DURABLES AND SIZE-DEPENDENCE IN THE MARGINAL PROPENSITY TO SPEND

Martin Beraja (MIT & NBER)

Nathan Zorzi (Dartmouth)

December 2023

▶ Stimulus checks have become an important policy tool in recent US recessions

Recession	2001	2008	2020	2020-2021
Amount	\$300	\$600	\$1,200	\$2,000

► Stimulus checks have become an important policy tool in recent US recessions

Recession	2001	2008	2020	2020-2021
Amount	\$300	\$600	\$1,200	\$2,000

We know little about the effectiveness of stimulus checks as they become larger \$2,000 could be barely more effective than \$300 if households spend less and less of each additional dollar

► Stimulus checks have become an important policy tool in recent US recessions

Recession	2001	2008	2020	2020-2021
Amount	\$300	\$600	\$1,200	\$2,000

► Stimulus checks have become an important policy tool in recent US recessions

Recession	2001	2008	2020	2020-2021
Amount	\$300	\$600	\$1,200	\$2,000

How does the marginal propensity to spend (MPX) vary as checks become larger?

► Measuring **size-dependence** is hard. Wide range of **empirical** estimates.

► Stimulus checks have become an important policy tool in recent US recessions

Recession	2001	2008	2020	2020-2021
Amount	\$300	\$600	\$1,200	\$2,000

- ► Measuring **size-dependence** is hard. Wide range of **empirical** estimates.
- ▶ Models of non-durables predict that the MPX falls sharply with the size of checks

► Stimulus checks have become an important policy tool in recent US recessions

Recession	2001	2008	2020	2020-2021
Amount	\$300	\$600	\$1,200	\$2,000

- ► Measuring **size-dependence** is hard. Wide range of **empirical** estimates.
- ▶ Models of non-durables predict that the MPX falls sharply with the size of checks
- ► Relevant quantity for policy, however, is **total** household spending

► Stimulus checks have become an important policy tool in recent US recessions

Recession	2001	2008	2020	2020-2021
Amount	\$300	\$600	\$1,200	\$2,000

- ► Measuring **size-dependence** is hard. Wide range of **empirical** estimates.
- ▶ Models of non-durables predict that the MPX falls sharply with the size of checks
- Relevant quantity for policy, however, is total household spending
- ► Empirically, durable spending accounts for a large share of the MPX

 Conjecture: durable purchases could respond more as checks become larger (Parker et al., Fuster et al.)

Build a rich and flexible model \rightarrow micro data \rightarrow size-dependence? checks?

Build a rich and flexible model \rightarrow micro data \rightarrow size-dependence? checks?

Lumpy durables

Build a rich and flexible model \rightarrow micro data \rightarrow size-dependence? checks?

Lumpy durables + smooth adjustment hazard (McFadden)

Build a rich and flexible model \rightarrow micro data \rightarrow size-dependence? checks?

Lumpy durables + smooth adjustment hazard (McFadden) + Open Econ HANK

Build a rich and flexible model \rightarrow micro data \rightarrow size-dependence? checks?

Lumpy durables + smooth adjustment hazard (McFadden) + Open Econ HANK

1. Discipline the model with micro moments. Smooth hazard is key to match evidence.

Match MPX on durables and non-durables, price elasticity of durables, distribution of adjustments, etc.

Build a rich and flexible model \rightarrow micro data \rightarrow size-dependence? checks?

Lumpy durables + smooth adjustment hazard (McFadden) + Open Econ HANK

Discipline the model with micro moments. Smooth hazard is key to match evidence.
 Match MPX on durables and non-durables, price elasticity of durables, distribution of adjustments, etc.

Quantify the size-dependence in the MPX. The MPX declines, albeit slowly.
 Flatter in a purely state-dependent model of durables. Declines sharply in 2A model of non-durables

Build a rich and flexible model \rightarrow micro data \rightarrow size-dependence? checks?

Lumpy durables + smooth adjustment hazard (McFadden) + Open Econ HANK

- Discipline the model with micro moments. Smooth hazard is key to match evidence.
 Match MPX on durables and non-durables, price elasticity of durables, distribution of adjustments, etc.
- Quantify the size-dependence in the MPX. The MPX declines, albeit slowly.
 Flatter in a purely state-dependent model of durables. Declines sharply in 2A model of non-durables
- 3. Embed the model in HANK. Evaluate effect of checks on output in recessions A large check of \$2,000 increases output by 25 c/\$, compared to 37 c/\$ for a small \$300 check Large checks remain effective, but extrapolating out of small checks overestimates their impact

OUTLINE

A Model with a Smooth Hazard

Bringing the Model to the Data

Size-Dependence in the MPX

Stimulus Checks in General Equilibrium

► HA model with lumpy durables (Berger-Vavra) with smooth hazard (+ down payment)

- ► HA model with lumpy durables (Berger-Vavra) with smooth hazard (+ down payment)
- ▶ **Preferences**: Durables and non-durables

$$U_t \equiv u(c_t, d_t) + \beta \mathbb{E}_t [U_{t+1}],$$

where

$$u\left(c,d\right) = \frac{1}{1-\sigma}U^{1-\sigma} \quad \text{with} \quad U\left(c,d\right) = \left[\vartheta_{c}^{\frac{1}{\nu}}c^{\frac{\nu-1}{\nu}} + \vartheta_{d}^{\frac{1}{\nu}}d^{\frac{\nu-1}{\nu}}\right]^{\frac{\nu}{\nu-1}}$$

- ► HA model with lumpy durables (Berger-Vavra) with smooth hazard (+ down payment)
- ▶ **Preferences**: Durables and non-durables

$$U_t \equiv u(c_t, d_t) + \beta \mathbb{E}_t [U_{t+1}],$$

where

$$u\left(c,d\right) = \frac{1}{1-\sigma}U^{1-\sigma} \quad \text{with} \quad U\left(c,d\right) = \left[\vartheta_{c}^{\frac{1}{\nu}}c^{\frac{\nu-1}{\nu}} + \vartheta_{d}^{\frac{1}{\nu}}d^{\frac{\nu-1}{\nu}}\right]^{\frac{\nu}{\nu-1}}$$

- ► HA model with lumpy durables (Berger-Vavra) with smooth hazard (+ down payment)
- ▶ **Preferences**: Durables and non-durables

$$U_t \equiv u(c_t, d_t) + \beta \mathbb{E}_t [U_{t+1}],$$

where

$$u\left(c,d\right) = \frac{1}{1-\sigma}U^{1-\sigma} \quad \text{with} \quad U\left(c,d\right) = \left[\vartheta_{c}^{\frac{1}{\nu}}c^{\frac{\nu-1}{\nu}} + \vartheta_{d}^{\frac{1}{\nu}}d^{\frac{\nu-1}{\nu}}\right]^{\frac{\nu}{\nu-1}}$$

$$m{x} \equiv (m{d} \ , \ m{m} \ , \ m{y} \ , \ m{\epsilon} \)$$

- ► HA model with lumpy durables (Berger-Vavra) with smooth hazard (+ down payment)
- ▶ **Preferences**: Durables and non-durables

$$U_t \equiv u(c_t, d_t) + \beta \mathbb{E}_t [U_{t+1}],$$

where

$$u\left(c,d\right) = \frac{1}{1-\sigma}U^{1-\sigma} \quad \text{with} \quad U\left(c,d\right) = \left[\vartheta_{c}^{\frac{1}{\nu}}c^{\frac{\nu-1}{\nu}} + \vartheta_{d}^{\frac{1}{\nu}}d^{\frac{\nu-1}{\nu}}\right]^{\frac{\nu}{\nu-1}}$$

- ► HA model with lumpy durables (Berger-Vavra) with smooth hazard (+ down payment)
- ▶ **Preferences**: Durables and non-durables

$$\mathcal{U}_{t} \equiv u\left(c_{t}, d_{t}\right) + \beta \mathbb{E}_{t}\left[\mathcal{U}_{t+1}\right],$$

where

$$u\left(c,d\right) = \frac{1}{1-\sigma}U^{1-\sigma} \quad \text{with} \quad U\left(c,d\right) = \left[\vartheta_{c}^{\frac{1}{\nu}}c^{\frac{\nu-1}{\nu}} + \vartheta_{d}^{\frac{1}{\nu}}d^{\frac{\nu-1}{\nu}}\right]^{\frac{\nu}{\nu-1}}$$

$$x \equiv (\begin{array}{ccc} d & , & m & , & y \end{array})$$
Durables Cash Income

► Canonical model of durables: Discontinuous hazard,

$$V_{t}\left(\mathbf{X}\right) = \max\left\{V_{t}^{\text{not}}\left(\mathbf{X}\right), V_{t}^{\text{adjust}}\left(\mathbf{X}\right) - \kappa\right\},$$

where $\kappa>0$ is the (utility) cost of adjustment.

► Canonical model of durables: Discontinuous hazard,

$$\mathcal{S}_{t}\left(\mathbf{x}\right) = \begin{cases} 1 & \text{if } V_{t}^{\text{adjust}}\left(\mathbf{x}\right) - \kappa > V_{t}^{\text{not}}\left(\mathbf{x}\right) \\ 0 & \text{otherwise} \end{cases},$$

i.e., (s, S) adjustment bands.

Canonical model of durables: Discontinuous hazard,

$$\mathcal{S}_{t}\left(\mathbf{x}\right) = \begin{cases} 1 & \text{if } V_{t}^{\text{adjust}}\left(\mathbf{x}\right) - \kappa > V_{t}^{\text{not}}\left(\mathbf{x}\right) \\ 0 & \text{otherwise} \end{cases}$$

► This paper: Smooth hazard, for any idiosyncratic state x,

$$\mathcal{S}_{t}\left(\mathbf{x}\right) = \frac{\exp\left(\frac{V_{t}^{\text{adjust}}\left(\mathbf{x}\right) - \kappa}{\eta}\right)}{\exp\left(\frac{V_{t}^{\text{adjust}}\left(\mathbf{x}\right) - \kappa}{\eta}\right) + \exp\left(\frac{V_{t}^{\text{not}}\left(\mathbf{x}\right)}{\eta}\right)},$$

which can be microfounded with preference shifters (McFadden)

Canonical model of durables: Discontinuous hazard,

$$\mathcal{S}_{t}\left(\mathbf{x}\right) = \begin{cases} 1 & \text{if } V_{t}^{\text{adjust}}\left(\mathbf{x}\right) - \kappa > V_{t}^{\text{not}}\left(\mathbf{x}\right) \\ 0 & \text{otherwise} \end{cases}$$

► This paper: Smooth hazard, for any idiosyncratic state x,

$$\mathcal{S}_{t}\left(\mathbf{x}\right) = \frac{\exp\left(\frac{V_{t}^{adjust}\left(\mathbf{x}\right) - \kappa}{\eta}\right)}{\exp\left(\frac{V_{t}^{adjust}\left(\mathbf{x}\right) - \kappa}{\eta}\right) + \exp\left(\frac{V_{t}^{not}\left(\mathbf{x}\right)}{\eta}\right)},$$

which can be microfounded with preference shifters (McFadden)

▶ Nest two polar cases: fully state-dependent $(\eta \to 0)$ and time-dependent $(\eta \to +\infty)$

SMOOTH ADJUSTMENT HAZARD

Figure 1: Adjustment hazard (fixing *d* and *y*)

SMOOTH ADJUSTMENT HAZARD

Figure 1: Adjustment hazard (fixing *d* and *y*)

► The shape of the adjustment hazard is key for the size-dependence in the MPX

Marginal propensity to spend on durables:

$$MPX^{d}(T) \equiv \frac{1}{T} \int \int \underbrace{\mathcal{S}(m,d)}_{\text{extensive}} \underbrace{x(m+d)}_{\text{intensive}} \{d\mu(m-T,d) - d\mu(m,d)\}$$

Marginal propensity to spend on durables:

$$MPX^{d}(T) \equiv \frac{1}{T} \int \int \underbrace{\mathcal{S}(m,d)}_{\text{extensive}} \underbrace{x(m+d)}_{\text{intensive}} \{d\mu(m-T,d) - d\mu(m,d)\}$$

Marginal propensity to spend on durables:

$$\mathsf{MPX}^{d}\left(T\right) \equiv \frac{1}{T} \int \int \underbrace{\mathcal{S}\left(m,d\right)}_{\mathsf{extensive}} \underbrace{x\left(m+d\right)}_{\mathsf{intensive}} \left\{ d\mu\left(m-T,d\right) - d\mu\left(m,d\right) \right\}$$

Hazard and intensive margin (fixing d, y)

Marginal propensity to spend on durables:

$$MPX^{d}(T) \equiv \frac{1}{T} \int \int \underbrace{\mathcal{S}(m,d)}_{\text{extensive}} \underbrace{x(m+d)}_{\text{intensive}} \{d\mu(m-T,d) - d\mu(m,d)\}$$

Hazard and intensive margin (fixing d, y)

Marginal propensity to spend on durables:

$$\mathsf{MPX}^{d}\left(T\right) \equiv \frac{1}{T} \int \int \underbrace{\mathcal{S}\left(m,d\right)}_{\text{extensive}} \underbrace{x\left(m+d\right)}_{\text{intensive}} \left\{ d\mu\left(m-T,d\right) - d\mu\left(m,d\right) \right\}$$

Hazard and intensive margin (fixing d, y)

-- Intensive margin
-- Hazard (steep)
-- Hazard (flat)

\$6,000

Cash-on-hand (m)

Distribution

\$12,000

• Getting the **shape of hazard** right is crucial for **size-dependence** + **match evidence**

\$5,000

OUTLINE

A Model with a Smooth Hazard

Bringing the Model to the Data

Size-Dependence in the MP>

Stimulus Checks in General Equilibrium

CALIBRATION

► Consumer durables (cars, furniture, appliances), i.e., exclude housing.

CALIBRATION

► Consumer durables (cars, furniture, appliances), i.e., exclude housing.

lacktriangledown External: $\sigma=2$ (Berger-Vavra), u o 1 (Orchard et al.), heta=0.20 (Adams et al.), $\delta=0.05$ (CEX)

CALIBRATION

► Consumer durables (cars, furniture, appliances), i.e., exclude housing.

Parameter	Description	Calibr.	Target	Value	Source
β	Discount factor	0.944	Liquid assets / A Inc	26%	Kaplan et al.
ϑ	Non-durable parameter	0.687	Durables / non-durables	26%	CEX
ι	Maintenance	0.257	Maintenance / new investment	32.6%	CEX
κ	Location parameter	0.803	Frequency of adjustment	23.8%	PSID
η	Scale parameter	0.20	Next slide		

lacktriangledown External: $\sigma=2$ (Berger-Vavra), u o 1 (Orchard et al.), heta=0.20 (Adams et al.), $\delta=0.05$ (CEX)

▶ Two moments are informative: MPX out of \$500 (PE) and interest rate elasticity (GE)

▶ Two moments are informative: MPX out of \$500 (PE) and interest rate elasticity (GE)

lacktriangle Evidence: MPX $^d >$ MPX c (Havranek-Sokolova) ightarrow not too time-dependent

lacktriangle Evidence: MPX $^d >$ MPX c (Havranek-Sokolova) ightarrow not too time-dependent

ightharpoonup Evidence: MPX $^d >$ MPX c (Havranek-Sokolova) ightarrow not too time-dependent

ightharpoonup Evidence: Elasticity ≥ -15 (Bachmann et al.) ightharpoonup not too state-dependent (McKay-Wieland)

ightharpoonup Evidence: Elasticity ≥ -15 (Bachmann et al.) ightharpoonup not too state-dependent (McKay-Wieland)

lacktriangle Benchmark calibration: $\eta=0.2$ (+ robustness checks)

lacktriangle Benchmark calibration: MPX $^d\sim 1.5 imes$ MPX c (Havranek-Sokolova) and elasticity ~ -10

▶ Benchmark calibration: matches well **untargeted** moments

► Matching the **tails** reasonably well is important (Alvarez et al.)

Matching the tails reasonably well is important (Alvarez et al.)

► Matching the tails reasonably well is important (Alvarez et al.)

► Adjustment probability conditional on not having adjusted so far (Kaplan-Meier)

► Adjustment probability conditional on not having adjusted so far (Kaplan-Meier)

▶ Model-generated data discretized in PSID waves, CI are bootstrapped at 90%

▶ Model-generated data discretized in PSID waves, CI are bootstrapped at 90%

3. OTHER UNTARGETED MOMENTS

1. Annual MPX (\$500). 42% on durables and 50% on non-durables

Total MPX of 92% similar to the value reported in Fagereng-Holm-Natvik for small lottery gains

- 2. Hand-to-mouth. 42% of households with $m \leq 1/2 \times M$ inc (Kaplan-Violante-Weidner) Almost the exact value reported in Kaplan-Violante and Aguiar-Bils-Boar
- Secondary market. 52% of purchases on secondary market Used cars represent roughly 55% of total spending on cars in the US
- 4. **Distribution of MPX**. Distribution is skewed (some have MPX > 1) Distribution Resembles the distribution in Lewis-Melcangi-Pilossoph, model of non-durables cannot match this
- Overall, our model provides a good description of households' spending behavior

OUTLINE

A Model with a Smooth Hazard

Bringing the Model to the Data

Size-Dependence in the MPX

Stimulus Checks in General Equilibrium

SIZE-DEPENDENCE IN THE MPX

SIZE-DEPENDENCE IN THE MPX

► Modeling durables are important for the MPX on non-durables (complementarity)

SIZE-DEPENDENCE IN THE MPX

► Our model: realistic total MPX (level) that decreases slowly (size-dep.)

CONCAVITY IN AGGREGATE SPENDING RESPONSE

CONCAVITY IN AGGREGATE SPENDING RESPONSE

0.87

0

0.15

Elasticity of the spending response

0.3

Scale parameter (n)

0.45

0.6

CONCAVITY IN AGGREGATE SPENDING RESPONSE

lacktriangle The size-dependence (concavity) is similar around $\eta=0.2$

State-contingency

OUTLINE

A Model with a Smooth Hazard

Bringing the Model to the Data

Size-Dependence in the MPX

Stimulus Checks in General Equilibrium

A GE APPLICATION TO STIMULUS CHECKS

How effective are large checks at stimulating output in recessions?

A GE APPLICATION TO STIMULUS CHECKS

How effective are large checks at stimulating output in recessions?

► We embed our spending model into an open-economy HANK setup Imports account for 1/4 of durable spending

A GE Application to Stimulus Checks

How effective are large checks at stimulating output in recessions?

- ► We embed our spending model into an open-economy HANK setup Imports account for 1/4 of durable spending
- ► Focus: demand-driven recessions (2001, Great Recession)

 Labor markets are slack

A GE Application to Stimulus Checks

How effective are large checks at stimulating output in recessions?

- ► We embed our spending model into an open-economy HANK setup Imports account for 1/4 of durable spending
- ► Focus: demand-driven recessions (2001, Great Recession)

 Labor markets are slack
- Extension: stronger supply-side effects (Orchard et al., Comin et al.)

 Shocks to potential output, and non-linear NKPC

Aggregate demand

Aggregate supply

1. Eligible for checks if $e \le \$75,000$

Aggregate demand

- 1. Eligible for checks if $e \le \$75,000$
- 2. Imports, e.g., for durables

$$X_{t} = \left[\sum_{j \in \{H,F\}} \left(\alpha_{j}^{d}\right)^{\frac{1}{\rho}} \left(X_{t}^{j}\right)^{\frac{\rho-1}{\rho}}\right]^{\frac{\rho}{\rho-1}}$$

Aggregate supply

Aggregate demand

- 1. Eligible for checks if $e \le \$75,000$
- 2. Imports, e.g., for durables

$$X_{t} = \left[\sum_{j \in \{H,F\}} \left(\alpha_{j}^{d}\right)^{\frac{1}{\rho}} \left(X_{t}^{j}\right)^{\frac{\rho-1}{\rho}}\right]^{\frac{\nu}{\rho-1}}$$

3. RoW symmetric (no checks)

Aggregate supply

Aggregate demand

Aggregate supply

- 1. Eligible for checks if $e \le \$75,000$
- 2. Imports, e.g., for durables

$$X_{t} = \left[\sum_{j \in \{H,F\}} \left(\alpha_{j}^{d}\right)^{\frac{1}{\rho}} \left(X_{t}^{j}\right)^{\frac{\rho-1}{\rho}}\right]^{\frac{\rho}{\rho-1}}$$

- 3. RoW symmetric (no checks)
- 4. Firm I shifts AD (Justiniano et al.)

$$K_t = \{1 - \delta^K + \Phi(I_t/K_{t-1}) + Z_t\} K_{t-1}$$

Solve for $\{z_t\}$ that generate recession

Aggregate demand

- 1. Eligible for checks if $e \le \$75,000$
- 2. Imports, e.g., for durables

$$X_{t} = \left[\sum_{j \in \{H,F\}} \left(\alpha_{j}^{d}\right)^{\frac{1}{\rho}} \left(X_{t}^{j}\right)^{\frac{\rho-1}{\rho}}\right]^{\frac{\nu}{\rho-1}}$$

- 3. RoW symmetric (no checks)
- 4. Firm I shifts AD (Justiniano et al.)

$$K_{t} = \left\{1 - \delta^{K} + \Phi\left(I_{t}/K_{t-1}\right) + Z_{t}\right\}K_{t-1}$$

Aggregate supply

1. NKPC for non-durables

$$\pi_t = \kappa \log \left(\frac{\mathbf{Y}_t^{\mathsf{dom}}}{\mathbf{Y}_t^{\mathsf{potent}}} \right) + \beta \pi_{t+1}$$

Aggregate demand

- 1. Eligible for checks if $e \le \$75,000$
- 2. Imports, e.g., for durables

$$X_{t} = \left[\sum_{j \in \{H,F\}} \left(\alpha_{j}^{d}\right)^{\frac{1}{\rho}} \left(X_{t}^{j}\right)^{\frac{\rho-1}{\rho}}\right]^{\frac{\nu}{\rho-1}}$$

- 3. RoW symmetric (no checks)
- 4. Firm I shifts AD (Justiniano et al.)

$$K_{t} = \left\{1 - \delta^{K} + \Phi\left(I_{t}/K_{t-1}\right) + Z_{t}\right\}K_{t-1}$$

Aggregate supply

1. NKPC for non-durables

$$\pi_t = \kappa \log \left(\frac{\mathsf{Y}_t^{\mathsf{dom}}}{\mathsf{Y}_t^{\mathsf{potent}}} \right) + \beta \pi_{t+1}$$

2. Elastic supply of d_t (Orchard et al.)

$$p_t^d \equiv \left(\frac{X_t^{\text{dom}}}{X_t^{\text{potent}}}\right)^{1/\zeta}$$

Aggregate demand

- 1. Eligible for checks if $e \le \$75,000$
- 2. Imports, e.g., for durables

$$X_{t} = \left[\sum_{j \in \{H,F\}} \left(\alpha_{j}^{d}\right)^{\frac{1}{\rho}} \left(X_{t}^{j}\right)^{\frac{\rho-1}{\rho}}\right]^{\frac{\nu}{\rho-1}}$$

- 3. RoW symmetric (no checks)
- 4. Firm I shifts AD (Justiniano et al.)

$$K_{t} = \left\{1 - \delta^{K} + \Phi\left(I_{t}/K_{t-1}\right) + Z_{t}\right\}K_{t-1}$$

Aggregate supply

1. NKPC for non-durables

$$\pi_t = \kappa \log \left(\frac{\mathsf{Y}_t^{\mathsf{dom}}}{\mathsf{Y}_t^{\mathsf{potent}}} \right) + \beta \pi_{t+1}$$

2. Elastic supply of d_t (Orchard et al.)

$$p_t^d \equiv \left(\frac{X_t^{\text{dom}}}{X_t^{\text{potent}}}\right)^{1/\zeta}$$

3. Y_t^{potent} and X_t^{potent} as capacity constr.

Aggregate demand

- 1. Eligible for checks if $e \le \$75,000$
- 2. Imports, e.g., for durables

$$X_{t} = \left[\sum_{j \in \{H,F\}} \left(\alpha_{j}^{d}\right)^{\frac{1}{\rho}} \left(X_{t}^{j}\right)^{\frac{\rho-1}{\rho}}\right]^{\frac{p}{\rho-1}}$$

- 3. RoW symmetric (no checks)
- 4. Firm I shifts AD (Justiniano et al.)

$$K_{t} = \left\{1 - \delta^{K} + \Phi\left(I_{t}/K_{t-1}\right) + Z_{t}\right\}K_{t-1}$$

Aggregate supply

1. NKPC for non-durables

$$\pi_t = \kappa \log \left(rac{\mathbf{Y}_t^{ ext{dom}}}{\mathbf{Y}_t^{ ext{potent}}}
ight) + eta \pi_{t+1}$$

2. Elastic supply of d_t (Orchard et al.)

$$p_t^d \equiv \left(\frac{X_t^{\text{dom}}}{X_t^{\text{potent}}}\right)^{1/\zeta}$$

3. Y_t^{potent} and X_t^{potent} as capacity constr.

GENERAL EQUILIBRIUM RESPONSE TO STIMULUS CHECKS

GENERAL EQUILIBRIUM RESPONSE TO STIMULUS CHECKS

Large checks remain effective, but extrapolating from small checks overestimates impact

GENERAL EQUILIBRIUM RESPONSE TO STIMULUS CHECKS

Large checks remain effective, but extrapolating from small checks overestimates impact

SUPPLY SHOCKS AND INFLATION

► "Perfect storm:" shocks to **potential output**, and **non-linear NKPC**

SUPPLY SHOCKS AND INFLATION

► "Perfect storm:" shocks to potential output, and non-linear NKPC

SUPPLY SHOCKS AND INFLATION

► "Perfect storm:" shocks to **potential output**, and **non-linear NKPC**

1. HA model with lumpy durables (Berger-Vavra) and smooth adjustment hazard

- 1. HA model with lumpy durables (Berger-Vavra) and smooth adjustment hazard
- 2. Discipline this adjustment hazard carefully with rich set of micro moments

- 1. HA model with lumpy durables (Berger-Vavra) and smooth adjustment hazard
- 2. Discipline this adjustment hazard carefully with rich set of micro moments
- 3. We embed this demand block in a HANK model \rightarrow effect of stimulus checks?

- 1. HA model with lumpy durables (Berger-Vavra) and smooth adjustment hazard
- 2. Discipline this adjustment hazard carefully with rich set of micro moments
- 3. We embed this demand block in a **HANK model** \rightarrow effect of stimulus checks?

Takeaways

- 1. HA model with lumpy durables (Berger-Vavra) and smooth adjustment hazard
- 2. Discipline this adjustment hazard carefully with rich set of micro moments
- 3. We embed this demand block in a **HANK model** \rightarrow effect of stimulus checks?

Takeaways

1. The MPX declines slowly as stimulus checks become larger (\neq canonical models)

- 1. HA model with lumpy durables (Berger-Vavra) and smooth adjustment hazard
- 2. Discipline this adjustment hazard carefully with rich set of micro moments
- 3. We embed this demand block in a **HANK model** \rightarrow effect of stimulus checks?

Takeaways

- 1. The MPX declines slowly as stimulus checks become larger (\neq canonical models)
- 2. Larger checks remain effective at stimulating output in recessions, but extrapolating from responses out of small checks overestimates their bang-for-buck

► Empirically, some households with large MPX (> 1) (Lewis et al., Fuster et al.)

- ightharpoonup Empirically, some households with large MPX (>1) (Lewis et al., Fuster et al.)
- ► Standard LTV

$$b_t \ge -(1-\theta) \, d_t, \tag{LTV}$$

- ightharpoonup Empirically, some households with large MPX (>1) (Lewis et al., Fuster et al.)
- ► Standard LTV

$$b_t \ge -(1-\theta) \, d_t, \tag{LTV}$$

where $\theta \in (0,1)$ is down payment.

Assumption: constant refinancing. <u>Lot</u> of liquidity, <u>tiny</u> MPX (McKay-Wieland).

- ightharpoonup Empirically, some households with large MPX (>1) (Lewis et al., Fuster et al.)
- ► Standard LTV

$$b_t \ge -(1-\theta) \, d_t, \tag{LTV}$$

- Assumption: constant refinancing. <u>Lot</u> of liquidity, <u>tiny</u> MPX (McKay-Wieland).
- ▶ We introduce two assets: illiquid credit $b \le 0 \ (r^b > 0)$ and cash $m \ge 0 \ (r^m \simeq 0)$

- ightharpoonup Empirically, some households with large MPX (>1) (Lewis et al., Fuster et al.)
- ► Standard LTV

$$b_t \ge -(1-\theta) \, d_t, \tag{LTV}$$

- Assumption: constant refinancing. <u>Lot</u> of liquidity, <u>tiny</u> MPX (McKay-Wieland).
- ▶ We introduce two assets: illiquid credit $b \le 0 \ (r^b > 0)$ and cash $m \ge 0 \ (r^m \simeq 0)$
- ► Tractability:

- ightharpoonup Empirically, some households with large MPX (>1) (Lewis et al., Fuster et al.)
- Standard LTV

$$b_{t} = -(1 - \theta) d_{t}, \tag{DP}$$

- Assumption: constant refinancing. <u>Lot</u> of liquidity, <u>tiny</u> MPX (McKay-Wieland).
- ▶ We introduce two assets: illiquid credit $b \le 0 \ (r^b > 0)$ and cash $m \ge 0 \ (r^m \simeq 0)$
- ► Tractability: 1. (DP) binding at origination most buyers pay min DP (Green et al.)

- ightharpoonup Empirically, some households with large MPX (>1) (Lewis et al., Fuster et al.)
- Standard LTV

$$b_{t} = -(1 - \theta) d_{t}, \tag{DP}$$

- Assumption: constant refinancing. <u>Lot</u> of liquidity, <u>tiny</u> MPX (McKay-Wieland).
- ▶ We introduce two assets: illiquid credit $b \le 0 \ (r^b > 0)$ and cash $m \ge 0 \ (r^m \simeq 0)$
- ► Tractability: 1. (DP) binding at origination most buyers pay min DP (Green et al.)
 - 2. (DP) remains binding credit repaid at rate δ (Argyle et al.)

- ightharpoonup Empirically, some households with large MPX (>1) (Lewis et al., Fuster et al.)
- Standard LTV

$$b_{t} = -(1 - \theta) d_{t}, \tag{DP}$$

- Assumption: constant refinancing. <u>Lot</u> of liquidity, <u>tiny</u> MPX (McKay-Wieland).
- ▶ We introduce two assets: illiquid credit $b \le 0 \ (r^b > 0)$ and cash $m \ge 0 \ (r^m \simeq 0)$
- ► Tractability: 1. (DP) binding at origination most buyers pay min DP (Green et al.)
 - 2. (DP) remains binding credit repaid at rate δ (Argyle et al.)
- Credit b is proportional to durables d and is not an extra state variable.

RECURSIVE FORMULATION

► Discrete choice problem

$$\mathcal{V}_{t}\left(\mathbf{x};\epsilon\right) = \max\left\{V_{t}^{\mathrm{adjust}}\left(\mathbf{x}\right) - \epsilon, V_{t}^{\mathrm{non}}\left(\mathbf{x}\right)\right\}$$

► When adjusting

$$\begin{split} V_t^{\text{adjust}}\left(\mathbf{x}\right) &= \max_{c,d',m'} \ u\left(c,d'\right) + \beta \int \mathcal{V}_{t+1}\left(d',m',y';\epsilon'\right) d\mathcal{E}\left(\epsilon'\right) \Gamma\left(dy';y\right) \\ \text{s.t.} \quad \theta d' + m' + c &\leq \mathcal{Y}_t\left(\mathbf{x};T_t\right) + \left\{(1-\delta) - (1-\theta)\right\} d \\ m' &\geq 0. \end{split}$$

When not adjusting

$$V_{t}^{\text{not}}(\mathbf{x}) = \max_{c,m'} u(c,d') + \beta \int \mathcal{V}_{t+1}(d',m',y';\epsilon') dG(\epsilon') \Gamma(dy';y)$$
s.t.
$$m' + c \leq \mathcal{Y}_{t}(\mathbf{x};T_{t}) - \iota \delta d - (1-\theta)(d-d')$$

$$m' \geq 0.$$

3. ANNUAL MPX

3. DISTRIBUTION OF MPXs (500\$ CHECK)

► Empirically, distribution declines smoothly and large MPX (> 1) (Lewis et al., Fuster et al.)

► Our model has both **state-dependent** (SD) and **time-dependent** (TD) features

- ► Our model has both **state-dependent** (SD) and **time-dependent** (TD) features
- \blacktriangleright This is controlled by the scale parameter (η) . Hard to interpret in economic terms...

- ▶ Our model has both **state-dependent** (SD) and **time-dependent** (TD) features
- lacktriangle This is controlled by the scale parameter (η) . Hard to interpret in economic terms...
- ► How far from state-dependent *vs.* Calvo?

- ▶ Our model has both **state-dependent** (SD) and **time-dependent** (TD) features
- lacktriangle This is controlled by the scale parameter (η) . Hard to interpret in economic terms...
- ► How far from state-dependent vs. Calvo? Important for size-dependence in MPX.

- ▶ Our model has both **state-dependent** (SD) and **time-dependent** (TD) features
- \blacktriangleright This is controlled by the scale parameter (η) . Hard to interpret in economic terms...
- ► How far from state-dependent vs. Calvo? Important for size-dependence in MPX.
- ► State-dependence index:

$$\mathcal{A}_{t}\left(\mathbf{x};\psi\right)=1$$

- ▶ Our model has both **state-dependent** (SD) and **time-dependent** (TD) features
- ightharpoonup This is controlled by the scale parameter (η) . Hard to interpret in economic terms...
- ► How far from state-dependent vs. Calvo? Important for size-dependence in MPX.
- ► State-dependence index:

share with
$$A_t(\mathbf{x}'; \psi') = 1$$
 and $A_{t-1}(\mathbf{x}; \psi) = 0$

- ► Our model has both **state-dependent** (SD) and **time-dependent** (TD) features
- lacktriangle This is controlled by the scale parameter (η) . Hard to interpret in economic terms...
- ► How far from state-dependent vs. Calvo? Important for size-dependence in MPX.
- ► State-dependence index:

$$\mathsf{SD} = \frac{\mathsf{share with} \; \mathcal{A}_t \left(\mathbf{x}'; \psi \right.) = 1 \; \mathsf{and} \; \mathcal{A}_{t-1} \left(\mathbf{x}; \psi \right) = 0}{\mathsf{share with} \; \mathcal{A}_t \left(\mathbf{x}'; \psi' \right) = 1 \; \mathsf{and} \; \mathcal{A}_{t-1} \left(\mathbf{x}; \psi \right) = 0}$$

- ► Our model has both **state-dependent** (SD) and **time-dependent** (TD) features
- lacktriangle This is controlled by the scale parameter (η) . Hard to interpret in economic terms...
- ► How far from state-dependent vs. Calvo? Important for size-dependence in MPX.
- ► State-dependence index:

$$\text{SD} = \frac{\text{share with } \mathcal{A}_t\left(\mathbf{x}';\psi\right.) = 1 \text{ and } \mathcal{A}_{t-1}\left(\mathbf{x};\psi\right.) = 0}{\text{share with } \mathcal{A}_t\left(\mathbf{x}';\psi'\right.) = 1 \text{ and } \mathcal{A}_{t-1}\left(\mathbf{x};\psi\right.) = 0}$$

ightharpoonup By definition, SD = 1 in state-dependent model and SD = 0 in Calvo model.

STATE- AND TIME-DEPENDENT ADJUSTMENTS

EXTENSIVE AND INTENSIVE MARGINS

▶ Why does the MPX ↓ in our model? **Smooth hazard** dampens the **extensive margin**.

Extensive margin

$$\underbrace{\int \overbrace{\left\{\mathcal{S}_{0}\left(d,m+T,y\right)-\mathcal{S}_{0}\left(d,m,y\right)\right\}}^{\text{\# of marginal adjusters}} \times \underbrace{x}^{\text{selection}} \times d\pi \left(x\right)}_{T}$$

- ightharpoonup Extensive margin \simeq Intensive margin
- ► Selection dominates (car ~> fridge)
- ► Contrasts with purely state-dep. model

SENSITIVITY

CALVO PLUS: DATA

Conditional Adj. Probability

CALVO PLUS: SIZE-DEPENDENCE

STATE-CONTINGENCY IN THE MPX

Monetary policy

$$r_t^m = \max\left\{r^m + \phi_\Pi \pi_t + \phi_y \hat{Y}_t, \underline{r}\right\}$$

Monetary policy

$$r_t^m = \max\left\{r^m + \phi_\Pi \pi_t + \phi_y \hat{Y}_t, \underline{r}\right\}$$

Fiscal policy

$$B_t^g = \frac{1+r_t}{1+\pi_t}B_{t-1}^g + \mathcal{T}_t - \mathbf{t_t} - G_t$$

(checks t_0 financed over 15 years)

Monetary policy

$$r_t^m = \max\left\{r^m + \phi_\Pi \pi_t + \phi_y \hat{Y}_t, \underline{r}\right\}$$

Fiscal policy

$$B_t^g = \frac{1+r_t}{1+\pi_t}B_{t-1}^g + \mathcal{T}_t - \mathbf{t_t} - G_t$$

(checks t_0 financed over 15 years)

Market clearing

$$P_{t}^{c}\left(C_{t}+G_{t}\right)+F^{-1}\left(X_{t}^{dom}\right)+NX_{t}^{c,real}=Y_{t}^{dom}$$

$$P_t^d X_t + p_t^d I_t + \mathsf{N} X_t^{d,\mathsf{real}} = p_t^d \left(X_t^{\mathsf{dom}} + \mathsf{A}_1 \mathsf{K}_{t-1} \right)$$

Monetary policy

$$r_t^m = \max\left\{r^m + \phi_\Pi \pi_t + \phi_y \hat{Y}_t, \underline{r}\right\}$$

Fiscal policy

$$B_t^g = \frac{1+r_t}{1+\pi_t}B_{t-1}^g + \mathcal{T}_t - \mathbf{t_t} - G_t$$

(checks t_0 financed over 15 years)

Market clearing

$$P_{t}^{c}\left(C_{t}+G_{t}\right)+F^{-1}\left(X_{t}^{\mathsf{dom}}\right)+\mathsf{NX}_{t}^{c,\mathsf{real}}=Y_{t}^{\mathsf{dom}}$$

$$P_t^d X_t + p_t^d I_t + \mathsf{N} X_t^{d,\mathsf{real}} = p_t^d \left(X_t^{\mathsf{dom}} + \mathsf{A}_1 \mathsf{K}_{t-1} \right)$$

Incomes

$$E_{t}^{\mathrm{net}}\left(\mathbf{x}\right)=\psi_{0,t}\left\{ y\left(\mathsf{Y}_{t}+\mathsf{Div}_{t}\right)\right\} ^{1-\psi_{1}}$$

(with dividend smoothing)

Monetary policy

$$r_t^m = \max\left\{r^m + \phi_\Pi \pi_t + \phi_y \hat{Y}_t, \underline{r}\right\}$$

Fiscal policy

$$B_t^g = \frac{1+r_t}{1+\pi_t}B_{t-1}^g + \mathcal{T}_t - \mathbf{t_t} - G_t$$

(checks t_0 financed over 15 years)

Market clearing

$$P_{t}^{c}\left(C_{t}+G_{t}\right)+F^{-1}\left(X_{t}^{dom}\right)+NX_{t}^{c,real}=Y_{t}^{dom}$$

$$P_t^d X_t + p_t^d I_t + NX_t^{d,real} = p_t^d \left(X_t^{dom} + A_1 K_{t-1} \right)$$

Incomes

$$\textit{E}_{t}^{\text{net}}\left(\mathbf{x}\right) = \psi_{0,t}\left\{\textit{y}\left(\textit{Y}_{t} + \mathsf{Div}_{t}\right)\right\}^{1-\psi_{1}}$$

(with dividend smoothing)

► Back

SECTORAL AND DISTRIBUTIONAL OUTCOMES

SUPPLE SIDE

1. Non-linear Phillips curve

$$\pi_t = \kappa \hat{\mathbf{y}}_t + \kappa^* \max \left\{ \hat{\mathbf{y}}_t, 0 \right\}^2 + \beta \pi_{t+1}$$

with $\kappa^{\star}=0.1$ (Mavroeidis et al., Cerrato-Gitti)

- 2. Reduction in Y_t^{potent} and X_t^{potent} by 50% of initial gap
- 3. Relative price movements

$$p_t^d \equiv \left(\frac{X_t^{\text{dom}}}{X_t^{\text{potent}}}\right)^{1/\zeta}$$

with $\zeta=1/0.049$ (McKay-Wieland)