal{A}}$ of Step 2. Each $g_{z}$ is normalized, $\succsim_{g}^{*}$-monotone (in particular, monotone), translation invariant, and concave. Consider $x \in \mathbb{R}^{k}$. Since $g$ and $g_{z}$ are normalized for all $z \in \mathcal{A}$, if $x=h e$ for some $h \in \mathbb{R}$, we have that $g(x)=h=g_{z}(x)$ for all $z \in \mathcal{A}$, that is, $g(x)=\max _{z \in \mathcal{A}} g_{z}(x)$. If $x$ is not a constant vector, define $\bar{z}=x-g(x) e$. Note that
$\bar{z} \neq 0$. Since $g$ is translation invariant, we have that $\bar{z} \in \mathcal{A}$. By Step 2, we have that $g_{z}(\bar{z}) \leq 0=g_{\bar{z}}(\bar{z})=0=g(\bar{z})$ for all $z \in \mathcal{A}$. Since each $g_{z}$ is translation invariant, we have that

$$
\begin{aligned}
g(x)-g(x) & =g(x-g(x) e)=g(\bar{z})=\max _{z \in \mathcal{A}} g_{z}(\bar{z})=\max _{z \in \mathcal{A}} g_{z}(x-g(x) e) \\
& =\max _{z \in \mathcal{A}}\left\{g_{z}(x)-g(x)\right\}=\max _{z \in \mathcal{A}} g_{z}(x)-g(x),
\end{aligned}
$$

proving (27).
(ii) implies (i). It is trivial.

Consider $\left\{g_{z}\right\}_{z \in \mathcal{A}}$ as in the proof of (i) implies (ii). Fix $z \in \mathcal{A}$. By Step 2, we have that $g_{z}$ is $\succsim_{g}^{*}$-monotone. This implies that $x \succsim_{g}^{*} y$ implies $x \succsim_{g_{z}}^{*} y$. By the HahnBanach Theorem, this yields that $\overline{\operatorname{co}}\left(\partial_{C} g\left(\mathbb{R}^{k}\right)\right)=C_{g} \supseteq C_{g_{z}}=\overline{\operatorname{co}}\left(\partial_{C} g_{z}\left(\mathbb{R}^{k}\right)\right)$, proving the last part of the statement.

## B Appendix: Proofs of Section 3

In this appendix, we prove all the results and few ancillary lemmas which pertain Section 3. With the exception of Theorem 1, whose proof comes at the end, all the other proofs follow the order in the main text and are divided accordingly to the sections of the main text. Theorem 1 is proved last as a consequence of all the other results.

## B. 1 Preliminaries

We begin by reporting a few ancillary facts. First, note that if $T$ is concave,

$$
\begin{equation*}
W \in \partial_{C} T(z) \Longrightarrow W(y-z) \geq T(y)-T(z) \quad \forall y \in \mathbb{R}^{k} \tag{29}
\end{equation*}
$$

Since $T$ is normalized, monotone, and translation invariant, we have that $\partial_{C} T_{i}(z+h e)=$ $\partial_{C} T_{i}(z)$ for all $i \in\{1, \ldots, k\}$, for all $z \in \mathbb{R}^{k}$, and for all $h \in \mathbb{R}$. In particular, we also have that $\partial_{C} T(h e)=\partial_{C} T(0)$ for all $h \in \mathbb{R}$. Next, we generalize to the nonlinear case a well-known fact for stochastic matrices: having a regular adjacency matrix yields that the only fixed points are the constant vectors. Since the property $E(T)=D$ is often used in our results, Proposition 10 provides a condition in terms of the derivatives of $T$, which guarantees it is satisfied.

Proposition 10 Let $T$ be normalized, monotone, and translation invariant. If $\underline{A}(T)$ is regular, then $E(T)=D$.

Proof. Consider $\lambda \in(0,1)$. Given $T$, define $T_{\lambda}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ by $T_{\lambda}(x)=\lambda x+$ $(1-\lambda) T(x)$ for all $x \in \mathbb{R}^{k}$. It is immediate to check that $E(T)=E\left(T_{\lambda}\right)$ and $\underline{A}\left(T_{\lambda}\right) \geq \underline{A}(T), I$ where $I$ is the identity matrix. By [12, Proposition 10] and since $E(T)=E\left(T_{\lambda}\right)$, we have that $E(T)=E\left(T_{\lambda}\right)=D$, proving the statement.

For every normalized, monotone, and translation invariant $T$, denote as $\hat{\partial}_{C} T$ the generalized Jacobian of $T$ as defined in [17, Proposition 2.6.2]:

$$
\hat{\partial}_{C} T(x)=\operatorname{co}\left\{\gamma \in \mathbb{R}^{k}: \gamma=\lim _{k} J_{T}\left(z^{k}\right) \text { s.t. } z^{k} \rightarrow z \text { and } z^{k} \in \mathcal{D}\right\}
$$

where for every $z \in \mathcal{D}, J_{T}(z)$ denotes the (usual) Jacobian of $T$ at $z$. The next result shows that, given $z \in \mathbb{R}^{k}$, the value of $T(z)$ can be calculated alternatively by computing $W z$ where $W$ is a "replicating" stochastic matrix that belongs to the Clarke differential of $T$.

Proposition 11 Let $T$ be normalized, monotone, and translation invariant. For each $z \in \mathbb{R}^{k}$ and for each $\hat{h} \in \mathbb{R}$, there exists a stochastic matrix $W_{z, \hat{h}}$ such that $T(z)=W_{z, \hat{h}} z$ and $W_{z, \hat{h}} \in \operatorname{co}\left(\cup_{\lambda \in[0,1]} \hat{\partial}_{C} T(\lambda z+(1-\lambda) \hat{h} e)\right)$.

Proof. Consider $z \in \mathbb{R}^{k}$ and $\hat{h} \in \mathbb{R}$. By Clarke [17, Theorem 2.6.5] and since $T$ is normalized and Lipschitz continuous, there exists $W \in c o\left(\cup_{\lambda \in[0,1]} \hat{\partial}_{C} T(\lambda z+(1-\lambda) \hat{h} e)\right)$ such that

$$
T(z)-\hat{h} e=T(z)-T(\hat{h} e)=W(z-\hat{h} e)=W z-\hat{h} e
$$

and the statement follows.
The next preliminary result guarantees that the adjacency matrices of the replicating matrices and of the generalized Jacobians of $T$ inherit the property of regularity of $\underline{A}(T)$. Moreover, it provides a quantitative lower bound for the entries of the replicating matrices. The first property will be exploited in proving that $\left\{x_{\beta}\right\}_{\beta \in(0,1)}$ and $\left\{\tilde{x}_{\beta}\right\}_{\beta \in(0,1)}$ converge while the latter will be useful in the proofs that elaborate on the rate of such convergence. Given a stochastic matrix $W$, we define the adjacency matrix $A(W)$ to be such that $a_{i j}=1$ if and only if $w_{i j}>0$ and $a_{i j}=0$ otherwise.

Proposition 12 Let $T$ be normalized, monotone, and translation invariant. The following statements are true:

1. If $\underline{A}(T)$ is regular, then $A\left(W_{z, \hat{h}}\right)$ is regular for all $z \in \mathbb{R}^{k}$ and for all $\hat{h} \in \mathbb{R}$. Moreover, we have that

$$
\begin{equation*}
\min _{i, j: \underline{a}_{i j}=1} w_{i j} \geq \min _{i, j: \underline{a}_{i j}=1} \inf _{x \in \mathcal{D}} \frac{\partial T_{i}}{\partial x_{j}}(x) \tag{30}
\end{equation*}
$$

where $w_{i j}$ is the $i j$-th entry of $W_{z, \hat{h}}$.
2. If $\underline{A}(T)$ is regular, then $A(W)$ is regular for all $W \in \partial_{C} T(0)$. Moreover, we have that

$$
\min _{i, j: a_{i j}=1} w_{i j} \geq \min _{i, j: a_{i j}=1} \inf _{x \in \mathcal{D}} \frac{\partial T_{i}}{\partial x_{j}}(x) .
$$

As a consequence, if $\underline{A}(T)$ is regular, we have that $W_{z, \hat{h}}$ has a unique left PerronFrobenius eigenvector for all $z \in \mathbb{R}^{k}$ and for all $\hat{h} \in \mathbb{R}$. We denote it by $\gamma_{z, \hat{h}}$.
Proof. 1. By (6) and (7), we have that $\gamma_{j} \geq \varepsilon_{i j}>0$ for all $\gamma \in \partial_{C} T_{i}(z)$, for all $i, j \in\{1, \ldots, k\}$ such that $\underline{a}_{i j}=1$, and for all $z \in \mathbb{R}^{k}$. By definition of $W_{z, \hat{h}}$ and $w_{i j}$, and Clarke [17, Proposition 2.6.2], this implies that $w_{i j} \geq \varepsilon_{i j}>0$ for all $i, j \in\{1, \ldots, k\}$ such that $\underline{a}_{i j}=1$ and $A\left(W_{z, \hat{h}}\right) \geq \underline{A}(T)$ for all $z \in \mathbb{R}^{k}$ and for all $\hat{h} \in \mathbb{R}$. Since $\underline{A}(T)$ is regular, we can conclude that $A\left(W_{z, \hat{h}}\right)$ is regular for all $z \in \mathbb{R}^{k}$ and for all $\hat{h} \in \mathbb{R}$. By (6) and since $w_{i j} \geq \varepsilon_{i j}$ for all $i, j \in\{1, \ldots, k\}$ such that $\underline{a}_{i j}=1$, we have that (30) follows.
2. By (6) and (7), we have that $\gamma_{j} \geq \varepsilon_{i j}>0$ for all $\gamma \in \partial_{C} T_{i}(0)$, for all $i, j \in$ $\{1, \ldots, k\}$ such that $\underline{a}_{i j}=1$, and for all $z \in \mathbb{R}^{k}$. By definition of $\partial_{C} T(0)$, this implies that $A(W) \geq \underline{A}(T)$ for all $W \in \partial_{C} T(0)$. Since $\underline{A}(T)$ is regular, we can conclude that $A(W)$ is regular. Similarly to before, we can conclude that $\min _{i, j: a_{i j}=1} w_{i j} \geq$ $\min _{i, j: \mathbb{U}_{i j}=1} \inf _{x \in \mathcal{D}} \frac{\partial T_{i}}{\partial x_{j}}(x)$.

## B. 2 Convergence

## B.2.1 Concavity and differentiability

Proof of Lemma 1. Fix $\beta \in(0,1)$ and $x \in \mathbb{R}^{k}$. We prove that $T_{\beta, x}$ is a $\beta$-contraction. Since $T$ is Lipschitz continuous of order 1, we have that for each $y, z \in \mathbb{R}^{k}$

$$
\left\|T_{\beta, x}(y)-T_{\beta, x}(z)\right\|_{\infty}=\|T((1-\beta) x+\beta y)-T((1-\beta) x+\beta z)\|_{\infty} \leq \beta\|y-z\|_{\infty}
$$

proving that $T_{\beta, x}$ is a $\beta$-contraction. By the Banach contraction principle, for each $y \in \mathbb{R}^{k}$ we have that $T_{\beta, x}^{t}(y) \rightarrow x_{\beta}$ as well as $T_{\beta, x}\left(x_{\beta}\right)=x_{\beta}$ where $x_{\beta}$ is the unique fixed point of $T_{\beta, x}$. Finally, since $T$ is normalized and Lipschitz continuous of order 1, observe that for all $y \in \mathbb{R}^{k}$
$\left\|T_{\beta, x}(y)\right\|_{\infty}=\|T((1-\beta) x+\beta y)-T(0)\|_{\infty} \leq\|(1-\beta) x+\beta y\|_{\infty} \leq(1-\beta)\|x\|_{\infty}+\beta\|y\|_{\infty}$.
By induction, this implies that $\left\|T_{\beta, x}^{t}(x)\right\|_{\infty} \leq\|x\|_{\infty}$ for all $t \in \mathbb{N}$. By passing to the limit, (8) follows.

Consider the set $L$ of limit points of $\left\{x_{\beta}\right\}_{\beta \in(0,1) .}{ }^{17} \quad$ By construction and since $\left\{x_{\beta}\right\}_{\beta \in(0,1)}$ is bounded, the set $L$ is closed and bounded. We define $\lim _{\inf }^{\beta \rightarrow 1}$ $x_{\beta}=\inf L$ and $\lim \sup _{\beta \rightarrow 1} x_{\beta}=\sup L$ where inf and sup are computed coordinatewise.

[^14]The next simple lemma yields that the limit points of $\left\{x_{\beta}\right\}_{\beta \in(0,1)}$ are fixed points of $T$ and so are $\liminf _{\beta \rightarrow 1} x_{\beta}$ and $\lim \sup _{\beta \rightarrow 1} x_{\beta}$, provided $E(T)=D$.

Lemma 3 If $T$ is normalized, monotone, and translation invariant, then $L \subseteq E(T)$.


We now provide various lower and upper bounds for $\lim \inf { }_{\beta \rightarrow 1} x_{\beta}$ and $\lim \sup _{\beta \rightarrow 1} x_{\beta}$.
Lemma 4 Let $T$ be normalized, monotone, and translation invariant. If $E(T)=D$, then

$$
\max _{\gamma \in \Gamma\left(\hat{\partial}_{C} T(0)\right)}\langle\gamma, x\rangle e \geq \limsup _{\beta \rightarrow 1} x_{\beta} \geq \liminf _{\beta \rightarrow 1} x_{\beta} \geq \min _{\gamma \in \Gamma\left(\hat{\partial}_{C} T(0)\right)}\langle\gamma, x\rangle e \quad \forall x \in \mathbb{R}^{k} .
$$

Proof. Consider a sequence $\left\{x_{\beta_{n}}\right\}_{n \in \mathbb{N}} \subseteq\left\{x_{\beta}\right\}_{\beta \in(0,1)}$ such that $\beta_{n} \rightarrow 1$ and $x_{\beta_{n}} \rightarrow \bar{x}$, that is in symbols, $\bar{x}$ is a limit point of $\left\{x_{\beta}\right\}_{\beta \in(0,1)}$ and $\bar{x} \in L$. By Lemma 3 and since $E(T)=D$, we have that $\bar{x} \in L \subseteq E(T)$ and $\bar{x}=\bar{h} e$ for some $\bar{h} \in \mathbb{R}$. Consider $\tilde{x}_{\beta_{n}}=\left(1-\beta_{n}\right) x+\beta_{n} x_{\beta_{n}}$ for all $n \in \mathbb{N}$. For each $n \in \mathbb{N}$ consider also $W_{\tilde{x}_{\beta_{n}}, \bar{h}}$ as in Proposition 11. We have that for each $n \in \mathbb{N}$

$$
W_{\tilde{x}_{\beta_{n}}, \bar{h}}\left(\left(1-\beta_{n}\right) x+\beta_{n} x_{\beta_{n}}\right)=W_{\tilde{x}_{\beta_{n}}, \bar{h}} \tilde{x}_{\beta_{n}}=T\left(\tilde{x}_{\beta_{n}}\right)=T\left(\left(1-\beta_{n}\right) x+\beta_{n} x_{\beta_{n}}\right)=x_{\beta_{n}} .
$$

By (3) and Example 1, we have that $x_{\beta_{n}}=x_{\beta_{n}, W_{\tilde{x}_{\beta_{n}}, \bar{h}}}$ for all $n \in \mathbb{N}$. For each $n \in \mathbb{N}$ consider $\gamma_{n} \in \Gamma\left(W_{\tilde{x}_{\beta_{n}}, \bar{h}}\right)$. By definition of $\Gamma\left(W_{\tilde{x}_{\beta_{n}}, \bar{h}}\right)$ and (4), we have that

$$
\begin{equation*}
\left\langle\gamma_{n}, x_{\beta_{n}}\right\rangle=\left\langle\gamma_{n}, x_{\beta_{n}, W_{\tilde{x}_{\beta_{n}}, \bar{n}}}\right\rangle=\left\langle\gamma_{n}, x\right\rangle \quad \forall n \in \mathbb{N} . \tag{31}
\end{equation*}
$$

Since $\left\{W_{\tilde{x}_{\beta_{n}}, \bar{h}}\right\}_{n \in \mathbb{N}}$ is a sequence of stochastic matrices, it admits a subsequence $\left\{W_{\tilde{x}_{\beta_{n}}, \bar{h}}\right\}_{l \in \mathbb{N}}$ such that $W_{\tilde{x}_{\beta_{l}}, \bar{h}} \rightarrow W$. Similarly, since $\left\{\gamma_{n_{l}}\right\}_{l \in \mathbb{N}}$ is a sequence of probability vectors, it admits a subsequence $\left\{\gamma_{n_{l(r)}}\right\}_{r \in \mathbb{N}}$ such that $\gamma_{n_{l(r)}} \rightarrow \bar{\gamma}$. Since $\gamma_{n_{l(r)}} \in \Gamma\left(W_{\left.\tilde{x}_{\beta_{n_{l(r)}}, \bar{h}}\right)}\right.$ for all $r \in \mathbb{N}$, we can conclude that

$$
\bar{\gamma}^{\mathrm{T}} W=\lim _{r} \gamma_{n_{l(r)}}^{\mathrm{T}} W_{\tilde{x}_{\beta_{n_{l(r)}}}, \bar{h}}=\lim _{r} \gamma_{n_{l(r)}}^{\mathrm{T}}=\bar{\gamma}^{\mathrm{T}},
$$

that is, $\bar{\gamma} \in \Gamma(W)$.
We next prove that the correspondence $z \mapsto \cup_{\lambda \in[0,1]} \hat{\partial}_{C} T(\lambda z+(1-\lambda) \bar{h} e)$ is closed. Let $\left\{z_{n}, \rho_{n}\right\}_{n \in \mathbb{N}}$ with $\rho_{n} \in \cup_{\lambda \in[0,1]} \hat{\partial}_{C} T\left(\lambda z_{n}+(1-\lambda) \bar{h} e\right)$ for all $n \in \mathbb{N}$ and $\left\{z_{n}, \rho_{n}\right\}_{n \in \mathbb{N}} \rightarrow$ $\{\hat{z}, \hat{\rho}\}_{n \in \mathbb{N}}$. Since $[0,1]$ is compact, there is a susbequence $\left\{z_{n_{l}}, \rho_{n_{l}}\right\}_{l \in \mathbb{N}}$ with $\rho_{n_{l}} \in$ $\hat{\partial}_{C} T\left(\lambda_{n_{l}} z_{n_{l}}+\left(1-\lambda_{n_{l}}\right) \bar{h} e\right)$ and $\lambda_{n_{l}} \rightarrow \hat{\lambda}$ for all $l \in \mathbb{N}$. Since by Clarke [17, Proposition 2.6.2], the correspondence $z \mapsto \hat{\partial}_{C} T(z)$ is closed,

$$
\hat{\rho} \in \hat{\partial}_{C} T(\hat{\lambda} \hat{z}+(1-\hat{\lambda}) \bar{h} e) \subseteq \cup_{\lambda \in[0,1]} \hat{\partial}_{C} T(\lambda \hat{z}+(1-\lambda) \bar{h} e)
$$

proving that $z \mapsto \cup_{\lambda \in[0,1]} \hat{\partial}_{C} T(\lambda z+(1-\lambda) \bar{h} e)$ is closed.
Therefore, by Aliprantis and Border [4, Theorems 17.11 and 17.35],

$$
z \mapsto c o\left(\cup_{\lambda \in[0,1]} \hat{\partial}_{C} T(\lambda z+(1-\lambda) \bar{h} e)\right)
$$

is upper hemicontinuous. Since $\tilde{x}_{\beta_{n_{l(r)}}} \rightarrow \bar{h} e$, we can conclude that

$$
W \in c o\left(\cup_{\lambda \in[0,1]} \hat{\partial}_{C} T(\lambda \bar{h} e+(1-\lambda) \hat{h} e)\right)=\hat{\partial}_{C} T(\bar{h} e)=\hat{\partial}_{C} T_{i}(0) .
$$

Since $\bar{\gamma} \in \Gamma(W)$, this implies that $\bar{\gamma} \in \Gamma(W) \subseteq \Gamma\left(\hat{\partial}_{C} T(0)\right)$. By (31) and since $x_{\beta_{n_{l(r)}}} \rightarrow \bar{x}=\bar{h} e$, it follows that

$$
\bar{h}=\langle\bar{\gamma}, \bar{x}\rangle=\lim _{r}\left\langle\gamma_{n_{l(r)}}, x_{\beta_{n_{l(r)}}}\right\rangle=\lim _{r}\left\langle\gamma_{n_{l(r)}}, x\right\rangle=\langle\bar{\gamma}, x\rangle,
$$

that is,

$$
\sup _{\gamma \in \Gamma\left(\hat{\partial}_{C} T(0)\right)}\langle\gamma, x\rangle e \geq\langle\bar{\gamma}, x\rangle e=\bar{h} e=\bar{x}=\bar{h} e=\langle\bar{\gamma}, x\rangle e \geq \inf _{\gamma \in \Gamma\left(\hat{\partial}_{C} T(0)\right)}\langle\gamma, x\rangle e
$$

Since $\bar{x}$ was arbitrarily chosen, we can conclude that

$$
\begin{equation*}
\sup _{\gamma \in \Gamma\left(\hat{\partial}_{C} T(0)\right)}\langle\gamma, x\rangle e \geq \bar{x} \geq \inf _{\gamma \in \Gamma\left(\hat{\partial}_{C} T(0)\right)}\langle\gamma, x\rangle e \quad \forall \bar{x} \in L . \tag{32}
\end{equation*}
$$

Since $E(T)=D$, we have that $\liminf _{\beta \rightarrow 1} x_{\beta}, \limsup _{\beta \rightarrow 1} x_{\beta} \in L$. By (32) applied to $\limsup _{\beta \rightarrow 1} x_{\beta}$ and $\lim \inf _{\beta \rightarrow 1} x_{\beta}$ and since $\lim \sup _{\beta \rightarrow 1} x_{\beta} \geq \liminf _{\beta \rightarrow 1} x_{\beta}$, we obtain that $\sup _{\gamma \in \Gamma\left(\hat{\partial}_{C} T(0)\right)}\langle\gamma, x\rangle e \geq \limsup _{\beta \rightarrow 1} x_{\beta} \geq \liminf _{\beta \rightarrow 1} x_{\beta} \geq \inf _{\gamma \in \Gamma\left(\hat{\partial}_{C} T(0)\right)}\langle\gamma, x\rangle e$. Since $\hat{\partial}_{C} T(0)$ is closed, we have that $\Gamma\left(\hat{\partial}_{C} T(0)\right)$ is compact, yielding that the above sup and inf are achieved and thus proving the statement.

Proposition 13 Let $T$ be normalized, monotone, and translation invariant. If $E(T)=$ $D$, then

$$
\max _{\gamma \in \Gamma\left(\partial_{C} T(0)\right)}\langle\gamma, x\rangle e \geq \limsup _{\beta \rightarrow 1} x_{\beta} \geq \liminf _{\beta \rightarrow 1} x_{\beta} \geq \min _{\gamma \in \Gamma\left(\partial_{C} T(0)\right)}\langle\gamma, x\rangle e \quad \forall x \in \mathbb{R}^{k} .
$$

Proof. It follows immediately from Lemma 4 and Clarke [17, Proposition 2.6.2].
Proof of Corollary 1. Since $T$ is continuously differentiable in a neighborhood of 0 , so is each $T_{i}$. By [17, p. 32 and Proposition 2.2.4], it follows that $\partial_{C} T_{i}(0)$ is a singleton for all $i \in\{1, \ldots, k\}$. This implies that $\partial_{C} T(0)$ is a singleton and coincides with the Jacobian of $T$ at 0 . In particular, $\Gamma\left(\partial_{C} T(0)\right)$ is the singleton given by $\gamma$ : the
unique left Perron-Frobenius eigenvector of the Jacobian of $T$ at 0 . By Lemma 1 and Proposition 13 and since $E(T)=D$, we can conclude that

$$
\langle\gamma, x\rangle e \geq \limsup _{\beta \rightarrow 1} x_{\beta} \geq \liminf _{\beta \rightarrow 1} x_{\beta} \geq\langle\gamma, x\rangle e
$$

proving that $\lim _{\beta \rightarrow 1} \tilde{x}_{\beta}=\lim _{\beta \rightarrow 1} x_{\beta}=\langle\gamma, x\rangle e$.

Proposition 14 Let $T$ be normalized, monotone, and translation invariant. If $T$ is concave and $E(T)=D$, then

$$
\begin{equation*}
\min _{\gamma \in \Gamma\left(\partial_{C} T(0)\right)}\langle\gamma, x\rangle \geq \min _{\gamma \in \Gamma\left(\partial_{C} T(0)\right)}\left\langle\gamma, x_{\beta}\right\rangle \quad \forall x \in \mathbb{R}^{k}, \forall \beta \in(0,1) \tag{33}
\end{equation*}
$$

and

$$
\min _{\gamma \in \Gamma\left(\partial_{C} T(0)\right)}\langle\gamma, x\rangle e \geq \limsup _{\beta \rightarrow 1} x_{\beta} \quad \forall x \in \mathbb{R}^{k} .
$$

Proof of Proposition 14. Let $x \in \mathbb{R}^{k}$. Consider $W \in \partial_{C} T(0)$ and $\bar{\gamma} \in \Gamma(W)$. Define $S: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ by $S(y)=W y$ for all $y \in \mathbb{R}^{k}$. By (29), it follows that $S(y) \geq T(y)$ for all $y \in \mathbb{R}^{k}$. By induction, we have that $S_{\beta, x}^{t} \geq T_{\beta, x}^{t}$ for all $t \in \mathbb{N}$ and for all $\beta \in(0,1)$. By Lemma 1, if we define by $x_{\beta, W}$ the unique fixed point of $S_{\beta, x}$, this implies that $x_{\beta, W} \geq x_{\beta}$ for all $\beta \in(0,1)$. By definition of $\Gamma(W)$ and $\Gamma\left(\partial_{C} T(0)\right)$ and (4) and since $\bar{\gamma} \in \Gamma(W)$ and $W \in \partial_{C} T(0)$, we also have that $\bar{\gamma} \in \Gamma(W) \subseteq \Gamma\left(\partial_{C} T(0)\right)$ and

$$
\langle\bar{\gamma}, x\rangle=\left\langle\bar{\gamma}, x_{\beta, W}\right\rangle \geq\left\langle\bar{\gamma}, x_{\beta}\right\rangle \geq \min _{\gamma \in \Gamma(W)}\left\langle\gamma, x_{\beta}\right\rangle \geq \min _{\gamma \in \Gamma\left(\partial_{C} T(0)\right)}\left\langle\gamma, x_{\beta}\right\rangle \quad \forall \beta \in(0,1)
$$

Since $W, \bar{\gamma}$, and $x$ were arbitrarily chosen, we have that

$$
\min _{\gamma \in \Gamma\left(\partial_{C} T(0)\right)}\langle\gamma, x\rangle \geq \min _{\gamma \in \Gamma\left(\partial_{C} T(0)\right)}\left\langle\gamma, x_{\beta}\right\rangle \quad \forall x \in \mathbb{R}^{k}, \forall \beta \in(0,1),
$$

proving (33). Fix $x \in \mathbb{R}^{k}$ again. Observe that the function $\varphi: \mathbb{R}^{k} \rightarrow \mathbb{R}$, defined by $\varphi(y)=\min _{\gamma \in \Gamma\left(\partial_{C} T(0)\right)}\langle\gamma, y\rangle$ for all $y \in \mathbb{R}^{k}$, is normalized, monotone, and translation invariant. In particular, $\varphi$ is Lipschitz continuous. By Lemma 3 and since $E(T)=$ $D$, we have that $\lim \sup _{\beta \rightarrow 1} x_{\beta}$ is a limit point of $\left\{x_{\beta}\right\}_{\beta \in(0,1)}$, that is, there exists a sequence $\left\{x_{\beta_{n}}\right\}_{n \in \mathbb{N}} \subseteq\left\{x_{\beta}\right\}_{\beta \in(0,1)}$ such that $\beta_{n} \rightarrow 1$ and $\lim _{n} x_{\beta_{n}}=\lim \sup _{\beta \rightarrow 1} x_{\beta}$ and $\lim \sup _{\beta \rightarrow 1} x_{\beta}=\bar{h} e$ for some $\bar{h} \in \mathbb{R}$. By (33) and since $\varphi$ is continuous, we can conclude that

$$
\min _{\gamma \in \Gamma\left(\partial_{C} T(0)\right)}\langle\gamma, x\rangle \geq \lim _{n} \min _{\gamma \in \Gamma\left(\partial_{C} T(0)\right)}\left\langle\gamma, x_{\beta_{n}}\right\rangle=\lim _{n} \varphi\left(x_{\beta_{n}}\right)=\varphi(\bar{h} e)=\bar{h},
$$

proving the statement.
Proof of Corollary 2. By Lemma 1 and Propositions 13 and 14, we have that $\liminf _{\beta \rightarrow 1} x_{\beta} \geq \min _{\gamma \in \Gamma\left(\partial_{C} T(0)\right)}\langle\gamma, x\rangle e \geq \limsup _{\beta \rightarrow 1} x_{\beta}$ and $\lim _{\beta \rightarrow 1} \tilde{x}_{\beta}=\lim _{\beta \rightarrow 1} x_{\beta}=$
$\min _{\gamma \in \Gamma\left(\partial_{C} T(0)\right)}\langle\gamma, x\rangle$, proving the first part of the statement. As for the second one, it follows from Proposition 12.

Proof of Corollary 3. If $T$ is differentiable at 0 , so is each $T_{i}$. Since $T$ is concave, so is each $T_{i}$. It follows that $\partial_{C} T_{i}(0)=\partial T_{i}(0)$ is a singleton for all $i \in\{1, \ldots, k\}$. This implies that $\partial_{C} T(0)$ is a singleton and coincides with the Jacobian of $T$ at 0 . By point 2 of Proposition 12 and since $\underline{A}(T)$ is regular, the Jacobian of $T$ at 0 is regular, yielding that $\Gamma\left(\partial_{C} T(0)\right)$ is a singleton given by the unique left Perron-Frobenius eigenvector of the Jacobian of $T$ at 0 . By Corollary 2, we can conclude that $\lim _{\beta \rightarrow 1} \tilde{x}_{\beta}=\lim _{\beta \rightarrow 1} x_{\beta}=$ $\langle\gamma, x\rangle e$.

## B.2.2 Star-shaped operators

Observe that if $T$ is nice we have that $E(T)=D$. To see this, consider $x \in E(T)$. By construction of $T$, there exists $\bar{\alpha} \in A$ such that $x=T(x)=S_{\bar{\alpha}}(x)$, yielding that $x \in E\left(S_{\bar{\alpha}}\right)=D$. This shows that $E(T) \subseteq D$. The opposite inclusion follows from normalization. In order to prove Proposition 1, we first provide two ancillary lemmas which give bounds on $\liminf \lim _{\beta \rightarrow 1} x_{\beta}$ and $\lim \sup _{\beta \rightarrow 1} x_{\beta}$. These bounds are in terms of the limits of the operators $S_{\alpha}$ whose sup gives $T$.

Lemma 5 If $\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is nice, then $\liminf _{\beta \rightarrow 1} x_{\beta} \geq \sup _{\alpha \in \mathcal{A}} \varphi_{S_{\alpha}}(x)$ e for all $x \in \mathbb{R}^{k}$.
Proof. By construction, we have that $T(y) \geq S_{\alpha}(y)$ for all $y \in \mathbb{R}^{k}$ and for all $\alpha \in \mathcal{A}$. By induction and since $S_{\alpha}$ and $T$ are monotone, this implies that $T_{\beta, x}^{t}(y) \geq S_{\alpha, \beta, x}^{t}(y)$ for all $t \in \mathbb{N}$, for all $\beta \in(0,1)$, for all $x, y \in \mathbb{R}^{k}$, and for all $\alpha \in \mathcal{A}$. By passing to the limit and Lemma 1, this implies that $x_{\beta} \geq x_{\beta, \alpha}$ for all $\beta \in(0,1)$, for all $x \in \mathbb{R}^{k}$, and for all $\alpha \in \mathcal{A}$. By Corollary 2 and since $E(T)=D$, it follows that $\liminf _{\beta \rightarrow 1} x_{\beta} \geq \liminf _{\beta \rightarrow 1} x_{\beta, \alpha}=\lim _{\beta \rightarrow 1} x_{\beta, \alpha}=\varphi_{S_{\alpha}}(x) e$ for all $x \in \mathbb{R}^{k}$ and for all $\alpha \in \mathcal{A}$, proving the statement.

Lemma 6 If $\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is nice, then $\sup _{\alpha \in \mathcal{A}} \varphi_{S_{\alpha}}(x) e \geq \lim \sup _{\beta \rightarrow 1} x_{\beta}$ for all $x \in \mathbb{R}^{k}$.
Proof. Fix $x \in \mathbb{R}^{k}$ and $\beta \in(0,1)$. By construction of $T$ and definition of $x_{\beta}$ and since $\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is nice, we have that there exists $\alpha_{\beta} \in \mathcal{A}$

$$
S_{\alpha_{\beta}}\left((1-\beta) x+\beta x_{\beta}\right)=T\left((1-\beta) x+\beta x_{\beta}\right)=x_{\beta}
$$

By Lemma 1, it follows that $x_{\beta}=x_{\beta, \alpha_{\beta}}$. By Proposition 14 and since $\beta$ was arbitrarily chosen, we have that for each $\beta \in(0,1)$
$\sup _{\alpha \in \mathcal{A}} \varphi_{S_{\alpha}}(x) \geq \varphi_{S_{\alpha_{\beta}}}(x)=\min _{\gamma \in \Gamma\left(\partial_{C} S_{\alpha_{\beta}}(0)\right)}\langle\gamma, x\rangle \geq \min _{\gamma \in \Gamma\left(\partial_{C} S_{\alpha_{\beta}}(0)\right)}\left\langle\gamma, x_{\beta, \alpha_{\beta}}\right\rangle=\min _{\gamma \in \Gamma\left(\partial_{C} S_{\alpha_{\beta}}(0)\right)}\left\langle\gamma, x_{\beta}\right\rangle$.

By Lemma 3 and since $E(T)=D$, we have that there exists a sequence $\left\{x_{\beta_{n}}\right\}_{n \in \mathbb{N}} \subseteq$ $\left\{x_{\beta}\right\}_{\beta \in(0,1)}$ such that $\beta_{n} \rightarrow 1$ and $\lim \sup _{\beta \rightarrow 1} x_{\beta}=\lim _{n} x_{\beta_{n}}=\bar{h} e$ for some $\bar{h} \in \mathbb{R}$. For each $n \in \mathbb{N}$ consider $\gamma_{n} \in \Gamma\left(\partial_{C} S_{\alpha_{\beta_{n}}}(0)\right)$ such that $\left\langle\gamma_{n}, x_{\beta_{n}}\right\rangle=\min _{\gamma \in \Gamma\left(\partial_{C} S_{\alpha_{\beta_{n}}}(0)\right)}\left\langle\gamma, x_{\beta_{n}}\right\rangle$. We have that $\sup _{\alpha \in \mathcal{A}} \varphi_{S_{\alpha}}(x) \geq\left\langle\gamma_{n}, x_{\beta_{n}}\right\rangle$ for all $n \in \mathbb{N}$. Since $\left\{\gamma_{n}\right\}_{n \in \mathbb{N}} \subseteq \Delta$, there exists a subsequence $\left\{\gamma_{n_{l}}\right\}_{l \in \mathbb{N}} \subseteq\left\{\gamma_{n}\right\}_{n \in \mathbb{N}}$ such that $\gamma_{n_{l}} \rightarrow \bar{\gamma} \in \Delta$. We can conclude that

$$
\sup _{\alpha \in \mathcal{A}} \varphi_{S_{\alpha}}(x) \geq \lim _{l}\left\langle\gamma_{n_{l}}, x_{\beta_{n_{l}}}\right\rangle=\langle\bar{\gamma}, \bar{h} e\rangle=\bar{h},
$$

proving that $\sup _{\alpha \in \mathcal{A}} \varphi_{S_{\alpha}}(x) e \geq \bar{h} e=\limsup _{\beta \rightarrow 1} x_{\beta}$. Since $x \in \mathbb{R}^{k}$ was arbitrarily chosen, the statement follows.

Proof of Proposition 1. By Lemmas 5 and 6, we have that $\lim _{\beta \rightarrow 1} x_{\beta}=\sup _{\alpha \in \mathcal{A}} \varphi_{S_{\alpha}}(x) e$ for all $x \in \mathbb{R}^{k}$.

Proof of Theorem 1. Note that $T_{i}$ is normalized, monotone, translation invariant, and star-shaped for all $i \in\{1, \ldots, k\}$. By Proposition 9, we have that for each $i \in\{1, \ldots, k\}$ there exists a family $\left\{S_{\alpha_{i}}\right\}_{\alpha_{i} \in \mathcal{A}_{i}}$ of normalized, monotone, translation invariant, and concave functionals such that

$$
\begin{equation*}
T_{i}(x)=\max _{\alpha_{i} \in \mathcal{A}_{i}} S_{\alpha_{i}}(x) \quad \forall x \in \mathbb{R}^{k} \tag{35}
\end{equation*}
$$

and $\overline{\cos }\left(\partial_{C} S_{\alpha_{i}}\left(\mathbb{R}^{k}\right)\right) \subseteq \overline{\operatorname{co}}\left(\partial_{C} T_{i}\left(\mathbb{R}^{k}\right)\right)$ for all $\alpha_{i} \in \mathcal{A}_{i}$. Define $\mathcal{A}=\Pi_{i=1}^{k} \mathcal{A}_{i}$ and for each $\alpha \in \mathcal{A}$ define $S_{\alpha}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ to be such that its $i$-th component coincides with $S_{\alpha_{i}}$ for all $i \in\{1, \ldots, k\}$. It is immediate to see that $S_{\alpha}$ is normalized, monotone, translation invariant, and concave for all $\alpha \in \mathcal{A}$. Since $\overline{\operatorname{co}}\left(\partial_{C} S_{\alpha_{i}}\left(\mathbb{R}^{k}\right)\right) \subseteq \overline{\operatorname{co}}\left(\partial_{C} T_{i}\left(\mathbb{R}^{k}\right)\right)$ for all $\alpha_{i} \in \mathcal{A}_{i}$ and for all $i \in\{1, \ldots, k\}$, it follows that $\underline{A}\left(S_{\alpha}\right) \geq \underline{A}(T)$ for all $\alpha \in \mathcal{A}$. By Proposition 10 and since $\underline{A}(T)$ is regular, this implies that $\underline{A}\left(S_{\alpha}\right)$ is regular and $E\left(S_{\alpha}\right)=D$ for all $\alpha \in \mathcal{A}$. By (35) and since $\mathcal{A}$ has a product structure, we have that

$$
T(x)=\sup _{\alpha \in \mathcal{A}} S_{\alpha}(x) \quad \forall x \in \mathbb{R}^{k}
$$

and for each $x \in \mathbb{R}^{k}$ there exists $\alpha_{x} \in \mathcal{A}$ such that $T(x)=S_{\alpha_{x}}(x)$. We can conclude that $\left\{S_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is nice. By Proposition 1, the statement follows.

Proof of Lemma 2. Define $\tilde{T}_{\beta, x}(y)=(1-\beta) x+\beta T(y)$ for all $y \in \mathbb{R}^{k}$. It is easy to show that $\tilde{T}_{\beta, x}$ is a $\beta$-contraction (see, e.g., [23, Theorem 11.3]). By the Banach contraction principle and since $\tilde{T}_{\beta, x}$ is also a $\beta$-contraction, for each $y \in \mathbb{R}^{k}$ we have that $\tilde{T}_{\beta, x}^{t}(y) \rightarrow \tilde{x}_{\beta}$ as well as $\tilde{T}_{\beta, x}\left(\tilde{x}_{\beta}\right)=\tilde{x}_{\beta}$ where $\tilde{x}_{\beta}$ is the unique fixed point of $\tilde{T}_{\beta, x}$. Fix $x \in \mathbb{R}^{k}$ and $\beta \in(0,1)$. Set $\hat{x}_{\beta}=(1-\beta) x+\beta x_{\beta}$. By definition of $\tilde{T}_{\beta, x}$ and $\hat{x}_{\beta}$ as well as $x_{\beta}$, we have that
$\tilde{T}_{\beta, x}\left(\hat{x}_{\beta}\right)=(1-\beta) x+\beta T\left(\hat{x}_{\beta}\right)=(1-\beta) x+\beta T\left((1-\beta) x+\beta x_{\beta}\right)=(1-\beta) x+\beta x_{\beta}=\hat{x}_{\beta}$.

Since $\tilde{x}_{\beta}$ is the unique fixed point of $\tilde{T}_{\beta, x}$ and $x$ and $\beta$ were arbitrarily chosen, we can conclude that $\tilde{x}_{\beta}=\hat{x}_{\beta}=(1-\beta) x+\beta x_{\beta}$ for all $\beta \in(0,1)$ and for all $x \in \mathbb{R}^{k}$. The second part of the staement follows by taking the limit for $\beta$ when it exists.

## C Appendix: Proofs of Sections 4 and 5

Lemma 7 Let $T$ be normalized, monotone, and translation invariant. If $T$ is concave and there is $W \in \partial T(0)$ such that $W$ is strongly connected, then $E(T)=D$.

## C. 1 Endogenous networks

Proof of Proposition 2. Observe that $c_{i}=\ln \left(1 / S_{i}\right)=-\ln \left(S_{i}\right)$ and that $\ln \left(S_{i}\right)$ is the composition of two upper semicontinuous function where $\ln$ is monotone, so it is upper semicontinuous, and thus $c_{i}$ is lower semicontinuous. It is also convex al $S_{i}$ is log-concave. Since there is $w_{i}$ with $S_{i}\left(w_{i}\right), c^{-1}(0) \neq \emptyset$. Therefore, it is easy to see that $p \mapsto \min _{w_{i}: S_{i}\left(w_{i}\right)=1} \sum_{j=1}^{k} w_{i j} p_{j}$ and $p \mapsto \min _{w_{i} \in \Delta}\left\{\sum_{j=1}^{k} w_{i j} p_{j}+c_{i}\left(w_{i}\right)\right\}$ are well defined, normalized, monotone, translation invariant, and concave.

To prove the result, we are going to use two ancillary fixed point equations:

$$
\hat{p}_{\beta, i}=(1-\beta) x_{i}+\beta \min _{w_{i} \in \Delta}\left\{\sum_{j=1}^{k} w_{i j} \hat{p}_{\beta, j}+c_{i}\left(w_{i}\right)\right\} \quad \forall i \in\{1, \ldots, k\}
$$

and

$$
p_{\beta, i}^{\prime}=(1-\beta) x_{i}+\beta \min _{w_{i}: S_{i}\left(w_{i}\right)=1} \sum_{j=1}^{k} w_{i j} p_{\beta, j}^{\prime} \quad \forall i \in\{1, \ldots, k\} .
$$

It is easy to see that for all $\beta \in(0,1)$ and $i \in\{1, \ldots, k\}, p_{\beta, i}^{\prime} \geq p_{\beta, i} \geq \hat{p}_{\beta, i}$. Since by Corollary 2, equation (9), and Lemmas 2 and 7 for all $i \in\{1, \ldots, k\}, \lim _{\beta \rightarrow 1} \hat{p}_{\beta, i}=$ $\lim _{\beta \rightarrow 1} p_{\beta, i}^{\prime}=\min _{\gamma \in \Gamma(S)}\langle\gamma, x\rangle$, the first part of the result follows.

For the second part of the result, $\lim _{\beta \rightarrow 1} p_{\beta, i}=\left\langle\gamma_{W^{0}}, x\right\rangle$ immediately follows from the first part. Suppose by contradiction that for some $i \in\{1, \ldots, k\}$ we do not have $\lim _{\beta \rightarrow 1} w_{\beta, i}=w_{i}^{0}$. Since $\Delta$ is compact, the sequence $\lim _{\beta \rightarrow 1} w_{\beta, i}$ admits a converging subsequence $\left\{w_{\beta_{n}, i}\right\}_{n \in \mathbb{N}}$ with limit $\hat{w}_{i} \neq w_{i}^{0}$. But this, by the lower semicontinuity of $c_{i}$, means that
$\left\langle\gamma_{W^{0}}, x\right\rangle+c_{i}\left(\hat{w}_{i}\right) \leq \lim _{n \rightarrow \infty} \sum_{j=1}^{k} w_{\beta_{n}, i j} \hat{p}_{\beta, j}+c_{i}\left(w_{\beta_{n}, i}\right) \leq \lim _{n \rightarrow \infty} \sum_{j=1}^{k} w_{i j}^{0} \hat{p}_{\beta, j}+c_{i}\left(w_{i}^{0}\right)=\left\langle\gamma_{W^{0}}, x\right\rangle$ a contradiction with $c_{i}\left(\hat{w}_{i}\right)>0$. With this, that $\lim _{\beta \rightarrow 1} Q_{\beta, i 0}=0$, and $\lim _{\beta \rightarrow 1} Q_{\beta, i j}=$ $w_{i j}^{0}$ follows from equations 50.

Proof of Proposition 3. It follows immediately by 7 and Corollary 3.

Proof of Proposition 4. For every $i \in\{1, \ldots, k\}$, let $\bar{c}_{i}$ be the convexification of $c_{i}$. Observe that for all $i \in\{1, \ldots, k\}$ and $a \in \mathbb{R}^{k}$

$$
(1-\beta) x_{i}+\beta \max _{\tilde{w}_{i} \in \Delta_{n}}\left\{\sum_{j=1}^{n} \tilde{w}_{i j} a_{j}-\frac{c_{i}\left(\tilde{w}_{i}\right)}{\beta}\right\}=(1-\beta) x_{i}+\beta \max _{\tilde{w}_{i} \in \Delta_{n}}\left\{\sum_{j=1}^{n} \tilde{w}_{i j} a_{j}-\frac{\bar{c}_{i}\left(\tilde{w}_{i}\right)}{\beta}\right\}
$$

by Theorem 3 of [14]. To prove the result, we are going to use two ancillary fixed point equations:

$$
\hat{a}_{\beta, i}=(1-\beta) x_{i}+\beta \max _{\tilde{w}_{i} \in \Delta_{n}}\left\{\sum_{j=1}^{n} \tilde{w}_{i j} \hat{a}_{\beta, j}-\bar{c}_{i}\left(\tilde{w}_{i}\right)\right\} \quad \forall i \in\{1, \ldots, k\}
$$

and

$$
a_{\beta, i}^{\prime}=(1-\beta) x_{i}+\beta \max _{\tilde{w}_{i} \in \Delta_{n}} \sum_{j=1}^{n} \tilde{w}_{i j} a_{\beta, j}^{\prime} \quad \forall i \in\{1, \ldots, k\}
$$

It is easy to see that for all $\beta \in(0,1)$ and $i \in\{1, \ldots, k\}, a_{\beta, i}^{\prime} \leq a_{\beta, i} \leq \hat{a}_{\beta, i}$. Since by Corollary 2, equation (9), and Lemmas 2 and 7 for all $i \in\{1, \ldots, k\}, \lim _{\beta \rightarrow 1} \hat{a}_{\beta, i}=$ $\lim _{\beta \rightarrow 1} a_{\beta, i}^{\prime}=\max _{\gamma \in \Gamma(c)}\langle\gamma, x\rangle$.

## C. 2 Zero-sum stochastic games

Proof of Proposition 5. For every $s \in S_{M}$, define the operator $H(\cdot, s): \mathbb{R}^{R \times \Omega} \rightarrow$ $\mathbb{R}^{R \times \Omega}$ as
$H_{r, \omega}(z, s)=\min _{\tilde{s} \in S_{m}}\left\{\sum_{\left(r^{\prime}, \omega^{\prime}\right) \in R \times \Omega} z_{r^{\prime}, \omega^{\prime}} \rho(s, \tilde{s}, \omega)\left(r^{\prime}, \omega^{\prime}\right)\right\} \quad \forall(r, \omega) \in R \times \Omega, \forall z \in \mathbb{R}^{R \times \Omega}$.
Moreover, define the operator $T: \mathbb{R}^{R \times \Omega} \rightarrow \mathbb{R}^{R \times \Omega}$ as

$$
T_{r, \omega}(z)=\max _{s \in S_{M}} H_{r, \omega}(z, s) \quad \forall(r, \omega) \in R \times \Omega, \forall z \in \mathbb{R}^{R \times \Omega}
$$

Observe that, for every $s \in S$, the operator $H(\cdot, s)$ is monotone, normalized, translation invariant, positive homogeneous, and concave. Moreover, since $S_{m}$ is compact and $\rho$ is continuous, it follows by the Maximum theorem that, for every $z \in \mathbb{R}^{R \times \Omega}$, the map $s \mapsto H(\cdot, s)$ is continuous. Given that $S_{M}$ is compact, it follows that $\{H(\cdot, s)\}_{s \in S_{M}}$ is nice. Moreover, observe that by construction we have

$$
H_{r, \omega}=H_{r^{\prime}, \omega} \quad \forall r, r^{\prime} \in R, \forall \omega \in \Omega .
$$

Therefore, for all $s \in S_{M}$ we have

$$
\begin{aligned}
\partial_{C} H(0, s) & =\left\{\begin{array}{c}
W \in \mathcal{W}_{R \times \Omega}: \exists \hat{\sigma} \in \Delta\left(S_{m}\right)^{R \times \Omega}, \forall(r, \omega),\left(r^{\prime}, \omega^{\prime}\right) \in R \times \Omega, \\
w_{(r, \omega),\left(r^{\prime}, \omega^{\prime}\right)}=\int_{S_{m}} \rho(s, \tilde{s}, \omega)\left(r^{\prime}, \omega^{\prime}\right) d \hat{\sigma}_{r, \omega}(\tilde{s})
\end{array}\right\} \\
& =\left\{\begin{array}{c}
W \in \mathcal{W}_{R \times \Omega}: \exists \tilde{\sigma} \in \Sigma_{m}, \forall(r, \omega),\left(r^{\prime}, \omega^{\prime}\right) \in R \times \Omega \\
w_{(r, \omega),\left(r^{\prime}, \omega^{\prime}\right)}=\int_{S_{m}} \rho(s, \tilde{s}, \omega)\left(r^{\prime}, \omega^{\prime}\right) d \tilde{\sigma}_{\omega}(\tilde{s})
\end{array}\right\} \\
& =\left\{W(s, \tilde{\sigma}) \in \mathcal{W}_{R \times \Omega}: \tilde{\sigma} \in \Sigma_{m}\right\} .
\end{aligned}
$$

Next, define $x \in \mathbb{R}^{R \times \Omega}$ as $x_{r, \omega}=r$. Next, observe that, for every $\beta \in(0,1)$, the unique solution $v^{\beta}$ of equation (18) does not depend on the realization of $r$. With this, for every $\beta \in(0,1)$, define $x^{\beta} \in \mathbb{R}^{R \times \Omega}$ as $x_{r, \omega}^{\beta}=v_{\omega}^{\beta}$, and observe that it is the unique solution of the fixed-point equation: for all $(r, \omega) \in R \times \Omega$,

$$
x_{r, \omega}^{\beta}=T_{r, \omega}\left((1-\beta) x+\beta x^{\beta}\right) .
$$

Also, for every $t \in \mathbb{N}$, define $x^{t} \in \mathbb{R}^{R \times \Omega}$ as $x_{r, \omega}^{t}=v_{\omega}^{t}$, and observe that, for all $t \in \mathbb{N}$ and for all $(r, \omega) \in R \times \Omega$,

$$
x_{r, \omega}^{t}=T_{r, \omega}\left(\frac{1}{t} x+\frac{t-1}{t} x^{\beta}\right) .
$$

Therefore, by Propositions 1 and 8 , it follows that
$\lim _{\beta \rightarrow 1} x^{\beta}=\lim _{t} x^{t}=\sup _{s \in S_{M}}\left(\min _{\gamma \in \Gamma\left(\partial_{C} H(0, s)\right)} \sum_{\left(r^{\prime}, \omega^{\prime}\right) \in R \times \Omega} x_{r^{\prime}, \omega^{\prime}} \gamma_{r^{\prime}, \omega^{\prime}}\right) e=\left(\sup _{s \in S_{M}} \min _{\tilde{\sigma} \in \Sigma_{m}} \sum_{r \in R} r \gamma(s, \tilde{\sigma})(r)\right) e$, yielding the result.

## D Appendix: Proofs of Section 8

## D. 1 Range

Given the additivity and homogeneity properties of max and min, it is routine to check that

$$
\begin{equation*}
\operatorname{Rg}(\lambda y+\mu z) \leq \lambda \operatorname{Rg}(y)+\mu \operatorname{Rg}(z) \quad \forall \lambda, \mu \in \mathbb{R}_{+}, \forall y, z \in \mathbb{R}^{k} \tag{36}
\end{equation*}
$$

In particular, since $\tilde{x}_{\beta}=(1-\beta) x+\beta x_{\beta}$ for all $x \in \mathbb{R}^{k}$ and for all $\beta \in(0,1)$, this implies that

$$
\begin{equation*}
\operatorname{Rg}\left(\tilde{x}_{\beta}\right) \leq(1-\beta) \operatorname{Rg}(x)+\beta \operatorname{Rg}\left(x_{\beta}\right) \quad \forall x \in \mathbb{R}^{k}, \forall \beta \in(0,1) \tag{37}
\end{equation*}
$$

If $T$ is normalized and monotone, we have that $\left(\min _{i \in\{1, \ldots, k\}} y_{i}\right) e \leq T(y) \leq\left(\max _{i \in\{1, \ldots, k\}} y_{i}\right) e$ for all $y \in \mathbb{R}^{k}$, thus

$$
\begin{equation*}
\operatorname{Rg}(T(y)) \leq \operatorname{Rg}(y) \quad \forall y \in \mathbb{R}^{k} \tag{38}
\end{equation*}
$$

By definition of $\tilde{x}_{\beta}$ and $x_{\beta}$, we have that $T\left(\tilde{x}_{\beta}\right)=x_{\beta}$ for all $x \in \mathbb{R}^{k}$ and for all $\beta \in(0,1)$ and

$$
\begin{equation*}
\operatorname{Rg}\left(x_{\beta}\right) \leq \operatorname{Rg}\left(\tilde{x}_{\beta}\right) \quad \forall x \in \mathbb{R}^{k}, \forall \beta \in(0,1) . \tag{39}
\end{equation*}
$$

Thus, for our purposes, (37) and (39) show that we can alternatively either study $\operatorname{Rg}\left(x_{\beta}\right)$ or $\operatorname{Rg}\left(\tilde{x}_{\beta}\right)$. Since some results are easier to be derived just focusing on one of the two, we will extensively use these inequalities to go back and forth $\operatorname{Rg}\left(x_{\beta}\right)$ and $\operatorname{Rg}\left(\tilde{x}_{\beta}\right)$. We begin with two ancillary lemmas.

Lemma 8 Let $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ be such that there exist a stochastic matrix $W$ and $\varepsilon \in(0,1]$ such that

$$
\begin{equation*}
T(y)=\varepsilon W y+(1-\varepsilon) S(y) \quad \forall y \in \mathbb{R}^{k} \tag{40}
\end{equation*}
$$

where $S: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is normalized, monotone, and translation invariant. If there exist $h \in\{1, \ldots, k\}$ and $\hat{t} \in \mathbb{N}$ such that $w_{i h}^{(\hat{t})}>0$ for all $i \in\{1, \ldots, k\}$, then

$$
\operatorname{Rg}\left(x_{\beta}\right) \leq \frac{1}{1+\frac{\delta^{\hat{t}}(\beta \varepsilon)^{\hat{t}}(1-\beta \varepsilon)}{(1-\beta)\left(1-(\beta \varepsilon)^{t}\right)}} \operatorname{Rg}(x) \quad \forall \beta \in(0,1), \forall x \in \mathbb{R}^{k}
$$

where $\delta=\min _{i, j: w_{i j}>0} w_{i j}$.
Proof. Recall that $\tilde{x}_{\beta}=(1-\beta) x+\beta x_{\beta}$ for all $x \in \mathbb{R}^{k}$ and for all $\beta \in(0,1)$. Given $x \in \mathbb{R}^{k}$ and $\beta \in(0,1)$, recall also that $T_{\beta, x}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is defined by $T_{\beta, x}(y)=$ $T((1-\beta) x+\beta y)$ for all $y \in \mathbb{R}^{k}$. By Lemma $1, x_{\beta}$ is a fixed point of $T_{\beta, x}$ and so of $T_{\beta, x}^{t}$ for all $t \in \mathbb{N}$.
Step 1. For each $x \in \mathbb{R}^{k}$, for each $\beta \in(0,1)$, and for each $t \in \mathbb{N}$

$$
T_{\beta, x}^{t}\left(x_{\beta}\right)=(1-\beta) \varepsilon \sum_{\tau=0}^{t-1}(\beta \varepsilon)^{\tau} W^{\tau+1} x+(\beta \varepsilon)^{t} W^{t} x_{\beta}+(1-\varepsilon) \sum_{\tau=0}^{t-1}(\beta \varepsilon)^{\tau} W^{\tau} S\left(\tilde{x}_{\beta}\right) .
$$

Proof of the Step. We proceed by induction.
Initial Step. If $t=1$, then

$$
\begin{aligned}
T_{\beta, x}\left(x_{\beta}\right) & =T\left((1-\beta) x+\beta x_{\beta}\right) \\
& =(1-\beta) \varepsilon W x+\beta \varepsilon W x_{\beta}+(1-\varepsilon) S\left((1-\beta) x+\beta x_{\beta}\right) \\
& =(1-\beta) \varepsilon \sum_{\tau=0}^{t-1}(\beta \varepsilon)^{\tau} W^{\tau+1} x+(\beta \varepsilon)^{t} W^{t} x_{\beta}+(1-\varepsilon) \sum_{\tau=0}^{t-1}(\beta \varepsilon)^{\tau} W^{\tau} S\left(\tilde{x}_{\beta}\right),
\end{aligned}
$$

proving the initial step.

Inductive Step. Assume the statement holds for $t$. We show it holds for $t+1$. By (40) and inductive hypothesis $T_{\beta, x}^{t}\left(x_{\beta}\right)=x_{\beta}$, we have that

$$
\begin{aligned}
T_{\beta, x}^{t+1}\left(x_{\beta}\right) & =T\left((1-\beta) x+\beta T_{\beta, x}^{t}\left(x_{\beta}\right)\right) \\
& =\varepsilon W\left((1-\beta) x+\beta T_{\beta, x}^{t}\left(x_{\beta}\right)\right)+(1-\varepsilon) S\left((1-\beta) x+\beta T_{\beta, x}^{t}\left(x_{\beta}\right)\right) \\
& =(1-\beta) \varepsilon W x+\beta \varepsilon W T_{\beta, x}^{t}\left(x_{\beta}\right)+(1-\varepsilon) S\left((1-\beta) x+\beta x_{\beta}\right) \\
& =(1-\beta) \varepsilon W x \\
& +\beta \varepsilon W\left((1-\beta) \varepsilon \sum_{\tau=0}^{t-1}(\beta \varepsilon)^{\tau} W^{\tau+1} x+(\beta \varepsilon)^{t} W^{t} x_{\beta}+(1-\varepsilon) \sum_{\tau=0}^{t-1}(\beta \varepsilon)^{\tau} W^{\tau} S\left(\tilde{x}_{\beta}\right)\right) \\
& +(1-\varepsilon) S\left(\tilde{x}_{\beta}\right) \\
& =(1-\beta) \varepsilon W x+(1-\beta) \varepsilon \sum_{\tau=0}^{t-1}(\beta \varepsilon)^{\tau+1} W^{\tau+2} x+(\beta \varepsilon)^{t+1} W^{t+1} x_{\beta} \\
& +(1-\varepsilon) \sum_{\tau=0}^{t-1}(\beta \varepsilon)^{\tau+1} W^{\tau+1} S\left(\tilde{x}_{\beta}\right)+(1-\varepsilon) S\left(\tilde{x}_{\beta}\right) \\
& =(1-\beta) \varepsilon \sum_{\tau=0}^{t}(\beta \varepsilon)^{\tau} W^{\tau+1} x+(\beta \varepsilon)^{t+1} W^{t+1} x_{\beta}+(1-\varepsilon) \sum_{\tau=0}^{t}(\beta \varepsilon)^{\tau} W^{\tau} S\left(\tilde{x}_{\beta}\right)
\end{aligned}
$$

proving the inductive step.
Step 1 follows by induction.
Step 2. For each $z \in \mathbb{R}^{k}$

$$
\operatorname{Rg}\left(W^{\hat{t}} z\right) \leq\left(1-\delta^{\hat{t}}\right) \operatorname{Rg}(z)
$$

where $\delta=\min _{i, j: w_{i j}>0} w_{i j}$.
Proof of the Step. Let $z \in \mathbb{R}^{k}$ and define $y=W^{\hat{t}} z$. Consider $i_{1}, i_{2} \in\{1, \ldots, k\}$ such that $y_{i_{1}}=\max _{i \in\{1, \ldots, k\}} y_{i}$ and $y_{i_{2}}=\min _{i \in\{1, \ldots, k\}} y_{i}$. Define also $z^{\star}=\max _{i \in\{1, \ldots, k\}} z_{i}$ and $z_{\star}=\min _{i \in\{1, \ldots, k\}} z_{i}$. Define $\tilde{\delta}=\min _{i \in\{1, \ldots, h\}} w_{i h}^{(\hat{t})} \in(0,1)$ where $w_{i h}^{(\hat{t})}$ is the $i h$-th entry of $W^{\hat{t}}$. Note that

$$
\begin{aligned}
\operatorname{Rg}\left(W^{\hat{t}} z\right) & =\operatorname{Rg}(y)=y_{i_{1}}-y_{i_{2}}=\sum_{j=1}^{k} w_{i_{1} j}^{(\hat{t})} z_{j}-\sum_{j=1}^{k} w_{i_{2} j}^{(\hat{t})} z_{j} \\
& \leq\left(1-w_{i_{1} h}^{(\hat{t})}\right) z^{\star}-\left(1-w_{i_{2} h}^{(\hat{t})}\right) z_{\star}+\left(w_{i_{1} h}^{(\hat{t})}-\tilde{\delta}\right) z_{h}+\tilde{\delta} z_{h}-\left(w_{i_{2} h}^{(\hat{t})}-\tilde{\delta}\right) z_{h}-\tilde{\delta} z_{h} \\
& \leq\left(1-w_{i_{1} h}^{(\hat{t})}\right) z^{\star}-\left(1-w_{i_{2} h}^{(\hat{t})}\right) z_{\star}+\left(w_{i_{1} h}^{(\hat{t})}-\tilde{\delta}\right) z^{\star}-\left(w_{i_{2} h}^{(\hat{t})}-\tilde{\delta}\right) z_{\star} \\
& \leq(1-\tilde{\delta})\left(z^{\star}-z_{\star}\right)=(1-\tilde{\delta}) \operatorname{Rg}(z) .
\end{aligned}
$$

Next, by induction, it is immediate to see that $\min _{i, j: w_{i j}^{(t)}>0} w_{i j}^{(t)} \geq\left(\min _{i, j: w_{i j}>0} w_{i j}\right)^{t}=\delta^{t}$ for all $t \in \mathbb{N}$. Since $w_{i h}^{(\hat{t})}>0$ for all $i \in\{1, \ldots, k\}$, we can conclude that $\tilde{\delta} \geq \delta^{\hat{t}}$, proving the statement.

By Steps 1 and 2 as well as (36), (37), and (38) and since $T_{\beta, x}^{\hat{t}}\left(x_{\beta}\right)=x_{\beta}$ and the composition of normalized and monotone operators is normalized and monotone, we have that for each $x \in \mathbb{R}^{k}$ and for each $\beta \in(0,1)$

$$
\begin{aligned}
\operatorname{Rg}\left(x_{\beta}\right) & =\operatorname{Rg}\left(T_{\beta, x}^{\hat{t}}\left(x_{\beta}\right)\right) \\
& =\operatorname{Rg}\left[(1-\beta) \varepsilon \sum_{\tau=0}^{\hat{t}-1}(\beta \varepsilon)^{\tau} W^{\tau+1} x+(\beta \varepsilon)^{\hat{t}} W^{\hat{t}} x_{\beta}+(1-\varepsilon) \sum_{\tau=0}^{\hat{t}-1}(\beta \varepsilon)^{\tau} W^{\tau} S\left(\tilde{x}_{\beta}\right)\right] \\
& \leq(1-\beta) \varepsilon \sum_{\tau=0}^{\hat{t}-1}(\beta \varepsilon)^{\tau} \operatorname{Rg}\left(W^{\tau+1} x\right)+(\beta \varepsilon)^{\hat{t}} \operatorname{Rg}\left(W^{\hat{t}} x_{\beta}\right)+(1-\varepsilon) \sum_{\tau=0}^{\hat{t}-1}(\beta \varepsilon)^{\tau} \operatorname{Rg}\left(W^{\tau} S\left(\tilde{x}_{\beta}\right)\right) \\
& \leq(1-\beta) \varepsilon \sum_{\tau=0}^{\hat{t}-1}(\beta \varepsilon)^{\tau} \operatorname{Rg}(x)+(\beta \varepsilon)^{\hat{t}} \operatorname{Rg}\left(W^{\hat{t}} x_{\beta}\right)+(1-\varepsilon) \sum_{\tau=0}^{\hat{t}-1}(\beta \varepsilon)^{\tau} \operatorname{Rg}\left(\tilde{x}_{\beta}\right) \\
& \leq(1-\beta) \varepsilon \sum_{\tau=0}^{\hat{t}-1}(\beta \varepsilon)^{\tau} \operatorname{Rg}(x)+(\beta \varepsilon)^{\hat{t}} \operatorname{Rg}\left(W^{\hat{t}} x_{\beta}\right)+(1-\varepsilon)(1-\beta) \sum_{\tau=0}^{\hat{t}-1}(\beta \varepsilon)^{\tau} \operatorname{Rg}(x) \\
& +(1-\varepsilon) \beta \sum_{\tau=0}^{\hat{t}-1}(\beta \varepsilon)^{\tau} \operatorname{Rg}\left(x_{\beta}\right) \\
& =(1-\beta) \frac{1-(\beta \varepsilon)^{\hat{t}}}{1-\beta \varepsilon} \operatorname{Rg}(x)+(\beta \varepsilon)^{\hat{t}} \operatorname{Rg}\left(W^{\hat{t}} x_{\beta}\right)+(1-\varepsilon) \beta \frac{1-(\beta \varepsilon)^{\hat{t}}}{1-\beta \varepsilon} \operatorname{Rg}\left(x_{\beta}\right) \\
& \leq(1-\beta) \frac{1-(\beta \varepsilon)^{\hat{t}}}{1-\beta \varepsilon} \operatorname{Rg}(x)+(\beta \varepsilon)^{\hat{t}}\left(1-\delta^{\hat{t}}\right) \operatorname{Rg}\left(x_{\beta}\right)+(1-\varepsilon) \beta \frac{1-(\beta \varepsilon)^{\hat{t}}}{1-\beta \varepsilon} \operatorname{Rg}\left(x_{\beta}\right) \\
& =(1-\beta) \frac{1-(\beta \varepsilon)^{\hat{t}}}{1-\beta \varepsilon} \operatorname{Rg}(x)+\left(\frac{\beta-\beta \varepsilon-\beta(\beta \varepsilon)^{\hat{t}}+(\beta \varepsilon)^{\hat{t}}-\delta^{\hat{t}}(\beta \varepsilon)^{\hat{t}}+\delta^{\hat{t}}(\beta \varepsilon)^{\hat{t}+1}}{1-\beta \varepsilon}\right) \operatorname{Rg}\left(x_{\beta}\right) .
\end{aligned}
$$

Since $(\beta \varepsilon)^{\hat{t}}\left(1-\delta^{\hat{t}}\right)+(1-\varepsilon) \beta \frac{1-(\beta \varepsilon)^{\hat{t}}}{1-\beta \varepsilon} \in(0,1)$, this implies that

$$
\operatorname{Rg}\left(x_{\beta}\right) \leq \frac{(1-\beta)\left(1-(\beta \varepsilon)^{\hat{t}}\right)}{(1-\beta)\left(1-(\beta \varepsilon)^{\hat{t}}\right)+\delta^{\hat{t}}(\beta \varepsilon)^{\hat{t}}(1-\beta \varepsilon)} \operatorname{Rg}(x) \quad \forall x \in \mathbb{R}^{k}, \forall \beta \in(0,1)
$$

proving the statement.
From the previous lemma, we obtain an estimate on the range of $x_{\beta}$, provided $T$ admits a decomposition as in (40) and $W$ has eventually a strictly positive column. This latter property is achieved whenever $A(W)$ not only is regular, but also "aperiodic". As for the former property, by [12, Proposition 7], we have that if $T$ is normalized, monotone, and translation invariant and $\underline{A}(T)$ is nontrivial, then there there exist a stochastic matrix $W$ and $\varepsilon \in(0,1]$ such that

$$
T(y)=\varepsilon W y+(1-\varepsilon) S(y) \quad \forall y \in \mathbb{R}^{k}
$$

where $S: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is normalized, monotone, and translation invariant. Moreover, $W$ can be chosen to be such that $A(W)=\underline{A}(T)$. Thus, if $\underline{A}(T)$ is also regular and aperiodic, so is $A(W)$. Since in our statements we have the property of regularity, but not aperiodicity, we consider an auxiliary operator closely related to $T$ and which will satisfy the property of aperiodicity.

Given $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$, it will be thus useful to consider the averaged operator $T_{\lambda}=$ $\lambda I+(1-\lambda) T$ with $\lambda \in(0,1)$ where $I$ is the identity. ${ }^{18}$ Note that $\underline{A}\left(T_{\lambda}\right) \geq \underline{A}(T)$ and, in particular, the only difference between $\underline{A}\left(T_{\lambda}\right)$ and $\underline{A}(T)$ consists in the entries of the diagonal of $\underline{A}\left(T_{\lambda}\right)$ which are all 1 , while those of $\underline{A}(T)$ might be 0 .

Building on Lemma 8, the next result provides a result on the convergence of $\operatorname{Rg}\left(x_{\beta, \lambda}\right)$ where for each $x \in \mathbb{R}^{k}$ and for each $\beta, \lambda \in(0,1), x_{\beta, \lambda}$ is the unique point satisfying

$$
T_{\lambda}\left((1-\beta) x+\beta x_{\beta, \lambda}\right)=x_{\beta, \lambda} .
$$

Lemma 9 Let $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ be normalized, monotone, and translation invariant. If $\underline{A}(T)$ is regular, then

$$
\begin{equation*}
\operatorname{Rg}\left(x_{\beta, \lambda}\right) \leq \frac{1}{1+\frac{\hat{\delta}^{\hat{t}}(\beta \hat{\delta})^{\hat{t}}(1-\beta \hat{\delta})}{(1-\beta)\left(1-(\beta \hat{\delta})^{t}\right)}} \operatorname{Rg}(x) \quad \forall x \in \mathbb{R}^{k}, \forall \beta, \lambda \in(0,1), \tag{41}
\end{equation*}
$$

where $\hat{\delta}=\min \{\lambda,(1-\lambda) \delta\}, \delta=\min _{i, j: \underline{u}_{i j}=1} \inf _{x \in \mathcal{D}} \frac{\partial T_{i}}{\partial x_{j}}(x)$, and $\hat{t} \in \mathbb{N}$ is the smallest natural number such that $\underline{A}\left(T_{\lambda}\right)^{\hat{t}}$ has one column with all positive entries.

Proof. Since $T$ is normalized, monotone, translation invariant and $\underline{A}(T)$ is nontrivial, we have that $\delta \in(0,1]$. Since $\underline{A}\left(T_{\lambda}\right) \geq \underline{A}(T)$ and $\underline{A}(T)$ is regular, we have that $\underline{A}\left(T_{\lambda}\right)$ is regular. By [12, Proposition 7], we have that there exist a stochastic matrix $W$ and $\varepsilon \in(0,1]$ such that

$$
T_{\lambda}(y)=\varepsilon W y+(1-\varepsilon) S(y) \quad \forall y \in \mathbb{R}^{k}
$$

where $S: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ is normalized, monotone, and translation invariant. Moreover, $W$ can be chosen to be such that $A(W)=\underline{A}\left(T_{\lambda}\right)$. By the proof of Proposition 7 in [12], it follows that $\varepsilon$ can be chosen to be equal to $\hat{\delta}$ and all the strictly positive entries of $W$ are greater than or equal to $\hat{\delta}$. This implies that $A(W)$ is regular and $A(W) \geq I$. In particular (see, e.g., [36, Exercise 4.13]), the set of natural numbers $t \in \mathbb{N}$ such that $A(W)^{\hat{t}}=\underline{A}\left(T_{\lambda}\right)^{\hat{t}}$ has one column with all positive entries is nonempty and $\hat{t}$ is well defined. By Lemma 8, the statement follows.

[^15]Remark 1 Note that

$$
\frac{1}{1+\frac{\hat{\delta} \hat{t}(\beta \hat{\delta}(\hat{t}(1-\beta \hat{\delta})}{(1-\beta)\left(1-(\beta \hat{\delta})^{t}\right)}}=\frac{(1-\beta)\left(1-(\beta \hat{\delta})^{\hat{t}}\right)}{(1-\beta)\left(1-(\beta \hat{\delta})^{\hat{t}}\right)+\hat{\delta}^{\hat{t}}(\beta \hat{\delta})^{\hat{t}}(1-\beta \hat{\delta})} .
$$

Consider the quantity at the denominator of the fraction on the right-hand side. It is immediate to see that it is equal to

$$
\begin{aligned}
(1-\beta \hat{\delta})\left((1-\beta) \frac{1-(\beta \hat{\delta})^{\hat{t}}}{1-\beta \hat{\delta}}+\hat{\delta}^{\hat{t}}(\beta \hat{\delta})^{\hat{t}}\right) & =(1-\beta \hat{\delta})\left((1-\beta) \sum_{\tau=0}^{\hat{t}-1}(\beta \hat{\delta})^{\tau}+\hat{\delta}^{\hat{t}}(\beta \hat{\delta})^{\hat{t}}\right) \\
& \geq(1-\beta \hat{\delta})\left(1-\beta+\hat{\delta}^{\hat{t}}(\beta \hat{\delta})^{\hat{t}}\right) .
\end{aligned}
$$

Consider now the function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(\beta)=1-\beta+\hat{\delta}^{2 \hat{t}} \beta^{\hat{t}}$ for all $\beta \in \mathbb{R}$. Since $\hat{\delta} \in(0,1)$ and $\hat{t} \in \mathbb{N}, h$ is convex and differentiable on $\mathbb{R}$ with derivative $h^{\prime}(\beta)=$ $-1+\hat{t} \hat{\delta}^{2 \hat{t}} \beta^{\hat{t}-1}$ for all $\beta \in \mathbb{R}$. Clearly, $h^{\prime}$ is negative in a neighborhood of 0 . We thus have two cases:

1. $h^{\prime}(\beta) \leq 0$ for all $\beta \in[0,1]$. This happens if and only if $\hat{\delta} \leq\left(\frac{1}{\hat{t}}\right)^{\frac{1}{2 t}}$ and, in this case, $h(\beta) \geq \hat{\delta}^{2 \hat{t}}>0$ for all $\beta \in[0,1]$.
2. $h^{\prime}(\beta)>0$ for some $\beta \in[0,1]$. Since $h^{\prime}(\beta)>0$ for some $\beta \in[0,1]$, we have that $\hat{\delta}>\left(\frac{1}{\hat{t}}\right)^{\frac{1}{2 t}}$. Since $h$ is convex and $\hat{\delta}>\left(\frac{1}{\hat{t}}\right)^{\frac{1}{2 t}}$, that is $1>1 / \hat{t} \hat{\delta}^{2 \hat{t}}>0$, this implies that $h$ is minimized at $\beta_{\star} \in(0,1)$ where $\beta_{\star}=\sqrt[\hat{t-1}]{1 / \hat{t} \hat{\delta}^{2 \hat{t}}} \in(0,1)$ and

$$
\begin{aligned}
h\left(\beta_{\star}\right) & =1-\left(\frac{1}{\hat{t} \hat{\delta}^{2 \hat{t}}}\right)^{\frac{1}{t-1}}+\hat{\delta}^{2 \hat{t}}\left(\frac{1}{\hat{t} \hat{\delta}^{2 \hat{t}}}\right)^{\frac{\hat{t}}{t-1}} \\
& =1-\left(\frac{1}{\hat{t} \hat{\delta}^{2 \hat{t}}}\right)^{\frac{1}{t-1}}+\hat{\delta}^{2 \hat{t}}\left(\frac{1}{\hat{t} \delta^{2 \hat{t}}}\right)\left(\frac{1}{\hat{t} \hat{\delta}^{2 \hat{t}}}\right)^{\frac{1}{t-1}} \\
& =1-\left(\frac{1}{\hat{t} \hat{\delta}^{2 \hat{t}}}\right)^{\frac{1}{t-1}}\left(1-\frac{1}{\hat{t}}\right) \geq 1-\left(1-\frac{1}{\hat{t}}\right) \geq \frac{1}{\hat{t}}>0 .
\end{aligned}
$$

We can conclude that

$$
\begin{equation*}
\frac{1}{1+\frac{\hat{\delta}^{t}(\beta \hat{\delta})^{\hat{t}}(1-\beta \hat{\delta})}{(1-\beta)\left(1-(\beta \hat{\delta})^{\hat{t}}\right)}} \leq(1-\beta) \frac{1}{(1-\hat{\delta}) \min \left\{\frac{1}{\hat{t}}, \hat{\delta}^{2 \hat{t}}\right\}} \tag{42}
\end{equation*}
$$

Finally, since $\hat{\delta}=\min \{\lambda,(1-\lambda) \delta\}$ and $\lambda$ can be arbitrarily chosen, $\hat{\delta}$ is maximized for $\lambda=\delta /(1+\delta)$. In this case, $\hat{\delta}=\delta /(1+\delta)$. We will use (42) with this choice of $\hat{\delta}$ later on.

Lemma 9, paired with Remark 1, is instrumental in proving Theorem 2. In fact, it only provides an estimate for the range of the fixed points of the averaged operator $T_{\lambda}$ with $\lambda=\delta /(1+\delta)$. The next formula describes the relation between the points $\tilde{x}_{\beta}$ which solve (2) for the operator $T$ and the points $\tilde{x}_{\beta, \lambda}$ which solve the same equation, but for the operator $T_{\lambda}$. In turn, this provides a relation between $\operatorname{Rg}\left(\tilde{x}_{\beta}\right)$ and $\operatorname{Rg}\left(\tilde{x}_{\beta, \lambda}\right)$, and via (37) and (39), between $\operatorname{Rg}\left(x_{\beta}\right)$ and $\operatorname{Rg}\left(x_{\beta, \lambda}\right)$.

Lemma 10 If $T$ is normalized, monotone, and translation invariant, then

$$
\tilde{x}_{\beta}=\tilde{x}_{\frac{\beta}{(1-\lambda)+\lambda \beta}, \lambda} \quad \forall x \in \mathbb{R}^{k}, \forall \beta, \lambda \in(0,1) .
$$

Moreover, for each $\lambda \in(0,1)$ the function $f_{\lambda}:(0,1) \rightarrow(0,1)$, defined by $f_{\lambda}(\beta)=$ $\beta /[(1-\lambda)+\lambda \beta]$ for all $\beta \in(0,1)$, is strictly increasing and $\lim _{\beta \rightarrow 1} f_{\lambda}(\beta)=1$.

Proof. Define the averaged operator $T_{\lambda}=\lambda I+(1-\lambda) T$ with $\lambda \in(0,1)$. By definition of $\tilde{x}_{\beta, \lambda}$, note that

$$
\begin{aligned}
& (1-\beta) x+\beta \lambda \tilde{x}_{\beta, \lambda}+\beta(1-\lambda) T\left(\tilde{x}_{\beta, \lambda}\right) \\
& =(1-\beta) x+\beta\left[\lambda \tilde{x}_{\beta, \lambda}+(1-\lambda) T\left(\tilde{x}_{\beta, \lambda}\right)\right] \\
& =(1-\beta) x+\beta T_{\lambda}\left(\tilde{x}_{\beta, \lambda}\right)=\tilde{x}_{\beta, \lambda} \quad \forall x \in \mathbb{R}^{k}, \forall \beta, \lambda \in(0,1),
\end{aligned}
$$

that is,

$$
\frac{1-\beta}{1-\beta \lambda} x+\frac{\beta(1-\lambda)}{1-\beta \lambda} T\left(\tilde{x}_{\beta, \lambda}\right)=\tilde{x}_{\beta, \lambda} \quad \forall \beta, \lambda \in(0,1), \forall x \in \mathbb{R}^{k},
$$

yielding that $\tilde{x}_{\beta, \lambda}$ solves equation (2) for the operator $T$ with weight $\frac{\beta(1-\lambda)}{1-\beta \lambda}$. By the uniqueness of the solution, we can conclude that $\tilde{x}_{\frac{\beta(1-\lambda)}{1-\beta \lambda}}=\tilde{x}_{\beta, \lambda}$ for all $x \in \mathbb{R}^{k}$ and for all $\beta, \lambda \in(0,1)$. Fix $\lambda \in(0,1)$. If we define $g_{\lambda}:(0,1) \rightarrow(0,1)$ by $g_{\lambda}(\beta)=$ $\beta(1-\lambda) /(1-\beta \lambda)$ for all $\beta \in(0,1)$, then $g_{\lambda}$ is well defined and $g_{\lambda}^{\prime}>0$. The inverse of $g_{\lambda}$ is $f_{\lambda}$ and shares the same properties and, in particular, $\lim _{\beta \rightarrow 1} f_{\lambda}(\beta)=1$. Since $\lambda$ was arbitrarily chosen, it follows that

$$
\tilde{x}_{f_{\lambda}(\beta), \lambda}=\tilde{x}_{g_{\lambda}\left(f_{\lambda}(\beta)\right)}=\tilde{x}_{\beta} \quad \forall x \in \mathbb{R}^{k}, \forall \lambda, \beta \in(0,1),
$$

proving the statement.
Proof of Theorem 2. Set $\bar{\lambda}=\delta /(1+\delta) \in(0,1)$. By Lemma 9 and Remark 1 and since $\underline{A}\left(T_{\bar{\lambda}}\right)=\underline{A}(T) \vee I$, we have that for each $x \in \mathbb{R}^{k}$ and for each $\beta \in(0,1)$

$$
\operatorname{Rg}\left(x_{\beta, \bar{\lambda}}\right) \leq(1-\beta) \frac{1}{\left(1-\frac{\delta}{1+\delta}\right) \min \left\{\frac{1}{\hat{t}},\left(\frac{\delta}{1+\delta}\right)^{2 \hat{t}}\right\}} \operatorname{Rg}(x) \leq(1-\beta) \kappa_{T} \operatorname{Rg}(x)
$$

By (37), we have that

$$
\operatorname{Rg}\left(\tilde{x}_{\beta, \bar{\lambda}}\right) \leq(1-\beta)\left(1+\beta \kappa_{T}\right) \operatorname{Rg}(x) \quad \forall x \in \mathbb{R}^{k}, \forall \beta \in(0,1)
$$

By Lemma 10, recall that

$$
\tilde{x}_{\beta}=\tilde{x}_{(1-\bar{\lambda})+\bar{\lambda} \beta}, \bar{\lambda}=\tilde{x}_{f_{\bar{\lambda}}(\beta), \bar{\lambda}} \quad \forall \beta \in(0,1), \forall x \in \mathbb{R}^{k} .
$$

We can conclude that

$$
\operatorname{Rg}\left(\tilde{x}_{\beta}\right)=\operatorname{Rg}\left(\tilde{x}_{f_{\bar{\lambda}}(\beta), \bar{\lambda}}\right) \leq\left(1-f_{\bar{\lambda}}(\beta)\right)\left(1+f_{\bar{\lambda}}(\beta) \kappa_{T}\right) \operatorname{Rg}(x) \quad \forall x \in \mathbb{R}^{k}, \forall \beta \in(0,1) .
$$

By (39), we have that

$$
\operatorname{Rg}\left(x_{\beta}\right) \leq \operatorname{Rg}\left(\tilde{x}_{\beta}\right) \leq\left(1-f_{\bar{\lambda}}(\beta)\right)\left(1+f_{\bar{\lambda}}(\beta) \kappa_{T}\right) \operatorname{Rg}(x) \quad \forall x \in \mathbb{R}^{k}, \forall \beta \in(0,1) .
$$

Finally, observe that $(1-\bar{\lambda})+\bar{\lambda} \beta \in(\beta, 1)$, that is, $1>\frac{\beta}{(1-\delta)+\delta \beta}>\beta$ for all $\beta \in(0,1)$. This implies that $1>f_{\bar{\lambda}}(\beta)>\beta>0$ and $0<1-f_{\bar{\lambda}}(\beta)<1-\beta$ for all $\beta \in(0,1)$. Since $\kappa_{T}>0$, we can conclude that

$$
\left(1-f_{\bar{\lambda}}(\beta)\right)\left(1+f_{\bar{\lambda}}(\beta) \kappa_{T}\right) \leq(1-\beta)\left(1+\kappa_{T}\right) \quad \forall \beta \in(0,1),
$$

yielding that

$$
\operatorname{Rg}\left(x_{\beta}\right) \leq \operatorname{Rg}\left(\tilde{x}_{\beta}\right) \leq(1-\beta)\left(1+\kappa_{T}\right) \operatorname{Rg}(x) \quad \forall x \in \mathbb{R}^{k}, \forall \beta \in(0,1)
$$

proving the statement.

## D. 2 Rate of convergence

Proof of Theorem 3. Consider $x \in \mathbb{R}^{k}$ and $\beta \in(0,1)$. As usual, we have that $\tilde{x}_{\beta}=(1-\beta) x+\beta x_{\beta}$. By point 2 of Proposition 12 and since $T$ is continuously differentiable and $\underline{A}(T)$ is regular, $\Gamma\left(\partial_{C} T(0)\right)$ consists of only one element, denoted by $\gamma$. Set $\bar{h}=\langle\gamma, x\rangle$. By definition of $W_{\tilde{x}_{\beta}, \bar{h}}$ (see proof of Proposition 13), we have that

$$
W_{\tilde{x}_{\beta}, \bar{h}}\left((1-\beta) x+\beta x_{\beta}\right)=W_{\tilde{x}_{\beta}, \bar{h}} \tilde{x}_{\beta}=T\left(\tilde{x}_{\beta}\right)=T\left((1-\beta) x+\beta x_{\beta}\right)=x_{\beta}
$$

By (3), we have that $x_{\beta}=x_{\beta, W_{\tilde{x}_{\beta}, \bar{h}}}$. By point 1 of Proposition 12 and since $\underline{A}(T)$ is regular, $\Gamma\left(W_{\tilde{x}_{\beta}, \bar{h}}\right)$ consists of only one element which we denote by $\gamma_{\beta}$. It follows that

$$
\begin{aligned}
\left\|x_{\beta}-\langle\gamma, x\rangle e\right\|_{\infty} & \leq\left\|x_{\beta}-\left\langle\gamma_{\beta}, x\right\rangle e\right\|_{\infty}+\left\|\left\langle\gamma_{\beta}, x\right\rangle e-\langle\gamma, x\rangle e\right\|_{\infty} \\
& =\left\|x_{\beta, W_{\tilde{x}_{\beta}, \bar{h}}}-\left\langle\gamma_{\beta}, x\right\rangle e\right\|_{\infty}+\left|\left\langle\gamma_{\beta}-\gamma, x\right\rangle\right| \\
& \leq\left\|x_{\beta, W_{\tilde{x}_{\beta}, \bar{h}}}-\left\langle\gamma_{\beta}, x\right\rangle e\right\|_{\infty}+\left\|\gamma_{\beta}-\gamma\right\|_{1}\|x\|_{\infty} .
\end{aligned}
$$

We next bound the two terms on the right-hand side.
a By Example 1, we have that

$$
\left\|x_{\beta, W_{\tilde{x}_{\beta}, \bar{h}}}-\left\langle\gamma_{\beta}, x\right\rangle e\right\|_{\infty} \leq \operatorname{Rg}\left(x_{\beta, W_{\tilde{x}_{\beta}, \bar{n}}}\right)=\operatorname{Rg}\left(x_{\beta}\right) .
$$

b We next bound $\left\|\gamma_{\beta}-\gamma\right\|_{1}=\left\|\gamma-\gamma_{\beta}\right\|_{1}$. Consider $W=J_{T}(0)$. By Proposition 12, we have that $\min _{i, j: a_{i j}=1} w_{i j} \geq \delta$. Set $\tilde{W}=\lambda I+(1-\lambda) W$ and $\hat{W}=\lambda I+$ $(1-\lambda) W_{\tilde{x}_{\beta}, \bar{h}}$ where $\lambda$ can be arbitrarily chosen in $(0,1)$. It is immediate to see that $\gamma^{\mathrm{T}} \tilde{W}^{t}=\gamma^{\mathrm{T}}$ and $\gamma_{\beta}^{\mathrm{T}} \hat{W}^{t}=\gamma_{\beta}^{\mathrm{T}}$ for all $t \in \mathbb{N}$. Note that $A(\tilde{W})$ and $A(\hat{W})$ are both regular and such that $A(\tilde{W}), A(\hat{W}) \geq \underline{A}(T) \vee I$. It follows that there exist $h \in\{1, \ldots, k\}$ and $\hat{t} \in \mathbb{N}$ such that $\tilde{w}_{i h}^{(\hat{t})}>0$ for all $i \in\{1, \ldots, k\}$ and $\hat{t}$ can be chosen to be $t_{T}$. Since $\min _{i, j: \underline{a}_{i j}=1} w_{i j} \geq \delta, \min _{i \in\{1, \ldots, k\}} \tilde{w}_{i h}^{\left(t_{T}\right)} \geq \tilde{\delta}^{t_{T}}$ where $\tilde{\delta}=\min \{\lambda,(1-\lambda) \delta\}$. By Seneta [37], this implies that

$$
\left\|\gamma-\gamma_{\beta}\right\|_{1} \leq \frac{1}{\tilde{\delta}^{t_{T}}}\left\|\tilde{W}^{t_{T}}-\hat{W}^{t_{T}}\right\|_{\infty} .
$$

Since Since $\lambda$ can be arbitrarily chosen, we then choose $\lambda=\delta /(1+\delta)$ so to maximize $\tilde{\delta}$, yielding that

$$
\begin{equation*}
\left\|\gamma-\gamma_{\beta}\right\|_{1} \leq \frac{(1+\delta)^{t_{T}}}{\delta^{t_{T}}}\left\|\tilde{W}^{t_{T}}-\hat{W}^{t_{T}}\right\|_{\infty} \tag{43}
\end{equation*}
$$

Next, by induction and since the space of matrices endowed with $\left\|\|_{\infty}\right.$ is a Banach algebra and $\|\bar{W}\|_{\infty}=1$ for all stochastic matrices $\bar{W},{ }^{19}$ we have that

$$
\begin{equation*}
\left\|\tilde{W}^{t_{T}}-\hat{W}^{t_{T}}\right\|_{\infty} \leq t_{T}\|\tilde{W}-\hat{W}\|_{\infty}=\left(1-\frac{\delta}{1+\delta}\right) t_{T}\left\|W-W_{\tilde{x}_{\beta}, \bar{h}}\right\|_{\infty} \tag{44}
\end{equation*}
$$

${ }^{19}$ First, recall that, given a $k \times k$ matrix $E$,

$$
\|E\|_{\infty}=\max _{i \in\{1, \ldots k\}} \sum_{j=1}^{k}\left|e_{i j}\right|
$$

In other words, $\|E\|_{\infty}$ is the dual norm of the operator $x \mapsto E x$ when $\mathbb{R}^{k}$ is endowed with $\left\|\|_{\infty}\right.$. For this reason, it can be computed by calculating the $\left\|\|_{1}\right.$ of each row of $E$ and then take the maximum of these values. By induction, we prove that

$$
\left\|\tilde{W}^{t}-\hat{W}^{t}\right\|_{\infty} \leq t\|\tilde{W}-\hat{W}\|_{\infty} \quad \forall t \in \mathbb{N} .
$$

The statement is trivial for $t=1$. Assume it holds for $t$, we show it holds for $t+1$. Observe that

$$
\begin{aligned}
\left\|\tilde{W}^{t+1}-\hat{W}^{t+1}\right\|_{\infty} & =\left\|\tilde{W}\left(\tilde{W}^{t}-\hat{W}^{t}\right)+(\tilde{W}-\hat{W}) \hat{W}^{t}\right\|_{\infty} \\
& \leq\left\|\tilde{W}\left(\tilde{W}^{t}-\hat{W}^{t}\right)\right\|_{\infty}+\left\|(\tilde{W}-\hat{W}) \hat{W}^{t}\right\|_{\infty} \\
& \leq\|\tilde{W}\|_{\infty}\left\|\tilde{W}^{t}-\hat{W}^{t}\right\|_{\infty}+\|\tilde{W}-\hat{W}\|_{\infty}\left\|\hat{W}^{t}\right\|_{\infty} \\
& =\left\|\tilde{W}^{t}-\hat{W}^{t}\right\|_{\infty}+\|\tilde{W}-\hat{W}\|_{\infty} \\
& \leq t\|\tilde{W}-\hat{W}\|_{\infty}+\|\tilde{W}-\hat{W}\|_{\infty}=(t+1)\|\tilde{W}-\hat{W}\|_{\infty}
\end{aligned}
$$

the statement follows by induction.

Consider the $i$-th row of $W-W_{\tilde{x}_{\beta}, \bar{h}}$. By definition of $W_{\tilde{x}_{\beta}, \bar{h}}$ and since $\nabla T_{i}(h e)=$ $\nabla T_{i}(0)$ for all $h \in \mathbb{R}$, we have that the $i$-th row of $W-W_{\tilde{x}_{\beta}, \bar{h}}$ is equal to $\nabla T_{i}(\hat{h} e)-\nabla T_{i}\left(\lambda_{i, \tilde{x}_{\beta}, \bar{h}} \tilde{x}_{\beta}+\left(1-\lambda_{i, \tilde{x}_{\beta}, \bar{h}}\right) \bar{h} e\right)$ where $\lambda_{i, \tilde{x}_{\beta}, \bar{h}} \in[0,1]$ and $\hat{h}$ we chose it to be an element of

$$
\left[\min \left(\lambda_{i, \tilde{x}_{\beta}, \bar{h}} \tilde{x}_{\beta}+\left(1-\lambda_{i, \tilde{x}_{\beta}, \bar{h}}\right) \bar{h} e\right), \max \left(\lambda_{i, \tilde{x}_{\beta}, \tilde{h}} \tilde{x}_{\beta}+\left(1-\lambda_{i, \tilde{x}_{\beta}, \bar{h}}\right) \bar{h} e\right)\right] .
$$

Since the Jacobian of $T$ is Lipschitz continuous, we also have that

$$
\begin{aligned}
& \left\|\nabla T_{i}(\hat{h} e)-\nabla T_{i}\left(\lambda_{i, \tilde{x}_{\beta}, \bar{h}} \tilde{x}_{\beta}+\left(1-\lambda_{i, \tilde{x}_{\beta}, \bar{h}}\right) \bar{h} e\right)\right\|_{1} \\
& \leq L\left\|\hat{h} e-\left(\lambda_{i, \tilde{x}_{\beta}, \bar{h}} \tilde{x}_{\beta}+\left(1-\lambda_{i, \tilde{x}_{\beta}, \bar{h}}\right) \bar{h} e\right)\right\|_{\infty} .
\end{aligned}
$$

By (36) and given our choice of $\hat{h}$, we can conclude that

$$
\begin{aligned}
\left\|\hat{h} e-\left(\lambda_{i, \tilde{x}_{\beta}, \bar{h}} \tilde{x}_{\beta}+\left(1-\lambda_{i, \tilde{x}_{\beta}, \bar{h}}\right) \bar{h} e\right)\right\|_{\infty} & =\left\|\left(\lambda_{i, \tilde{x}_{\beta}, \bar{h}} \tilde{x}_{\beta}+\left(1-\lambda_{i, \tilde{x}_{\beta}, \bar{h}}\right) \bar{h} e\right)-\hat{h} e\right\|_{\infty} \\
& \leq \operatorname{Rg}\left(\lambda_{i, \tilde{x}_{\beta}, \bar{h}} \tilde{x}_{\beta}+\left(1-\lambda_{i, \tilde{x}_{\beta}, \bar{h}}\right) \bar{h} e\right) \\
& \leq \lambda_{i, \tilde{x}_{\beta}, \bar{h}} \operatorname{Rg}\left(\tilde{x}_{\beta}\right)+\left(1-\lambda_{i, \tilde{x}_{\beta}, \bar{h}}\right) \operatorname{Rg}(\bar{h} e) \\
& \leq \operatorname{Rg}\left(\tilde{x}_{\beta}\right)
\end{aligned}
$$

By definition of $\left\|W-W_{\tilde{x}_{\beta}, \bar{h}}\right\|_{\infty}$ and (43) and (44) and since $i$ was arbitrarily chosen, this implies that

$$
\begin{aligned}
\left\|\gamma-\gamma_{\beta}\right\|_{1} & \leq \frac{(1+\delta)^{t_{T}}}{\delta^{t_{T}}}\left\|\tilde{W}^{t_{T}}-\hat{W}^{t_{T}}\right\|_{\infty} \leq \frac{(1+\delta)^{t_{T}}}{\delta^{t_{T}}}\left(1-\frac{\delta}{1+\delta}\right) t_{T}\left\|W-W_{\tilde{x}_{\beta}, \bar{h}}\right\|_{\infty} \\
& \leq \frac{(1+\delta)^{t_{T}}}{\delta^{t_{T}}}\left(1-\frac{\delta}{1+\delta}\right) t_{T} L \operatorname{Rg}\left(\tilde{x}_{\beta}\right) .
\end{aligned}
$$

By points a and b and Theorem 2 an since $\operatorname{Rg}\left(\tilde{x}_{\beta}\right) \leq \operatorname{Rg}\left(x_{\beta}\right)$, we can conclude that

$$
\begin{aligned}
\left\|x_{\beta}-\langle\gamma, x\rangle e\right\|_{\infty} & \leq \operatorname{Rg}\left(x_{\beta}\right)+\frac{(1+\delta)^{t_{T}}}{\delta^{t_{T}}}\left(1-\frac{\delta}{1+\delta}\right) t_{T} L\|x\|_{\infty} \operatorname{Rg}\left(\tilde{x}_{\beta}\right) \\
& \leq(1-\beta)\left(1+\kappa_{T}\right)\left(1+\frac{(1+\delta)^{t_{T}}}{\delta^{t_{T}}}\left(1-\frac{\delta}{1+\delta}\right) t_{T} L\|x\|_{\infty}\right) \operatorname{Rg}(x)
\end{aligned}
$$

proving the statement.

## D. 3 Discrete iterations

Lemma 11 For all $x \in \mathbb{R}^{k}, \lim _{t} x^{t}$ exists if and only if $\lim _{t} \tilde{x}^{t}$ exists and, in this case, the two limits coincide.

Proof. Fix $x \in \mathbb{R}^{k}$. First, we prove by induction that

$$
\begin{equation*}
\tilde{x}^{t}=\left(1-\beta_{t+1}\right) x+\beta_{t+1} x^{t} \quad \forall t \in \mathbb{N}_{0} \tag{45}
\end{equation*}
$$

For $t=0$, we have $x_{0}=\tilde{x}_{0}=x$. Assume that (45) holds true for all $\tau \leq t$. Next, observe that

$$
\tilde{x}^{t+1}=\left(1-\beta_{t+1}\right) x+\beta_{t+1} T\left(\tilde{x}^{t}\right)=\left(1-\beta_{t+1}\right) x+\beta_{t+1} T\left(\left(1-\beta_{t+1}\right) x+\beta_{t+1} x^{t}\right)
$$

that is

$$
\frac{\tilde{x}^{t+1}-\left(1-\beta_{t+1}\right) x}{\beta_{t+1}}=T\left(\left(1-\beta_{t+1}\right) x+\beta_{t+1} x^{t}\right)=x^{t+1}
$$

yielding (45) for $t+1$. Finally, given that $\beta_{t} \rightarrow 1$, (45) immediately yields the statement.

Lemma 12 Let $T$ be nonexpansive and normalized. If $s, l \in \mathbb{N}$ are such that $s \geq l$, then

$$
\begin{equation*}
\left\|x_{s+m}-x_{\beta_{l}}\right\|_{\infty} \leq \beta_{l}^{m}\left\|x_{s}-x_{\beta_{l}}\right\|_{\infty}+2\|x\|_{\infty} \sum_{r=1}^{m} \beta_{l}^{m-r}\left(\beta_{s+r}-\beta_{l}\right) \quad \forall m \in \mathbb{N} . \tag{46}
\end{equation*}
$$

Proposition 15 Let $T$ be nonexpansive and normalized and assume that $\lim _{\beta \rightarrow 1} x_{\beta}=$ $\bar{x}$ is well defined for all $x \in \mathbb{R}^{k}$. If there exists $f: \mathbb{N} \rightarrow \mathbb{N}$ increasing and such that $\beta_{l}^{f(l)} \rightarrow 0$ as well as $\frac{\beta_{l+f(l)}-\beta_{l}}{1-\beta_{l}} \rightarrow 0$, then

$$
\lim _{\beta \rightarrow 1} \tilde{x}_{\beta}=\lim _{\beta \rightarrow 1} x_{\beta}=\lim _{t} x^{t}=\lim _{t} \tilde{x}^{t} \quad \forall x \in \mathbb{R}^{k} .
$$

Proof. Fix $x \in \mathbb{R}^{k}$. By Lemma 12 and since $\left\{\beta_{l}\right\}_{l \in \mathbb{N}}$ is an increasing sequence, we have that

$$
\begin{aligned}
\left\|x_{l+f(l)}-x_{\beta_{l}}\right\|_{\infty} & \leq \beta_{l}^{f(l)}\left\|x_{l}-x_{\beta_{l}}\right\|_{\infty}+2\|x\|_{\infty} \sum_{r=1}^{f(l)} \beta_{l}^{f(l)-r}\left(\beta_{l+r}-\beta_{l}\right) \\
& \leq 2\|x\|_{\infty} \beta_{l}^{f(l)}+2\|x\|_{\infty}\left(\beta_{l+f(l)}-\beta_{l}\right) \sum_{r=1}^{f(l)} \beta_{l}^{f(l)-r} \\
& \leq 2\|x\|_{\infty}\left(\beta_{l}^{f(l)}+\frac{\beta_{l+f(l)}-\beta_{l}}{1-\beta_{l}}\right) \quad \forall l \in \mathbb{N}
\end{aligned}
$$

yielding that $\lim _{l}\left\|x_{l+f(l)}-x_{\beta_{l}}\right\|_{\infty}=0$. This implies that for each $t \in \mathbb{N}$ such that $t \geq 1+f(1)$ there exists a unique $l_{t} \in \mathbb{N}$ such that $l_{t}+f\left(l_{t}\right) \leq t<l_{t}+1+f\left(l_{t}+1\right)$ and $l_{t} \rightarrow \infty$ as $t \rightarrow \infty .{ }^{20}$ Consider $t \geq 1+f(1)$. By (46) and since $l_{t}+1+f\left(l_{t}+1\right)>$

[^16]$t \geq l_{t}+f\left(l_{t}\right)$ and $f\left(l_{t}\right) \geq 1$ for all $t \geq 1+f(1)$, if we set $s=l_{t}+f\left(l_{t}\right), l=l_{t}+1$, and $m=t-l_{t}-f\left(l_{t}\right)$, then we have that $s \geq l$ and
\[

$$
\begin{aligned}
& \left\|x^{t}-x_{\beta_{l_{t+1}}}\right\|_{\infty} \\
& \leq\left\{\begin{array}{cc}
\left\|x_{l_{t}+f\left(l_{t}\right)}-x_{\beta_{l_{t}+1}}\right\|_{\infty} & \text { if } t=l_{t}+f\left(l_{t}\right) \\
\beta_{l_{t+}+1}^{t-l_{t}-f\left(l_{t}\right)}\left\|x_{l_{t}+f\left(l_{t}\right)}-x_{\beta_{l_{t}+1}}\right\|_{\infty} & \\
+2\|x\|_{\infty} \sum_{r=1}^{t-l_{t}-f\left(l_{t}\right)} \beta_{l_{t}+1}^{t-l_{t}-f\left(l_{t}\right)-r}\left(\beta_{l_{t}+f\left(l_{t}\right)+r}-\beta_{l_{t}+1}\right) & \text { if } t>l_{t}+f\left(l_{t}\right)
\end{array}\right. \\
& \leq\left\{\begin{array}{cl}
\left\|x_{l_{t}+f\left(l_{t}\right)}-x_{\beta_{l_{t}+1}}\right\|_{\infty} & \text { if } t=l_{t}+f\left(l_{t}\right) \\
\left\|x_{l_{t}+f\left(l_{t}\right)}-x_{\beta_{l_{t}+1}}\right\|_{\infty}+2\|x\|_{\infty} \frac{\beta_{t}-\beta_{l_{t}+1}}{1-\beta_{l_{t}+1}} & \text { if } t>l_{t}+f\left(l_{t}\right)
\end{array}\right. \\
& \leq\left\{\begin{array}{cl}
\left\|x_{l_{t}+f\left(l_{t}\right)}-x_{\beta_{l_{t}+1}}\right\|_{\infty} & \text { if } t=l_{t}+f\left(l_{t}\right) \\
\left\|x_{l_{t}+f\left(l_{t}\right)}-x_{\beta_{l_{t}+1}}\right\|_{\infty}+2\|x\|_{\infty} \frac{\beta_{t+1+f\left(l_{t+1}-\beta_{l_{t}+1}\right.}^{1-\beta_{l_{t}+1}}}{1} & \text { if } t>l_{t}+f\left(l_{t}\right)
\end{array}\right.
\end{aligned}
$$
\]

Since $t$ was arbitrarily chosen, we have that

$$
\left\|x^{t}-x_{\beta_{l_{t}+1}}\right\|_{\infty} \leq\left\|x_{l_{t}+f\left(l_{t}\right)}-x_{\beta_{l_{t}+1}}\right\|_{\infty}+\varepsilon_{t}
$$

where $\varepsilon_{t}=2\|x\|_{\infty}\left(\beta_{l_{t}+1+f\left(l_{t}+1\right)}-\beta_{l_{t}+1}\right) /\left(1-\beta_{l_{t+1}}\right)$ for all $t \geq 1+f(1)$. By assumption and since $l_{t} \rightarrow \infty$ as $t \rightarrow \infty$, it follows that $\varepsilon_{t} \rightarrow 0$ as $t \rightarrow \infty$. By Theorem 1, $\bar{x} \stackrel{\text { def }}{=} \lim _{t} x_{\beta_{t}}=\lim _{t} \tilde{x}_{\beta_{t}}$ is well defined. We have that for each $t \geq 1+f(1)$

$$
\begin{aligned}
\left\|x^{t}-\bar{x}\right\|_{\infty} & \leq\left\|x^{t}-x_{\beta_{l_{t}+1}}\right\|_{\infty}+\left\|x_{\beta_{l_{t}+1}}-\bar{x}\right\|_{\infty} \\
& \leq\left\|x_{l_{t}+f\left(l_{t}\right)}-x_{\beta_{l_{t}+1}}\right\|_{\infty}+\varepsilon_{t}+\left\|x_{\beta_{l_{t}+1}}-\bar{x}\right\|_{\infty} \\
& \leq\left\|x_{l_{t}+f\left(l_{t}\right)}-x_{\beta_{l_{t}}}\right\|_{\infty}+\left\|x_{\beta_{l_{t}}}-x_{\beta_{l_{t}+1}}\right\|_{\infty}+\varepsilon_{t}+\left\|x_{\beta_{l_{t}+1}}-\bar{x}\right\|_{\infty} \rightarrow 0
\end{aligned}
$$

proving the statement.
Proof of Proposition 7. We begin by making an observation on $g$. Since $g$ is strictly increasing and concave, we have that $g(y)-g(x) \leq g_{+}^{\prime}(x)(y-x)$ for all $y \in[1, \infty)$ and for all $x \in(1, \infty)$, yielding that

$$
\begin{equation*}
0<g_{+}^{\prime}(x) \leq(g(x)-g(1)) /(x-1) \quad \forall x \in(1, \infty) \tag{47}
\end{equation*}
$$

In this case, the two conditions of Proposition 15 become:

1. $\left(1-\frac{1}{g(l)}\right)^{f(l)} \rightarrow 0$ as $l \rightarrow \infty$;
2. $\frac{g(l+f(l))-g(l)}{g(l+f(l))}=\frac{1-\frac{1}{g(l+f(l))}-1+\frac{1}{g(l)}}{\frac{1}{g(l)}}=\frac{\beta_{l+f(l)}-\beta_{l}}{1-\beta_{l}} \rightarrow 0$ as $l \rightarrow \infty$.

Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(1)=\left\lceil g(2) \frac{1}{g(2)-g(1)}\right\rceil$ and $f(l)=\left\lceil g(l)\left(\frac{l-1}{g(l)-g(1)}\right)^{\frac{1}{2}}\right\rceil$ for all $l \geq 2$. We make three observations:
a. Since $g$ is concave and positive, it follows that, on $\mathbb{N} \backslash\{1\}, l \mapsto \frac{g(l)-g(1)}{l-1}$ is positive and decreasing and so is $l \mapsto\left(\frac{g(l)-1}{l-1}\right)^{\frac{1}{2}}$. This implies that $l \mapsto\left(\frac{l-1}{g(l)-1}\right)^{\frac{1}{2}}$ is well defined, positive, and increasing on $\mathbb{N} \backslash\{1\}$. Since $g$ is positive and strictly increasing, $l \mapsto g(l)\left(\frac{l-1}{g(l)-g(1)}\right)^{\frac{1}{2}}$ is increasing on $\mathbb{N} \backslash\{1\}$ and so is $f$ on $\mathbb{N}$.
b. Since $g$ is divergent, we have that $\frac{g(l)-g(1)}{l-1} \sim \frac{g(l)}{l}$. Since $\frac{g(l)}{l} \rightarrow 0$ as $l \rightarrow \infty$ and $g$ is positive, this implies that $\frac{f(l)}{g(l)} \geq g(l)\left(\frac{l-1}{g(l)-g(1)}\right)^{\frac{1}{2}} \frac{1}{g(l)}=\left(\frac{l-1}{g(l)-g(1)}\right)^{\frac{1}{2}} \rightarrow \infty$. Since $\frac{f(l)}{g(l)} \rightarrow \infty$ and for each $l \in \mathbb{N} \backslash\{1\}$

$$
\left(1-\frac{1}{g(l)}\right)^{f(l)}=\left(\left(1-\frac{1}{g(l)}\right)^{g(l)}\right)^{\frac{f(l)}{g(l)}}
$$

we can conclude that $\lim _{l}\left(1-\frac{1}{g(l)}\right)^{f(l)}=\left(e^{-1}\right)^{\infty}=0$, yielding that condition 1 holds.
c. Since $g$ is increasing, concave, and positive and $f$ is positive, we have that

$$
\begin{aligned}
0 & \leq \frac{g(l+f(l))-g(l)}{g(l+f(l))} \leq \frac{g_{+}^{\prime}(l) f(l)}{g(l+f(l))} \leq \frac{g_{+}^{\prime}(l) f(l)}{g(l)} \\
& \leq \frac{g_{+}^{\prime}(l)}{g(l)}\left(g(l)\left(\frac{l-1}{g(l)-g(1)}\right)^{\frac{1}{2}}+1\right)=g_{+}^{\prime}(l)\left(\frac{l-1}{g(l)-g(1)}\right)^{\frac{1}{2}}+\frac{g_{+}^{\prime}(l)}{g(l)} .
\end{aligned}
$$

By (47) and since $\frac{g(l)-g(1)}{l-1} \sim \frac{g(l)}{l}$ and $\frac{g(l)}{l} \rightarrow 0$ as $l \rightarrow \infty$, we have that $g_{+}^{\prime}(l) \rightarrow 0$ as $l \rightarrow 0$ and, in particular, $\frac{g_{+}^{\prime}(l)}{g(l)} \rightarrow 0$. By (47) and since $\frac{g(l)-g(1)}{l-1}>0$ for all $l \geq 2$ as well as $\frac{g(l)-g(1)}{l-1} \rightarrow 0$ as $l \rightarrow 0$, we have that

$$
g_{+}^{\prime}(l)\left(\frac{l-1}{g(l)-g(1)}\right)^{\frac{1}{2}} \leq\left(\frac{g(l)-g(1)}{l-1}\right)^{\frac{1}{2}} \rightarrow 0
$$

We can conclude that $\frac{g(l+f(l))-g(l)}{g(l+f(l))} \rightarrow 0$ as $l \rightarrow 0$, proving that condition 2 holds.
By Points a-c and Proposition 15, the statement follows.
Proof of Proposition 8. Fix $x \in \mathbb{R}^{k}$. (i) implies (ii). This immediately follows from Lemma 1. (ii) implies (iii). Define $\Psi: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ as

$$
\Psi(z)=T(x+z) \quad \forall z \in \mathbb{R}^{k}
$$

Observe that, for every $\beta \in[0,1)$, we have

$$
x_{\beta}=T\left((1-\beta) x+\beta x_{\beta}\right)=(1-\beta) T\left(x+\frac{\beta}{1-\beta} x_{\beta}\right)=(1-\beta) \Psi\left(\frac{\beta}{1-\beta} x_{\beta}\right) .
$$

For all $\beta, \beta^{\prime} \in[0,1)$ and for all $z \in \mathbb{R}^{k}$, we have

$$
\begin{aligned}
\left\|(1-\beta) \Psi\left(\frac{z}{1-\beta}\right)-\left(1-\beta^{\prime}\right) \Psi\left(\frac{z}{1-\beta^{\prime}}\right)\right\|_{\infty} & =\left\|T((1-\beta) x+z)-T\left(\left(1-\beta^{\prime}\right) x+z\right)\right\|_{\infty} \\
& \leq\left\|\left(\beta^{\prime}-\beta\right) x\right\|_{\infty}=\left|\beta^{\prime}-\beta\right|\|x\|_{\infty}
\end{aligned}
$$

This shows that $\Psi$ satisfies Assumption 1 in [40]. We next show by induction that, for every $t \in \mathbb{N}$,

$$
\begin{equation*}
x^{t}=\frac{1}{t} \Psi^{t}(0) . \tag{48}
\end{equation*}
$$

First, observe that $x^{1}=T(x)=\Psi(0)$, proving that (48) holds for $t=1$. Next, assume that (48) holds for all $\tau \leq t$. We have

$$
x^{t+1}=T\left(\frac{1}{t+1} x+\frac{t}{t+1} \frac{1}{t} \Psi^{t}(0)\right)=\frac{1}{t+1} T\left(x+\Psi^{t}(0)\right)=\frac{1}{t+1} \Psi^{t+1}(0)
$$

yielding (48) for $t+1$. With this, (iii) follows from [40, Theorem 1]. (iii) implies (iv). It follows by Lemma 11. (iv) implies (i). Lemma 11 implies that $\lim _{t} x^{t}=\lim _{t} \tilde{x}^{t}$ exists. By [40, Theorem 1], it follows that $\lim _{\beta \rightarrow 1} x_{\beta}$ exists. By Lemma 1 it follows that $\lim _{\beta \rightarrow 1} \tilde{x}_{\beta}=\lim _{\beta \rightarrow 1} x_{\beta}$ exists.

The second part of the proposition immediately follows by Lemmas 1 and 11.

## D. 4 Computing the fixed point

Consider a nonexpansive operator $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$. Given $\beta \in(0,1)$ and $x \in \mathbb{R}^{k}$, define $T_{\beta, x}, \tilde{T}_{\beta, x}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ by

$$
T_{\beta, x}(y)=T((1-\beta) x+\beta y) \text { and } \tilde{T}_{\beta, x}(y)=(1-\beta) x+\beta T(y) \quad \forall y \in \mathbb{R}^{k}
$$

Lemma 13 Let $T$ be nonexpansive. If $\beta \in(0,1)$ and $x \in \mathbb{R}^{k}$, then $T_{\beta, x}$ and $\tilde{T}_{\beta, x}$ are $\beta$-contractions. In particular, for each $\beta \in(0,1)$ and for each $x \in \mathbb{R}^{k}$, there exist unique $x_{\beta}, \tilde{x}_{\beta} \in \mathbb{R}^{k}$ such that

$$
T_{\beta, x}^{t}(y) \rightarrow x_{\beta} \quad \forall y \in \mathbb{R}^{k}, T_{\beta, x}\left(x_{\beta}\right)=x_{\beta}
$$

and

$$
\tilde{T}_{\beta, x}^{t}(y) \rightarrow \tilde{x}_{\beta} \quad \forall y \in \mathbb{R}^{k}, \tilde{T}_{\beta, x}\left(\tilde{x}_{\beta}\right)=\tilde{x}_{\beta}
$$

Proof. Fix $\beta \in(0,1)$ and $x \in \mathbb{R}^{k}$. We prove that $T_{\beta, x}$ is a $\beta$-contraction. A similar argument holds for $\tilde{T}_{\beta, x}$. Since $T$ is nonexpansive, we have that for each $y, z \in \mathbb{R}^{k}$

$$
\begin{aligned}
\left\|T_{\beta, x}(y)-T_{\beta, x}(z)\right\|_{\infty} & =\|T((1-\beta) x+\beta y)-T((1-\beta) x+\beta z)\|_{\infty} \\
& \leq\|(1-\beta) x+\beta y-(1-\beta) x-\beta z\|_{\infty}=\beta\|y-z\|_{\infty}
\end{aligned}
$$

proving that $T_{\beta, x}$ is a $\beta$-contraction. By the Banach contraction principle, for each $y \in \mathbb{R}^{k}$ we have that $T_{\beta, x}^{t}(y) \rightarrow x_{\beta}$ as well as $T_{\beta, x}\left(x_{\beta}\right)=x_{\beta}$ where $x_{\beta}$ is the unique fixed point of $T_{\beta, x}$.

Consider two nonexpansive operators $S, T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$.If for each $\beta \in(0,1)$ and for each $x \in \mathbb{R}^{k}$ we define $x_{\beta, S}$ and $x_{\beta, T}$ to be such that

$$
x_{\beta, S}=S\left((1-\beta) x+\beta x_{\beta, S}\right) \text { and } x_{\beta, T}=T\left((1-\beta) x+\beta x_{\beta, T}\right),
$$

then we have the following simple monotonicity result.
Lemma 14 Let $S$ and $T$ be nonexpansive. If $S$ is monotone and $S \geq T$, then

$$
x_{\beta, S} \geq x_{\beta, T} \quad \forall \beta \in(0,1), \forall x \in \mathbb{R}^{k}
$$

Proof of Proposition 6. Fix $\beta \in(0,1)$ and $x \in \mathbb{R}^{k}$. By Lemma 14, $x_{\beta, T} \leq$ $x_{\beta, S_{\alpha}}$ for all $\alpha \in \mathcal{A}$, proving that $x_{\beta, T} \leq \inf _{\alpha \in \mathcal{A}} x_{\beta, S_{\alpha}}$. Since for each $x \in \mathbb{R}^{k}$ there exists $\alpha_{x} \in \mathcal{A}$ such that $S_{\alpha_{x}}(x)=T(x)$, we have that there exists $\bar{\alpha} \in \mathcal{A}$ such that $S_{\bar{\alpha}}\left((1-\beta) x+\beta x_{\beta, T}\right)=T\left((1-\beta) x+\beta x_{\beta, T}\right)=x_{\beta, T}$, proving that $\inf _{\alpha \in \mathcal{A}} x_{\beta, S_{\alpha}} \geq$ $x_{\beta, T}=x_{\beta, S_{\bar{\alpha}}} \geq \inf _{\alpha \in \mathcal{A}} x_{\beta, S_{\alpha}}$, proving the statement.

## References

[1] D. Acemoglu and P.D. Azar, Endogenous production networks, Econometrica, 88, 33-82, 2020.
[2] D. Acemoglu, V.M. Carvalho, A. Ozdaglar, and A. Tahbaz-Salehi, The network origins of aggregate fluctuations, Econometrica, 80, 1977-2016, 2010.
[3] T. Adrian and M.K. Brunnermeier, CoVaR, The American Economic Review, 106, 1705, 2016.
[4] C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, 3rd ed., Springer-Verlag, Berlin, 2006.
[5] N.I. Al-Najjar and E. Shmaya, Recursive utility and parameter uncertainty, Journal of Economic Theory, 181, 274-288, 2019.
[6] C. Ballester, A. Calvó-Armengol, and Y. Zenou, Who's who in networks. Wanted: The key player, Econometrica, 74, 1403-1417, 2006.
[7] A. Banerjee and O. Compte, Consensus and Disagreement: Information Aggregation under (not so) Naive Learning, National Bureau of Economic Research, 2022.
[8] D.R. Baqaee and E. Farhi, The macroeconomic impact of microeconomic shocks: Beyond Hulten's theorem, Econometrica, 87, 1155-1203, 2019.
[9] J. M. Borwein and J. D. Vanderwerff, Convex Functions: Constructions, Characterizations, and Counterexamples, Cambridge University Press, Cambridge, 2010.
[10] V.M. Carvalho and A. Tahbaz-Salehi, Production networks: A primer, Annual Review of Economics, 11, 2019.
[11] E. Castagnoli, G. Cattelan, F. Maccheroni, C. Tebaldi, and R. Wang, Star-shaped risk measures, Operations Research, forthcoming.
[12] S. Cerreia-Vioglio, R. Corrao, and G. Lanzani, Dynamic Opinion Aggregation: Long-run Stability and Disagreement, mimeo, 2021.
[13] S. Cerreia-Vioglio, P. Ghirardato, F. Maccheroni, M. Marinacci, and M. Siniscalchi, Rational preferences under ambiguity, Economic Theory, 48, 341-375, 2011.
[14] S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, and A. Rustichini, Niveloids and their extensions: Risk measures on small domains, Journal of Mathematical Analysis and Applications, 413, 343-360, 2014.
[15] M. Chandrasekher, M. Frick, R. Iijima, and Y. Le Yaouanq, Dual-self representations of ambiguity preferences, Econometrica, forthcoming.
[16] F. H. Clarke, Generalized Gradients and Applications, Transactions of the American Mathematical Society, 205, 247-262, 1975.
[17] F. H. Clarke, Optimization and Nonsmooth Analysis, SIAM, Philadelphia, 1990.
[18] M. H. DeGroot, Reaching a consensus, Journal of the American Statistical Association, 69, 118-121, 1974.
[19] K. Detlefsen and G. Scandolo, Conditional and dynamic convex risk measures, Finance and Stochastics, 9, 539-561, 2005.
[20] N. E. Friedkin and E. C. Johnsen, Social Influence and Opinions, The Journal of Mathematical Sociology, 15, 193-205, 1990.
[21] P. Ghirardato and M. Siniscalchi, Ambiguity in the small and in the large, Econometrica, 80, 2827-2847, 2012.
[22] P. Ghirardato, F. Maccheroni, and M. Marinacci, Differentiating ambiguity and ambiguity attitude, Journal of Economic Theory, 118, 133-173, 2004.
[23] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
[24] B. Golub and M. O. Jackson, Naïve learning in social networks and the wisdom of crowds, American Economic Journal: Microeconomics, 2, 112-149, 2010.
[25] B. Golub and S. Morris, Expectations, Networks, and Conventions, mimeo, 2018.
[26] B. Golub and E. Sadler, Learning in social networks, in The Oxford Handbook of the Economics of Networks (Y. Bramoullé, A. Galeotti, and B. Rogers, eds.), Oxford University Press, New York, 2016.
[27] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge, 2013.
[28] M.O. Jackson, and A. Pernoud, Systemic risk in financial networks: A survey, Annual Review of Economics, 13, 171-202, 2021.
[29] A. Kopytov, K. Nimark, B. Mishra, and M. Taschereau-Dumouchel, Endogenous production networks under supply chain uncertainty, mimeo, 2022.
[30] J. B. Long, and C. I. Plosser: Real business Cycles, Journal of Political Economy, 91, 39-69, 1983.
[31] M. Marinacci and L. Montrucchio, Unique solutions for stochastic recursive utilities, Journal of Economic Theory, 145, 1776-1804, 2010.
[32] F. Maccheroni, M. Marinacci, and A. Rustichini, Ambiguity aversion, robustness, and the variational representation of preferences, Econometrica, 74, 1447-1498, 2006.
[33] A. Neyman, and S. Sorin, Stochastic games and applications, Springer Science \& Business Media, 2003.
[34] A. Rubinov and Z. Dzalilov, Abstract convexity of positively homogeneous functions, Journal of Statistics and Management Systems, 5, 1-20, 2002.
[35] E. Sadler and B. Golub, Games on endogenous networks, arXiv preprint arXiv:2102.01587, 2021.
[36] E. Seneta, Non-Negative Matrices and Markov Chains, 3rd ed., Springer-Verlag, New York, 2006.
[37] E. Seneta, Perturbation of the stationary distribution measured by ergodicity coefficients, Advances in Applied Probability, 20, 228-230, 1988.
[38] S. Sorin, A first course on zero-sum repeated games, Springer Science \& Business Media, Berlin, 2002.
[39] M. Taschereau-Dumouchel, Cascades and fluctuations in an economy with an endogenous production network. Available at SSRN 3115854, 2020.
[40] B. Ziliotto, A Tauberian theorem for nonexpansive operators and applications to zero-sum stochastic games, Mathematics of Operations Research, 41, 1522-1534, 2016.

## E Online appendix: omitted proofs

In this section, we first report the proofs of some of the secondary results in the main text that were omitted by the main appendix. Then, we report the proofs of the ancillary results stated in the main appendix and whose proofs were omitted.

## E. 1 Proofs of ancillary results in the main appendix

Proof of Lemma 3. Consider $\bar{x} \in L$. By definition of $L$, there exists $\left\{x_{\beta_{n}}\right\}_{n \in \mathbb{N}} \subseteq$ $\left\{x_{\beta}\right\}_{\beta \in(0,1)}$ such that $\beta_{n} \rightarrow 1$ and $x_{\beta_{n}} \rightarrow \bar{x}$. By definition of $x_{\beta}$ and since $T$ is Lipschitz continuous and $\lim _{n}\left[\left(1-\beta_{n}\right) x+\beta_{n} x_{\beta_{n}}\right]=\bar{x}$, we have that

$$
\bar{x}=\lim _{n} x_{\beta_{n}}=\lim _{n} T\left(\left(1-\beta_{n}\right) x+\beta_{n} x_{\beta_{n}}\right)=T(\bar{x}),
$$

proving that $\bar{x} \in E(T)$, that is, $L \subseteq E(T)$. Next, assume that $E(T)=D$. By the previous part of the proof, we have that $L \subseteq E(T)=D$. This implies that there exists a set $H \subseteq \mathbb{R}$ such that $\{h e\}_{h \in H}=L$ and, in particular, $\lim _{\inf }^{\beta \rightarrow 1} x_{\beta}=(\inf H) e$ as well as $\lim \sup _{\beta \rightarrow 1} x_{\beta}=(\sup H) e$. Since $L$ is closed and bounded, it follows that $(\inf H) e,(\sup H) e \in L \subseteq E(T)$, proving the second part of the statement.

Proof of Lemma 12. We start with a preliminary observation. By induction and since $T$ is nonexpansive and normalized, it is obvious that $\left\|x^{t}\right\|_{\infty} \leq\|x\|_{\infty}$ for all $t \in \mathbb{N}$. Note that for each $l, t \in \mathbb{N}$

$$
\begin{aligned}
\left\|x^{t+1}-x_{\beta_{l}}\right\|_{\infty} & =\left\|T\left(\left(1-\beta_{t+1}\right) x+\beta_{t+1} x^{t}\right)-T\left(\left(1-\beta_{l}\right) x+\beta_{l} x_{\beta_{l}}\right)\right\|_{\infty} \\
& \leq\left\|T\left(\left(1-\beta_{t+1}\right) x+\beta_{t+1} x^{t}\right)-T\left(\left(1-\beta_{l}\right) x+\beta_{l} x^{t}\right)\right\|_{\infty} \\
& +\left\|T\left(\left(1-\beta_{l}\right) x+\beta_{l} x^{t}\right)-T\left(\left(1-\beta_{l}\right) x+\beta_{l} x_{\beta_{l}}\right)\right\|_{\infty} \\
& \leq\left\|\left(1-\beta_{t+1}\right) x+\beta_{t+1} x^{t}-\left(1-\beta_{l}\right) x-\beta_{l} x^{t}\right\|_{\infty} \\
& +\left\|\left(1-\beta_{l}\right) x+\beta_{l} x^{t}-\left(1-\beta_{l}\right) x-\beta_{l} x_{\beta_{l}}\right\|_{\infty} \\
& =\left\|\left(\beta_{l}-\beta_{t+1}\right)\left(x-x^{t}\right)\right\|_{\infty}+\beta_{l}\left\|x^{t}-x_{\beta_{l}}\right\|_{\infty} \\
& \leq \beta_{l}\left\|x^{t}-x_{\beta_{l}}\right\|_{\infty}+\left|\beta_{t+1}-\beta_{l}\right|\left\|x-x^{t}\right\|_{\infty} \\
& \leq \beta_{l}\left\|x^{t}-x_{\beta_{l}}\right\|_{\infty}+2\|x\|_{\infty}\left|\beta_{t+1}-\beta_{l}\right| .
\end{aligned}
$$

Since $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$ is an increasing sequence, we have that for each $t \geq l$

$$
\begin{equation*}
\left\|x^{t+1}-x_{\beta_{l}}\right\|_{\infty} \leq \beta_{l}\left\|x^{t}-x_{\beta_{l}}\right\|_{\infty}+2\|x\|_{\infty}\left(\beta_{t+1}-\beta_{l}\right) \tag{49}
\end{equation*}
$$

We next prove (46) by induction. By (49) and setting $s=t$, the statement is true for $m=1$. Assume (46) holds for $m$. We show it holds for $m+1$. By (49) and inductive hypothesis, we have that

$$
\begin{aligned}
\left\|x_{s+m+1}-x_{\beta_{l}}\right\|_{\infty} & \leq \beta_{l}\left\|x_{s+m}-x_{\beta_{l}}\right\|_{\infty}+2\|x\|_{\infty}\left(\beta_{s+m+1}-\beta_{l}\right) \\
& \leq \beta_{l}^{m+1}\left\|x_{s}-x_{\beta_{l}}\right\|_{\infty}+2\|x\|_{\infty} \sum_{r=1}^{m} \beta_{l}^{m+1-r}\left(\beta_{s+r}-\beta_{l}\right)+2\|x\|_{\infty}\left(\beta_{s+m+1}-\beta_{l}\right) \\
& =\beta_{l}^{m+1}\left\|x_{s}-x_{\beta_{l}}\right\|_{\infty}+2\|x\|_{\infty} \sum_{r=1}^{m+1} \beta_{l}^{m+1-r}\left(\beta_{s+r}-\beta_{l}\right)
\end{aligned}
$$

proving the inductive step.
Proof of Lemma 14. Fix $\beta \in(0,1)$ and $x \in \mathbb{R}^{k}$. We prove by induction that $S_{\beta, x}^{t}(x) \geq T_{\beta, x}^{t}(x)$ for all $t \in \mathbb{N}$. For $t=1$, note that $S_{\beta, x}^{1}(x)=S((1-\beta) x+\beta x)=$ $S(x) \geq T(x)=T((1-\beta) x+\beta x)=T_{\beta, x}^{1}(x)$. Next, we assume the statement is true for $t$ and we prove it holds for $t+1$. Since $S$ is monotone and $S \geq T$, we have that

$$
\begin{aligned}
S_{\beta, x}^{t+1}(x) & =S_{\beta, x}\left(S_{\beta, x}^{t}(x)\right)=S\left((1-\beta) x+\beta S_{\beta, x}^{t}(x)\right) \geq S\left((1-\beta) x+\beta T_{\beta, x}^{t}(x)\right) \\
& \geq T\left((1-\beta) x+\beta T_{\beta, x}^{t}(x)\right)=T_{\beta, x}\left(T_{\beta, x}^{t}(x)\right)=T_{\beta, x}^{t+1}(x)
\end{aligned}
$$

proving the statement. By Lemma 13 and passing to the limit, $x_{\beta, S}=\lim _{t} S_{\beta, x}^{t}(x) \geq$ $\lim _{t} T_{\beta, x}^{t}(x)=x_{\beta, T}$.

Proof of Lemma 7. Suppose by contradiction that there exists $y \in E(T) \backslash D$. Then, by equation (29) we have $T(y) \leq W y$. Let $I^{*}=\operatorname{argmax}_{i \in\{1, \ldots, k\}} y_{i}$. Since
$y \notin D,\{1, \ldots, k\} \backslash I \neq \emptyset$. Since $W$ is strongly connected, there is $i^{*} \in I^{*}$ and $j^{*} \in\{1, \ldots, k\} \backslash I$ such that $w_{i^{*} j^{*}}>0$. But then $T_{i^{*}}(y) \leq \sum_{j=1}^{k} w_{i j} y_{j} \leq w_{i^{*} j^{*}} y_{j^{*}}+$ $\left(1-w_{i^{*} j^{*}}\right) \max _{i \in\{1, \ldots, k\}} y_{i}=w_{i^{*} j^{*}} y_{j^{*}}+\left(1-w_{i^{*} j^{*}}\right) y_{i^{*}}<y_{i^{*}}$, a contradiction with $T_{i^{*}}(y)=$ $y_{i^{*}}$.

## E. 2 Proofs of additional claims in the main text

## E.2.1 Computations for Section 4.1

The first-order conditions for the cost-minimization problem given $w_{i} \in \Delta$ read as

$$
\begin{align*}
Q_{i 0} & =\mu(1-\beta) F_{i}\left(Q_{i}, w_{i}\right)  \tag{50}\\
Q_{i j} & =\frac{1}{P_{j}} \mu \beta w_{i j} F_{i}\left(Q_{i}, w_{i}\right) \quad \forall j \in\{1, \ldots, k\}
\end{align*}
$$

where $\mu$ is the Lagrange multiplier of the only constraint. Given that $F_{i}\left(Q_{i}, w_{i}\right)=1$ in the optimum, by plugging the previous conditions back in the production function we have:

$$
\begin{aligned}
1 & =S_{i}\left(w_{i}\right) \xi_{i}\left(\beta, w_{i}\right)\left(Z_{i} \mu(1-\beta) F_{i}\left(Q_{i}, w_{i}\right)\right)^{1-\beta} \prod_{j=1}^{k}\left(\frac{1}{P_{j}} \mu \beta w_{i j} F_{i}\left(Q_{i}, w_{i}\right)\right)^{\beta w_{i j}} \\
& =\mu S_{i}\left(w_{i}\right) \xi_{i}\left(\beta, w_{i}\right)\left(Z_{i}(1-\beta)\right)^{1-\beta} \prod_{j=1}^{k}\left(\frac{1}{P_{j}} \beta w_{i j}\right)^{\beta w_{i j}} \\
& =\mu S_{i}\left(w_{i}\right)\left(Z_{i}\right)^{1-\beta} \prod_{j=1}^{k}\left(\frac{1}{P_{j}}\right)^{\beta w_{i j}}
\end{aligned}
$$

which implies that

$$
\mu=\left(\frac{1}{Z_{i}}\right)^{1-\beta} \prod_{j=1}^{k} P_{j}^{\beta w_{i j}} \frac{1}{S_{i}\left(w_{i}\right)}
$$

Next, observe that, in the optimum, for every $i$ we have

$$
\begin{aligned}
& Q_{i 0}=(1-\beta)\left(\frac{1}{Z_{i}}\right)^{1-\beta} \prod_{j=1}^{k} P_{j}^{\beta w_{i j}} \frac{1}{S_{i}\left(w_{i}\right)} \\
& Q_{i j}=\frac{1}{P_{j}} \beta w_{i j}\left(\frac{1}{Z_{i}}\right)^{1-\beta} \prod_{j=1}^{k} P_{j}^{\beta w_{i j}} \frac{1}{S_{i}\left(w_{i}\right)} \quad \forall j \in\{1, \ldots, k\}
\end{aligned}
$$

as well as

$$
\begin{aligned}
K_{i}\left(P, w_{i}\right) & =Q_{i 0}+\sum_{j=1}^{k} P_{j} Q_{i j}=\mu(1-\beta) F_{i}\left(Q_{i}, w_{i}\right)+\sum_{j=1}^{k} P_{j}\left(\frac{1}{P_{j}} \mu \beta w_{i j} F_{i}\left(Q_{i}, w_{i}\right)\right) \\
& =\mu(1-\beta)+\mu \beta \sum_{j=1}^{k} w_{i j}=\mu=\left(\frac{1}{Z_{i}}\right)^{1-\beta} \prod_{j=1}^{k} P_{j}^{\beta w_{i j}} \frac{1}{S_{i}\left(w_{i}\right)} .
\end{aligned}
$$

Given that each firm can pick its technology so to minimize their unitary cost, he zero-profit condition for every $i \in\{1, \ldots, k\}$ reads

$$
P_{i}=\min _{w_{i} \in \Delta_{i}} K_{i}\left(P, w_{i}\right)=\min _{w_{i} \in \Delta}\left\{\left(\frac{1}{Z_{i}}\right)^{1-\beta} \prod_{j=1}^{k} P_{j}^{\beta w_{i j}} \frac{1}{S_{i}\left(w_{i}\right)}\right\}
$$

Taking the logarithms on both sides we get

$$
\ln \left(P_{i}\right)=\min _{w_{i} \in \Delta}\left\{(1-\beta) \ln \left(\frac{1}{Z_{i}}\right)+\beta \sum_{j=1}^{k} w_{i j} \ln \left(P_{j}\right)+\ln \left(\frac{1}{S_{i}\left(w_{i}\right)}\right)\right\}
$$

Next, by defining $p_{i}=\ln \left(P_{i}\right), x_{i}=\ln \left(\frac{1}{Z_{i}}\right)$, and $c_{i}\left(w_{i}\right)=\ln \left(\frac{1}{S_{i}\left(w_{i}\right)}\right)$, we finally get

$$
p_{i}=(1-\beta) x_{i}+\beta \min _{w_{i} \in \Delta}\left\{\sum_{j=1}^{k} w_{i j} p_{j}+\frac{1}{\beta} c_{i}\left(w_{i}\right)\right\} .
$$

Similarly, defining $q_{i 0}=\ln \left(Q_{i 0}\right)$ and $q_{i j}=\ln \left(Q_{i j}\right)$ we get

$$
\begin{aligned}
& q_{i 0}(\beta)=\ln (1-\beta)+(1-\beta) x_{i}+\beta \sum_{j=1}^{k} w_{i j}(\beta) p_{j}(\beta)+c_{i}\left(w_{i j}(\beta)\right) \\
& q_{i j}(\beta)=\ln \left(\beta w_{i j}(\beta)\right)-p_{i}^{\beta}+(1-\beta) x_{i}+\beta \sum_{j=1}^{k} w_{i j}(\beta) p_{j}(\beta)+c_{i}\left(w_{i j}(\beta)\right)
\end{aligned}
$$

## F Counterexample to general convergence

Consider a normalized, monotone, and translation invariant operator $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$. Note that if $T$ is such that $T_{i}=T_{j}$ for all $i, j \in\{1, \ldots, k\}$, then $T(y)$ is a constant vector for all $y \in \mathbb{R}^{k}$. Fix $x \in \mathbb{R}^{k}$. In this case, this implies that $x_{\beta}$ is a constant vector for all $\beta \in(0,1)$. In particular, since $T$ is translation invariant, this yields that

$$
x_{\beta}=T\left((1-\beta) x+\beta x_{\beta}\right)=T((1-\beta) x)+\beta x_{\beta} \quad \forall \beta \in(0,1)
$$

and, in particular,

$$
x_{\beta}=\frac{1}{1-\beta} T((1-\beta) x) \quad \forall \beta \in(0,1) \text {. }
$$

Thus, if our main result were to hold for a generic robust and regular operator, that is, if $\lim _{\beta \rightarrow 1} x_{\beta}$ were to exist, this would imply that $\lim _{\lambda \rightarrow 0^{+}} T_{i}(\lambda x) / \lambda$ would exist for all $x \in \mathbb{R}^{k}$ and for all $i \in\{1, \ldots, k\}$. We next exhibit an operator which fails this latter property, proving that, for this operator, $\lim _{\beta \rightarrow 1} x_{\beta}$ does not exist for all $x \in \mathbb{R}^{k}$.

Example 6 Consider a function $g: \mathbb{R} \rightarrow \mathbb{R}$ which is Lipschitz continuous, differentiable on $\mathbb{R} \backslash\{0\}$ with $\left|g^{\prime}(t)\right| \leq \frac{1}{4}$ for all $t \neq 0$, and such that $g(0)=0$ and $\lim _{t \rightarrow 0^{+}} \frac{g(t)}{t}$ does not exist. ${ }^{21}$ Define the functional $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
f(x)=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+g\left(x_{1}-x_{2}\right) \quad \forall x \in \mathbb{R}^{2} \tag{51}
\end{equation*}
$$

Since $g(0)=0$, it is easy to see that $f$ is normalized, translation invariant, and Lipschitz continuous, and, in particular, Clarke differentiable. Since $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on $\mathbb{R} \backslash\{0\}$, it follows that $f$ is differentiable on $\mathbb{R}^{2} \backslash D$. In particular, we have that

$$
\begin{equation*}
\nabla f(x)=\left(\frac{1}{2}+g^{\prime}\left(x_{1}-x_{2}\right), \frac{1}{2}-g^{\prime}\left(x_{1}-x_{2}\right)\right) \geq\left(\frac{1}{4}, \frac{1}{4}\right) \geq 0 \quad \forall x \in \mathbb{R}^{2} \backslash D \tag{52}
\end{equation*}
$$

and, in particular, $\nabla f(x) \in \Delta$ for all $x \in \mathbb{R}^{2} \backslash D$. By Lebourg's Mean Value Theorem and since $f$ is Clarke differentiable, this implies that $f$ is monotone. Finally, consider $x=(1,0)$. Note that for each $\lambda>0$

$$
\frac{f(\lambda x)}{\lambda}=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\left(x_{1}-x_{2}\right) \frac{g\left(\lambda\left(x_{1}-x_{2}\right)\right)}{\lambda\left(x_{1}-x_{2}\right)}=\frac{1}{2}+\frac{g(\lambda)}{\lambda}
$$

which does not converge as $\lambda \rightarrow 0^{+}$. Define now $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ to be such that $T_{1}=$ $T_{2}=f$. Since $f$ is normalized, monotone, and translation invariant, so is $T$. By (52), we can conclude that $\underline{A}(T)=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ and, in particular, regular. Yet, given $i\{1,2\}$, $\lim _{\lambda \rightarrow 0^{+}} T_{i}(\lambda x) / \lambda=\lim _{\lambda \rightarrow 0^{+}} f(\lambda x) / \lambda$ does not exist for $x=(1,0)$, proving that $x_{\beta}$ does not converge. Incidentally, observe that $\operatorname{Rg}\left(x_{\beta}\right)=0$ for all $\beta \in(0,1)$, so as suspected, the mere knowledge of the range shrinking to 0 is far from being sufficient for the convergence of $\left\{x_{\beta}\right\}_{\beta \in(0,1)}$.

[^17]
[^0]:    *We wish to thank Oguzhan Celebi, Maria Colombo, Joel Flynn, Drew Fudenberg, Ben Golub, Matt Jackson, Peter Klibanoff, Nicolas Lambert, Stephen Morris, Emi Nakamura, Alessandro Pigati, Simeon Reich, Karthik Sastry, Lorenzo Stanca, Tomasz Strzalecki, Omer Tamuz, Nicolas Vieille, and Alex Wolitzky for useful comments. Roberto Corrao gratefully acknowledges the financial support of the Gordon Pye fellowship.

[^1]:    ${ }^{1}$ Nontriviality amounts to assume that the matrix $\underline{A}(T)$ does not have a zero row.
    ${ }^{2}$ If $T_{i}$ is concave, it is well known that $\partial_{C} T_{i}(z)$ coincides with $\partial T_{i}(z)$ where the latter is the usual superdifferential of convex analysis (see, e.g., [17, Proposition 2.2.7]). Given a function $\varphi: \mathbb{R}^{k} \rightarrow \mathbb{R}$ and $z \in \mathbb{R}^{k}$, recall that a vector $\gamma$ is an element of $\partial \varphi(z)$, that is, a superdifferential of $\varphi$ at $z$ if and only if $\langle\gamma, y-z\rangle \geq \varphi(y)-\varphi(z)$ for all $y \in \mathbb{R}^{k}$. We denote by $\partial \varphi: \mathbb{R}^{k} \rightrightarrows \mathbb{R}^{k}$ the superdifferential correspondence.
    ${ }^{3}$ The notion of generalized gradient we use for real-valued functions coincides with the one of Clarke, but our derived notion of generalized Jacobian for operators is larger than the one of Clarke (see, e.g., [17, Proposition 2.6.2]). With an abuse of notation, we still denote it by $\partial_{C} T(z)$.

[^2]:    ${ }^{4}$ Here the sup is performed coordinatewise.

[^3]:    ${ }^{5}$ Note that the definition of the normalization constant $\xi_{i}\left(\beta, w_{i}\right)$ is the same as the one [29] (see their Footnote 8). Differently form [29], our productivity shock $Z_{i}$ is relative to the external factor $Q_{i 0}$ as opposed to be Hicks-neutral.

[^4]:    ${ }^{6}$ See Online Appendix E.2.1 for the details.

[^5]:    ${ }^{7}$ See Online Appendix A of [10].

[^6]:    ${ }^{8}$ For every set $K \subseteq \Delta_{n}$, so for example for $K=c_{i}^{-1}(0)$, we let $c o(K)$ denote the convex hull of $K$.

[^7]:    ${ }^{9}$ The linear extension of $\rho$ is defined as usual:

    $$
    \rho(\hat{s}, \hat{q}, \omega)\left(r, \omega^{\prime}\right)=\int_{S} \int_{Q} \rho(s, q, \omega)\left(r, \omega^{\prime}\right) d \hat{s}(s) d \hat{q}(q)
    $$

[^8]:    ${ }^{10}$ The derivations of equations (18) and (19) can be found in Sorin [38, Propositions 5.2 and 5.3].

[^9]:    ${ }^{11}$ See for example Golub and Jackson [24] for a detailed analysis of this model.

[^10]:    ${ }^{12}$ Banerjee and Compte [7] provided a game-theoretic foundation for this limit by considering a noisy version of the Friedkin and Johnsen's model where the agents choose once and for all the stubbornness weight to assign to their initial opinion so to maximize the accuracy of their long-run opinion. They show that as the noise vanishes, the symmetric equilibrium weight converges to zero, that is $\beta \rightarrow 1$, providing an alternative foundation for the limit we study.

[^11]:    ${ }^{13}$ Recall that $\|x\|_{1}=\sum_{i=1}^{k}\left|x_{i}\right|$ for all $x \in \mathbb{R}^{k}$.

[^12]:    ${ }^{14}$ With a small abuse of terminology, we use the same name for similar properties that pertain to functionals and operators.

[^13]:    ${ }^{15}$ The binary relation $\succsim^{\circ}$ is conic if and only if there exists a subset $\tilde{C} \subseteq \Delta$ such that $x \succsim^{\circ} y$ if and only if $\langle\gamma, x\rangle \geq\langle\gamma, y\rangle$ for all $\gamma \in \tilde{C}$.
    ${ }^{16}$ The construction of [11] differs from ours in that the cone added to co $(\{0, z\})$ is $\mathbb{R}_{+}^{k}$.

[^14]:    ${ }^{17}$ That is, $\bar{x} \in L$ if and only if there exists $\left\{x_{\beta_{n}}\right\}_{n \in \mathbb{N}} \subseteq\left\{x_{\beta}\right\}_{\beta \in(0,1)}$ such that $\beta_{n} \rightarrow 1$ and $x_{\beta_{n}} \rightarrow \bar{x}$.

[^15]:    ${ }^{18}$ With a small abuse of notation, we denote with $I$ both the identity matrix and the identity operator.

[^16]:    ${ }^{20}$ Define $N$ to be the set of all natural numbers $\geq 1+f(1)$. For each $t \in N$ define $D(t)=$ $\{l \in \mathbb{N}: l+f(l) \leq t\}$. It is immediate to see that if $t^{\prime} \geq t$, then $D\left(t^{\prime}\right) \supseteq D(t) \ni 1$. At the same time, for each $t \geq 1+f(1)$ the set $D(t)$ is bounded above. If we define $g: N \rightarrow \mathbb{N}$ by $g(t)=\max D(t)$, then $g$ is well defined. Moreover, we have that if $t^{\prime} \geq t$, then $g\left(t^{\prime}\right) \geq g(t)$ as well as $g(l+f(l))=l+f(l)$ for all $l \in \mathbb{N}$. This implies that $l_{t}$ can be set to be equal to $g(t)$ and $\left\{l_{t}\right\}_{t \in \mathbb{N}} \subseteq \mathbb{N}$ is an increasing sequence which diverges.

[^17]:    ${ }^{21}$ Consider the function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(t)=0$ for all $t \leq 0$ and $h(t)=t \sin (\log t)$ for all $t>0$. Clearly, $h$ is continuous on its domain and differentiable everywhere apart from 0 (later we will indeed show that $\lim _{t \rightarrow 0^{+}} \frac{h(t)}{t}$ does not exist). Note that $h^{\prime}(t)=0$ for all $t<0$ and $h^{\prime}(t)=\sin (\log t)+\cos (\log t) \in[-2,2]$ for all $t>0$. By the Mean Value Theorem, this implies that $h$ is Lipschitz continuous of order 2 on $(-\infty, 0)$ and $(0, \infty)$, separately. Since $h(t)=0$ for all $t \leq 0$, it follows that $h$ is Lipschitz continuous of order 2 on its entire domain. Moreover, observe that $h(t) / t=\sin (\log t)$ which does not converge as $t \rightarrow 0^{+}\left(\operatorname{take} t_{n}=e^{-\left(-\frac{\pi}{2}+2 k \pi\right)}\right.$ and $\left.t_{n}^{\prime}=e^{-\left(\frac{\pi}{2}+2 k \pi\right)}\right)$. Finally, it is enough to set $g=h / 8$.

