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1 Introduction

This note discusses functions over lotteries that are concave and continuous, but are not

necessarily superdifferentiable. Maccheroni [2002]’s Theorem 1 claims that if a function

over lotteries is concave, continuous, and satisfies best-outcome independence, it can

be written as the minimum of affine functions, and Machina [1984] claims this is true

even without the best-outcome-independence condition. However, Section 3 gives an

example of a concave and continuous function that satisfies best-outcome independence

but cannot be written as the minimum of affine functions, because there is no tangent

hyperplane that dominates the functions at the boundary.1

Section 4 reviews the fact that concavity and upper semi-continuity are equivalent

to a representation as the infimum of affine functions, and then shows that these
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1

mailto:rcorrao@mit.edu
mailto:drew.fudenberg@gmail.com
mailto:david@dklevine.com


assumptions imply continuity for functions on finite-dimensional lotteries. Therefore, in

finite-dimensional simplices, concavity and continuity are equivalent to the “infimum”

representation.2 The “minimum” representation is equivalent to the existence of local

utilities (i.e., supporting affine functions) at every lottery, a property that is equivalent

to superdifferentiability.3

2 Preliminaries

We study concave functions V on the space F of probability measures on a compact

metric space X, where we identify x with the Dirac measure δx. Let CpXq denote the

set of continuous functions over X, and endow X with the Borel sigma-algebra. We

give F the topology of weak convergence, so it is metrizable and compact.

Maccheroni [2002] studies preferences over the set ∆˝pXq Ď F of simple lotteries

when there is a best outcome x˚, i.e. an x˚ such that x˚ Á F for all simple lotteries

F ‰ x˚. Preferences are said to satisfy best outcome independence if for all F,G P

∆˝pXq and α P p0, 1q, F ą G if and only if αF ` p1 ´ αqx˚ ą αG ` p1 ´ αqx˚, so

that the usual independence axiom is satisfied with respect to mixtures with x˚. In

this case, if Á is represented by a continuous utility function V , then V is affine with

respect to convex linear combinations of x˚ with any arbitrary lottery F . Theorem 1

of that paper makes the following claim:

Claim: If a function V : ∆˝pXq Ñ R is concave, continuous, and satisfies best-

outcome independence, then it can be written as the minimum of a set of affine con-

tinuous functions, that is,

V pF q “ min
wPW

ż

wpxqdF pxq (1)

for some set W Ď CpXq.

We provide a counterexample to this claim.4 The example has a utility function over

lotteries with three outcomes that is continuous, satisfies best-outcome independence,

2The main result of this section relies on a version of the Hahn-Banach theorem which, for com-
pleteness, we state and prove in the appendix.

3This is also implied by the duality results in Dworczak and Kolotilin [2023].
4The error in Maccheroni [2002] is an attempt to apply the Hahn-Banach theorem to functions

with extended real values in the main claim within the proof of Lemma 4.
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and can be represented by a concave function. However, the associated preferences

over lotteries cannot be represented as the minimum of affine functions, though they

can be represented by the infimum of affine functions as we explain below.

3 A Counterexample

We now construct a counterexample to the claim above. Suppose thatX has 3 elements

so that F “ ∆˝pXq is the simplex

∆ “
␣

pp, qq P r0, 1s
2 : p ` q ď 1

(

Ă R2
`.

We let pp̃, q̃q denote an arbitrary point in R2, while we use pp, qq for an arbitrary

point in ∆. For every pp̃, q̃q P R2
` we let prpp̃, q̃q, θpp̃, q̃qq P R` ˆ r0, π{2s denote the

corresponding polar coordinates, and conversely let pp̃pr, θq, q̃pr, θqq P R2
` denote the

point in the positive orthant corresponding to the polar coordinates pr, θq.5 These

mappings define a bijection from the simplex ∆ to the subset of R` ˆ r0, π{2s defined

by

P∆ “

"

pr, θq P R` ˆ r0, π{2s : r ď
sin pπ{4q

sin p3π{4 ´ θq

*

.

It is convenient to denote points pp, qq P ∆ by f and use the notation prpfq, θpfqq P P∆

and fpr, θq P ∆.

We will construct a class of utility functions over the simplex by first constructing

one of their indifference curves, specifically the one corresponding to V pfq “ ´1.

Toward this goal, consider an arbitrary continuous function ν : r0, π{2s Ñ r0, 1s such

that νpθq ą 0 and pνpθq, θq P P∆ for all θ P r0, π{2s, and define the function Ṽν : R2
` Ñ

R as

Ṽνpp̃, q̃q “ ´
rpp̃, q̃q

νpθpp̃, q̃qq
.

Because νpθq ą 0 for all θ, Ṽν is well defined at p0, 0q even if θp0, 0q is not uniquely

defined. Moreover, Ṽν is continuous and positive homogeneous: for all γ ě 0 and

f P ∆,

Ṽνpγfq “ ´
rpγfq

νpθpγfqq
“ ´

γrpfq

νpθpfqq
“ γṼνpfq

where the second equality follows from the zero-homogeneity property of the function

5Recall that polar coordinates are given by rpp̃, q̃q “
a

p̃2 ` q̃2 and θpp̃, q̃q “ tan´1pq̃{p̃q.
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Figure 1: Construction of the indifference curves of the utility function.

θpp, qq. We will interpret the restriction of Ṽν to lotteries as a utility function, and

denote it by Vν . Because rpfq ě 0 and νpθpfqq ą 0 for all f P ∆, and rpfq “ 0 if and

only if f “ p0, 0q, any such utility function is negative. It takes on a strict maximum at

the deterministic outcome x˚ “ p0, 0q, which has utility 0, and Vν assigns utility ´1 to

each point in the graph of ν, which is the set tfpνpθq, θq P ∆ : θ P r0, π{2su. Note that

Vν is completely determined by the specification of choice of the indifference curve ν.

The intuition behind our counterexample is illustrated by the “snowcone” created

by taking a circle tangent to the axes as in Figure 1. For each angle θ, the ray through

θ intersects the circle at most twice; we take νpθq equal to the length of the ray from

the origin to the farther point of intersection, that is the one in the upper part of the

circle so that the indifference curve ν corresponds to the arc of the circle joining the

two tangent points (see the blue arc in Figure 1). Note that this indifference curve is

tangent to both the axes.

This diagram corresponds to indifference curves parametrized by ρ P p0, 1{4q where

νρpθq “ ρpcos θ ` sin θ `
?
sin 2θq, which is the distance between the origin and the

point in the circle of radius ρ that lies inside the simplex and is tangent to the points

pρ, 0q and p0, ρq. With an abuse of notation, we let Vρ denote the utility function over

the simplex induced by the indifference curve νρ for ρ P p0, 1{4q:

Vρpfq “ ´
rpfq

ρpcos θpfq ` sin θpfq `
a

sin 2θpfqq
.
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We say that the indifference curve ν is convex if the utility function Vν constructed

as above is such that the utility of any convex combination of two points on the

indifference curve lies below the indifference curve: For all f, f̃ such that Vνpfq “

Vνpf̃q “ ´1, it holds Vνpλf ` p1´λqf̃q ě ´1. Notice that the “snowcone” indifference

curve in Figure 1 is convex because the unit sphere is a convex set.

Proposition 1. For all ρ P p0, 1{4q the indifference curve νρ is convex and Vρ is

concave.

Concavity of Vρ follows from the convexity of the indifference curve νρ which can

be extended to the other indifference curves by positive homogeneity, as shown in

Appendix A.

Next we show that for every ρ P p0, 1{4q, the utility function Vρ satisfies best-

outcome independence with respect to x˚ “ p0, 0q. To see this, consider the lottery

p1´αqf`αx˚ for some f P ∆ and any α P p0, 1q. By homogeneity Vρpp1´αqf`αx˚q “

p1 ´ αqVρpfq, so f is preferred to f̃ if and only if p1 ´ αqf ` αx˚ is preferred to

p1 ´ αqf̃ ` αx˚.

We finally show that there exists a lottery f such that there cannot be an affine

function L on ∆ that attains the minimum in Equation 1 for Vρ. Let Sρ be the circle

with radius ρ and centered at pρ, ρq. This circle is tangent to the axes p̃ “ 0 and q̃ “ 0

at the points pρ, 0q and p0, ρq and is defined by

Sρ “
␣

pp, qq P ∆ : pp ´ ρq
2

` pq ´ ρq
2

ď ρ2
(

.

For every radius ρ P p0, 1{4q, the indifference curve of points pp, qq P ∆ such that

Vρpp, qq “ ´1 is the arc from pρ, 0q to p0, ρq of Sρ.
6

Now fix ρ P p0, 1{4q and suppose there is a linear function Lpp, qq over ∆ such that

Lpp, qq ě Vρpp, qq for all pp, qq P ∆, with equality at f “ pρ, 0q. Because Sρ is convex,

contained in ∆, and such that pρ, 0q P Sρ, the supporting hyperplane theorem (see e.g.

Theorem 11.6 in Rockafellar [1970]) implies that the set

H “
␣

pp̃, q̃q P R2 : Lpp̃, q̃q “ Lpρ, 0q
(

is a supporting hyperplane of Sρ at pρ, 0q. Because Sρ is a circle, each of its boundary

points has a unique supporting hyperplane, so H must coincide with the only support-

6In the example plotted in Figure 1, this is the blue arc.
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ing hyperplane of Sρ at pρ, 0q, that is the axis q̃ “ 0. We then obtain the contradiction

Lp0, 0q “ Lpρ, 0q “ Vρpρ, 0q “ ´1 ă 0 “ Vρp0, 0q ď Lp0, 0q

where the first equality follows from the fact that p0, 0q P H and the second equality

and the last weak inequality both follow from the assumptions on L. Therefore, there

cannot be a linear function L that dominates Vρ everywhere and coincides with it at

pρ, 0q.7 Overall the properties of the utility function Vρ directly contradict the claim

in Section 2.

Machina [1984] analyzes preferences over lotteries F “ ∆pr0, 1sq that carry delayed

risk. Concretely, consider an agent choosing first F P F and then, before the outcome

from F has been realized, an action y P Y from a set of feasible actions. Even if the

agent has expected utility preferences over pairs of outcomes and actions, the induced

preferences over lotteries is

V pF q “ max
yPY

ż

upx, yqdF pxq (2)

where u is the utility of the agent and where we assume that the maximum is attained.

Theorem 2 in Machina [1984] states a converse of this fact, that is, if V : F Ñ R
is continuous and convex, then there exists a space of actions Y and a utility function

upx, yq such that V can be represented as in equation 2 with the maximum being

attained for every F . In particular, the set of actions is

Y “

"

y P Cpr0, 1sq : @F P F , V pF q ě

ż

ypxqdF pXq

*

.

and upx, yq “ wpyq. However, the utility function ´V pF q, where V is defined as in the

snowcone example above, is continuous and convex, but does not have a representation

in the form of a maximum as Machina asserts.8

7A completely symmetric conclusion can be reached for the point p0, ρq.
8Theorem 2 of Frankel and Kamenica [2019] asserts that when X is finite, a continuous and

concave function H over F admits a “minimum” representation resembling that of Equation 1, but in
that paper the minimum is the same as a supremum, as it is a minimum over a set of linear functions
that can take extended real values.
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4 Concave Functions and Adversarial Representa-

tions

4.1 The Adversarial Representation

We say that V has an adversarial representation if

V pF q “ inf
yPY

ż

upx, yqdF pxq

where Y is a separable metric space and, for every y P Y , up¨, yq is continuous over X.

Theorem 1. V has an adversarial representation if and only if it is upper semi-

continuous and concave.

The result does not hold with the inf replaced by a minimum, because there may

be no tangent hyperplanes at the boundary points of the simplex.9 The idea of the

theorem is that we can fix this by taking separating hyperplanes that aren’t tangent to

the concave function, but pass through a point above and near it. Where the function

has infinite slope, as we take closer points we get steeper separating hyperplanes, which

is why we must use the inf rather than the min. There are various ways to prove this,

we provide one in the appendix based on the separating hyperplane theorem.

4.2 Concavity and continuity over finite-dimensional simplices

Notice that V pF q arising from an adversarial representation need not be continuous:

Theorem 1 only delivers concavity and upper semi-continuity. Moreover, even in finite-

dimensional spaces, there are concave and positive homogeneous functions that fail to

be lower semi-continuous, as shown by Example 1 in Appendix C which is derived from

an example in Rockafellar [1970] Chapter 10.

However, in studying preference over lotteries, the convex sets on which utility is

defined are typically taken to be probability simplices, and the restriction of concave

and upper semi-continuous functions to a finite-dimensional subset of F is continuous,

9This problem is especially pervasive in the infinite-dimensional case, where the set of Borel
probability measures over a compact metric space has empty (relative) interior when endowed with
the topology of weak convergence.
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as we show below. Thus the restriction of V to the space of lotteries over a finite

X0 Ă X is continuous.

Theorem 2. Consider the space F of all convex combinations of N lotteries F
1
, ..., F

N
,

and suppose that V pF q is concave. Then V pF q restricted to F is lower semi-continuous,

and in particular if V pF q is upper semi-continuous then it is continuous.

When the probability distributions F
1
, ..., F

N
coincide with the point-mass mea-

sures over N outcomes, the set F is a probability simplex. The result holds for “gen-

eralized simplicies” that are formed by linearly combining N arbitrary lotteries.

Proof. (Adapted from Chapter 10 in Rockafellar [1970].) There is a subset of tF
1
, ..., F

N
u

that consists of extremal points and whose convex hull is equal to F , so w.l.o.g. can

assume that F
1
, ..., F

N
are extremal and in particular affinely independent. Hence we

may think of points being identified with vectors p on the n-dimensional simplex and

we write pi for the basis vectors.

Now consider p̃ P F . Our goal is to prove that for any sequence pn Ñ p̃ we

have lim inf V ppnq ď V pp̃q. Suppose p̃ is not extremal and consider some particular

pn and define λ ” maxtλ ě 0|λp̃ ď pnu. If λ “ 0 choose i such that pni “ 0 and

p̃i ą 0 otherwise choose i such that λp̃i “ pni and p̃i ą 0. Consider then the set

tp1, ..., pN , p̃u ´ pi. Since p̃i ą 0 this set is affinely independent. We claim in addition

that pn is a convex combination of these vectors. If λ “ 0 since pni “ 0 we have pn

already a convex combination of tp1, ..., pNu ´pi. Otherwise since pnj ´λp̃j ě 0 we may

write pn “ λp̃ `
ř

jpp
n
j ´ λp̃jqp

j since this is the same as pnj “ λp̃j ` ppnj ´ λp̃jq.

Consider affinely independent sets of the form pp̃, p̃1, ..., p̃n´1q. We showed that if

p̃ is not extremal then pn there exists a set of this form, so pn lies in the convex hull

of the set, and if p̃ is extremal this is true by taking the remaining n ´ 1 vectors to

be the remaining basis vectors. Since there are at most n sets of this form it follows

that there is a subsequence pm converging to p̃ that lies entirely in such a set. Clearly

lim inf V ppnq ď lim inf V ppmq, so it suffices to prove lim inf V ppmq ď V pp̃q. Because we

can write pm “ γmp̃ `
řn´1

i“1 γm
i p̃i with γm Ñ 1, γm

k Ñ 0, we have

V ppmq “ V pγmp̃q `

n´1
ÿ

i“1

γm
i V pp̃iq ě γmV pp̃q `

n´1
ÿ

i“1

γm
i V pp̃iq Ñ V pp̃q

which was our goal.
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4.3 Local utilities and minima

We say that a continuous function wpxq on a compact set X is a local utility function

for V at F P F if
ş

wpxqdF̃ pxq ě V pF̃ q for all F̃ P F and
ş

wpxqdF pxq “ V pF q. We

say that V has a local expected utility if it has a local utility function at each F P F .10

When V has a local expected utility, we denote the set of local expected utilities of V

at F by WV pF q Ď CpXq, and set WV “
Ť

FPF WV pF q.

Proposition 2. V has a local expected utility if and only if there exists a set W Ď CpXq

such that V pF q “ minwPW
ş

wpxqdF pxq. In this case, one such set is W “ WV .

The proof of this result is simple and relegated to Appendix A. It is not hard

to verify that V has a local utility at F if and only if it is superdifferentiable at

F .11 Thus Proposition 2 implies that the “minimum” representation is equivalent

to superdifferentiability, as also shown in Dworczak and Kolotilin [2023]. We do not

know of a characterization of superdifferentiability of V in terms of more primitive

functional conditions or axioms, but there are stronger conditions and axioms that

imply superdifferentiability and the “minimum” representation. Notable examples of

this are Chatterjee and Krishna [2011], Evren [2014], Sarver [2018], and Ke and Zhang

[2020].
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Evren, Ö. (2014). “Scalarization methods and expected multi-utility representations.”

Journal of Economic Theory, 151, 30–63.

Frankel, A. and E. Kamenica (2019). “Quantifying information and uncertainty.” Amer-

ican Economic Review, 109, 3650–80.

Ke, S. and Q. Zhang (2020). “Randomization and ambiguity aversion.” Econometrica,

88, 1159–1195.

Maccheroni, F. (2002). “Maxmin under risk.” Economic Theory, 19, 823–831.

Machina, M. J. (1984). “Temporal risk and the nature of induced preferences.” Journal

of Economic Theory, 33, 199–231.

Rockafellar, R. T. (1970). Convex analysis. Vol. 18. Princeton university press.

Sarver, T. (2018). “Dynamic mixture-averse preferences.” Econometrica, 86, 1347–

1382.

A Appendix: Proofs

Proposition 1. For all ρ P p0, 1{4q the indifference curve νρ is convex and Vρ is

concave.

Proof of Proposition 1. Fix ρ P p0, 1{4q and consider the induced indifference curve

νρ and utility Vν . Suppose f, f̃ P ∆ are such that VρpF q “ Vρpf̃q “ ´1, fix any λ P r0, 1s,

and define fλ “ λf ` p1 ´ λqf̃ . Clearly, if λ P t0, 1u, then V pfλq “ ´1. If λ P p0, 1q,

then fλ lies strictly below the indifference curve of points such that Vρpfq “ ´1, that

is the set of points ∆´1 “ tf P ∆ : νρpθpfqq “ rpfqu. Next, consider the ray passing

through the origin f0 “ p0, 0q and fλ. Let f̂ denote the unique point such that this ray

intersects ∆´1. By construction, Vρpf̂q “ ´1 and fλ “ γf̂ for some γ ă 1. Finally, by

positive homogeneity, Vρpfλq “ Vρpγf̂q “ γVρpf̂q “ ´γ ě ´1, as desired.

Next, we show that Vρ is concave. First, we show that, for all f P ∆, it holds
1

´Vρpfq
f P ∆ and Vρ

´

1
´Vρpfq

f
¯

“ ´1. Indeed, r
´

1
´Vρpfq

f
¯

“ 1
´Vρpfq

rpfq “ νpθpfqq and

θ
´

1
´Vρpfq

f
¯

“ θpfq, implying that
´

r
´

1
´Vρpfq

f
¯

, θ
´

1
´Vρpfq

f
¯¯

P P∆ by the properties
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of ν, and hence that 1
´Vρpfq

f P ∆. Moreover,

Vρ

ˆ

f

´Vρpfq

˙

“ Vρ

ˆ

fνpθpfqq

rpfq

˙

“
νpθpfqq

rpfq
Vρpfq “ ´

νpθpfqq

rpfq

rpfq

νpθpfqq
“ ´1,

yielding the second part of the claim. Second, observe that for all γ P r0, 1s and f, f̃ P ∆

we have

Vρ

˜

γ
f

´Vρpfq
` p1 ´ γq

f̃

´Vρpf̃q

¸

ě ´1

by the first claim and the convexity of the indifference curve νpθq. Third, fix λ P r0, 1s,

and f, f̃ P ∆, and define

γ “
λVρpfq

λVρpfq ` p1 ´ λqVρpf̃q

and observe that

1 ´ γ “
p1 ´ λqVρpf̃q

λVρpfq ` p1 ´ λqVρpf̃q

and that both γ and p1 ´ γq are in r0, 1s since 0 ď λ ď 1 and Vρ ď 0. Then

´1 ď Vρ

˜

γ
f

´Vρpfq
` p1 ´ γq

f̃

´Vρpf̃q

¸

“ Vρ

˜

´
λf ` p1 ´ λqf̃

λVρpfq ` p1 ´ λqVρpf̃q

¸

“ ´
1

λVρpfq ` p1 ´ λqVρpf̃q
Vρ

´

λf ` p1 ´ λqf̃
¯

.

Because λVρpfq`p1´λqVρpf̃q is negative, Vρ

´

λf ` p1 ´ λqf̃
¯

ě λVρpfq`p1´λqVρpf̃q,

yielding concavity of Vρ.

Proposition 2. V has a local expected utility if and only if there exists a set W Ď CpXq

such that V pF q “ minwPW
ş

wpxqdF pxq. In this case, one such set is W “ WV .

Proof of Proposition 2. If V has a local expected utility, then for each F P F
ş

ŵpxqdF pxq “ V pF q for all ŵ P WV pF q Ď WV , and infwPWV

ş

wpxqdF pxq ě V pF q, so

the “only if’ part follows. Conversely, let V be such that V pF q “ minwPW
ş

wpxqdF pxq

for some set W Ď CpXq. Because the minimum is attained, for every F , there

exists wF P W such that V pF q “ minwPW
ş

wpxqdF pxq “
ş

wF pxqdF pxq, so that

wF P WV pF q ‰ H. This in turn implies that V has a local expected utility.
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B Appendix: The Separating Hyperplane Theo-

rem and the Proof of Theorem 1

Inferring properties such as differentiability and concavity from a utility function rests

on the separating hyperplane theorem, and one source of error has been misapplying

the theorem to infinite-dimensional lotteries. Here we give a careful proof of the sepa-

rating hyperplane theorem that applies in this setting. Our starting point is the Hahn

decomposition theorem as stated in Aliprantis and Border [2006]. For ease of reference,

we state that result in the form in which we use it.

Aliprantis and Border [2006] Theorem 5.79. If the hypograph of V pF q, that is the

set in RˆF consisting of L “ tpv, F q P RˆF : v ď V pF qu, is closed and convex, then

for each singleton set tpv, F qu with v ą V pF q there is a continuous linear functional

separating v from F . This means that there are numbers c0, z and a continuous function

w1pxq such that for ṽ, F̃ P L we have c0ṽ`
ş

w1pxqdF̃ pxq ă z and c0v`
ş

w1pxqdF pxq ą

z.12

Theorem 3. Fix F P F and a concave and continuous utility function V . For each

v ą V pF q there exists a continuous function wpxq such that v ě
ş

wpxqdF̃ ą V pF̃ q for

all F̃ P F .

Proof. We analyze the space of signed measures H P M on the Borel σ-sigma algebra

of X. The Hahn decomposition theorem says that for any signed measure H the space

X can be partitioned into two Borel sets A,B such that for Borel E Ď A we have

HpEq ě 0 and for E Ď B we have HpEq ď 0. The Jordan decomposition further

states that there are two positive (ordinary measures) H`, H´ (uniquely defined) such

that for any Hahn decomposition H`pBq “ 0, H´pAq “ 0 and H “ H` ´ H´. With

this in mind, for any continuous function w : X Ñ R and any signed measure we

may define
ş

wpxqdHpsq “
ş

wpxqdH`pxq ´
ş

wpxqdH´psq where these are ordinary

integrals with respect to a signed measure. We may define the total variation |H| “
ş

dH`pxq `
ş

dH´pxq.

Denote the space of bounded continuous functions in the sup norm on X by CpXq.

On M ˆ CpXq we define the operation xH,wy ”
ş

wpxqdHpxq. If this is continuous

and linear in each argument and xH,wy “ 0 for all w P CpXq if and only if H “ 0

12Crucially, this proposition is false if V can take extended real values, as shown by Bogachev and
Smolyanov [2017].
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and for all H P M if and only if w “ 0 then M, CpXq is a dual pair. Continuity

follows immediately from xH,wy
ş

wpxqdHpxq ď }w} }H} and this implies xH,wy is

jointly continuous in the product topology on M ˆ CpXq.

It follows that H is a locally convex topological space in the weak topology induced

by CpXq, and that its continuous linear functionals have the form
ş

cpxqdHpxq for

c P CpXq. Hence this topology relativizes to the subset of probability measures as the

topology of weak convergence. That xH,wy “ 0 for all H if w “ 0 is obvious and

only if w “ 0 follows from considering that the Dirac delta functions δx are in H and
ş

wpxqdδx̂pxq “ wpx̂q. That xH,wy “ 0 for all w if H “ 0 is obvious but the “only if”

requires some work.

For anyH ‰ 0, we want to find a continuous function wpxq such that
ş

wpxqdHpxq ‰

0. Let A,B be a corresponding Hahn partition of X, and write the Jordan decompo-

sition H “ H` ´ H´. Assume without loss of generality that H` ‰ 0. Because X

is compact, H`, H´ are regular measures and in particular H`pAq “ supKĂA H`pKq

and H´pBq “ supKĂB H´pKq where the supremum is over all compact subsets. Hence

we can fix a compact K` Ă A such that |H`pAq ´ H`pK`q| ď p1{3qH`pAq and a

compact K´ Ă B such that |H´pAq ´H´pKq| ď p1{3qH`pAq. As K´, K` are disjoint

and X is a metric space and K`, K´ are closed, we may use Ursyohn’s Lemma to find

a continuous function 0 ď wpxq ď 1 which is equal to 1 on K` and 0 on K´. Now

write the integral

ż

wpxqdHpxq “

„
ż

K`

wpxqdH`
pxq `

ż

X´K`

wpxqdH`
pxq

ȷ

´

„
ż

K´

wpxqdH´
pxq `

ż

K`

wpxqdH´
pxq `

ż

X´K`´K´

wpxqdH´
pxq

ȷ

“ H`
pK`

q `

ż

X´K`

wpxqdH`
pxq ´

ż

X´K`´K´

wpxqdH´
pxq

ě p2{3qH`
pAq ´ p1{3qH`

pAq ě p1{3qH`
pAq ą 0.

SinceM, CpXq is a dual pair, M is locally convex with respect to the weak topology

induced by CpXq in the sup norm: relativized to the probability measures this is the

same as the topology of weak convergence.

The hypograph of V pF q is closed because V is upper semi-continuous. Hence by

Theorem 5.79 in Aliprantis and Border [2006], for each compact (singleton) set tpv, F qu

with v ą V pF q there are numbers c0, z and a continuous function w1pxq such that for
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ṽ, F̃ P L we have c0ṽ `
ş

w1pxqdF̃ pxq ă z and c0v `
ş

w1pxqdF pxq ą z. Applying the

first to ṽ, F P L we have c0ṽ`
ş

w1pxqdF pxq ă z so that c0ṽ ă c0v implying that c0 ą 0,

since v ą ṽ. Define wpxq “ ´ pw1pxq ´ zq {c0. Observing that pV pF̃ q, F̃ q P L, the first

inequality says
ş

wpxqdF̃ ą V pF̃ q for all F̃ while the second implies v ě
ş

wpxqdF pxq.

Theorem 1. V has an adversarial representation if and only if it is upper semi-

continuous and concave.

Proof of Theorem 1. First, we show that adversarial implies concave. Consider F, F̃

with 0 ď λ ď 1 and yn such that
ş

upx, ynqdF pxq Ñ V pλF ` p1 ´ λqF̃ q. Consider that

V pF q ď
ş

upx, ynqdF pxq and V pF̃ q ď
ş

upx, ynqdF̃ pxq so that λV pF q ` p1 ´ λqV pF̃ q ď
ş

upx, ynqdpλF ` p1 ´ λqF̃ qpxq Ñ V pλF ` p1 ´ λqF̃ q.

To show continuity, let F n Ñ F and choose ym such that V pF q ą
ş

upx, ymqdF pxq´

1{m. Then

V pF n
q ď

ż

upx, ymqdF n
pxq,

so

limV pF n
q ď lim

ż

upx, ymqdF n
pxq “

ż

upx, ymqdF pxq ă V pF q ` 1{m.

Hence V is upper semi-continuous.

To prove the other direction, we use Theorem 3 above, which shows that for each

v ą V pF q there is a continuous function wpxq such that v ě
ş

wpxqdF̃ ą V pF̃ q for

all F̃ P F . Now take Y to be the subset of continuous functions over X for which
ş

ypxqdF̃ pxq ą V pF̃ q for all F̃ . This is a separable metric space since it is an open

subset of the separable space of all continuous functions endowed with the sup norm.

Since for every pv, F q there exists a y P Y such that v ě
ş

ypxqdF pxq ą V pF q, we see

that V pF q ” infyPY

ş

upx, yqdF pxq.

C A concave and positive homogeneous function

that is not lower semi-continuous

Example 1. Consider the positive homogeneous function upp, qq “ ´pq ` pq2p´1 for

p ą 0. The boundary of the domain is non-linear, which causes a failure of lower
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semi-continuity as we next show. This function is concave: we have

Du “

«

ppq ` pqp´1q
2

´ 2pq ` pqp´1

´2pq ` pqp´1

ff

D2u “

«

2 ppq ` pqp´1 ´ 1q pp´1 ´ pq ` pqp´2q

2pq ` pqp´2 ´ 2p´1 ´2p´1

ff

“

«

´2p´1 ppq ` pqp´1 ´ 1q
2

2p´1 ppq ` pqp´1 ´ 1q ´2p´1

ff

which has non-negative diagonal and determinant detD2u “ 0 because u is positive

homogeneous so is negative semi-definite. Now restrict this function to the set 0 ď

q ď
?
p ´ p on 0 ă p ď 1. This set is clearly convex. Define up0, 0q “ 0 and

observe that convex combinations of p1 ´ λq0 ` λF have upp1 ´ λq0 ` λF q “ λupF q “

p1 ´ λqup0q ` λupF q so upp, qq on 0 ď q ď
?
p ´ p on 0 ă p ď 1. Consider, however

the sequence F n “ ppn,
?
pn ´ pnq with pn ą 0 and pn Ñ 0. Certainly F n Ñ 0. On the

other hand upF nq “ ´1 so the function jumps up in the limit from ´1 to 0 hence fails

to be lower semi-continuous. △
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