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1. Introduction

Several problems of recent economic interest amount to characterizing the set of dis-

tributions of posterior quantiles that can be induced by some statistical experiment,

or to finding a distribution in this set that maximizes some objective. These prob-

lems include apparent overconfidence (Benôıt and Dubra, 2011)—e.g., what distribu-

tions of medians of individuals’ beliefs about their own abilities are consistent with

Bayesian updating?; partisan gerrymandering (Friedman and Holden 2008; Kolotilin

and Wolitzky 2020b)—e.g., what is the highest distribution of district median voters

attained by any districting plan?; and quantile persuasion (Kolotilin and Wolitzky,

2020a)—e.g., what experiment maximizes the expected action of a receiver who min-

imizes the expected absolute deviation of her action from the unknown state of the

world?1

Our problem is as follows. There is a real-valued state θ. A statistical experiment

induces a distribution over posteriors µ. For any q ∈ (0, 1), each posterior µ has at

least one q-quantile. In general, a posterior can have multiple q-quantiles due to gaps

in the support of µ: for example, if µ puts equal weight on two states θ < θ′, then

the set of medians of µ is the entire interval [θ, θ′]. An experiment, together with a

selection rule to break ties for posteriors with multiple q-quantiles, induces a distribu-

tion of posterior q-quantiles. A distribution of posterior q-quantiles is implementable

if it is induced by some experiment and selection rule; it is uniquely implementable

if it is induced by an experiment that almost always induces posteriors with unique

q-quantiles. We ask what distributions of posterior q-quantiles are implementable

or uniquely implementable; how to implement them; and how to optimize a linear

functional over distributions of posterior q-quantiles.

We provide a simple solution to this problem. For any q ∈ (0, 1), there is a single

experiment—the q-quantile matching experiment—that simultaneously implements

all implementable distributions of posterior q-quantiles, with different distributions

spanned by different selection rules. For example, if the state is uniformly distributed

on [0, 1] and the relevant quantile is the median, the q-quantile matching experiment

is the median matching experiment that, whenever the true state is θ ∈ [0, 1/2],

reveals only that the state is either θ or 1/2+ θ (and, hence, whenever the true state

1Yang and Zentefis (2024) explore these and other applications. Kolotilin and Wolitzky (2020b)
consider a more general gerrymandering model, which reduces to optimizing the distribution of
posterior quantiles in a special case. Kolotilin and Wolitzky (2020a, Proposition 2’) introduce
quantile persuasion as a special case of a more general persuasion model, which is further developed
in Kolotilin, Corrao, and Wolitzky (2024).
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Figure 1. Implementable Distributions of Posterior Medians

Notes: When the prior F is uniform on [0, 1], H and H are the low-
est and highest implementable distributions of posterior medians. A
distribution H is implementable iff H ≤ H ≤ H. Optimizing a linear
functional over distributions of posterior medians requires taking the
optimal selection from each horizontal dotted line. For example, the
blue (red) dots are the optimal selections for an increasing (decreasing)
objective function.

is θ ∈ (1/2, 1], reveals only that the state is either θ or θ − 1/2).2 In general, the

q-quantile matching experiment pools pairs of states across a q-quantile of the prior

in a positively assortative manner, with weight q on the lower state in each pair.

To see why the q-quantile matching experiment implements all implementable dis-

tributions of posterior q-quantiles, consider again the median matching experiment

with a uniform state. When the experiment reveals that the state is θ or 1/2 + θ

with equal probability, every value x ∈ [θ, 1/2 + θ] is a posterior median. The

median matching experiment thus simultaneously implements (i) the distribution

H(x) = max{0, 2x− 1}, (ii) the distribution H(x) = min{2x, 1}, and (iii) every dis-

tribution H satisfying H ≤ H ≤ H. Conversely, simple Markov-type inequalities

imply that every implementable distribution is bounded by H and H. Moreover, the

set of uniquely implementable distributions of posterior quantiles is essentially the

2To our knowledge, the median matching experiment first appears in Kolotilin and Wolitzky (2020a,
p. 29). It is closely related to the median one-to-one matching introduced by Kremer and Maskin
(1996) and further studied by Legros and Newman (2002)—the title of the present paper acknow-
ledges this connection.
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same: any desired selection from each set of q-quantiles induced by the q-quantile

matching experiment can be uniquely selected by assigning it an extra ε probabil-

ity. Finally, optimizing a linear functional over distributions of posterior quantiles

simply requires taking the optimal selection from each set of q-quantiles induced by

the q-quantile matching experiment. See Figure 1 for an illustration of our results.3

We also show that the q-quantile matching experiment is the unique experiment that

simultaneously implements all implementable distributions of posterior q-quantiles.

To see why, consider again a uniform state, and compare the median matching ex-

periment with the negative assortative matching experiment that, whenever the true

state is θ ∈ [0, 1], reveals only that the state is either θ or 1 − θ. The negative

assortative matching experiment simultaneously implements the lowest and highest

distributions of posterior medians, H and H, but it does not implement all intermedi-

ate distributions, such as the distribution H1/2 given by H1/2(x) = H(x) for x < 1/4,

H1/2(x) = 1/2 for x ∈ [1/4, 3/4), and H1/2(x) = H(x) for x ≥ 3/4. Indeed, the neg-

ative assortative matching experiment induces posteriors with medians between 1/4

and 3/4 when the true state lies between 1/4 and 3/4, while H1/2 assigns probability

0 to these medians.

The current paper is closely related to Benôıt and Dubra (2011) and Yang and Zentefis

(2024). Both of these papers establish results that are very similar to our Theorem 1

(albeit Benôıt and Dubra do so for discrete experiments with finitely many induced

posteriors). Our main contribution is introducing the q-quantile matching experiment,

which yields a much simpler proof of Theorem 1, as well as new results (Theorems 2

and 3).

2. Implementable Distributions of Posterior Quantiles

This section shows that the q-quantile matching experiment implements all imple-

mentable distributions of posterior q-quantiles.

Let Θ = [θ, θ] ⊂ R, with θ < θ, be a compact state space; let C(Θ) be the set of

continuous functions on Θ; let ∆(Θ) be the set of cumulative distribution functions

on Θ, endowed with the weak⋆ topology; and let ∆(∆(Θ)) be the set of probability

measures on ∆(Θ). Recall that G ∈ ∆(Θ) is a non-decreasing, right-continuous

function satisfying G(θ) ≥ 0 and G(θ) = 1. Let δx, with x ∈ Θ, denote the degenerate

distribution at x, so that δx(θ) = 1{θ ≥ x}.
3Similar figures in the literature include Figure 1 of Owen and Grofman (1988), Figure 2 of Kamenica
and Gentzkow (2011), and Figure 3 of Yang and Zentefis (2024).
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Fix a prior distribution F ∈ ∆(Θ) and a quantile of interest q ∈ (0, 1). Following

Kamenica and Gentzkow (2011), define an experiment as a distribution τ ∈ ∆(∆(Θ))

of posterior distributions G ∈ ∆(Θ) such that
∫
Gdτ(G) = F . For each posterior G,

define the set of q-quantiles of G as

X(G) = {x ∈ Θ : G(x−) ≤ q ≤ G(x)},

where G(x−) denotes the left limit limθ↑x G(θ), with the convention G(θ−) = 0. In

addition, for each G, define its generalized inverse G−1 as

G−1(p) = inf{θ ∈ Θ : G(θ) ≥ p}, for all p ∈ [0, 1].

That is, G−1(p) is the smallest p-quantile of G.

To define the q-quantile matching experiment, let ω be uniformly distributed on [0, 1],

and for each ω ∈ [0, q], let G = Gω be the distribution that assigns probability q to

F−1(ω) and assigns probability 1−q to F−1(q+(1−q)ω/q). The q-quantile matching

experiment is defined as an experiment τ ⋆ such that for τ ⋆-almost all G, there exists

ω ∈ [0, q] such that G = Gω.
4 Formally, τ ⋆ is defined by

τ ⋆(M) =

∫ q

0

1{qδF−1(ω) + (1− q)δF−1(q+ 1−q
q

ω) ∈ M}dω
q
, for all M ⊂ ∆(Θ).

While all of our results hold for general F and q, for simplicity we will provide intuition

only for the uniform-median case where F is uniform on [0, 1] and q = 1/2.

A distribution H of q-quantiles is implemented by an experiment τ if there exists

a (measurable) selection χ from the correspondence X such that the distribution of

χ(G) induced by τ is H. A distribution H of q-quantiles is uniquely implemented by

an experiment τ if H is implemented by τ and X(G) is a singleton for τ -almost all G.

Let H and H⋆ be the sets of implementable and uniquely implementable distributions

of q-quantiles.

The following theorem characterizes H and H⋆.

Theorem 1. The following hold:

(1) H = {H ∈ ∆(Θ) : H ≤ H ≤ H}, where H(x) = max{0, (F (x)− q)/(1− q)}
and H(x) = min{F (x)/q, 1} for all x ∈ Θ.

(2) Every H ∈ H is implemented by τ ⋆.

4For example, when F is atomless, we can let ω = F (θ), so that the q-quantile matching experiment
induces posteriors that assign probability q to θ and assign probability 1−q to F−1(q+(1−q)F (θ)/q),
for θ ∈ [0, F−1(q)].
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(3) If F has a positive density on Θ then H is the closure of H⋆. In particular,

for any objective function V ∈ C(Θ), we have

sup
H∈H⋆

∫
Θ

V (x)dH(x) = max
H∈H

∫
Θ

V (x)dH(x). (1)

Figure 1 illustrates the set H. The intuition for Theorem 1 is straightforward. First,

by simple Markov-type inequalities, any implementable H must satisfy H ≤ H ≤ H.

For example, if the posterior median is less than x with probability p, then θ must be

less than x with probability at least p/2. When F (x) = x, this implies that p ≤ 2x, so

the probability that the posterior median is less than x is at most min{2x, 1} = H(x).5

Conversely, to see that any H satisfying H ≤ H ≤ H is implementable, consider the

median matching experiment τ ⋆ that induces only posteriors Gθ that assign equal

probability to some θ ∈ [0, 1/2] and to 1/2+θ. The set of medians of such a posterior

is X(Gθ) = [θ, 1/2 + θ]. At the same time, H ≤ H implies that H−1(2θ) ≥ θ,

and H ≥ H implies that H−1(2θ) ≤ 1/2 + θ, so we have H−1(2θ) ∈ [θ, 1/2 + θ].

Thus, χ(Gθ) = H−1(2θ) is a selection from X(Gθ). Finally, the distribution of χ(Gθ)

induced by τ ⋆ is H, because the states that induce medians below x under τ ⋆ with

selection χ(Gθ) are precisely those in [0, H(x)/2] and [1/2, 1/2 + H(x)/2], and the

measure of these states is H(x).

As to unique implementation, for any e ∈ (0, 1] and any implementable and absolutely

continuous distribution H with density h, we explicitly construct a modification of

the median matching experiment τ ⋆e that uniquely implements the distribution (1 −
e)H + eF of medians, by making every posterior Gθ a convex combination of the

median matching distribution (δθ+ δ1/2+θ)/2 and the degenerate distribution δH−1(2θ)

at the unique median H−1(2θ) ∈ [θ, 1/2 + θ]. Intuitively, for each θ ∈ [0, 1/2], τ ⋆e
induces posteriors Gθ and GH(θ)/2 with probabilities 1 − e and e; similarly, for each

θ ∈ (1/2, 1], τ ⋆e induces posteriors Gθ−1/2 and GH(θ)/2 with probabilities 1 − e and

e. Then posterior medians in [x, x + dx] are induced at θ ∈ [H(x)/2, H(x+ dx)/2]

with probability 1 − e, at θ ∈ [1/2 + H(x)/2, 1/2 +H(x+ dx)/2] with probability

1 − e, and at θ ∈ [x, x + dx] with probability e. Since H(x + dx) = H(x) + h(x)dx,

the density of the posterior median x multiplied by the posterior at x is equal to

(1 − e)h(x)(δH(x)/2 + δ1/2+H(x)/2)/2 + eδx, as required. To complete the proof of

5This argument is closely related to Kamenica and Gentzkow’s (2011) “prosecutor-judge” example.
As in their example, the key observation is that if the prior probability of an event (e.g., the event
that θ ≤ x) is x, then the maximum probability that the posterior probability of this event is at
least 1/2 is min{2x, 1}.
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Theorem 1, we provide a simple argument showing that any distribution in H can be

approximated by uniquely implementable distributions (1− e)H + eF .6

The literature contains several close antecedents of Theorem 1. Friedman and Holden

(2008) study partisan gerrymandering with a finite number of legislative districts.

Benôıt and Dubra (2011) study testing for overconfidence in a self-ranking exper-

iment with a finite number of bins. In our notation, Friedman and Holden and

Benôıt and Dubra consider discrete experiments with finitely many induced posteri-

ors. Friedman and Holden show that a discrete version of H is the highest imple-

mentable distribution of posterior medians. Benôıt and Dubra show that the set of

uniquely implementable distributions of posterior medians is a discrete version of the

set {H ∈ ∆(Θ) : H < H < H}. In a general setting with possibly infinitely many

induced posteriors in the contexts of quantile persuasion and partisan gerrymander-

ing, respectively, Kolotilin and Wolitzky (2020a) and Kolotilin and Wolitzky (2020b)

show that H is the highest implementable distribution of posterior medians. Finally,

in a general setting, Yang and Zentefis (2024) show that the set of implementable

distributions of posterior medians is {H ∈ ∆(Θ) : H ≤ H ≤ H}, and also construct

a dense subset of distributions that are uniquely implementable.7 Relative to Benôıt

and Dubra and Yang and Zentefis, Theorem 1 shows that the q-quantile matching

experiment implements every H ∈ H, and also yields a much simpler proof.

Farther afield, Blackwell (1953), Strassen (1965), and Kolotilin (2018) character-

ize implementable distributions of posterior means. An interesting open question is

whether a useful analogue of Theorem 1 (for medians) and Strassen’s theorem (for

means) exists for intermediate statistics that interpolate between the median and the

mean.8

6A complete characterization of the set H⋆ remains an open problem. Two observations are that H⋆

is a proper subset of H (as H and H do not belong to H⋆), and that not all uniquely implementable
distributions can be implemented by our modification of q-quantile matching. For example, H = δ1/2
is uniquely implemented by complete pooling but not by our modification of median matching.
7To establish results similar to our Theorem 1, Yang and Zentefis characterize the extreme points
of the set {H ∈ ∆(Θ) : H ≤ H ≤ H}. As recently emphasized by Kleiner, Moldovanu, and
Strack (2021), characterizing a convex set by its extreme points can be useful for establishing a
given property of the set. In contrast, we show that directly characterizing the set of implementable
distributions of posterior quantiles is much easier than characterizing the extreme points of this set.
8Kolotilin, Corrao, and Wolitzky (2024) study the question of characterizing optimal distributions
of such intermediate statistics—the analogous problem to that of Theorem 2 in the current paper.



DISTRIBUTIONS OF POSTERIOR QUANTILES VIA MATCHING 7

3. Optimal Distributions of Posterior Quantiles

This section uses the q-quantile matching experiment to characterize the distributions

of posterior q-quantiles that maximize a continuous linear functional.

Theorem 2. Let V ∈ C(Θ). Then H (uniquely) maximizes
∫
V (x)dH(x) on H

iff H−1(p) (uniquely) maximizes V on [H
−1
(p), H−1(p)] for (almost) all p ∈ [0, 1].

Consequently, the value of the maximization problem is

max
H∈H

∫
Θ

V (x)dH(x) =

∫ 1

0

max{V (x) : x ∈ [H
−1
(p), H−1(p)]}dp. (2)

Conceptually, Theorem 2 follows easily from Theorem 1. Since the median matching

experiment τ ⋆ implements all implementable distributions of medians, optimization

just requires selecting an optimal median χ(Gθ) ∈ argmaxx∈[θ,1/2+θ] V (x) for each

posterior Gθ induced by τ ⋆, as illustrated in Figure 1. The value of the maximiz-

ation problem is thus 2
∫ 1/2

0
maxx∈[θ,1/2+θ] V (x)dθ, and a distribution H of medians

is optimal iff H−1(2θ) ∈ argmaxx∈[θ,1/2+θ] V (x) for all θ ∈ [0, 1/2]. That is, optimal

solutions can be obtained by pointwise maximization without any ironing procedure.

In general, by Theorem 1, for each H ∈ H and p ∈ [0, 1], we have H
−1
(p) ≤ H−1(p) ≤

H−1(p). If we consider the relaxed problem of finding a measurable function J :

[0, 1] → Θ to

maximize

∫ 1

0

V (J(p))dp

subject to H
−1
(p) ≤ J(p) ≤ H−1(p), for all p ∈ [0, 1],

one solution is

J⋆(p) = min argmax{V (x) : x ∈ [H
−1
(p), H−1(p)]}, for all p ∈ [0, 1].

This function J⋆ is monotone; moreover, the proof of Theorem 2 shows that there

exists H⋆ ∈ ∆(Θ) such that J⋆ = H⋆−1, so H⋆ solves the optimization problem (2).

The closest antecedent to Theorem 2 is Corollary 4 of Yang and Zentefis (2024), which

solves the maximization problem (2) in the special cases where V is quasi-concave

or quasi-convex. The solution follows immediately from Theorem 2. To see how,

suppose that V is quasi-concave with a maximum at x⋆ ∈ [0, 1]. For each interval

[θ, 1/2 + θ], it is optimal to select x⋆ if x⋆ ∈ [θ, 1/2 + θ], θ if x⋆ < θ, and 1/2 + θ if
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x⋆ > 1/2 + θ. This induces the distribution of posterior medians

H(x) =

H(x), x < x⋆,

H(x), x ≥ x⋆.
(3)

Next, suppose that V is quasi-convex with V (x⋆) = V (1/2+x⋆) for some x⋆ ∈ [0, 1/2].

Then, for each interval [θ, 1/2 + θ], it is optimal to select θ if x⋆ > θ and 1/2 + θ if

x⋆ < θ. This induces the distribution of posterior medians

H(x) =


H(x), x < x⋆,

2x⋆, x ∈ [x⋆, 1
2
+ x⋆),

H(x), x ≥ 1
2
+ x⋆.

(4)

From the perspective of optimization, it is natural to ask whether each extreme point

of H is exposed, meaning that it is the unique maximizer in H of
∫
V (x)dH(x) for

some V ∈ C(Θ). It turns out that some extreme points are not exposed. To see

this, note that in the uniform-median case the distribution H⋆ = (δ1/4 + δ1/2)/2 is

an extreme point of H, as there are no distinct H1, H2 ∈ H such that H⋆ = (H1 +

H2)/2. By Theorem 2, if H⋆ maximizes
∫
V (x)dH(x) on H for some V ∈ C(Θ), then

V (1/4) ≥ V (x) for all x ∈ [θ, 1/2+θ] and all θ ∈ [0, 1/4], and similarly V (1/2) ≥ V (x)

for all x ∈ [θ, 1/2 + θ] and all θ ∈ [0, 1/2]. Thus, V (1/4) = V (1/2) ≥ V (x) for all

x ∈ [0, 1]. But then the distribution δ1/2 ∈ H also maximizes
∫
V (x)dH(x), which

shows that H⋆ is not an exposed point of H.9

4. Unique Properties of the Quantile Matching Experiment

Theorem 1 shows that the q-quantile matching experiment simultaneously implements

all implementable distributions of posterior q-quantiles. We now show that it is the

unique experiment to do so. For simplicity, in this section we assume that F has a

positive density on Θ.

We actually establish the stronger result that the q-quantile matching experiment

is the unique experiment that simultaneously implements all optimal distributions

for strictly quasi-convex objective functions: that is, all distributions of the form of

equation (4).

9The distribution H⋆ does uniquely maximize
∫
V (x)dH(x) for V = 2 · 1{x = 1/4} + 1{x = 1/2},

which is upper semi-continuous but not continuous. An open question is whether each extreme
point of H, characterized in Theorem 1 of Yang and Zentefis (2024), is the unique maximizer of∫
V (x)dH(x) for some upper-semicontinuous V . This is a weaker property than exposedness, as the

usual theory of exposed points relies on continuity.
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Theorem 3. The q-quantile matching experiment τ ⋆ is the unique experiment τ that,

for each p ∈ [0, 1], implements the distribution Hp ∈ H given by

Hp(x) =


H(x), x < xp,

p, x ∈ [xp, xp),

H(x), x ≥ xp,

where xp = F−1(qp) and xp = F−1(q + (1− q)p).

(5)

In other words, for any experiment τ ̸= τ ⋆, there is some p ∈ [0, 1] such that τ does

not implement Hp. For example, in the uniform-median case, the negative assortative

matching experiment does not implement H1/2, as noted in the introduction.

An immediate corollary of Theorem 3 is that the q-quantile matching experiment

is the unique experiment that minimizes the maximum regret of a designer who

chooses an experiment τ before learning her objective V , but chooses a selection χ

after learning V . Formally, for each experiment τ ∈ ∆(∆(Θ)) and each objective

V ∈ C(Θ) define the designer’s regret as

r(τ, V ) = max
H∈H

∫
Θ

V (x)dH(x)− sup
H∈H

{∫
Θ

V (x)dH(x) : H is implemented by τ

}
.

Note that r(τ, V ) ≥ 0 for all τ and V . Say that a set of possible objective functions

V ⊂ C(Θ) is rich if, for all x0, x1 ∈ Θ, there exists a strictly quasi-convex V ∈ V with

V (x0) = V (x1). We then have the following result.

Corollary 1. If V is rich then the q-quantile matching experiment τ ⋆ is the unique

experiment τ such that r(τ, V ) = 0 for all V ∈ V.

5. Proofs

Proof of Theorem 1. Consider any experiment τ ∈ ∆(∆(Θ)) and any measurable

selection χ(G) from X(G). Let H be the distribution of χ(G) induced by τ . Then,

for each x ∈ Θ, we have

F (x) =

∫
G(x)dτ(G) =

∫
1{G(x) ≥ q}G(x)dτ(G) +

∫
1{G(x) < q}G(x)dτ(G)

≥
∫

1{G(x) ≥ q}qdτ(G) ≥
∫

1{χ(G) ≤ x}qdτ(G) = qH(x),

showing that H ≤ H. A symmetric argument shows that H ≥ H.
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For the converse, we first note that the median matching experiment τ ⋆ is well-defined

because
∫
Gdτ ⋆(G) = F : indeed, for all θ ∈ Θ, we have∫
G(θ)dτ ⋆(G) =

∫ q

0

(
qδF−1(ω) + (1− q)δF−1(q+ 1−q

q
ω)

)
(θ)

dω

q

=


∫ F (θ)

0
q dω

q
, F (θ) < q,∫ q

0
q dω

q
+
∫ q

1−q
(F (θ)−q)

0 (1− q)dω
q
, F (θ) ≥ q,

= F (θ),

where the second equality holds because F−1(ω) ≤ θ iff ω ≤ F (θ), and F−1(q +
1−q
q
ω) ≤ θ iff ω ≤ q

1−q
(F (θ) − q). Note also that, for each ω ∈ [0, q], the set of

q-quantiles of Gω is X(Gω) = [F−1(ω), F−1(q + 1−q
q
ω)].

Now fix a distribution H ∈ ∆(Θ) satisfying H ≤ H ≤ H. Note that, for each

ω ∈ [0, q], since H ≤ H, we have H−1(ω
q
) ≥ H

−1
(ω
q
) = F−1(ω); and, since H ≥ H,

we have H−1(ω
q
) ≤ H−1(ω

q
) = F−1(q + 1−q

q
ω). Thus, H−1(ω

q
) ∈ X(Gω). We can

therefore define a selection χ(G) from X(G) by letting χ(G) = H−1(ω
q
) in the τ ⋆-

almost sure event that G = Gω for some ω ∈ [0, q], and (for concreteness) letting

χ(G) = minX(G) otherwise. Finally, the distribution of χ(G) induced by τ ⋆ is H,

because, for all x ∈ Θ, we have∫
1{χ(G) ≤ x}dτ ⋆(G) =

∫
1{H−1(ω

q
) ≤ x}dω

q
=

∫ qH(x)

0

dω

q
= H(x).

For unique implementation, assume that F has a positive density on Θ = [θ, θ]. Fix

any H ∈ H. Consider a sequence of partitions of Θ given by θi,n = θ + (θ − θ) i
2n
,

with i ∈ {0, 1, . . . , 2n}. Define a sequence Hn ∈ ∆(Θ) by

Hn(x) = H(θi−1,n)
F (θi,n)− F (x)

F (θi,n)− F (θi−1,n)
+H(θi,n)

F (x)− F (θi−1,n)

F (θi,n)− F (θi−1,n)
,

for all i ∈ {1, . . . , 2n} and all x ∈ [θi−1,n, θi,n]. Note that Hn is well-defined, because

F is strictly increasing on Θ. Since H ∈ H, we have Hn ∈ H. Moreover, Hn has a

simple density function hn with respect to F , given by

hn(x) =
H(θi,n)−H(θi−1,n)

F (θi,n)− F (θi−1,n)
,

for all i ∈ {1, . . . , 2n} and all x ∈ (θi−1,n, θi,n).

Next, for each e ∈ (0, 1] and each n, there exists an experiment τ ⋆e,n ∈ ∆(∆(Θ))

satisfying the following two properties. First, for τ ⋆e,n-almost all G, there exists x ∈ Θ
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such that G = Gx where

Gx =
(1− e)hn(x)(qδF−1(qHn(x)) + (1− q)δF−1(q+(1−q)Hn(x))) + eδx

(1− e)hn(x) + e
.

This implies that X(Gx) is the singleton {x}, because e > 0 and F−1(qHn(x)) ≤ x ≤
F−1(q + (1 − q)Hn(x)) (which holds because H(x) ≤ Hn(x) ≤ H(x)). Second, the

distribution of unique quantiles χ(Gx) = x induced by τ ⋆e,n is (1− e)Hn + eF .

Formally, τ ⋆e,n is defined by

τ ⋆e,n(M) =

∫ 1

0

1 {Gx ∈ M} ((1− e)hn(x) + e) dF (x), for all M ⊂ ∆(Θ).

Note that τ ⋆e,n is a well-defined experiment because
∫
Gdτ ⋆e,n(G) = F . Indeed, for all

θ ∈ Θ, we have∫
G(θ)dτ ⋆e,n(G) =

∫ 1

0

((1− e)hn(x)(qδF−1(qHn(x)) + (1− q)δF−1(q+(1−q)Hn(x))) + eδx) (θ) dF (x)

= (1− e)


∫ H−1

n (
F (θ)
q

)

0 qdHn(x), F (θ) < q,∫ H−1
n (1)

0
qdHn(x) +

∫ H−1
n (

F (θ)−q
1−q

)

0 (1− q)dHn(x), F (θ) ≥ q,

+ e

∫ θ

0

dF (x) = F (θ),

where the second equality holds because F−1(qHn(x)) ≤ θ iff x ≤ H−1
n (F (θ)

q
), and

F−1(q + (1− q)Hn(x)) ≤ θ iff x ≤ H−1
n (F (θ)−q

1−q
); and the third equality holds because

Hn(H
−1
n (p)) = p for all p ∈ [0, 1], by continuity of Hn (which holds because Hn has a

density with respect to F and F has a density with respect to the Lebesgue measure).

Finally, the distribution of unique quantiles χ(G) induced by τ ⋆e,n is (1− e)Hn + eF ,

because, for all y ∈ Θ, we have∫
1{χ(G) ≤ y}dτ ⋆e,n(G) =

∫ y

0

((1− e)hn(x) + e)dF (x) = (1− e)Hn(y) + eF (y).

Now fix V ∈ C(Θ). By continuity of V and compactness of Θ, for all ε > 0, there

exists N ∈ N such that (i) |V (x) − V (y)| ≤ ε for all x, y ∈ [θi−1,n, θi,n], all i ∈
{1, . . . ., 2n}, and all n ≥ N , and (ii) e|V (x) − V (y)| ≤ ε for all x, y ∈ Θ and all

e ∈ (0, 1
N
]. Then, for all n ≥ N and e ∈ (0, 1

N
], we have∣∣∣∣∫ V (x)dH(x)−

∫
V (x)d((1− e)Hn + eF )(x)

∣∣∣∣
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≤ (1− e)

∣∣∣∣∫ V (x)d(H −Hn)(x)

∣∣∣∣+ e

∣∣∣∣∫ V (x)d(H − F )(x)

∣∣∣∣ ≤ ε+ ε.

Since this holds for any V ∈ C(Θ), it follows that (1− 1
n
)Hn +

1
n
F converges weakly

to H. In turn, since we have seen that the experiment τ ⋆1/n,n uniquely implements

(1− 1
n
)Hn+

1
n
F , we conclude that H⋆ is dense in H. Finally, H is compact, as ∆(Θ) is

compact by Theorem 15.11 in Aliprantis and Border (2006), and H is the intersection

over x ∈ Θ of the closed subsets Hx := {H ∈ ∆(Θ) : H(x) ≤ H(x) ≤ H(x)} of ∆(Θ).

Thus, the closure of H⋆ is H, and hence (1) holds for any V ∈ C(Θ). □

Proof of Theorem 2. For each H ∈ ∆(Θ), we have∫
Θ

V (x)dH(x) =

∫ 1

0

V (H−1(p))dp.

Recall that

J⋆(p) = min argmax{V (x) : x ∈ [H
−1
(p), H−1(p)]}, for all p ∈ [0, 1].

Since J⋆ is defined as the minimum selection from the argmax, it follows that (i) J⋆

is non-decreasing (and hence measurable), because H
−1

and H−1 are non-decreasing,

(ii) J⋆ is left-continuous, becauseH
−1

andH−1 are left-continuous and V ∈ C(Θ), (iii)

J⋆(1) ≤ θ, because H−1(1) ≤ θ, and (iv) J⋆(0) = θ, because H
−1
(0) = H−1(0) = θ.

This implies that J⋆ = H⋆−1, where H⋆ ∈ ∆(Θ) is given by

H⋆(x) = sup{p ∈ [0, 1] : J⋆(p) ≤ x}, for all x ∈ Θ.

Moreover, since H
−1 ≤ J⋆ ≤ H−1, it follows that H⋆ ∈ H, so H⋆ solves the original

problem, and its value coincides with the value of the relaxed problem, yielding (2).

Consequently, H ∈ H maximizes
∫
V (x)dH(x) on H iff H−1(p) maximizes V on

[H
−1
(p), H−1(p)] for almost all p ∈ [0, 1]. Moreover, by continuity of V and left-

continuity of H
−1

and H−1, H−1(p) maximizes V on [H
−1
(p), H−1(p)] for almost all

p ∈ [0, 1] iff it does so for all p ∈ [0, 1].

Next, if V has a unique maximum on [H
−1
(p), H−1(p)] for almost all p ∈ [0, 1],

then J⋆ is the unique solution of the relaxed problem that satisfies properties (i)–

(iv), and hence H⋆ is the unique solution of the original problem. Conversely, if

there exists a non-negligible set P ⊂ [0, 1] such that V has multiple maxima on

[H
−1
(p), H−1(p)] for each p ∈ P , then there are multiple solutions of the relaxed

problem that satisfy properties (i)–(iv). For example, Ĵ defined as the maximum

selection from the argmax also solves the relaxed problem, and so does Ĵ⋆ defined
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by Ĵ⋆(p) = Ĵ(p−) for all p ∈ (0, 1] and Ĵ⋆(0) = θ. But, by construction, Ĵ⋆ satisfies

properties (i)–(iv) and is not equal to J⋆. Then Ĵ⋆ = Ĥ⋆−1 where Ĥ⋆ ∈ ∆(Θ) is given

by

Ĥ⋆(x) = sup{p ∈ [0, 1] : Ĵ⋆(p) ≤ x}, for all x ∈ Θ.

Thus, Ĥ⋆ ̸= H⋆ also solves the original problem. □

Proof of Theorem 3. Suppose that an experiment τ ∈ ∆(∆(Θ)) implements all Hp.

Fix any p ∈ [0, 1]. Since τ implements Hp, there exists a measurable selection χp(G)

from X(G) such that the distribution of χp(G) induced by τ is Hp. Since F has a

density on Θ, we have

qp = F (xp) =

∫
G(xp)dτ(G) =

∫
1{G(xp) ≥ q}G(xp)dτ(G)

+

∫
1{G(xp) < q}G(xp)dτ(G) ≥

∫
1{G(xp) ≥ q}qdτ(G)

≥
∫

1{χp(G) ≤ xp}qdτ(G) = qHp(xp) = qp,

so all inequalities hold with equality. Thus, τ(G(xp) = 0) = 1− p, τ(G(xp) = q) = p,

and τ(χp(G) ≤ xp) = p. A symmetric argument yields τ(G(xp) = q) = 1 − p,

τ(G(xp) = 1) = p, and τ(χp(G) > xp) = 1− p. Next, since G(xp) = 0 and G(xp) = 1

imply that xp < χp(G) ≤ xp, it follows that τ(G(xp) = 0, G(xp) = 1) = 0, because

τ(xp < χp(G) ≤ xp) = 1− τ(χp(G) ≤ xp)− τ(χp(G) > xp) = 1− p− (1− p) = 0.

So, τ(G(xp) = 0, G(xp) = q) = τ(G(xp) = 0)− τ(G(xp) = 0, G(xp) = 1) = 1− p and

τ(G(xp) = q, G(xp) = 1) = τ(G(xp) = 1)− τ(G(xp) = 0, G(xp) = 1) = p. In sum,

τ(G(xp) = 0, G(xp) = q) = 1− p,

τ(G(xp) = q, G(xp) = 1) = p,
for all p ∈ [0, 1]. (6)

We now show that (6) yields τ = τ ⋆. Let X0 = [x0, x0] = [θ, F−1(q)] and X1 =

[x1, x1] = [F−1(q), θ]. For each experiment τ̃ ∈ ∆(∆(Θ)), define a joint distribution

function Iτ̃ : X0 ×X1 → [0, 1] by

Iτ̃ (x0, x1) = τ̃(G = qδθ0 + (1− q)δθ1 , θ0 ∈ [x0, x0], θ1 ∈ [x1, x1]).

To prove that τ = τ ⋆, it suffices to show that Iτ (x0, x1) = Iτ⋆(x0, x1) for all (x0, x1) ∈
X0 × X1, with Iτ (x0, x1) = Iτ⋆(x0, x1) = 1. Fix any (x0, x1) ∈ X0 × X1, and let
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p̂ = min
{

F (x0)
q

, F (x1)−q
1−q

}
. First, by definition of τ ⋆, we have

Iτ⋆(x0, x1) =

∫ q

0

1{F−1(ω) ≤ x0, F
−1(q + 1−q

q
ω) ≤ x1}

dω

q
= p̂,

with Iτ⋆(x0, x1) = 1, because F (x0) = F (F−1(q)) = q and F (x1) = F (θ) = 1. Second,

by (6) and definition of Iτ , we have

p̂ = τ(G(xp̂) = q, G(xp̂) = 1) ≤ Iτ (x0, x1) ≤ τ((G(xp̂), G(xp̂)) ̸= (0, q)) = 1− (1− p̂),

showing that Iτ (x0, x1) = p̂ = Iτ⋆(x0, x1). □

Proof of Corollary 1. Consider any experiment τ ̸= τ ⋆. By Theorem 3, there exists

p ∈ [0, 1] such that τ does not implement Hp. Since V is rich, there exists a continuous

and strictly quasi-convex V ∈ V with V (xp) = V (xp). Then xp̃ uniquely maximizes V

on [xp̃, xp̃] for all p̃ ∈ [0, p), and xp̃ uniquely maximizes V on [xp̃, xp̃] for all p̃ ∈ (p, 1].

By Theorem 2, Hp uniquely maximizes
∫
V (x)dH(x) on H.

Suppose for contradiction that r(τ, V ) = 0. Then there exists a sequence Hn ∈ H
implemented by τ such that

∫
V (x)dHn(x) →

∫
V (x)dHp(x). Since H is weak⋆

compact, passing to a subsequence if necessary, we can assume that Hn → Ĥ ∈ H.

Note that Ĥ = Hp, because Hp uniquely maximizes
∫
V (x)dH(x) on H. In sum,

there exists a sequence of measurable selections χn(G) from X(G) such that Hn(x) =

τ(χn(G) ≤ x) and Hn(x) → Hp(x) for all x ∈ Θ.

Next, we show that τ cannot simultaneously satisfy the following three conditions

τ(G(xp̃) = 0) = 1− p̃ and τ(G(xp̃) = q) = p̃, for all p̃ ∈ [0, p], (7)

τ(G(xp̃) = q) = 1− p̃ and τ(G(xp̃) = 1) = p̃, for all p̃ ∈ [p, 1], (8)

τ(G(xp) = 0, G(xp) = q) = 1− p and τ(G(xp) = q, G(xp) = 1) = p, (9)

as otherwise τ would implement Hp. Indeed, if τ satisfies (7)–(9), we can define a

selection χ(G) from X(G) by letting χ(G) = θ0 if θ0 < xp and χ(G) = θ1 if θ0 > xp

in the τ -almost sure event that G = qδθ0 + (1 − q)δθ1 for some θ0 ∈ [x0, x0] and

θ1 ∈ [x1, x1]. Then the distribution of χ(G) induced by τ is Hp, because, by (7), for

all p̃ ≤ p, we have

τ(χ(G) ≤ xp̃) = τ(G(xp̃) = q) = p̃ =
F (xp̃)

q
= Hp(xp̃),

and, by (8) and (9), for all p̃ ≥ p, we have

τ(χ(G) ≤ xp̃) = τ(G(xp̃) = 1) + τ(G(xp) = q, G(xp̃) = q) = p̃ =
F (xp̃)−q

1−q
= Hp(xp̃).
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Finally, we show that if at least one of conditions (7)–(9) fails, then Hn ↛ Hp. First,

if (7) fails at some p̃ ∈ [0, p], then there exists ε > 0 such that

F (xp̃) =

∫
G(xp̃)dτ(G) =

∫
1{G(xp̃) ≥ q}G(xp̃)dτ(G) +

∫
1{G(xp̃) < q}G(xp̃)dτ(G)

≥ ε+

∫
1{G(xp̃) ≥ q}qdτ(G) ≥ ε+

∫
1{χn(G) ≤ xp̃}qdτ(G) = ε+ qHn(xp̃),

so Hn(xp̃) ↛ Hp(xp̃). Similarly, if (8) fails at some p̃ ∈ [p, 1], then Hn(xp̃) ↛ Hp(xp̃).

Finally, if (7) and (8) hold, but (9) fails, then there exists ε > 0 such that

Hn(xp)−Hn(xp) = τ(xp < χn(G) ≤ xp) ≥ τ(G(xp) = 0, G(xp) = 1)

≥ ε > 0 = Hp(xp)−Hp(xp),

so Hn(xp) ↛ Hp(xp) or H
n(xp) ↛ Hp(xp). □
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