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Abstract

An adversarial forecaster representation sums an expected utility function

and a measure of surprise that depends on an adversary’s forecast. These rep-

resentations are concave and satisfy a smoothness condition, and any concave

preference relation that satisfies the smoothness condition has an adversarial

forecaster representation. Because of concavity, the agent typically prefers to

randomize. We characterize the support size of optimally chosen lotteries, and

how it depends on preference for surprise.
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1 Introduction

Consider an agent who must choose one of their local sports team’s matches to watch.

They would rather watch their team win for sure than lose for sure, so if they have

expected utility preferences, their most preferred match would be one where their

team has probability 1 of winning. But that would be a rather boring match, and the

agent would prefer to watch a match where their team is favored but not guaranteed

to win, so the match has an element of suspense or surprise. Similar considerations

arise in political economy in the theory of expressive voting, in which people get utility

from watching a political contest, and their utility is enhanced by participation. Just

as with sports matches, some may prefer a more exciting contest, so even without

strategic considerations turnout is likely to be higher when the polls show a close race

(see for example Levine, Modica, and Sun [2021]).

The idea that stochastic choices observed in the data may come from a deliberate

desire to randomize was first advanced by Machina [1985] and is empirically supported

by e.g. Agranov and Ortoleva [2017]. As expected utility does not allow a prefer-

ence for randomization, we develop a minimalist departure from expected utility for

which this is possible. We require that expected utility is approximately correct for

comparing lotteries that are close, and that that small changes in the lottery do not

change these approximations much. To ensure that the preferences are for surprise,

we also require that mixtures be (weakly) preferred to the extremes, i.e. that utility

is concave in probabilities.

Our definition of continuous local expected utility captures these three ideas. How-

ever, because the definition is not easy to work with, we introduce the adversarial

forecaster model. Here an outcome is surprising if it is difficult to forecast in ad-

vance, where a forecast is a probability distribution over outcomes that is chosen by

an adversary who attempts to minimize the forecast error. We show that this model

is equivalent to continuous local expected utility.

This alternative way of describing continuous local expected utility lets us think

more easily about what preferences are like - that is, what would people consider

surprising under particular circumstances? It is also a powerful mathematical tool

that enables us to construct classes of preferences with various properties, such as a

preference for continuous densities or preferences that satisfy stochastic dominance

properties. We develop and apply two large and useful classes of continuous local
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expected utility preferences: generalized methods of moments and transport prefer-

ences.

One tractable case is where the forecast error has a finite-dimensional parameteri-

zation. Here we show that if the forecast error is a function of k parameters and there

are m moment restrictions, there is an optimal lottery with support of no more than

pk ` 1qpm ` 1q points. For example, in the sports case, suppose that preferences are

not merely over which team wins or loses, but also over the score, where the latter

can take on a continuum of values. If the forecaster is limited to predicting the mean

score and there are no moment constraints, then one most preferred choice is a binary

lottery between the two most extreme scores.

We then consider another tractable class of adversarial forecaster preferences,

those which arise when the agent trades off the interests of different potential selves.

We show that these preferences can also arise as the solution to optimal transport

problems, so we call them “transport preferences.” We show that optimal lotteries

for these preferences can be computed by assigning to each outcome the weight of the

types whose bliss points coincide with that outcome, so when the selves’ preferences

are more diverse, more outcomes are included in the support of the optimal lottery.1

We conclude our analysis by studying the monotonicity properties of adversarial

forecaster preferences with respect to stochastic orders. We first show that these

preferences preserve a stochastic order if and only if, for every lottery, there is a

best response of the adversary that induces a utility over outcomes that respects the

stochastic order. We apply this result to stochastic orders capturing risk aversion

(i.e., the mean-preserving spread order) and higher-order risk aversion. In particular,

we show how a preference for surprise may lead an agent with a risk-averse expected

utility component to have preferences that are overall risk loving.

Related Work Our paper is related to three distinct classes of risk preference mod-

els. It is closest to other models of agents with “as-if” adversaries, e.g. Maccheroni

[2002], Cerreia-Vioglio [2009], Chatterjee and Krishna [2011], Cerreia-Vioglio, Dillen-

berger, and Ortoleva [2015], and Fudenberg, Iijima, and Strzalecki [2015], as well as

to Ely, Frankel, and Kamenica [2015], where the adversary is left implicit. When the

possible outcomes are an interval of real numbers, Cerreia-Vioglio, Dillenberger, Or-

1In the one-dimensional case, monotone transport preferences correspond to a case of the ordi-
nally independent preferences introduced by Green and Jullien [1988].
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toleva, and Riella [2019] introduce a weakening of expected utility that allows optimal

choices to be strictly mixed; adversarial forecaster preferences satisfy their axioms if

the local utilities are strictly increasing. The adversarial forecaster model is also re-

lated to models of agents with dual selves that are not directly opposed, as in Gul

and Pesendorfer [2001] and Fudenberg and Levine [2006].

The ordinally independent preferences studied in Green and Jullien [1988] have

an adversarial forecaster representation provided that a supermodularity condition

holds, which allows us to apply our results on optimality and monotonicity to them.

The preferences induced by temporal risk in Machina [1984] are similar to adversarial

forecaster preferences, but have a convex representation and so do not generate a

preference for randomization.

Our analysis of monotonicity is related to the work on stochastic orders and pref-

erences over lotteries in e.g. Cerreia-Vioglio [2009], Cerreia-Vioglio, Maccheroni, and

Marinacci [2017], and Sarver [2018]. Unlike the previous results, we do not assume

differentiability or finite-dimensional outcomes, and characterize monotonicity with

respect to stochastic orders given a representation rather than constructing one.2

2 The General Model

2.1 Set Up and Definitions

We analyze preferences over lotteries that are represented by a continuous but not

necessarily linear utility function V , where the lotteries F P F are Borel measures

over a compact metric space X of outcomes, endowed with the weak topology on

measures. We say that a continuous function w : X Ñ R is a local expected utility at

F if it is a supporting hyperplane, that is
ş

wpxqdF̃ pxq ě V pF̃ q for every F̃ P F and
ş

wpxqdF pxq “ V pF q. Notice that if V has a local expected utility at each F then V

must be concave, so it prefers random lotteries to deterministic ones and in that sense

has a preference for “surprise.” This becomes a strict preference of surprise when V

is strictly concave, as in some special cases that we analyze in Sections 3 and 4.

Expected utility preferences have the same local expected utility at each lottery.

We weaken this to require that V has a local expected utility at every lottery F and

that the local expected utility varies continuously with the lottery.

2See Section 5 for a more detailed discussion of these and other related results.
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Definition 1. V has a continuous local expected utility if there is a continuous func-

tion w : X ˆ F Ñ R such that wpx, F q is a local expected utility of V at every

F P F .

As we show in Online Appendix V, V has continuous local expected utility if and

only if it is concave and Gâteaux differentiable with continuous Gâteaux derivative.3

Moreover, the continuous local utility of V at F is a valid Gâteaux derivative for V .

This observation allows us to explicitly compute the continuous local utility whenever

it exists. Let δx denote the Dirac measure on x.

Proposition 1. If V has continuous local expected utility wpx, F q, then then it is

concave, and for all F P F and x P X we have

wpx, F q “ V pF q `
dV pp1 ´ λqF ` λδxq

dλ

∣∣∣∣∣
λ“0

We now introduce a general model of preference for surprise based on a represen-

tation in the form of a zero-sum game against an adversarial forecaster. Our first

result shows that these preferences are equivalent to utility functions with continuous

local expected utility. Suppose that forecasts are chosen from a compact metric space

Y that we call the forecast space. We start with a continuous function σpx, yq that

measures the “forecast error” if x occurs and the forecast was y. This function rep-

resents the loss function of the forecaster so that we normalize it to be non-negative.

We consider a forecast space rich enough so that, for any lottery F , there exists a

unique forecast ŷpF q that minimizes the expectation of σpx, yq with respect to F .

Moreover, since it is easy to forecast the outcome of a lottery that assigns probability

1 to a single outcome, we require that for any x, the unique minimizing forecast ŷpxq

given the degenerate distribution δx that assigns probability 1 to x has forecast error

0, i.e. σpx, ŷpxqq “ 0.4 We call any function σpx, yq that satisfies the properties above

a forecast error.

The adversarial forecaster tries to produce good forecasts by minimizing the

expected forecast error. That is, the forecaster knows F and chooses y to min-

3Note that continuous local utility does not imply that there is a unique local expected utility
at every point; generally there will be a continuum of local expected utilities at boundary points.
Boundary points are especially important in the infinite-dimensional case since with the topology of
weak convergence all points are on the boundary.

4Here, with abuse of notation we write ŷpxq in place of ŷpδxq.
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imize
ş

σpx, yqdF pxq. We refer to this minimum expected forecast error ΣpF q “

minyPY

ş

σpx, yqdF pxq as the suspense.

Definition 2. A function V : F Ñ R is an adversarial forecaster utility if

V pF q “

ż

vpxqdF pxq ` min
yPY

ż

σpx, yqdF pxq (1)

for some forecast space Y and forecast error function σ such that argminyPY

ş

σpx, yqdF pxq

is a singleton for all F .

This representation can be interpreted as follows: The agent has a baseline prefer-

ence over outcomes described by the expected utility function v, and a preference for

surprise captured by the forecast error σ. Given a forecast of the adversary, the agent’s

total utility is the sum of their expected baseline utility and the expected forecast

error. Equation 1 implies that V is continuous and concave, and that V pδxq “ vpxq.

Note that while adversarial forecaster preferences can depart from expected utility,

they do satisfy the independence axiom for comparisons of lotteries that induce the

same suspense Σ.

Example 1. In a sports match, the outcome is x “ 1 if the preferred team wins

and x “ 0 if it looses. Let p be the probability of winning, vpxq “ x, and σpx, yq “

px ´ yq
2, so the forecast error is measured by mean-squared error, where the forecast

space is Y “ r0, 1s. The decision maker gets utility vpxq “ x plus γ times the

squared error of the forecast, and the adversary’s optimal choice is to forecast p, with

resulting suspense pp1 ´ pq, so the agent’s preference over lotteries is represented by

V ppq “ p ` γpp1 ´ pq. If γ ą 1 and the agent can choose any value of p, the best

lottery is p “ p1 ` γq{p2γq, so the preferred team might lose, while if 0 ď γ ď 1 the

best lottery is p “ 1. △

2.2 Equivalence of the Two Representations

Theorem 1. A utility function has continuous local expected utility if and only if it

is an adversarial forecaster utility for some forecast space and forecast error function.

The formal proofs of this and all other results are in the appendix except where

otherwise noted. Theorem 1 can be proved by noting that if V is an adversarial
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V ppq

V ppq “ p ` γpp1 ´ pq

forecaster representation, then wp¨, F q “ v ` σp¨, F q is a local expected utility of

V , and that the continuity of σ implies that w is continuous. Conversely, given a

representation V with continuous local expected utility w, we can set vpxq “ V pδxq,

Y “ twp¨, F quFPF , and σpx, yq “ wpx, yq ´ vpxq. Because w is continuous, Y is

compact, σ is continuous, and as required it has its minimum value of 0 at degenerate

lotteries. Finally, we use the fact that wV is the unique “hyperplane” (i.e., linear

function) tangent to V at each F to show that σ also satisfies the uniqueness property.

2.3 Optimal lotteries

Continuous local expected utility implies the following fixed-point characterization of

optimal lotteries that we use in the analysis below.

Proposition 2. If V is an adversarial forecaster representation, then for any convex

and compact set of feasible lotteries F Ď F ,

F ˚
P argmax

FPF
V pF q ðñ F ˚

P argmax
FPF

ż

vpxq ` σpx, ŷpF ˚
qqdF pxq. (2)

Maximizing local expected utility is a sufficient condition for maximizing V ,

whether or not the local utility is continuous. The proof of necessity relies on the fact

that if V has continuous local expected utility, the directional derivative of V at any
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lottery F in direction F̂ is well defined and given by
ş

vpxq ` σpx, ŷpF qqdF̂ pxq: F ˚ is

optimal only if the directional derivative of V at F ˚ in any direction is non-positive.

The necessity result fails when the local utility is not continuous. For example,

if X “ r´1, 1s and V pF q “ minyPr´1,1s

ş1

´1
p2y ´ 1qxdF pxq, then F ˚ “ δ0 is uniquely

optimal over F for V . However, wpx, yq “ p2y ´ 1qx is a local expected utility for V

at F ˚ for every y P r´1, 1s, yet F ˚ is strictly suboptimal for all of these local utility

functions except for the one corresponding to y “ 0.

The fixed-point condition characterizing the optimal lotteries in Proposition 2

has a clear equilibrium interpretation: The adversary chooses a forecast y given the

equilibrium choice of the agent, and the agent maximizes the resulting local expected

utility. The adversary’s forecast is a best response if it induces the agent to choose

the forecasted lottery. In particular, when F “ F , F ˚ is optimal if and only if

supppF ˚q Ď argmaxxPX vpxq ` σpx, ŷpF ˚qq. In Example 1, it is easy to see that

the two degenerate lotteries δ0 and δ1 do not satisfy this fixed-point condition when

γ ą 1. Instead, each optimal lottery p must assign strictly positive probability to

both outcomes and, by Proposition 2, the local expected utility at p is the same

for both outcomes. Some simple algebra shows that the only lottery satisfying this

indifference condition is p “ p1`γq{p2γq as we show next in an extension of Example

1 to the case of a continuum of outcomes.

Example 2. Consider the setting of Example 1 but now suppose that the outcome

space is continuous X “ r0, 1s, that is the decision maker cares about the score of

the game and not just who wins, so that the utility function is V pF q “
ş

xdF pxq `

minyPr0,1s

ş

γpx´yq2dF pxq. This is an adversarial forecaster representation and, using

Proposition 1 the local utility is wpx, F q “ x ` γpx ´ mF q2, where mF denotes the

mean of F . Next, observe that for every F P F , the local utility wpx, F q is convex in

x, hence it is maximized over t0, 1u. A point mass over 0 cannot be optimal because

wp0, δ0q “ 0 ă 1 ` γ “ wp1, δ0q would contradict Proposition 2. Similarly, when

γ ą 1, a point mass over 1 cannot be optimal because wp1, δ1q “ 1 ă γ “ wp0, δ1q

would yield another contradiction. Therefore, Proposition 2 implies that the optimal

lottery must be binary Fp “ p1´ pqδ0 ` pδ1 with p P p0, 1q defined by the indifference

condition wp0, Fpq “ wp1, Fpq, that is p “ p1 ` γq{2γ △

Our characterization of optimal lotteries is useful for solving a rich class of prob-

lems with a unidimensional outcome space. LetX “ r0, 1s and, for every F P F , let qF
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denote the corresponding quantile function, that is, qF ptq “ inf tx P r0, 1s : t ď F pxqu.

We let Q denote the space of lower-semicontinuous, increasing functions over X cor-

responding to quantiles of distributions in F , and let Àst denote the (incomplete)

preference representing the first-order stochastic dominance order.5 We consider sets

of feasible distributions given by FOSD intervals between two deterministic outcomes

x ă x

rx, xsst “ tG P F : δx Àst G Àst δxu

We can now characterize optimal solutions of optimization problems under FOSD

constraints.

Corollary 1. If X “ r0, 1s, F “ rx, xsst, and V has continuous local expected utility

w, lottery F ˚ maximizes V pF q over F if and only if its quantile function qF˚ satisfies

qF˚ptq P argmax
xPrx,xs

vpxq ` σpx, ŷpF ˚
qq @t P r0, 1s

We illustrate this result with a simple example.

Example 3. Here we extend the sport-match preferences of Example 2 to a con-

tinuum of states and risk-averse baseline preferences. We set X “ Y “ r0, 1s,

vpxq “ p1 ´ expp´λxqq{λ with λ ą 0, and σpx, yq “ γpx ´ yq2 with γ ą λ{2 for

simplicity. The local utility at any lottery F is wpx, F q “ vpxq ` γpx ´ qF q2, and,

because minxPX v
2pxq “ ´λ and λ ă 2γ, each local utility is always strictly convex in

x. From Corollary 1, this implies that a lottery in r0, 1s is optimal if and only if its

quantile function q˚ satisfies

q˚
ptq P argmax

xPr0,1s

␣

vpxq ` γpx ´ q˚
q
2
(

(3)

where q˚ “
ş1

0
q˚ptqdt.6 Our restrictions on λ and γ imply that the local expected

utility is strictly convex in x, so for every candidate optimal lottery F ˚, the maximizers

of (3) can only be 0 or 1 for every t. In particular, the unique solution to this

5Recall that F Àst F̃ if and only if
ş

vpxqdF pxq ď
ş

vpxqdF̃ pxq for all increasing continuous

functions v. Alternatively, F Àst F̃ if and only if qF ptq ď qF̃ ptq for all t P r0, 1s.
6δ0 cannot be optimal because wp0, δ0q “ 0 ă rpλq ` γ “ wp1, δ0q. δ1 is optimal if and only

wp1, δ1q “ rpλq ě γ “ wp0, δ1q, which is equivalent to 1{2 ` rpλq{2γ ě 1.
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maximization is

q˚
ptq “

$

&

%

0 if t ď 1 ´ q˚

1 if t ą 1 ´ q˚.
(4)

where q˚ “ min t1{2 ` rpλq{2γ, 1u is the mean of the optimal lottery and where

rpλq “ p1 ´ expp´λqq{λ. When q˚ ă 1 , the variance of the optimal lottery is

1{4´ prpλq{γq2. This s decreasing in λ and increasing in γ, which is intuitive: agents

with lower lower-base line risk aversion and more taste for surprise are willing to

sacrifice more expected value for higher variance. △

2.4 Stochastic Choice

The adversarial forecaster representation is concave, and often leads to randomization;

a deterministic lottery is never optimal when the representation is strictly concave.7

Many stochastic choice representations in the literature satisfy the regularity property

that enlarging the choice set cannot increase the probability of pre-existing alterna-

tives, but this is not true for adversarial forecaster preferences.8 The next example

shows how a preference for surprise reduces the agent’s local risk aversion and can

lead regularity to fail.

Example 4. Suppose that X “ Y Ď R is an interval, that the agent’s baseline utility

v is concave and twice continuously differentiable, and that the agent’s preference for

surprise is given by σpx, yq “ px ´ yq
2. As in Example 2, the continuous local utility

of V is wpx, F q “ vpxq `

´

x ´
ş1

0
x̃dF px̃q

¯2

. Observe that the agent’s ranking of two

lotteries with the same expected value x is the same as that of an expected utility

agent with utility function wpxq “ vpxq ` px ´ xq2, which is less risk averse than

v. Moreover, the stochastic choice rule induced by these preferences need not satisfy

Regularity. For example, if vpxq “ x, the uniquely optimal choice for the agent from

∆
`

t´1, 0u
˘

is δ0, so there is no suspense. In contrast, when ∆
`

t´1, 0, 1u
˘

, the optimal

lottery is 1{4δ´1 ` 3{4δ1: the agent tolerates the risk of the bad outcome ´1 when

it can be accompanied by a larger chance of outcome 1.9 For general v that are not

too concave, i.e. when v2 ě ´2, the local utility is convex in x for all forecasts F .

7See Proposition 6 for a class of strictly concave adversarial forecaster representations.
8A stochastic choice function P satisfies regularity if P px|Xq ď P px|X

1
q for all x P X

1
Ď X.

9Note that any lottery with 3{4δ1 ą δ´1 is preferred to a point mass at 0.

9



Proposition 8 below shows this implies the agent weakly prefers any mean-preserving

spread F̃ of F to F itself. △

Some classes of adversarial forecaster preferences do satisfy regularity. This is true

for example of the weak APU of Fudenberg, Iijima, and Strzalecki [2015] when the

cost function c has bounded derivatives. The weak APU representation is defined only

for finite sets X; it is given by V pF q “
ř

xPX F pxqppupxq ´ cpF pxqqq where the cost

function c : r0, 1s Ñ RYt8u is strictly convex and continuously differentiable on p0, 1q.

To have continuous local expected utility we also need to assume that the derivative c1

is bounded and then the local expected utility at F ˚ is wpx, F ˚q “ upxq´c1pF ˚pxqq.10

2.5 Two-stage lotteries and surprise

We now apply our model to a simple example of optimal information acquisition. We

consider an agent choosing among two-stage lotteries that represent distributions over

both states and intermediate information. We show that the “preference for surprise”

in Ely, Frankel, and Kamenica [2015] has an adversarial forecaster representation.11

Let Ω “ t0, 1u be a binary state space. The outcomes x “ pp, ωq are elements of

X “ ∆pΩq ˆ Ω. The agent chooses an element of the set F of lotteries that satisfy

the martingale constraint
ş

pdF ppq “ pF , where pF is the marginal of F over Ω.

The lottery resolves over two time periods: In Period 1, the agent learns their

interim belief p P ∆pΩq, and in period 2, ω P Ω realizes. We assume that the agent

has preference for suspense in both periods. Let EpF q “
ş1

0
1
2
||p ´ pF ||2dF ppq “

ş1

0
p2dF ppq ´ p2F , and following Ely, Frankel, and Kamenica [2015], assume that the

preference for first-period suspense is V1pF q “ gpEpF qq for some function g : R Ñ R
that is twice continuously differentiable, strictly increasing, and concave, with gp0q “

0. The resulting utility function V1 has continuous local utility, so it is an adversarial

forecaster representation by Theorem 1. The suspense in period 2 given interim belief

p is
ř

ωPΩ
1
2
||δω ´ p||2ppωq, and the expected period-2 suspense is

V2pF q “

ż

g

˜

ÿ

ωPΩ

1

2
||δω ´ p||

2ppωq

¸

dF ppq “

ż 1

0

gpp ´ p2qdF ppq.

10The stronger version of APU requires limqÑ0 cpqq “ ´8 which is not consistent with continuous
local expected utility.

11Here we assume there are only two states, but it is true for any finite state space.
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Finally, the agent gets direct utility equal to ṽ P R when the realized state is ω “ 1

and direct utility 0 when ω “ 0; the case ṽ “ 0 yields the preferences in Ely, Frankel,

and Kamenica [2015].12

The overall utility of the agent is VβpF q “ pF ṽ ` p1 ´ βqV1pF q ` βV2pF q, where

β P r0, 1s captures the relative importance of suspense across periods. The discussion

above shows Vβ has continuous local expected utility, so by Theorem 1 it admits an

adversarial forecaster representation. The local utilities of Vβ are:

wβpp, ω, F q “ ωṽ ` p1 ´ βqg1
pD2pF qqpp2 ´ p2F q ` βgpp ´ p2q, (5)

where D2pF q “
ş

p̃2dF pp̃q ´ p2F . For every F , let F∆ denote its marginal over interim

beliefs p P ∆pΩq.

Proposition 3. For every β P r0, 1s, there exists an optimal distribution F ˚ whose

marginal over interim beliefs is supported on no more than three points. Moreover,

there exist β, β P p0, 1q with β ď β such that

1. When β ě β, F ˚
∆ “ δp˚

F
(so the intermediate stage reveals no information) and

p˚
F is optimal if and only if iti solves maxpPr0,1s tpṽ ` βgpp ´ p2qu.

2. When β ď β, F ˚
∆ “ p1 ´ p˚

F qδ0 ` x˚
pδ1 (the state is fully revealed) and p˚

F is

optimal if and only if it solves maxpPr0,1s tpṽ ` p1 ´ βqg1pp ´ p2qpp ´ p2qu.

Intuitively, when β=1 the agent only cares about second-period surprise so no

information is revealed in the first period, and when β “ 0 the agent only cares about

first-period surprise so the state is revealed then; these conclusions extend to β near

0 and 1 by a continuity argument. The formulas for p˚
F follow from calculating the

local utilities and applying the fixed-point characterization, as shown in Appendix A.

More generally, the agent might want to induce more than 2 posteriors. Section 3

derives a more general result on the support size of optimal distributions, and Online

Appendix IV.A gives the complete solution for the case of linear g.

12In Ely, Frankel, and Kamenica [2015], xF is fixed, so all the feasible two-stage lotteries induce
the same prior belief over Ω, and flow utility at each period depends on the expected surprise for
the next period given the current belief.
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3 The Limits of Optimal Randomization

This section analyzes the extent of optimal randomization in a class of adversarial

forecaster models called generalized method of moments, where the forecaster’s loss

function is parameterized by a set of moments.

3.1 Generalized Method of Moments Preferences

Suppose X is a closed bounded subset of an Euclidean space, and let S be any finite

set. Given any continuous function h : XˆS Ñ R, define hpF, sq “
ş

hpx, sqdF pxq for

all s P S and F P F . For a given h, we define the forecast space Y “
ś

sPS hpF , sq Ď

RS, a compact set, and call it the set of generalized moments : these correspond to

functions of the outcomes that are indexed by s. We now suppose that he adversary’s

goal is to match the collection of moments of F given by hpx, sq.

Definition 3. The loss function σ is based on the generalized method of moments

(GMM)13 if there is finite probability space pS, µq and a continuous function h :

X ˆ S Ñ R such that

σpx, yq “
ÿ

sPS

phpx, sq ´ ypsqq
2 µpsq. (6)

If X Ď R and S “ ts1, ..., smu is a finite set of non-negative integers, we can take

hpx, sjq “ xsj for every sj P S, the standard method of moments.14 The simplest case

is X Ď R and S “ t1u, as in Examples 1 and 4.

Proposition 4. Any loss function σ based on the generalized methods of moments is

a forecast error, and the suspense is quadratic

ΣpF q “

ż

Hpx, xqdF pxq ´

ż ż

Hpx, x̃qdF pxqdF px̃q

where Hpx, x̃q “
ř

sPS hpx, sqhpx̃, sqµpsq.

This shows that GMM forecast errors generate quadratic utilities V (Machina

[1982]) that are strictly concave. Chew, Epstein, and Segal [1991] show that strictly

13In econometrics, the generalized method of moments means minimizing a quadratic loss function
on the data under the constraint that a number of generalized moment restrictions are satisfied.

14See for example Chapter 18 in Greene [2003].
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concave quadratic utilities satisfy mixture symmetry, a weakening of both indepen-

dence and betweenness that is more consistent with some experimental findings such

as Hong andWaller [1986]. Proposition 3 in Dillenberger [2010] shows that preferences

represented by quadratic utilities satisfy negative certainty independence (NCI) only

if they are expected utility preferences. Therefore, when V is induced by a GMM fore-

cast error and is strictly concave, the corresponding preference does not satisfy NCI.

This is intuitive because NCI supposes the agent has a preference for deterministic

outcomes.

3.2 Moment Restrictions and Bounds on Optimal Supports

We turn now to the study of optimization problems with support restrictions and

moment constraints, e.g. that the expected outcome must be constant across lotteries,

as is the case with fair insurance. We are mostly interested in the extent of optimal

randomization, that is, in the size of the supports of optimal distributions.

To define the support restrictions formally, fix a closed subset X Ď X and a

finite collection of k continuous functions Γ “ tg1, ..., gku Ď C pXq together with the

feasibility set

FΓ

`

X
˘

“

"

F P ∆
`

X
˘

: @gi P Γ,

ż

gi pxq dF pxq ď 0

*

,

which we assume is non-empty. For example, if x is money, then
ş

xdF pxq “ 0 is the

constraint that the agent must choose a fair lottery. When the constraint set Γ is

empty, the agent can pick any lottery with support X.

When an expected-utility agent maximizes over FΓ, there are optimal lotteries

that are extreme points of the set FΓ, and all the extreme points of this set are

supported on up to k ` 1 points of X. We now generalize this idea to the class

of GMM preferences and show that the upper bound on the support of an optimal

lottery depends on the number of moments defining the adversary’s loss function as

well as the number of moment restrictions.

Proposition 5. When the agent has GMM utility with m moments and Γ contains

k moment restrictions, there is an optimal lottery that puts positive probability on at

most m ` k ` 1 points.

The proof is relatively simple, so we present it here. First, recall that for every

13



F the optimal forecast is ŷpF q “ phpF, sqqsPS and define Y “ ŷpFΓq. Then the

optimization problem becomes

max
FPFΓ

V pF q “ max
FPFΓ

ż

#

vpxq `
ÿ

sPS

phpx, sq ´ hpF, sqq
2 µpsq

+

dF pxq

“ max
yPY

max
FPF :ŷpF q“y

ż

#

vpxq `
ÿ

sPS

phpx, sq ´ ypsqq
2 µpsq

+

dF pxq.

Next, fix an optimal solution θ˚ of the outer maximization problem. F ˚ solves

the original problem and is consistent with y˚ if and only if it solves

max
FPFΓpXq:ŷpF q“y˚

ż

#

vpxq `
ÿ

sPS

phpx, sq ´ y˚
psqq

2 µpsq

+

dF pxq (7)

which is linear in F : The agent behaves as if they were maximizing expected utility

over all lotteries that have the optimal values of the relevant moments. Because the

objective in (7) is linear in F , there is a solution in the set of extreme points of the

set tF P FΓ : hpF, ¨q “ y˚u. This set is obtained by adding the m linear restrictions

given by y˚ to the set of probabilities over X that satisfy the k exogenous moment

restrictions, and Winkler [1988] shows that the extreme points of this set are sup-

ported on at most k`m`1 points of X. The next section introduces a broader class

of adversarial forecaster representation that generalize GMM and for which a similar

upper bound holds (see Theorem 2).

3.3 Parametric Adversarial Forecaster and Optimal Random-

ization

For GMM preferences, the forecast space is the set of generalized moments, that is,

Y “
ś

sPS hpF , sq. Because S is finite, Y is a subset of a Euclidean space, so ŷpF q “

phpF, sqqsPS can be interpreted as a finite-dimensional parameter that represents the

best forecast for F . Parametric adversarial forecaster representations generalize these

properties.

Definition 4. A forecast error σ is parametric if Y Ď Rm for some finite integer m,

and σ and continuously differentiable in y. A utility function V is parametric if it

14



has an adversarial forecaster representation with a parametric forecast error.

This definition is tailored for utility functions with an explicit adversarial fore-

caster representation pv, σq. However, the proof of Theorem 1 constructs a forecast

error σ starting from a continuous local expected utility w of V . It is then straight-

forward to provide conditions on w that imply V is parametric.15

Example 5. We relax the GMM representation by allowing the forecaster to have

distinct preferences regarding positive and negative surprises. For simplicity, we let

X “ r0, 1s and consider only the first moment.16 Fix a strictly convex and twice

continuously differentiable function ρ : r´1, 1s Ñ R` such that ρp0q “ 0, ρ1pzq ă 0 if

z ă 0, and ρ1pzq ą 0 if z ą 0, and consider the preferences induced by

V pF q “

ż 1

0

vpxqdF pxq ` min
yPY

ż 1

0

ρpx ´ yqdF pxq,

where the space of parameters coincides with the space of outcomes, i.e. Y “ X.

These preferences arise from the parametric adversarial forecaster representation with

forecast error σpx, yq “ ρpx ´ yq and a one-dimensional parameter space. Here ŷpF̂ q

is the unique minimizer in (5), and the suspense function is given by ΣpF q “
ş

ρpx´

ŷpF qqdF pxq which can be interpreted as an index of the dispersion of F , without

requiring symmetry. As we show in Section 5.2, this can lead to more “prudent”

preferences. △

Example 6. Proposition 7 in Fudenberg, Iijima, and Strzalecki [2015] shows that V

has an APU representation if and only if it has an AVU representation, that is,

V pF q “
ÿ

xPX

upxqfpxq ` min
yPRX

ÿ

xPX

«

ypxq `
ÿ

x̃PX

ϕpypx̃qq

ff

fpxq (8)

where ϕpzq :“ c˚p´zq where c˚ is the convex conjugate of the original cost function

c. Next, assume the bounded derivative condition on c and, for simplicity, that

minrPR pr ` ϕprqq “ 0.17 We can then restrict the minimization in (8) to a compact

15It is sufficient that w can be written as wpx, F q “ σpx, P pF qq for some continuous functions
P : F Ñ Y and σ : XˆY Ñ R such that Y is a compact finite-dimensional set and σ is continuously
differentiable in y.

16This generalizes to any arbitrary number of moments as in Section 3.1.
17This last assumption is only needed so that the baseline utility v from the adversarial forecaster

representation coincides with u; it is satisfied for example by ϕprq “ r2{2 ´ r.
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set Y Ď RX and define σpx, yq “ ypxq `
ř

x̃PX ϕpypx̃qq to obtain an adversarial

forecaster representation.

The AVU representation in Equation 8 is an example of a parametric adversarial

forecaster utility where the parameter space Y has dimension m “ |X|. Now we

generalize this model by considering uncertain taste shocks y P RX that are the same

across certain classes of outcomes in X, thereby reducing the dimensionality of the

parameter space. Fix a partition P “ tE1, ..., Emu of X and a compact interval I Ď R
that contains 0.18 Define Y as the subset of IX of vectors that are measurable with

respect to the fixed partition and let V pF q be defined as in (8) with RX replaced

by Y . Then for every partition, the utility function V has an adversarial forecaster

representation with σ defined as in the original AVU representation. △

We now show that when the adversarial preferences are parametric and the feasible

set is defined by a number of moment conditions, there is an optimal lottery whose

support is a finite set of outcomes, and that the upper bound on this finite number of

outcomes only depends on the dimension of the parameter space and on the number

of moment restrictions defining the feasible set of lotteries. This result links the

extent of optimal randomization, which is observable, to the parametric structure of

the adversary’s loss function. 19

Consider a utility V with parametric forecast error σ and an arbitrary compact

and convex set F Ď F of feasible lotteries. Define Y ” ŷpFq and observe that

max
FPF

V pF q “ max
FPF

ż

vpxq ` σpx, ŷpF qqdF pxq (9)

“ max
yPY

max
FPF :ŷpF q“y

ż

vpxq ` σpx, yqdF pxq,

where the first equality follows from the definition of ŷpF q, and the second equality

follows by splitting the choice of the lottery in two parts: the agent chooses the desired

value for the parameter y P Y and then chooses among the feasible distributions that

are consistent with y. As in the GMM case, we can fix an optimal solution y˚ of the

outer minimization problem and maximize
ş

vpxq ` σpx, y˚qdF pxq over the lotteries

F that satisfy ŷpF q “ y˚. When ŷ is linear and the dimension of Y is m, as in the

18Here we mean that the interval is large enough such that the solution of minrPI pr ´ ϕprq is
always in the interior of I.

19Example 11 in Online Appendix IV.B applies Theorem 2 to asymmetric parametric adversarial
preferences that are not GMM.
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GMM case, we can replicate the same steps of Proposition 5 to show that there exists

an optimal lottery F ˚ that is supported on no more than k ` m ` 1 points of X.

However, these steps crucially rely on the linearity of ŷ. Next, we extend this result

to nonlinear parametric utilities.

Theorem 2. Fix a closed set X Ď X, tg1, ..., gku Ď C pXq, and let F “ FΓ

`

X
˘

.

Then there is a solution to (9) that assigns positive probability to no more than pk `

1qpm ` 1q points of X.

Our proof technique here is very different than that for the GMM bound in Propo-

sition 5. The first step is Theorem 7 in the appendix, which uses the parametric

transversality theorem to show that when X is finite, the bound stated in Theorem

2 holds generically for every optimal lottery. We then use an approximation argu-

ment on both the baseline utility v and the set of feasible outcomes to show that, for

arbitrary X, there always exists a solution with the same bound on the support.20

Theorem 2 has immediate implications for the nonlinear parametric examples. For

the asymmetric GMM case of Example 5, there is an optimal lottery supported on no

more than 2pk`1q points given the k moment restrictions in Γ. In our generalization

of AVU in Example 6, the number of parameters coincides with the number of cells

of the partition describing the uncertainty shock. This can be smaller than the

cardinality of |X|, so Theorem 2 yields a meaningful bound on the support of optimal

lotteries. Moreover, as pointed out above, when X is finite our proof shows that all

solutions must satisfy our upper bound. Our result then gives a testable prediction on

the support of stochastic choices induced by AVU preferences with coarser shocks.21

3.4 Infinitely many moments and unbounded randomization

So far we have analyzed the minimal support of optimal lotteries under the assumption

that the parameter space Y is finite dimensional. When Y is infinite dimensional,

every optimal distribution can have “thick” (i.e. non-finite) support. We will show

this for a class of GMM preferences with infinitely many relevant moments.

We extend GMM utilities by considering a compact probability space pS, µq en-

dowed with its Borel sigma algebra and a continuous function h : X ˆ S Ñ R. As

20Doval and Skreta [2018] bounds the cardinality of the support of optimal distributions in some
finite-dimensional constrained linear problems in information design using Carathéodory’s theorem,
which does not apply if the best response map ŷ can be nonlinear.

21Online Appendix III.C provides an extension to the case of infinite X.
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before, the forecast space is the compact set Y “ thpF, ¨q P CpSq : F P Fu, 22 and the

forecast error is

σpx, yq “

ż

phpx, sq ´ ypsqq dµpsq.

We can now extend Proposition 4 to the infinite-moment case.

Proposition 6. Any loss function σ based on the generalized methods of (infinite)

moments is a forecast error, and the suspense is quadratic

ΣpF q “

ż

Hpx, xqdF pxq ´

ż ż

Hpx, x̃qdF pxqdF px̃q

where Hpx, x̃q “
ş

hpx, sqhpx̃, sqdµpsq. If µ has full support and F ÞÑ hpF, ¨q is one-

to-one, then Σ and V are strictly concave

Given an infinite GMM utility, we call H the kernel of the GMM representation.

Next, we provide sufficient conditions for an infinite GMM utility to induce a unique

optimal lottery that has full support over the outcome space. For simplicity, we con-

sider to the one-dimensional case and do not impose exogenous moment restrictions

on the feasible lotteries.

Proposition 7. Assume that X “ r0, 1s, Γ “ H, the kernel of the GMM represen-

tation Hpx, x̃q “
ş

hpx, sqhpx̃, sqdµpsq “ Gpx ´ x̃q is positive definite, and Hp0, x̃q is

non-negative, strictly decreasing (when positive), and strictly convex in x̃. Then there

is a unique solution to (9), and it has full support over X.

For the hypotheses of the theorem to be satisfied, the GMM adversary must have

a sufficiently large set of forecasts, as in Example 10 in Online Appendix IV.B.23 The

proof uses Proposition 6 to obtain strict concavity of the function V , which implies

that the unique optimal distribution F for V over F is characterized by first-order

conditions which, together with the assumptions on H, imply that there cannot be

an open set in X to which F assigns probability zero.

We close this section with a corollary of Theorem 2 and Proposition 7; its proof

is in Online Appendix II.B.

22Compactness of Y follows by Arzelà–Ascoli theorem. Indeed, Y is closed because F is compact,
it is uniformly bounded because F ˆ S is compact, and it is equicontinuous because h is (jointly)
continuous.

23Example 7 in the next section shows how thick support arises with another adversarial forecaster
preference that is not GMM.
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Corollary 2. Maintain the assumptions of Proposition 7, and let F denote the unique

fully supported solution. There exists a sequence of GMM representations V n with

|Sn| P N, and a sequence of lotteries F n such that each F n is optimal for V n, is

supported on up to |Sn| `1 points, and F n Ñ F weakly, with suppF n Ñ suppF “ X

in the Hausdorff topology.

Intuitively, as the number of moments that the adversary matches increases, the

agent randomizes over more and more outcomes, up to the point that each outcome

is in the support of the optimal lottery.24

4 Transport Utilities

This section considers a tractable class of adversarial forecaster preferences that allow

the possibility of randomizations with thick support. These preferences arise when

the agent trades off the interests of multiple selves with potentially heterogeneous

intrinsic preferences for surprise. We show that the resulting adversarial forecaster

representation has the form of the Kantorovich transport problem (hence the name)

and analyze it using results from the optimal transport literature.

Formally, we take a forecast to be a continuous function y from a compact and

convex finite-dimensional set X to R, and we regard the forecast as the logarithm

of a density, which we call the score. We define the surprise of the outcome x as

maxξ ypξq ´ ypxq, that is, how much less likely the outcome is than the most likely

outcome. In other words, an outcome with a lower score is more surprising and hence

better. However, if the decision-maker is indifferent between all outcomes, then the

forecaster can reduce surprise to 0 by forecasting that all outcomes are equally likely.

Instead, we consider a decision maker with multiple selves that have heterogeneous

preferences over outcomes.

We index the selves by θ P X, and represent the preferences of these different

selves by a continuously differentiable score adjustment function ϕpθ, xq, where a

higher value ϕpθ, xq ą ϕpθ, x1q indicates that type θ prefers the outcome x to the

outcome x1. We then suppose that type θ evaluates outcomes using the preference

adjusted score ypxq ´ϕpθ, xq, where lower adjusted scores are preferred. We continue

to measure surprise in relative terms, so the surprise for a self θ at outcome x is

24Note that weak convergence does not imply Hausdorff convergence of the supports.
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maxξPX pypξq ´ ϕpθ, ξqq´pypxq ´ ϕpθ, xqq, defined now in terms of preference adjusted

scores.

Notice that for any particular self θ the forecaster can send the forecast ypxq “

ϕpθ, xq so that this self has a uniform utility-adjusted forecast and is not surprised by

anything and, as indicated, the model is not interesting if there is only one self or the

selves are homogeneous. Instead, we assume that the multiple selves θ are uniformly

distributed over X, denoting the uniform measure by U , and that the adversarial

forecaster minimizes the average of the individual surprise over all selves. We also

assume that the decision-maker maximizes the sum of a baseline continuous expected

utility vpxq and the expectation of the average surprise, that is,

V pF q “

ż

vpxqdF pxq ` inf
yPCpxq

ż

σ̂px, yqdF pxq (10)

where

σ̂px, yq “

ż
ˆ

max
ξPX

pypξq ´ ϕpθ, ξqq ´ pypxq ´ ϕpθ, xqq

˙

dUpθq

is the average of the individual score-adjusted surprises of the multiple selves.25

We say that the decision maker has transport preferences if the utility function is

defined as in equation 10 for some vpxq and ϕpθ, xq. We call this transport preferences

because, as we will show, the term infyPCpxq

ş

σ̂px, yqdF pxq is isomorphic to the dual

of the Kantorovich transport problem.

Transport preferences do not immediately have an adversarial forecaster repre-

sentation because the function σ̂ is not defined over a compact space Y , but we will

show that we can restrict Y to be a compact subset of continuous functions to obtain

a proper surprise function. However, we can already interpret σ̂ as an aggregate mea-

sure of surprise across selves. As indicated, when the selves have different preferences

over outcomes, the forecaster cannot choose a forecast that makes the utility adjusted

forecasts the same for all the selves, leaving room for surprise and suspense.

Before showing that σ̂ induces an adversarial forecaster utility, we report some of

its structural properties that are useful for defining our surprise function.

Lemma 1. The function σ̂ is non-negative, continuous, and such that, for all x P X,

there exists y P CpXq such that σ̂px, yq “ 0 and
ş

exppypξqqdUpξq “ 1.

25It would be straightforward to generalize transport utility to the case where the selves are not
uniformly distributed and may even have mass points. However, such preferences may not have an
adversarial forecaster representation because the uniqueness property might fail.

20



To define the set Y of feasible forecasts, we observe that as ϕ is continuously

differentiable on X ˆX it is K-Lipchitz for some Lipchitz constant K. As a prelude

to defining Y we define Y ˚ to be the subset of CpXq that are K-Lipchitz, and say

that y P CpXq is strongly ϕ-concave if ypxq “ ´maxθPX py˚pθq ´ ϕpθ, xqq for some

y˚ P Y ˚. We now define the parameter space Y to be the strongly ϕ-concave functions

y in CpXq that satisfy the normalization
ş

exppypxqqdUpxq “ 1. We show that Y is

in compact as required.

Lemma 2. The set Y is compact and, for every F P F , the problem

ΣpF q “ min
yPCpXq

ż

σ̂px, yqdF pxq (11)

has a unique solution in Y .

This is proved in Appendix B. Denoting by σ the restriction of σ̂ to X ˆ Y , we

conclude that:

Theorem 3. The function σ is a surprise function, ΣpF q “ minyPY

ş

σpx, yqdF pxq is

the corresponding suspense function, and for any continuous vpxq the utility function

V in (10) has an adversarial forecaster representation.

This result follows easily from the previous two lemmas: As established, Y is the

forecast space and the restriction σ over XˆY of σ̂ is the forecast error. By Lemmas

1 and 2 Y is compact and σ satisfies all the properties of a forecast error. Therefore,

for any continuous vpxq the utility function V in (10) has an adversarial forecaster

representation.

4.1 The Primal Representation and Optimal Lotteries

As indicated, transport preferences are linked to the Kantorovich optimal transporta-

tion problem through duality theory. Specifically

Theorem 4. Suspense is the solution to choosing a probability measure T P ∆pΘˆXq

to solve the problem

ΣpF q “ max
T

ˆ
ż ż

ϕpθ, xqdUpθqdF pxq ´

ż

ϕpθ, xqdT pθ, xq

˙

(12)

subject to
ş

T px, θqdθ “ F pxq and
ş

T px, θqdx “ Upθq.
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Proof. The duality connection is established from the basic duality result (for ex-

ample, Theorems 1.7 and 1.39 in Santambrogio, 2015) in which the primal trans-

portation problem is to minT
ş

ϕpθ, xqdT pθ, xq subject to
ş

X
T px, θqdθ “ F pxq and

ş

X
T px, θqdx “ Upθq while the dual is to maxy

`ş

ypxqdF pxq `
ş

minxPX pϕpθ, xq ´ ypxqq dUpθq
˘

.

When X is compact and ϕ continuous the duality theorem says that both the primal

and dual problem have a solution and the two values are equal. To see how this

connects to our transport preferences, rewrite the dual as

´min
y

ˆ

´

ż

X

ypxqdF pxq `

ż

X

max
xPX

p´ϕpθ, xq ` ypxqq dUpθq

˙

“ ´ΣpF q ´

ż ż

ϕpθ, xqdUpθqdF pxq.

From the duality theorem it then follows that

ΣpF q “

ż ż

ϕpθ, xqdUpθqdF pxq ´ min
T

ż

ϕpθ, xqdT pθ, xq.

Theorem 4 can be used to solve the problem of choosing a lottery F P F when V

is a transport utility. Define the correspondence

Ψϕpθq “ argmax
xPX

"

vpxq ´ ϕpθ, xq `

ż

ϕpθ̃, xqdUpθ̃q

*

(13)

and let ψ P Ψϕ denote an arbitrary measurable selection. For every measurable

selection ψ, we let Uψ P F be the lottery defined as UψpX̃q “ Upψ´1pX̃qq for all

measurable sets X̃.

Theorem 5. If V is a transport utility with respect to v and ϕ, the set of optimal

lotteries over F is the closure of
␣

Uψ P F : ψ P Ψϕ

(

. Moreover, if Ψϕ “ ψ is single-

valued, then the unique optimal lottery is Uψ and its support is ψpΘq.

Equation 12 immediately implies that, for every ψ P Ψϕ, the distribution Uψ is

optimal. The converse follows by a further application of the Kantorovich duality

as shown in Appendix B. The correspondence Ψϕ is single-valued when the objec-

tive function in equation 13 is strictly quasi-concave in x for every θ, as in Example 7
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below, where we use Theorem 5 to solve for the optimal lottery and find sufficient con-

ditions for it to be uniformly distributed over the entire space of outcomes. Moreover,

when the favorite outcomes of the multiple selves span the entire space of outcomes,

that is when ψpΘq “ X, as in the second specification of Example 7, the unique

optimal lottery corresponds to a complete randomization over all the outcomes.26

Theorems 4 and 5 are particularly useful when the outcome space is one-dimensional

and the score function of the selves satisfies a standard strict single-crossing condi-

tion. Let qF ptq “ inf tx P X : t ď F pxqu denote the quantile function of F defined in

Section 2.3

Lemma 3. If X Ď R and the partial derivative ϕxpθ, xq is decreasing in θ, then

ΣpF q “

ż ż

ϕpθ, xqdUpθqdF pxq ´

ż 1

0

ϕpqUptq, qF ptqqdt. (14)

.

The proof is in Appendix B. It uses the fact that ϕxpθ, xq decreasing in θ to write

the objective function in (12) as the integral with respect to T of a supermodular

function, and then applies Theorem 4.3 in Galichon [2018] to rewrite the value of

the primal transportation problem in terms of the optimal transportation map from

selves θ inΘ to outcomes x P X: θ ÞÑ qF pUpθqq. Finally, the change of variable

t “ Upθq applied to the second integral yields equation 14.

Observe that for every F P F , the quantile function qF is nondecreasing and left-

continuous. Moreover, for every nondecreasing and left-continuous q, the function

Fqpxq “ sup tt P r0, 1s : x ě qptqu is a CDF, that is, it nondecreasing, right-continuous,

and such it is equal to 0 and 1 at the boundaries of X. Moreover, Fqpxq is the unique

CDF such that Fqpxq P q´1pxq for all x P X. This lets us find optimal lotteries by

maximizng over the corresponding quantile functions.

Corollary 3. Suppose that X Ď R is an interval and that ϕθx ă 0 and ϕxx ă 0. A

lottery F P F maximizes V pF q if and only if

qF ptq “ argmax
xPX

"

vpxq ´ ϕpqUptq, xq `

ż

ϕpθ, xqdUpθq

*

(15)

26When there is ψ P Ψφ such that ψpΘq is finite, there is an optimal lottery supported on finitely
many points, as in Theorem 2. Thus the number of different utility functions of the selves plays a
role analogous to the number of parameters in parametric adversarial forecaster preferences.
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for all t P r0, 1s.

Proof. From equation 14 the problem of maximizing V pF q becomes

max
FPF

V pF q “ max
FPF

"
ż

vpxqdF pxq `

ż ż

ϕpθ, xqdUpθqdF pxq ´

ż 1

0

ϕpqUptq, qF ptqqdt

*

“ max
FPF

ż 1

0

"

vpqF ptqq ´ ϕpqUptq, qF ptqq `

ż

ϕpθ, qF ptqqdUpθq

*

dt

where the last maximization is over all the nondecreasing and left-continuous func-

tions qptq. Finally, the result follows from the fact that the function qptq defined as

the unique maximizer of problem (15) is nondecreasing (by Topkis Theorem) and

continuous (by Berge Maximum Theorem).

Example 7. Consider a sports team example where X “ r´1, 1s represents the

possible scores of a game, fix γ P r0, 1s, and consider the baseline utility vpxq “

´p1 ´ γqx2. We compare two cases of adversarial forecaster preferences. We start

with a GMM utility with Y “ r´1, 1s and σpx, yq “ γpx ´ yq2 as in Example 3. In

this case, the local expected utility is wpx, F q “ p2γ ´ 1qx2 ´ 2γxqF ` γq2F , where

qF “
ş1

0
qF ptqdt is the expectation of F . When γ ă 1{2, every local utility is strictly

concave in x, so that the unique optimal lottery is a point mass on a single outcome

which, by the fixed-point condition of Proposition 2 must be 0. When γ ą 1{2 then

every local utility is strictly convex, so Proposition 8 in the next section implies that

the optimal lottery is supported on t´1, 1u. Moreover, the fixed-point condition of

Proposition 2 implies that the expectation qF˚ of the optimal lottery satisfies the

indifference condition wp´1, F ˚q “ wp1, F ˚q, so qF˚ “ 0, and the optimal lottery

gives probability 1{2 to ´1 and 1, regardless of the specific value of γ ą 1{2.

Next, we consider the transport utility induced by the multiple-selves utility func-

tion ϕpθ, xq “ ´γθx. In this case, we have φpθ, xq “ γθx´ p1´ γqx2 which is strictly

concave in x. Corollary 3 says that the quantile function qF˚ptq of the optimal lottery

must solve

qF˚ptq P argmax
xPr´1,1s

φpqUptq, xq “ argmax
xPr´1,1s

␣

γp2t ´ 1qx ´ p1 ´ γqx2
(

(16)
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for all t P r0, 1s. The unique solution of (16) is

qF˚ptq “ max

"

´1,min

"

1,
γ

1 ´ γ
pt ´ 1{2q

**

,

which induces an optimal distribution that clearly depends on γ. When γ P r0, 2{3s,

the uniform distribution over r´γ{2p1 ´ γq, γ{2p1 ´ γqs is optimal, and for γ “ 0

and γ “ 2{3 we respectively have a mass point at 0 and a fully supported uniform

lottery. When γ P p2{3, 1s, the optimal lottery combines mass points at ´1 and 1

with mass 1{2 ´ p1 ´ γq{γ each and a continuous uniform measure over r´1, 1s with

complementary total mass. In particular, when γ “ 1 the continuous part vanishes.

Observe that while the mean of the optimal lottery remains 0 as γ varies, its dispersion

depends on γ. In fact, as γ increases, the optimal lottery increases with respect to

the mean-preserving spread (MPS) order, varying from a Dirac probability over 0 (for

γ “ 0) to the maximal distribution with mean 0 over r´1, 1s with respect to the MPS

order (for γ “ 1).27 △

In the one-dimensional case, we can give a more explicit representation for the

local utility of V that we use in Section 5.

Corollary 4. Suppose that X Ď R is an interval and that ϕθx ă 0. The continuous

local expected utility of V pF q is given by

wpx, F q “ vpxq `

ż

ϕpθ, xqdUpθq ´

ż x

xF

ϕxpT´1
pzq, zqdz ` kpF q (17)

where xF “ min suppF , T´1pxq is the generalized inverse of the primal solution

T pθq “ qF pUpθqq, and cpF q is a normalizing constant independent of x.

Proof. First, recall from the proof of Theorem 1 that for every V pF q with a contin-

uous expected utility, the local utility is given by wpx, F q “ vpxq `σpx, ŷpF qq. Given

our assumptions, Theorems 3 and 4 implies that the suspense function of V pF q is

given by

ΣpF q “ min
yPy

ż

σpx, F qdF pxq “ max
TP∆pU,F q

ż

ϕ̂pθ, xqdT pθ, xq (18)

27See the next section for definitions of the MPS order and general integral stochastic orders.
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where ϕ̂pθ, xq “
ş

ϕpθ̃, xqdUpθ̃q ´ ϕpθ, xq. Theorem 2.2 in Henry-Labordère and

Touzi [2016] gives that the solution of the minimization problem in (18) is such that
B

Bx
ŷpF qpxq “ ϕ̂xpT´1pxq, xq for all x P suppF where T pθq “ qF pUpθqq is the solution

of the maximization problem in (18). Therefore, there exists a constant kpF q such

that

σpx, ŷpF qq “

ż x

T pxF q

ϕ̂xpT´1
pzq, zqdz ` kpF q

“

ż

ϕpθ, xqdUpθq ´

ż x

T pxF q

ϕxpT´1
pzq, zqdz ` kpF q

yielding the desired result.

4.2 Rank Dependence and Ordinal independence

We now connect transport utility to the ordinal independent preferences of Green and

Jullien [1988], which is defined only for lotteries over the real line X Ď R. Ordinal

independence requires that if two distributions have the same tail, this tail can be

modified without altering the preference between the distributions. Green and Julien

show that the standard expected utility axioms with ordinal independence in place of

the independence axiom, together with monotonicity, imply preferences have the rep-

resentation V pF q “
ş1

0
φpt, qF pxqqdt for some continuous real-valued utility function

φpt, xq that is nondecreasing in x.28 Define φpt, xq “ vpxq´ϕpqUptq, xq`
ş

ϕpθ, xqdUpθq,

and observe that Equation 4 implies that if a transport preference is such that ϕxpθ, xq

is decreasing in θ and φxpt, xq ě 0, then it belongs to the class of ordinal indepen-

dent preferences. Conversely, if Á is ordinal independent with φxpθ, xq increasing in

θ, then it is a differentiable transport preference. This implies that if φpt, xq is dif-

ferentiable and φxpt, xq is decreasing in t, Green-Julien preferences have continuous

local expected utility, so they admit an adversarial forecasting representation and

have a preference for surprise; monotonicity with respect to x is not needed. The

second case in Example 7 above has a differentiable transport preference that does

not satisfy monotonicity, and induces lotteries with full support over r0, 1s.

28This generalizes the rank-dependent representations of Quiggin [1982] and Yaari [1987], where
φpθ, xq “ wpθqvpxq. See Green and Jullien, 1988 for a discussion regarding the additional behavior
predictions that are allowed by the more general ordinal independent representation.
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5 Monotonicity and behavior

This section characterizes monotonicity with respect to stochastic orders (e.g. first-

order stochastic dominance, second-order stochastic dominance, and the mean-preserving

spread order) in terms of the properties of the adversary’s best response in the ad-

versarial expected utility representation, and uses the characterization to analyze

(higher-order) risk aversion and correlation aversion. These applications use the suf-

ficient condition for monotonicity that we give in our characterization. The necessary

condition shows the properties that the adversarial representation must have when

the preferences of the agent are assumed to be monotone to begin with.

5.1 Stochastic orders and monotonicity

We start with the definition of the stochastic order induced by a set of continuous

real-valued functions.

Definition 5. Fix a set W Ď CpXq.

(i) The stochastic order ÁW is defined as:

F ÁW F̃ ðñ

ż

wpxqdF pxq ě

ż

wpxqdF̃ pxq @w P W . (19)

(ii) A utility V preserves ÁW if for all F, F̃ P F , F ÁW F̃ implies V pF q ě V pF̃ q.

Stochastic orders have been extensively used in decision theory to capture some

monotonicity properties of behavior. For example, when x P R represents monetary

outcomes, the class of increasing functions generates the first-order stochastic dom-

inance relation, and a preference that preserves this order is monotone increasing

with respect to the realized wealth. Similarly, the class of convex functions generates

the MPS order, and a preference that preserves this order is monotone increasing

with respect to mean-preserving spreads. Conversely, a preference that preserves the

stochastic order generated by concave functions would exhibit risk aversion.

Proposition 8. Let V be an adversarial forecaster representation with baseline utility

function v and surprise function σq, and fix a set W Ď CpXq. Then V preserves ÁW

if and only if v ` σp¨, F q P xWy for all F P F .
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Proposition 8 underlies the application to risk aversion in the next section. In this

application, preferences are monotone with respect to the MPS order via Corollary 8,

and so the optima are the feasible distributions that are maximal in the MPS order.

Similarly, we can apply Proposition 8 to the transport preferences introduced in

Section 4. Given X “ r0, 1s, let F˚ Ď F denote the set of full-support and absolutely

continuous probability measures on X.

Corollary 5. Suppose that X Ď R is an interval, let V be a transport preference such

that ϕθx ă 0, and fix a set W Ď CpXq. Then V preserves ÁW if and only if, for all

F P F , w0px, F q “ vpxq `
ş

ϕpθ, xqdUpθq ´
şx

xF
ϕxppqF ˝Uq´1pzq, zqdz is an element of

xWy.

Under the assumptions on ϕ, the local utility of V is equal to w0px, F q up to

a constant kpF q that is independent of x. Given that by definition the set xWy is

closed with respect to constant translations, Proposition 8 then yields Corollary 5.

The corollary also implies that supermodular ordinally independent preferences are

monotone with respect to the MPS order if ϕ is convex in x.

5.2 Risk aversion and adversarial forecasters

Now we use the monotonicity result to show how a preference for surprise can alter

the agent’s higher-order risk preference. Theorem 2 shows there are optimal lotteries

in F that are supported on at most two points. Moreover, because the local expected

utility of the agent is wpx, F q “ vpxq`ρ px ´ ŷpF qq , with second derivative w2px, F q “

v2pxq ` ρ2px ´ ŷpF qq, Corollary 8 implies that V preserves the MPS order when

v is not too concave. This implies that the optimal distributions have the form

p˚δ1 ` p1 ´ p˚qδ0 for some p˚ P r0, 1s. And then the fixed-point characterization of

optimality in Proposition 2 can be used to explicitly compute p˚, as we show in Online

Appendix IV.B.

Consider the asymmetric loss function ρpzq “ λpexppzq ´ zq, λ ě 0 of Example

5. The relevant statistic is ŷpF q “ log
´

ş1

0
exppxqdF pxq

¯

, that is, the (normalized)

cumulant generating function evaluated at 1. With this loss function the agent prefers

a positive surprise x ą ŷpF q to a negative surprise x ă ŷpF q of the same absolute

value. The second derivative of the local expected utility at an arbitrary lottery F is

w2px, F q “ v2pxq ` λ exppx ´ ŷpF qq, so the agent is more risk averse over outcomes

that are concentrated around ŷpF q. The n-th order derivative of each local utility

28



is wpnqpx, F q “ vpnqpxq ` λ exppx ´ ŷpF qq, so for λ high enough, wpnq ą 0. From

Proposition 8, this implies that higher enjoyment for surprise induces preferences

that are monotone with respect to the stochastic orders induced by smooth functions

whose derivatives are positive. For example, as formalized in Menezes, Geiss, and

Tressler [1980], aversion to downside risk, that is prudence, is equivalent to preserving

the order ÁW`
3
induced by the smooth functions with positive third derivative W`

3 ,

which is the case whenever λ is high.29 As an example, suppose vpxq “ 1´expp´axq{a

for a ą 0. If there is no preference for surprise, the agent has standard CARA EU

preferences. As λ increases, the sign of the even derivatives of the local expected

utilities switches from negative to positive, while the signs of the odd derivatives

remain positive, so the agent shifts from risk averse to risk loving, and their prudence

increases.30

Next, we compare the risk attitudes of an adversarial forecaster utility V pF q and

the expected utility vpxq “ V pδxq in the case X “ r0, 1s. To do this we recall the

notion of relative risk attitudes for non expected utility preferences introduced in

Chew, Karni, and Safra [1987]. Given an expected utility function v0 P CpXq, F is a

simple compensated spread of F̃ with respect to v0 if

ż 1

0

ϕpv0pxqqdF pxq ě

ż 1

0

ϕpv0pxqqdF̃ pxq

for all convex and continuous functions ϕ : v0pXq Ñ R. Observe that this implies

that
ş1

0
v0pxqdF pxq “

ş1

0
vpxqdF̃ pxq, that is, the expected utility preference given by

v0 is indifferent between F and F̃ .

Definition 6. A continuous utility V is relatively more risk loving than a continuous

expected utility v0 if V pF q ě V pF̃ q whenever F is a simple compensated spread of F̃

with respect to v0.

Proposition 9. Fix an adversarial forecaster utility V with representation v and σ

and a continuous expected utility v0. Then V is relatively more risk loving than v0 if

and only if for all F P F there exists a continuous and convex function ϕF : v0pXq Ñ

29A sufficient condition for all the local expected utilities to have strictly positive n-th derivative
is that λ ą ṽpnqexpp1q, where ṽpnq “ maxxPX |vpnqpxq|.

30In Online Appendix IV.C, we use this CARA example to analyze the effect of preference for
surprise on risk-aversion of order n ą 3.
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R such that

vpxq ` σpx, ŷpF qq “ ϕF pv0pxqq

Corollary 6. Fix an adversarial forecaster utility V with representation v and σ, V

is relatively more risk loving than its baseline utility v if and only if for all F P F
there exists a continuous and convex function ϕF : vpXq Ñ R such that

σpx, ŷpF qq “ ϕF pvpxqq (20)

A sufficient condition for the condition in this corollary is that the baseline utility

v is strictly increasing and concave and that the surprise function is increasing and

convex in x.31 The next example applies the Corollary without requiring that σ is

monotone.

Example 8. Consider a utility-based version of the one-moment GMM preferences:

V pF q “

ż

vpxqdF pxq ` λmin
yPY

ż

pvpxq ´ yq
2dF pxq

where Y ” vpXq and λ ě 0. In this case, the (unique) relevant moment coincides with

the baseline utility v, that is, the adversarial forecaster tries to predict the realized

utility of the agent. In this case, we have

σpx, ŷpF qq “ λ

ˆ

vpxq ´

ż

vpx̃qdF px̃q

˙2

which satisfies (20). Therefore for every λ ą 0 the adversarial forecaster utility V is

relatively more risk-loving than the baseline expected utility v, regardless of the risk

attitudes of the latter. △

5.3 Higher-order Risk aversion and surprise

Eeckhoudt and Schlesinger [2006] formalize the idea that an agent is averse to higher-

order risks through the comparison of pairs of lotteries that only differ for their n-th

order risk. If at any wealth level the agent prefers the lottery with less n-th order

31To see this in general, observe that when v is strictly increasing and concave then v´1 is
strictly increasing and convex. If in addition σ is increasing and convex in x, then we can rewrite
σpx, yq “ σpv´1pvpxqq, yq implying that the condition in 20 is satisfied by the continuous and convex
function σF ptq “ σpv´1ptqŷpF qq.
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risk, they say the preferences exhibit risk apportionment of order n. In our setting

with general continuous preferences, a sufficient condition for risk apportionment of

order n is monotonicity with respect to the n-th order stochastic dominance relation

ÁWSDn
where

WSDn “
␣

u P Cn
pXq : @m ď n, sgnpupmq

q “ p´1q
m´1

(

.

Agents with risk apportionment of order n for all n are called mixed risk averse. Most

participants in the experiment of Deck and Schlesinger [2014], make choices that are

consistent with mixed risk aversion (at their current wealth levels), but almost 20%

make risk-loving choices. These participants are mixed risk loving, which means they

are consistent with risk apportionment of order for odd n but not even n.

As an example, suppose vpxq “ 1´expp´axq{a for a ą 0. If there is no preference

for surprise, that is λ “ 0, the agent is mixed risk averse, as most of the risk-averse

subjects in Deck and Schlesinger [2014]. However, as λ increases the sign of the even

derivatives of the local expected utilities switches from negative to positive, while the

sign of the odd derivatives remains positive, so the agent shifts from mixed risk averse

to mixed risk loving. Moreover, if a ą 1, then higher-order derivatives will be more

affected by an increased taste for surprise, while the opposite is true if a ă 1.

5.4 Repeated choices and correlation aversion

When the space of outcomes is multidimensional, our model also covers the case

where the adversary can observe the realization of one dimension before choosing

their action. Consider X “ X0 ˆ X1 where X0 is finite and X1 is an arbitrary

compact subset of Euclidean space. Assume that the adversary takes two actions

py0, y1q P Y “ Y0ˆY1, where the adversary takes the first action y0 with no additional

information about F , and then takes the second action after observing the realization

of x0. Assume that both Y0 and Y1 are compact subsets of Euclidean space. Here

the set of strategies of the adversary is Y “ Y0 ˆ Y X0
1 , which is compact. Moreover,

assume that. for every F , the adversary has a unique optimal strategy, as prescribed

by the definition of our adversarial forecaster model.

These preferences capture the idea of aversion to correlation between x0 and x1,

which is well documented in experiments (see for example Andersen et al. [2018]).

Intuitively, the agent would tend to avoid lotteries with a high correlation between x0
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and x1, since this means the adversary is well informed about the residual distribution

of x1 when choosing y1. The next example formalizes this using Proposition 8.

Example 9. Let X0 “ t0, 1u, X1 “ r0, 1s, vpx0, x1q “ v0px0q ` v1px1q, and as-

sume that the adversary tries to minimize mean squared error, so σ0px0, F0q “
`

x0 ´
ş

x̃0dF0px̃0q
˘2

and σ1px1, F1|x0q “
`

x1 ´
ş

x̃1dF1px̃1|x0q
˘2
, where F0 and F1p¨|x0q

respectively denote the marginal and the conditional distributions of F . Then σpx0, x1, F q “

σ0px0, F0q`σ1px1, F1|x0q, so the local expected utility is wpx0, x1, F q “ vpx0q`vpx1q`

σpx0, x1, F q. We model the agent’s preference for correlation between x0 and x1

through the monotonicity properties of their preference with respect to the super-

modular and submodular order. Intuitively, preferences that preserve the supermod-

ular order favor lotteries with high positive correlation between x0 and x1 because

their local expected utilities are supermodular, and vice versa for the submodular

order. Following Shaked and Shanthikumar [2007] (Section 9.A.4), F dominates G

in the submodular (resp. supermodular) order if F Á G whenever
ş

wpxqdF pxq ě
ş

wpxqdGpxq for all functions w P CpXq that are differentiable in x1 and such that
B

Bx1
wp1, x1q´ B

Bx1
wp0, x1q ď 0 (resp. ě). Therefore, the submodular and supermodular

order are examples of stochastic order introduced in Definition 5, where the relevant

sets of functions are those ones that satisfy the partial derivative condition above.

For every F , the corresponding partial derivatives for the local utility at F are

B

Bx1
wp1, x1, F q ´

B

Bx1
wp0, x1, F q “ ´2

ˆ
ż

x̃1dF1px̃1|1q ´

ż

x̃1dF1px̃1|0q

˙

.

Thus by Proposition 8, the agent’s preference preserves the submodular order for all

F such that
ş

x̃1dF1px̃1|1q ą
ş

x̃1dF1px̃1|0q, and at each such lottery they would be

better off by decreasing the amount of positive correlation between x0 and x1. By

similar reasoning, the agent would prefer to decrease the amount of negative correla-

tion between x0 and x1 at each lottery F such that
ş

x̃1dF1px̃1|1q ă
ş

x̃1dF1px̃1|0q.32

Combining these facts, we see that the agent has the highest utility with distribu-

tions such that
ş

x̃1dF1px̃1|1q “
ş

x̃1dF1px̃1|0q, so that the best conditional forecast is

independent of x0. △

We leave a more detailed analysis of correlation aversion under the adversarial

32This last claim follows from the fact that the preference of the agent preserves the supermodular
order over such lotteries.
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expected utility model for future research.33

6 Conclusion

Adversarial forecaster preferences arise naturally in many settings. It allows the

interpretation of random choice as a preference for surprise, and also allows sharp

characterizations of the optimal “amount” (i.e., support size) of randomization and

of various monotonicity properties.

In ongoing work we consider a more general “adversarial expected utility repre-

sentation” that inherits many of the optimality and monotonicity properties of the

adversarial forecaster representation, but does not require continuous local utility.

This allows us to consider cases where the adversary has only finitely many actions or

where the loss function has kinks, as in Example the absolute-deviation loss example

mentioned right after Proposition 2.

In addition to the lottery-choice setting of this paper, the adversarial expected

utility representation can also be applied to settings where the agent first chooses

a distribution of qualities or outcomes and then chooses an allocation rule or an

information-revelation policy.

Appendix A: Sections 2 and 3

Here we prove the main results in Sections 2 and 3. The omitted proofs from these

and all the other sections are in Online Appendix II.A. The proofs of the ancillary

results that are first stated in this section are in Online Appendix II.B.

Lemma 4. If V has a continuous local expected utility wpx, F q, then

ż

wpx, F qdF̃ pxq ´

ż

wpx, F qdF pxq “ lim
λÓ0

V pp1 ´ λqF ` λF̃ q ´ V pF q

λ
.

for all F, F̃ P F .

33Stanca [2021] analyzes correlation aversion under uncertainty as opposed to risk.
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Proof. Fix F and F̃ , and for 0 ă λ ď 1 and F “ p1 ´ λqF ` λF̃ define

∆pλq “
V pF q ´ V pF q

λ
.

Since wpx, F q is a local expected utility function at F ,
ş

wpx, F qdF pxq ´ V pF q ě

V pF q ´ V pF q so

∆pλq “
V pF q ´ V pF q

λ
ď

ş

wpx, F qdF pxq ´ V pF q

λ
“

ż

wpx, F qdF̃ pxq´

ż

wpx, F qdF pxq.

On the other hand since wpx, F q is a local utility function at F ,
ş

wpx, F qdF pxq ´

V pF q ě V pF q ´ V pF q so

∆pλq “
V pF q ´ V pF q

λ
ě
V pF q ´

ş

wpx, F qdF pxq

λ

“

ş

wpx, F q
`

dF pxq ´ dF pxq
˘

λ
“

ż

wpx, F qdF̃ pxq ´

ż

wpx, F qdF pxq

Ñ

ż

wpx, F qdF̃ pxq ´

ż

wpx, F qdF pxq

since wpx, F q is continuous in F . Putting these together we have

ż

wpx, F qdF̃ pxq ´

ż

wpx, F qdF pxq ď lim
λÓ0

∆pλq ď

ż

wpx, F qdF̃ pxq ´

ż

wpx, F qdF pxq

which yields the statement.

Lemma 5. Let V have continuous local expected utility w. For all F, F̃ , F P F such

that there exists µ ą 0 with F ` µpF̃ ´ F q P F ,

DV pF̃ ´ F q :“

ż

wpx, F qdF̃ pxq ´

ż

wpx, F qdF pxq “ lim
λÓ0

V pF ` λpF̃ ´ F qq ´ V pF q

λ
.
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Proof. Choose µ ą 0 as in the statement and observe that

lim
λÓ0

V pF ` λpF̃ ´ F qq ´ V pF q

λ
“

1

µ
lim
λÓ0

V pp1 ´ λ{µqF ` pλ{µqpF ` µpF̃ ´ F qq ´ V pF q

λ{µ

“
1

µ

ˆ
ż

wpx, F qdF pxq ´

ż

wpx, F qdpF ` µpF̃ ´ F qqpxq

˙

“

ż

wpx, F qdF̃ pxq ´

ż

wpx, F qdF pxq

where the second equality follows by Lemma 4.

We can now prove Proposition 1 and Theorem 1.

Proof of Proposition 1. Assume that V has continuous local expected utility wpx, F q.

As argued in the main text, V is concave. Lemma 5 implies that Dpx, F q “ wpx, F q`
ş

wpx, F qdF pxq “ wpx, F q ` V pF q, where the second equality follows from the prop-

erties of wpx, F q. This implies that Dpx, F q is well defined and continuous.

Proof of Theorem 1. (If). Let v and σ correspond to the adversarial forecaster

representation of V . The map w : F Ñ CpXq given by wpx, F q “ vpxq`σpx, ŷpF qq is

a continuous local utility of V pF q “ minF̃PF
ş

wpx, F̃ qdF pxq, so that V has continuous

local expected utility.

(Only if). Let wpx, F q denote the continuous local expected utility of V , and

define Y “ twp¨, F quFPF Ď CpXq. Since X,F are compact and w is continuous,

it follows that Y is closed, bounded, and equicontinuous, so it is compact. For all

y “ wp¨, F q and x P X, define upx, yq “ wpx, F q and observe that it is continuous.

For all F P F and for all ỹ P Y ,

V pF q “

ż

wpx, F qdF pxq ď

ż

upx, ỹqdF pxq,

where both the equality and the inequality follow because wp¨, F q is a local expected

utility of V at F and the definition of Y . This implies that V pF q “ minyPY

ş

upx, yqdF pxq.

It remains to show that
ş

upx, yqdF pxq has a unique minimum over y. Suppose

that for some F there is a F̃ ‰ F such that V pF q “
ş

wpx, F̃ qdF pxq. For every

λ P p0, 1q, define Fλ “ λF̃ ` p1´λqF . Then because V is concave and the w are local
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expected utility functions, for all λ P r0, 1s

λV pF̃ q ` p1 ´ λqV pF q ď V pFλq ď λ

ż

wpx, F̃ qdF̃ pxq ` p1 ´ λq

ż

wpx, F̃ qdF pxq

“ λV pF̃ q ` p1 ´ λqV pF q,

so that

V pFλq “

ż

wpx, F̃ qdFλpxq (21)

Next, fix µ P p0, 1q. By the properties of w, V pF̃ q ď
ş

wpx, FµqdF̃ pxq, so

λV pF̃ q ` p1 ´ µqV pF q “ V pFµq “

ż

wpx, FµqdFµpxq

“ µ

ż

wpx, FµqdF̃ pxq ` p1 ´ µq

ż

wpx, FµqdF pxq

so that, by rearranging the terms,

V pF̃ q “

ż

wpx, FµqdF̃ pxq `
p1 ´ µq

µ

ˆ
ż

wpx, FµqdF pxq ´ V pF q

˙

ě

ż

wpx, FµqdF̃ pxq

where the last inequality follows because µ P p0, 1q and
ş

wpx, FµqdF pxq ě V pF q.

With this,

V pF̃ q “

ż

wpx, FµqdF̃ pxq. (22)

Fix x̃ P X. Since µ ą 0, there exists λ P p0, µq such that Fµ ` λpδx̃ ´ F̃ q P F .

Therefore,

wpx̃, Fµq ´ V pF̃ q “ wpx̃, Fµq ´

ż

wpx, FµqdF̃ pxq “ lim
λÓ0

V pFµ ` λpδx̃ ´ F̃ qq ´ V pFµq

λ

ď lim
λÓ0

ş

wpx, F̃ qd
´

Fµ ` λpδx̃ ´ F̃ q

¯

pxq ´ V pFµq

λ

“

ż

wpx, F̃ qd
´

δx̃ ´ F̃
¯

pxq “ wpx̃, F̃ q ´ V pF̃ q,

where the first equality follows by (22), the second equality by Lemma 5, the inequal-

ity by the properties of w, the third equality by (21), and the last equality by the
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properties of w again. This implies that wpx̃, Fµq ď wpx̃, F̃ q. Similarly,

wpx̃, F̃ q ´ V pF̃ q “ wpx̃, F̃ q ´

ż

wpx, F̃ qdF̃ pxq “ lim
λÓ0

V pF̃ ` λpδx̃ ´ F̃ qq ´ V pF̃ q

λ

ď lim
λÓ0

ş

wpx, Fµqd
´

F̃ ` λpδx̃ ´ F̃ q

¯

pxq ´ V pF̃ q

λ

“

ż

wpx, Fµqd
´

δx̃ ´ F̃
¯

pxq “ wpx̃, Fµq ´ V pF̃ q,

where the first equality follows by the properties of w, the second equality follows by

Lemma 5, the inequality by the properties of w, and the third and the last equality by

(22). This implies that wpx̃, F̃ q ď wpx̃, Fµq , so wpx̃, Fµq “ wpx̃, F̃ q. Since this is true

for all µ ą 0 and w is continuous it holds also in the limit: wpx̃, F q “ wpx̃, F̃ q. Given

that x̃ was arbitrary, the minimizer is unique, which proves that V is an adversarial

expected utility representation that satisfies uniqueness. Now we show that if Á

has an adversarial expected utility representation that satisfies uniqueness, then it

has an adversarial forecaster representation. Let Y and u denote the adversarial

expected utility representation of Á. For all F P F , let ŷpF q P Y denote the unique

minimizer of
ş

upx, ỹqdF pxq. Define vpxq “ minyPY upx, yq, σpx, F q “ upx, ypF qq ´

vpxq, and V pF q “
ş

vpxqdF pxq `
ş

σpx, F qdF pxq. Observe that, by construction

V pF q “ minyPY

ş

upx, yqdF pxq, hence V represents Á. Finally, fix F, F̃ P F and

observe that

ż

σpx, F qdF pxq “

ż

upx, ypF qqdF pxq ´

ż

vpxqdF pxq

ď

ż

upx, ypF̃ qqdF pxq ´

ż

vpxqdF pxq “

ż

σpx, F̃ qdF pxq

showing that σ is a forecast error.

Proof of Proposition 2. (If). This direction follows immediately from the discus-

sion before the proposition.34 (Only if). Fix an optimal lottery F ˚ for V over F
and assume that there exists F̂ that is strictly better than F ˚ for an expected util-

ity agent with utility v ` σp¨, F ˚q. Due to convexity of F , F ˚ is also optimal when

maximizing V over the lotteries in the segment between F ˚ and F̂ . This implies that

34See Propositions 10 in Online Appendix III.A and 11 in Online Appendix V for alternative
proofs that can also be applied to the more general adversarial expected utility model.
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the directional derivative of V at F ˚ in direction F̂ is negative, which contradicts F̂

strictly preferred to F ˚ for expected utility function v ` σp¨, F q.

Before proving Proposition 3 we introduce some additional notation. For every

F P F , define ξβ,F : r0, 1s Ñ R as ξβ,F pp̃q “ p1 ´ βqg1 pD2pF qq p̃2 ` βgpp̃´ p̃2q and let

cavpξβ,F q denote its concavification.

Proof of Proposition 3. First, observe that Proposition 2 implies that that F ˚ P

argmaxFPF VβpF q if and only if F ˚ P argmaxFPF
ş

wβpx, F ˚qdF pxq.

We now prove the first part of the statement. Let β P r0, 1s, fix an arbitrary

optimal distribution F ˚ with marginals pp˚
F , F

˚
∆q, and denote q˚ “

ş

p2dF ˚
∆ppq. Define

∆pp˚
F , q

˚
q “

"

F∆ P ∆r0, 1sq :

ż

p2dF∆ppq “ p˚
F ,

ż

p2dF∆ppq “ q˚

*

.

Consider the maximization problem:

max
F∆P∆pp˚

F ,q
˚q

ż

gpp ´ p2qdF∆ppq. (23)

If F∆ is feasible, it yields a weakly higher utility than F ˚
∆ because F∆ has the same

second moment as F ˚
∆ and the latter is feasible for Problem 23, so any solution F∆ of

Problem 23 is also a solution of the original problem. Finally, observe that ∆pp˚
F , q

˚q

is a moment set with k “ 2 moment conditions. The objective function of Problem

23 is linear in F∆, so it follows from Theorem 2.1. in Winkler [1988] that there is

solution of Problem 23, and hence of the original problem, that is supported on no

more than three points of ∆pr0, 1sq, concluding the proof of the first statement.

Next, assume that there exists an optimal F ˚ P F whose marginals are given by

pp˚
F , F

˚
∆q. By the initial claim and equation 5, pp˚

F , F
˚
∆q solve

max
pP∆,F∆P∆pr0,1sq:

ş

p̃dF pp̃q“p

"

pṽ ` p1 ´ βqg1
pD2pF

˚
qq

ż

pp̃2 ´ p2qdF∆pp̃q ` β

ż

gpp̃ ´ p̃2qdF∆ppq

*

“ max
pP∆

"

pṽ ´ p1 ´ βqg1
pD2pF ˚

qq p2 ` max
F∆:

ş

p̃dF pp̃q“p

„
ż

p1 ´ βqg1
pD2pF

˚
qq p̃2 ` βgpp̃ ´ p̃2qdF∆pp̃q

ȷ*

(24)

“ max
pP∆

␣

pṽ ´ p1 ´ βqg1
pD2pF ˚

qq p2 ` cavpξβ,F˚qppq
(
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Given the assumptions on g and given that ∆ is compact, there exist β, β P p0, 1q

with β ď β such that ξβ,F˚ is strictly concave over ∆ for all β ě β and ξβ,F˚ is strictly

convex over ∆ for all β ď β. We now prove points 1 and 2.

1. When β ě β, ξβ,F˚ is strictly concave so that cavpξβ,F˚q “ ξβ,F˚ . By Corollary

2 in Kamenica and Gentzkow [2011], the inner maximization problem in equation 24

is uniquely solved by F∆ “ δp, that is, no disclosure is uniquely optimal. This implies

that F ˚
∆ “ δp˚

F
. Because pṽ ´ p1 ´ βqg1 pD2pF

˚qq p2 ` ξβ,F˚ppq “ pṽ ` βgpp ´ p2q and

the optimal pp˚
F , F

˚
∆q are arbitrary, the statement follows.

2. When β ď β, ξβ,F˚ is strictly convex. By Corollary 2 in Kamenica and

Gentzkow [2011], the inner maximization problem in equation 24 is uniquely solved by

F∆ “ p1 ´ pqδ0 ` pδ1, that is, full disclosure is uniquely optimal, and cavpξβ,F˚qpp̃q “

p1 ´ βqg1 pD2pF
˚qq p̃. This implies that F ˚

∆ “ p1 ´ p˚
F qδ0 ` p˚

F δ1. Next, pṽ ´ p1 ´

βqg1 pD2pF
˚qq p2 ` cavpξβ,F˚qppq “ pṽ ` p1 ´ βqg1pD2pF ˚qqpp ´ p2q. Given that the

optimal pp˚
F , F

˚
∆q are arbitrary, the statement follows.

Proof of Proposition 6. This follows from the following three lemmas. The

first two are standard and are proved in Online Appendix II.A.

Lemma 6. σpx, F q defined by a method of moments forecast is a forecast error.

Given F, F̃ P F , the direction F̃ ´F is relevant at F if for some λ ą 0 the signed

measure F ` λpF̃ ´ F q ě 0 is an ordinary measure.

Lemma 7. Let Hpx, x̃q “
ş

hpx, sqhpx̃, sqdµpsq. Then

V pF q “

ż

Hpx, xqdF pxq ´

ż ż

Hpx, x̃qdF pxqdF px̃q

with directional derivatives for relevant directions pδz ´ F q at F given by

DV pF qpδz ´ F q “

Hpz, zq ´

ż

Hpx, xqdF pxq ´ 2

„
ż

Hpz, xqdF pxqq ´

ż

Hpx, x̃qdF pxqdF px̃q

ȷ

.

We now allow the set S to be any compact metric space. When F ÞÑ hpF, ¨q is

one-to-one we have an additional property:

Lemma 8. If F ÞÑ hpF, ¨q is one-to-one and µ assigns positive probability to open

sets of S then V pF q is strictly concave.
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Proof. From Lemma 7 it suffices to prove that the positive semi-definite quadratic

form
ş ş

Hpx, x̃qdMpxqdMpx̃q is positive definite on the linear subspace of signed mea-

sures where
ş

dMpxq “ 0. Recall that Hpx, x̃q “
ş

hpx, sqhpx̃, sqdµpsq, and suppose

that
ş

hpx, ŝqdMpxq ‰ 0 for some ŝ. Since h is continuous there is an open set S̃ Ď S

such that ŝ P S̃ and
ş

hpx, sqdMpxq ‰ 0 for all s P S̃. Since µ assigns positive

probability to open sets of S this implies that

ż ż

Hpx, x̃qdMpxqdMpx̃q “

ż
„ˆ

ż

hpx, sqdMpxq

˙
ż

hpx̃, sqdMpx̃q

ȷ

µpsqds ą 0.

Hence it suffices for V pF q to be strictly convex that
ş

hpx, sqdMpxq ‰ 0 for any

signed measure M with
ş

dMpxq “ 0. Using the Jordan decomposition we may write

M “ λpF ´ F̃ q where F, F̃ are probability measures and λ ą 0 if M ‰ 0. Hence
ş

hpx, sqdMpxq “ 0 for M ‰ 0 if and only if for all s

hpF, sq “

ż

hpx, sqdF pxq “

ż

hpx, sqdF̃ pxq “ hF̃ psq.

Since h Ñ hpF, ¨q is one-to-one this implies F “ F̃ and M “ 0.

To prove Theorem 2 we use a sequence of intermediate results. To begin, we fix

an arbitrary parametric adversarial forecaster representation V , and define upx, yq “

vpxq ` σ̂px, yq. Let H denote the set of probability measures over Y .

For any convex and compact subset F Ď F of lotteries, let extpFq denote the

set of extreme points of F . By Choquet’s theorem, for all F P F , there exists

λ P ∆
`

ext
`

F
˘˘

such that F “
ş

F̃ dλpF̃ q. Let ΛF Ď ∆
`

ext
`

F
˘˘

be the set of

probability measures over extreme points that satisfy F “
ş

F̃ dλ
´

F̃
¯

for F .

Theorem 6. Fix Ĥ P argminHPH maxFPextpFq

ş ş

u px, yq dF pxq dH pyq. Then F̂ P

argmaxFPF V pF q if and only if for all F̃ P ext
`

F
˘

, V pF̂ q ě
ş ş

u px, yq dF̃ pxq dĤ pyq ,

and, for all F̃ P
Ť

λPΛF̂
suppλ, V pF̂ q “

ş ş

u px, yq dF̃ pxq dĤ pyq .

Note that when F “ ∆
`

X̄
˘

for some closed subset X̄, the extreme points

ext
`

F
˘

“ X̄ are simply point masses over the set of feasible outcomes. In this

case, Theorem 6 implies that F is optimal if and only if V pF q ě
ş

upx, yqdĤpyq for

all x P X, with equality for x P suppF .

Now we fix a closed subset X Ď X and a finite collection of functions Γ “

tg1, ..., gku Ă CpXq. As in the main text, we consider FΓpXq Ď F . By Theorem 2.1
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in Winkler [1988], F̃ P ext
`

FΓpXq
˘

if and only if F̃ P FΓpXq and F̃ “
řp
i“1 αiδxi

for some p ď k ` 1, α P ∆ pt1, ..., puq, and tx1, ..., xpu Ď X̄ such that the vectors

tpg1 pxiq , ..., gk pxiq , 1qu
p
i“1 are linearly independent. For every finite subset of extreme

points E Ď ext
`

FΓpXq
˘

, define XE “
Ť

F̃PE supp F̃ Ď X, which is finite from Win-

kler’s theorem. We identify copEq with the subset of FΓpXq composed of all convex

combinations of extreme points in E . Recall that Ŷ pF q ” argminyPY

ş

upx, yqdF pxq,

and that pY, uq satisfies the uniqueness property if Ŷ pF q is a singleton for all F P F .

Theorem 7. Fix a finite set E Ď ext
`

FΓpXq
˘

, and suppose that Y has the structure

of an m-dimensional manifold with boundary, that u is continuously differentiable in

y, and that Y and u satisfy the uniqueness property. We have:

1. For an open dense full measure set of w P W Ď RXE , every lottery F that solves

maxF̃PcopEq minyPY

ş

pupx, yq ` wpxqqdF̃ pxq has finite support on no more than

pk ` 1qpm ` 1q points of XE .

2. There exists a lottery F that solves maxF̃PcopEq minyPY

ş

upx, yqdF̃ pxq and has

finite support on no more than pk ` 1qpm ` 1q points of XE .

Proof. Let |E | “ n and |XE | “ r ď npk ` 1q. Because | supp F̃ | ď k ` 1 for every

F̃ P ext
`

FΓpXq
˘

, both statements are trivial if pm ` 1q ě n. For pm ` 1q ă n, for

every w P RXE , define uwpx, yq “ upx, yq`wpxq and VwpF q “ minyPY

ş

uwpx, yqdF pxq,

and fix Hw P argminHPH maxFPE
ş ş

uw px, yq dF pxq dH pyq . For every w P RXE , the

uniqueness property implies thatHw “ ŷpFwq P Y for some Fw P argmaxFPcopEq VwpF q,

and the expectation of each w with respect to each F P copEq is well defined since

suppF Ď XE by construction.

We first prove point 1. Fix an arbitrary subset of m ` 2 extreme points E “
!

F̃1, ..., F̃m`2

)

Ď E and consider the map UE : Y ˆ R ˆ RXE Ñ Rm`2 defined by

UEpy, v, wqℓ “ upF̃ℓ, yq ´ v ` wpF̃ℓq @ℓ P t1, ...,m ` 2u

where, for every y P Y , upF̃ℓ, yq “
ş

upx, yqdF̃ℓ pxq and wpF̃ℓq “
ş

wpxqdF̃ℓ pxq. For

every py, vq P Y ˆ R, the derivative of UE with respect to w P RXE is a pm `

2q ˆ r matrix whose ℓ-th row coincides with the probability vector F̃ℓ, and because

the
!

F̃1, ..., F̃m`2

)

are extreme points of FΓpXq, this matrix has full rank, so the

total derivative of UE has full rank as well. Hence by the parametric transverality
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theorem,35 for an open dense full measure subset of RXE , denoted WpEq, the manifold

py, vq ÞÑ upF̃ℓ, yq ´v`wpF̃ℓq intersects zero transversally. Since dimpY ˆRq ă m`2,

there is no py, vq that solve upF̃ℓ, yq ´ v ` wpF̃ℓq “ 0 for all ℓ ď m ` 2. And since E
has finitely many subsets E of m` 2 extreme points, the intersection W “

Ş

E WpEq

is open, dense, and of full measure, since it is the finite intersection of full-measure

sets. Thus, for w P W and for all y P Y and v P R, upF̃ℓ, yq ´ v ` wpF̃ℓq “ 0 for at

most m ` 1 extreme points in E .
Next, fix w P W , F ˚ P argmaxFPcopEq Vw, and λ P ΛF˚ . By Theorem 6, for

all F̃ P suppλ Ď E , upF̃ , Hwq ´ Vw pF ˚q ` wpF̃ q “ 0. By the previous part of the

proof and Theorem 6, we then have | suppλ| ď m ` 1. Therefore, Fw is the linear

combination of up to m ` 1 extreme points in E . Each F̃ P E is supported on up to

k ` 1 points of XE , so Fw is supported on up to pm ` 1qpk ` 1q points of XE .

Now we prove point 2. BecauseW is dense in RXE , there exists a sequence wn P W
such that wnpxq Ñ 0 for all x P XE , and a sequence of corresponding optimal lotteries

F n with support of no more than pm` 1qpk ` 1q points of XE . Choose a convergent

subsequence of F n Ñ F , and observe that lotteries with no more than pm` 1qpk` 1q

points of support cannot converge weakly to a lottery with larger support. Finally,

because Vw is continuous with respect to w, the Berge Maximum Theorem implies

that F solves maxFPcopEq V0pF q, concluding the proof.

Lemma 9. Suppose that for every finite set E Ď ext
`

FΓpXq
˘

there exists a lottery

FE that solves maxFPcopEq V pF q and has finite support on no more than pm`1qpk`1q

points of X. Then there exists a lottery F ˚ that solves maxFPFΓpXq V pF q and that has

finite support on no more than pm ` 1qpk ` 1q points of X.

Proof of Theorem 2. Fix a parametric adversarial forecaster representation pY, v, σ̂q,

and define u “ v`σ. By Definition 4, the adversarial expected utility representation

pY, uq is such that Y has the structure of an m-dimensional manifold with boundary,

u is continuously differentiable in y, and Y and u satisfy the uniqueness property. By

Theorem 7 and Lemma 9, there exists a solution F ˚ that is supported on no more

than pk ` 1qpm ` 1q points of X.

35See e.g. Guillemin and Pollack [2010].
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Proof of Proposition 7. Stationarity implies that Hpx, xq is constant, so the di-

rectional derivatives from Lemma 7 simplify to

DV pF qpδz ´ F q “ ´2

„
ż

Hpz, xqdF pxqq ´

ż

Hpx, x̃qdF pxqdF px̃q

ȷ

.

Since V pF q is continuous and concave on a compact set the maximum exists, and is

characterized by the condition that no directional derivative is positive, which is

ż

Hpz, xqdF pxq ě

ż

Hpx, x̃qdF pxqdF px̃q for all z P X. (25)

This implies the complementary slackness condition: if there exists z P A such that

z satisfies (25) with strict inequality, then F pAq “ 0.36

Next we show that for any 0 ă a ď 1 and interval A “ r0, aq there is z P

A such that
ş

Hpz, xqdF pxqq “
ş

Hpx, x̃qdF pxqdF px̃q. By continuity this implies
ş

Hp0, xqdF pxqq “
ş

Hpx, x̃qdF pxqdF px̃q and by symmetry
ş

Hp1, xqdF pxqq “
ş

Hpx, x̃qdF pxqdF px̃q.

Suppose instead that for all z P A
ş

Hpz, xqdF pxq ą
ş

Hpx, x̃qdF pxqdF px̃q, and take

a P X to be the supremum of the set
␣

x1 P X :
ş

Hpx1, xqdF pxq ą
ş

Hpx, x̃qdF pxqdF px̃q
(

,

so that
ş

Hpa, xqdF pxq “
ş

Hpx, x̃qdF pxqdF px̃q. By complementary slackness F pAq “

0. Positive definiteness, that is
ş

Hpx, x̃qdF pxqdF px̃q ą 0, implies that Hpa, xq ą 0

for some non-trivial interval x P ra, bs. Since Hp0, x̃q is decreasing and Hpa, aq “

maxx̃Hpa, x̃q, it follows that Hpa, xq ą Hp0, xq. Hence
ş

Hpx, x̃qdF pxqdF px̃q “
ş

Hpa, xqdF pxq ą
ş

Hp0, xqdF pxqq, violating the first order condition at z “ 0.

Finally, suppose there is a non-trivial open interval A “ pa, bq such that F pAq “ 0.

We may assume w.l.o.g. that
ş

Hpa, xqdF pxq “
ş

Hpx, x̃qdF pxqdF px̃q,
ş

Hpb, xqdF pxqq “
ş

Hpx, x̃qdF pxqdF px̃q. Then for x R A by strict convexity either p1{2qpHpa, xq `

Hpb, xqq ą Hppa ` bq{2, xq or both the left-hand side and the right-hand side are

equal to zero. The latter cannot be true for a positive measure set of x R A, so
ş

Hpx, x̃qdF pxqdF px̃q “ p1{2q
`ş

Hpa, xqdF pxq `
ş

Hpb, xqdF pxq
˘

ą
ş

Hppa`bq{2, xqdF pxqq

violating the first order condition at pa ` bq{2.

36If there is z P A with F pAq ą 0, then there is an open set Ã Ď A containing z with
F pÃq ą 0, and every x P Ã satisfies (25) with strict inequality. Then

ş ş

Hpx, x̃qdF pxqdF px̃q “
ş

Ã

ş

X
Hpx, x̃qdF px̃qdF pxq `

ş

Ãc

ş

X
Hpx, x̃qdF px̃qdF pxq ą F pÃq

ş ş

Hpx, x̃qdF pxqdF px̃q ` p1 ´

F pÃqq
ş ş

Hpx, x̃qdF pxqdF px̃q “
ş ş

Hpx, x̃qdF pxqdF px̃q, a contradiction.
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Appendix B: Section 4

Proof of Lemma 1. The continuity of σ̂px, yq follows from the uniform continuity

of ϕpθ, xq. Non-negativity of σ̂px, yq is obvious. For given x to find y such that

σpx, yq “ 0 and
ş

exppypξqqdUpξq “ 1 choose

ypξq “ ´max
θPX

pϕpθ, xq ´ ϕpθ, ξqq `
1

log
´

ş

expp´maxθPX

´

ϕpθ, xq ´ ϕpθ, ξ̃q

¯

qdUpξ̃q

¯ .

By construction
ş

exppypξqqdUpξq “ 1 and x P argmaxξ ypξq ´ ϕpθ, ξq so

ż
ˆˆ

max
ξ
ypξq ´ ϕpθ, ξq

˙

´ pypxq ´ ϕpθ, xqq

˙

dUpθq “ 0.

Proof of Lemma 2. The strongly ϕ-concave functions are K-Lipshitz so the family

Y is equicontinuous. Together with the constraint
ş

exppypξqqdUpξq “ 1 this implies

that Y is totally bounded. Hence any sequence yn P Y has a subsequence that

converges to some y P CpXq. To show that Y is closed, let y˚n P Y ˚ be such

that ynpxq “ ´maxθPX py˚npθq ´ ϕpθ, xqq. Since the sequence yn is bounded and the

sequence y˚n is equicontinuous, the sequence y˚n is also bounded. And because the

sequence y˚n is K-Lipchitz, there is a subsequence y˚n Ñ y˚ that is also K-Lipchitz.

Convergence and continuity imply that ypxq “ ´maxθPX py˚pθq ´ ϕpθ, xqq, that is, y

is strongly ϕ-concave, so indeed Y is closed.

We next show that equation 11 has a exactly one solution in Y . We have

inf
yPCpXq

"
ż
ˆ

max
ξ

pypξq ´ ϕpθ, ξqq

˙

´ pypxq ´ ϕpθ, xqq dUpθqdF pxq

*

“ ´ sup
yPCpXq

"
ż
ˆ

´max
ξ

pypξq ´ ϕpθ, ξqq

˙

dUpθq `

ż

ypxqdF pxq

*

`

„
ż

ϕpθ, xqdUpθqdF pxq

ȷ

where the final term does not depend on y. Consider the alternative problem

sup
y˚PCpXq,yPCpXq

ż

y˚
pθqdUpθq `

ż

ypxqdF pxq (26)
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subject to y˚pθq ´ ypxq ď ϕpθ, xq for all pθ, xq. It follows that ´y˚pθq ě ypxq ´

ϕpθ, xq implying ´y˚pθq ě maxξ ypξq ´ ϕpθ, ξq. This means that if the alternative

problem has a solution y then the original problem has the same solution. The

alternative problem is the extensively studied dual of the Kantorovitch transport

problem and we draw upon results from that literature.

We say that y P CpXq is ϕ-concave if ypxq “ ´maxθPX py˚pθq ´ ϕpθ, xqq for some

y˚ P CpXq. Proposition 1.11 in Santambrogio [2015] shows that becauseX is compact

and ϕ is continuous, Problem 26 has a solution py˚, yq where y is ϕ-concave with

respect to y˚ and y˚pθq “ ´maxξPX pypxq ´ ϕpθ, ξqq. This last step implies that y˚ is

K-Lipschitz and therefore that the solution is strongly ϕ-concave. Since the objective

function is invariant to adding a constant to y and subtracting it from y˚, at least

one such solution satisfies the normalization
ş

exppypξqqdUpξq “ 1.

Proposition 7.18 in Santambrogio [2015] shows that because ϕ is continuously

differentiable, X is the closure of a bounded connected open set, and the uniform

measure over θ has full support on X, all ϕ-concave solutions differ only by additive

constants. Since strong ϕ-concavity implies ϕ-concavity the fact that the set Y is

normalized shows that there is exactly one solution in Y .

In what follows we often use the notation ∆pU, F q, where for all F P F ,

∆pU, F q “ tT P ∆pΘ ˆ Xq : margΘT “ U,margXT “ F qu .

Proof of Theorem 5. By Theorem 4,

max
FPF

V pF q “ max
TP∆pΘˆXq:margΘT“U

ż
"

vpxq ´ ϕpθ, xq `

ż

ϕpθ̃, xqdUpθ̃q

*

dT pθ, xq,

which immediately implies that F P argmaxF̃PF V pF q if and only if there exists T P

∆pΘ ˆ Xq with marginals given by U and F such that T pGϕq “ 1, where Gϕ “

GrpΨϕq Ď Θ ˆ X is the graph of the correspondence Ψϕ. In turn, this is equivalent

to 0 ě infTP∆pU,F q t1 ´ T pGϕqu. Let Gc
ϕ denote the complement of Gϕ. Theorem 1.27

in Villani [2021] gives

inf
TP∆pU,F q

T pGc
ϕq “ sup

␣

F pAq ´ UpAG
c
ϕq : A Ď X is closed

(

,
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where AG
c
ϕ “ tθ P Θ : Dx P A, pθ, xq P Gϕu. Therefore, F P argmaxF̃PF V pF̃ q is also

equivalent to

0 ě sup
␣

F pAq ´ UpAG
c
ϕq : A Ď X is closed

(

which in turn is equivalent to

UpΨℓ
ϕpAqq ě F pAq (27)

for all closed A Ď X, where Ψℓ
ϕpAq “ tθ P Θ : Ψϕpθq X A ‰ Hu is the lower-inverse

of the correspondence Ψϕ evaluated at A. Also, observe that the class of closed sets

A Ď X is a π-class of the Borel sigma-algebra of X. Therefore, the inequality in (27)

holds for all measurable sets A Ď X.

So far we have shown that

argmax
FPF

V pF q “
␣

F P F : F pAq ď UpΨℓ
ϕpAqq for all measurable A

(

.

Finally, because U is atomless, Corollary 3.4 in Castaldo, Maccheroni, and Marinacci

[2004] says that the right-hand side of the last equation is equal to the closure of

tU ˝ ψ´1 P F : ψ P Ψϕu, yielding the desired result.

Proof of Lemma 3. By Theorem 4 we have

ΣpF q “ max
TP∆pU,F q

ˆ
ż ż

ϕpθ, xqdUpθqdF pxq ´

ż

ϕpθ, xqdT pθ, xq

˙

“ max
TP∆pU,F q

ˆ
ż

ϕ̂pθ, xqdT pθ, xq

˙

where we defined ϕ̂pθ, xq “
ş

ϕpθ̃, xqdUpθ̃q ´ ϕpθ, xq. Given our assumption of ϕx, we

have that ϕ̂pθ, xq is supermodular. Because of this and that U is atomless, Theorem

4.3 in Galichon [2018] can be directly applied to conclude that

max
TP∆pU,F q

ˆ
ż

ϕ̂pθ, xqdT pθ, xq

˙

“

ż

ϕ̂pθ, qF pUpθqqqdUpθq “

ż 1

0

ϕ̂pqUptq, qF ptqqdt

“

ż ż

ϕpθ, xqdUpθqdF pxq ´

ż 1

0

ϕpqUptq, qF ptqqdt
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where the second equality follows from the change of variable formula by setting

t “ Upθq, and the third equality follows from the definition of ϕ̂pθ, xq.
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Online Appendix I: Section 5

Proof of Proposition 8. In Proposition 12 in Online Appendix V, we show that

the function V is Gâteaux differentiable with derivative given by the local utility

wpx, F q as in Proposition 1. Theorem 1 then implies that the local utility is given by

wpx, F q “ vpxq`σpx, ŷpF qq for every F P F . With this, exactly the same argument of

Proposition 1 in Cerreia-Vioglio, Maccheroni, and Marinacci [2017] yields the desired

result.

Proof of Proposition 9. In Proposition 12 in Online Appendix V, we show that

the function V is Gâteaux differentiable with derivative given by the local utility

wpx, F q as in Proposition 1. Theorem 1 then implies that the local utility is given

by wpx, F q “ vpxq ` σpx, ŷpF qq for every F P F . With this, the result follows from

Proposition 3 in Cerreia-Vioglio, Maccheroni, and Marinacci [2017].

Online Appendix II: Ancillary results

This appendix gives proofs of the ancillary results stated in the main appendix.

Online Appendix II.A: Ancillary results for Appendix I

Proof of Lemma 6. We must show that σ is non-negative, weakly continuous, that

σpx, xq “ 0 and that
ş

σpx, F qdF pxq ď
ş

σpx,GqdF pxq. Non-negativity is obvi-

ous. Since hpx, sq is continuous in x we have F n Ñ F implies that hFnpsq con-

verges pointwise to hnpsq. Hence
`

hpx, sq ´
ş

hpx̃, sqdF npx̃q
˘2

converges pointwise to
`

hpx, sq ´
ş

hpx̃, sqdF px̃q
˘2
. Given that h is square-integrable over pS, µq, the domi-

nated convergence theorem implies that

ż
ˆ

hpx, sq ´

ż

hpx̃, sqdF n
px̃q

˙2

dµpsq Ñ

ż
ˆ

hpx, sq ´

ż

hpx̃, sqdF px̃q

˙2

dµpsq.

49



For the last property, σpx, xq “
ş

phpx, sq ´ hpx, sqq
2 dµpsq “ 0, and so

ż

σpx,GqdF pxq “

ż ż

phpx, sq ´ hGpsqq
2 dµpsqdF pxq “

ż
ˆ
ż

phpx, sq ´ hGpsqq
2 dF pxq

˙

dµpsq.

Since mean square error is minimized by the mean for each s,

hpF, sq “

ż

hpx, sqdF pxq P argmin
HPR

ż

phpx, sq ´ Hq
2 dF pxq

implying that
ş

σpx, F qdF pxq ď
ş

σpx,GqdF pxq.

Proof of Lemma 7. By definition V pF q “
ş ş

phpx, sq ´ hpF, sqq
2 dµpsqdF pxq, and

simple manipulations show this is equal to

ż

Hpx, xqdF pxq ´

ż ż ż

rhpx, sqhpx̃, sqdµpsqs dF pxqdF px̃q.

We extend V to the space of signed measures by

V pF`Mq “

ż

Hpx, xqd pF pxq ` Mpxqq´

ż ż

Hpx, x̃qd pF pxq ` Mpxqq d pF px̃q ` Mpx̃qq

and observe that the cross term is

´2

ż
ˆ
ż

Hpx, x̃qdF px̃q

˙

dMpxq “ ´2

ż ż

hpx, sqhpx̃, sqdµpsqdF px̃qdMpxq

so that

V pF`Mq “ V pF q`

ż
„

Hpx, xq ´ 2

ż

hpx, sqhpx̃, sqdµpsqdF px̃q

ȷ

dMpxq´

ż ż

Hpx, x̃qdMpxqdMpx̃q.

This enables us to compute the directional derivatives. The directional derivative in

the direction M “ δz ´ F is given as

DV pF qpδz ´ F q “

ż
„
ż

h2px, sqdµpsq ´ 2

ż

hpx, sqhpx̃, sqdµpsqdF px̃q

ȷ

pdδz ´ dF pxqq

“

ż

h2pz, sqdµpsq ´ 2

ż

hpz, sqhpx̃, sqdµpsqdF px̃q
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´

ż

h2px, sqdF pxqdµpsq ` 2

ż

hpx, sqhpx̃, sqdµpsqdF px̃qdF pxq.

Online Appendix II.B: Ancillary results for Appendix B

We next restate and prove Theorem 6. Moreover, we relax the original assumptions by

considering an arbitrary adversarial expected utility representation pY, uq of V , and

an arbitrary convex and compact set of feasible lotteries F Ď F . Define V ˚
`

F
˘

“

maxFPF V pF q. By Sion’s minmax theorem,

V ˚
`

F
˘

“ max
FPF

min
yPY

ż

u px, yq dF pxq “ min
HPH

max
FPextpFq

ż ż

u px, yq dF pxq dH pyq .

Theorem 7. Fix Ĥ P argminHPH maxFPextpFq

ş ş

u px, yq dF pxq dH pyq. Then F̂ P

argmaxFPF V pF q if and only if for all F̃ P ext
`

F
˘

, V pF̂ q ě
ş ş

u px, yq dF̃ pxq dĤ pyq ,

and, for all F̃ P
Ť

λPΛF̂
suppλ, V pF̂ q “

ş ş

u px, yq dF̃ pxq dĤ pyq .

Proof of Theorem 6. Fix Ĥ as in the statement. Then fix F̂ P argmaxFPF V pF q,

F̃ P ext
`

F
˘

, and observe that

ż ż

u px, yq dF̃ pxq dĤ pyq ď max
FPextpFq

ż ż

u px, yq dF pxq dĤ pyq

“ min
HPH

max
FPextpFq

ż ż

u px, yq dF pxq dH pyq “ V ˚
`

F
˘

“ V
´

F̂
¯

,

yielding the first part of the desired condition. Next, observe that

V ˚
`

F
˘

“ max
FPextpFq

ż ż

u px, yq dF pxq dĤ pyq

ě

ż ż

u px, yq dF̂ pxq dĤ pyq ě min
HPH

ż ż

u px, yq dF̂ pxq dHpyq “ V ˚
`

F
˘

,

Combining the first two chains of inequalities yields

ż ż

u px, yq dF̂ pxq dĤ pyq ě

ż ż

u px, yq dF̃ pxq dĤ pyq @F̃ P ext
`

F
˘

. (28)
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Next, fix λ P ΛF̂ , F
˚ P suppλ, and assume toward a contradiction that

V
´

F̂
¯

ą

ż ż

u px, yq dF ˚
pxq dĤ pyq .

It follows that
ş

´

ş

u px, yq dF̃ pxq

¯

dĤ pyq dλ
´

F̃
¯

“
ş

u px, yq dF̂ pxq dĤ pyq

ě V
´

F̂
¯

ą
ş ş

u px, yq dF ˚ pxq dĤ pyq , so there exists F ‹ P suppλ and ε ą 0 such

that
ż ż

u px, yq dF ‹
pxq dĤ pyq ą

ż ż

u px, yq dF̃ pxq dĤ pyq

for all F̃ P suppλ X Bε pF ˚q, where Bε pF ˚q Ď F is the ball of radius ε (in the

Kantorovich-Rubinstein metric) centered at F ˚.

Next, define the probability measure λ‹ “ λpBε pF ˚qqδF ‹`p1 ´ λ pBε pF ˚qqqλ p¨|Bε pF ˚q
c
q

and the lottery Fλ‹ “
ş

F̃ dλ‹pF̃ q. Then

ż ż

u px, yq dFλ‹ pxq dĤ pyq “

ż
ˆ
ż

u px, yq dF̃ pxq

˙

dĤ pyq dλ‹
´

F̃
¯

“ λpBε pF ˚
qq

ż

u px, yq dF ‹
pxq ` p1 ´ λ pBε pF ˚

qqq

ż
ˆ
ż

u px, yq dF̃ pxq

˙

dĤ pyq dλ
´

F̃ |Bε pF ˚
q
c
¯

ą λpBε pF ˚
qq

ż
ˆ
ż

u px, yq dF̃ pxq

˙

dĤ pyq dλ
´

F̃ |Bε pF ˚
q

¯

` p1 ´ λ pBε pF ˚
qqq

ż
ˆ
ż

u px, yq dF̃ pxq

˙

dĤ pyq dλ
´

F̃ |Bε pF ˚
q
c
¯

“

ż
ˆ
ż

u px, yq dF̃ pxq

˙

dĤ pyq dλ
´

F̃
¯

“

ż ż

u px, yq dF̂ pxq dĤ pyq

which contradicts equation (28).

Conversely, fix F̃ P ext
`

F
˘

and observe that the implication follows by

V
´

F̂
¯

ě max
F̃PextpFq

ż ż

u px, yq dF̃ pxq dĤ pyq

“ min
HPH

max
FPextpFq

ż ż

u px, yq dF pxq dH pyq “ V ˚
´

F̂
¯

ě V
´

F̂
¯

.

Before proving Lemma 9, we state and prove an intermediate result.

Lemma 10. For every F P FΓpXq, there exists a sequence F n Ñ F such that each

F n is the convex combination of finitely many points in extpFΓpXqq.
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Proof. Define Fe “ extpFΓpXqq and endow it with the relative topology. This makes

Fe metrizable. Next, by the Choquet’s theorem, FΓpXq can be embedded in the set

∆pFeq of Borel probability measures over Fe. By Theorem 15.10 in Aliprantis and

Border [2006], the subset ∆0pFeq of finitely supported probability measures over Fe

is dense in ∆pFeq. In turn, this implies the statement.

Lemma 6. Suppose that for every finite set E Ď ext
`

FΓpXq
˘

there exists a lottery

FE that solves maxFPcopEq V pF q and has finite support on no more than pm`1qpk`1q

points of X. Then there exists a lottery F ˚ that solves maxFPFΓpXq V pF q and that

has finite support on no more than pm ` 1qpk ` 1q points of X.

Proof of Lemma 9. Let F̂ solve maxFPFΓpXq V pF q. By Lemma 10, there exists

a sequence F̂ n Ñ F̂ such that, for every n P N, F̂ n P copEnq for some finite

set En Ď extpFΓpXqq. By Theorem 7, for every n P N, there exists a lottery

F n P copEnq that is supported on no more that pk ` 1qpm ` 1q points of X and

such that V pF nq ě V pF̂ nq. Given that FΓpXq is compact, there exists a subsequence

of F n that converges to some lottery F ˚ P FΓpXq. Since each F n has support on

at most pk ` 1qpm ` 1q points, the same is true for F ˚. And since V is continuous

V pF nq Ñ V pF ˚q and V pF̂nq Ñ V pF̂ q hence V pF ˚q ě V pF̂ q, F ˚ is optimal.

Corollary 1. Maintain the assumptions of Proposition 7, and let F denote the unique

fully supported solution. There exists a sequence of method of moments represen-

tations V n with |Sn| “ mn P N, and a sequence of lotteries F n such that each F n

is optimal for V n, is supported on up to mn ` 1 points, and F n Ñ F weakly, with

suppF n Ñ suppF “ X in the Hausdorff topology.

Proof of Corollary 2. By Theorem 15.10 in Aliprantis and Border [2006], there

exists a sequence of finitely supported µn P ∆pSq such that µn Ñ µ. The GMM

adversarial forecaster representation V n induced by ph, µn satisfies the assumptions

of Theorem 2 by defining Y n “
ś

sPsuppµn hpX, sq Ď Rmn
, where mn “ | suppµn|, so

for every n P N, there exists a solution F n of the problem maxFP∆pXq V
npF q that is

supported on up to mn ` 1 points of X. Because the constraint set ∆pXq is compact

and V is continuous, the Berge maximum theorem implies that all the accumulation
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points of the sequence F n are solutions of the problem maxFP∆pXq V pF q, where V is

the GMM adversarial forecaster representation induced by h and µ. Proposition 7

established that this problem has a unique full-support solution F , so F is the unique

accumulation point of F n. Because X is compact, the sequence suppF n converges

to some set X̂ Ď X in the Haussdorf sense. By Box 1.13 in Santambrogio [2015],

F n Ñ F implies that suppF Ď X̂, and, given that suppF “ X, it follows that

suppF n Ñ X.

Online Appendix III: Optimization

This appendix collects additional optimization results for adversarial forecaster and

adversarial expected utility representation that are of independent interest.

Online Appendix III.A: Optimal lotteries in the adversarial

EU model

Here we provide two alternative characterizations of optimal lotteries under the ad-

versarial expected utility model.

Proposition 10. Let V be an adversarial expected utility representation pY, uq and

let F Ď F be a convex and compact set. The following are equivalent:

(i) F ˚ P argmaxFPF V pF q

(ii) There exists H P HpŶ pF ˚qq such that F ˚ P argmaxFPF
ş ş

upx, yqdHpyqdF pxq.

(iii) For all F P F , there exists y P Ŷ pF ˚q such that
ş

upx, yqdF ˚pxq ě
ş

upx, yqdF pxq.

The equivalence between (i) and (iii) is similar to Proposition 1 in Loseto and Lucia

[2021], with the important difference that they consider quasiconcave representations

and restrict to a finite set of utilities (which corresponds to a finite Y in our notation).

Proof. As a preliminary step, define W “ tup¨, yquyPY and observe that it is compact

since u is continuous.

The equivalence between (ii) and (iii) is a standard application of the Wald-Pearce

Lemma, so we only prove the equivalence between (i) and (ii).
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(ii) implies (i). Let F ˚ P argmaxFPF
ş ş

upx, yqdHpyqdF pxq for someH P HpŶ pF ˚qq.

For all F̃ P F , we have

V pF ˚
q “

ż ż

upx, yqdHpyqdF ˚
pxq ě

ż ż

upx, yqdHpyqdF̃ pxq ě V pF̃ q,

yielding that F ˚ P argmaxFPF V pF q.

(i) implies (ii). Fix F ˚ P argmaxFPF V pF q. Define R : CpXq Ñ R as Rpwq “

maxFPF
ş

wpxqdF pxq and let copWq denote the closed convex hull of W , which is also

compact. Because F is compact, R is continuous. Fix w˚ P argminwPcopWq Rpwq.

Observe that

min
wPcopWq

ż

wpxqdF ˚
pxq “ max

FPF
min

wPcopWq

ż

wpxqdF pxq “ min
wPcopWq

max
FPF

ż

wpxqdF pxq

“ max
FPF

ż

w˚
pxqdF pxq ě

ż

w˚
pxqdF ˚

pxq ě min
wPcopWq

ż

wpxqdF ˚
pxq

This shows that w˚ P argminwPcopWq

ş

wpxqdF ˚pxq, that is, there exists H P HpŶ pF ˚qq

such that w˚pxq “
ş

upx, yqdHpyq. Next, observe that

max
FPF

min
wPcopWq

ż

wpxqdF pxq “ max
FPF

V pF q “ V pF ˚
q “ min

wPW

ż

wpxqdF ˚
pxq

ď

ż

w˚
pxqdF ˚

pxq ď max
FPF

ż

w˚
pxqdF pxq

“ min
wPcopWq

max
FPF

ż

wpxqdF pxq “ max
FPF

min
wPcopWq

ż

wpxqdF pxq,

where the last equality follows from Sion minamx theorem given that F is compact

and convex. This yields F ˚ P argmaxFPF
ş

w˚pxqdF pxq “ argmaxFPF
ş ş

upx, yqdHpyqdF pxq.

Online Appendix III.B: finite Y

This section states and proves additional results on the optimization problem of Sec-

tion 3. Fix an arbitrary compact and convex set F Ď F of feasible lotteries. We start

with a simple lemma that establishes the existence of a saddle pair pF ˚, y˚q.
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Lemma 11. There exists F ˚ P F and y˚ P Y such that

ż

upx, y˚
qdF ˚

pxq “ V pF ˚
q “ max

FPF
V pF q (29)

Proof. Because F is compact and V is continuous in the weak topology, there ex-

ists F ˚ P F such that V pF ˚q “ maxFPF V pF q. And because Y is compact and u is

continuous in y, there exists y˚ P Y such that
ş

upx, y˚qdF ˚pxq “ V pF ˚q, yielding the

statement.

For every pF ˚, y˚q as in Lemma 11, define the set

FpF ˚, y˚
q “

"

F P F : @y P Y zty˚
u,

ż

upx, yqdF pxq ě

ż

upx, yqdF ˚
pxq

*

(30)

Observe that FpF ˚, y˚q is nonempty since it contains F ˚, and convex since it is

defined by (possibly infinitely many) linear inequalities. In addition, FpF ˚, y˚q is the

intersection of closed sets since up., yq is a continuous function for all y P Y zty˚u, so

it too is closed.

Lemma 12. Fix pF ˚, y˚q as in Lemma 11 and a nonempty, closed, and convex set

K Ď FpF ˚, y˚q. The set argmaxFPK

ş

upx, y˚qdF pxq is nonempty, convex, and closed.

Proof. Given that K is nonempty, convex, and closed, hence compact, and the map

F ÞÑ
ş

upx, y˚qdF pxq is linear and continuous, the statement immediately follows.

We next state and prove a general, yet simple, result about the existence of max-

imizers of Problem 29 that are extreme points of convex, closed sets K Ď FpF ˚, y˚q.

Lemma 13. For any pF ˚, y˚q as in Lemma 11 and nonempty, closed, and convex set

K Ď FpF ˚, y˚q such that F ˚ P K,

argmax
FPK

ż

upx, y˚
qdF pxq Ď argmax

FPF
V pF q. (31)

In particular, there exists F0 P extpKq such that V pF0q “ V pF ˚q “ maxFPF V pF q.
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Proof. Fix F ˚ P F and y˚ P Y as in Lemma 11 and a nonempty, closed, and convex

set K Ď FpF ˚, y˚q. Let F̂ P argmaxFPK

ş

upx, y˚qdF pxq. We need to show that

V pF̂ q “ V pF ˚q. Observe that

ż

upx, yqdF̂ pxq ě

ż

upx, yqdF ˚
pxq @y P Y zty˚

u (32)

since F̂ P K Ď FpF ˚, y˚q. Moreover,

ż

upx, y˚
qdF̂ pxq ě

ż

upx, y˚
qdF ˚

pxq (33)

since F̂ P argmaxFPK

ş

upx, y˚qdF pxq and F ˚ P K. Then for all y P Y , we have that

ż

upx, yqdF̂ pxq ě

ż

upx, yqdF ˚
pxq ě V pF ˚

q “ max
FPF

V pF q (34)

and in particular that V pF̂ q ě maxFPF V pF q. Given that F̂ P F , we must have

V pF̂ q “ V pF ˚q, so F̂ P argmaxFPF V pF q. This proves the first part of the theorem.

The second part immediately follows from the Bauer maximum principle since the

map F ÞÑ
ş

upx, y˚qdF pxq is linear over the convex set K.

Lemma 13 is not very insightful per se since the set FpF ˚, y˚q depends on the par-

ticular choice of pF ˚, y˚q. However, whenever we can find a set K as in the statement

of Lemma 13 whose extreme points satisfy interesting properties, the theorem lets us

conclude that there is an optimizer of the original problem with those properties. We

now apply this strategy to optimization problems with additional structure on F and

on Y by relying on known characterizations of extreme points of sets of probability

measures. For completeness, we report here the original results mentioned.

Theorem 8 (Proposition 2.1 in Winkler [1988]). Fix a convex and closed set F Ă F ,

an affine function Λ : F Ñ Rn´1, and a convex set C Ă ΛpFq. The set Λ´1pCq

is convex and every extreme point of Λ´1pCq is a convex combination of at most n

extreme points of F .

We can combine this result with Lemma 13 to obtain the following result.

Theorem 9. Suppose that Y hasm elements. There exists a solution F ˚ P argmaxFPF V pF q

that is a convex combination of at most m extreme points of F .
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Proof. Fix pF ˚, y˚q as in Lemma 11. Observe that |Y zty˚u| “ m´ 1 by assumption.

For simplicity we write Y zty˚u “ ty1, ..., ym ´ 1u. Define the map Λ : F Ñ Rm´1 as

ΛpF qi “

ż

upx, yiqdF pxq @i P t1, ...,m ´ 1u (35)

Also define the convex set

C ” ΛpFpF ˚, y˚
qq Ď ΛpFq (36)

It is easy to see that Λ´1pCq “ FpF ˚, y˚q. By Theorem 8 it follows that every extreme

point of FpF ˚, y˚q is a convex combination of at most n extreme points of F . Finally,

the statement follows by a direct application of Theorem 13.

The next result sharpens Theorem 2 for the case where Y is finite.

Theorem 10. Suppose that Y is finite with m elements. For every closed X Ď X,

there exists an optimal lottery F ˚ for the problem in equation 9 that has finite support

on no more than k ` m points of X.

Proof. Let F “ FΓpXq for some closed X Ď X, and fix pF ˚, y˚q as in Lemma 11.

The set FpF ˚, y˚q is defined by k ` m ´ 1 moment restrictions: k moments restric-

tions from Γ and m ´ 1 from the definition of FpF ˚, y˚q. By Lemma 13 there exists

F ˚ P extpFpF ˚, y˚qq such that V pF ˚q “ maxFPF V pF q. By Winkler’s Theorem the

each F̃ P FpF ˚, y˚q is supported on up to k ` m points of X as desired.

Online Appendix III.C: Robust solutions

This section shows that the finite-support property of Theorem 2 generically holds

for all solutions of the optimization problem in equation 9 that are “robust” in the

following sense. For every F P FΓpXq, we call a sequence as in Lemma 10 a finitely

approximating sequence of F .

Definition 7. Fix w P CpXq and a lottery F that solves

max
FPFΓpXq

min
yPY

ż

upx, yq ` wpxqdF pxq
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We say that F is a robust solution at w if

F n
P argmax
F̃PcopEnq

"

min
yPY

ż

upx, yq ` wpxqdF pxq

*

for some approximating sequence F n P copEnq of F , with En being any finite set of

extreme points generating F n.

In words, an optimal lottery F is robust if it can be approximated by a sequence

of lotteries that are generated by finitely many extreme points and that are optimal

within the set of lotteries generated by the same extreme points.

Theorem 11. Suppose that Y is an m-dimensional manifold with boundary, that u

is continuously differentiable in y, and that Y and u satisfy the uniqueness property.

For an open dense set of w P W Ď CpXq, every robust solution at w has finite support

on no more than pk ` 1qpm ` 1q points of X.

The proof will use the following lemma.

Lemma 14. Fix a finite set X̂ Ď X and an open dense subset Ŵ of RX̂ . The set

W “

!

w P CpXq : w
|X̂ P Ŵ

)

is open and dense in CpXq, where w
|X̂ denotes the restriction of w on X̂.

Proof. Because Ŵ is open, so is W . Fix w P CpXq. Given that w
|X̂ P RX̂ , there

exists a sequence ŵn P Ŵ such that ŵn Ñ w
|X̂ . Next, fix n P N large enough that

B1{npx̂q XB1{npx̂1q “ H for all x̂, x̂1 P X̂.37 By Urysohn’s Lemma (see Lemma 2.46 in

Aliprantis and Border [2006]), for every x̂ P X̂, there exists a continuous function vnx̂
such that vnx̂pxq “ 0 for all x P XzB1{npx̂q and vnx̂px̂q “ 1. Now define the continuous

function

wnpxq “ wpxqp1 ´ max
x̂PX̂

vnx̂pxqq `
ÿ

x̂PX̂

ŵnpxqvnx̂pxq.

Because wn P W , X̂ is finite, and X is compact, wn Ñ w as desired.

37Here, B1{npx̂q is the open ball centered at x̂ and of radius 1{n.
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Proof of Theorem 11. Without loss of generality, we assume thatX “
Ť

FPFΓpXq suppF .
38

Define E “ cl
`

ext
`

FΓpXq
˘˘

and consider an increasing sequence of finite sets of ex-

treme points En Ď ext
`

FΓpXq
˘

such that En Ò E . Observe that, by construction,

XEn Ò X.39 For every n P N, let Ŵn the open dense subset of RXEn that satisfies the

property of point 2 in Theorem 7. By Lemma 14 the set

Wn
“

!

w P CpXq : w|XEn P Ŵn
)

is an open dense subset of CpXq. By the Baire category theorem (see Theorem 3.46

in Aliprantis and Border [2006]), the set W “
Ş

nPNW
n
is dense in CpXq.

Next, fix w P W and a robust optimal lottery F ˚ for

max
FPFΓpXq

min
yPY

ż

upx, yq ` wpxqdF pxq

It follows that F ˚ is the weak limit of a sequence of solutions F n of the problem

max
FPcopEnq

min
yPY

ż

upx, yq ` wpxqdF pxq

In particular, given that, for every n P N w|XEn P Ŵn, Theorem 7 implies that F n

is supported on up to pk ` 1qpm ` 1q points of XEn . Because F n Ñ F ˚, it follows

that F is supported on up to pk ` 1qpm` 1q points of X. Given that F ˚ and w were

arbitrarily chosen, the result follows.

Online Appendix IV: Additional applications

Online Appendix IV.B: Additional examples

This section presents two examples. In the first, there are GMM preferences that have

a strictly concave representation and give rise to an optimal lottery with full support.

The second example illustrates most of the main results in the text by solving an

38Assume not, then we could just consider lotteries over the closed set X
1

“

cl
´

Ť

FPFΓpXq suppF
¯

.
39This follows from the fact that X “

Ť

FPFΓpXq suppF by assumption. See also footnote 38.
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optimal lottery under the asymmetric adversarial forecaster preferences of Section

5.2.

Example 10 (Weiner Process Example). We interpret x P r0, 1s as time. While it is

natural to think of hp¨, sq as a random function of s with distribution induced by F ,

there is a dual interpretation in which we think of hpx, ¨q as a random function of x (a

random field) with distribution induced by µ. In this interpretation, the Hpx, x̃q are

the second (non-central) moments of that random variable between different points

x, x̃ in the random field. If, for example, X “ r0, 1s, then this random field is a

stochastic process, and Hpx, x̃q the second moments of the process h between times

x, x̃. It is well known that continuous time Markov process are equivalent to stochastic

differential equations and that an underlying measure space S and measure µ can

be found for each such process. Specifically, consider the process generated by the

stochastic differential equation dh “ ´h ` dW where W is the standard Weiner

process on pS, µq and the initial condition hp0, sq has a standard normal distribution.

Then the distribution of the difference between hpx, ¨qand hpx̃, ¨q depends only on the

time difference x̃´x, and in particular Hpx, x̃q “
ş

hpx, sqhpx̃, sqdµpsq “ Gpx´ x̃q. In

this case Hp0, x̃q “ e´x̃, which is non-negative, strictly decreasing and strictly convex.

△

Example 11 (Optimal lotteries under asymmetric forecast error). Let X “ r0, 1s

and consider the parametric adversarial forecaster preferences with asymmetric loss

function ρpzq “ exppλzq ´ λz and linear baseline utility vpxq “ vx for some 0 ă

v ă 1 and λ ą 0. In this case, the best response of the adversary is x̂pF q “

1
λ
ln
´

ş1

0
exppλxqdF pxq

¯

and the continuous local utility function is wpx, F q “ vx `

exp pλpx ´ x̂pF qqq ´ λ px ´ x̂pF qq, which is convex for every F . Corollary 8 then

implies that the preference induced by this adversarial forecaster representation pre-

serves the MPS order. Now consider maximizing the V defined by the loss function

above over the entire simplex F . Because the preference preserves the MPS order,

Theorem 2 shows that the optimal distributions are supported on 0 and 1, that is,

F “ pδ1 ` p1 ´ pqδ0 for some p P r0, 1s. By Proposition 2, the optimal probability p˚

solves

max
pPr0,1s

vp ` p pexp pλp1 ´ x̂pp˚
qqq ´ λp1 ´ x̂pp˚

qqq ` p1 ´ pqpexp p´λx̂pp˚
qq ` λx̂pp˚

qq.

(37)
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If there is an interior solution, the agent is indifferent over any p P r0, 1s. This is the

case only if the solution is the p˚
int defined by

v ` exp pλp1 ´ x̂pp˚
intqqq ´ λ “ exp p´λx̂pp˚

intqq

which is equivalent to

p˚
int “

1

pλ ´ vq
´

1

pexppλq ´ 1q
.

Therefore, the overall solution is p˚ “ min t1,max t0, p˚
intuu. Clearly the solution

is increasing with respect to the baseline utility parameter v, but the effect of the

asymmetry parameter λ is ambiguous. △

Online Appendix V: Adversarial forecasters, local

utilities, and Gâteaux derivatives

In this section, we discuss the relationship between our notion of local utility and the

one in Machina [1982]. This is closely related to the differentiability properties of a

function V with a continuous local expected utility, which we also discuss.

Fix a continuous functional V : F Ñ R. Recall that V has a local expected utility

if, for every F P F there exists wp¨, F q P CpXq such that V pF q “
ş

wpx, F qdF pxq

and V pF̃ q ď
ş

wpx, F qdF̃ pxq for all F̃ P F , We say that this local expected utility is

continuous if w is continuous in px, F q.

Proposition 11. Let Á admit a representation V with a local expected utility w and,

for every F P F , let ÁF denote the expected utility preference induced by wp¨, F q.

Then F ÁF F̃ (resp. F ąF F̃ ) implies that F Á F̃ (resp. F ą F̃ ).

Proof. The first implication follows from V pF q “
ş

wpx, F qdF pxq ě
ş

wpx, F qdF̃ pxq ě

V pF̃ q. To prove the second, let V pF̃ q ě V pF q and observe that
ş

wpx, F qdF̃ pxq ě

V pF̃ q ě V pF q “
ş

wpx, F qdF pxq, implying that F̃ ÁF F as desired.

Machina [1982] introduced the concept of local utilities for a preference over lot-

teries with X Ď R. For ease of comparison, we make assume here that X “ r0, 1s for
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the rest of this section. Machina [1982] says that V has a local utility if, for every

F P F , there exists a function mp¨, F q P CpXq such that

V pF̃ q ´ V pF q “

ż

mpx, F qdpF̃ ´ F qpxq ` op||F̃ ´ F ||q,

where || ¨ || is the L1-norm. This is equivalent to assuming V is Fréchet differentiable

over F , a strong notion of differentiability.40

Our notion of local expected utility is neither weaker nor stronger than Fréchet

differentiablility. If V has continuous local expected utility, then it is concave, which

is not implied by Fréchet differentiability. Conversely, Example 12 shows that con-

tinuous local expected utility does not imply Fréchet differentiability.

Now we discuss the relationship between continuous local expected utility and the

weaker notion of Gâteaux differentiability, which has been used to extend Machina’s

notion of local utility to functions that are not necessarily Fréchet differentiable.

In particular, Chew, Karni, and Safra [1987] develops a theory of local utilities for

rank-dependent preferences and Chew and Nishimura [1992] extends it to a broader

class. Recall that V is Gâteaux differentiable41 at F if there is a wp¨, F q P CpXq such

that

ż

wpx, F qdF̃ pxq ´

ż

wpx, F qdF pxq “ lim
λÓ0

V pp1 ´ λqF ` λF̃ q ´ V pF q

λ
.

If wp¨, F q is the Gâteaux derivative of V at F we can define the directional derivative

operator DV pF qpF̃ ´F q “
ş

wpx, F qdF̃ pxq ´
ş

wpx, F qdF pxq. We can restate Lemma

4 with the language of Gâteaux derivatives just introduced.

Proposition 12 (Lemma 4 in Online Appendix II.A). If V has continuous local

expected utility wpx, F q, then V is Gâteaux differentiable and wp¨, F q is the Gâteaux

derivative of V at F , for all F .

Corollary 7. V has continuous local expected utility if and only if it is concave and

Gâteaux differentiable with continuous Gâteaux derivative.

40The notion of Fréchet differentiability depends on the norm used. Here, following Machina, we
use the L1-norm.

41Here we follow Huber [2011] and subsequent authors and adapt the standard definition of the
Gâteaux derivative to only consider directions that lie within the set of probability measures.
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We conclude by providing an example of a class of preferences that have continuous

local expected utility but not a local utility in Machina’s sense.

Example 12. Consider a function V with a Yaari’s dual representation, that is,

V pF q “
ş

xdpgpF qqpxq for some continuous, strictly increasing, and onto function

g : r0, 1s Ñ r0, 1s. In addition, assume that g is strictly convex and continuously

differentiable, for example gptq “ t2. By Lemma 2 in Chew, Karni, and Safra [1987],

V is not Fréchet differentiable, but since V pF q “
ş1

0
1 ´ gpF pxqqdx, it is strictly

concave in F . Moreover, by Corollary 1 in Chew, Karni, and Safra [1987], V is

Gâteaux differentiable with Gâteaux derivative wpx, F q “
şx

0
g1pF pzqqdz, which is

continuous in px, F q. Therefore, by Corollary 7, V has continuous local expected

utility and, by Theorem 1, it admits an adversarial forecaster representation. △
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