Durables and Size-Dependence in the Marginal Propensity to Spend

Martin Beraja (MIT & NBER) Nathan Zorzi (Dartmouth)

May 2024
Stimulus checks have become an important policy tool in recent US recessions.
Stimulus checks have become an important policy tool in recent US recessions.

<table>
<thead>
<tr>
<th>Recession</th>
<th>2001</th>
<th>2008</th>
<th>2020</th>
<th>2020-2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average amount</td>
<td>$300</td>
<td>$600</td>
<td>$1,200</td>
<td>$2,000</td>
</tr>
</tbody>
</table>
Stimulus checks have become an important policy tool in recent US recessions

<table>
<thead>
<tr>
<th>Recession</th>
<th>2001</th>
<th>2008</th>
<th>2020</th>
<th>2020-2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average amount</td>
<td>$300</td>
<td>$600</td>
<td>$1,200</td>
<td>$2,000</td>
</tr>
</tbody>
</table>

We know little about the effectiveness of stimulus checks as they become larger. $2,000 could be barely more effective than $300 if households spend less and less of each additional dollar.
Motivation

- **Stimulus checks** have become an important policy tool in recent US recessions.

<table>
<thead>
<tr>
<th>Recession</th>
<th>2001</th>
<th>2008</th>
<th>2020</th>
<th>2020-2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average amount</td>
<td>$300</td>
<td>$600</td>
<td>$1,200</td>
<td>$2,000</td>
</tr>
</tbody>
</table>

How does the marginal propensity to spend (MPX) vary as checks become larger?
Stimulus checks have become an important policy tool in recent US recessions.

<table>
<thead>
<tr>
<th>Recession</th>
<th>2001</th>
<th>2008</th>
<th>2020</th>
<th>2020-2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average amount</td>
<td>$300</td>
<td>$600</td>
<td>$1,200</td>
<td>$2,000</td>
</tr>
</tbody>
</table>

How does the marginal propensity to spend (MPX) vary as checks become larger?

Measuring this size-dependence is hard. Wide range of empirical estimates.
Motivation

- **Stimulus checks** have become an important policy tool in recent US recessions.

<table>
<thead>
<tr>
<th>Recession</th>
<th>2001</th>
<th>2008</th>
<th>2020</th>
<th>2020-2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average amount</td>
<td>$300</td>
<td>$600</td>
<td>$1,200</td>
<td>$2,000</td>
</tr>
</tbody>
</table>

How does the marginal propensity to spend (MPX) vary as checks become larger?

- Measuring this **size-dependence** is hard. Wide range of **empirical** estimates.
- Models of non-durables predict that the MPX falls sharply with the size of checks.
Stimulus checks have become an important policy tool in recent US recessions.

<table>
<thead>
<tr>
<th>Recession</th>
<th>2001</th>
<th>2008</th>
<th>2020</th>
<th>2020-2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average amount</td>
<td>$300</td>
<td>$600</td>
<td>$1,200</td>
<td>$2,000</td>
</tr>
</tbody>
</table>

How does the marginal propensity to spend (MPX) vary as checks become larger?

- Measuring this size-dependence is hard. Wide range of empirical estimates.
- Models of non-durables predict that the MPX falls sharply with the size of checks.
- Relevant quantity for policy: total spending, including durables (large share of MPX)
Stimulus checks have become an important policy tool in recent US recessions. The table below shows the average amount of stimulus checks during different recessions:

<table>
<thead>
<tr>
<th>Recession</th>
<th>2001</th>
<th>2008</th>
<th>2020</th>
<th>2020-2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average amount</td>
<td>$300</td>
<td>$600</td>
<td>$1,200</td>
<td>$2,000</td>
</tr>
</tbody>
</table>

How does the marginal propensity to spend (MPX) vary as checks become larger?

- Measuring this size-dependence is hard. Wide range of empirical estimates.
- Models of non-durables predict that the MPX falls sharply with the size of checks.
- Relevant quantity for policy: total spending, including durables (large share of MPX).
- Conjecture: HH might tilt spending towards durables for large checks (Parker et al.). This could dampen / reverse decline in MPX predicted by models of non-durables.
This Paper

Build a rich and flexible model → micro data → size-dependence? checks?
Build a rich and flexible model → micro data → size-dependence? checks?

Lumpy durables
This Paper

Build a rich and flexible model → micro data → size-dependence? checks?

Lumpy durables + smooth adjustment hazard (McFadden)
Build a rich and flexible model \rightarrow micro data \rightarrow size-dependence? checks?

Lumpy durables $+$ **smooth adjustment hazard** (McFadden) $+$ Open Econ HANK
1. Smooth hazard is key to explain a rich set of micro facts that existing models miss.

 Discipline the shape of this hazard by matching: (i) relative MPX on durables; (ii) short-run price elasticity of durables; (iii) distribution of adjustments sizes; (iv) conditional probability of adjustment, etc.
Build a rich and flexible model → micro data → size-dependence? checks?

Lumpy durables + smooth adjustment hazard (McFadden) + Open Econ HANK

1. Smooth hazard is key to explain a rich set of micro facts that existing models miss.
 Discipline the shape of this hazard by matching: (i) relative MPX on durables; (ii) short-run price elasticity of durables; (iii) distribution of adjustments sizes; (iv) conditional probability of adjustment, etc.

2. Quantify the size-dependence in the MPX. The MPX declines, albeit slowly.
 MPX is flatter in purely state-dependent model of durables, declines faster in 2A model of non-durables
1. Smooth hazard is key to explain a rich set of micro facts that existing models miss. Discipline the shape of this hazard by matching: (i) relative MPX on durables; (ii) short-run price elasticity of durables; (iii) distribution of adjustments sizes; (iv) conditional probability of adjustment, etc.

2. Quantify the size-dependence in the MPX. The MPX declines, albeit slowly. MPX is flatter in purely state-dependent model of durables, declines faster in 2A model of non-durables.

3. Embed the model in HANK. Evaluate effect of checks on output in recessions.
1. Smooth hazard is key to explain a rich set of micro facts that existing models miss. Discipline the shape of this hazard by matching: (i) relative MPX on durables; (ii) short-run price elasticity of durables; (iii) distribution of adjustments sizes; (iv) conditional probability of adjustment, etc.

2. Quantify the size-dependence in the MPX. The MPX declines, albeit slowly. MPX is flatter in purely state-dependent model of durables, declines faster in 2A model of non-durables.

3. Embed the model in HANK. Evaluate effect of checks on output in recessions. A large check of $2,000 increases output by 27 c/$, compared to 41 c/$ for a small check of $300.
1. Smooth hazard is key to explain a rich set of micro facts that existing models miss.
 Discipline the shape of this hazard by matching: (i) relative MPX on durables; (ii) short-run price elasticity of durables; (iii) distribution of adjustments sizes; (iv) conditional probability of adjustment, etc.

2. Quantify the size-dependence in the MPX. The MPX declines, albeit slowly.
 MPX is flatter in purely state-dependent model of durables, declines faster in 2A model of non-durables

3. Embed the model in HANK. Evaluate effect of checks on output in recessions.
 Larger checks remain effective, but extrapolating from small checks overestimates their impact
A Model with a Smooth Hazard

Bringing the Model to the Data

Size-Dependence in the MPX

Stimulus Checks in General Equilibrium
A Model with a Smooth Hazard

- HA model with lumpy durables (Berger-Vavra) with smooth hazard (+ down payment)

Preferences: Durables and non-durables

\[u(t) = u(c_t, d_t) + \beta E_t [u(t+1)], \]

where \(u(c_t, d_t) = \frac{1}{1 - \sigma} U(c_t, d_t) \)

\(U(c_t, d_t) = \frac{\vartheta^1}{\nu^0 + \vartheta^1}, \)

Households are indexed by the following states:

\[x \equiv (d_t | \{\text{Durables}\}, m_t | \{\text{Cash}\}, y_t | \{\text{Income}\}), \]

Down payment

Recursive formulation
HA model with lumpy durables (Berger-Vavra) with smooth hazard (+ down payment)

Preferences: Durables and non-durables

\[U_t \equiv u(c_t, d_t) + \beta \mathbb{E}_t [U_{t+1}] , \]

where

\[u(c, d) = \frac{1}{1 - \sigma} U(c, d)^{1-\sigma} \]

with

\[U(c, d) = \left[\varphi_c^{1/\nu} c^{1-1/\nu} + \varphi_d^{1/\nu} d^{1-1/\nu} \right]^{\nu - 1} \]
HA model with lumpy durables (Berger-Vavra) with smooth hazard (+ down payment)

Preferences: Durables and non-durables

\[U_t = u(c_t, d_t) + \beta E_t [U_{t+1}] , \]

where

\[u(c, d) = \frac{1}{1-\sigma} U(c, d)^{1-\sigma} \quad \text{with} \quad U(c, d) = \left[\vartheta_{c}^{\frac{1}{\nu}} c^{\frac{\nu-1}{\nu}} + \vartheta_{d}^{\frac{1}{\nu}} d^{\frac{\nu-1}{\nu}} \right]^{\frac{\nu}{\nu-1}} \]

Households are indexed by the following states

\[x \equiv (d, m, y, \epsilon) \]

Durables, Cash, Income, Preference shifters
A Model with a Smooth Hazard

- HA model with lumpy durables (Berger-Vavra) with smooth hazard (+ down payment)

- Preferences: Durables and non-durables

\[U_t = u(c_t, d_t) + \beta E_t [U_{t+1}], \]

where

\[u(c, d) = \frac{1}{1-\sigma} U(c, d)^{1-\sigma} \quad \text{with} \quad U(c, d) = \left[\vartheta_c^\nu c^{\nu-1} + \vartheta_d^\nu d^{\nu-1} \right]^{\frac{\nu}{\nu-1}} \]

- Households are indexed by the following states

\[x \equiv (d, m, y, \epsilon) \]

 - Durables
 - Cash
 - Income
 - Preference shifters
A Model with a Smooth Hazard

- HA model with lumpy durables (Berger-Vavra) with smooth hazard (+ down payment)

- Preferences: Durables and non-durables

\[U_t \equiv u(c_t, d_t) + \beta \mathbb{E}_t[U_{t+1}], \]

where

\[u(c, d) = \frac{1}{1-\sigma} U(c, d)^{1-\sigma} \]

with

\[U(c, d) = \left[\vartheta_e^{\frac{1}{\nu}} c^{\frac{\nu-1}{\nu}} + \vartheta_d^{\frac{1}{\nu}} d^{\frac{\nu-1}{\nu}} \right]^{\frac{\nu}{\nu-1}} \]

- Households are indexed by the following states

\[x \equiv (d, m, y) \]

<table>
<thead>
<tr>
<th>Durables</th>
<th>Cash</th>
<th>Income</th>
</tr>
</thead>
</table>

3/18
A Model with a Smooth Hazard

- **HA model with lumpy durables** (Berger-Vavra) with smooth hazard (+ down payment)

- **Preferences**: Durables and non-durables

\[U_t \equiv u(c_t, d_t) + \beta E_t[U_{t+1}], \]

where

\[u(c, d) = \frac{1}{1 - \sigma} U(c, d)^{1-\sigma} \quad \text{with} \quad U(c, d) = \left[\varphi_c^\frac{1}{\nu} c^{\nu-1} + \varphi_d^\frac{1}{\nu} d^{\nu-1} \right]^{\nu-1} \]

- **Households are indexed by the following states**

\[x \equiv (d, m, y) \]

- **Down payment**
- **Recursive formulation**
Adjustment Hazard

Canonical model of durables: Discontinuous hazard,

\[V_t(x) = \max \left\{ V_{\text{non}}^t(x), V_{\text{adjust}}^t(x) - \kappa \right\}, \]

where \(\kappa > 0 \) is the (utility) cost of adjustment.
 Canonical model of durables: Discontinuous hazard,

\[
S_t(x) = \begin{cases}
1 & \text{if } V_t^{\text{adjust}}(x) - \kappa > V_t^{\text{non}}(x) \\
0 & \text{otherwise}
\end{cases},
\]

i.e., \((s, S)\) adjustment bands.
Adjustment Hazard

- **Canonical model of durables:** Discontinuous hazard,

\[
S_t(x) = \begin{cases}
1 & \text{if } V_t^{\text{adjust}}(x) - \kappa > V_t^{\text{non}}(x) \\
0 & \text{otherwise}
\end{cases}
\]

- **This paper:** **Smooth hazard**, for any idiosyncratic state \(x\),

\[
S_t(x) = \frac{\exp \left(\frac{V_t^{\text{adjust}}(x) - \kappa}{\eta} \right)}{\exp \left(\frac{V_t^{\text{adjust}}(x) - \kappa}{\eta} \right) + \exp \left(\frac{V_t^{\text{non}}(x)}{\eta} \right)},
\]

which can be microfounded with preference shifters (McFadden)
ADJUSTMENT HAZARD

▶ Canonical model of durables: Discontinuous hazard,

\[
S_t(x) = \begin{cases}
1 & \text{if } V^\text{adjust}_t(x) - \kappa > V^\text{non}_t(x) \\
0 & \text{otherwise}
\end{cases}
\]

▶ This paper: Smooth hazard, for any idiosyncratic state \(x\),

\[
S_t(x) = \frac{\exp \left(\frac{V^\text{adjust}_t(x) - \kappa}{\eta} \right)}{\exp \left(\frac{V^\text{adjust}_t(x) - \kappa}{\eta} \right) + \exp \left(\frac{V^\text{non}_t(x)}{\eta} \right)},
\]

which can be microfounded with preference shifters (McFadden)
Adjustment Hazard

- **Canonical model of durables:** Discontinuous hazard,

\[
S_t(x) = \begin{cases}
1 & \text{if } V_t^{\text{adjust}}(x) - \kappa > V_t^{\text{non}}(x) \\
0 & \text{otherwise}
\end{cases}
\]

- **This paper: Smooth hazard**, for any idiosyncratic state \(x \),

\[
S_t(x) = \frac{\exp\left(\frac{V_t^{\text{adjust}}(x) - \kappa}{\eta}\right)}{\exp\left(\frac{V_t^{\text{adjust}}(x) - \kappa}{\eta}\right) + \exp\left(\frac{V_t^{\text{non}}(x)}{\eta}\right)},
\]

which can be microfounded with preference shifters \(\text{(McFadden)} \)
Adjustment Hazard

▶ Canonical model of durables: Discontinuous hazard,

\[
S_t(x) = \begin{cases}
1 & \text{if } V_t^{\text{adjust}}(x) - \kappa > V_t^{\text{non}}(x) \\
0 & \text{otherwise}
\end{cases}
\]

▶ This paper: Smooth hazard, for any idiosyncratic state \(x\),

\[
S_t(x) = \frac{\exp\left(\frac{V_t^{\text{adjust}}(x) - \kappa}{\eta}\right)}{\exp\left(\frac{V_t^{\text{adjust}}(x) - \kappa}{\eta}\right) + \exp\left(\frac{V_t^{\text{non}}(x)}{\eta}\right)},
\]

which can be microfounded with preference shifters (McFadden)

▶ Next two polar cases: fully state-dependent \((\eta \to 0)\) and time-dependent \((\eta \to +\infty)\)
Figure 1: Adjustment hazard (fixing d and y)
The shape of the adjustment hazard is key for the size-dependence in MPX.
Marginal propensity to spend on durables:

\[MPX^d (T) \equiv d\mu (m, d) \]
Marginal propensity to spend on durables:

\[
\text{MPX}^d (T) \equiv \mu (m-T, d) - \mu (m, d)
\]
Marginal propensity to spend on durables:

\[MPX^d (T) \equiv \left(S (m, d) \times (m + d) \right) \{ d\mu (m-T, d) - d\mu (m, d) \} \]

extensive \hspace{1cm} intensive
Marginal propensity to spend on durables:

\[
\text{MPX}^d(T) \equiv \frac{1}{T} \int \int S(m,d) x(m+d) \left\{ d\mu(m-T,d) - d\mu(m,d) \right\}
\]

Adjustment Hazard and Size-Dependence
Marginal propensity to spend on durables:

\[MPX^d (T) \equiv \frac{1}{T} \int \int S (m, d) x (m + d) \left\{ d\mu (m-T, d) - d\mu (m, d) \right\} \]

Spending functions (fixing \(d \))
Marginal propensity to spend on durables:

\[\text{MPX}^d (T) \equiv \frac{1}{T} \int \int S(m, d) \times (m + d) \left\{ d\mu(m - T, d) - d\mu(m, d) \right\} \]

Spending functions (fixing \(d \))

Getting the shape of hazard right is crucial for size-dependence.
Adjustment Hazard and Size-Dependence

Marginal propensity to spend on durables:

\[
\text{MPX}^d (T) \equiv \frac{1}{T} \int \int S(m, d) x(m + d) \left\{ d\mu(m - T, d) - d\mu(m, d) \right\}
\]

Spending functions (fixing \(d\))

\[
\text{MPX} (\text{fixing } d)
\]

Getting the shape of hazard right is crucial for size-dependence.
Adjustment Hazard and Size-Dependence

Marginal propensity to spend on durables:

\[
MPX^d (T) \equiv \frac{1}{T} \int \int S(m, d) \times (m + d) \{d\mu (m - T, d) - d\mu (m, d)\}
\]

Spending functions (fixing \(d\))

- Intensive margin
- Hazard (steep)
- Hazard (flat)

Getting the shape of hazard right is crucial for size-dependence
Marginal propensity to spend on durables:

\[
MPX^d (T) \equiv \frac{1}{T} \int \int S(m,d) \times (m+d) \left\{ d\mu (m-T, d) -d\mu (m, d) \right\}
\]

Spending functions (fixing \(d \))

Getting the **shape of hazard** right is crucial for **size-dependence** + match data
A Model with a Smooth Hazard

Bringing the Model to the Data

Size-Dependence in the MPX

Stimulus Checks in General Equilibrium
Calibration

- Consumer durables (cars, furniture, appliances), i.e., exclude housing.
- **Consumer durables** (cars, furniture, appliances), i.e., exclude housing.

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Calibration Target Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount factor β</td>
<td>0.944</td>
<td>Liquid assets / GDP $26%$ Kaplan et al.</td>
</tr>
<tr>
<td>Non-durable parameter ϑ</td>
<td>0.637</td>
<td>Durables / non-durables $26%$ CEX</td>
</tr>
<tr>
<td>Maintenance ι</td>
<td>0.257</td>
<td>Maintenance / new investment $32.6%$ CEX</td>
</tr>
<tr>
<td>Location parameter κ</td>
<td>0.803</td>
<td>Frequency of adjustment (A) $23.8%$ PSID</td>
</tr>
<tr>
<td>Scale parameter η</td>
<td>0.20</td>
<td>Next slide</td>
</tr>
</tbody>
</table>

- External: $\sigma = 2$ (Berger-Vavra), $\nu \rightarrow 1$ (Orchard et al.), $\theta = 0.20$ (Adams et al.), $\delta = 0.05$ (CEX)
Calibration

Consumer durables (cars, furniture, appliances), i.e., exclude housing.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Calibr.</th>
<th>Target</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Discount factor</td>
<td>0.944</td>
<td>Liquid assets / A GDP</td>
<td>26%</td>
<td>Kaplan et al.</td>
</tr>
<tr>
<td>ϑ</td>
<td>Non-durable parameter</td>
<td>0.637</td>
<td>Durables / non-durables</td>
<td>26%</td>
<td>CEX</td>
</tr>
<tr>
<td>ι</td>
<td>Maintenance</td>
<td>0.257</td>
<td>Maintenance / new investment</td>
<td>32.6%</td>
<td>CEX</td>
</tr>
<tr>
<td>κ</td>
<td>Location parameter</td>
<td>0.803</td>
<td>Frequency of adjustment (A)</td>
<td>23.8%</td>
<td>PSID</td>
</tr>
<tr>
<td>η</td>
<td>Scale parameter</td>
<td>0.20</td>
<td>Next slide</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

External: $\sigma = 2$ (Berger-Vavra), $\nu \to 1$ (Orchard et al.), $\theta = 0.20$ (Adams et al.), $\delta = 0.05$ (CEX)
Two moments are informative: MPX out of $500 (PE) and user cost elasticity (GE)
Scale Parameter (η)

- Capture: (i) relative importance of durables; and (ii) strength of extensive margin.
Capture: (i) relative importance of durables; and (ii) strength of extensive margin.
Evidence: $\text{MPX}^d > \text{MPX}^c$ (Havranek-Sokolova) \rightarrow not too time-dependent
Scale Parameter (η)

- **MPX (500 check)**
 - **MPX**
 - Durables
 - Non-durables
 - **Short-run price elasticity**

▶ **Evidence:** $\text{MPX}^d > \text{MPX}^c$ (Havranek-Sokolova) \rightarrow not too time-dependent
Evidence: $\text{MPX}_d^d > \text{MPX}_c^c$ (Havranek-Sokolova) → not too time-dependent
 SCALE PARAMETER (η)

Evidence: Elasticity ≥ -15 (Bachmann et al.) \rightarrow not too state-dependent (McKay-Wieland)

MPX (500 check)

Short-run price elasticity
Scale Parameter (η)

![Graph showing MPX (\$500 check) and Short-run price elasticity](image)

- **Evidence:** Elasticity ≥ -15 (Bachmann et al.) \rightarrow not too state-dependent (McKay-Wieland)
Benchmark calibration: $\eta = 0.2$ (+ robustness checks)
- Benchmark calibration: MPXd \sim 1.5 \times MPXc (Havranek-Sokolova) and elasticity \sim -7
Benchmark calibration: matches well **untargeted** moments
1. Distribution of Adjustments (PSID)

Data

Net investment rate (standardized)
Reflects the **shape of hazard**: \(\int_{-\infty}^{z} f(s) \, ds = \int 1_{\{\log(d'(x)/d) \in (-\infty,z)\}} S(x) \mu(dx) \)
1. Distribution of Adjustments (PSID)

- State-dependent model: misses the overall shape, the tails, etc.
Our model: fits the distribution closely, i.e., the data supports our smooth hazard.
2. Probability of Adjustment Since Last Purchase (PSID)

Adjustment probability conditional on not having adjusted so far (Kaplan-Meier)
2. **Probability of Adjustment Since Last Purchase (PSID)**

- Also informative about the overall **shape of hazard** (probability flat or steep)
2. Probability of Adjustment Since Last Purchase (PSID)

▶ Also informative about the overall shape of hazard (probability flat or steep)
- Model-generated data discretized in PSID waves, CI are bootstrapped at 90%
Again, the evidence rejects the purely state- and time-dependent models.
Our model has both state-dependent and time-dependent features
3. Other Untargeted Moments

1. **Timing of response ($500).** MPX of 65% (6M), 75% (9M), 92% (12M)

 Lines up closely with the estimates of Hausman, Agarwal-Qian, Fagereng-Holm-Natvik

Dynamics

2. **Large shocks**

 MPX of 67% (12M) out of $10,000 lottery gain

 Similar to the estimate in Fagereng et al. where the mean lottery gain is $10,000

3. **Hand-to-mouth**

 42% of households with $\frac{1}{2} \times M^{inc}$ (Kaplan-Violante-Weidner)

 Almost the exact value reported in Kaplan-Violante and Aguiar-Bils-Boar

4. **Secondary market**

 52% of purchases on secondary market

 Used cars represent roughly 55% of total spending on cars in the US

5. **Distribution of MPX**

 Distribution is skewed (some have MPX > 1)

 Resembles the distribution in Lewis-Melcangi-Pilossoph, model of non-durables cannot match this

Overall, our model provides a good description of households' spending behavior
3. Other Untargeted Moments

1. **Timing of response ($500).** MPX of 65% (6M), 75% (9M), 92% (12M)

 Lines up closely with the estimates of Hausman, Agarwal-Qian, Fagereng-Holm-Natvik

2. **Large shocks.** MPX of 67% (12M) out of $10,000 lottery gain

 Similar to the estimate in Fagereng et al. where the mean lottery gain is $10,000
3. Other Untargeted Moments

1. **Timing of response ($500).** MPX of 65% (6M), 75% (9M), 92% (12M)

 Lines up closely with the estimates of Hausman, Agarwal-Qian, Fagereng-Holm-Natvik

2. **Large shocks.** MPX of 67% (12M) out of $10,000 lottery gain

 Similar to the estimate in Fagereng et al. where the mean lottery gain is $10,000

3. **Hand-to-mouth.** 42% of households with $m \leq 1/2 \times M \text{inc}$ (Kaplan-Violante-Weidner)

 Almost the exact value reported in Kaplan-Violante and Aguiar-Bils-Boar
3. Other Untargeted Moments

1. **Timing of response ($500).** MPX of 65% (6M), 75% (9M), 92% (12M)
 Lines up closely with the estimates of Hausman, Agarwal-Qian, Fagereng-Holm-Natvik

2. **Large shocks.** MPX of 67% (12M) out of $10,000 lottery gain
 Similar to the estimate in Fagereng et al. where the mean lottery gain is $10,000

3. **Hand-to-mouth.** 42% of households with $m \leq 1/2 \times M \text{ inc}$ (Kaplan-Violante-Weidner)
 Almost the exact value reported in Kaplan-Violante and Aguiar-Bils-Boar

4. **Secondary market.** 52% of purchases on secondary market
 Used cars represent roughly 55% of total spending on cars in the US
3. Other Untargeted Moments

1. **Timing of response ($500).** MPX of 65% (6M), 75% (9M), 92% (12M)

 Lines up closely with the estimates of Hausman, Agarwal-Qian, Fagereng-Holm-Natvik

2. **Large shocks.** MPX of 67% (12M) out of $10,000 lottery gain

 Similar to the estimate in Fagereng et al. where the mean lottery gain is $10,000

3. **Hand-to-mouth.** 42% of households with $m \leq 1/2 \times M inc$ (Kaplan-Violante-Weidner)

 Almost the exact value reported in Kaplan-Violante and Aguiar-Bils-Boar

4. **Secondary market.** 52% of purchases on secondary market

 Used cars represent roughly 55% of total spending on cars in the US

5. **Distribution of MPX.** Distribution is skewed (some have MPX > 1)

 Resembles the distribution in Lewis-Melcangi-Pillosoph, model of non-durables cannot match this
3. Other Untargeted Moments

1. **Timing of response ($500).** MPX of 65% (6M), 75% (9M), 92% (12M)
 Lines up closely with the estimates of Hausman, Agarwal-Qian, Fagereng-Holm-Natvik

2. **Large shocks.** MPX of 67% (12M) out of $10,000 lottery gain
 Similar to the estimate in Fagereng et al. where the mean lottery gain is $10,000

3. **Hand-to-mouth.** 42% of households with $m \leq \frac{1}{2} \times M_{inc}$ (Kaplan-Violante-Weidner)
 Almost the exact value reported in Kaplan-Violante and Aguiar-Bils-Boar

4. **Secondary market.** 52% of purchases on secondary market
 Used cars represent roughly 55% of total spending on cars in the US

5. **Distribution of MPX.** Distribution is skewed (some have MPX > 1)
 Resembles the distribution in Lewis-Melcangi-Pillosoph, model of non-durables cannot match this

▶ Overall, our model provides a good description of households’ spending behavior
3. Other Untargeted Moments

1. **Timing of response ($500).** MPX of 65% (6M), 75% (9M), 92% (12M)
 Lines up closely with the estimates of Hausman, Agarwal-Qian, Fagereng-Holm-Natvik

2. **Large shocks.** MPX of 67% (12M) out of $10,000 lottery gain
 Similar to the estimate in Fagereng et al. where the mean lottery gain is $10,000

3. **Hand-to-mouth.** 42% of households with $m \leq \frac{1}{2} \times M\, inc$ (Kaplan-Violante-Weidner)
 Almost the exact value reported in Kaplan-Violante and Aguiar-Bils-Boar

4. **Secondary market.** 52% of purchases on secondary market
 Used cars represent roughly 55% of total spending on cars in the US

5. **Distribution of MPX.** Distribution is skewed (some have MPX > 1)
 Resembles the distribution in Lewis-Melcangi-Pilossoph, model of non-durables cannot match this

▶ Overall, our model provides a good description of households’ spending behavior
A Model with a Smooth Hazard

Bringing the Model to the Data

Size-Dependence in the MPX

Stimulus Checks in General Equilibrium
Size-Dependence in the MPX

MPX on durables and non-durables

MPX on durables

MPX on non-durables

Stimulus check
SIZE-DEPENDENCE IN THE MPX

MPX on durables and non-durables

MPX on durables

MPX on non-durables

Our model
State-dependent
Modelling **durables** is important for the **MPX on non-durables** (complementarity)
Our model: realistic total MPX (level) that decreases slowly (size-dependence)
Size-Dependence in the MPX

MPX on durables and non-durables

MPX on durables

MPX on non-durables

More results: Decomposition, Sensitivity
Aggregate Spending, Concavity, and the Role of η

The size-dependence (concavity) is very constant around $\eta = 0$.
Aggregate Spending, Concavity, and the Role of η

Aggregate Spending

State-dependent
- $\gamma = 0.94$

Our model
- $\gamma = 0.87$

2A non-durables
- $\gamma = 0.73$

Size-depend. (γ): $d \log (\text{Spend}) / d \log (\text{Check})$

- State-dependent: $\gamma = 0.93$
- Our model: $\gamma = 0.87$

The size-dependence (concavity) is very constant around $\eta = 0$.

The size-dependence (concavity) is very constant around $\eta = 0.2$.
A Model with a Smooth Hazard

Bringing the Model to the Data

Size-Dependence in the MPX

Stimulus Checks in General Equilibrium
How effective are large checks at stimulating output in recessions?
A GE Application to Stimulus Checks

How effective are large checks at stimulating output in recessions?

▶ We embed our spending model into an open-economy HANK setup
 Imports account for 1/4 of durable spending
A GE Application to Stimulus Checks

How effective are large checks at stimulating output in recessions?

- We embed our spending model into an open-economy HANK setup
 Imports account for 1/4 of durable spending

- **Focus**: demand-driven recessions (2001, Great Recession)
 Labor markets are slack
How effective are large checks at stimulating output in recessions?

- We embed our spending model into an open-economy HANK setup
 Imports account for 1/4 of durable spending

- **Focus:** demand-driven recessions (2001, Great Recession)
 Labor markets are slack

- An extension with **supply-side constraints** (Orchard et al., Comin et al.)
 Shocks to potential output, non-linear NKPC, and relative price movements
Aggregate Demand and Supply

Aggregate demand

1. Eligible for checks if $e \leq 75,000$

Aggregate supply

1. NKPC for non-durables

\[
\pi_t = \kappa \log Y_{dom, t} + \beta \pi_{t-1}
\]

2. Elastic supply of d_t (Orchard et al.)

\[
p_{dt} \equiv \frac{X_{dom, t}}{X_{potent, t}}^{1/\zeta}
\]

3. $Y_{potent, t}$ and $X_{potent, t}$ as capacity constr.
Aggregate Demand and Supply

Aggregate demand

1. Eligible for checks if $e \leq $75,000

2. Imports, e.g., for durables

$$x_t = \left[\sum_{j \in \{H,F\}} \left(\alpha^d_j \right)^{\frac{1}{\rho}} \left(x^j_t \right)^{\frac{\rho - 1}{\rho}} \right]^\frac{\rho}{\rho - 1}$$

Aggregate supply

1. NKPC for non-durables

$$\pi_t = \kappa \log Y_{dom} + \beta \pi_{t-1}$$

2. Elastic supply of d_t (Orchard et al.)

$$p_d_t \equiv \frac{X_{dom}^t}{X_{potent}^t}^{\frac{1}{\zeta}}$$

3. Y_{potent} and X_{potent} as capacity constr.
Aggregate Demand and Supply

Aggregate demand

1. Eligible for checks if $e \leq 75,000$

2. Imports, e.g., for durables

$$x_t = \left[\sum_{j \in \{H,F\}} \left(\alpha_j^d \right)^{\frac{1}{\rho}} \left(x_j^d \right)^{\frac{\rho - 1}{\rho}} \right]^{\frac{\rho}{\rho - 1}}$$

3. RoW symmetric (no checks)

Aggregate supply

1. NKPC for non-durables

$$\pi_t = \kappa \log Y_{\text{dom}}^t - Y_{\text{potent}}^t + \beta \pi_{t+1}$$

2. Elastic supply of d_t (Orchard et al.)

$$p_d t \equiv X_{\text{dom}}^t X_{\text{potent}}^t \frac{1}{\zeta}$$

3. Y_{potent}^t and X_{potent}^t as capacity constr.
Aggregate Demand and Supply

Aggregate demand

1. Eligible for checks if $e \leq 75,000$

2. Imports, e.g., for durables

\[x_t = \left[\sum_{j \in \{H,F\}} \left(\alpha_j^d \right)^{\frac{1}{\rho}} \left(x^d_j \right)^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}} \]

3. RoW symmetric (no checks)

4. Firm I shifts AD (Justiniano et al.)

\[K_t = \left\{ 1 - \delta^K + \Phi \left(I_t/K_{t-1} \right) + z_t \right\} K_{t-1} \]

Aggregate supply

Solve for $\{z_t\}$ that generate recession
 Aggregate Demand and Supply

Aggregate demand

1. Eligible for checks if $e \leq \$75,000$

2. Imports, e.g., for durables

$$x_t = \left[\sum_{j \in \{H,F\}} \left(\alpha_j^d \right) ^{\frac{1}{\rho}} \left(x_t^d \right) ^{\frac{\rho-1}{\rho}} \right] ^{\frac{\rho}{\rho-1}}$$

3. RoW symmetric (no checks)

4. Firm l shifts AD (Justiniano et al.)

$$K_t = \left\{ 1 - \delta^K + \Phi \left(l_t/K_{t-1} \right) + z_t \right\} K_{t-1}$$

Aggregate supply

1. NKPC for non-durables

$$\pi_t = \kappa \log \left(\frac{y_t^{\text{dom}}}{y_t^{\text{potent}}} \right) + \beta \pi_{t+1}$$
Aggregate Demand and Supply

Aggregate demand

1. Eligible for checks if $e \leq 75,000$

2. Imports, e.g., for durables

$$x_t = \sum_{j \in \{H,F\}} \left(\alpha^d_j \right)^{\frac{1}{\rho}} \left(x_t^j \right)^{\frac{\rho-1}{\rho}}$$

3. RoW symmetric (no checks)

4. Firm I shifts AD (Justiniano et al.)

$$K_t = \left\{ 1 - \delta^K + \Phi \left(l_t/K_{t-1} \right) + z_t \right\} K_{t-1}$$

Aggregate supply

1. NKPC for non-durables

$$\pi_t = \kappa \log \left(\frac{y_{t,\text{dom}}}{y_{t,\text{potent}}} \right) + \beta \pi_{t+1}$$

2. Elastic supply of d_t (Orchard et al.)

$$p^d_t \equiv \left(\frac{x_{t,\text{dom}}}{x_{t,\text{potent}}} \right)^{1/\zeta}$$
Aggregate Demand and Supply

Aggregate demand

1. Eligible for checks if $e \leq \$75,000$

2. Imports, e.g., for durables

 \[x_t = \left[\sum_{j \in \{H,F\}} \left(\alpha_j^d \right)^{\frac{1}{\rho}} \left(x_t^j \right)^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}} \]

3. RoW symmetric (no checks)

4. Firm I shifts AD (Justiniano et al.)

\[K_t = \left\{ 1 - \delta^K + \Phi \left(l_t/K_{t-1} \right) + z_t \right\} K_{t-1} \]

Aggregate supply

1. NKPC for non-durables

 \[\pi_t = \kappa \log \left(\frac{y_t^{\text{dom}}}{y_t^{\text{potent}}} \right) + \beta \pi_{t+1} \]

2. Elastic supply of d_t (Orchard et al.)

 \[p_t^d = \left(\frac{X_t^{\text{dom}}}{X_t^{\text{potent}}} \right)^{1/\zeta} \]

3. y_t^{potent} and X_t^{potent} as capacity constr.
Aggregate Demand and Supply

Aggregate demand

1. Eligible for checks if \(e \leq 75,000 \)
2. Imports, e.g., for durables

\[
x_t = \left[\sum_{j \in \{H,F\}} \left(\alpha_j^d \right)^{\frac{1}{\rho}} \left(x_t^d \right)^{\frac{\rho - 1}{\rho}} \right]^{\frac{\rho}{\rho - 1}}
\]

3. RoW symmetric (no checks)
4. Firm \(I \) shifts AD (Justiniano et al.)

\[
K_t = \left\{ 1 - \delta^K + \Phi \left(l_t/K_{t-1} \right) + z_t \right\} K_{t-1}
\]

Aggregate supply

1. NKPC for non-durables

\[
\pi_t = \kappa \log \left(\frac{y_t^{\text{dom}}}{y_t^{\text{potent}}} \right) + \beta \pi_{t+1}
\]

2. Elastic supply of \(d_t \) (Orchard et al.)

\[
p_t^d \equiv \left(\frac{X_t^{\text{dom}}}{X_t^{\text{potent}}} \right)^{1/\zeta}
\]

3. \(y_t^{\text{potent}} \) and \(X_t^{\text{potent}} \) as capacity constr.

Closing the model
Aggregate output ($t = 0$)

- Benchmark
- Relative prices
- Linear extrapolation

Stimulus check vs. Aggregate output (dynamics)

Large checks remain effective, but extrapolating from smaller ones overestimates the impact.

Additional results
General Equilibrium Response to Stimulus Checks

Large checks remain effective, but extrapol. from smaller ones overestimates impact
General Equilibrium Response to Stimulus Checks

Aggregate output ($t = 0$)

Aggregate output (dynamics)

- Large checks remain effective, but extrapol. from smaller ones overestimates impact
General Equilibrium Response to Stimulus Checks

- Aggregate output ($t = 0$)
- Aggregate output (dynamics)

▶ Large checks remain effective, but extrapol. from smaller ones overestimates impact

Additional results 16/18
Perfect storm: shocks to potential output, non-linear NKPC
1. HA model with **lumpy durables** (Berger-Vavra) and **smooth adjustment hazard**
1. HA model with **lumpy durables** (Berger-Vavra) and **smooth adjustment hazard**

2. Smooth hazard needed to explain a **rich set of micro facts** that existing models miss
1. HA model with lumpy durables (Berger-Vavra) and smooth adjustment hazard
2. Smooth hazard needed to explain a rich set of micro facts that existing models miss
3. We embed this demand block in a HANK model → effect of stimulus checks?
1. HA model with \textit{lumpy durables} (Berger-Vavra) and \textit{smooth adjustment hazard}

2. Smooth hazard needed to explain a \textit{rich set of micro facts} that existing models miss

3. We embed this demand block in a HANK model \rightarrow effect of stimulus checks?

\underline{Takeaways}
Takeaways

1. HA model with lumpy durables (Berger-Vavra) and smooth adjustment hazard

2. Smooth hazard needed to explain a rich set of micro facts that existing models miss

3. We embed this demand block in a HANK model → effect of stimulus checks?

Takeaways

1. The MPX declines slowly with the size of stimulus checks
Takeaways

1. HA model with lumpy durables (Berger-Vavra) and smooth adjustment hazard
2. Smooth hazard needed to explain a rich set of micro facts that existing models miss
3. We embed this demand block in a HANK model → effect of stimulus checks?

Takeaways

1. The MPX declines slowly with the size of stimulus checks
2. Larger checks remain effective at stimulating output in recessions, but extrapolating from small checks overestimates their impact
Empirically, some households with large MPX (> 1) (Lewis et al., Fuster et al.)
Empirically, some households with large MPX (> 1) (Lewis et al., Fuster et al.)

Standard LTV

$$m_t \geq -(1 - \theta) d_t,$$

where $$\theta \in (0, 1)$$ is LTV parameter / down payment.
Empirically, some households with large MPX (> 1) (Lewis et al., Fuster et al.)

Standard LTV

$$m_t \geq - (1 - \theta) d_t,$$

where $\theta \in (0, 1)$ is LTV parameter / down payment.

Assumption: constant refinancing. Lot of liquidity, tiny MPX (McKay-Wieland).
Empirically, some households with large MPX (> 1) (Lewis et al., Fuster et al.)

Standard LTV

\[m_t \geq - (1 - \theta) d_t, \] \hspace{1cm} \text{(LTV)}

where \(\theta \in (0, 1) \) down payment.

Assumption: constant refinancing. Lot of liquidity, tiny MPX (McKay-Wieland).

In practice, refinancing is quite very rare for consumer durables.
Empirically, some households with large MPX (> 1) (Lewis et al., Fuster et al.)

Standard LTV

\[m_t \geq - (1 - \theta) d_t, \quad \text{(LTV)} \]

where \(\theta \in (0, 1) \) down payment.

Assumption: constant refinancing. Lot of liquidity, tiny MPX (McKay-Wieland).

In practice, refinancing is quite very rare for consumer durables.

This paper: credit \((r^b > r^m)\) equals a share \(1 - \theta\) of the value of durables in every \(t\).
Empirically, some households with large MPX (> 1) (Lewis et al., Fuster et al.)

Standard LTV

\[m_t \geq - (1 - \theta) d_t, \] \hspace{1cm} (LTV)

where \(\theta \in (0, 1) \) down payment.

Assumption: constant refinancing. Lot of liquidity, tiny MPX (McKay-Wieland).

In practice, refinancing is quite very rare for consumer durables.

This paper: credit \((r^b > r^m) \) equals a share \(1 - \theta \) of the value of durables in every \(t \).

Credit tracks \(d_t \): households repay at the rate at which durable depreciates.
Empirically, some households with large MPX (> 1) (Lewis et al., Fuster et al.)

Standard LTV

\[m_t \geq -(1 - \theta) d_t, \]

where \(\theta \in (0, 1) \) down payment.

Assumption: constant refinancing. Lot of liquidity, tiny MPX (McKay-Wieland).

In practice, refinancing is quite very rare for consumer durables.

This paper: credit \((r^b > r^m) \) equals a share \(1 - \theta \) of the value of durables in every \(t \).

Credit tracks \(d_t \): households repay at the rate at which durable depreciates.

Empirically, typical car loan is 5-6 years while car depreciates at 20%, pre-determined payments (Argyle et al.), and prepayments are rare for consumer durables (Heitfield-Sabarwal), and households make minimum down payment (Green et al.).
Recursive Formulation

- Discrete choice problem
 \[
 V_t(x; \epsilon) = \max \left\{ V_{\text{adjust}}^t(x) - \epsilon, V_{\text{non}}^t(x) \right\}
 \]

- When adjusting
 \[
 V_{\text{adjust}}^t(x) = \max_{c, d', m'} u(c, d') + \beta \int V_{t+1}(d', m', y'; \epsilon') d\mathcal{E}(\epsilon') \Gamma(dy'; y)
 \]
 \[\text{s.t. } [1 - (1 - \theta)(1 - \delta)] d' + m' + c \leq Y_t(x; T_t) + \theta (1 - \delta) d \]
 \[m' \geq 0,\]

- When not adjusting
 \[
 V_{\text{non}}^t(x) = \max_{c, m'} u(c, d') + \beta \int V_{t+1}(d', m', y'; \epsilon') dG(\epsilon') \Gamma(dy'; y)
 \]
 \[\text{s.t. } m' + c \leq Y_t(x; T_t) - \iota \delta d - (1 - \theta) [(1 - \delta) d - d'] \]
 \[m' \geq 0\]
3. **Annual MPX**

Quarterly MPX

![Graph of Quarterly MPX](image)

Annual MPX

![Graph of Annual MPX](image)
4. Distribution of MPXs ($500 Check)

- Empirically, distribution declines smoothly and large MPX (> 1) (Lewis et al., Fuster et al.)
State- and Time-Dependent Adjustments

- Our model has both state-dependent (SD) and time-dependent (TD) features

State-dependence index:
By definition, SD = 1 in state-dependent model and SD = 0 in Calvo model.
Our model has both state-dependent (SD) and time-dependent (TD) features. This is controlled by the scale parameter (η). Hard to interpret in economic terms...
Our model has both state-dependent (SD) and time-dependent (TD) features. This is controlled by the scale parameter (η). Hard to interpret in economic terms... How far from state-dependent vs. Calvo?
State- and Time-Dependent Adjustments

- Our model has both state-dependent (SD) and time-dependent (TD) features.
- This is controlled by the scale parameter (η). Hard to interpret in economic terms...
- How far from state-dependent vs. Calvo? Important for size-dependence in MPX.
Our model has both **state-dependent** (SD) and **time-dependent** (TD) features.

- This is controlled by the scale parameter (η). Hard to interpret in economic terms...
- How far from state-dependent vs. Calvo? Important for **size-dependence** in MPX.

State-dependence index:

$$A_t(x; \psi) = 1$$
Our model has both **state-dependent** (SD) and **time-dependent** (TD) features.

This is controlled by the scale parameter (η). Hard to interpret in economic terms...

How far from state-dependent vs. Calvo? Important for **size-dependence in MPX**.

State-dependence index:

\[
\text{share with } A_t (x'; \psi') = 1 \text{ and } A_{t-1} (x; \psi) = 0
\]
Our model has both **state-dependent** (SD) and **time-dependent** (TD) features.

This is controlled by the scale parameter (η). Hard to interpret in economic terms...

How far from state-dependent vs. Calvo? Important for **size-dependence in MPX**.

State-dependence index:

\[
SD = \frac{\text{share with } A_t(x'; \psi') = 1 \text{ and } A_{t-1}(x; \psi) = 0}{\text{share with } A_t(x'; \psi') = 1 \text{ and } A_{t-1}(x; \psi) = 0}
\]
Our model has both state-dependent (SD) and time-dependent (TD) features.

This is controlled by the scale parameter (η). Hard to interpret in economic terms...

How far from state-dependent vs. Calvo? Important for size-dependence in MPX.

State-dependence index:

$$SD = \frac{\text{share with } A_t(x'; \psi') = 1 \text{ and } A_{t-1}(x; \psi) = 0}{\text{share with } A_t(x'; \psi') = 1 \text{ and } A_{t-1}(x; \psi) = 0}$$

By definition, SD = 1 in state-dependent model and SD = 0 in Calvo model.
State- and Time-Dependent Adjustments

- **Graph:**
 - **Y-axis:** State-dependence (SD)
 - **X-axis:** Scale parameter (η)
 - **Legend:** Quarterly

The graph shows a decreasing trend of state-dependence (SD) as the scale parameter (η) increases. The data points are marked with triangles representing the quarterly data. The graph indicates that the state-dependence decreases significantly as the scale parameter increases.
State- and Time-Dependent Adjustments
Why does the MPX ↓ in our model? **Smooth hazard** dampens the **extensive margin**.

\[
\text{Extensive margin} \approx \text{Intensive margin}
\]

Selection dominates (car ⇝ fridge)

Contrasts with purely state-dep. model
Figure 9: Annual MPX

MPX

Durables
Non-durables

Stimulus check

$100 $1000 $2000 $3000
MPX on durables (18%) is smaller than in our model (25%) and Orchard et al. (30%)
MPX on durables and non-durables ~ same vs. our model + data (ratio 150%)
The proportions are reversed compared to our model that matches the data!
Calvo Plus: Size-Dependence

\[\text{MPC} \]

\[\text{Stimulus check} \]

- Durables
- Non-durables
STATE-CONTINGENCY IN THE MPX

Our model

State-dependent model

MPX vs. Expansion

Bust | Boom

MPX vs. Expansion

Bust | Boom
CLOSING THE MODEL

Monetary policy

\[r^m_t = \max \left\{ r^m + \phi \pi_t + \phi_y \hat{Y}_t, r \right\} \]
Monetary policy

\[r^m_t = \max \left\{ r^m_t + \phi \pi_t + \phi_y \hat{Y}_t, r \right\} \]

Fiscal policy

\[B^g_t = \frac{1 + r_t}{1 + \pi_t} B^g_{t-1} + T_t - t_t - G_t \]

(checks \(t_0 \) financed over 15 years)
CLOSING THE MODEL

Monetary policy

\[r^m_t = \max \left\{ r^m + \phi I \pi_t + \phi_y \hat{Y}_t, r \right\} \]

Fiscal policy

\[B^g_t = \frac{1 + r_t}{1 + \pi_t} B^g_{t-1} + \mathcal{T}_t - t_t - G_t \]

(checks \(t_0 \) financed over 15 years)

Market clearing

\[P^c_t (C_t + G_t) + F^{-1} \left(X^c_{t, \text{dom}} \right) + N X^c_{t, \text{real}} = Y^\text{dom}_t \]

\[P^d_t X_t + p^d_t l_t + N X^d_{t, \text{real}} = p^d_t \left(X^\text{dom}_t + A_1 K_{t-1} \right) \]
CLOSING THE MODEL

Monetary policy

\[r_t^m = \max \left\{ r^m + \phi \Pi \pi_t + \phi_y \hat{Y}_t, r \right\} \]

Fiscal policy

\[B_t^g = \frac{1 + r_t}{1 + \pi_t} B_{t-1}^g + T_t - t_t - G_t \]

(checks \(t_0 \) financed over 15 years)

Market clearing

\[P_t^c (C_t + G_t) + F^{-1} \left(X_t^{\text{dom}} \right) + NX_t^{c, \text{real}} = Y_t^{\text{dom}} \]

\[P_t^d X_t + p^d_l t_t + NX_t^{d, \text{real}} = p^d_t \left(X_t^{\text{dom}} + A_1 K_{t-1} \right) \]

Incomes

\[E_t^{\text{net}} (x) = \psi_{0,t} \left\{ y (Y_t + \text{Div}_t) \right\}^{1-\psi_1} \]

(with dividend smoothing)
CLOSING THE MODEL

Monetary policy

\[r^m_t = \max \left\{ r^m + \phi \Pi_t + \phi_y \hat{Y}_t, r \right\} \]

Fiscal policy

\[B^g_t = \frac{1 + r_t}{1 + \pi_t} B^g_{t-1} + \mathcal{T}_t - t_t - G_t \]

(checks \(t_0 \) financed over 15 years)

Market clearing

\[P_t^c (C_t + G_t) + F^{-1} \left(X^c_{t, \text{dom}} \right) + NX_t^{c, \text{real}} = \Gamma_t^{\text{dom}} \]

\[P_t^d X_t + P_t^d I_t + NX_t^{d, \text{real}} = p^d_t \left(X^c_{t, \text{dom}} + A_1 K_{t-1} \right) \]

Incomes

\[E_t^{\text{net}}(x) = \psi_{0,t} \left\{ y \left(Y_t + \text{Div}_t \right) \right\}^{1-\psi_1} \]

(with dividend smoothing)
Additional Results

Sectoral output gaps

Non-durable good

Year

Investment good

Year

Decomposing households’ responses ($500)

Quartile (last year’s labor income)
1. Non-linear Phillips curve

\[\pi_t = \kappa \hat{y}_t + \kappa^* \max \{ \hat{y}_t, 0 \}^2 + \beta \pi_{t+1} \]

with \(\kappa = 0.0031 \) (Hazell et al.) and \(\kappa^* = 0.1 \) (Mavroeidis et al., Cerrato-Gitti)

2. Reduction in \(Y_{potent}^t \) and \(X_{potent}^t \) by 50% of initial gap

3. Relative price movements

\[p^d_t \equiv \left(\frac{X_{dom}^t}{X_{potent}^t} \right)^{1/\zeta} \]

with \(\zeta = 1/0.049 \) (McKay-Wieland)