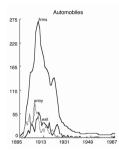
THE LIFE-CYCLE OF CONCENTRATED INDUSTRIES

Martin Beraja (MIT)

Francisco Buera (WashU)

MOTIVATION

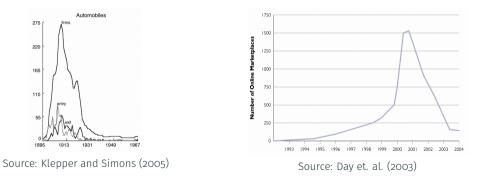
- ► Firms in cutting-edge industries often engage in dynamic competition for the market
- ► Many such industries have had a life-cycle: Entry → Shakeout → Concentration



Source: Klepper and Simons (2005)

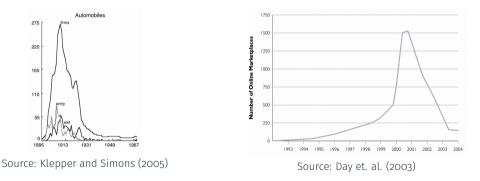
MOTIVATION

- Firms in cutting-edge industries often engage in dynamic competition for the market
- ► Many such industries have had a life-cycle: Entry → Shakeout → Concentration
- ▶ Recently, digital industries have rapidly concentrated as they matured



MOTIVATION

- Firms in cutting-edge industries often engage in dynamic competition for the market
- ► Many such industries have had a life-cycle: Entry → Shakeout → Concentration
- ▶ Recently, digital industries have rapidly concentrated as they matured



Also, OS or search engine industries. Windows or Google far ahead in a decade...

Fast concentration of digital industries — and rise of superstar firms — has rekindled a debate about appropriate policy interventions to promote competition

Kahn, 2016, Varian, 2018; Philippon, 2019; Tirole, 2023

Fast concentration of digital industries — and rise of superstar firms — has rekindled a debate about appropriate policy interventions to promote competition
Kake core Verice core Timle core

Kahn, 2016, Varian, 2018; Philippon, 2019; Tirole, 2023

Questions

- Are policies geared towards industries where competition is primarily static also appropriate for innovative industries, where firms compete for the market?
- ► How should **policies to promote competition** over the life-cycle **differ**?

Fast concentration of digital industries — and rise of superstar firms — has rekindled a debate about appropriate policy interventions to promote competition Kahn, 2016, Varian, 2018; Philippon, 2019; Tirole, 2023

Questions

- Are policies geared towards industries where competition is primarily static also appropriate for innovative industries, where firms compete for the market?
- ► How should **policies to promote competition** over the life-cycle **differ**?
 - Common belief in policy circles: for digital / AI industries, gov'ts should intervene preemptively and early on in the life-cycle, before concentration becomes "irreversible"

Static competition

Dixit-Stiglitz, 1977; Mankiw-Whinston, 1986; Peters, 2020; Edmond et al., 2023

Static competition

Dixit-Stiglitz, 1977; Mankiw-Whinston, 1986; Peters, 2020; Edmond et al., 2023

Simple dynamic competition/life cycle

Loury, 1979; Reinganum, 1989; Aghion et al., 2005; Segal-Whinston, 2007

Static competition

Dixit-Stiglitz, 1977; Mankiw-Whinston, 1986; Peters, 2020; Edmond et al., 2023

Simple dynamic competition/life cycle

Loury, 1979; Reinganum, 1989; Aghion et al., 2005; Segal-Whinston, 2007

Recent focus, large computational models

Igami-Uetake, 2020; Mermelstein et al., 2020; Cavenaile et al., 2021

Static competition

Dixit-Stiglitz, 1977; Mankiw-Whinston, 1986; Peters, 2020; Edmond et al., 2023

Simple dynamic competition/life cycle

Loury, 1979; Reinganum, 1989; Aghion et al., 2005; Segal-Whinston, 2007

Recent focus, large computational models

Igami-Uetake, 2020; Mermelstein et al., 2020; Cavenaile et al., 2021

This paper: Model of the life-cyle of an oligopolistic industry

A version of Jovanovic-Macdonald (1994) with a finite # of firms

Static competition

Dixit-Stiglitz, 1977; Mankiw-Whinston, 1986; Peters, 2020; Edmond et al., 2023

Simple dynamic competition/life cycle

Loury, 1979; Reinganum, 1989; Aghion et al., 2005; Segal-Whinston, 2007

Recent focus, large computational models

Igami-Uetake, 2020; Mermelstein et al., 2020; Cavenaile et al., 2021

This paper: Model of the life-cyle of an oligopolistic industry

A version of Jovanovic-Macdonald (1994) with a finite # of firms

1. Equilibrium and (constrained) optimal policy over the life-cycle

Static competition

Dixit-Stiglitz, 1977; Mankiw-Whinston, 1986; Peters, 2020; Edmond et al., 2023

Simple dynamic competition/life cycle

Loury, 1979; Reinganum, 1989; Aghion et al., 2005; Segal-Whinston, 2007

Recent focus, large computational models

Igami-Uetake, 2020; Mermelstein et al., 2020; Cavenaile et al., 2021

This paper: Model of the life-cyle of an oligopolistic industry

A version of Jovanovic-Macdonald (1994) with a finite # of firms

- 1. Equilibrium and (constrained) optimal policy over the life-cycle
- 2. Application: Digital and AI industries in the US (dataset from VentureScanner)

Model

► Arrival of new tech → New industry

- ► Arrival of new tech → New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$

- ► Arrival of new tech → New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$
- Continuous time $t \ge 0$

- ► Arrival of new tech → New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$
- Continuous time $t \ge 0$

Firms

► Can freely **enter** and **exit** at any time

- ► Arrival of new tech → New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$
- Continuous time $t \ge 0$

Firms

- ► Can freely **enter** and **exit** at any time
- Small (\underline{z}) at entry \rightarrow Large (\overline{z}) at rate λ

- Arrival of new tech \longrightarrow New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$
- ▶ Continuous time $t \ge 0$

Firms

- ► Can freely **enter** and **exit** at any time
- Small (\underline{z}) at entry \rightarrow Large (\overline{z}) at rate λ
- Flow profits: π ($\underline{N}, \overline{N}; z$). PDV: J ($\underline{N}, \overline{N}; z$)

- Arrival of new tech \longrightarrow New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$
- ▶ Continuous time $t \ge 0$

Firms

- ► Can freely **enter** and **exit** at any time
- Small (\underline{z}) at entry \rightarrow Large (\overline{z}) at rate λ
- Flow profits: π ($\underline{N}, \overline{N}; z$). PDV: J ($\underline{N}, \overline{N}; z$)

Assumption 1: Flow profit function is:

- (i) decreasing in \underline{N} and \overline{N} ,
- (ii) increasing in z,
- (iii) converges to fixed cost -f as $z \to 0$ and $\bar{N} \to \infty,$ and
- (iv) such that at least one firm enters $\pi\left(1,0;\underline{z}\right) + \lambda\pi\left(0,1;\overline{z}\right)/r > 0.$

- Arrival of new tech \longrightarrow New industry
- N_t small firms. High marginal cost 1/Z
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$
- ▶ Continuous time $t \ge 0$

Firms

- Can freely **enter** and **exit** at any time
- Small (\underline{z}) at entry \rightarrow Large (\overline{z}) at rate λ
- Flow profits: π ($\underline{N}, \overline{N}; z$). PDV: J ($\underline{N}, \overline{N}; z$)

Special case:

- Cost function: $\Gamma(q;z) = \frac{1}{z}q + f$
- Inverse demand function:

$$p_{i} = \frac{\sigma - 1}{\sigma} \left[\sum_{j=1}^{\underline{N}_{t} + \overline{N}_{t}} \left(q_{j} \right)^{\frac{\epsilon}{\epsilon} - 1} \right]^{\frac{\epsilon}{\epsilon - 1} \frac{\sigma - 1}{\sigma} - 1} (q_{i})^{-\frac{1}{\epsilon}}$$

- Cournot competition in q

- Arrival of new tech \longrightarrow New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$
- Continuous time $t \ge 0$

Firms

- ► Can freely **enter** and **exit** at any time
- Small (\underline{z}) at entry \rightarrow Large (\overline{z}) at rate λ
- Flow profits: π ($\underline{N}, \overline{N}; z$). PDV: J ($\underline{N}, \overline{N}; z$)

Households $V\left(\underline{N}_{t}, \overline{N}_{t}\right) = \mathbb{E}_{t}\left[\int_{t}^{\infty} e^{-r(s-t)} U\left(\underline{N}_{s}, \overline{N}_{s}\right) ds\right]$

- Arrival of new tech \longrightarrow New industry
- \underline{N}_t small firms. High marginal cost $1/\underline{z}$
- \bar{N}_t large firms. Low marginal cost $1/\bar{z}$
- Industry state $\{\underline{N}, \overline{N}\}$
- ▶ Continuous time $t \ge 0$

Firms

- ► Can freely **enter** and **exit** at any time
- Small (\underline{z}) at entry \rightarrow Large (\overline{z}) at rate λ
- Flow profits: π ($\underline{N}, \overline{N}; z$). PDV: J ($\underline{N}, \overline{N}; z$)

Households

$$V(\underline{N}_t, \overline{N}_t) = \mathbb{E}_t \left[\int_t^\infty e^{-r(s-t)} U(\underline{N}_s, \overline{N}_s) ds \right]$$

Special case:

$$U = Q_t + X_t, \text{ with quantity } Q_t \text{ and outside good } X_t$$

and $Q_t = \left[\sum_{i=1}^{\underline{N}_t + \overline{N}_t} (q_{it})^{\frac{\epsilon-1}{\epsilon}}\right]^{\frac{\epsilon}{\epsilon-1}\frac{\sigma-1}{\sigma}}$

Solve backward (recursively) for value functions and exit/entry policies

Focus on equilibria where it is never optimal for large firms to exit.

Solve backward (recursively) for value functions and exit/entry policies Focus on equilibria where it is never optimal for large firms to exit.

- ► A long-run concentrated industry equilibrium $(0, \bar{N}_{\infty}^{LF})$ is given by \bar{N}_{∞}^{LF} :
 - 1. Large firms <u>don't</u> exit in the long-run $\iff J\left(0, \bar{N}_{\infty}^{\text{LF}}; \bar{z}\right) = \frac{\pi\left(0, \bar{N}_{\infty}^{\text{LF}}; \bar{z}\right)}{r} \ge 0,$

2. Small firms don't enter in the long-run $\iff J\left(1, \bar{N}_{\infty}^{\text{LF}}; \underline{Z}\right) = \frac{\pi\left(1, \bar{N}_{\infty}^{\text{LF}}; \underline{Z}\right) + \lambda \times J\left(0, \bar{N}_{\infty}^{\text{LF}} + 1; \overline{Z}\right)}{r+\lambda} < 0,$

3. Small firms enter before $\iff J\left(1, \bar{N}_{\infty}^{\text{LF}} - 1; \underline{z}\right) = \frac{\pi\left(1, \bar{N}_{\infty}^{\text{LF}} - 1; \underline{z}\right) + \lambda \times J\left(0, \bar{N}_{\infty}^{\text{LF}}; \overline{z}\right)}{r + \lambda} \ge 0.$

Solve backward (recursively) for value functions and exit/entry policies Focus on equilibria where it is never optimal for large firms to exit.

► A long-run concentrated industry equilibrium $(0, \bar{N}_{\infty}^{LF})$ is given by \bar{N}_{∞}^{LF} :

1. Large firms <u>don't</u> exit in the long-run $\iff J\left(0, \bar{N}_{\infty}^{\text{LF}}; \bar{z}\right) = \frac{\pi\left(0, \bar{N}_{\infty}^{\text{LF}}; \bar{z}\right)}{r} \ge 0,$

2. Small firms don't enter in the long-run $\iff J\left(1, \bar{N}_{\infty}^{\text{LF}}; \underline{Z}\right) = \frac{\pi\left(1, \bar{N}_{\infty}^{\text{LF}}; \underline{Z}\right) + \lambda \times J\left(0, \bar{N}_{\infty}^{\text{LF}} + 1; \overline{Z}\right)}{r+\lambda} < 0,$

3. Small firms enter before
$$\iff J\left(1, \bar{N}_{\infty}^{\mathrm{LF}} - 1; \underline{z}\right) = \frac{\pi\left(1, \bar{N}_{\infty}^{\mathrm{LF}} - 1; \underline{z}\right) + \lambda \times J\left(0, \bar{N}_{\infty}^{\mathrm{LF}}; \overline{z}\right)}{r + \lambda} \ge 0.$$

Lemma 1. The equilibrium number of large firms $\bar{N}_{\infty}^{\text{LF}}$ in a concentrated industry state $(0, \bar{N}_{\infty}^{\text{LF}})$ is uniquely determined by (1)-(3).

Intuition: profit functions decreasing in \overline{N} , and hence so is value function J $(1, \overline{N}; \underline{z})$

- Strategic consideration for small firms: a firm would choose to stay if some others would exit War of Attrition
- Assume firms play mixed-strategy Poisson game. Exit rate: η

- Strategic consideration for small firms: a firm would choose to stay if some others would exit War of Attrition
- Assume firms play mixed-strategy Poisson game. Exit rate: η

► The HJB is

$$\begin{split} rJ\left(\underline{N},\overline{N};\underline{z}\right) &= \pi\left(\underline{N},\overline{N};\underline{z}\right) + \lambda \times \left(J\left(\underline{N}-1,\overline{N}+1;\overline{z}\right) - J\left(\underline{N},\overline{N};\underline{z}\right)\right) \\ &+ \lambda \times \left(\underline{N}-1\right) \times \left(J\left(\underline{N}-1,\overline{N}+1;\underline{z}\right) - J\left(\underline{N},\overline{N};\underline{z}\right)\right) \\ &+ \eta \times \left(0 - J\left(\underline{N},\overline{N};\underline{z}\right)\right) \\ &+ \eta \times \left(\underline{N}-1\right) \times \left(J\left(\underline{N}-1,\overline{N};\underline{z}\right) - J\left(\underline{N},\overline{N};\underline{z}\right)\right) \\ rJ\left(\underline{N},\overline{N};\overline{z}\right) = \dots \end{split}$$

- Strategic consideration for small firms: a firm would choose to stay if some others would exit War of Attrition
- Assume firms play mixed-strategy Poisson game. Exit rate: η

► The HJB is

$$\begin{split} rJ\left(\underline{N},\overline{N};\underline{z}\right) &= \pi\left(\underline{N},\overline{N};\underline{z}\right) + \lambda \times \left(J\left(\underline{N}-1,\overline{N}+1;\overline{z}\right) - J\left(\underline{N},\overline{N};\underline{z}\right)\right) \\ &+ \lambda \times \left(\underline{N}-1\right) \times \left(J\left(\underline{N}-1,\overline{N}+1;\underline{z}\right) - J\left(\underline{N},\overline{N};\underline{z}\right)\right) \\ &+ \eta \times \left(0 - J\left(\underline{N},\overline{N};\underline{z}\right)\right) \\ &+ \eta \times \left(\underline{N}-1\right) \times \left(J\left(\underline{N}-1,\overline{N};\underline{z}\right) - J\left(\underline{N},\overline{N};\underline{z}\right)\right) \\ rJ\left(\underline{N},\overline{N};\overline{z}\right) = \dots \end{split}$$

$$J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right),\bar{N};\underline{z}\right) \leq 0 < J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right)-1,\bar{N};\underline{z}\right)$$
(1)

$$J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right),\bar{N};\underline{z}\right) \leq 0 < J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right)-1,\bar{N};\underline{z}\right)$$
(1)

1. If industry has too few firms $\underline{N} < \underline{N}^{LF}(\overline{N})$, then $\underline{N}^{LF}(\overline{N}) - \underline{N}$ firms enter immediately

$$J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right),\bar{N};\underline{z}\right) \leq 0 < J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right)-1,\bar{N};\underline{z}\right)$$
(1)

- 1. If industry has too few firms $\underline{N} < \underline{N}^{LF}(\overline{N})$, then $\underline{N}^{LF}(\overline{N}) \underline{N}$ firms enter immediately
- 2. If industry has **too many** firms $\underline{N} \ge \underline{N}^{LF}(\overline{N})$, then
 - Shakeout: $\underline{N} \underline{N}^{LF}(\overline{N})$ firms exit immediately (obtain zero value)

$$J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right),\bar{N};\underline{Z}\right) \leq 0 < J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right)-1,\bar{N};\underline{Z}\right)$$
(1)

- 1. If industry has too few firms $\underline{N} < \underline{N}^{LF}(\overline{N})$, then $\underline{N}^{LF}(\overline{N}) \underline{N}$ firms enter immediately
- 2. If industry has **too many** firms $\underline{N} \ge \underline{N}^{LF}(\overline{N})$, then
 - Shakeout: $\underline{N} \underline{N}^{LF}(\overline{N})$ firms exit immediately (obtain zero value)
 - ► Remaining $\underline{N}^{LF}(\overline{N})$ exit at rate $\eta^{LF}(\overline{N})$. Exit rate such that firms are indifferent:

$$J\left(\underline{N}^{\mathrm{LF}}\left(\bar{N}\right),\bar{N};\underline{Z}\right)=0$$
(2)

Let $\underline{N}^{LF}(\overline{N})$ be the max # of small firms that industry with \overline{N} large firms can sustain

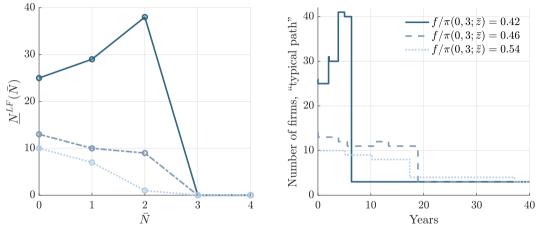
$$J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right),\bar{N};\underline{Z}\right) \leq 0 < J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right)-1,\bar{N};\underline{Z}\right)$$
(1)

- 1. If industry has too few firms $\underline{N} < \underline{N}^{LF}(\overline{N})$, then $\underline{N}^{LF}(\overline{N}) \underline{N}$ firms enter immediately
- 2. If industry has **too many** firms $\underline{N} \ge \underline{N}^{LF}(\overline{N})$, then
 - Shakeout: $\underline{N} \underline{N}^{LF}(\overline{N})$ firms exit immediately (obtain zero value)
 - ► Remaining $\underline{N}^{LF}(\overline{N})$ exit at rate $\eta^{LF}(\overline{N})$. Exit rate such that firms are indifferent:

$$J\left(\underline{N}^{\mathsf{LF}}\left(\bar{N}\right),\bar{N};\underline{z}\right)=0\tag{2}$$

Lemma 2. Equilibrium $\underline{N}^{LF}(\overline{N})$ and $\eta^{LF}(\overline{N})$ are <u>uniquely</u> pinned down by (1)-(2). Intuition: profit functions decreasing in \underline{N} , and hence so is value function $J(\underline{N}, \overline{N}; \underline{z})$

ENTRY, SHAKEOUT, AND CONCENTRATION: A NUMERICAL ILLUSTRATION



► In a competitive industry, the life-cycle is monotonic. Why the non-monotonicity?

- Cost of delaying entry: more large firms present; e.g., $\pi(\underline{N}, 1; \underline{z}) \pi(\underline{N}, 0; \underline{z}) < 0$
- Benefit: Large gains right before the shakeout; e.g., $\pi(0,3;\overline{z}) \pi(\underline{N},3;\overline{z}) > 0$

EQUILIBRIUM INDUSTRY LIFE-CYCLE: SCALE DIFFERENCES BETWEEN FIRMS

- ▶ Relative scale → nature of competition (static v. dynamic) and optimal policy
- Scale economies key driver of US concentration/markups (Autor et al, Philippon et al)
 - Particularly important in digital/AI industries (Goldfarb-Tucker)

EQUILIBRIUM INDUSTRY LIFE-CYCLE: SCALE DIFFERENCES BETWEEN FIRMS

- ▶ Relative scale → nature of competition (static v. dynamic) and optimal policy
- Scale economies key driver of US concentration/markups (Autor et al, Philippon et al)
 - Particularly important in digital/AI industries (Goldfarb-Tucker)

Theoretical results for two limit cases:

- 1. $\bar{z}/\underline{z} \to \infty$ with $\underline{z} \to 0$. Innovation leads to large scale diffs. Competition <u>for</u> the market
- 2. $\bar{z}/\underline{z} = 1$. Small scale diffs. Static model, competition in the market

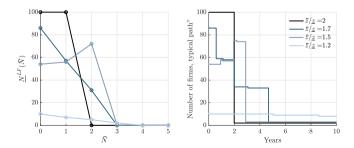
EQUILIBRIUM INDUSTRY LIFE-CYCLE: SCALE DIFFERENCES BETWEEN FIRMS

- ▶ Relative scale → nature of competition (static v. dynamic) and optimal policy
- Scale economies key driver of US concentration/markups (Autor et al, Philippon et al)
 - Particularly important in digital/AI industries (Goldfarb-Tucker)

Theoretical results for two limit cases:

1. $\bar{z}/\underline{z} \to \infty$ with $\underline{z} \to 0$. Innovation leads to large scale diffs. Competition <u>for</u> the market

2. $\bar{z}/\underline{z} = 1$. Small scale diffs. Static model, competition in the market



- Consider a government that <u>cannot</u> directly tax or subsidize production
 - ► That is, it cannot directly address quantity distortions due to imperfect competition
- Such interventions would implement a first best but are seldom used in practice

- Consider a government that <u>cannot</u> directly tax or subsidize production
 - ► That is, it cannot directly address **quantity distortions** due to imperfect competition
- Such interventions would implement a first best but are seldom used in practice
- ► Governments favor policies that promote competition via firm entry or antitrust
 - These are the type of policies currently being discussed for digital/AI industries (Khan, 2016; Philippon, 2019; Tirole, 2023; Varian, 2018)

- Primal approach: choose # of firms that enter/exit. Second best policy. SBV.LF
- Implementation: time-varying subsidy to the fixed cost of small firms $s(\bar{N})$

- Primal approach: choose # of firms that enter/exit. Second best policy. SBV.LF
- Implementation: time-varying subsidy to the fixed cost of small firms $s(\bar{N})$
 - ► Capture policies that promote competition and firm entry in a reduced form way

- Primal approach: choose # of firms that enter/exit. Second best policy. SBV.LF
- Implementation: time-varying subsidy to the fixed cost of small firms $s(\bar{N})$
 - ► Capture policies that promote competition and firm entry in a reduced form way

- Primal approach: choose # of firms that enter/exit. Second best policy. SBV.LF
- Implementation: time-varying subsidy to the fixed cost of small firms $s(\bar{N})$
 - ► Capture policies that promote competition and firm entry in a reduced form way

- Primal approach: choose # of firms that enter/exit. Second best policy. SBV.LF
- Implementation: time-varying subsidy to the fixed cost of small firms $s(\bar{N})$
 - ► Capture policies that promote competition and firm entry in a reduced form way

► <u>Goal</u>: analyze how nature of competition affects optimal policy over the life-cycle

- 1. Are subsidies designed for promoting competition in static industries also appropriate for innovative industries where dynamic competition for the market is key?
- 2. If not, how should subsidies over the life-cycle differ?

Theoretical results in two limit cases:

1. $\bar{z}/\underline{z} \to \infty$, with $\underline{z} \to 0$. Innovation leads to large scale diffs; competition for the market

2. $\bar{z}/\underline{z} = 1$. Small scale differences; static competition in the market

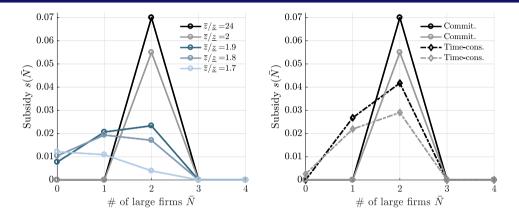
Theoretical results in two limit cases:

- 1. $\bar{z}/\underline{z} \to \infty$, with $\underline{z} \to 0$. Innovation leads to large scale diffs; competition <u>for</u> the market
 - The government can implement the second best by intervening <u>only after</u> the industry has concentrated in equilibrium
 - ▶ <u>No need</u> to intervene earlier in the life-cycle
- 2. $\bar{z}/\underline{z} = 1$. Small scale differences; static competition in the market

Theoretical results in two limit cases:

- 1. $\bar{z}/\underline{z} \to \infty$, with $\underline{z} \to 0$. Innovation leads to large scale diffs; competition <u>for</u> the market
 - The government can implement the second best by intervening only after the industry has concentrated in equilibrium
 - ▶ <u>No need</u> to intervene earlier in the life-cycle
- 2. $\bar{z}/\underline{z} = 1$. Small scale differences; static competition in the market
 - ► The government must subsidize firms in a <u>nascent</u> industry too
 - Subsidies are uniform over the life-cycle

RELATIVE SCALE AND OPTIMAL POLICY



- ► Firm entry/exit mostly driven by option value of taking over the market ⇒ Governments can <u>wait to intervene</u> later in the life-cycle
- ► If the government <u>cannot commit</u>, the time-consistent policy must subsidize earlier

HOW DO THESE RESULTS HELP INFORM COMPETITION POLICY DEBATES?

Established belief in policy circles: innovative industries are "harder" to regulate

► For digital / AI industries, many argue that gov'ts should intervene preemptively and early on, before concentration becomes irreversible

HOW DO THESE RESULTS HELP INFORM COMPETITION POLICY DEBATES?

Established belief in policy circles: innovative industries are "harder" to regulate

► For digital / AI industries, many argue that gov'ts should intervene preemptively and early on, before concentration becomes irreversible

HOW DO THESE RESULTS HELP INFORM COMPETITION POLICY DEBATES?

Established belief in policy circles: innovative industries are "harder" to regulate

► For digital / Al industries, many argue that gov'ts should intervene preemptively and early on, before concentration becomes irreversible

- \blacktriangleright Innovative industries \rightarrow Dynamic competition for the market \rightarrow "Easier" to regulate
 - ► Government can <u>wait and see</u> before intervening
 - Simply commit to do whatever it takes to promote competition if and when the industry becomes too concentrated

How do these results help inform competition policy debates?

Established belief in policy circles: innovative industries are "harder" to regulate

► For digital / AI industries, many argue that gov'ts should intervene preemptively and early on, before concentration becomes irreversible

- \blacktriangleright Innovative industries \rightarrow Dynamic competition for the market \rightarrow "Easier" to regulate
 - ► Government can <u>wait and see</u> before intervening
 - Simply commit to do whatever it takes to promote competition if and when the industry becomes too concentrated
- ► No need to announce exact value of subsidies; only that they will be optimal.
 - Advantage: uncertainty about features of new industry. Gov't learns as industry matures.

Established belief in policy circles: innovative industries are "harder" to regulate

► For digital / AI industries, many argue that gov'ts should intervene preemptively and early on, before concentration becomes irreversible

- \blacktriangleright Innovative industries \rightarrow Dynamic competition for the market \rightarrow "Easier" to regulate
 - ► Government can <u>wait and see</u> before intervening
 - Simply commit to do whatever it takes to promote competition if and when the industry becomes too concentrated
- ► No need to announce exact value of subsidies; only that they will be optimal.
 - Advantage: uncertainty about features of new industry. Gov't learns as industry matures.
 - ► Instead, gov't must subsidize early on when static competition in the market is important

1. Collusion and antitrust

$$\pi\left(\underline{N},\bar{N};\bar{z}\right) = \frac{1}{\bar{N}}\pi^{\text{Cartel}}\left(\underline{N},\bar{N};\bar{z}\right)$$

2. Blocking competitors and antitrust

Large firms pay c to lower profits of small firms $\pi(\underline{N}, \overline{N}; \overline{z})$

3. Endogenous Rate of Innovation λ at cost $c(\lambda)$ • numerical example

$$J\left(\underline{N}^{LF}\left(\bar{N}+1\right),\bar{N}+1;\bar{z}\right)-J\left(\underline{N},\bar{N};\underline{z}\right)=C'\left(\lambda\left(\underline{N},\bar{N}\right)\right)$$

4. Innovation spillovers from large firms $\lambda(\bar{N})$

Application: Digital & Al Industries in the US

The question of how to regulate an industry in practice can be understood as:

Are firm choices mostly driven by dynamic competition <u>for</u> the market? Or, is competition <u>in</u> the market important too?

► Model insight: Differences in scale as a key moment for diagnosing an industry

Application: Digital & Al Industries in the US

The question of how to regulate an industry in practice can be understood as:

Are firm choices mostly driven by dynamic competition <u>for</u> the market? Or, is competition <u>in</u> the market important too?

► Model insight: Differences in scale as a key moment for diagnosing an industry

Analyze Digital and AI industries in the US using dataset from Venture Scanner

- ▶ 17 categories of technologies/services: "AI," "Financial," "Real Estate," "Security," etc.
- Subcategories: "Deep and Machine Learning," "Consumer Payments," "Short Term Rentals and Vacation Search," "Threat Detection and Compliance," etc.
- Define a product industry as a Subcategory. Total of 155 industries.

Application: Digital & Al Industries in the US

The **question** of how to regulate an industry **in practice** can be understood as:

Are firm choices mostly driven by dynamic competition <u>for</u> the market? Or, is competition <u>in</u> the market important too?

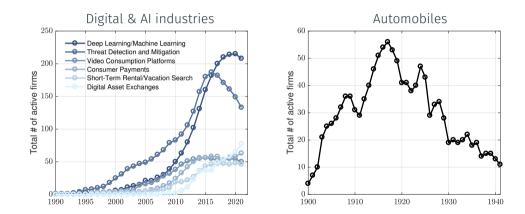
► Model insight: Differences in scale as a key moment for diagnosing an industry

Analyze Digital and AI industries in the US using dataset from Venture Scanner

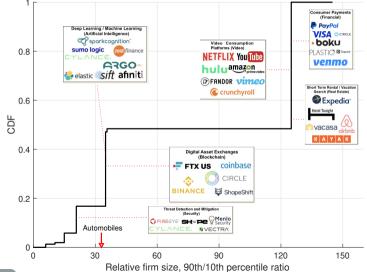
- ▶ 17 categories of technologies/services: "AI," "Financial," "Real Estate," "Security," etc.
- Subcategories: "Deep and Machine Learning," "Consumer Payments," "Short Term Rentals and Vacation Search," "Threat Detection and Compliance," etc.
- Define a product industry as a Subcategory. Total of 155 industries.

As a comparison, look at Automobile industry using The 100 Year Almanac

LIFE-CYCLE ACROSS INDUSTRIES



RELATIVE SCALE ACROSS INDUSTRIES



INTUITION FOR NON-MONOTONIC LIFE-CYCLE

- In a competitive industry (Jovanovic-MacDonald), the life-cycle is always monotonic No firms exit when quantities are low (price is high). A mass of firms exit once they are high (price is low)
- ► In an oligopolistic industry (our model), the life-cycle may be non-monotonic
- Incentives to **delay entry**, from $\overline{N} = 1 \rightarrow 2$, given <u>N</u>:

 $J(\underline{N}, 2; \underline{z}) - J(\underline{N}, 1; \underline{z}) = \pi (\underline{N}, 2; \underline{z}) - \pi (\underline{N}, 1; \underline{z}) + \frac{\lambda}{r + \lambda \underline{N}} [\pi (\underline{N}, 3; \overline{z}) - \pi (\underline{N}, 2; \overline{z})] + \underbrace{\frac{\lambda}{r + \lambda \underline{N}} [\pi (0, 3; \overline{z}) - \pi (\underline{N}, 3; \overline{z})]}_{\text{benefits of entering closer to the shakeout>0}}.$

"Business stealing" gains at shakeout occur closer to the time of entry

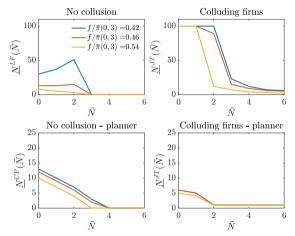
Constrained Planner's value of an additional firm (SB) v. Equilibrium value of staying (LF)

SB:
$$U(\underline{N},\overline{N}) - U(\underline{N}-1,\overline{N}) + \lambda \left(V(\underline{N}(\overline{N}+1),\overline{N}+1) - V(\underline{N},\overline{N})\right)$$

LF: $\pi(\underline{N},\overline{N};\underline{z}) + \lambda J(\underline{N}(\overline{N}+1),\overline{N}+1;\overline{z}) + \eta(\overline{N})(\underline{N}-1)J(\underline{N}-1,\overline{N};\underline{z})$

- 1. Source of inefficiency I: Firms care about profits, not surplus $\Rightarrow \uparrow \#$ firms
- 2. Source of inefficiency II: Firms do not internalize surplus destruction $\Rightarrow \downarrow \#$ firms
- 3. Source of inefficiency III: War of attrition $\Rightarrow \downarrow \text{\#}$ firms

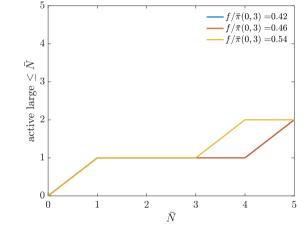
COLLUSION AND ANTITRUST



More incentives to entry, to participate in the cartel

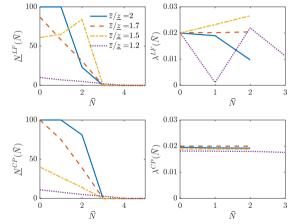
Planner wants to break the cartel, or less entry if it can't

COLLUSION AND ANTITRUST, INNACTIVE PRODUCTIVE FIRMS



► The cartel may not operate all firms/goods

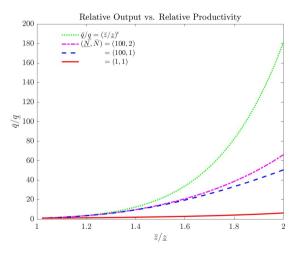
Intensive Margin of Innovation, λ endogenous



• $c(\lambda) = c_0 \lambda^{1.1}$, c_0 calibrated so that $\lambda(\underline{N}(0), 0) = 0.02$

► Life cycle of entry and exit virtually unaffected

Relative Output vs. Relative Productivity, $\epsilon=7.5$



Jump back