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Abstract

Nonparametric density mixture models are popular in Statistics and Econometrics but
suffer from computational and inferential hurdles. This paper introduces nonparametric
quantile mixture models as a convenient counterpart, discusses several applications,
and proposes a computationally efficient sieve estimator based on a generalized method
of L-moments. We develop a full inferential theory for our proposed estimator. In
doing so, we make several contributions to statistical theory that allow us to extend a
numerical bootstrap method to high-dimensional settings. We show that, as a direct
byproduct of our theory, we can provide an inference method for the distributional
synthetic controls of Gunsilius (2023), a novel approach to counterfactual analysis for
which formal inference methods were not yet available. As an empirical application
of the latter, we apply our proposed approach to inference in assessing the effects of
a large-scale environmental disaster, the Brumadinho barrage rupture, on the local
wage distribution. Our results uncover a range of effects across percentiles, which we
argue are consistent displacement effects, whereby median-earning jobs are replaced by
low-paying contracts.
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1 Introduction

Consider the model:

Qµ(u) :=

∫
Qθ(u)µ(dθ) , u ∈ [0, 1] , (1)

where {Qθ : θ ∈ Θ} is a known family of quantile functions indexed by a a measurable

space (Θ,Σ), and µ is an unknown (signed) measure on (Θ,Σ) such that the resulting Qµ

is a quantile function. Equation (1) defines a nonparametric quantile mixture model. Such

models have a wide range of statistical applications. In causal inference, they can be used

to assess the distributional effects of aggregate shocks, by constructing a counterfactual

quantile function for an exposed unit based on the quantile function of non-treated units

(distributional synthetic controls ; Gunsilius, 2023). In financial applications, a mixture of

suitable quantile basis functions can be used to extrapolate the tails of an asset return

distribution (Karvanen, 2006; Gourieroux and Jasiak, 2008). Finally, and as we further

argue below, nonparametric quantile mixture models can be seen as a convenient tool in the

estimation of nonparametric density mixtures, a class of models which has received increasing

attention in Econometrics and Statistics (Ignatiadis and Wager, 2022; Gu and Koenker, 2023;

Armstrong et al., 2022; Kline et al., 2022).

The main tool in estimating nonparametric density mixture models is the nonparamet-

ric maximum likelihood estimator (NPMLE) of Kiefer and Wolfowitz (1956). In spite of

its attractive statistical properties (e.g. Polyanskiy and Wu, 2020), this approach suffers

from inferential and computational hurdles. The NPMLE still lacks a formal frequentist

inferential theory (Ignatiadis and Wager, 2022). Computationally, the nonconvexity of the

optimization program imposes challenges, which have estimulated several attempts at com-

puting approximate solutions (Train, 2008; Koenker and Mizera, 2014; Feng and Dicker,

2018; Jagabathula et al., 2020). Motivated by these concerns, this paper aims to introduce

nonparametric quantile mixture models as an attractive counterpart to density mixtures.

We begin by defining nonparametric quantile mixtures. We show that, similarly to non-
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parametric density mixtures, nonparametric quantile mixtures enjoy interesting approxi-

mation properties, being able to approximate sufficiently well-behaved quantile functions.

We then develop a framework for conducting estimation and inference on nonparametric

quantile mixture models. Our proposed estimator is a sieve-like version of the generalized

method of L-moments estimator (GMLM) of Alvarez et al. (2023). Introduced by Hosking

(1990), L-moments are robust alternatives to standard moments that characterize distribu-

tions with finite first moment. In our setting, the proposed estimator amounts to finding mix-

ture weights that minimize a weighted distance between sample and theoretical L-moments.

When these weights are constrained to belong to a convex set, this amounts to solving a

quadratic program with convex constraints, which can be performed efficiently in standard

statistical software. Another interesting feature of the GMLM is that, in parametric and

some semiparametric settings, this approach to estimation has been shown to perform well

in finite samples, whilst still retaining some notion of asymptotic efficiency (Alvarez et al.,

2023; Alvarez and Biderman, 2022).

Building upon our proposed estimator, we establish an inferential procedure for mixture

weights and functionals thereof based on a novel bootstrap for quadratic minimizers, which

may be of independent interest. Our sieve-like approach allows for the number of basis

functions to be a function of the sample size. For valid inference, we rely an undersmoothing

condition, whereby the number of basis functions used in the mixture is sufficiently large so as

to control approximation bias. Alternatively, if one is willing to place restrictions on the true

quantile process, we may replace the undersmoothing condition with bias-aware inference,

whereby bounds on the approximation bias are computed to conduct conservative inference

(Armstrong and Kolesár, 2021; Noack and Rothe, 2021; Ignatiadis and Wager, 2022). We

also note that our approach to inference explicitly allows for regularization, which may be

preferable to ad-hoc selection methods (Masini, 2022).

Inference in our setting is challenging, as it is generally not possible to find explicit limit

distributions for estimators when the number of parameters diverges (Chernozhukov et al.,
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2017a) and existing bootstrap methods are not applicable when we might have solutions at

the boundary of the parameter set Θ (see Chernozhukov et al. (2023) for a recent survey).

Our analysis addresses these challenges by relying upon a novel strategy that combines

the convexity arguments originally applied to (low-dimensional) M-estimators with convex

objective functions (Pollard, 1991; Kato, 2009), with an approach to inference based on

the concept of strong approximation. Strong approximations have been increasingly used

to conduct inference in nonstandard or high-dimensional settings (see Chernozhukov et al.,

2014; Armstrong and Kolesár, 2017; Cattaneo et al., 2020; Fang et al., 2023; Chernozhukov

et al., 2023, for some recent examples).

Key to our strategy is a novel result that bounds the strong approximation of quadratic

minimizers in terms of the constituent elements of the program, along with a restricted

eigenvalue condition. Building upon a lemma in Fan et al. (2022), we show that, when com-

bined with anticoncentration inequalities, our results enable us to derive high-level sufficient

conditions that ensure asymptotic validity of our proposed inferential approach. Whilst we

apply these tools to inference in quantile mixture models, we highlight that they may have

potential applications on other problems of interest such as LASSO and Ridge regression.

We then show how the analysis can be specialized under additional assumptions on

the smoothness of the quantile functions, thus providing sufficient rates for inference in

specific applications. For example, in an unconstrained estimation setting, and under some

assumptions, our results show that the number of mixture weights can grow much faster

than the sample size. When considering the case of ridge regularization, we show that the

number of mixtures used (p) and the sample size (n) must satisfy, up to logarithmic factors,

p/n→ 0 a rate similar to the one obtained by Belloni et al. (2015) in an (unconstrained) sieve-

regression setting. In order to demonstrate the latter result, we develop an extension of the

anticoncentration inequalities for Gaussian Random variables available in the literature to the

projection of Gaussian random variables onto Euclidean balls, another result of independent

interest.
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We then consider two applications of our quantile mixtures. First, we show how they

can be used to recover estimates (and conduct inference) in nonparametric density mixture

models. Key to this approach is the relation between the derivative of a quantile function

and the density of a random variable, which we use to “invert” our quantile mixtures onto

density mixtures.

As a second application, we show that, as a direct byproduct of our theory, we are able to

provide a valid inferential method in the distributional synthetic control setup of Gunsilius

(2023). The crucial condition to the validity of our approach in this environment is a weight

“dilution” condition, which requires the oracle weights attached to each control to spread

sufficiently quickly. A similar condition exists in the literature on synthetic controls (Ferman,

2021). To the best of our knowledge, formal inference methods were not yet available in the

distributional synthetic control setting.1

Finally, to illustrate the usefulness of our method, we provide an empirical application

on the distributive effects of a large-scale environmental disaster, the Brumadinho Barrage

rupture in Minas Gerais, Brazil, on the local wage distribution. The impact of this the

disarter is an open question as its effects remain uncertain, with potential negative effects

mitigated by reparations, investments, and economic recovery efforts. The main empirical

challenge lies in the fact that the rupture affected both the city of Brumadinho and neigh-

boring municipalities simultaneously. This simultaneous shock hinders the availability of a

clear control group, making direct comparisons difficult and motivating the use of the distri-

butional synthetic control method, especially since there is a large pool of potential control

units (other non-affected municipalities). Our results uncover a range of effects across per-

centiles of the wage distribution, which we argue are consistent with displacement effects,

whereby median-earning jobs are replaced by low-paying contracts.
1Gunsilius (2023) suggests using placebos to assess uncertainty in his setup, though he does not provide

a formal justification to it.
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Overview The remainder of the paper is organized as follows. In Section 2 we define

nonparametric quantile mixtures and discuss its approximation properties, as well as its

connection with the distributional synthetic controls of Gunsilius (2023). Section 3 intro-

duces our estimation procedure. The asymptotic inferential theory for mixture weights and

linear functionals thereof is presented in Section 4. Section 5 presents the algorithm to

implement our bootstrap procedure. In Section 6, we discuss applications to the empirical

Bayes and distributional synthetic control problems. Section 7 presents the results of our

empirical application. Section 8 concludes. The Appendices contain the proofs of the main

results, as well as our lemma on the strong approximation of a quadratic minimizer and the

anti-concentration inequality of the projection of Gaussian random variables onto Euclidean

balls. We also discuss the choice of tuning parameters in our bootstrap procedure, present

additional results on the approximation properties of quantile mixtures and discuss further

details on the empirical application.

2 Quantile mixture models

In this section, we define a quantile mixture and discuss its approximation properties. We

begin by recalling the definition of a quantile function.

Definition 1. A function Q : [0, 1] 7→ R ∪ {−∞,∞} is a quantile function if it is nonde-

creasing and continuous on the left.

As it is well known, given a distribution function F : R 7→ [0, 1], the generalized inverse

QF (u) := inf{x ∈ R : F (x) ≥ u} , u ∈ [0, 1] .

defines a quantile function.

We are now ready to define a quantile mixture.

Definition 2. Given a family of quantile functions {Qθ : θ ∈ Θ} indexed by a a measurable

6



space (Θ,Σ), and a signed measure µ on (Θ,Σ), the map:

Qµ(u) :=

∫
Qθ(u)µ(dθ) , u ∈ [0, 1] ,

defines a quantile mixture if Qµ(u) exists as an extended real number for every u ∈ [0, 1] and

the resulting Qµ is a quantile function.

A quantile mixture combines a family of quantile functions through a signed measure µ.

Notice that our definition imposes that the resulting mixture is itself a quantile function,

which is a desirable feature in our main applications. We also remark that, if µ is a measure,

then any well-defined Qµ is necessarily a quantile mixture.

Definition 3. A quantile mixture model is a pair (G,M), where G is a family of quantile

functions indexed by a measurable space (Θ,Σ), andM is a subset of

{µ is a signed measure on (Θ,Σ) : Qµ is a quantile function} .

It is well known that some density mixture models enjoy great approximation properties,

being able to approximate quite general classes of densities with arbitrary error under specific

norms (see Nguyen and McLachlan (2019) and Nguyen et al. (2020) for results on mixtures

of densities from location-scale families). We conclude this section by providing examples of

quantile mixture models that similarly exhibit interesting approximation properties.

Example 1 (Polynomial quantiles). For n ∈ N, define the vector of polynomials:

Jn(u) :=



1

u

u2

...

un


.
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It follows from monotone approximation theory (Shvedov, 1981) that, for any p ∈ [1,∞]

and quantile function Q ∈ Lp[0, 1], and for every n ∈ N, there exists θ∗n ∈ Rn such that θ∗n
′Jn

is a quantile function and:

‖Q(·)− θ∗n
′Jn(·)‖Lp[0,1] ≤ Cω2,p(Q, n

−1) ,

where C > 0 is an absolute constant and ω2,p(Q, δ) = sup0<h≤δ‖Q(·+ 2δ)−Q(·+ δ)− (Q(·+

δ) − Q(·))‖Lp[0,1] is the second modulus of continuity. If Q is absolutely continuous, with

density q ∈ Lp[0, 1], then we can further show that (DeVore and Lorentz, 1993, page 44):

‖Q(·)− θ∗n
′Jn(·)‖Lp[0,1] ≤ Cn−1ωp(q, n

−1) ,

where ωp(q, δ) = sup0<h≤δ‖q(·+ δ)− q(·)‖Lp[0,1] is the (first) modulus of continuity.

Example 2 (Pareto mixtures). Consider the class of generalized Pareto distributions with

shape parameter k ∈ R. In this case, the associated quantile functions are given by (Hosking

and Wallis, 1987):

Qk(u) =


(1−(1−u)k)

k
, if k 6= 0

− log(1− u), if k = 0

.

Since log(1 − x) is analytic on [0, 1], we are able to show that the class of quantile

mixtures on the Pareto family is able to reproduce any polynomial on [0, 1]. It then follows

from Example 1 that, for a given p ∈ [1,∞] and every quantile function Q ∈ Lp[0, 1], and for

every ε > 0, there exists a quantile mixture Qµ∗ on the family of Pareto distributions such

that:

‖Q(·)−Qµ∗(·)‖Lp[0,1] ≤ Cω2,p(Q, ε) .

Example 3 (Extreme Value mixtures). Consider the class of generalized extreme value
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distributions with shape parameter k ∈ R. In this case, the associated quantile functions

are given by (Hosking et al., 1985):

Qk(u) =


(1−(− log u)k)

k
, if k 6= 0

− log(− log u), if k = 0

.

Notice that mixtures on this class are able to reproduce any polynomial of − log(u).

Consequently, for a given p ∈ [1,∞], every u ∈ (0, 1) and quantile Q ∈ Lp[0, 1], we have

that, for every ε > 0, there exists a quantile mixture Qµ∗ such that:

‖Q(·)−Qµ∗(·)‖Lp[u,1] ≤ Cω2,p(Q, ε) .

By assuming that the lower tail of Q asymptotically behaves as a member of the extreme

value family, we can then extend this approximation to the entire interval [0, 1].

Example 4 (Approximation through nonnegative measures). The previous examples rely

on possibly signed measures to construct quantile mixtures that arbitrarily approximate a

target quantile function. One question is whether similar approximations can be constructed

by relying solely on nonnegative measures. In Appendix D, we construct an example of a

quantile mixture model that achieves general approximation properties under nonnegative

weighting under additional assumptions on the quantile function.

Example 5 (Distributional synthetic controls). Consider a population of J + 1 units. Let

Qj,t denote the quantile function of the distribution of an outcome of interest in unit j at

period t. For example, Qj,t may denote the quantile function of the wage distribution in

state j at year t, with (J +1) being the number of states in the country of analysis. Suppose

that a policy is implemented at state j = 0 beginning at period t∗. Gunsilius (2023) provides

conditions under which, if there exists a set of weights (wj)
J
j=1 ∈ ∆J−1 such that:
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Q0,t∗−1 =
J∑
j=1

wjQj,t∗−1 ,

then the quantity,

Q̃0t :=
J∑
j=1

wjQjt, t ≥ t∗ ,

yields a valid counterfactual for the quantile function at j = 0 in the absence of treatment.

Such distributional synthetic controls may be used to assess the effect of policies on the entire

distribution of an outcome of interest.

3 Proposed estimator

Observation: In what follows, all random variables are defined in the same probability

space (S,S,P).

In this section, we introduce an estimation procedure for quantile mixture models. Specif-

ically, given a sample estimator Q̂n of a target quantile function Q, we propose to estimate

mixture weights by solving:

θ̂n ∈ arginfθ∈Θp

(∫ pn

p
n

(Q̂n(u)− θ′Jp,n(u))P L(u)du

)′
WL,n

(∫ pn

p
n

(Q̂n(u)− θ′Jp,n(u))P L(u)du

)
,

(2)

where Jp,n(u) = (J1,n(u), J2,n(u), . . . Jp,n(u))′ is a vector of p quantile functions; Θp is a

convex subset of Rp; P L(u) = (P1(u), P2(u), . . . , PL(u))′ is a vector of L quantile weighting

functions, with {Pl}l∈N forming an orthonormal basis on L2[0, 1]; WL,n is an L×L symmetric

positive semidefinite weighting matrix; and 0 ≤ p
n
< pn ≤ 1 are trimming constants. Esti-

mator (2) is a sieve-like version of the generalized method of L-moments (GMLM) estimator

in Alvarez et al. (2023). Introduced by Hosking (1990), the r-th L-moment of a distribution
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function F is defined as λr :=
∫ 1

0
QF (u)P ∗r−1(u)du, with P ∗l being the l-th shifted Legendre

polynomial on [0, 1]. L-moments provide robust alternatives to standard moments; they

also characterize any distribution function with finite first moment. In a parametric setting,

Alvarez et al. (2023) show that, under some conditions, an optimally-weighted GMLM es-

timator is asymptotically efficient as the sample size and the number of L-moments used

in estimation (L) diverge. Moreover, by properly choosing L as a function of the sample

size, they show that it is possible to improve (in a mean-squared error sense) over maximum

likelihood estimation in finite samples.2

In light of its attractive statistical properties, we propose to use a GMLM approach in the

estimation of quantile mixture models. We also note that, in our setting, such approach is

highly advantageous from the computational viewpoint. Indeed, (2) is a quadratic program

with convex constraints, which can be solved efficiently. Possible choices of Θp include:

1. unconstrained mixtures: Θp = Rp ;

2. ridge regularization: Θp = B(Rp,‖·‖2)(0,M) ;

3. lasso regularization: Θp = B(Rp,‖·‖1)(0,M) ;

4. nonnegative weights: Θp = Rp
+; and

5. simplex weights: Θp = ∆p−1.

In our setup, the quantile “series” functions Jp,n can be either nonstochastic, as in usual

series estimation, or stochastic, as in distributional-synthetic-control-type applications. The

weighting matrixWL,n is possibly estimated – we discuss possible choices of weights later on.

Finally, we allow for the possibility of trimming, by specifying constants 0 ≤ p
n
< pn ≤ 1, as

this may be useful in applications with heavy-tailed data and in some extrapolation exercises.

In the next sections, we provide a valid inferential theory on the estimands θ0,n of θ̂n, and

functionals thereof, as n and (possibly) p and L diverge. Our theory is purposefully generic,
2This approach to estimation has also been shown to produce efficient estimators in a class of semipara-

metric models of treatment effects (see Alvarez and Biderman, 2022).

11



in order to accommodate the different types of applications we have in mind. Conceptually,

we rely on strong approximations of the quantile function Q̂n to a Gaussian process in

order to approximate the distribution function of θ̂n with the distribution of a minimiser

of (2) where Q̂n is replaced by a Gaussian random variable. Strong approximations of

the empirical quantiles of a scalar sample with common marginal distribution have been

derived in the iid setting by Csorgo and Revesz (1978), and extended to the stationary

mixing setting by Fotopoulos and Ahn (1994) and Yoshihara (1995). We speculate that

these results may be combined with statistical learning techniques, such as sample splitting

and debiasing (Chernozhukov et al., 2018), to construct valid strong approximations to more

complex quantile estimators, such as the empirical quantiles obtained from the prediction

errors of a first-step algorithm, which may be useful in risk management applications (see

Section 8 for further discussion). While our theory is ample enough to accomodate any such

approximation, we do not pursue the construction of this type of coupling in our paper, as

we do not require it in our main applications.

4 Inferential approximation

4.1 Inference on mixture weights

We begin by presenting general inferential results on the distributional approximation of our

GMLM estimator. We then specialize to specific bases and choice sets. We implicitly index p

and L by n, thus allowing these quantities to diverge with n, and consider limits as n→∞.

In what follows, we work under the high-level assumption:

Assumption 1 (Existence of tight Gaussian Approximation). There exists a sequence of

zero-mean Gaussian processes, B0,n, n ∈ N, defined on (S,S,P) and indexed by [0, 1], such

that, as n→∞:

‖
√
n(Q̂n −Q)−B0,n‖L2[p

n
,pn] = OP(rn) . (3)
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Moreover, this sequence of Gaussian processes is tight in L2
[p
n
,pn], in the sense that:

‖B0,n‖L2
[p,p]

= OP(1) .

As briefly mentioned in the previous section, Csorgo and Revesz (1978) derived strong

approximation results in the case where Q̂n are empirical quantiles from a random sample

with quantile function Q. In this case, under the assumptions of their Theorem 6, one may

take 0 = p
n
< pn = 1 and have rn = n−1/2 log(n)α for some α > 0.3 In this case, the Gaussian

processes B0,n are zero-mean with common covariance kernel Γ0(i, j) = Q′(i)Q′(j)(i∧j− ij),

which shows the sequence is tight in L2
[p
n
,pn].

We also need to control the possible estimation error of the weighting matrix Wn,L.

Assumption 2 (Estimation error of weighting matrices). There exists a sequence of non-

stochastic positive semidefinite (psd) matrices Ωn,L, n ∈ N, such that, as n→∞, ‖Ωn,L‖2 =

O(1) and ‖Wn,L − Ωn,L‖ = OP(sn).

We split our analysis into two cases: (i) nonstochastic basis; and (ii) stochastic basis.

4.1.1 Nonstochastic basis

In this section, the basis functions Jn,p are taken to be nonstochastic. Our target estimand

is given by:

θ0,n ∈ arginfθ∈Θn‖Q(·)− θ′Jn,p(·)‖L2[p
n
,pn] , (4)

and we note that we can write:

√
n(θ̂n − θn) ∈ arginfx∈Xn

∥∥∥∥∥
∫ pn

p
n

(
√
n(Q̂n(u)−Q(u))− x′Jp,n(u) +Dn(u))P L(u)du

∥∥∥∥∥
2

2,WL,n

,

(5)
3The authors also have weaker results for trimming constants p

n
ande pn that converge, respectively, to

0 and 1 at a rate. These may be used in the sample-size-dependent trimming case.
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where, for a symmetric psd matrix A, ‖x‖A,2 =
√
x′Ax, Xn =

√
n(Θn − θ0,n), and Dn(u) =

√
n(Q(u) − θ′0,nJn,p(u)) is the approximation bias. In light of representation (5) and As-

sumptions 1 and 2, we are led to consider the following approximation:

√
n(θ∗n − θ0,n) ∈ arginfx∈Xn

∥∥∥∥∥
∫ pn

p
n

(B0,n(u)− x′Jp,n(u) +Dn(u))P L(u)du

∥∥∥∥∥
2

2,ΩL,n

. (6)

As we show later on, representation (6) may be used as a basis for inference, under

some assumptions. The bias term Dn(u), even though unknown, may be bounded by using

approximation results such as Example 1 or identification assumptions such as in Example 5.4

Alternatively, one may consider an “undersmoothed” approximation:

√
n(θ̃∗n − θ0,n) ∈ arginfx∈Xn

∥∥∥∥∥
∫ pn

p
n

(B0,n(u)− x′Jp,n(u))P L(u)du

∥∥∥∥∥
2

2,ΩL,n

. (7)

Proposition 1. Suppose that dn := ‖Dn‖L2[p
n
,pn] is bounded. For z ∈ Rp, define the restricted

eigenvalue around z as :

λz,n := inf
s∈Xn

(s− z)′
(∫ pn

p
n

P L(u)Jn,p(u)′du
)′

Ωn,L

(∫ pn
p
n

P L(u)Jn,p(u)′du
)

(s− z)

‖s− z‖2
2

. (8)

Finally, let:

ρn := λmax

(∫ pn

p
n

(Jn,p(u)Jn,p(u)′)du

)
.

We then have that:

1. Smoothened case: for any sequences (δn)n∈N, (Mn)n∈N and (cn)n∈N such that:
4See Remark 4 below.
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Mn
λ0,n√
ρ
n

→∞ ,

P[λ√n(θ∗n−θ0,n),n ≤ cn]→ 0 ,

cnδ
2
n

(δn +Mn)
√
ρn(rn ∨ sn)

→∞ ,

cnδ
2
n

(δn +Mn)2ρnsn
→∞ ,

(9)

we have that

P[‖
√
n(θ̂n − θ0,n)−

√
n(θ∗n − θ0,n)‖ ≥ δn]→ 0 .

2. Undersmoothened case:for any sequences (δn)n∈N, (Mn)n∈N and (cn)n∈N such that:

Mn
λ0,n√
ρn
→∞ ,

P[λ√n(θ∗n−θ0,n),n ≤ cn]→ 0 ,

cnδ
2
n

(δn +Mn)
√
ρn(rn ∨ dn ∨ sn)

→∞ ,

cnδ
2
n

(δn +Mn)2ρnsn
→∞ ,

(10)

we have that

P[‖
√
n(θ̂n − θ0,n)−

√
n(θ̃∗n − θ0,n)‖ ≥ δn]→ 0 .

Proof. See Appendix A.2.

Proposition 1 provides rates of the approximation of (5) in terms of (6) (or (7)). It

expresses these rates in terms of control of the norm of the approximating solution, as

well as control of the restricted eigenvalues of the approximating program.5 The proof

of Proposition 1 is deferred to Appendix A, where it follows from a lemma on the strong

approximation of a minimizer of a quadratic program, which may be of independent interest.

In the next subsections, we will combine Proposition 1 with Lemma 1 below to provide
5Restricted eigenvalue conditions are common in the literature on high dimensional linear models (e.g.

Bickel et al., 2009).
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valid inferential tools on mixture weights. This lemma bounds the Kolmogorov distance

(in a subset of B(Rp)) between two random variables taking values in Rp, in terms of two

components: strong approximation and anticoncentration.

Lemma 1. Let X and Y be two random variables on (Rp,B(Rp),P). Then, for any C ⊆

B(Rp), we have that:

sup
A∈C
|P[X ∈ A]− P[Y ∈ A]| ≤ inf

s∈[2,∞]
inf
δ≥0
{P[‖X − Y ‖2 ≥ δ] + Ψs(C; δ)} ,

where Ψs(C; δ) := supA∈C P[Y ∈ Aδs \ A−δs ], where Aδs = {x ∈ Rp : infa∈A‖x − a‖s ≤ δ} and

A−δs = Rp \ (Rp \ A)δs.

Proof. The result follows from Lemma S.14 in Fan et al. (2022), by observing that, for

x ∈ Rp, ‖x‖s ≤ ‖x‖2 for any s ∈ [2,∞], and optimizing.

By combining the above lemma with anticoncentration results on Gaussian processes

and Proposition 1, we will be able to find sequences δn such that the Kolmogorov distance

between the statistic and its approximation converges to zero. This is precisely what we

need to achieve a valid distributional approximation.

Unconstrained case We begin by considering the unconstrained case Θp = Rp. In this

case, the estimator admits a closed form solution given by:

θ̂n =

((∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Wn,L

(∫ pn

p
n

P L(u)Jn,p(u)′du

))−1

×((∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Wn,L

∫ pn

p
n

P L(u)Q̂n(u)du

) , (11)

provided that the inverse exists. Similarly, for the undersmoothed approximation:
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θ̃∗n =

((∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Ωn,L

(∫ pn

p
n

P L(u)Jn,p(u)′du

))−1

×((∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Ωn,L

∫ pn

p
n

P L(u)
Bn,0(u)√

n
du

) , (12)

In this case, the restricted eigenvalue collapses to the smallest eigenvalue, and we are

able to show that:

Proposition 2. Suppose that for constants C > 0, γ ∈ [0, 1), the smallest eigenvalue

of
(∫ pn

p
n

P L(u)Jn,p(u)′du
)′

Ωn,L

(∫ pn
p
n

P L(u)Jn,p(u)′du
)
, λn,min satisfies, λn,min > C(ρnsn)γ.

Then, if ρnsn → 0,
(∫ pn

p
n

P L(u)Jn,p(u)′du
)′
Wn,L

(∫ pn
p
n

P L(u)Jn,p(u)′du
)

is invertible with

probability approaching one and:

‖
√
n(θ̂n − θ0,n −Dn)−

√
n(θ̃∗n − θ0,n)‖ = OP((ρnsn)1−2γ ∨ ((ρnsn)−γ

√
ρnrn)) ,

where the bias term is given by:

Dn =

((∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Ωn,L

(∫ pn

p
n

P L(u)Jn,p(u)′du

))−1

×(∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Ωn,L

(∫ pn

p
n

P L(u)(Q(u)− θ′0,nJn,p(u))du

) .

Proof. See Appendix A.3.

The previous proposition can be combined with anticoncentration results available in

the literature to provide valid approximation in specific classes of subsets of B(Rn). To

illustrate, we consider the class of hyperrectangles, Cp = {[a, b] : a, b ∈ Rp
,a ≤ b}. In this

case, combining the previous proposition with Nazarov’s inequality (Chernozhukov et al.,

2017b, Theorem 1), we obtain the following conclusion.

Corollary 1. Suppose that the conditions in Proposition 2 hold. Suppose that the variance
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of
√
n(θ̃∗j,n − θj,0,n), j = 1, . . . , p is bounded below uniformly in j and n. If, for some ν > 1

2
:

log(p)ν
(
(ρnsn)1−2γ ∨ ((ρnsn)−γ

√
ρnrn)

)
→ 0

then

sup
A∈Cp
|P[
√
n(θ̂n − θ0,n −Dn) ∈ A]− P[

√
n(θ̃∗n − θ0,n) ∈ A]| → 0 .

Proof. Nazarov’s inequality applied to the random vector v = (
√
n(θ̃∗n − θ0,n)

′
,−
√
n(θ̃∗n −

θ0,n)′)′ implies that Ψ∞(Cp; δ) ≤ δ
σ
(
√

2 log(2p) + 2), where σ2 is the lower bound on the

variance of the approximation. The conclusion then follows from Proposition 2 and Lemma 1.

Similar results can be obtained for other subclasses of sets, by relying on different anti-

concentration results available in the literature. For example, if one wishes to provide valid

approximations on the class of Euclidean balls of arbitrary center or convex subsets of Rp;

one could rely, respectively, on the anticoncentration results of Götze et al. (2019, Theorem

2.7) or Chernozhukov et al. (2017a, Lemma A.2).

Remark 1 (Restrictions on L). Notice that our rates never depend on the number of L-

moments L. This is similar to the results in Alvarez et al. (2023) in the parametric setting,

where L may increase arbitrarily with n. It should be noted, however, that the assumption of

the smallest eigenvalue of the matrix in Proposition 2 being positive requires at least L ≥ p.

Remark 2 (Specialization to polynomial quantiles). It is instructive to consider polynomial

basis functions, i.e. Jn,p(u) = (1, u, . . . , up−1). In this case, results on the Hilbert matrix

(Taussky, 1949) reveal that ρn = π(1 + O(1/ log(n))). Moreover, if we consider an identity

weighting matrix, i.e. Wn,L = IL, then we may take sn = 0. In addition, if we assume,

similarly to the least squares series regression setup (Newey, 1997; Belloni et al., 2015), that

the smallest eigenvalue of the population matrix in the statement of Proposition 2 is bounded
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away from zero uniformly, then γ = 0. Finally, if Q̂n(u) are the empirical quantiles from

a random sample of size n from a distribution satisfying the assumptions in Theorem 6 of

Csorgo and Revesz (1978), then rn = n−1/2 log(n)α for some α > 0 and we obtain that the

approximation on the class of semi-intervals in Corollary 1 holds as soon as:

log(p)ν log(n)α

n1/2
→ 0 .

Remark 3 (Undersmoothing). The inferential approximation (12) does not account for the

bias term Dn. Observe that, in the setting of Corollary 1, this bias may be ignored in

inference under the undersmoothing condition.

log(p)ν
√
n‖Dn‖ → 0 .

To understand this condition, consider, again, the polynomial basis setup of the previous

remark. In this case, Example 1 and Bessel’s inequality (Kreyszig, 1978, Theorem 3.2.8)

reveal that:

‖Dn‖ ≤ C̃ω2,2(Q, p−1) .

If we assume that Q belongs to a generalized Lipschitz space (see Section 2.9 of DeVore

and Lorentz (1993) for a definition), then ω2,2(Q, t) ≤ Dtb for D, b > 0. In this case, the

undersmoothing condition subsumes to:

log(p)ν
√
n

pb
→ 0 .

Remark 4 (Bias-aware inference). If one is not willing to impose the undersmoothing con-

ditions in the previous remark, it is still possible to conduct conservative inference on θ0,n by

bounding the bias. Specifically, Approximation Theory provides the value for the absolute

constant in Example 1. Then, by placing a plausible upper bound on the generalized Lips-
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chitz norm of Q, we may use Example 1 along with representation (12) to adjust the critical

values for coverage even in the worst-case setting. Such a procedure is known as “bias-aware”

inference and has received increasing attention from the Econometrics and Statistics litera-

ture (Armstrong and Kolesár, 2021; Noack and Rothe, 2021; Ignatiadis and Wager, 2022).

Though we recognize the possibility of conducting inference this way, we do not directly

pursue it in this paper.

Remark 5 (Optimal weighting-matrix). From the closed form solution of the approximation,

it is clear that the optimal choice of weights is given by:

Ωn,L = V

[(∫ pn

p
n

P L(u)Bn,0(u)du

)]−
,

where A− denotes the generalized inverse of a matrix. As in two-step GMM, this matrix

may be estimated in a first-step by first running the GMLM with identity weights and then

using it to estimate Ωn,L. Under mild assumptions, this should not affect the overall rate of

estimation.

Ridge regularization We now consider the case of ridge regularization, i.e. Θp = BRp,Rn(0).

In this case, by relying on Proposition 1, we are able to show that, under the assumptions

of Proposition 2, the L-moment estimator with Θp = BRp,Rn(0) achieves the same rates as

the unconstrained estimator.

To provide valid inference in this setting, one should then combine these rates with

anticoncentration results on the approximation (7). Notice that, under ridge regularization,

(7) is the projection of a Gaussian random vector in the ‖·‖Ωn-norm onto an Eucliden ball.

As far as we are aware, anticoncentration results on projection of Gaussian vectors onto

Euclidean balls are not available in the literature. In Appendix B, we provide an approach to

extend results on Gaussian anticoncentration available in the literature to the ball projection

setting. We believe this approach may be of independent interest.

Combining these results, we have the following proposition.
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Proposition 3. Consider the setting with ridge constraint. Suppose that for constants C >

0, γ ∈ [0, 1), the smallest eigenvalue of
(∫ pn

p
n

P L(u)Jn,p(u)′du
)′

Ωn,L

(∫ pn
p
n

P L(u)Jn,p(u)′du
)
,

λn,min, satisfies λn,min > C(ρnsn)γ.

Then, if ρnsn → 0,
(∫ pn

p
n

P L(u)Jn,p(u)′du
)′
Wn,L

(∫ pn
p
n

P L(u)Jn,p(u)′du
)

is invertible with

probability approaching one and:

‖
√
n(θ̂n − θ0,n)−

√
n(θ∗n − θ0,n)‖ = OP((ρnsn)1−2γ ∨ ((ρnsn)−γ

√
ρnrn)) ,

‖
√
n(θ̂n − θ0,n)−

√
n(θ̃∗n − θ0,n)‖ = OP((ρnsn)1−2γ ∨ ((ρnsn)−γ

√
ρn(rn ∨ dn))) .

Moreover, suppose that the variance of the Gaussian approximation in the unconstrained

setting is bounded below uniformly. Suppose that Rn = Gp−l for some l ∈ [0, 1/4). If, for

some ν > 1/2

log(p)ν(ρnsn)−γp1/2+l
(
(ρnsn)1−2γ ∨ ((ρnsn)−γ

√
ρnrn)

)
→ 0 ,

n(ρnsn)γ →∞,

then:

sup
A∈Cp
|P[
√
n(θ̂n − θ0,n) ∈ A]− P[

√
n(θ∗n − θ0,n) ∈ A]| → 0 .

In addition, if the undersmoothing condition log(p)ν(ρnsn)−2γp1/2+ldn → 0 holds, then

the approximation is also valid for the undersmoothened approximation.

Proof. See Appendix A.4.

Remark 6 (Polynomial basis, cont.). Consider the setting of polynomial basis with identity

weights, population matrix with eigenvalues bounded away uniformly from zero, and empir-

ical quantiles from a random sample satisfying the Csorgo and Revesz (1978) assumptions.

Suppose the radius Rn is kept fixed at R̄. In this case, the rate requirement in the statement
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of the proposition subsumes to:

log(p)ν log(n)α
√
p

n
→ 0 ,

which, up to logs, is the same rate obtained by Belloni et al. (2015) in an (unconstrained)

sieve-regression setting. For Q in a generalized Lipschitz class, the undersmoothing condition

is given by:

log(p)ν
√
np1/2−b → 0 ,

thus requiring a degree of smoothness b > 1 for proper bias control.

Remark 7 (Relaxing regularization). In the statement of Proposition 3, we have considered

either a constant or decreasing radius Rn. It is also possible to consider increasing radii,

though in this case one should conduct a careful analysis of the terms in Lemma 3 in the

Appendix to understand the “region” where the anticoncentration “inhabits”. Since constant

radius are a typical choice in constrained least squares estimation (Chernozhukov et al.,

2021); and decreasing radii may be required in some applications, we focus on these cases.

4.1.2 Stochastic basis

In this section, we consider the case of stochastic basis, i.e. Jp,n is a random variable. In

this case, our target estimand is given by:

θ0,n ∈ arginfθ∈Θn‖Q(·)− θ′J∗n,p(·)‖L2[p
n
,pn] , (13)

where J∗n,p is the estimand of Jn,p. We propose to conduct inference conditionally on the

controls Jn,p. For that, we will require Jn,p to be independent of Q̂n, and we also need

to control the estimation error in Jn,p. These conditions are subsumed in the following

assumption.
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Assumption 3 (Estimation error of basis functions). Jn,p is a random vector, with Q̂n

independent of Jn,p. Moreover, there exists a sequence of nonstochastic quantile functions

J∗p,n, n ∈ N, such that, as n→∞,

1.
∥∥θ′0,n√n (Jp,n(·)− J∗p,n(·)

)∥∥
L2[p

n
,pn]

= OP(ξn).

2. λmax

(∫ pn
p
n

(
Jn,p(u)− J∗p,n(u)

) (
Jn,p(u)− J∗p,n(u)

)′
du
)

= OP(εn)

Since we propose an inferential procedure conditionally on the data Jn,p, estimation error

enters the distributional approximation similarly to the bias term Dn(u) in the nonstochastic

setting. As it is generally difficult to bound the bias when Jn,p does not belong to a known

family, we thus focus on an inferential approach that ignores the bias. Specifically, we

consider the approximation:

√
n(θ̃∗n − θ0,n) ∈ arginfx∈√n(Θn−θ0,n)

∥∥∥∥∥
∫ pn

p
n

(B0,n(u)− x′Jp,n(u))P L(u)du

∥∥∥∥∥
2

2,ΩL,n

, (14)

and provide conditions that ensure asymptotic validity of this approximation over a class of

sets Cp, conditionally on the data, i.e.:

sup
C∈Cp
|P[
√
n(θ̂n − θ0,n) ∈ C|Jn,p]− P[

√
n(θ̃∗n − θ0,n) ∈ C|Jn,p]|

p→ 0 .

To verify the above, we first present an analog of Proposition 1 in the stochastic setting.

Proposition 4. Suppose that Assumptions 1, 2 and 3 are satisfied. Let dn := ‖
√
n(Q(·) −

θ′0,nJ
∗
n,p(·)‖L2[p

n
,pn]. For z ∈ Rp, define the restricted eigenvalue around z as :

λz,n := inf
s∈Xn

(s− z)′
(∫ pn

p
n

P L(u)J∗n,p(u)′du
)′

Ωn,L

(∫ pn
p
n

P L(u)J∗n,p(u)′du
)

(s− z)

‖s− z‖2
2

. (15)

Moreover, let:
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ρn := λmax

(∫ pn

p
n

(J∗n,p(u)J∗n,p(u)′)du

)
.

We then have that, for any sequences (δn)n∈N, (Mn)n∈N and (cn)n∈N such that:

Mn
λ0,n√
ρn ∨ εn

→∞ ,

P[λ√n(θ∗n−θ0,n),n ≤ cn]→ 0 ,

cnδ
2
n

(δn +Mn)
√

(ρn ∨ εn)(rn ∨ dn ∨ sn ∨ ξn)
→∞ ,

cnδ
2
n

(δn +Mn)2 (ρn ∨ εn) sn
→∞ ,

(16)

we have:

P[‖
√
n(θ̂n − θ0,n)−

√
n(θ̃∗n − θ0,n)‖ ≥ δn]→ 0 .

In addition, the convergence holds conditionally on Jn,p, i.e.

P[‖
√
n(θ̂n − θ0,n)−

√
n(θ̃∗n − θ0,n)‖ ≥ δn|Jn,p]

p→ 0 .

Proof. See Appendix A.5.

The previous proposition provides rates for the proposed approximation. These rates

depend, crucially, on the estimation error of the basis functions and its interaction with the

oracle θ0,n, as reflected by the constants ξn and εn. In Section 6.2, we provide conditions that

bound these rates when Jn,p are empirical quantiles from random samples of p populations.

In this setup, proper control of the estimation error is achieved under a condition that ensures

the weights θ0,n are diluted across basis functions. As we remark in Section 6.2, a similar

condition appears in the Synthetic Control literature (Ferman, 2021).

We conclude this section by providing a version of Proposition 3 to the case of stochastic

basis.

Corollary 2. Consider the setting with ridge constraint. Suppose that for constants C > 0,
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γ ∈ [0, 1), the smallest eigenvalue of
(∫ pn

p
n

P L(u)J∗n,p(u)′du
)′

Ωn,L

(∫ pn
p
n

P L(u)J∗n,p(u)′du
)
,

λn,min, satisfies λn,min > C((ρn ∨ εn)sn)γ.

Then, if (ρn∨ εn)sn → 0,
(∫ pn

p
n

P L(u)J∗n,p(u)′du
)′
Wn,L

(∫ pn
p
n

P L(u)Jn,p∗(u)′du
)
is invertible

with probability approaching one and:

‖
√
n(θ̂n−θ0,n)−

√
n(θ̃∗n−θ0,n)‖ = OP((ρn∨εn)sn)1−2γ∨((ρn∨εn)sn)−γ

√
(ρn ∨ εn)(rn∨dn∨ξn))) .

Moreover, suppose that the variance of the Gaussian approximation in the unconstrained

setting is bounded below uniformly. Suppose that Rn = Gp−l for some l ∈ [0, 1/4). If, for

some ν > 1/2

log(p)ν((ρn∨εn)sn)−γp1/2+l
(

(ρn ∨ εn)sn)1−2γ ∨ ((ρn ∨ εn)sn)−γ
√

(ρn ∨ εn)(rn ∨ dn ∨ ξn))
)
→ 0 ,

n((ρn ∨ εn)sn)γ →∞,

then:

sup
A∈Cp
|P[
√
n(θ̂n − θ0,n) ∈ A]− P[

√
n(θ̃∗n − θ0,n) ∈ A|Jn,p]|

p→ 0 .

Proof. The proof is analogous to that of Proposition 3, but applied conditionally on Jn,p.

4.2 Inference on linear functionals of mixture weights

In several settings, direct interest is not on the mixture weights, but on linear functionals

thereof. Specifically, one may be interested in conducting inference on the functional

T (x) := ω(x)′θ0,n, x ∈ X , (17)

where (X ,L,Π) is a measure space. In this case, confidence sets for T may be constructed

by approximating the distribution of a suitable Lp-norm. Specifically, for p ∈ [1,∞], we
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consider the scalar random variable:

Tp :=
√
n‖ω(·)′(θ̂n − θ0,n)‖Lp(Π) . (18)

If the quantiles of Tp were known, a valid (1 − α) uniform confidence band for T could

be constructed as:

CT,1−α =

[
ω(·)′θ̂n −

1√
n
QTp(1− α), ω(·)′θ̂n +

1√
n
QTp(1− α)

]
.

In practice, the distribution of Tp is unknown. One is thus tempted to use the distribu-

tional approximations discussed in the previous subsection to compute the quantiles. For

example, if one considers an undersmoothened approximation, one could consider approxi-

mating the distribution of Tp with:

T̃ ∗p =
√
n‖ω(·)′(θ̃∗n − θ0,n)‖Lp(Π) .

Can we ensure this approximation provides valid inference? Application of Lemma 1,

along with the Cauchy-Schwarz inequality, reveals that:

sup
c∈R
|P[Tp ≤ c]−P[T̃ ∗p ≤ c]| ≤ inf

δ≥0

{
P

[
‖
√
n(θ̂n − θ̃∗n)‖2 ≥

δ(∫
X ‖ω(x)‖p2Π(dx)

)1/p
]

+ sup
d∈R

P[d ≤ T̃ ∗p ≤ d+ δ]

}
.

The above inequality shows that to approximate the quantiles of Tp, one has to balance

the strong approximation between
√
n(θ̂n−θ0,n) and

√
n(θ̃∗n−θ0,n) with the anticoncentration

of T ∗p . We have provided rates for the former in the previous subsection. As for the latter

point, bounds on the anticoncentration of T ∗p may be obtained, in the unconstrained setting,

by applying Theorem 2.1 of Chernozhukov et al. (2014).6 These bounds may be extended to
6In the case p = 2, one may alternatively use the results in Götze et al. (2019).
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the ridge setting by a similar approach as the one presented in Appendix B.

5 A practical algorithm for conducting inference

Based on the discussion in Section 4, we propose the following algorithm for conducting

inference. Suppose that we wish to approximate the quantity P[
√
n(θ̂n − θ0,n) ∈ B], where

B ∈ B(Rp). We can then proceed as follows:

Algorithm 1 Approximating the distribution of
√
n(θ̂n − θ0)

1: Fix S ∈ N and γn > 0.
2: Estimate θ̂n by solving (2).
3: Estimate the variance matrix Vn := V

[(∫ pn
p
n

P L(u)Bn,0(u)du
)]

using an estimator V̂n.
4: for s=1 to S do
5: Draw Zs ∼ N

(
0, V̂n

)
.

6: Find and store µ∗s ∈ argminx∈γn(Θn−θ̂0,n)‖Zs −
∫ pn
p
n

x′Jp,n(u)P L(u)du‖2
WL,n

7: end for
8: For B ∈ B(Rp), estimate P[

√
n(θ̂n − θ0) ∈ B] by 1

S

∑S
s=1 1{µ∗s ∈ B}.

Algorithm 1 provides a simulation method for approximating the quantity P[
√
n(θ̂n−θ0) ∈

B]. For simplicity, the algorithm abstracts from bias-aware considerations, thus relying on

an undersmoothened approximation. The algorithm requires two hyperparameters: (i) the

number of simulations S; and (ii) a tuning parameter γn for setting the choice set, whose

choice we discuss further below.

In Section 4, we have provided conditions such that P[
√
n(θ̂n−θ0) ∈ B] is asymptotically

approximated by P[
√
n(θ̃∗n − θ0) ∈ B], uniformly over a class B ∈ C. Note, however, that

the quantity P[
√
n(θ̃∗n − θ0) ∈ B] depends on three unknowns, namely the variance matrix

Vn = V
[(∫ pn

p
n

P L(u)Bn,0(u)du
)]

, the weighting matrix ΩL,n and the centering point θ0,n

of the choice set Xn. Algorithm 1 suggests a “plug-in” approach, whereby these quantities

are replaced by estimators V̂n, WL,n and θ̂n. It also replaces
√
n in the definition of the

choice set Xn with a tuning parameter γn > 0. Such modification is needed in constrained

settings to control how estimation error of the centering point of Xn affects the quality of
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the approximation of the true choice set, especially with regard to the “bindingness” of the

constraints (see Hong and Li, 2020; Li, 2021; Chernozhukov et al., 2023, for related bootstrap

strategies in different constrained settings).

The choice of γn depends crucially on the local geometry of Xn around θ0,n. For example,

in the unconstrained setting (Θn = Rp), Xn = Rp irrespectively of the value of θ0,n or γn.

As a consequence, in this case, validity of Algorithm 1 hinges solely on proper estimation

of Vn and ΩL,n. More generally, the value of θ0,n affects the geometry of Xn. In this case,

Appendix C outlines a general approach which, building upon Lemma 2 in Appendix A,

provides conditions which can be used to find a sequence γn in specific settings. We also

refer the reader to Cattaneo et al. (2021) for a discussion on the role of properly accounting

for the local geometry of Xn when bootstrapping in a constrained setting.

6 Theoretical Applications

6.1 Empirical Bayes

We consider the Empirical Bayes problem, which we briefly outlined in the introduction.

Suppose the researcher has access to a sample of identically distributed real random variables,

which admit a marginal Lebesgue density f satisfying:

f(y) =

∫
Ξ

φ(y; ξ)G(dξ) , y ∈ R, (19)

where Φ := {φ(·; ξ) : ξ ∈ Ξ} is a known parametric family of densities on R, (Ξ,J )

is a measurable space, and G is an unknown probability measure on (Ξ,J ). Our interest

lies in estimating G. For example, one may have access to a sample of noisy standardized

measurements of school quality ξi for n schools, Yi|ξi ∼ N(ξi, 1), i = 1, . . . , n; and would

like to estimate the population distribution of school quality G, so as to select the schools

above 95th percentile of school quality. Alternatively, the researcher may have access to
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noisy measurements on treatment effects of a policy across different sites, and would like to

estimate G to understand the population distribution of these effects. Finally, the researcher

may need to estimate G to perform shrinkage on some preliminary noisy measure (Armstrong

et al., 2022).

In estimating model (19), Efron (2014) distinguishes between two possible approaches.

In f -modelling, one estimates a model for f , and then inverts the map G 7→ fG given by (19)

to find an estimate of G. When the model Φ corresponds to a location family, this procedure

subsumes to the well known density deconvolution problem. In contrast, in G-modelling, one

uses the structure given by (19) to directly estimate G, e.g. by applying the nonparametric

MLE of Kiefer and Wolfowitz (1956).

Efron (2016) argues that fully nonparametric f - or G-modelling approaches are often un-

desirable, as rates of convergence can be poor. In the f -modelling setting, this corresponds

to known problems of nonparametric density deconvolutions (Fan, 1991; Meister, 2009). In

the G-modelling setup, the nonparametric MLE, in spite of enjoying “optimality” properties

(e.g. Polyanskiy and Wu, 2020), can also perform poorly. Perhaps equally or more impor-

tantly, it is not yet clear how to conduct frequentist uncertainty quantification based on the

nonparametric MLE (Ignatiadis and Wager, 2022).

To circumvent the problems with a fully nonparametric approach, Efron (2016) proposes

a sieve G-modelling approach. Motivated by his discussion, and given the general approxi-

mation properties of quantile mixture models discussed in Section 2, as well as the attractive

statistical properties of L-moments, we propose a sieve f -modelling approach based on our

estimation method. For that, we rely on the observation that, for a quantile function QF

obtained upon inversion of a strictly increasing and differentiable distribution function F ,

we have that:

Q′F (u) =
1

F ′(QF (u))
.

In light of this observation, we propose the following steps to estimate G.
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1. Choose nonstochastic differentiable basis functions Jn,p and estimate a quantile mix-

ture model by (2).

2. Estimate f(QF (u)) by ̂f(QF (u)) = 1

θ̂′n∂uJn,p(u)
.

3. Invert (19) to obtain Ĝ.

To conduct frequentist uncertainty quantification on G or functionals thereof, one can rely

on Algorithm 1. Specifically, for a given confidence level (1− α), if the resulting confidence

set for (a functional of) G can be written as {θ ∈ Θn :
√
n(θ̂n − θ) ∈ D}, where D is a

convex set such that P[{
√
n(θ̃∗n − θ0,n) ∈ D}] ≥ 1 − α, then the validity of the approach in

conducting inference can be ascertained by proceeding similarly to Section 4.2. In this case,

one must rely, in the unconstrained setting, on an anticoncentration inequality for convex

sets (Chernozhukov et al., 2017a, Lemma A.2). In the ridge setting, this inequality may

be extended using the arguments in Appendix B. The assumption that D is convex is not

restrictive: note that the inversion step consists on the application of a linear operator on f̂ .

Combined with the fact that x 7→ 1/x is convex (thus exhibiting convex lower contour sets),

we can construct convex confidence sets for G.

Remark 8. Bias-aware inference has been recently advocated in the Empirical Bayes setup

by Ignatiadis and Wager (2022). We note that, by placing bounds on the approximation

error of the sieve-quantile model on the true Q, it may be possible to conduct bias-aware

inference on G. It should be noted, however, that strong restrictions may be needed for these

bounds to be informative. Indeed, since the differentiation operator is unbounded in general

function spaces, the construction of informative bounds may require strong restrictions on

the candidate function space for Q. As we remarked earlier on, we do not pursue bias-aware

inference in this paper.
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6.2 Distributional synthetic controls

In this section, we show how our methodology can be applied to the distributional synthetic

control setting of Gunsilius (2023), which we briefly overviewed in Example 5.7 We note that

Gunsilius (2023) does not introduce formal inference methods in his distributional setup: in

the article, there is a brief suggestion of using placebo to assess the uncertainty in estimates,

though no formal justification is given to it.

We start by recasting the problem in the notation of Section 4. We consider a setting

where we only have one pre-intervention period, which we denote by t∗−1. The stochastic

basis functions Jt∗−1,n,p represent the empirical quantile functions of the p control units

at time t∗ − 1. These empirical quantiles are estimators of the true population quantile

functions J∗t∗−1,n,p, which are unknown. The empirical quantile function of the treated unit

in the pre-treatment period is Q̂t∗−1, and Qt∗−1 is its population counterpart. We begin with

the identification assumption in our distributional setting.

Assumption 4 (Identification Assumption of Distributional Synthetic Control). There ex-

ists θ0,n ∈ BRp,1(0) such that Qt∗−1 = θ′0,nJ
∗
t∗−1,n,p.

Assumption 4 requires that, if the population counterparts were known, it would be

possible to perfectly replicate the quantile function of the treated unit in the pre-treatment

period as a mixture of the controls. We assume that the weights belong to the unit Euclidean

ball, which motivates the use of ridge regularization in the analysis.

The next assumption constrains the estimation error of the empirical quantile functions.

Assumption 5 (Sampling). Q̂n is the empirical quantile function from a random sample

of size n from a continuous distribution F0. Similarly, for each i = 1, . . . , p. Jt∗−1,n,i is the

empirical quantile function from a random sample of size ni from a continuous distribution

function Fi. Finally, for each k ∈ {0, 1, . . . , p}, we assume that:
7Its worth noting that, when there is only one pre-intervention period, the estimator proposed by Gunsilius

(2023) is equivalent to (2) when L = ∞, Wn,L = IL, pn = 0, pn = 1 and Θn = ∆p−1. More generally, by
using the optimal weighting scheme, we expect improvements over Gunsilius (2023) estimator.
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1. Fk is twice differentiable on (ak, bk), where ak = sup{x : Fk(x) = 0}, bk = inf{x :

Fk(x) = 1}, and F ′k 6= 0 on (ak, bk).

2. supak<x<bk Fk(x)(1− Fk(x))
∣∣∣ F ′′(x)

F ′2(x)

∣∣∣ ≤ αk, for some αk > 0.

Assumption 5 requires that the population distributions satisfy the assumptions of The-

orem 6 of Csorgo and Revesz (1978), which provides rates for the strong approximation of

empirical quantile functions.

Assumption 6 (“Dilution condition”). We require that:

1. mini∈1,...,p ni →∞.

2. There exists f > 0 such that, infi∈N infx∈R F
′
i (x) ≥ f .

3. For some µ > 1 we have
p∑
i=1

θ2
0,i,n

n

ni
= OP

(
1

pµ

)

Assumption 6 provides conditions that allow us to properly control the estimation error

of the basis functions. Specifically, under the Csorgo and Revesz conditions in Assumption 5

and Assumption 6, we are able to show that:

∥∥θ′0,n√n (Jp,n(·)− J∗p,n(·)
)∥∥2

L2[p
n
,pn]

= OP

(
1

pµ−1

)
,

ensuring that estimation error of the basis functions may be safely ignored when the number

of controls is large. Crucially, Assumption 6 requires the oracle weights to be sufficiently

diluted across controls, so the sampling error of any control unit becomes asymptotically

negligible. A similar condition appears, either explicitly or implicitly, in the literature on

inference in Synthetic Controls, where randomness of the outcomes in the donor pool is

abstracted from when conducting inference (Ferman, 2021).

Under the previous assumptions, we can derive explicit convergence rates by directly

appealing to Corollary 2.
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Corollary 3. Suppose that for constants C > 0, γ ∈ [0, 1), the smallest eigenvalue of(∫ pn
p
n

P L(u)J∗n,p(u)′du
)′

Ωn,L

(∫ pn
p
n

P L(u)J∗n,p(u)′du
)
, λn,min satisfies, λn,min > C(ρnsn)γ. Sup-

pose that the assumptions in Proposition 4 and Assumptions 4, 5 and 6 hold. Moreover,

suppose the variance of the Gaussian Approximation in the unconstrained setting is bounded

below uniformly, εn ≤ ρn, and Rn = 1 for all n. If

log(p)ν(ρnsn)−γp1/2

(
(ρnsn)1−2γ ∨ (ρnsn)−γ

√
ρn

log(n)α

n1/2

)
→ 0 ,

n(ρnsn)γ →∞ ,

log(p)ν
√
n

pb
→ 0 ,

then:

sup
A∈Cp
|P[
√
n(θ̂n − θ0,n) ∈ A|Jn,p]− P[

√
n(θ̃∗n − θ0,n) ∈ A|Jn,p]|

p→ 0 .

7 Empirical Application

In this section, we apply our methodology to assess the effects of an environmental catastro-

phe on the local wage distribution of the affected municipality.

7.1 Brumadinho Dam Disaster

7.1.1 Context

On January 25, 2019, a devastating tailings dam collapse occurred near the city of Brumad-

inho, located in the state of Minas Gerais, Brazil. This incident resulted in the loss of 270

lives and caused extensive contamination of the neighboring Paraopeba River. The victims

primarily consisted of employees of Vale, the largest mining conglomerate in Latin America,

which operated both the dam and the mines providing materials for its construction.

The release of mining waste resulted in significant environmental and socioeconomic
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damage. Brumadinho suffered the most severe impact as the closest city to the collapsed dam.

However, according to official authorities, an additional 25 cities were also affected. Damages

resulted in the loss of hectares of forest and vegetation cover, as well as the contamination

of the Paraopeba River with elevated levels of copper, negatively impacting its ecosystem

and local agriculture. The city of Brumadinho experienced a decline in revenue due to the

halting of mining operations, adversely affecting the local economy and government finances.

Vale faced legal and financial repercussions, including penalties and the obligation to

provide compensation to affected individuals and communities.8 According to the judicial

agreement reached in 2021, Vale is required to allocate approximately 7.58 billion USD

towards reparations, of which 4.4 billion USD has already been disbursed, with a substantial

portion allocated to economic restitution for the affected cities.9 Amidst all the repercussions,

the labor market consequences of such an event still remain an important economic and policy

question.

7.1.2 Empirical question: distributive consequence on wage earners

The distributive impact of the events in Brumadinho on the wages of formal sector workers

is an open empirical question. The economic disruptions resulting from the dam collapse

would negatively affect job opportunities but it is unclear which workers are more exposed

to the shock. However, the allocation of reparations and investments in the affected areas

as well as income support programs would go in the other direction, helping mitigate the

impacts. The overall economic recovery and reconstruction efforts may generate new jobs

and attract investments, benefiting workers across different skill levels.

The main empirical challenge that motivates the choice of the distributional synthetic
8Upon the initial news of the disaster, the stock price of Vale on the B3 (São Paulo Stock Exchange) fell

over 10%. It then fell another 24% on the next trading day, January 28, corresponding to $19 billion in lost
market capitalization (Source: Reuters). At the same time, bond prices fell, reflecting an increased risk of
non-payment by Vale, as one of the consequences included a court order that froze 11.8 billion reais ( USD
3.1 billion at the time) in Vale’s accounts, comprising roughly half of Vale’s cash on hand.

9For comprehensive and detailed information regarding affected cities and the reparations, please refer to
the official website of the State Government of Minas Gerais. For the expenditure report on reparations by
Vale, please refer to the official website of the company. Both sources are in Portuguese.
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control method is the nature of the shock’s impact, affecting at once both the city of Bru-

madinho and neighboring municipalities. The lack of a clear control group hinders a direct

comparison and motivates the need to construct the synthetic control unit. The approach

discussed in Section 6.2 is particularly suitable as a large number of potential control units

(other municipalities) favors regularization and correct inference is needed to assess the ef-

fects on the entire distribution and validate the identification Assumption 4 by evaluating

the fit on pre-shock period data not used in the analysis.

7.2 Data

Our primary outcome of interest is the distribution of average monthly wages for private sec-

tor workers in each municipality. We use the publicly accessible Brazilian employer-employee

matched data (RAIS) to construct the empirical quantile function for each municipality ×

year pair. RAIS database, also known as Relação Anual de Informações Sociais (Annual

Social Information Report) is a comprehensive dataset maintained by the Brazilian the Min-

istry of Labor and Employment and contains information on formal sector employment in

the country, including both public and private sector data.10 We use data from 2017-2021,

details are on Appendix E.

7.3 Empirical Strategy

We set the treatment year to 2019, t∗ = 2019, and use as potential control units other

municipalities within the same state as Brumadinho (Minas Gerais) that were not affected

by the barrage rupture (p = 827). We solve for the synthetic control estimator as in (2):

θ̂n ∈ arginfθ∈BRp,1(0)

∥∥∥∥(∫ 1

0

(Q̂2018(u)− θ′J2018,p(u))P L(u)du

)∥∥∥∥2

2,IL
, (20)

10The dataset is collected annually from employers through mandatory reporting requirements. Employers
are required to provide detailed data about their employees, including their employment status, occupation,
earnings, and other relevant indicators and demographic characteristics. Within the publicly accessible
version of the dataset, we can observe for a given municipality the entire wage distribution of formal sector
workers (but not individual IDs).

35



where Q̂2018(·) is Brumadinho’s empirical average monthly wage quantile function in the

year 2018, J2018,p(·) are the empirical wage quantile functions of the control units. We set

L = 1000 and use the identity weighting matrix.

To construct confidence sets for J∗t,p(·)′θ0,n, the counterfactual distribution at year t, we

rely on Algorithm 1. Specifically, we set γn =
√
n, where n = 9, 632 is the number of

observations in Brumadinho in 2018; and consider S = 500 simulations. We then use these

simulations to construct pointwise confidence intervals for J∗t,p(u)′θ0,n at different years and

quantile levels u.

7.4 Results

We conduct two types of analysis. First, as a check on the plausibility of Assumption 4,

we evaluate how well the weights in 2018 replicate the wage distribution of Brumadinho

in 2017. Next, we evaluate the distributional effects at years t ∈ {2019, 2020, 2021}. The

observed empirical quantile functions are reported in black solid lines, whereas the estimated

counterfactuals are reported in blue, along with 95% pointwise confidence intervals for the

counterfactual in blue dashed lines.

7.4.1 Pretraining Fit

Figure 1 reports the observed quantile function of Brumadinho in 2017 (black line), along

with the counterfactual that uses the weights estimated in 2018 (blue solid line) and the

associated 95% pointwise confidence intervals (blue dashed line). Overall, pretreatment fit

is good, though 2018 weights have some difficulty in reproducing the distribution at the

lowermost percentiles.
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Figure 1: Pretraining fit (2017).

7.4.2 Treatment Effects

Figure 2 reports distributional treatment effects in 2019. We note that the observed quantiles

remain below the counterfactual at the smallest percentiles, with this difference being sta-

tistically significant around percentiles 3-5. In the range 6-30, observed and counterfactual

quantiles remain close to each other, after which the observed quantiles cross the counter-

37



factual, remaining above it in the range 35-65, with the difference being (slightly) significant

in the range 50-60. After the 65th quantile, observed and counterfactual quantiles return to

being close to each other.

Distributional effects in 2020 (Figure 3) and 2021 (Figure 4) exhibit quite different pat-

terns. In 2020, there is still a slight, though barely significant, decrease in the observed

quantiles, vis-às-vis the counterfactual, around the 5th percentile. In contrast, after the

median, the observed quantile is consistently (and significantly), above the counterfactual.

In 2021, effects at the lower tail mostly disappear, with the observed counterfactual being

above the counterfactual around the median and, especially, after the 95th percentile.

Overall, our results uncover a range of distributional effects on the wage distribution.

The crossing of distributions, which is observed in 2019 and, to a lesser degree, in 2020, is

consistent with a displacement effect, whereby intermediate-paying wages are replaced by

low-payment contracts. Such a phenomenon leads simultaneously to a decrease in the lowest

quantiles, and an increase from the median on. The counterfactual and wage distributions in

2021 exhibit a pattern which more closely resembles first-order stochastic dominance, with

quantiles being above the counterfactual around the median and especially in the upper tail.

Such pattern is compatible with two possible explanations. First, an increase in the median

may be explained by a loss of intermediate-paying jobs, with no subsequent replacement

by low-earning contracts. The increase in the upper tail could also be driven by a similar

phenomenon, though an alternative explanation is also plausible. In Brumadinho, most

private high-earning jobs are offered by Vale. Inasmuch as Vale workers are able to extract

higher concessions from the company after the rupture, this could lead to an increase in the

upper tail.11

11In a similar vein, the increase in the median could be alternatively driven by an increase in median-
paying jobs three years into the barrage rupture, e.g. due to sectoral changes in the local economy driven
by the disaster.
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Figure 2: Treatment effects (2019).
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Figure 3: Treatment effects (2020).
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Figure 4: Treatment effects (2021).

8 Conclusion

In this paper, we have introduced nonparametric quantile mixture models as an attractive

counterpart to nonparametric density mixture models. We have shown that, similarly to

density mixture models, nonparametric quantile mixtures exhibit interesting approximation

properties. They are also closely connected to the distributional synthetic controls recently
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proposed by Gunsilius (2023).

We have introduced estimation and inference tools for nonparametric mixtures by rely-

ing on the concept of L-moments. Introduced by Hosking (1990), L-moments are robust

alternative alternative to standard moments that characterise distributions with finite first

moments. The estimation of models by matching a weighted distance between sample and

theoretical L-moments has been shown to produce statistically efficient estimators in para-

metric (Alvarez et al., 2023) and semiparametric (Alvarez and Biderman, 2022) settings. In

this paper, we have extended this estimation approach to a sieve setting, which we show

leads to a computationally convenient estimator with tractable statistical properties.

We develop a full inferential theory for our proposed estimator – including a general

approach to constructing confidence sets on mixture weights –, by relying on the concept of

strong approximation. In so doing, we make two contributions to statistical theory, which

we believe may be of independent interest. First, we introduce a lemma that bounds the

strong approximation of a quadratic optimizer by an approximating program in terms of its

constituent elements. Inasmuch as strong approximations are an ever more prevalent tool

in devising inferential procedures in nonstandard or high-dimensional settings (see Cher-

nozhukov et al., 2014; Armstrong and Kolesár, 2017; Cattaneo et al., 2020; Fang et al., 2023;

Chernozhukov et al., 2023, for some recent examples), this result may be useful in other

contexts. Second, we develop a strategy that enables extending anticoncentration inequali-

ties for Gaussian random variables available in the literature to the projection of Gaussian

random variables onto Euclidean balls. Such procedure is useful for providing inferential

guarantees in constrained estimation settings.

As theoretical applications of our proposed methodology, we show how quantile mixtures

may be used to recover estimates (and confidence sets) of a nonparametric density model. We

also show that, as a direct byproduct of our theory, one is able to provide a valid inferential

procedure in the distributional synthetic control setup of Gunsilius (2023), where formal

inference procedures were previously unavailable. As an empiricl application, we apply our
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inferential procedure in order to assess the distributional impacts of the Brumadinho barrage

rupture. Our approach enables us to uncover a rage of effects across the wage distribution.

We believe there are several additional applications to our proposed methodology. For

example, in a risk manamagement setting, one may be tempted to model the quantile func-

tion of the prediction error of an algorithm as a mixture of extreme value distributions in

order to better understand the likelihood of extreme returns. Even though our theory is

general enough to accomodate this setting, our results require a strong approximation to the

adopted quantile estimator, which is generally unavailable when these are empirical quan-

tiles from the residuals of a first-step. As we discuss in Section 3, it appears possible to

extend the strong approximation of Csorgo and Revesz (1978) to this setting by relying on

sample-splitting and cross-fitting. We intend to pursue such extensions in future research.
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Appendices

A Proof of main results in Section 4

A.1 A lemma on the approximation of quadratic minimizers

Before proving the results in Section 4, we state an auxiliary lemma, which concerns the

strong approximation of quadratic minimizers. This lemma may be of independent interest:

Lemma 2 (Strong approximation of quadratic minimizers). Consider the program:

ψ ∈ minξ∈X −ξ′S +
1

2
ξ′Wξ ,

where X is a convex subset of Rd, S is a d× 1 random vector, and W is a d× d symmetric

random matrix. Consider the alternative program:

ψ∗ ∈ minξ∈X −ξ′Z +
1

2
ξ′Ωξ ,

where Z is a d × 1 random vector and Ω is a d × d symmetric random matrix. Define the

restricted eigenvalue:

λψ∗(Ω) = inf
ξ∈X

(ξ − ψ∗)′Ω(ξ − ψ∗)
‖ξ − ψ∗‖2

2

.

We then have that, for any δ > 0:
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P[‖ψ − ψ∗‖2 > δ] ≤ inf
c>0,M>0,κ∈(0,1)

{
P
[
‖S − Z‖2 ≥ κ

c

2

δ2

(δ +M)

]
+

P
[
‖W − Ω‖2 ≥ (1− κ)

c

2

δ2

(δ +M)2

]
+ P [‖ψ∗‖ ≥M ] + P[λψ∗(Ω) ≤ c]

}
(21)

Proof. Let g∗(ξ) := −ξ′Z + 1
2
ξ′Ωξ. We begin by noticing that, by convexity, for any ξ ∈ X ,

we must have that:

(−Z + Ωψ∗)′(ξ − ψ∗) ≥ 0.

The latter implies that:

g∗(ξ)− g∗(ψ∗) ≥ −ψ∗′Ω(ξ − ψ∗) +
1

2
ξ′Ωξ − 1

2
ψ∗′Ωψ∗ =

1

2
(ξ − ψ∗′)′Ω(ξ − ψ∗).

It then follows, by the definition of the restricted eigenvalue, that:

g∗(ξ)− g∗(ψ∗) ≥
λθ∗n(Ωn)

2
‖θ̂n − θ∗n‖2

2.

Next, proceeding similarly to the proof of Theorem 2 of Kato (2009), we obtain the

following bound, for each δ > 0:

P[‖ψ − ψ∗‖2 > δ] ≤ P[∆(δ) > λψ∗(Ω)δ2/2], (22)

where ∆(δ) = supξ∈X :‖ξ−ψ∗‖2≤δ | − ξ
′(S − Z) + (1/2)ξ′(W − Ω)ξ|. Note that, for any c > 0

and M > 0:

P[‖ψ−ψ∗‖2 > δ] ≤ P[(M+δ)‖S−Z‖2+(M+δ)2‖Ω−W‖2/2 > cδ2/2]+P[‖ψ∗‖ ≥M ]+P[λψ∗(Ω) ≤ c],
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and, then, by the union bound, for any κ ∈ (0, 1)

P[‖ψ − ψ∗‖2 > δ] ≤ P
[
‖S − Z‖2 ≥ κ

c

2

δ2

(δ +M)

]
+ P

[
‖W − Ω‖2 ≥ (1− κ)

c

2

δ2

(δ +M)2

]
+

P [‖ψ∗‖ ≥M ] + P[λψ∗(Ω) ≤ c]

.

Optimizing leads to the desired result.

Lemma 2 decomposes the approximation of a quadratic minimizer by another quadratic

minimizer onto four terms: the first two terms concern the approximation of the linear and

quadratic terms of the target program; the third term restricts the norm of the approximating

solution; and the final term limits the “restricted eigenvalue” of the approximating program.

We note that the third term, which concerns the norm of the approximating solution, may

be further bounded by applying Lemma 2 recursively. Specifically, one may bound the norm

of the approximation ψ∗ in terms of a nonstochastic approximation (where random variables

are replaced by their expected values). In the next subsection, we explore this idea to prove

a general result on the rates of our L-moment estimator.

A.2 Proof of Proposition 1

We apply Lemma 2 to our problem. We consider the “undersmoothed” approximation
√
n(θ̃∗n − θ0,n). The approximation

√
n(θ∗n − θ0,n) is similar and therefore omitted. To apply

the lemma, we define:
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S =

(∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Wn,L

(∫ pn

p
n

(
√
n(Q̂n(u)−Q(u)) +Dn(u))P L(u)du

)

W = 2

(∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Wn,L

(∫ pn

p
n

P L(u)Jn,p(u)′du

)

Z =

(∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Ωn,L

(∫ pn

p
n

B0,n(u)P L(u)du

)

Ω = 2

(∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Ωn,L

(∫ pn

p
n

P L(u)Jn,p(u)′du

)
(23)

We will provide rates for each term. We first note that, for any φ ∈ Rp, Bessel’s inequality

yields:

∥∥∥∥∥
(∫ p

p
n

P L(u)Jn,p(u)′du

)
φ

∥∥∥∥∥
2

2

≤
∫ pn

p
n

(Jn,p(u)′φ)2du = φ′

(∫ pn

p
n

(Jn,p(u)Jn,p(u)′)du

)
φ .

Consequently, by the definition of the spectal norm, we obtain that:

∥∥∥∥∥
∫ p

p
n

P L(u)Jn,p(u)′du

∥∥∥∥∥
2

≤ √ρn .

We also note that Bessel’s inequality yields

∥∥∥∥∥
∫ pn

p
n

(
√
n(Q̂n(u)−Q(u))−B0,n(u))P l(u)du

∥∥∥∥∥
2

≤ ‖
√
n(Q̂n −Q)−B0,n‖L2[p

n
,pn] = OP(rn) ,

and

∥∥∥∥∥
∫ pn

p
n

Dn(u)P l(u)du

∥∥∥∥∥
2

≤ ‖Dn‖L2[p
n
,pn] = dn .

Combining these facts, we obtain that:
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‖Z − S‖2 = OP(
√
ρn(rn ∨ dn ∨ sn)) ,

‖W − Ω‖2 = OP(ρnsn) .

Combining these facts with the fact that An = OP(1) =⇒ lims→∞ P[|An| > s] = 0, and

applying Lemma 2 twice: first, to approximate
√
n(θ̂n − θ0,n) with

√
n(θ̃∗n − θ0,n); then, to

approximate
√
n(θ̃∗n − θ0,n) with 0 (the minimizer of minx∈Xn x

′Ωx); we obtain the desired

result.

A.3 Proof of Proposition 2

One may prove this proposition by relying on Proposition 1. Instead, we offer a direct proof.

By Weyl’s inequality (Wainwright, 2019, page 241):

∣∣∣λmin

((∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Wn,L

(∫ pn

p
n

P L(u)Jn,p(u)′du

))

−λmin

((∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Ωn,L

(∫ pn

p
n

P L(u)Jn,p(u)′du

))∣∣∣ =

O(ρnsn)

Consequently, under our assumptions:

lim
n→∞

P

[
λmin

((∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Wn,L

(∫ pn

p
n

P L(u)Jn,p(u)′du

))
> 0

]
= 1 ,

and we may work with representation (11).

Next, we observe that, for symmetric invertible matrices A and B:

‖A−1−B−1‖ = ‖A−1(A−B)B−1‖ ≤ ‖A−1‖‖A−B‖‖B−1‖ ≤ ‖A−1‖2‖A−B‖+‖A−1‖‖A−B‖2 ,
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where the last inequality follows from ‖B−1‖ ≤ ‖A−1‖ + |‖A−1‖ − ‖B−1‖| and Weyl’s in-

equality.

Applying these results, we obtain the desired conclusion.

A.4 Proof of Proposition 3

The first part of the proposition follows by applying Proposition 1. The second part of the

proof follows from the projection characterization of (7) and Example 6 in Appendix B, by

taking εp = (log(p)ν(ρnsn)−γp1/2+l)−1 and noticing that σ
√
n ≤ tr(Σ) ≤

√
‖Σ‖2

√
n, where

Σ is the variance matrix of the approximation in the unconstrained setting, which can be

shown to satisfy, ‖Σ‖ = O((ρnsn)−2γ); and σ2 is the lower bound on the variance.

A.5 Proof of Proposition 4

The proof is analogous to the proof of Proposition 1, in that we apply Lemma 2 to our

problem. We start by defining D̂n(u) := θ′n,0
(
Jn,p(u)− J∗n,p(u)

)
and Dn(u) := Q(u) −

θ′n,0J
∗
n,p(u). Next, define:

S =

(∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Wn,L

(∫ pn

p
n

(
√
n(Q̂n(u)−Q(u)) +Dn(u) + D̂n(u))P L(u)du

)

W = 2

(∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Wn,L

(∫ pn

p
n

P L(u)Jn,p(u)′du

)

Z =

(∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Ωn,L

(∫ pn

p
n

B0,n(u)P L(u)du

)

Ω = 2

(∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Ωn,L

(∫ pn

p
n

P L(u)Jn,p(u)′du

)
(24)

Following the same steps as in Appendix A.2, we arrive at:

‖Z − S‖2 = OP(
√

(ρn ∨ εn)(rn ∨ dn ∨ sn ∨ ξn)) ,
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‖W − Ω‖2 = OP((ρn ∨ εn) sn) ,

and the first conclusion follows similarly as in Appendix A.2. The conclusion that conver-

gence also holds conditionally follows from Markov inequality.

B Anti-concentration inequalities on the projection onto

Euclidean balls

This appendix shows how to extend Gaussian anti-concentration inequalities available in the

literature to the projection of Gaussian vectors onto an Euclidean ball.

We consider Z ∼ N(0,Σ) a d× 1 normal random variable. Let X := PB(0;M)(Z) be the

projection of Z onto the Euclidean ball of radius M and centered at the origin. We consider

bounding the anticoncentration function, L∞X (ε; C), where:

L∞X (ε; C) := sup
C∈C

P[X ∈ Cε
∞ \ C−ε∞ ] .

We begin by noting that:

X = Z1‖Z‖2≤M +M
Z

‖Z‖2

1‖Z‖2≤M .

Let Z∗ = M Z
‖Z‖2 . We note that the law of total probability yields :

L∞X (ε; C) ≤ L∞Z (ε; C) ∧ P[‖Z‖2 ≤M ] + sup
C∈C

P
[
Z∗ ∈ Cε

∞ \ C−ε∞ , ‖Z‖2 > M
]

︸ ︷︷ ︸
=L∗(ε)

The literature provides upper bounds on the first term for specific classes of sets. We

seek to bound the second term. Let ψ2 = E[‖Z‖2
2]. Applying Lemma 1 with s =∞ yields:
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L∗(ε) ≤ inf
δ≥0

{
P
[
M‖Zj‖∞

∣∣∣∣ψ − ‖Z‖2

ψ‖Z‖2

∣∣∣∣ ≥ δ

]
+ sup

C∈C
P
[
M

ψ
Z ∈

(
Cε
∞ \ C−ε∞

)δ \ (Cε
∞ \ C−ε∞

)−δ]}∧P[‖Z‖2 > M ] ,

and we also have that, for any s:

P
[
M‖Zj‖∞

∣∣∣∣ψ − ‖Z‖2

ψ‖Z‖2

∣∣∣∣ ≥ δ

]
≤ P [‖Zj‖∞ ≥ s] + P

[∣∣∣∣ψ − ‖Z‖2

ψ‖Z‖2

∣∣∣∣ ≥ δ

Ms

]
.

We will bound both terms on the right-hand-side. Let σ̄2 = maxiV[Zi]. First, by Lemma

2.2.2 of van der Vaart and Wellner (1996):

P [‖Z‖∞ ≥ s] ≤ 2 exp

(
− s2

K log(d+ 1)σ̄2

)
.

Next, we note that, by concavity of x 7→
√
x:12

√
|ψ2 − ‖Z‖2| ≥ |ψ − ‖Z‖2|

Consequently, we have that:

P
[∣∣∣∣ψ − ‖Z‖2

ψ‖Z‖2

∣∣∣∣ ≥ δ

Ms

]
≤ P

[
|ψ2 − ‖Z‖2| > ψ2‖Z‖2

2

δ2

M2s2

]
≤

P
[∣∣ψ2 − ‖Z‖2

∣∣ > ψ2

2

(
ψ2δ2

Ms2
∧ 1

)]

But then, the Hanson-Wright inequality (Theorem 1.1 of Rudelson and Vershynin (2013)),

yields:

P[|ψ2 − ‖Z‖2| > t] ≤ 2 exp

(
−cmin

{
t2

‖Σ‖2
F

,
t

‖Σ‖2

})
=⇒

P
[∣∣ψ2 − ‖Z‖2

∣∣ > ψ2

2

(
ψ2δ2

Ms2
∧ 1

)]
≤ 2 exp

(
−cmin

{
ψ4

4‖Σ‖2
F

(
ψ2δ2

Ms2
∧ 1

)2

,
ψ2

2‖Σ‖2

(
ψ2δ2

Ms2
∧ 1

)})
,

12Recall that
√
a+
√
b ≥
√
a+ b, for any a, b ≥ 0.
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But, by Von-Neumann trace inequality,

‖Σ‖2
F = tr(Σ2) ≤ ‖Σ‖2 tr(Σ) = ‖Σ‖2ψ

2 .

Equalling the upper bounds corresponding to the tail inequalities yields:

P
[
M‖Zj‖∞

∣∣∣∣ψ − ‖Z‖2

ψ‖Z‖2

∣∣∣∣ ≥ δ

]
≤ 4 exp

(
−min

{ c1/3ψ2δ4/3

K2/3 log(d+ 1)2/3σ̄4/3(4M‖Σ‖2)1/3
,

√
cψ2δ

K1/2 log(d+ 1)1/2σ̄(2M‖Σ‖2)1/2
,
cψ2

4‖Σ‖2

})
,

(25)

Combining the above leads to the following lemma.

Lemma 3. For any class of sets C ⊆ B
(
Rd
)
,

L∞X (ε; C) ≤ L∞Z (ε; C) ∧ P[‖Z‖2 ≤M ]+

inf
δ≥0

{
U(δ) + sup

C∈C
P
[
M

ψ
Z ∈

(
Cε
∞ \ C−ε∞

)δ \ (Cε
∞ \ C−ε∞

)−δ]} ∧ P[‖Z‖2 > M ] ,
(26)

where

U(δ) = 4 exp
(
−min

{ c1/3ψ2δ4/3

K2/3 log(d+ 1)2/3σ̄4/3(4M‖Σ‖2)1/3
,

√
cψ2δ

K1/2 log(d+ 1)1/2σ̄(2M‖Σ‖2)1/2
,
cψ2

4‖Σ‖2

})
.

The previous lemma offers an upper bound to anticoncentration in the sup-norm in terms

of estimable quantities. The second term inside the infimum is itself an anticoncentration in-

equality of a rescaled Gaussian vector. In what follows, we illustrate our lemma by providing

anticoncentration rates in the class of hyperrectangles.

Example 6 (Hyperrectangles). Consider the class of hyperrectangles Cd. In this case,

Nazarov’s inequality reveals that:
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sup
C∈Cd

P
[
M

ψ
Z ∈

(
Cε
∞ \ C−ε∞

)δ \ (Cε
∞ \ C−ε∞

)−δ] ≤ ψ(ε+ δ)

σM
(
√

2 log(2d) + 2) .

Take ε = δ. We can then use Lemma 3 to find a sequence εd such that L∞X (εd; C)→ 0.

Remark 9. It is possible to adapt the proof of Lemma 3 to bound L2
X(ε; C). In this case,

one replaces the maximal inequality that bounds P[‖Z‖∞ ≥ δ] with Proposition 1 of Hsu

et al. (2012), which provides an upper bound to P[‖Z‖2 ≥ δ].

C On the choice of tuning sequence γn

Define the following terms:

Zn =

(∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Ωn,L

(∫ pn

p
n

B0,n(u)P L(u)du

)

Ωn = 2

(∫ pn

p
n

P L(u)Jn,p(u)′du

)′
Ωn,L

(∫ pn

p
n

P L(u)Jn,p(u)′du

)
.

(27)

For a given sequence (γn)n∈N, the bootstrap estimator is defined as,

θBn ∈ arginfθ∈Θn −θ
′Zn +

γn
2

(
θ − θ̂

)′
Ωn

(
θ − θ̂

)
. (28)

We consider the problem of approximating
√
n(θ∗n − θ0,n) with γn(θBn − θ̂n). We start with

the strong approximation, note that, by the triangle inequality

‖γn(θBn − θ̂n)−
√
n(θ∗n − θ0,n)‖ ≤

∥∥∥∥∥γn
√
n(θ̂n − θ0,n)√

n

∥∥∥∥∥+ ‖γn(θBn − θ0,n)−
√
n(θ∗n − θ0,n)‖.

Following the proof of Proposition 1, we have

∥∥∥∥∥γn
√
n(θ̂n − θ0,n)√

n

∥∥∥∥∥ = OP

(
γn√
n

(√
ρn

λ0,n

∨ ξn
))

,
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where ‖
√
n(θ̂n − θ0,n)−

√
n(θ∗n − θ0,n)‖ = OP(ξn). Now define the event:

Aγn = {
√
n(θ∗n − θ0,n) ∈ γn(Θn − θ0)} ∪ {γn(θBn − θ0,n) ∈

√
n(Θn − θ0)},

we can decompose, for δ > 0:

P(‖γn(θBn−θ0,n)−
√
n(θ∗n−θ0,n)‖ > δ) ≤ P(‖γn(θBn−θ0,n)−

√
n(θ∗n−θ0,n)‖ > δ|Aγn)+(1−P(Aγn))

Conditional on the event Aγn , by Lemma 2 we have:

‖γn(θBn − θ0,n)−
√
n(θ∗n − θ0,n)‖ = OP

(
γn√
n

√
ρn

(√
ρn

λ0,n

∨ ξn
))

,

which implies that, conditional on Aγn ,

‖γn(θBn − θ̂n)−
√
n(θ∗n − θ0,n)‖ = OP

(
γn√
n

√
ρn

(√
ρn

λ0,n

∨ ξn
))

.

And we conclude that for bootstrap validity we need the additional condition that we can

find a sequence γn, such that

γn√
n

√
ρn

(√
ρn

λ0,n

∨ ξn
)
→ 0,

and

P(Aγn)→ 1 .

D Approximation through nonnegative weights

In this appendix, we show that any nonnegative random variable whose quantile function

satisfies Assumption 7 can be arbitrarily well approximated (in the L2-norm) by a mixture

of “truncated” Extreme Value quantiles with an underlying nonnegative measure.
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D.1 Setup

We consider the problem of approximating a quantile function Q by “truncations” of quantile

functions given by

Qθ(u) =
1

θ
(− log u)−1, θ ∈ (0,∞)

The quantile functions presented above represent the quantiles of random variables that

conform to a generalized extreme value distribution, with associated scale parameter given

by σ = 1
θ
, shape parameter given by ξ = 1 and scale given by µ = 1

θ
.

Assumption 7. We make additional assumptions about Q

1. Q(0) ≥ 0.

2. Q ∈ L2[0, 1].

3. Q is differentiable and strictly increasing in (0, 1).

D.2 Approximation Result

Lemma 4. Let Q be a quantile function satisfying Assumption 7 and let,

αθ,k(u) :=
1

θ
(− log u)−11

[
θ ≥ u

k

]
1

[
θ ≤ u(1−C

k )

k

]
,

for some C > 0. There exists a sequence of nonnegative measure {µ+
k }k∈N on (R+,B[R+]),

such that, ∥∥∥∥Q− ∫
R++

αθ,kµ
+
k (dθ)

∥∥∥∥
L2[0,1]

→ 0,

as k →∞. Moreover, these mixtures are themselves quantiles.

Proof. Fix C > 0. Define the following functions:

α(m) :=
1

m
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h(m,x) := m− log x

g(m, k) := (em)k

h−1(z, x) := z−
1

log x .

Here h(e−1, x) = elog x = x, then we define the identity element η := e−1. Define the sequence

{mk}k∈N, mk = exp
(
C
k
− 1
)
and define a sequence of functions indexed by k ∈ N,

αk(m) =
dg(m, k)

dm
α(m) =

k

m
.

We claim that αk(m) is an approximate identity. First,

∫ mk

η

k

m
= k

(
log

(
exp

(
C

k
− 1

))
+ 1

)
= C

. Moreover, for every δ > 0,

lim
k→∞

∫ ∞
η+δ

k1

(
e−1 + δ < exp

(
C

k
− 1

))
dm = 0

then we can apply Lemma 5 to conclude that αk(m) is a C-approximate identity. Defining

[
αk ∗

Q

C

]
(u) :=

∫ mk

η

αk(m)
Q(h(m,u))

C
dm,

we can apply Lemma 5 to conclude

∥∥∥∥αk ∗ QC −Q
∥∥∥∥
L2[0,1]

→ 0, as k →∞

Next, we show that the function
[
αk ∗ QC

]
is a quantile function. We can rewrite:

[
αk ∗

Q

C

]
(u) =

∫ mk

η

αk(m)
Q(h(m,u))

C
dm =

∫ u(1− C
K )

u

dh−1(z, u)

dz
αk(h

−1(z, u))
Q(z)

C
dz =
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=

∫ u(1− C
K )

u

1

−z log u
z−

1
log u

k

z−
1

log u

Q(z)

C
dz =

∫ u(1− C
K )

u

k

z
(− log u)−1Q(z)

C
dz,

where the second equality follows from the change of variables formula of the Riemann

Integral by letting z := h(m,x). Since Q is nonnegative,
[
αk ∗ QC

]
is non negative as well.

Taking the derivative with respect to u by applying the Leibnitz Rule and simplifying we

get:

d

du

[
αk ∗

Q

C

]
(u) =

k

C

1

u(log u)2

∫ u(1− C
K )

u

Q(z)

z
dz + (− log u)

(
Q
(
u(1− C

K )
)
−Q(u)

) ,

further integrating by parts the term
∫ u(1− C

K )
u

Q(z)
z
dz, we conclude

d

du

[
αk ∗

Q

C

]
(u) ≥ 0 ⇐⇒

∫ u(1− C
K )

u

(− log z)Q′(z)dz ≥ 0,

which is true by Assumption 7. Finally, we can get the desired result, by defining θ := z
k

and applying the change of variables formula again to conclude:

[
αk ∗

Q

C

]
(u) =

∫ ∞
0

1

θ
(− log u)−11

[
θ ≥ u

k

]
1

[
θ ≤ u(1−C

k )

k

]
kQ(θk)

C
dθ

Remark 10. The result goes through if we replace [0, 1] by any closed interval X ⊆ [0, 1]

and/or Q(0) ≥ 0 by Q(1) ≤ 1 in Assumption 7. In this case, the approximation is with

respect to the norm of L2(X ).

D.3 Auxiliary Definitions and Lemmas

We follow the idea from Nguyen and McLachlan (2019) and Nguyen et al. (2020), to construct

convolution-based approximations. Because we are working with mixture of quantiles instead

of mixture of densities we have to adapt the definitions and proofs.
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D.3.1 Approximate Identity Definition

Let {Mk}k∈N be a sequence of sets, where for all k,Mk ⊂ R+ and let hk :Mk ×R+ → R+,

be a family of functions indexed by k such that, there exists η ∈ R+ with hk(x, η) = x, for

all x ∈ R+. We define the modified convolution operator ∗, such that

[f ∗ g]k(x) =

∫
Mk

f(m)g (hk(m,x)) dm.

When there is no ambiguity We will drop the subscript k of the left-hand side.

Definition 4. Let k ∈ N, and k∗ be a limit point of N. A family of functions {αk}k∈N

defined on R+ is called a C-approximate identity if

1.
∫
MK
|αk(m)dm| ≤ C̃, for all k ∈ R+

2.
∫
Mk

αk(m)dm = C, for all k ∈ R+, where C 6= 0 is a constant.

3.
∫
Mk/Bη(δ)

|αk(m)|dm −→
k→k∗

0 for every δ > 0.

4. η ∈Mk, for all k ∈ R+

where Bη(δ) denotes the ball centered at η with radius δ.

Next, we provide a useful lemma for constructing approximate identities.

Lemma 5. Let g : R+ × N→ R+, and α : R+ → R+, if:

1. dg(m,k)
dm

exists and is positive almost everywhere,

2. There exists a sequence {mk}k∈N, such that, for every k, Mk = [η,mk], mk+1 ≤ mk,

limk→∞mk = η, ∫ mk

η

dg(m, k)

dm
α(g(m, k))dm = C

for some C 6= 0 and, for every δ > 0,

lim
k→∞

∫ ∞
η+δ

dg(m, k)

dm
α(g(m, k))1 (n+ δ < mk) dm = 0
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then

αk(x) :=
dg(m, k)

dm
α(g(m, k))

is a C−approximate identity with k∗ =∞.

Proof. The proof is direct by verifying that the definition holds.

D.3.2 Generic Approximation

Lemma 6. Let αk be a C-approximate identity for some k∗ ∈ [0,∞]. If X ⊆ R+, f

∈ L2 (X ), and, for all k ∈ N, f(hk(m,x)) is continuous in m and uniformly continuous in a

neighborhood of η, then
∥∥αk ∗ f

C
− f

∥∥
2
→ 0 as k → k∗.

Proof.

∣∣∣∣[αk ∗ fC
]

(x)− f(x)

∣∣∣∣ =

∣∣∣∣∫
Mk

αk(m)
f(hk(m,x))

C
dm− f(x)

∣∣∣∣
=

1

|C|

∣∣∣∣∫
Mk

αk(m)[f(hk(m,x))− f(x)]dm

∣∣∣∣ (by 2.)

≤ 1

|C|

∫
Mk

|αk(m)[f(hk(m,x))− f(x)]| dm

=
1

|C|

∫
Mk

|αk(m)|
1
2 |[f(hk(m,x))− f(x)]||αk(m)|

1
2dm

≤ 1

|C|

(∫
Mk

|αk(m)|[f(hk(m,x))− f(x)]2dm

) 1
2
(∫
Mk

|αk(m)|dm
) 1

2

(by C-S)

≤ 1√
|C|

(∫
Mk

|αk(m)|[f(hk(m,x))− f(x)]2dm

) 1
2

(by 1.).

We can bound the L2 norm:

∫
X

∣∣∣∣[αk ∗ fK
]

(x)− f(x)

∣∣∣∣2 dx ≤ 1√
|C|

∫
X

∫
Mk

|αk(m)|[f(hk(m,x))− f(x)]2dmdx

=
1√
|C|

∫
Mk

|αk(m)|
(∫
X

[f(hk(m,x))− f(x)]2dx

)
dm (Fubinis).
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Note that we we have that as m→ η,

lim
m→η

(∫
X

[f(hk(m,x))− f(x)]2dx

)
= 0 (By continuity of f(hk(m,x)) with respect to m).

Define gk(m) ≡
(∫
X [f(hk(m,x))− f(x)]2dx

)
, then g(η) = 0. Moreover,

∫
Mk

|αk(m)|gk(m)dm ≤
∫
Mk

|αk(m)||gk(m)|dm

=

∫
Bη(δ)

|αk(m)||gk(m)|dm+

∫
Mk/Bη(δ)

|αk(m)||gk(m)|dm

≤ sup
Bη(δ)

|gk(m)|
∫
Bη(δ)

|αk(m)|dm+ sup
Mk/Bη(δ)

|gk(m)|
∫
Mk/Bη(δ)

|αk(m)|dm

Since we can bound |gk(m)| ≤M , taking the limit we get

lim
k→k∗

∫
Mk

|αk(m)|gk(m)dm ≤ C lim
k→k∗

sup
Bη(δ)

|gk(m)| (By 1. and 2.)

Since g(η) = 0, f(hk(m,x)) is continuous in m we can pick delta such that the right-hand

side is close enough to 0. Then we conclude that

lim
k→k∗

∫
X

∣∣∣∣[αk ∗ fC
]

(x)− f(x)

∣∣∣∣2 dx = 0

E Empirical Application

E.1 Data Source

Our data source is the publicly available version of the employer-employee matched data

RAIS from 2017 to 2021. A standardized version is available to download here.
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E.2 Data Cleaning

The construction of the empirical quantile function of the average monthly wages for private

sector workers in each municipality × year proceeds as follows:

1. We exclude entries with 0 average monthly wage (column valor_remuneracao_media

equal 0).

2. We exclude entries where the employee is hired as a public servant (column tipo_vinculo

equal 2, 30, 31 or 35).

3. We exclude entries where the employer sector is either public administration, defense,

social security, or international organizations. (first two digits of column cnae_2 equal

84 or 99).
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