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Abstract

This paper proposes a theoretical framework that combines information design and

mechanism design to analyze markets for mediation services between an informed and

an uninformed party. The mediator receives compensation from the informed party

and must rely on information that is voluntarily reported. We describe all the outcomes

that can be induced via a mediation contract, and compare the optimal outcomes when

the mediator has the bargaining power (i.e., monopolistic mediation) with those when

the informed party has it. The main finding is that mediation contracts often reveal

more information with a monopolistic mediator because they give up some information

rents to retain incentive compatibility. Unlike the conventional logic of quality under-

provision for physical goods, here the attempt to capture information rents can lead

to increased information disclosure. These findings shed light on the controversial

matter of whether a monopolistic market for information intermediaries, such as rating

agencies for financial securities, is more or less desirable than a competitive one.
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1 Introduction

As shown in the seminal works by Akerlof (1978) and Spence (1978), frictions arising from

asymmetric information in markets are especially stark when private information is non-

verifiable, that is when private information is soft, and when the informed party cannot

commit to an information policy.1 In these scenarios, credible information intermediaries,

such as rating agencies or quality certifiers, can provide information in exchange for com-

pensation from the informed party. Two natural questions then arise: 1) What information

and market outcomes are possible when the intermediary relies only on information will-

ingly reported by the informed party? 2) Would more information be revealed under the

intermediary’s revenue-maximizing contract (i.e., monopolistic mediation) or the informed

party’s?

This paper analyzes markets for mediation services between an informed and an unin-

formed party through a theoretical framework that combines information design and mecha-

nism design. This allows us to describe all the outcomes that can be induced by a mediation

contract with transfers from the informed party to the intermediary. Finding the optimal

outcomes for the intermediary and the informed party respectively reduces to solving rela-

tively simple optimization problems. We compare these solutions in terms of the extent of

information revealed to the uninformed party. The main findings addressing the previous

two questions are that: 1) A large set of information policies and all the market outcomes can

be still implemented under this soft-information regime; 2) Because a monopolistic mediator

gives up some information rents to retain incentive compatibility, monopolistic mediation

contracts often reveal more information.

We apply our model to the analysis of optimal mediation contracts in ratings and certi-

fications markets. Financial issuers have superior and unverifiable information on both the

composition and the projected returns of the financial security they issue. Without any third

party, issuers would tend to inflate the projected returns of a security or provide selective

information about its composition. Therefore, rating agencies act as information mediators

from issuers to the market and receive their remuneration from the former.2

Rating agencies can sometimes mix soft information elicited from the informed party

1See for example Liberti and Petersen (2019) for a survey on the broad definitions and differences between
soft and hard information. In general, one aspect of this difference concerns the nature of information:
numeric and objective for hard information and textual and subjective for soft information. Here we ignore
this aspect and discriminate between hard and soft information in terms of its verifiability. This is the
classical difference considered in contract economics (e.g, Hart (1995))

2For example, in the early 1970s, the rating agency market switched from an “investor-pay” model where
information users remunerated the agencies to an “issuer-pay” model where issuers of financial securities pay
fees to the agencies. See White (2010) for a detailed survey on the market of rating agencies.
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with verifiable and testable information that they obtained independently, that is, hard

information. This second aspect has been the almost exclusive focus of the literature on

rating agencies, e.g., Skreta and Veldkamp (2009), Bolton et al. (2012), and Ali et al. (2022),

and in general on quality certifiers e.g., Lizzeri (1999), Harbaugh and Rasmusen (2018), and

Zapechelnyuk (2020). However, a large part of the rating agencies’ final evaluations depends

on information reported by the informed party. For instance, the Code of Professional

Conduct issued by Moody’s (February 2023) (MIS) reports that:

Credit Ratings are based on information obtained by MIS from sources believed by

MIS to be accurate and reliable, including, but not limited to, Issuers and their

Agents, as well as sources independent of the Issuer [...] MIS is not an auditor

and cannot in every instance independently verify or validate information received

in the rating process.

The important aspect of soft information is not a prerogative of markets for ratings of

financial securities. Duflo et al. (2013) show evidence that environmental audits of industrial

plants in India often purely rely on information reported by the firms evaluated. Similarly,

Silver-Greenberg and Gebeloff (2021), whose research was featured in the New York Times

issue of March 13, 2021, provide evidence that nursing home ratings in the US heavily rely

on data and information reported by the facilities’ administrations.

Our analysis shows that some of the key findings of the literature on hard-information-

based certifiers do not extend to the soft-information case. For example, differently from

the parasitic certifier result in Lizzeri (1999) where the intermediary extracts all the surplus

through a pass-fail policy, in the present setting much richer disclosure policies that leave

rents to the informed party are optimal.

Overview of the Model In the baseline model, we consider two agents: a sender and a

receiver. The sender, e.g., a financial issuer, is privately informed about a one-dimensional

payoff-relevant state, for example, the fundamental value of a financial security. This infor-

mation is non-verifiable and the sender cannot commit ex-ante to any information disclosure

policies. The receiver is uninformed of the state and their optimal choice only depends on

the conditional expectation of the state given the available information. For example, the re-

ceiver can represent a population of traders in a market where each of them chooses whether

to short or not the issuer’s asset depending on their conditional expectation.

The payoff of the sender is increasing in both the state and the receiver’s conditional

expectation, satisfies a standard strict single-crossing condition, and is quasi-linear with

respect to any monetary transfer. For instance, the financial issuer’s final payoff is larger
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when fewer traders short the asset, and this effect is larger when the fundamental value of

the asset is high. Under these assumptions, no credible communication can be sustained

between the two parties because the sender has always the incentive to induce the highest

receiver’s expectation possible.

Next, we consider a trustworthy and credible mediator who is uninformed of the state and

shares the same prior beliefs as the receiver. The mediator can commit to any communication

mechanisms. These mechanisms collect a report from the sender and, conditional on it,

require payments from the sender and disclose a message to the receiver. The timing goes

as follows: i) The mediator commits to a communication mechanism; ii) The sender chooses

whether to accept or not the contract; iii) If the sender participates, they submit a report

to the mediator and a message is sent to the receiver and payment for the mediator is

executed according to the terms of the contract. If the sender does not participate, there is

no transfer; iv) The receiver updates their beliefs given the available information, and payoffs

are realized. Conditional on no participation the receiver updates their belief to the worst

possible state. This is a realistic assumption within our leading rating agency application:

issuers are often forced by law to refer to a rating agency and failure to do so would trigger

a negative response from the market.3

The mediator’s payoff is equal to the payment from the sender and transfers between

the mediator and the receiver are not allowed. We compare two leading cases depending

on whether all the bargaining power is in the hand of the mediator, monopolistic-mediation

case, or the sender, the sender’s preferred case. In the first case, the optimal contracts are

those that maximize the mediator’s expected revenue, whereas in the second case are those

that maximize the sender’s payoff net of the mediator’s fee.4

In our application, the rating agency embodies the role of the mediator: they commit to

information disclosure contracts that depend on the information reported by the issuer, and,

in line with the issuer-pay model, their remuneration is given by the contractualized fees.

The monopolistic-mediator case represents the realistic scenario where the agency designs the

contractual terms to maximize profit.5 Differently, the sender’s preferred case corresponds

to the scenario where the terms of the contract are in favor of the sender, capturing the idea

3Rating agencies often disclose the names of the entities that decline to participate in the rating process.
The Code of Professional Conduct by Moody’s (February 2023) reports that: “To promote transparency
regarding the nature of MIS’s interactions with Rated Entities, and in accordance with the MIS Policy for
Designating Non-Participating Rated Entities, MIS will publicly designate and disclose the names of Rated
Entities that decline to participate in the rating process”.

4These are the two leading cases considered in the screening and nonlinear pricing literature. See for
example Samuelson (1984); Biais and Mariotti (2005); Grubb (2009); Corrao et al. (2023).

5The rating agencies market is highly concentrated with Fitch, Moody’s, and S&P retaining the vast
majority of the market share. See for example OECD Hearing (2010).
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of competition among rating agencies.

Implementable Outcomes We recast our contracting environment as a mechanism-

design problem. Differently from the more canonical setting though, the mediator does

not allocate physical goods or services but rather information to the receiver. We thus bor-

row tools from information design to represent the information structures that are feasible

given all the incentive constraints and that are optimal for the two cases considered.

We first apply the Revelation Principle for Bayesian games of Myerson (1982) and Forges

(1986) and restrict to truthful and obedient direct mechanisms where the sender truthfully

reports the state and the message for the receiver coincides with the correct conditional

expectation of the state. The obedience requirement is reduced to the standard martingale

condition for the joint distribution of states and conditional expectation. The truthful re-

porting constraint is in general equivalent to a monotone cyclicality condition that resembles

the one in Rochet (1987), and reduces to a simpler monotonicity condition when the sender’s

payoff is linear in the state.

Next, we focus on the distributions over the receiver’s conditional expectations that can

be induced by some mechanism. In our leading application, the receiver’s conditional ex-

pectations correspond to the market’s evaluations of the issuer’s security. We show that,

perhaps surprisingly, the mediator can implement all the distributions that are consistent

with unconstrained verifiable information, that is, those that are mean-preserving contrac-

tions of the prior. These can be implemented by random bi-pooling information policies : the

mediator randomizes over a collection of information policies that send up to two messages

conditional on every report (i.e., standard bi-pooling policies as introduced by Arieli et al.

(2023). Importantly, the sender is not informed about the particular policy drawn from the

randomization at the moment of reporting the state, but the receiver is informed of both the

realized policy and of the corresponding realized signal.

These mechanisms admit a clear interpretation within our rating agency application.

In fact, from the issuer’s perspective, referring to a rating agency introduces an element

of unpredictability, as they are uncertain about the exact outcome of the rating process

conditional on their reports. However, the rating agency is obligated to maintain complete

transparency with investors, detailing every procedure and methodology utilized to arrive at

that particular rating.6

6The Code of Professional Conduct by Moody’s (February 2023) reports that: “In order to promote
transparency, MIS will publicly disclose sufficient information about its rating committee process, procedures,
methodologies, and any assumptions about the published financial statements that deviate materially from
information contained in the Issuer’s published financial statements so that investors and other users of
Credit Ratings can understand how a Credit Rating was determined.”
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Optimal Outcomes We then move to the study of optimal communication mechanisms.

We leverage our implementation results to rewrite the design problems in both the mo-

nopolistic case and the sender’s preferred case as Bayesian persuasion problems under an

additional monotonicity constraint. With this, if monotone partitional outcomes, such as

full disclosure or no disclosure, solve the (relaxed) Bayesian persuasion problem obtained

by ignoring the monotonicity constraint, then these solve the original problem. This allows

us to derive conditions on the sender’s payoff such that full disclosure is optimal for the

monopolistic mediator, for example, when the mediator’s virtual surplus is supermodular

and convex in the receiver’s expectation.

We next focus on two particularly tractable cases. First, we consider the linear-uniform

casewhere the sender’s payoff is linear in the state and the state is uniformly distributed.

Under these assumptions, the mediator’s revenue and the sender’s payoff are pinned down

by the conditional distribution over the receiver’s expectation. In turn, because all such

distributions that are consistent with the prior are implementable, it follows that the global

monotonicity constraint does not have any bite. With this, we reduce the two problems to

simple persuasion problems that have been extensively analyzed in the literature. Notably,

we obtain that if the sender’s information rents are concave, then the monopolistic mediator’s

optimal contracts reveal more information than the sender’s preferred ones.

In the second case, we restrict to quadratic payoff functions for the sender but keep

the distribution over states general. Differently from before, here the global monotonicity

constraint can bind at the optimum. First, we show that the mediator’s revenue is pinned

down by the distribution of the sender’s second-order expectations. Next, we show that every

distribution that is a mean-preserving contraction of the prior is a valid distribution over

second-order expectations. Finally, an additional change of variable from states to quantiles

of conditional expectations allows us to rewrite the revenue maximization problem as a

linear program under a majorization constraint and use the results in Kleiner et al. (2021)

to characterize optimal outcomes. In particular, there always exist optimal communication

mechanisms that are deterministic (i.e., monotone partitions), and the comparison between

the monopolistic mediator case and the sender’s preferred case is determined by the coefficient

on the quadratic term of the sender’s payoff.

Our findings point out that in several natural instances, a monopolistic mediator that

relies on unverifiable reports only optimally discloses more information than in the follow-

ing two alternative cases: 1) Information is still unverifiable, but the mediator selects the

sender’s preferred outcome distribution 2) information is verifiable (hard information) and

the bargaining power is all in the hand of the mediator (e.g., Lizzeri (1999)). For instance,

in our leading rating agency example, when the market is characterized by lower shocks
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and information is soft, a monopolistic rating agency optimally reveals more information

than in the issuer’s preferred contract or when the agency could commit to any information

disclosure without relying on reports (hard information). This rationalizes the presence of

virtually monopolistic rating agencies that rely on non-verifiable information, even from the

perspective of the final users of the information released, i.e. the investors. In fact, the

model predicts that if the bargaining power shifts too much in favor of the financial issuer or

if the rating agencies have unlimited access to verifiable information, then the actual amount

of information released to investors would decrease.

Transparency and Credibility Despite their simplicity, random bi-pooling information

policies still involve an element of randomness from the point of view of the receiver, which

partially invalidates the transparency of communication. For this reason, we also study trans-

parent communication mechanisms where the mediator must disclose the sender’s report to

the receiver. We show that the implementable outcomes under this additional restriction

correspond to monotone partitions : the mediator partitions the state space into (possibly

degenerate) adjacent intervals and the sender reports the interval where the realized state

lies. In turn, this allows us to connect transparent outcomes to a recent notion of credible

information structures put forward by Lin and Liu (2023) which captures the idea that the

sender does not have any incentive to change the correlation structure between states and

messages. In our setting, credible outcomes also coincide with monotone partitions which

then are consistent with independent notions of transparency and credibility. This combined

with our previous results on the optimality of monotone partitions in the unrestricted prob-

lem, implies that often the restriction to transparent and credible outcomes is without loss

of optimality for either the monopolistic mediator or the sender.

Related Literature Besides the aforementioned works on optimal certification and rating

agencies, our work lies at the intersection of several other literatures that we now describe.

Our paper uses methods and results from the vast literature on Bayesian persuasion.

The belief-based approach used in Section B on binary-state settings follows the seminal

work by Kamenica and Gentzkow (2011). Differently, the outcome-based approach used in

the general analysis follows more recent contributions such as Kolotilin (2018) and Kolotilin

et al. (2022a). Relatedly, our analysis of the uniform-state case shows that both in the

monopolistic-mediator case and the sender’s preferred case, the problem becomes equivalent

to a “linear” Bayesian persuasion problem such as the one studied in Dworczak and Martini

(2019). For all these cases, there are two main differences between our work and the standard

Bayesian persuasion problem: 1) The set feasible mechanism here is restricted by the truthful
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reporting 2) Once transfers have been pinned down by the envelop formula, the mediator

maximizes the virtual surplus as opposed to the sender’s original payoff function. Our

analysis shows that the first difference is immaterial for the cases where the state of the world

is binary and for the cases where it is uniformly distributed. However, the second difference

is always present and is a key driver for our results comparing the optimal solutions across

the mediator and the sender’s preferred outcomes.

Among the seminal papers on Bayesian persuasion, Rayo and Segal (2010) and Rayo

(2013) are the most related to our work. While the general model in Rayo and Segal (2010)

corresponds to a particular case of finite-state Bayesian persuasion, their leading application

considers a sender that elicits the state from an informed third party through transfers. They

show that the additional truthtelling constraint is always slack under their assumptions and

apply their results to the relaxed persuasion problem. Besides allowing for infinite states, our

analysis differs insofar as our focus is on the comparison between the revenue-maximizing

contract and the optimal contract for the informed party.

Rayo (2013) considers a one-dimensional screening problem where rather than a physical

good, the seller allocates a “status” for the agent in the form of the conditional expectation

of their type. With this, their problem involves a truthtelling constraint and an obedience

constraint as in the present work. However, they restrict to deterministic mechanisms and the

sender’s payoff functions that are linear in both the state and the conditional expectation.

Notably, our results imply that, in his setting, the restriction to monotone partitions is

without loss of optimality for the designer.

Other recent works have also studied information design problems with transfers and

truthtelling constraints. Nikandrova and Pancs (2017) and Dworczak (2020) study auctions

with aftermarkets where the auctioneer can reveal information elicited from the first bidders

to successive bidders or participants on a resale market. The former paper solves the relaxed

problem by ignoring the global truthtelling constraint.7 The latter paper, restricts to cutoff

mechanisms that only reveal whether the reported type is above or below a threshold. Differ-

ently, Krishna and Morgan (2008) and Kolotilin and Li (2021) study models of contracting

over information where the informed party is paid in exchange for information. They restrict

to deterministic mechanisms like in Rayo (2013) and show that the implementable outcomes

are monotone partitions. Differently from the present setting with revenue maximization,

the designer (the receiver in their case) trades off the information needed to adapt their

choice to the state of the world with the payment necessary to elicit that information. None

of the aforementioned works focus on the comparison of optimal contracts across different

7In particular, their optimal information structure often does not satisfy the monotonicity properties
required by the global truthtelling constraint.
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objective functions.

Our work is also closely connected to the literature on mediation initiated by Myerson

(1982) and continued by the recent works on the comparison between mediated and unmedi-

ated communication like Goltsman et al. (2009), Salamanca (2021), and Corrao and Dai

(2023). All these papers consider settings without transfers and where the mediator is per-

fectly aligned with the informed or the uninformed party. Notably, the absence of transfers

considerably restricts the set of implementable outcomes because now the mediator can only

screen the sender via the information revealed to the receiver. For example, Corrao and Dai

(2023) show that, when the sender has state-independent preferences, the feasible distribu-

tions of beliefs are those that induce zero correlation between the sender’s payoff and the

receiver’s belief. Differently, in our binary-state and linear-uniform settings, we show that

all the distributions of beliefs are feasible and that often the revenue-maximizer contract

induces the highest correlation possible between the sender’s payoff and the receiver’s belief.

Outline Section 2 introduces the baseline model and assumptions. Section 3 presents our

main results for the case of binary states. This allows us to describe the basic intuition of our

results without the technical challenges presented by the general case. Section 4 characterizes

the feasible distributions of outcomes under mediation. In Section 5 we derive and compare

optimal outcomes across the monopolistic and sender’s preferred case. In Section 6, we

analyze implementable and optimal outcomes when an additional transparency restriction

is imposed. Finally, Section 7 concludes. All the proofs are relegated to the appendix.

2 The Model

This section introduces a model of information mediation with transfers. We start with a

few key mathematical preliminaries. Given any product Borel probability space (X ×Θ, π),

we let πθ ∈ ∆(X) denote a version of the conditional probability over X given θ and define

πx similarly.8 When we say that πθ satisfies a given property for all θ ∈ Θ, we mean that this

is the case for at least one such version. Finally, for every integrable function A : X → R,
we let Eπ[A(x̃)|θ] denote the conditional expectation of A given θ.9

8Recall that the maps θ 7→ πθ and x 7→ πx are measurable with respect to the sigma-algebra generated
by the weak topologies over ∆(X) and ∆(Θ), and that they are uniquely defined π-almost everywhere.

9The conditional expectations Eπ[H(θ̃)|x] for integrable functions H : Θ → R are similarly defined. We
always use the tilde notations x̃, θ̃ inside expectation operators to highlight what are the random variables
inside the expectation.
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2.1 Sender and receiver

First, consider two agents only: a sender and a receiver. The sender is privately informed

about a payoff-relevant state of the world θ ∈ [0, 1] which is distributed according to a non-

degenerate common prior with CDF F ∈ ∆([0, 1]). We often refer to θ as the type of the

sender. Define the relevant state space as Θ := supp(F ), let xF := EF [θ̃] denote the prior

mean, and assume that 0 ∈ Θ.

The key assumption on the private information of the sender is that it is not verifiable,

that is, it is soft information. This is a standard assumption in most of the mechanism-design

literature; it implies that the sender can directly communicate with the receiver only through

costless cheap talk messages without any intrinsic meaning. The receiver is uninformed of

θ and takes a payoff-relevant action a ∈ A conditional on all the available information

about θ. The message space is assumed to be large enough to contain all possible action

recommendations.

As discussed in the introduction, we interpret the sender as a seller of an asset (or a good)

who is privately informed about its return (or quality) θ. The receiver can be interpreted

either as a single buyer or a multiplicity of buyers (e.g., traders in a market), and their action

corresponds to an evaluation of the asset and/or a decision whether to buy the asset or not.

The payoffs of the sender and the receiver depend on both the state θ and the action

a. We assume that the action of the receiver is uniquely pinned down by the conditional

expectation of the state x := E[θ̃|s], where s denotes the realization of the information

available to the receiver.10 Given this assumption, we do not specify additional properties

for the action space.

Let X := [0, 1] denote the space of the receiver’s conditional expectations and let V :

X × Θ → R denote the sender’s payoff function. Because the payoff of the receiver is not

relevant for the general analysis, we do not posit a specific receiver’s payoff. In all the relevant

applications below, the (indirect) receiver’s payoff induced by their conditional expectation

is always described by a continuous and convex function R : X → R.11

Assumption 1. V (x, θ) is twice continuously differentiable, strictly increasing and super-

modular in (x, θ), and such that V (0, θ) = 0 for all θ ∈ Θ.

Besides the technical assumption on differentiability, Assumption 1 posits that the sender

10The assumption that the payoffs of the players depend on the state and the receiver’s conditional
expectation only is standard in the persuasion literature: see Gentzkow and Kamenica (2016) and Dworczak
and Martini (2019).

11For the sake of concreteness, one may assume that the receiver’s action space is A = X with payoff
function given by U(x, θ) = xθ−x2/2. However, in Examples 1 and 2, we consider different settings inducing
slightly more general indirect receiver’s payoff functions. Convexity of R(x) always holds due to the standard
properties of the indirect value function of decision problems under expected utility.
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wants to induce the highest conditional expectation possible and that the benefit from

higher conditional expectations is larger for high states. The assumption also normalizes

the sender’s payoff so that the worst possible conditional expectation generates zero regard-

less of the state.

Under Assumption 1, it is not possible to sustain any credible communication in the

form of cheap talk, and the only equilibrium is the one where the receiver ignores all the

sender’s messages and plays always xF . The intuition behind this observation is simple and

does not need a proper formalization of the cheap talk environment. Indeed, in any cheap

talk equilibrium, it must be the case that, for every state θ, the sender is indifferent among

all the receiver’s actions induced by some message played with strictly positive probability.

Now suppose that two different messages played respectively in states θ′ and θ induce two

different conditional expectations x′ > x. Then V (x′, θ) > V (x, θ) implies that at state θ the

sender has a strictly profitable deviation by sending the message inducing x′, contradicting

the equilibrium hypothesis.

To characterize optimal outcomes, we often add more structure to the sender’s payoff

function. We say that the sender’s payoff is linear in the state if there exist strictly increasing

functions A(x) and B(x) such that V (x, θ) = θA(x) + B(x). Assumption 1 implies that

both A and B are twice continuously differentiable and such that A(0) = B(0) = 0. We

say that the sender’s payoff is quadratic if there exist parameters α, β, γ ∈ R such that

V (x, θ) = αθx+ βx− γx2/2. Assumption 1 implies that α > 0 and β > γ.

Example 1 (Bank and Rating Agency). A bank holds an asset whose fundamental value

is denoted by θ and distributed according to F . This can represent a specific asset to

which the bank is significantly exposed or a one-dimensional measure of the bank’s balance

sheet. There is a continuum of traders characterized by idiosyncratic information and/or

preference shocks r ∼ G on [0, 1], but uninformed about θ. Each trader can attack a = 1

or not a = 0 the bank, say by shorting the asset. The market evaluation of the asset given

public information s is x := E[θ̃|s]. For simplicity, assume that each trader shorts the asset

if and only if this ex-post evaluation is lower than the private shock, that is, a = 1 if and

only if r > x. The bank defaults with probability equal to the mass 1 − G(x) ∈ [0, 1] of

attackers.

Conditional on no-default, the value of the asset for the bank is (1 − δ)x + δθ for some

discount factor δ ∈ (0, 1). The interpretation is that the current asset evaluation is given

by the market’s expectation, while the future evaluation is given by the asset’s fundamental

value. The bank’s overall payoff is

V (x, θ) = ((1− δ)x+ δθ)G(x),
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that is, the probability of no-default times the asset value. This payoff function satisfies

Assumption 1 and is also linear in the state. Importantly, the strictly single-crossing property

depends on the bank caring about the fundamental value of the asset δ > 0.

The bank is privately informed about θ and this information is not verifiable, e.g., the

exact composition of the asset. They aim to induce the highest evaluation x possible but

cannot commit to information disclosure ex-ante. In turn, this implies that no credible in-

formation transmission can be sustained alone because Vx > 0.12 △

Example 2 (Selling Platform and Advertising Agency). Consider a seller trying to advertise

a good/service of quality θ to a market of potential buyers. The market is competitive and

the seller can only act on advertising policies, that is, prices are fixed. Each buyer has an

idiosyncratic alternative option r ∼ G on [0, 1] that they forgo if they buy from the seller.

Each buyer buys the good a = 1 if and only if x ≥ r, for example, because their utility is

U(a, θ, r) = a(θ− r). The seller’s payoff is a(b(r)+αθ) where α > 0 and b(r) is a continuous

function. The interpretation is that conditional on acquiring the good a = 1, the seller gets

(present and future) revenue that is proportional to the actual quality αθ and a benefit b(r)

that depends on the type of the buyer that has acquired the good. For example, if the seller

receives 1 dollar for every customer that buys the good, and if they attach weight α > 0 to

their customer surplus, the seller’s payoff for every buyer r that buys is a(1 + α(θ − r)).

The seller’s overall payoff given the buyers’ conditional expectation x is

V (x, θ) = αθG(x) +

∫ x

0

b(r)dG(r).

This payoff function satisfies Assumption 1 and is also linear in the state. Importantly, the

strictly single-crossing property depends on the seller caring about the actual quality of the

good, i.e., α > 0. Finally, as in the previous example, no credible information transmission

is sustainable in any cheap-talk equilibrium.13 △

Remark 1. In both Examples 1 and 2 the sender’s payoff is linear in the state. In Example

1, the sender’s payoff is quadratic when the distribution of shocks G is uniform. Similarly,

in Example 2, the sender’s payoff is quadratic when the distribution of outside options G is

uniform and the benefit function is affine b(r) = β − γ/2r.

12This example is similar to Example 1 in Quigley and Walter (2023) who consider a setting with a
regulator able to commit to any form of hard information.

13Rayo and Segal (2010) and Kolotilin et al. (2017, 2022b) analyze similar examples under standard
Bayesian persuasion.
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2.2 The mediator

We now introduce the third and final agent of the model: the mediator. We consider two

alternative objective functions for the mediator and these define the two notions of optimal

contracts that we analyze. In the first case, called monopolistic meditation, the mediator

maximizes revenue. In the second case, called sender’s preferred mediation, the mediator

maximizes the sender’s payoff. These two scenarios capture the two extreme cases of the

division of bargaining power between the mediator and the sender.

The mediator is uninformed of the realized state θ but can commit to a communication

mechanism with transfers. This is composed of a reporting space for the sender MS, a

message space for the receiver MR, and a stochastic map σ : MS → ∆(MR ×R) assigning a

distribution over messagesmR for the receiver and transfers t from the sender to the mediator.

The interpretation is that the mediator commits to a menu of (potentially random) messages

for the receiver and each of these comes together with a price that the sender pays to the

mediator. In particular, we assume that the sender’s payoff is quasi-linear in money so that

their overall payoff is equal to V (x, θ) − t when the state is θ and the realized conditional

expectation and transfer are x and t. The payoff of the mediator is given by the transfer

from the sender t.

Each communication mechanism σ defines a standard signaling game between the sender

and the receiver. First, the sender observes the state θ and chooses whether to participate

in the mechanism. This choice is observed by the receiver. Conditional on participating, the

sender selects a report mS that generates some message for the receiver and payment for the

mediator.14 After observing the participation choice of the sender and the realized message,

the receiver updates their beliefs and takes the corresponding optimal action. Let Γσ denote

the set of Bayes-Nash equilibria of the signaling game induced by σ.15 We assume that the

sender and the receiver break ties in favor of the equilibrium suggested by the mediator.

There are two main differences with the standard theory of signaling games (e.g., Fuden-

berg and Tirole (1991)). First, the cost of signaling actions in our setting corresponds to

the mediator’s revenue rather than being a merely wasteful activity for the sender. Second,

and in line with the mechanism design literature, the costly signaling mechanism is designed

by the mediator. In fact, this turns out to be a particular case of the general mechanism

design problem introduced in Myerson (1982). A similar setting has also been considered in

the literature of mechanism design under imperfect commitment. In particular, Bester and

Strausz (2007) and Doval and Skreta (2022) consider a mechanism design problem where

14We assume that the receiver does not observe the realized transfer. However, this is without loss of
generality for the main analysis as shown in Doval and Skreta (2022).

15See Appendix A for a formal definition of Bayes-Nash equilibrium in this case.
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the designer can only partially commit to final allocations/actions conditional on the report

of the sender, and therefore acts as a mediator between the sender and themselves. In the

present setting, the mediator can commit to a communication mechanism including trans-

fers but cannot control the final action which is still under the control of the receiver. In

both settings, it is possible to apply the Revelation Principle for Bayesian games of Myerson

(1982) and Forges (1986) (see Section 4).

Definition 1. A communication mechanism σ and a corresponding equilibrium in Γσ are

consistent with

1. Full participation if the sender participates in the mechanism for every θ ∈ Θ;

2. Punishment beliefs if the receiver’s posterior belief conditional on no participation

assigns probability 1 to θ = 0;

3. Deterministic payments if conditional on every sender’s report ms, the marginal dis-

tribution of σ(·|mS) over payments t is degenerate.

Observe that under full participation, the no-participation outcome is out of the equi-

librium path. Therefore, the receiver’s conditional belief is not pinned down by the laws of

probability and any belief would be consistent with equilibrium. We restrict the mediator

to select a communication mechanism and a corresponding equilibrium satisfying all these

properties.

Assumption 2. The mediator selects a communication mechanism and a corresponding

equilibrium that are consistent with full participation, punishment beliefs, and deterministic

payments.

Deterministic payments are always without loss due to the assumption of quasi-linearity

for the sender and mediator’s payoffs. The first two properties have more substantial content:

they imply that whenever the sender does not participate in the mediator’s mechanism, the

receiver always updates their beliefs to assign probability one to the worst possible state.

This assumption is consistent with the applications considered so far. In modern financial

markets, it is important for issuers, if not required, to refer to a rating agency to get ratings

on the issued financial products. Moreover, regulators often impose institutional investors

to hold assets that have received positive ratings from one or more agencies. Therefore,

when issuers do not refer to rating agencies they essentially give up a large part of potential

investors in the market. Similarly, generic sellers do not have the same reach as professional

advertising agencies, and referring to them is often the only way to broaden the basin of

potential customers.
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The punishment-belief assumption is standard in the literature on quality certification

(e.g., Lizzeri (1999)), on rating agencies (e.g., Quigley and Walter (2023)), and on strategic

communication (e.g., Carroll and Egorov (2019)). Because a monopolistic mediator maxi-

mizes revenue, it is always without loss of optimality for them to select a mechanism and an

equilibrium satisfying Assumption 2.16

Next, we interpret the role of the mediator in our examples.

Example (Continue from Example 1). In the setting of Example 1, a rating agency is a

trustworthy third party that can commit to information disclosure in exchange for a fee from

the bank. Following our motivation in the introduction, we assume that the rating agency

is uninformed about θ and must rely on the bank’s report while remaining credible to the

market. They can disclose only information that is self-reported and that the bank is willing

to share. Therefore, the agency screens the banks via two instruments: information revealed

to the market and fees charged. Following the general model above, the agency commits to

report-dependent signals (possibly noisy) for the market and fees for the bank: this is the

content of the contract between the agency and the bank. The traders publicly observe the

realization of mR, update their evaluation to x = E[θ̃|mR], and attack or not. Here, the

punishment-beliefs assumption implies that if the bank does not refer to the agency, the

market updates to x = 0. △

Example (Continue from Example 2). In the setting of Example 2, an advertising agency

is a trustworthy third party that can commit to information disclosure in exchange for a fee

from the seller. Advertising agencies have enough reputation to sustain credible information

policies but are not as informed as the seller about the actual quality of the product. There-

fore, they often rely on the seller’s reported quality △

2.3 Outcomes and beliefs distributions

Under Assumption 2, any equilibrium of a communication mechanism generates a distribu-

tion over outcomes π ∈ ∆(X × Θ) that describes the joint probability of state θ and the

receiver’s expectation x in the given equilibrium. This is paired with a transfer function

t : Θ → R which prescribes the (deterministic) payment from the sender to the mediator in

16This relies on the fact the mediator can select the preferred equilibrium for every mechanism. In
particular, punishment beliefs maximize revenue. See also the revelation principle for mechanism design
under imperfect commitment in Doval and Skreta (2022). In Additional Appendix F we show that equilibria
satisfying Assumption 2 survive a version of the D1 refinement for infinite games.
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each state θ. We say that (π, t) is implementable if there exists a communication mechanism

and an equilibrium that induce them. Similarly, we say that π is implementable if there

exists a payment function t such that (π, t) is implementable.

Let M(F ) denote the set of implementable pairs (π, t). For every such mechanism, the

induced indirect payoff of the sender at each state is defined by Sπ(θ) := Eπ[V (x̃, θ)|θ] −
t(θ) for all θ ∈ Θ.17 In the monopolistic case, the mediator acts to maximize revenue

independently of the other outcomes of the sender-receiver interaction:

sup
(π,t)∈M(F )

∫
Θ

t(θ)dF (θ). (1)

The objective function in (1) corresponds to the expected revenue of the monopolist across

all the possible states.

In the sender’s preferred case, the optimal outcome distributions are those that maximize

the expected payoff of the sender. This requires the proposed mechanism and payment rule

to satisfy an additional participation constraint because the mediator’s expected revenue has

to be non-negative for the mediator to be willing to serve the sender.

In the sender’s preferred case, the optimal outcomes and payments solve

sup
(π,t)∈MC(F )

∫
Θ

Sπ(θ)dF (θ). (2)

where MC(F ) denotes the set of pairs of outcomes and payments that are implementable

when we also add the mediator’s participation choice described above.

Observe that payments from the sender to the mediator are still relevant in the sender’s

preferred case. This is the case because having different payments for different reports re-

laxes the truthtelling constraint making a larger set of outcome distributions implementable.

Payments to the mediator essentially play the role of money burning in standard models of

communication (e.g., Austen-Smith and Banks (2000)).

So far we focused on the distributions of outcomes induced by a communication mech-

anism and an equilibrium. An alternative is to consider the induced distribution over the

receiver’s beliefs. While our main analysis is based on outcome distributions, it is conve-

nient in the binary-state case (Section 3) to work with distributions of the receiver’s beliefs.

Let ∆F (∆(Θ)) denote the set of distributions τ over the receiver’s beliefs that satisfy Bayes

plausibility :
∫
∆(Θ)

µdτ(µ) = F . Every implementable outcome distribution π induces a distri-

17With a slight abuse of notation, we use the subscript π to denote objects derived from an implementable
pair (π, t), such as the sender and receiver’s indirect payoffs. As we shall clarify in Section 4, this is not an
issue because the optimal payment rule t is uniquely pinned down given an implementable π, provided that
the state is continuously distributed.
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bution of beliefs τπ ∈ ∆F (∆(Θ)) defined by τπ(D) =
∫
X
1[πx ∈ D]dHπ(x) for all measurable

D ⊆ ∆(Θ), where Hπ := margX π is the marginal distribution of the receiver’s conditional

expectations. In this case, we say that τπ is implementable.

3 Binary-State Case

In this section, we assume that the state is binary: Θ = {0, 1}. The interpretation is that the

residual private information of the sender is as coarse as possible. For instance, in Example

1, the bank is only privately informed about whether the fundamental value of the asset is

above or below a certain benchmark threshold.

We apply the belief-based approach for Bayesian persuasion (Kamenica and Gentzkow

(2011)) to the current setting because the constraints describing implementable distributions

of beliefs dramatically simplify. Let V (x) = V (x, 0) and V (x) = V (x, 1) denote the sender’s

payoffs when the state is θ = 0 and θ = 1 respectively. Observe that the prior expectation

xF ∈ (0, 1) coincides with the prior probability that θ = 1 and summarizes the entire prior

distribution. Similarly, each realized conditional expectation x coincides with the posterior

probability that θ = 1. Define the sender’s expected payoff given the receiver’s posterior

belief as

V (x) := (1− x)V (x) + xV (x).

Given an implementable pair (π, t) ∈ M(F ), we let t = t(1) and π = π1 ∈ ∆(X) denote

the distribution over receiver’s beliefs and sender’s payment in state θ = 1. We define t

and π symmetrically when θ = 0. Finally, the induced unconditional distribution over the

receiver’s belief is τπ = (1−x)π+xπ ∈ ∆(X).18 It is well known that in this case, the Bayes

plausibility condition (i.e., τ ∈ ∆F (∆(Θ))) becomes∫ 1

0

xdτ(x) = xF . (3)

A payment rule (t, t) implements τ if it implements an outcome distribution inducing τ . In

principle, Bayes plausibility is not sufficient alone to characterize implementable distributions

over beliefs because we need to take into account the truthtelling constraint for the sender.

However, as we next show, the strict single-crossing condition on the sender’s payoff implies

18Observe that with binary states we have τπ = Hπ for all implementable π because posterior beliefs and
conditional expectations coincide.
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that no further restrictions on τ are needed.19

Proposition 1. A distribution of receiver’s beliefs τ is implementable if and only if it is

Bayes plausible, that is, it satisfies equation 3. In this case, a payment rule (t, t) implements

τ if and only if

t ≤
∫ 1

0

V (x)
1− x

1− xF

dτ(x) (4)

and
Covτ (V (x̃), x̃)

VarF (x̃)
≤ t− t ≤ Covτ (V (x̃), x̃)

VarF (x̃)
. (5)

The first part of Proposition 1 states a remarkable property of the model: under binary

states, the mediator can design a payment rule to implement any distribution of beliefs

that is induced by some arbitrary experiment (i.e., the Bayesian-persuasion case). This

implies that, under binary states, there is no difference between the distributions of beliefs

implementable with soft and hard information.

The proof of this part is based on the chain rule of probabilities: Bayes plausibility implies

that both π and π are absolutely continuous with respect to the unconditional distribution τπ

with dπ
dτπ

(x) = x
xF

and dπ
dτπ

(x) = 1−x
1−xF

. This allows us to rewrite all the sender’s truthtelling

constraints in terms of the unconditional distribution τπ only and reduce them to those

in (5). This equation implies that t ≥ t and it holds for some payment rule if and only

if Covτ (∆V (x̃), x̃) ≥ 0, where ∆V (x) := V (x) − V (x). In other words, the truthtelling

constraint imposes that there is a positive correlation between the receiver’s belief x and

the marginal sender’s payoff ∆V (x). Assumption 1 implies that ∆V (x) is strictly increasing,

hence it is positively correlated with x for every Bayes plausible τ .20

The second part of the result exactly characterizes the limits on the payment rules that

can implement an arbitrary τ . In particular, given τ , both the upper bound on t and the

lower bound on t − t are non-negative.21 It follows that any distribution of beliefs can be

implemented by a non-negative payment rule.

For every function J : X → R, let cav (J) denote its concavification, that is, the smallest

concave function that dominates J(x) pointwise.

19This result crucially relies on the possibility of having payments from the sender to the mediator.
See Corrao and Dai (2023) for a setting where report-contingent transfers are not allowed and additional
restrictions on implementable τ are needed.

20An inspection of the proof of Proposition 1 shows that this last step is the only one where we use
supermodularity of the sender’s payoff. Therefore the previous positive correlation property characterizes
implementable distributions of beliefs even beyond the supermodular case. See Appendix B.

21The first assertion follows from the fact that 1 − x ≥ 0 and V (x) ≥ 0 for all x. The second assertion
follows from the fact that V (x) is strictly increasing and therefore always positively correlated with x.
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Corollary 1. For every implementable distribution of beliefs τ , the maximal expected revenue

for the mediator is given by∫
X

V (x)
1− x

1− xF

dτ(x) + xF
Covτ (V (x̃), x̃)

VarF (x̃)
. (6)

The overall maximum revenue for the mediator is

cav(J)(xF ) = max
τ∈∆F (∆(Θ))

∫ 1

0

J(x)dτ(x). (7)

where J(x) = V (x)−∆V (x)(1− x).

The first part of this result follows because, for every τ , the highest payment rule that

implements τ is such that the upper bounds in (4) and (5) are both attained. Therefore,

under binary states, the monopolistic mediator acts as a fictitious sender that can commit

to any statistical experiment before observing θ and that maximizes the distorted indirect

payoff J(x) := V (x)−∆V (x)(1− x). This expression is the analog of the virtual surplus in

standard screening problems. Here V (x) is the total surplus within the bilateral interaction

between the sender and the mediator, whereas

I(x) := ∆V (x)(1− x)

are the information rents that the monopolistic mediator must give up to satisfy the truthtelling

constraint. Corollary 1 also yields a (maximal) revenue equivalence for the monopolistic me-

diator: if two (direct) implementable communication mechanisms π and π′ induce the same

distribution of receiver’s beliefs τ , then the maximal expected mediator’s revenue is the same

across the two mechanisms and equal to
∫
X
J(x)dτ(x).

We now move to the sender’s preferred case.

Corollary 2. The sender’s optimal distribution of the receiver’s beliefs solves

cav(V )(xF ) = max
τ∈∆F (∆(Θ))

∫ 1

0

V (x)dτ(x). (8)

Moreover, the corresponding optimal payment rule is such that t ≤ 0 ≤ t with strict inequality

if and only if no disclosure is suboptimal in (8).

This corollary says that the sender’s preferred case is analogous to a Bayesian persuasion

problem with indirect payoff function V (x). It then follows that the optimal distributions

of beliefs under the sender’s preferred case coincide with those optimal when the sender can

commit to disclosing unrestricted (hard) information.
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3.1 Comparison of optimal distributions of beliefs

The characterizations of the optimal distributions of beliefs across the two regimes obtained

in Corollaries 1 and 2 can be used to compare the corresponding degrees of information

revelation. The relevant order over distributions of beliefs we adopt is the one induced by

the Blackwell order over experiments. Given two distributions of beliefs τ and τ ′ satisfying

Bayes plausibility (3), we say that τ is more informative than τ ′ if τ dominates τ ′ in the

convex order of distributions on [0, 1], denoted by τ ≿ τ ′.22 Because the optimal distributions

of belief can be multiple under either regime, we need to extend the previous ordering to sets

of distributions. We follow Curello and Sinander (2022) and consider the extension induced

by the weak set order among solution sets. Formally, we say that more information is

revealed under monopolistic mediation than under competitive mediation if for every optimal

distribution τ ∗M under monopoly, there exists an optimal distribution τ ∗C under competition

such that τ ∗M ≿ τ ∗C , and vice-versa for every optimal distribution τ ′∗C under competition,

there exists an optimal distribution τ ′∗M under monopoly such that τ ′∗M ≿ τ ′∗C . We define

symmetrically the case where more information is revealed under competitive mediation.

Corollary 3. If I(x) is concave, then more information is revealed under monopolistic

mediation than under competitive mediation. Moreover, for all I(x), there exists a prior

xF ∈ (0, 1) such that at least one of the following holds:

1. There exists an optimal τ ∗M under monopoly such that τ ∗M ≿ τ ∗C for all sender’s preferred

τ ∗C.

2. For all sender’s preferred τ ∗C, there exists an optimal distribution under monopoly τ ∗M
such that τ ∗M ≿ τ ∗C.

Intuitively, when the difference I(x) between the total surplus V (x) of the sender and

the binary-state version of the monopolist virtual surplus J(x) is concave, it follows that the

induced preference of the monopolist is less “risk-averse” than that of the sender.23 Because

under the Blackwell order more information is equivalent to more dispersion of posterior

beliefs, it follows that in this case, the monopolist would prefer more dispersion. Moreover,

I(x) can never be globally convex because I ′′(x) = ∆′′
V (x)(1 − x) − 2∆′

V (x) < 0 when x is

nearby 1. Therefore, it is never the case that the preference of the sender is globally more

“risk averse” than that of the monopolist.

22Recall that this means that
∫
X
ϕ(x)dτ(x) ≥

∫
X
ϕ(x)dτ ′(x) for all continuous and convex functions

ϕ : X → R.
23While this is not the classical Arrow-Pratt notion of more risk aversion, it is similar to that in Ross

(1981).
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In Example 1, V (x) = xG(x) and I(x) = δp
1−p

(1 − x)G(x), where G is the distribution

of idiosyncratic shocks to the traders in the market. Thus, the corollary implies that when

G(x) is concave the rating agency will optimally disclose more information and induce more

dispersed evaluations. The intuition is that G(x) is concave when higher shocks that lead

traders to attack the bank are considerably less likely. In this case, the bank favors less

disclosure to maintain the status quo, but the rating agency still favors relatively more

disclosure to maximize the correlation between G(x) and x. Differently, when for example

the distribution of traders’ shocks G is uniform, both the bank’s and agency’s optimal

contract entails full disclosure. In general, because

I ′′(x) = g(x)

(
(1− x)g′(x)

g(x)
− 2

)
, (9)

when g(r) is log-concave (i.e., unimodal), g′/g is decreasing, hence if it is smaller than 2

around 0, then I ′′(x) < 0 globally, implying that I(x) is concave. With this, Corollary 3

implies that the monopolistic rating agency discloses more information for a large class of

shock distributions.

Corollary 3 by itself is not enough to derive sufficient conditions for the monopolistic

mediator to disclose strictly more information than in the sender’s preferred case. For this

reason, we now add more structure to the sender’s payoff function to describe and compare

in more detail the optimal outcomes.

Consider the payoff structure of Example 2 under the additional assumption that G(x)

is uniform and that b(r) is twice continuously differentiable and either strictly concave or

strictly convex. This implies that V (x, θ) = αθx+B(x) where B(x) is the primitive function

of b(r). Therefore, V (x) = αx2+B(x), J(x) = 2αx2−x+B(x), and I(x) = x−αx2, a strictly

concave function. Because the linear term in I(x) is irrelevant due to Bayes plausibility, it

follows that the only relevant difference between V (x) and J(x) is that the latter has a higher

coefficient for the quadratic term.

The assumption on b(r) implies that there exists a unique optimal distribution of beliefs

and this is a stochastic censorship mechanism. Stochastic upper-censorship is defined as

follows. The reporting space for the sender is MS = Θ and the message space for the

receiver is MR = {0,m0}. When the sender reports θ = 0, this is revealed with probability

q0 ∈ [0, 1], and with complementary probability m0 is sent. When the sender reports θ = 1,

m0 is sent with probability 1. In this case, m0 can be defined as the corresponding posterior

belief of the receiver given this information structure, that is,

m0 =
xF

xF + (1− xF )(1− q0)
.
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Stochastic lower-censorship is defined analogously by swapping the roles of θ = 0 and θ = 1.

We denote with q1 and m1 the corresponding parameters. Observe that in both cases the

mechanism is uniquely defined by the probability qi, i ∈ {0, 1}. Higher qi induce information

structures that reveal strictly more information in the sense of Blackwell.

Corollary 4. Assume that b(r) is strictly convex (resp. concave). Both in the monopolistic

mediator and the sender’s preferred case, there exist uniquely optimal distributions of beliefs

τ ∗M and τ ∗C and these are upper (resp. lower) stochastic censorship with probabilities q∗0,M ≥
q∗0,C (resp. q∗1,M ≥ q∗1,C). The inequality is strict whenever at least one of the two probabilities

is in (0, 1).

This result follows from the fact that both V (x) and J(x) are S-shaped under the main-

tained assumptions.24 The monopolistic mediator case pools the states with a lower proba-

bility because J(x) is more convex than V (x) due to the particular form of the information

rents. In the interpretation of Example 2, when the buyers are uniformly distributed, this

implies that a monopolistic advertising agency would reveal more information than one that

selects the seller’s preferred advertising policy.

We now summarize the main lessons we learned from the binary-state case following the

interpretation of our rating agency example (Example 1). First, all the distributions of the

market’s evaluations are implementable via an incentive-compatible contract. Second, the

extent of information revealed by the optimal contracts depends on the shape of the shock

distribution. Third, when lower shocks are relatively more likely (i.e., G is concave), the

agency’s preferred contract is more desirable.

The model with a continuum of types analyzed in the next sections is substantially more

challenging, but the basic economic intuitions stay the same in some important cases (e.g.

when θ is uniformly distributed).

4 Implementable Outcomes

In this section, we come back to the general model with a continuously distributed state and

analyze the set of implementable outcomes and payment rules. Unless otherwise specified,

in this and all the following sections we assume that the prior F admits a strictly positive

density f > 0 over [0, 1].

First, we apply a version of the Revelation Principle (Myerson, 1982; Forges, 1986) to

show that, under Assumption 2, it is without loss of generality for the mediator to consider

24A function W : [0, 1] → R is S-shaped if there exists x̂ ∈ [0, 1] such that W is strictly convex on [0, x̂]
and concave on [x̂, 1], or if it is concave on [0, x̂] and strictly convex on [x̂, 1]. See Definition 6 below.
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outcome distributions and payment functions induced by direct incentive-compatible mech-

anisms. That is, a communication mechanism and a corresponding equilibrium where the

sender reports the state MS = Θ, the mediator gives a recommendation MR = X to the

receiver in the form of a suggested conditional expectation, and the sender truthfully reports

the state while the receiver’s conditional expectation coincides with the recommended one.

Lemma 1 (Revelation Principle). An outcome distribution π ∈ ∆(X × Θ) and a payment

function t(θ) are implementable if and only if:

(1) Consistency:

margΘ π = F. (C)

(2) Sender’s Participation: For all θ ∈ Θ

Eπ[V (x̃, θ)|θ]− t(θ) ≥ 0. (P)

(3) Honesty: For all θ, θ′ ∈ Θ

Eπ[V (x̃, θ)|θ]− t(θ) ≥ Eπ[V (x̃, θ)|θ′]− t(θ′). (H)

(4) Obedience: For all x ∈ X,

Eπ[θ̃|x] = x. (O)

Consistency says that the equilibrium distribution of states is equal to the common prior.

Sender’s participation and Honesty are the incentive constraints of the sender and resemble

the ones present in the standard screening models. The former requires the mechanism to

secure a payoff higher than 0, the sender’s outside option in light of Assumption 2, while

the latter requires the sender not to have a strict incentive to misreport the realized state.

Obedience is the incentive constraint for the receiver: the inference that the receiver draws

from the recommended expectation x induces the same actual expectation, hence the joint

distribution of states and expectations must be a martingale from x to θ.

Remark 2. In the sender’s preferred case, the implementable outcome distributions π and

payments t are characterized by the same conditions in Lemma 1 when we replace P with

(2’) Mediator’s Participation:

Eπ[t(θ̃)] ≥ 0 (MP)

The mediator’s participation constraint in MP implies that the mediator does not lose

money on average.
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Next, we simplify the set of implementable outcomes by expressing the Honesty constraint

in terms of a cyclical monotonicity property.

Definition 2. An outcome distribution π ∈ ∆(X × Θ) satisfies stochastic cyclical mono-

tonicity if for all finite cycles θ0, θ1, ..., θk+1 = θ0 in Θ,

k∑
j=0

Eπ[V (x̃, θj)|θj]− Eπ[V (x̃, θj+1)|θj] ≥ 0 (SCM)

This notion of cyclical monotonicity generalizes the one in Rochet (1987) by allowing

for the assignment of distributions of allocations, in this case, the receiver’s conditional

expectations.25

Proposition 2. An outcome distribution π ∈ ∆(X × Θ) is implementable if and only if

it satisfies C, O, and SCM. The indirect payoff of the sender and the supporting payment

function are given by:

Sπ(θ) = Sπ(0) +

∫ θ

0

Eπ[Vθ(x̃, s)|s]ds (10)

and

tπ(θ) =

∫ θ

0

Eπ[Vθ(x̃, s)|θ]− Eπ[Vθ(x̃, s)|s]ds− Sπ(0) (11)

where Sπ(0) ≥ 0 is an arbitrary constant. Every implementable distribution π can be sup-

ported by a non-negative payment rule tπ(θ) ≥ 0 and generates total revenue:∫
X×Θ

V (x, θ)− hF (θ)Vθ(x, θ)dπ(x, θ)− Sπ(0) (12)

where hF (θ) := (1− F (θ))/f(θ) is the inverse hazard-rate of F .

The proof of the first part of this proposition closely follows the one of Theorem 1 in

Rochet (1987). In particular, the sufficiency of SCM comes from constructing the indirect

payoff function Sπ(θ) of the sender by maximizing over all the possible finite cycles of reports.

Then, by construction tπ(θ) = Eπ[Vθ(x̃, θ)|θ]− Sπ(θ) is a supporting payment for π. By the

Envelope theorem (e.g., Milgrom and Segal (2002)), every implementable distribution of

outcomes induces the indirect utility in (10) and is supported by the payment function in

(11) once we sum back the state-independent payoff. Because the constant Sπ(0) can be set

equal to 0, the SCM condition implies that the integral in (11) is non-negative, hence the

supporting payments can be taken non-negative. Finally, the total-revenue formula in (12)

25In Section 6, we show that this notion of cyclicality is the same as the one in Rochet (1987) when we
restrict to deterministic communication mechanisms.
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can be derived by taking the expectation of the supporting payment rule tπ(θ) and applying

the law of iterated expectation together with integration by parts.

In analogy to the pure screening problem, we define the virtual surplus of the mediator

as:

J(x, θ) := V (x, θ)− hF (θ)Vθ(x, θ) (13)

The usual decomposition applies: the revenue of the mediator is equal to the total surplus

of the sender minus the information rents that need to be conceded to the sender because of

asymmetric information. This shows that ignoring the global monotonicity constraints, the

mediator problem is equivalent to a fictitious Bayesian persuasion problem with a distorted

payoff function given by J(x, θ).

In the sender’s preferred case, the payment necessary to sustain incentive compatibility

can be transferred to the lowest type in the form of a lump sum added to Sπ(0). Equation

10 implies that this transfer increases the payoff of all the sender’s types.

Corollary 5. The set of implementable outcome distributions in the sender’s preferred case

and the monopoly case coincide. The indirect payoffs and the supporting payments coincide

up to a constant.

This implies that also in the sender’s preferred case the mediator problem is equivalent to

a Bayesian persuasion problem with the addition of the SCM constraint but with the original

sender’s payoff V (x, θ). The difference between J and V is what drives our comparative static

results in Section 5.

The integral formula in (10) is used in mechanism design to derive the Revenue Equiva-

lence Theorem: if two mechanisms generate the same state-dependent allocation, then the

state-dependent revenues they generate are equal up to a constant. Here, the same logic can

be applied. Furthermore, given the Consistency and Obedience constraints, the equivalence

result can be formulated in terms of implementable distributions over beliefs.

Corollary 6. If two implementable communication mechanisms (π, t) and (π̂, t̂) induce the

same distribution of beliefs τ ∈ ∆F (∆(Θ)), then there exists a constant c ∈ R such that

t(θ) = t̂(θ) + c, for F -almost all θ.

In other words, the distribution of the receiver’s beliefs is a sufficient statistic for both

the revenue and the information rents at every realization of the state in equilibrium.

Finally, the SCM condition reduces to a simpler monotonicity condition when V (x, θ) is

linear in the state, that is, V (x, θ) = θA(x) +B(x).
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Corollary 7. Assume that V (x, θ) is linear in the θ. An outcome distribution π ∈ ∆(X×Θ)

is implementable if and only if it satisfies C, O, and for all θ, θ′,

θ′ ≥ θ =⇒ Âπ(θ
′) ≥ Âπ(θ) (M)

where Âπ(θ) := Eπ[A(x̃)|θ]. The indirect payoff of the sender and the supporting payment

functions are defined as in equations 10 and 11.

This result can be more directly obtained by first reducing the Honesty condition to that

of a one-dimensional screening problem. In fact, for every candidate outcome distribution π

we can define the auxiliary variables Âπ(θ) = Eπ[A(x̃)|θ] and t̂π(θ) = tπ(θ)−Eπ[B(x̃)|θ] and
rewrite the Honesty constraint as

θÂπ(θ)− t̂π(θ) ≥ θÂπ(θ)− t̂π(θ
′) ∀θ, θ′ ∈ Θ (14)

It follows now that the assignment Âπ satisfies (14) for some auxiliary payment function t̂π if

and only if it is non-decreasing. We refer to this property as Monotonicity. In this case, the

mediator’s virtual surplus simplifies to J(x, θ) := yF (θ)A(x)+B(x) where yF (θ) := θ−hF (θ)

is the sender’s virtual type.

4.1 Positive dependence and distributions of expectations

In this section, we derive an easier sufficient condition for implementability and use it to

characterize the feasible distributions of expectations. First, this allows us to more easily

compare the outcome-based approach used in this section to the belief-based approach used

in the binary-state case. Second, in some relevant cases, the sender and mediator’s expected

payoffs are both pinned down by Hπ, hence in these cases we can solve both problems by

finding the optimal marginal distribution over X.

Stochastic cyclical monotonicity captures the idea of positive (stochastic) dependence

between the sender’s report and the receiver’s ex-post expectation. We now introduce a

classic positive-dependence criterion, namely Positive Regression Dependence, and show that

it implies SCM.26 Given any two H, Ĥ ∈ ∆(X), we say that H dominates Ĥ in the first-order

stochastic dominance sense, denoted H ≿FOSD Ĥ if H(x) ≤ Ĥ(x) for all x ∈ X.

Definition 3. An outcome distribution π ∈ ∆(X × Θ) satisfies positive regression depen-

dence if for all θ, θ′ ∈ Θ,

θ′ ≥ θ =⇒ πθ′ ≿FOSD πθ. (PRD)
26See for example Lai and Balakrishnan (2009). This criterion has also been recently considered in the

information- and mechanism-design literature (e.g., Bergemann et al. (2022)).
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Under implementable outcomes that satisfy PRD, the conditional expectation of (any

non-decreasing function of) the receiver’s expectation is increasing with respect to the real-

ized state.27 We next show that outcomes that satisfy C, O, and PRD are implementable and

induce a positive correlation between the mediator’s revenue and the receiver’s conditional

expectation.

Proposition 3. For every π ∈ ∆(X × Θ), if π it satisfies C, O, and PRD, then it is

implementable and such that

Covπ(A(x̃), tπ(θ̃)) ≥ 0. (15)

for every non-decreasing function A(x).

The first part of the result follows by rewriting SCM as an integral monotonicity condition

(see for example Pavan et al. (2014)) that is implied by PRD. The second part follows from

the payment formula in (11): under PRD, t(θ) is non-decreasing and therefore positively

correlated with any non-decreasing function of x. For instance, in the rating agency example

(Example 1), the no-attack rateG(x) must be positively correlated with the sender’s payment

to the mediator in any implementable outcome.

PRD is substantially easier to check than SCM, hence Proposition 3 is useful to conclude

whether a candidate outcome is implementable. For example, monotone partitional outcomes

are implementable as we show next.

Definition 4. An outcome distribution π ∈ ∆(X × Θ) is partitional if there exists a mea-

surable function ϕ : Θ → X such that EF [θ̃|ϕ(θ)] = ϕ(θ) for all θ ∈ Θ, and

π(X̃ × Θ̃) =

∫
Θ̃

I[ϕ(θ) ∈ X̃]dF (θ) (16)

for all measurable X̃ ⊆ X and Θ̃ ⊆ Θ. In addition, π is monotone partitional if ϕ(θ) is

non-decreasing.

Partitional outcomes are induced by partitions of the state space that assign to each of

their cells the corresponding conditional expectation of the state. In addition, if this partition

is monotone then the regions of the state that are pooled together must be intervals.

Corollary 8. Monotone partitional outcome distributions satisfy C, O, and PRD, hence are

implementable.

Most real-life examples of communication mechanisms such as full-disclosure (ϕ(θ) = θ),

no-disclosure (ϕ(θ) = xF ), and upper-censorship (resp. lower-) where ϕ is equal to the

27PRD holds, for example, when the θ and x are affiliated in the sense of Milgrom and Weber (1982).
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identity on an interval [0, θ̂] (resp. [θ̂, 1]) and constant otherwise, are implementable by the

mediator because they are all monotone partitions. In general, monotone partitional out-

comes are those induced by mechanisms that are deterministic conditional on every sender’s

report.28 Furthermore, monotone partitions are often optimal mechanisms as we show in

Section 5 and enjoy transparency and credibility properties as we show in Section 6.

Next, we use Proposition 3 to study the distributions of the receiver’s expectations that

are consistent with implementable communication mechanisms. We say that H ∈ ∆(X) is

implementable if there exists an implementable outcome distribution π such that H = Hπ.

Let CX(F ) ⊆ ∆(X) denote the subset of distributions over X that are dominated by F in

the convex order. Strassen (1965) shows that a distribution of conditional expectations H is

induced by an outcome distribution π that satisfies C and O if and only if it is in CX(F ).

The question then becomes what additional restrictions are imposed by Honesty. We

next show that the answer is no restriction at all. Moreover, we show that each distribution

in CX(F ) can be implemented by simple information outcomes that capture the idea of

transparency to the receiver.

Definition 5. A communication mechanism σ is a bi-pooling information policy ifMS = Θ, it

induces truthful reporting, and is such that | supp(σ(θ))| ≤ 2 for all θ ∈ Θ. A communication

mechanism σ is a random bi-pooling mechanism if there exists a collection {σi}i∈I of bi-

pooling mechanisms and a probability measure λ ∈ ∆(I) such that, conditional on every

report θ, a mechanism σi is drawn from λ, a message mR is drawn form σi, and the receiver

observes both i and mR.

Bi-pooling (information) policies were introduced by Arieli et al. (2023), who show how

any extreme point of CX(F ) is induced by one such policy. Here, we consider the possibility

that the mediator randomizes over bi-pooling policies without revealing it to the sender

before the reporting stage. The receiver is then informed of both the actual policy used and

the resulting message.

Proposition 4. The set of implementable distributions of expectations is CX(F ). Every

H ∈ CX(F ) can be implemented by a random bi-pooling policy.

The mediator can implement all the distributions of expectations that are consistent

with the prior F (i.e., those implementable under hard information). The proof of this

28Monotone partitions are also the focus of Onuchic and Ray (2021), Kolotilin and Zapechelnyuk (2019),
Rayo (2013), and Kolotilin and Li (2021). In the former two papers, the set of feasible information struc-
tures is restricted to monotone partitions from the start. In the latter two papers, the initial restriction is
over deterministic communication mechanisms (i.e., partitions) and then monotonicity is derived from an
incentive-compatibility constraint involving transfers.
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proposition combines a result in Arieli et al. (2023) that implies that extreme points of

C(X) are implementable and the Choquet theorem. In particular, every H ∈ CX(F ) can

be written as a convex linear combination of extreme points {Hi}i∈I for some probability

measure λ. This probability measure represents the randomization device used to construct

the candidate random bi-pooling policy. Next, define the outcome πλ =
∫
I
πidλ(i) where

every πi corresponds to the implementable outcome inducing Hi. Because each πi satisfies

C,O, and PRD, and all these properties are preserved under convex linear combinations, the

constructed outcome distribution πλ also satisfies C,O, and PRD, hence it is implementable.

Moreover, by revealing i to the receiver, the ex-ante distribution of conditional expectations

induced by this mechanism is H =
∫
I
Hidλ(i).

The expected payoffs of the sender and the mediator are entirely pinned down by the

distributions of the receiver’s expectations in the following case.

Corollary 9. Assume that F is uniform over [θ, θ] and that V (x, θ) is linear in θ. Fix

two implementable outcome distributions π and π̂ that induce the same distribution over the

receiver’s expectations H and impose Sπ(0) = Sπ̂(0).
29 Then the expected payoffs of the

sender and the mediator are the same across the two mechanisms and respectively equal to:

S(H) := Sπ(0) +

∫
X

(θ − x)A(x)dH(x), (17)

M(H) :=

∫
X

(2x− θ)A(x) +B(x)dH(x)− Sπ(0). (18)

This corollary can be interpreted as a reduced-form revenue equivalence under mediation.

It relies on the linearity of the sender’s payoffs in the state as well as on the fact that the

inverse hazard rate of uniform distributions is also linear. O pins down the conditional

expectation of the virtual type of the sender: Eπ[θ̃−hF (θ̃)|x] = 2x−θ, yielding the expression

for revenue conditional on the receiver’s expectation. Under the assumptions of Remark 1,

we can apply Corollary 9 to Examples 1 and 2 and focus on distributions over expectations

to solve for the optimal outcomes.

5 Optimal Outcomes

In this section, we study the properties of the optimal outcome distributions. In particular,

we focus on i) the linear-uniform case where the sender’s payoff is linear in the state and

the state is uniformly distributed and ii) the quadratic case where the sender’s payoff is

29In the monopolistic case, this second condition is immaterial because the payoff of the lowest type is
optimally set equal to 0 as we shall see.
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quadratic but no restriction is imposed on the state’s distribution. These assumptions allow

us to characterize optimal outcome distributions and compare the monopolistic case with

the sender’s preferred case.

We start by rewriting the optimization problems both for the monopolistic and the

sender’s preferred case in light of the results of the previous section. In the monopolis-

tic case, it can never be optimal to leave a strictly positive payoff for the lowest type. The

reason is that Sπ(0) does not affect C, O, and SCM, but it has a negative impact on the

mediator’s revenue. Therefore, we have Sπ(0) = 0. Differently, in the sender’s preferred case,

the optimal outcome maximizes Sπ(0) while still satisfying the mediator’s participation con-

straint. This constraint in particular implies that

Sπ(0) ≤
∫
X×Θ

V (x, θ)− hF (θ)V (x, θ)dπ(x, θ). (19)

By Proposition 4 every implementable outcome can be implemented with a non-negative

payment rule, hence the inequality in (19) must bind in the optimum yielding:∫
Θ

Sπ(θ)dF (θ) =

∫
X×Θ

V (x, θ)dπ(x, θ)

We can summarize these observations in a formal result.

Lemma 2. The monopolistic mediator solves

sup
π∈∆(X×Θ)

∫
X×Θ

J(x, θ)dπ(x, θ) (20)

subject to C,O, and SCM (21)

The sender’s preferred outcome distribution solves the same optimization problem with V (x, θ)

in place of J(x, θ).

It is useful at this point to compare the previous two problems with the case where the

mediator does not need to elicit information from the sender, that is, the case where they

can commit to any information structure (i.e., hard information). Formally, the problem

remains the same as in 20, except for the SCM constraint which is removed. Therefore, the

mediator solves a standard information-design problem with payoff function V (x, θ).

Under hard information, if the mediator acts as a monopolist, then they extract all the

surplus leaving the sender to their outside option equal to 0. This is reminiscent of the

parasitic role of the certifier in Lizzeri (1999), with the difference that here the optimal

information structure can convey some additional information to the market on top of a
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pass-or-fail policy.30 In the sender’s preferred case, the sender retains all the surplus and

the expected revenue of the monopolist is 0. Nevertheless, in either case, the set of optimal

outcomes coincides with the set of π that maximize
∫
X×Θ

V (x, θ)dπ(x, θ) subject to C and

O.

The main difference between our soft-information case and the hard-information case just

described is the SCM constraint. Moreover, in the monopolistic case, the objective function

corresponds to the virtual surplus J(x, θ). These two differences both capture the impact of

the Honesty constraint in the information-design problem. The information rents in J(x, θ)

are necessary to deal with local deviations, whereas the cyclical monotonicity constraint

deals with global ones. The latter unambiguously leads toward optimally disclosing less

information: more pooling is now necessary to satisfy the Honesty constraint as in standard

adverse selection. However, the effect of information rents is in general ambiguous and can

lead the mediator to optimally disclose more information as we have already seen for the

binary-state case.

Before restricting to the two aforementioned particular cases, we derive a result on the

optimality of full disclosure that follows from Lemma 2.

Proposition 5. If for all x1, x2 ∈ X and θ1, θ2 ∈ Θ such that θ1 < x1 < x2 < θ2 it holds

Jx(x2, θ2) ≥ (>)Jx(x1, θ1), (22)

then full disclosure is (uniquely) optimal for the monopolistic mediator. Conversely, if there

exist θ1, θ2 ∈ Θ with θ1 < θ2 and such that

Jx(x2, θ2) < Jx(x1, θ1) (23)

for all x1, x2 ∈ X with θ1 < x1 < x2 < θ2, then full disclosure is suboptimal for the

monopolistic mediator.

First, observe that the full disclosure outcome is implementable. Thus, when it is optimal

under hard information, it is also optimal for the original problem in (20). Proposition 5

combines Theorems 1 and 2 in Catonini and Stepanov (2022) and Theorem 5 in Kolotilin

et al. (2022a) and yields sufficient conditions for optimality of full disclosure in the relaxed

problem.31 These conditions on the virtual surplus function J imply that whenever the

30The reason is that differently from Lizzeri (1999), the payoff of the sender depends on the state and
potentially non-linearly on the receiver’s expectation. Similarly, punishment out-of-path beliefs play a key
role in supporting Lizzeri’s parasitic certifier equilibrium.

31Theorem 5 in Kolotilin et al. (2022a) provides an iff condition for the optimality of full disclosure in
the corresponding Bayesian persuasion problem. That necessary condition cannot be immediately applied
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mediator chooses between pooling or separating any two states, they prefer the latter.

A sufficient condition for the optimality of full disclosure in the full problem under mo-

nopolistic mediation is that J(x, θ) is supermodular and convex in x, and full disclosure is

uniquely optimal if either of these properties holds strictly. In the rating-agency example

(Example 1), this is the case if F is regular, that is hF (θ) is strictly decreasing and G is uni-

form.32 Similarly, in the advertising-agency example (Example 2), full disclosure is uniquely

optimal when F is regular, G is uniform, and b(r) is non-decreasing.

Finally, we remark that both the statements of Proposition 5 hold in the sender’s preferred

case when we replace J(x, θ) with V (x, θ).

5.1 Linear-Uniform case

In this section, we assume that the state is uniformly distributed over [θ, θ] ⊆ [0, 1] and that

the sender’s payoff is linear in the state. Recall that this implies that V (x, θ) = θA(x)+B(x)

for strictly increasing functions A(x) and B(x).

As we next show, these assumptions combined imply that the global truthtelling con-

straint never binds in either of the two problems. More concretely, for every implementable

outcome distribution π, Corollary 9 yields that both the mediator’s expected revenue and

the sender’s expected payoff are pinned down by the distribution of conditional expectations

Hπ. Moreover, by Proposition 4 all distributions H ∈ CX(F ) are implementable. Therefore,

it is possible to ignore the Honesty constraint.

We first state some useful definitions.

Definition 6. A continuous function W : X → R is bell-shaped if there exist x < x̃ in X

such that W is strictly convex over [0, x] and [x̃, 1], and concave over [x, x̃]. If in addition

either x = 0 or x̃ = 1, then W is S-shaped.

We start with the sender’s preferred case. With an abuse of notation, define V (x) :=

V (x, x), similarly to the binary-state case.

Proposition 6. In the sender’s preferred case the optimal distribution of the receiver’s ex-

pectations solves:

max
H∈CX(F )

∫
X

V (x)dH(x) (24)

There exists a solution that is induced by an implementable bi-pooling policy. In addition,

1. If V (x) is convex (resp. concave), then full disclosure (resp. no-disclosure) is optimal.

in the present setting because the suboptimality of full disclosure in the relaxed program does not imply its
suboptimality in the original program.

32The standard example of regular distribution is uniform.
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2. If V (x) is S-shaped, then censorship disclosure is optimal.

Due to the linearity of the sender’s payoff in the state, for every implementable outcome

π, we have Eπ[V (x, θ̃)|x] = V (x) for almost all x. Therefore, the conditional distribution

drops from the objective which now depends on the marginal distribution of expectations

Hπ only. We can then ignore the Honesty constraint and focus on the relaxed problem in

(24).33 Because the objective function in (24) is linear in H, there exists a solution that is

an extreme point of CX(F ) and these are implementable by bi-pooling policies. Finally, the

results in Kolotilin et al. (2022b) can be readily invoked to derive the simple forms of the

solutions in points 1 and 2 provided that the shape of the objective V (x) is S-shaped.

Remark 3. None of the arguments sketched above depends on the assumption of a uniformly

distributed state. Indeed, Proposition 6 holds true as written if we relax this assumption

and only assume that the sender’s payoff is linear in the state.

Next, we move to the monopolistic mediator case. This time we rely on the uniform-

distribution assumption which implies that the inverse hazard rate of the distribution of

states is linear and equal to hF (θ) = θ − θ, yielding that yF (θ) = 2θ − θ. For every

implementable outcome π, we recover the same decomposition of the mediator’s virtual

surplus of the binary-state case

J(x) := Eπ[J(x, θ̃)|x] = xA(x) +B(x)︸ ︷︷ ︸
Total surplus

− (1− x)A (x)︸ ︷︷ ︸,
Information rents

where we used the same notation J(x) of the binary-state case to stress their equivalence.

We can then derive a version of Proposition 6 for the monopolistic mediator.

Proposition 7. The monopolistic mediator’s preferred distribution of expectations solves

max
H∈CX(F )

∫
X

J(x)dH(x)

There exists a solution that is induced by an implementable bi-pooling policy. In addition,

1. If J(x) is convex (resp. concave), then full disclosure (resp. no-disclosure) is optimal.

2. If J(x) is S-shaped, then censorship disclosure optimal.

33This is known in the Bayesian-persuasion literature as the linear case: the receiver’s best response
only depends on the conditional expectation of the state and the sender’s payoff is linear in the state. See
Kolotilin et al. (2022a) for a complete taxonomy on single-receiver Bayesian persuasion models.

32



The derivation of this result is entirely analogous to the one of Proposition 6

Next, we use the previous two results to compare the informativeness of the optimal

outcomes across the monopolistic and the sender’s preferred case. In particular, we follow

Curello and Sinander (2022) and apply the same criterion defined in Section 3 for distri-

butions over posterior beliefs τ to distributions over conditional expectations H.34 Because

the receiver’s expected payoff under any H is equal to R(H) :=
∫
X
R(x)dHπ(x) and R(x) is

convex, if H is more informative than Ĥ, then the receiver is weakly better off under H.

Using the same notation of the binary-state case, define the information-rents function

as I(x) := (1− x)A(x).

Proposition 8. Assume that V (x) is bell-shaped. If I(x) is concave, then more information

is disclosed in the monopolistic mediator case than in the sender’s preferred case.

The intuition for this result is analogous to the one for Corollary 2: When the information-

rents function is concave, the monopolistic mediator is relatively less “risk averse” than the

sender and therefore favors more dispersion of the receiver’s expectations.

In the rating agency example (Example 1) under uniformly distributed θ over [0, 1],

V (x) = xG(x) and J(x) = (1 + δ)xG(x)− δG(x). (25)

Similarly to the binary-state case, the monopolistic rating agency outweighs the importance

of the correlation between the market value x and the no-attack rate G(x) and underweighs

the importance of the expected no-attack rate.

We next use Proposition 8 to compare the optimal outcomes in this setting.

Corollary 10. Consider the setting of Example 1 and assume that θ is uniform on [0, 1]. If

G(r) is convex, then full disclosure is optimal in the sender’s preferred case and it is optimal

in the monopolistic mediator case if and only if

2(1 + δ) + ((1 + δ)x− δ)
g′(x)

g(x)
≥ 0 ∀x ∈ X. (26)

If G(r) is concave and has a log-concave density and V (x) = xG(x) is bell-shaped, then more

information is disclosed in the monopolistic mediator case than in the sender’s preferred

case.

When G(r) is convex, high shocks are relatively more likely among traders so it is rel-

atively more common to attack the bank. To contrast this effect, the bank would like to

34Comparing the informativeness of information structures with respect to the distributions of conditional
expectations they induce is standard in the information design literature. See for example Ganuza and
Penalva (2010) and Kolotilin et al. (2022b).
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commit to the policy that maximizes the dispersion of conditional expectations in the mar-

ket, that is full disclosure. This effect is attenuated in the case of a monopolistic rating

agency due to the information rents and prevails only when these rents are low enough,

that is when the discount factor δ is high enough (see Equation 26). Instead, when G(r) is

concave there are relatively less high shocks among traders so it is relatively less common

to attack the bank. The bank then would favor the status quo more than the rating agency

which in turn cares more about the correlation between x and the no-attack rate G(x). The

additional log-concavity property on G(r) is needed to ensure that V (x) is S-shaped.

Proposition 8 can be applied beyond convex CDFs G. In particular, because the expres-

sion of I ′′(x) is the same as the one in equation 9 derived in the binary-state case, it follows

that when G is log-concave enough, the information-rent function is concave. With this,

whenever V (x) is bell-shaped we can conclude that the monopolistic rating agency discloses

more information than the sender’s preferred case.

In addition, following the same steps as in the binary-state case, we consider the payoff

structure in Example 2 and assume that G(r) is uniform and that b(r) is strictly convex or

strictly concave. This implies that V (x, θ) = αxθ+B(x) where B(x) is the primitive function

of b(r). In turn, this implies that V (x, x) = αx2+B(x) and J(x) = 2αx2−αx+B(x). With

this, we can extend the comparative statics of Corollary 4 to the uniform-state case.

Proposition 9. Assume that b(r) is strictly convex (resp. concave). Both in the monop-

olistic mediator and the sender’s preferred case, there exist uniquely optimal distributions

of expectations H∗
M and H∗

C and these are upper (resp. lower) censorship with thresholds

θ∗0,M ≥ θ∗0,C (resp. θ∗1,M ≥ θ∗1,C). Moreover, the inequality is strict whenever at least one of

the two thresholds is in (0, 1).

As in the binary-state case, this result follows from the fact that the coefficient for the

quadratic term in J(x) is strictly higher than the one of V (x).

5.2 Quadratic sender’s payoffs

In this section, we consider general state distributions F beyond the uniform case. In par-

ticular, we allow for the so-called “irregular case” where the inverse hazard rate hF (θ) of

F is not necessarily decreasing. However, we restrict the sender’s payoff to be quadratic.

This amounts to say that V (x, θ) = αθx + βx − γx2/2 with α > 0 and β > γ. Observe

that the sender’s payoff is linear in the state. Moreover, in Examples 1 and 2 the sender has

a quadratic payoff if shocks/outside options are uniformly distributed r ∼ U [0, 1] and the

seller’s benefit b(r) is linear in r (See Remark 1).
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Because quadratic sender’s payoff implies linearity in the state, Proposition 6 can be

directly applied to solve the sender’s preferred case.

Remark 4. If α > γ/2, then full disclosure is the uniquely optimal outcome for the sender’s

preferred case. Conversely, if α < γ/2, then no disclosure is the uniquely optimal outcome

for the sender’s preferred case.

The monopolistic mediator problem is more challenging and we start with a lemma sim-

plifying it. Recall that, because the payoff of the sender is linear in the state, implementable

outcomes are characterized by C, O, and M (see Corollary 7).

Lemma 3. The monopolistic mediator’s problem is equivalent to

sup
π∈∆(X×Θ)

∫
Θ

ŷF (θ)Eπ[x̃|θ]dF (θ) (27)

subject to C,O, and M, (28)

where ŷF (θ) := θ(α− γ/2)− αhF (θ).

This result follows because, for every implementable π, O implies that

Eπ[θx] = Eπ[Eπ[θ|x]x] = Eπ[x
2],

yielding that the expectation of J(x, θ) can be simplified to (27) by the law of iterated

expectations.

The mediator’s expected revenue is uniquely pinned down by the sender’s second-order

expectation ξπ(θ) := Eπ[x̃|θ]. Indeed, (O) implies that ξπ(θ) is the sender’s expectation of the

receiver’s first-order expectation x given the sender’s private information θ. Because ξπ must

be nondecreasing, it follows that the distribution of second-order expectation is Lπ = F ◦ξ−1
π

and its quantile function is qLπ(t) = ξπ(qF (t)), where we let qF (t) denote the prior quantile

function.35 Notably, the change of variable θ = qF (t) allows us to rewrite the mediator’s

expected revenue in (27) in terms of this quantile function∫ 1

0

(qF (t)(α− γ/2)− αq′F (t)(1− t))qLπ(t)dt (29)

Given the prior quantile function qF , let CV (qF ) denote the set of quantile functions qL

35The quantile function of any CDF L on [0, 1] is defined as qL(t) = inf {x ∈ [0, 1] : L(x) ≥ t} for all
t ∈ [0, 1].
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over [0, 1] that are mean-preserving spreads of qF , that is, those satisfying∫ t

0

qL(z)dz ≤
∫ t

0

qF (z)dz (30)

for all t ∈ [0, 1] with equality at t = 1.

Lemma 4. Let L be a CDF on [0, 1]. If there exists an implementable outcome π such that

L = Lπ then qL ∈ CV (qF ). Conversely, if qL is an extreme point of CV (qF ), then there

exists an implementable outcome π such that L = Lπ.

In other words, the implementable distributions over second-order expectations L are

mean-preserving contractions of the prior F . Furthermore, all distributions L whose quantile

function is an extreme point of the set of mean preserving spreads of qF are implementable.

This, together with the fact that the objective function in (29) is linear in qL(t), allows

us to characterize optimal outcomes. Define wF (t) := qF (t)(α − γ/2) − αq′F (t)(1 − t) and

W (t) :=
∫ t

0
wF (z)dz.

Proposition 10. The mediator’s problem is equivalent to:

max
L∈CX(F )

∫ 1

0

wF (t)qL(t)dt (31)

There exists a countable monotone partitional outcome. Moreover, a monotone partition

with disjoint pooling intervals
{
[θn, θn)

}
n∈N is optimal if and only if WF (F (θ)) is affine on

[θn, θn) for every n and such that WF (F (θ)) = cav(W )(F (θ)) otherwise.

Because Problem 31 is linear in the quantile function qL, there exists a solution that is an

extreme point of the CV (qF ). By Lemma 4, this distribution is implementable. This allows

us to use the characterization of extreme points in Kleiner et al. (2021) to find the solution

to the monopolistic mediation problem. In particular, the characterization in Kleiner et al.

(2021) implies that the extreme points of CV (qF ) are implemented by countable monotone

partitions.

Finally, when the derivative of wF (t) changes sign only once, the optimal monotone

partitions are censorship policies.

Proposition 11. Under monopolistic mediation, we have:

1. If wF (t) is strictly quasiconcave, then upper censorship is uniquely optimal.

2. If wF (t) is strictly quasiconvex, then lower censorship is uniquely optimal.
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The (interior) threshold quantile q∗ for cases 1 and 2 is respectively defined by the solution

of

wF (q
∗)(1− q∗) = 1−WF (q

∗), (32)

and

wF (q
∗)q∗ = WF (q

∗). (33)

First, since wF (t) = yF (qF (t)), it follows that wF (t) is strictly quasiconcave (resp. qua-

siconvex) when ŷF (θ) is so. Second, the optimal threshold state θ∗ is derived in both cases

from the equation q∗ = F (θ∗). Third, this result allows us to easily compare the optimal

outcomes under monopolistic mediation to the sender’s preferred ones.

If α > γ/2, then full disclosure is uniquely optimal for the sender’s preferred case and

it is optimal for the monopolistic mediator if F is regular. Indeed, in this case, wF (t) is

non-decreasing implying that the threshold quantile defined in (32) is equal to 1. When F

is not regular, then more information is revealed under the sender’s preferred case. In the

advertising-agency example (Example 2), α > γ/2 captures the idea that the benefit b(r)

from having a customer with outside option r is increasing in the value of this outside option.

This is the case for instance when network effects are relevant, that is, when other potential

customers infer that the good is of high quality when a buyer decides to buy it despite an

attractive outside option.

If α < γ/2, then no disclosure is uniquely optimal for the sender’s preferred case and it

is strictly suboptimal in the monopolistic mediator case when the threshold quantile q∗ is in

(0, 1). In the advertising-agency example (Example 2), α < γ/2 captures the idea that the

benefit b(r) from having a customer with outside option r is decreasing in the value of this

outside option. This is the case for instance when the future revenues of the seller depend

on the loyalty of current buyers: Higher outside options increase the likelihood that present

buyers will switch to a competitor

6 Transparency and Credibility

In this section, we consider a restricted class of communication mechanisms that are trans-

parent, in the sense that all the information reported by the sender is also revealed to the

receiver.36 This is in line with the applications considered: rating agencies are mandated to

disclose any relevant information acquired from issuers or any other relevant party.37

36In the previous sections, we introduced random bi-pooling policies and observed how they are also
related to the idea of transparency to the receiver. Yet, conditional on every report there can be some
residual (binary) randomness.

37See Footnote 6.
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Formally, assume that the mediator is restricted to communication mechanisms of the

following form: a reporting space MS for the sender and a payment rule t(mS) that depends

on the report submitted. Moreover, the receiver directly observes the report of the sender,

but not the transfer. We call these communication mechanisms transparent and still assume

that all the sender types participate in the mechanisms and that the receiver updates their

belief to θ = 0 if the sender does not participate in the mediator’s mechanism. With this,

the participation constraints are the same as the ones described in P and MP.

As argued by Bester and Strausz (2001) and Krishna and Morgan (2008), in this case, the

standard revelation principle for Bayesian games does not hold. However, it is still possible

to rely on a partial revelation principle where MS = Θ but without truthful revelation. In

this case, the induced distributions over outcomes π ∈ ∆(X ×Θ) still need to satisfy C and

O.

Definition 7. An outcome distribution π ∈ ∆(X × Θ) is transparently implementable if

there exists a transparent communication mechanism that induces π.

Transparency is related to the notion of credibility. Suppose that the mediator can

commit to any information structure without the need to elicit it from the sender, that is,

assume that the mediator has access to hard information. As already pointed out, in this

case, all the outcomes that satisfy C and O are implementable. Now consider an additional

restriction: The mediator cannot profit from manipulating her messages to the receiver

while keeping the message distribution unchanged. This is the idea of credible information

structures in (Lin and Liu, 2023).38

Definition 8. An outcome distribution π ∈ ∆(X×Θ) is credibly implementable if it satisfies

C, O, and

π ∈ argmax
π̂∈∆(Hπ ,F )

∫
X×Θ

V (x, θ)dπ̂(x, θ) (CR)

where ∆(Hπ, F ) ⊆ ∆(X × Θ) is the set of joint distributions with marginals given by Hπ

and F .

In the present setting, the definition of credibly implementable outcomes replaces the

Honesty requirement with the credibility requirement in (CR). In this case, the mediator

does not have to elicit the sender’s private information but can commit to any information

structures as long as the observed distribution of recommendations is consistent with the

38Here we apply their definition of credible information structure directly to consistent and obedient
outcome distributions with the interpretation that the signal for the receiver is a recommended conditional
expectation.
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announced mechanism.39 As mentioned in Section 2, without the Honesty constraint, the

mediator acts “as-if“ they were maximizing the sender’s payoff, and therefore the credibility

constraint (CR) for the mediator involves the sender’s payoff function V (x, θ).

Finally, recall that CV (qF ) denotes the set of quantile functions on [0, 1] corresponding

to distributions in CX(F ), where qF denotes the quantile function of F .

Proposition 12. For every outcome distribution π ∈ ∆(X×Θ), the following are equivalent:

(i) π is transparently implementable.

(ii) π is credibly implementable.

(iii) π is monotone partitional.

Moreover, a distribution of conditional expectations H ∈ ∆(X) is implementable by an out-

come distribution π satisfying any of the previous conditions if and only if qH is an extreme

point of CX(qF ).

The equivalence between (i) and (iii) follows from the fact that deterministic imple-

mentable outcomes are monotone partitional. Moreover, monotone partitions completely

characterize the set of credibly implementable outcomes, thereby implying that those are

a strict subset of the implementable outcomes. This sharp characterization follows from

the strict supermodularity assumption of V (x, θ) and the continuity of F . These assump-

tions imply that, for every marginal distribution of expectations H ∈ ∆(X), the optimal

transportation problem in (CR) is uniquely solved by the deterministic coupling given by

θ 7→ TH(θ) = qH(F (θ)). Therefore, a necessary and sufficient condition for credibility is that

π is monotone partitional. This immediately implies that it is also implementable: higher

states are matched with higher conditional expectations. Finally, distributions H ∈ CX(F )

that are extreme in the dual space of quantiles, are credibly implementable, that is they are

induced by a monotone partition.40

In section 5, we derived several sufficient conditions such that optimal outcomes in the

unrestricted mediation problems are monotone partitional. With this, Proposition 12 estab-

lishes that in those cases the optimal outcomes satisfy additional transparency and credibility

properties that are consistent with more realistic requirements that rating agencies must fol-

low.

39Following the long-run interpretation in Lin and Liu (2023), we implicitly assume that the receiver can
observe many draws of x from π and perfectly identify its marginal over X.

40Here, the term “dual” is an abuse of terminology for we do not mean the dual topological space of the
set of countably additive measures over X. The term “dual” as a name to describe the space of quantiles of
distributions is borrowed from the literature of decision theory under risk.
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6.1 Optimal transparent outcomes and pooling at the bottom

Next, we analyze optimal outcomes when the mediator is restricted to mechanisms that

satisfy the transparency and credibility conditions introduced in Section 6. This implies

that we restrict the space of feasible outcomes for the mediator to monotone partitions (see

Proposition 12). For simplicity, we assume that the sender’s payoff is linear in the state and

that B(x) = 0, so V (x, θ) = θA(x) and J(x, θ) = yF (θ)A(x).
41 Moreover, we restrict to the

regular case: yF (θ) is non-decreasing.

The restriction to monotone partitions implies that, for every interval [θ, θ], the mediator

compares the benefit of fully revealing all the elements of that interval against pooling them.

Extending the analysis in Rayo (2013) to nonlinear payoffs, we observe that the relative

benefit of pooling an interval in the monopolistic mediator case is

−COV[θ,θ](yF (θ), A(θ))
(
F (θ)− F (θ)

)︸ ︷︷ ︸
Rayo’s linear effect

− (E[θ,θ][A(θ)]− A(E[θ,θ][θ]))

∫ θ

θ

yF (θ)dF (θ)︸ ︷︷ ︸
Nonlinear effect

(34)

where E[θ,θ] and COV[θ,θ] respectively denote the expectation and the covariance operators

of F conditional on [θ, θ]. In the sender’s preferred case, the benefit of pooling an interval is

equal to the expression in (34) provided that we replace yF (θ) with θ.

The first term in (34) corresponds to the effect considered in the linear model of Rayo

(2013) where A(x) = x. The second term comes from the nonlinearity of A. The optimality

of pooling interval [θ, θ] boils down to computing the sign of this expression.

It follows that the first term is negative because the covariance between yF (θ) and A(θ)

is non-negative. Similarly, the first term is always negative in the sender’s preferred case.42

The sign of the second term depends on the curvature of A(θ) in the interval considered

and on the sign of the integral of yF (θ) in that interval. In particular, when A(θ) is concave

and yF (θ) is negative on that interval, the overall sign of the second term is negative too.

Differently, in the sender’s preferred case, the sign of the integral in the second term is always

positive. This in turn implies that the overall sign of the second term is positive.

Notably, the sign of yF (θ) = θ − hF (θ) is always negative on [0, θ] for some θ > 0. We

can then formalize the previous discussion as follows.

Proposition 13. If F is regular and A(x) is concave, then there exists θ > 0 such that:

1. The monopolistic mediator fully discloses the states in [0, θ];

41These assumptions are satisfied in Example 1 when δ = 1, and in Example 2 when b(r) = 0.
42The Harris inequality implies that the covariance of two non-decreasing transformations of the same

random variable is non-negative. See Liang (2022). Observe that this conclusion holds for the sender’s
preferred case even when F is not regular.
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2. In the sender’s preferred case the states in [0, θ] are pooled provided that

(A(E[0,θ][θ])− E[0,θ][A(θ)])E[0,θ][yF (θ)] ≥ COV[0,θ](yF (θ), A(θ)).

Similarly, when F is regular and A(x) is convex, in the sender’s preferred case the optimal

outcome fully discloses the states at the bottom. In the monopolistic mediator case instead,

there is pooling at the bottom provided that

(A(E[0,θ][θ])− E[0,θ][A(θ)])E[0,θ][yF (θ)] ≤ COV[0,θ](yF (θ), A(θ)).

The comparison of the extent of disclosure at the bottom of the type space is relevant for

the rating agency application. There, low states represent banks (or in general financial

issuers) with weak balance sheets or projected returns. Therefore, from the point of view of

investors, an ideal information policy would fully disclose those states. The previous analysis

applied to Example 1 implies that when low market shocks are relatively more likely (i.e.,

concave G), a monopolistic rating agency would be more prone to optimally separate weak

banks from the rest. Differently, when high market shocks are relatively more likely (i.e.,

convex G), a monopolistic rating agency would be less prone to optimally separate weak

banks from the rest.

7 Conclusion and Discussion

We developed a theoretical framework that combines information design and mechanism

design to analyze a market for mediation services between an informed and an uninformed

party. The mediator receives compensation from the informed party and can only commit

to communication mechanisms that rely on information that is voluntarily reported by the

informed party. We described all the outcomes that can be induced via a meditation contract,

and compared the optimal outcomes when the mediator has the bargaining power (i.e.,

monopolistic mediation) with those when the informed party has it. Despite the soft nature of

information, the mediator can induce any distribution of conditional expectations consistent

with hard information. This allowed us to reduce the original mediation problems to simpler

Bayesian persuasion problems. With this, the main finding is that mediation contracts often

reveal more information with a monopolistic mediator because they give up some information

rents to retain incentive compatibility. In particular, the monopolistic mediator does not

induce the highest market expectation possible: to maximize revenue they have to separate

enough the receiver’s expectation differential between high and low states.
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These findings shed light on the controversial matter of whether a monopolistic market

for information intermediaries, such as rating agencies for financial securities, is more or

less desirable than a competitive one. For example, when the market is characterized by a

distribution of preference (or information) shocks that would induce buyers to acquire the

financial issuer’s asset more often, then the ideal information structure for the issuer would

reveal less information. Differently, the revenue-maximizer contract for the monopolistic

rating agency reveals more information to effectively differentiate the outcomes of high-return

reports from those of low-return reports and incentivize truthful reporting while maximizing

revenue.

Finally, we discuss some natural follow-up points and extensions that arise from our

analysis and that we leave for future research.

More general environments In this paper, we derived optimal outcomes under specific

assumptions such as uniform states or linearity of payoffs. While the analysis of optimal

transparent outcomes (i.e., monotone partitions) in Section 6 can be more easily extended

to more general environments, the unrestricted case of random communication mechanisms

is more challenging. A promising route for future research would be to adapt the results

developed for nonlinear Bayesian persuasion (e.g., Kolotilin et al. (2022a)) and multidimen-

sional Bayesian persuasion (e.g., Dworczak and Kolotilin (2022)) to the case where outcomes

must satisfy the stochastic monotone cyclicality condition derived in this paper. An alter-

native case that has been extensively studied in the Bayesian persuasion literature is that of

transparent motives, i.e. when the sender has state-independent payoffs. In this direction,

Corrao and Dai (2023) derive several comparison results for the mediation problem under

transparent motives when transfers between the sender and the mediator are not allowed.

Restriction to positive payments In the sender’s preferred case analyzed in this paper,

the MP constraint prescribed that the payments are positive in expectation. A more severe

constraint for the sender’s preferred case would prescribe that payments must be positive for

every report, that is, an ex-interim participation constraint for the mediator. It is immediate

to see that this additional constraint would restrict the set of implementable outcomes in

the sender’s preferred case. For example, under binary states, Corollary 2 establishes that

payments must be negative in the low state for distributions of beliefs that entail some

disclosure. This suggests that, under this additional constraint for the sender’s preferred

case, the comparative analysis on the informativeness of optimal outcomes would be even

more inclined in favor of monopolistic mediation.
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Competition among mediators In this paper, we compared optimal outcomes across

extreme allocations of bargaining power between the sender and the mediator. In particular,

it is possible to interpret optimal outcomes in the sender’s preferred case as a proxy for out-

comes arising under perfect competition among several mediators. Formally, this is the case

in a model where the sender chooses which of the mechanisms proposed by the mediators to

accept before learning the realized state; this translates to an ex-ante participation constraint

for the sender. It is possible to show that replacing our interim participation constraint (P)

with its ex-ante counterpart, would not alter the derivation of the optimal outcomes in the

sender’s preferred case. Differently, the analysis of the monopolistic mediator case would not

change only for those cases where the new ex-ante participation constraint for the sender is

slack in the optimal outcomes that we derived.

A rigorous analysis of competitive mediation under the interim participation constraint

considered in this paper seems challenging: competitive screening models are hardly tractable

even when we ignore the obedience constraint imposed by mediated communication. More-

over, the Rothschild and Stiglitz (1978) logic can be often applied to rule out equilibrium

outcomes that do not entail full disclosure. Yet, these outcomes do not seem quite realistic

since the rating agencies market is characterized by high concentration and entry barriers.

We leave the rigorous analysis of competitive meditation for future research.
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A Revelation Principle

In this Appendix, we prove Lemma 1 and provide some related analyses that we mentioned in

the main text. First, we spell out the formal definition of equilibrium given a communication

mechanism. Recall that a communication mechanism is a triple (MS,MR, σ) where σ : MS →
∆(MR×R) assigns a distribution over signals for the receiver and transfers for the mediator

conditional on each report of the sender. Also, recall that the timing goes as follows:

1. Sender privately observes the state θ.

2. The mediator commits to mechanism (MS,MR, σ).

3. The sender chooses whether to enter the mechanism p ∈ P := {0, 1}.

4. If p = 1, sender chooses mS ∈ MS and (mR, t) are drawn according to σ(·|mS). If

p = 0, then mR = ∅ and t = 0.

5. The receiver observes (p,mS), updates her beliefs to evaluation x, and picks an optimal

action.

Given any communication mechanism, define the expanded reporting space M̂S := MS ∪
{∅} and the expanded message space M̂R := MR ∪ {∅} which includes the empty message,

which represents the sender’s choice not to participate in the mechanism. Given a commu-

nication mechanism (MS,MR, σ), a candidate equilibrium is a triple (αS, αR, β) composed

by the sender’s strategy αS : Θ → ∆(M̂S), the receiver’s strategy αR : M̂R → ∆(X), and a

belief map β : M̂R → ∆(Θ). More specifically, αS describes the participation and reporting

choice of every sender’s type. In particular, αS(∅|θ) denotes the participation probability of

the sender in state θ. Similarly, αR describes the receiver’s choice in terms of the conditional

expectation of θ for every realized message in M̂R, including the empty message ∅. Finally,

the belief β describes the posterior belief of the receiver over Θ for every realized message

in M̂R. The candidate equilibrium (αS, αR, β) forms an equilibrium if, for every θ, αS(θ)

is optimal for the sender at each state θ given αR, αR is optimal for the receiver at each

message MR given β, and β satisfies the chain rule of probabilities whenever possible. Here,

optimality for the receiver means that, given their belief β(·|mR) ∈ ∆(Θ) at message mR,

the strategy αR(·|mR) ∈ ∆(X) is a degenerate probability over Eβ[θ̃|mR].

A communication mechanism (MS,MR, σ) and a corresponding equilibrium (αS, αR, β)

satisfy 1) Full participation if αS(∅|θ) = 0 for all θ ∈ Θ; 2) Punishment beliefs if β(·|∅) = δ0;

and 3) Deterministic payments if margR σ(·|mS) is degenerate for every mS ∈ MS.

Next, we prove Lemma 1
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Proof of Lemma 1. By Assumption 2, we restrict to mechanisms and corresponding equi-

libria that induce full participation and such that, conditional on no participation mr = ∅,

the receiver updates their belief in the worst possible way: β(·|∅) = δ0. Therefore, to induce

full participation, the interim expected utility of every sender’s type θ must be weakly higher

than the utility induced by the worst possible belief, that is, V (0, θ) = 0 for all θ ∈ Θ. At

this point, the standard revelation principle for Bayesian Games (Myerson (1982); Forges

(1986)) yields that the mediator can restrict to direct revelation mechanisms that induce

truthful revelation for the sender and recommend a conditional expectation to the receiver

that coincides with the one obtained via the chain rule of probabilities. Moreover, given

our restriction to full-participation mechanisms, it follows that all the sender types must be

weakly better off participating than not. These conditions are exactly the ones in H, O, and

P.

B Binary State Case

In this appendix, we prove all the statements of Section 3.

Proof of Proposition 1. Recall that, under binary state, for every outcome distribution

π ∈ ∆(X ×Θ), we have τπ =margXπ. Let π̄,π ∈ ∆(X) denote the conditional distribu-

tions over X given θ = 1 and θ = 0 respectively. By Lemma 1, an outcome distribution

π ∈ ∆(X ×Θ) and a payment rule (t, t̄) are implementable if and only if the incentive

compatibility constraints∫ 1

0

V̄ (x) dπ̄ (x)− t̄ ≥
∫ 1

0

V̄ (x) dπ (x)− t∫ 1

0

V (x) dπ (x)− t ≥
∫ 1

0

V (x) dπ̄ (x)− t̄∫ 1

0

V̄ (x) dπ̄ (x)− t̄ ≥ 0∫ 1

0

V (x) dπ (x)− t ≥ 0

and the Consistency condition margΘπ = xF hold. The unconditional distribution τπ of the

receiver’s beliefs can be rewritten as

τπ = xF π̄ + (1− xF ) π. (35)
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Equation 35 implies that π̄, π ∈ ∆(X) are absolutely continuous with respect to τπ with

derivatives dπ̄
dτπ

(x) = x
xF

and dπ̄
dτπ

(x) = 1−x
1−xF

. We can combine this and the two truthtelling

constraints to obtain∫ 1

0

V (x)

(
x

xF

− 1− x

1− xF

)
dτπ (x) ≤ t̄− t ≤

∫ 1

0

V̄ (x)

(
x

xF

− 1− x

1− xF

)
dτπ (x)

which is equivalent to

COVτπ (V (x̃) , x̃)

V ARF (x̃)
≤ t̄− t ≤

COVτπ

(
V̄ (x̃) , x̃

)
V ARF (x̃)

.

Observe that both the left-hand side and the right-hand side of the previous equations are

positive because V and V̄ are strictly increasing.43 Therefore, we must have t̄− t ≥ 0.

Next, fix an arbitrary Bayes plausible distribution τ ∈ ∆F (∆ (Θ)). We need to show

that there exists a payment rule (t̄, t) such that the corresponding outcome distribution πτ

is implementable. Define

t =

∫ 1

0

V (x)
1− x

1− xF

dτ (x) ,

t̄− t =
COVτ

(
V̄ (x̃) , x̃

)
V ARF (x̃)

,

and observe that the Honesty constraint for the high type and the Participation constraint

for the low type are satisfied by construction. Next, the Participation constraint for the high

type holds provided that t̄ ≤
∫ 1

0
V (x) x

xF
dτ (x), that is,

∫ 1

0

V (x)
1− x

1− xF

dτ (x) +
COVτ (V (x̃) , x̃)

V ARF (x̃)
≤

∫ 1

0

V (x)
x

xF

dτ (x)

which is implied by∫
X

V (x)
1− x

1− xF

dτ (x) +
COVτ (V (x̃) , x̃)

V ARF (x̃)
≤

∫
X

V (x)
x

xF

dτ (x)

which is equivalent to

COVτ (V (x̃) , x̃)

V ARF (x̃)
≤

COVτ

(
V (x̃) , x̃

)
V ARF (x̃)

=
COVτ (V (x̃) , x̃)

V ARF (x̃)
+

COVτ (x̃∆V (x̃) , x̃)

V ARF (x̃)

43The Harris inequality implies that the covariance between two nondecreasing functions of the same
random variable, x in this case, is nonnegative.
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which is always verified because ∆V (x) is strictly increasing. Given the definition of t̄ and

t, the Honesty constraint for the low type is verified if and only if∫ 1

0

V̄ (x)

(
x

xF

− 1− x

1− xF

)
dτ (x) ≥

∫ 1

0

V (x)

(
x

xF

− 1− x

1− xF

)
dτ (x)

which is equivalent to
COVτ (∆V (x̃) , x̃)

V ARF (x̃)
≥ 0

which is always verified because ∆V (x) is strictly increasing.

Proof of Corollary 1. Fix an implementable τ ∈ ∆F (∆ (Θ)). Because that the payment

rule (t̄, t) we constructed in the proof of Proposition 1 for a given τ is such that the upper

bounds on t̄ − t and t are attained, it follows that this payment rule is the maximal one

implementing τ . This payment rule induces the expected revenue-defined in equation 6. In

particular, the expected revenue can be rewritten as
∫ 1

0
V (x)− (1− x)∆V (x) dτ (x). Given

that the mediator can implement any τ ∈ ∆F (∆ (Θ)) by Proposition 1, it follows that the

mediator’s maximum revenue is given by

max
τ∈∆F (∆(Θ))

∫ 1

0

V (x)− (1− x)∆V (x) dτ (x) = cav (J) (xF )

where the second equality follows by Proposition 1 in Kamenica and Gentzkow (2011) and

from the definition of J (x) in the binary-state case.

Proof of Corollary 2. By Proposition 4, in the sender’s preferred case the mediator picks

a distribution of the receiver’s beliefs τ ∈ ∆F (∆ (Θ)) and supporting payments (t, t̄) to

maximize ∫ 1

0

V (x) dτ (x)− t− xF (t̄− t) (36)

subject to (5) and the mediator’s participation constraint (i.e., MP)

t+ xF (t̄− t) ≥ 0. (37)

It is immediate to see that (37) must bind at the optimum so that the optimal sender’s value
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is given by cav(V )(xF ) = maxτ∈∆F (∆(Θ))

∫ 1

0
V (x) dτ (x). Moreover, by (5), we have

(t̄− t) ≥ COVτ (V (x) , x)

V ARF (θ)
≥ 0,

and the first inequality but be an equality at the optimum because (t̄− t) has a negative

effect on the objective function in (36). Therefore at every optimal distribution τ ∗, in order

to satisfy (37) with equality, we must have that t < 0 if and only if COVτ∗ (V (x) , x) > 0.

Finally, because V (x) is strictly increasing, it follows that COVτ∗ (V (x) , x) > 0 if and only

if τ ∗ is not induced by no disclosure.

Before proving Corollary 3, we report a useful definition from Curello and Sinander

(2022).

Definition 9. Consider two functions J, V : X → R. We say that V is coarsely less convex

than J if for all x, x′ ∈ X with x < x′ and such that

V (αx+ (1− α)x′) ≤ (<)αV (x) + (1− α)V (x′) ∀α ∈ (0, 1) ,

it holds that

J (αx+ (1− α)x′) ≤ (<)αJ (x) + (1− α) J (x′) ∀α ∈ (0, 1) .

Proof of Corollary 3. Observe that J (x) = V (x)−I (x) = Φ (V (x) , x) where Φ (v, x) :=

v−I (x) is strictly increasing in v and convex in x by assumption. It then follows by Corollary

1 in Curello and Sinander (2022) that V (x) is coarsely less convex that J (x). Therefore, by

their Proposition 1, it follows that more information is revealed under monopolistic mediation

than under competitive mediation.

Next, consider an arbitrary information-rent function I (x). Observe that I ′′ (x) =

(1− x)∆′′
V (x) − 2∆′

V (x), where ∆′
V (x) and ∆′′

V (x) respectively denote denote the first

and second derivative of ∆V (x). Because I ′′ (1) = −2∆′
V (1) < 0, it follows that there exists

ε > 0 such that I (x) is strictly concave when restricted to (1− ε, 1). This implies that I (x)

is not convex globally convex, hence that J (x) is not coarsely less convex than V (x). It

then follows from Proposition 1 in Curello and Sinander (2022) that either point 1 or 2 in

the statement must hold.
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Proof of Corollary 4. Assume that G (r) = r, that b (r) is concave and observe that in

this case B (x) =
∫ x

0
b (r) dr. The case where b (r) is strictly convex is completely analogous

and therefore omitted. Observe that V (x, θ) = αθx+B (x). With this, we have

V (x) = αx2 +B (x) and J (x) = 2αx2 − αx+B (x) .

Observe that the linear term in J (x) is irrelevant in the objective function for the monopolis-

tic case because
∫ 1

0
αxdτ (x) = αxF for all τ ∈ ∆F (∆ (Θ)). Next, define αM = 2α, αS = α,

and

U (x, κ) = κx2 +B (x) ∀κ ≥ 0.

With this notation, the optimization problems in the monopolistic and the sender’s preferred

cases can be rewritten as

max
τ∈∆F (∆(Θ))

∫ 1

0

U (x, αi) dτ (x) i ∈ {M,S} .

Next, consider the optimization problem

max
τ∈∆F (∆(Θ))

∫ 1

0

U (x, κ) dτ (x) ∀κ ≥ 0 (38)

and observe that U ′′
i (x, κ) = κ+ b′ (x) for all κ ≥ 0. Given that b′ (x) is strictly decreasing,

for every κ ≥ 0, it follows that U (x, κ) is strictly convex on [0, xκ] and strictly concave

on [xκ, 1] where xκ = min {max {0, x̂κ} , 1} and where x̂κ ∈ R is the unique solution of

κ + b′ (x) = 0. Theorem 1’ in Kolotilin et al. (2019) implies that Problem 38 admits a

solution that is stochastic upper-censorship with pooling probability qκ ∈ [0, 1]. Recall that

under this information policy, given report θ = 0, this is revealed with probability qκ and

pooled with θ = 1 otherwise, whereas given report θ = 1, this is always pooled with θ = 0.

Given qκ, the (discrete) conditional distribution of beliefs at every state θ ∈ {0, 1} is defined

as

τθ,κ (x) =

{
qκδ0 + (1− qκ) δm(qκ) if θ = 0

δm(qκ) if θ = 1

where

m (qκ) =
xF

xF + (1− xF ) (1− qκ)

is the probability that θ = 1 conditional on receiving the message pooling both states.
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Therefore, for every κ ≥ 0, the optimization problem over qκ is

max
qκ∈[0,1]

{(1− xF ) (1− qκ)U (m (qκ) , κ) + xFU (m (qκ) , κ)} .

We next show that the solution q̂κ is strictly increasing in κ. Define

Υ (q, κ) = [(1− xF ) (1− q) + xF ]U (m (q) , κ)

and observe that

m′ (q) =
(1− xF )x

2
F

[xF + (1− xF ) (1− q)]2
.

With this, we have
∂

∂κ
Υ(q, κ) = [(1− xF ) (1− q) + xF ]m (q)2

and

∂

∂κ∂q
Υ(q, κ) =

2 (1− xF )x
2
F

[xF + (1− xF ) (1− q)]2
− (1− xF )x

2
F

[xF + (1− xF ) (1− qκ)]
2

=
(1− xF )x

2
F

[xF + (1− xF ) (1− qκ)]
2 > 0

This proves that Υ is strictly supermodular, hence by Theorem 4 in Milgrom and Shannon

(1994) it follows that θ̂κ is strictly increasing in κ. This proves the desired result.

C Implementable Outcomes

In this appendix, we prove all the statements of Section 4 except for Lemma 1 whose proof

has been given in Appendix A.

Proof of Proposition 2. Fix π ∈ ∆(X ×Θ). To prove the first part of the statement, it

is sufficient to show that there exists a payment rule t (θ) that implements π if and only if it

satisfies SCM. First, let π be implementable by a a payment rule t (θ) and fix a finite cycle

θ0, θ1, ..., θN+1 = θ0 in Θ. Then for all k ∈ {0, ..., N} it holds

t (θk)− t (θk+1) ≥ Eπ [V (x̃, θk+1) |θk]− Eπ [V (x̃, θk) |θk] .
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By summing these inequalities over k we obtain

N∑
k=0

Eπ [V (x̃, θk+1) |θk]− Eπ [V (x̃, θk) |θk] ≤ 0

which implies SCM. Conversely, let π satisfy SCM and consider an arbitrary θ0 ∈ Θ. Let

CN (θ0) be the collection of all finite cycles θ0, θ1, ..., θN+1 = θ0 in Θ and define

Sπ (θ) := sup

{
N∑
k=0

Eπ [V (x̃, θk+1) |θk]− Eπ [V (x̃, θk) |θk] : (θ0, θ1, ..., θN+1) ∈ CN (θ0)

}

for all θ ∈ Θ. Condition SCM implies that Sπ (θ0) = 0. Moreover, by construction of Sπ, we

have

Sπ (θ0) ≥ Sπ (θ) + Eπ [V (x̃, θ0) |θ]− Eπ [V (x̃, θ) |θ]

yielding that Sπ (θ) is finite for all θ ∈ Θ. Similarly, for all θ, θ′ ∈ Θ, we have that

Sπ (θ) ≥ Sπ (θ
′) + Eπ [V (x̃, θ) |θ′]− Eπ [V (x̃, θ′) |θ′] .

With this, define the payment rule tπ (θ) = Eπ [V (x̃, θ) |θ]− Sπ (θ) and observe

Eπ [V (x̃, θ) |θ]− tπ (θ) ≥ Eπ [V (x̃, θ) |θ′]− tπ (θ
′)

for all θ, θ′ ∈ Θ, implying that (π, tπ) satisfy Honesty.

Next, take an implementable pair (π, tπ) and observe that

Sπ (θ) = sup
θ′∈Θ

{Eπ [V (x̃, θ) |θ′]− tπ (θ)} ∀θ ∈ Θ.

Give that Vθ is a bounded function it follows that for all θ′ ∈ Θ, we have

∂

∂θ

∫
X

V (x, θ) dπθ′ (x) =

∫
X

Vθ (x, θ) dπθ′ (x) .

Therefore, by the Envelope theorem in Milgrom and Segal (2002), Sπ is absolutely continuous

and such that S ′
π (θ) = Eπ [Vθ (x̃, θ) |θ] for all θ ∈ Θ. By the fundamental Theorem of calculus

we have

Sπ (θ) = Sπ (0) +

∫ θ

0

Eπ [Vθ (x̃, s) |s] ds,
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for some constant Sπ (0) ∈ R. Moreover, given that tπ (θ) = Eπ [V (x̃, θ) |θ]−Sπ (θ), we have

tπ (θ) = Eπ [V (x̃, θ) |θ]− Sπ (0)−
∫ θ

0

Eπ [Vθ (x̃, s) |s] ds (39)

=

∫ θ

0

Eπ [Vθ (x̃, s) |θ]− Eπ [Vθ (x̃, s) |s] ds− Sπ (0)

With this, equations 10 and 11 both hold. Next, we prove that there exists Sπ (0) ≥ 0 such

that tπ (θ) ≥ 0 for all θ ∈ Θ. As an intermediate step, we first prove the following claim.

Claim For all implementable π ∈ ∆(X ×Θ), for all θ, θ′ ∈ Θ, we have∫ θ

θ′
[Eπ [Vθ (x̃, s) |s]− Eπ [Vθ (x̃, s) |θ′]] ds ≥ 0

Proof of the claim. By the first part of the proof, π is implementable by the payment

rule tπ. Given that (π, tπ) satisfy H, it follows that for all θ, θ′ ∈ Θ,

0 ≤ Sπ (θ)− (Eπ [V (x̃, θ) |θ′]− t (θ′))

= (Sπ (θ)− Sπ (θ
′)) + (Eπ [V (x̃, θ′) |θ′]− Eπ [V (x̃, θ) |θ′])

=

∫ θ

θ′
S ′
π (s) ds−

∫ θ

θ′

∂

∂θ
Eπ [V (x̃, s) |θ′] ds

=

∫ θ

θ′
Eπ [Vθ (x̃, s) |s]− Eπ [Vθ (x̃, s) |θ′] ds

yielding the desired inequality.

By the claim, and setting θ = 0 and Sπ (0) = 0, we have

tπ (θ
′) =

∫ θ′

0

Eπ [Vθ (x̃, s) |θ′]− Eπ [Vθ (x̃, s) |s] ds ≥ 0

for all θ′ ∈ Θ, obtaining the desired statement.
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For the final part of the proposition, observe that∫ 1

0

tπ (θ) dF (θ) =

∫ 1

0

{
Eπ [V (x̃, θ) |θ]−

∫ θ

0

Eπ [Vθ (x̃, s) |s] ds
}
dF (θ)− Sπ (0)

=

∫ 1

0

Eπ [V (x̃, θ) |θ] dF (θ)−
[
F (θ)

∫ θ

0

Eπ [Vθ (x̃, s) |s] ds
]1
0

+

∫ θ

0

F (θ)Eπ [Vθ (x̃, s) |s] dθ − Sπ (0)

=

∫ 1

0

Eπ [V (x̃, θ) |θ] dF (θ)−
∫ 1

0

(1− F (θ))Eπ [Vθ (x̃, θ) |θ] dθ − Sπ (0)

=

∫ 1

0

Eπ [V (x̃, θ) |θ]− hF (θ)Eπ [Vθ (x̃, θ) |θ] dF (θ)− Sπ (0)

=

∫
X×Θ

V (x, θ)− hF (θ)Vθ (x, θ) dπ (x, θ)− Sπ (0)

where the second equality follows from integration by parts and the last equality follows

because π satisfies C and the law of iterated expectation. Finally, with entirely analogous

steps, it is possible to show that∫ 1

0

Sπ (θ) dF (θ) =

∫
X×Θ

hF (θ)Vθ (x, θ) dπ (x, θ) + Sπ (0) .

Proof of Corollary 7. The first part of the statement is proved in the main text. The

second part of the statement follows from Proposition 2.

Proof of Corollary 6. Consider two implementable direct communication mechanisms (π, t)

and
(
π̂, t̂

)
such that τπ = τπ̂ = τ . Recall that, for every measurable D̃ ⊆ ∆(Θ), we have

τ
(
D̃
)
=

∫
X

1
[
πx ∈ D̃

]
dHπ (x)

and the same equation must hold when we replace π with π̂. Conversely, for all measurable

X̃ ⊆ X and Θ̃ ⊆ Θ, we have

π
(
X̃ × Θ̃

)
=

∫
∆(Θ)

µ
(
Θ̃
)
1
[
Eµ

[
θ̃
]
∈ X̃

]
dτ (x)
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and the same equation must hold when we replace π with π̂. Therefore, there exists a com-

mon version of the conditional probability over X given θ for π and π̂. Proposition 2 then

implies that the payment functions t and t̂ must be the same up to a constant.

Proof of Corollary 5. By Lemma 1 and the following discussion in the main text, (π, t) is

implementable in the sender’s preferred case if and only if it satisfies C, O, H, and MP. By

Proposition 2, t = tπ must be as in equation 39 for some Sπ (0) ≥ 0. In particular, by setting

Sπ (0) = 0, the claim in the proof of Proposition 2 implies that t (θ) ≥ 0 for all θ ∈ Θ. With

this, MP must hold.

Proof of Proposition 3. Assume that π satisfies C, O, and PRD and define tπ as in equa-

tion 11. For all θ, θ′ ∈ Θ such that θ ≥ θ′, we have that

(Eπ [V (x̃, θ) |θ]− t (θ))− (Eπ [V (x̃, θ) |θ′]− t (θ′))

= (Eπ [V (x̃, θ) |θ]− t (θ))− (Eπ [V (x̃, θ′) |θ′]− t (θ′))

− (Eπ [V (x̃, θ) |θ′]− Eπ [V (x̃, θ′) |θ′])

= (Sπ (θ)− Sπ (θ
′))− (Eπ [V (x̃, θ) |θ′]− Eπ [V (x̃, θ′) |θ′])

=

∫ θ

θ′
S ′
π (s) ds−

∫ θ

θ′

∂

∂θ
Eπ [V (x̃, s) |θ′] ds

=

∫ θ

θ′
{Eπ [Vθ (x̃, s) |s]− Eπ [Vθ (x̃, s) |θ′]} ds ≥ 0.

To see why the last inequality holds, observe that SCM implies

s ≥ θ′ =⇒ Eπ [Vθ (x̃, s) |s] ≥ Eπ [Vθ (x̃, s) |θ′]

because the function x 7→ Vθ (x, s) is strictly increasing in x. This shows that π satisfies H.

Given that π satisfies C and O by assumption, it follows by Lemma 1 that π is implementable.

Next, observe that for all θ, θ′ ∈ Θ such that θ ≥ θ′, we have that

tπ (θ)− tπ (θ
′) =

∫ θ

θ′
Eπ [Vθ (x̃, s) |θ]− Eπ [Vθ (x̃, s) |s] ds ≥

where the inequality follows from the first part of the proof. This shows that tπ (θ) is non-

decreasing. Finally, we prove a more general statement that implies equation 15 in the
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statement. Fix any two non-decreasing functions Â (x, θ) and B̂ (x, θ) of (x, θ). We have

that

COVπ

(
Â
(
x̃, θ̃

)
, B̂

(
x̃, θ̃

))
(40)

= COVπ

(
Eπ

[
Â
(
x̃, θ̃

)
|θ̃
]
,Eπ

[
B̂
(
x̃, θ̃

)
|θ̃
])

+ Eπ

[
COVπ

(
Â
(
x̃, θ̃

)
, B̂

(
x̃, θ̃

)
|θ̃
)]

by the law of total covariance. The first term in 40 is weakly positive because both

Eπ

[
Â (x̃, θ) |θ

]
and Eπ

[
B̂ (x̃, θ) |θ

]
are non-decreasing in θ sicne Â and B̂ are non-decreasing

and π satisfies PRD.44 Similarly, the covariance inside the expectation in the second term is

positive because Â and B̂ are non-decreasing, hence the entire expectation is positive. We

conclude that COVπ

(
Â
(
x̃, θ̃

)
, B̂

(
x̃, θ̃

))
≥ 0. Finally, equation 15 in the statement follows

by taking Â (x, θ) = A (x) and B̂ (x, θ) = tπ (θ).

Proof of Corollary 8. Fix a monotone partitional outcome distribution π ∈ ∆(X ×Θ)

with representing function ϕ. For every non-decreasing function A (x) and θ, θ′ ∈ Θ with

θ ≥ θ′, we have

Eπ [A (x) |θ] = A (ϕ (θ)) ≥ A (ϕ (θ′)) = Eπ [A (x) |θ′]

yielding the desired result.

Proof of Proposition 4. If H ∈ ∆(X) is implementable then there exists π ∈ ∆(X ×Θ)

that satisfies O and such that margXπ = H and margΘπ = F . Given the joint distribution

π, the state θ is a martingale with respect to x. The results in Strassen (1965) then imply

that H is dominated by F in the convex order, that is H ∈ CX (F ). Conversely, assume

that H ∈ CX (F ). Given that CX (F ) is a convex set, the Choquet theorem implies that

there exists a probability measure λ ∈ ∆(CX (F )) supported on the extreme points of

CX (F ) and such that H =
∫
CX(F )

H̃dλ
(
H̃
)
. By Proposition 3 in Arieli et al. (2023), every

H̃ ∈supp(λ) can be induced bi-pooling mechanism πH̃ ∈ ∆(X ×Θ) that also satisfies PRD.

Now define Ω :=supp(λ) and consider the expanded state space Ω×Θ with prior λ×F and

consider the following communication mechanism in this expanded state space: let M̂S = Θ,

M̂R = X × Ω, and define σ : M̂S × Ω → ∆
(
M̂R

)
as follows

σ (·|θ, ω) = πω (·|θ)× δω.

44Again, the covariance is positive due to Harris inequality.
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In other words, the sender reports their type and the receiver observes the realization of

ω = H̃ as well as the realization of x drawn from the distribution πω (·|θ). Let σ⊗ (λ× F ) ∈
∆(X × Ω×Θ) denote the joint distribution induced by σ and (λ× F ). Because πω satisfies

O, it follows that

Eσ⊗(λ×F )

[
θ̃|x, ω

]
= x.

Next, define the measurable function ζ (x, ω) := Eσ⊗(λ×F )

[
θ̃|x, ω

]
and observe that its image

set is contained in X. Next, let πλ ∈ ∆(X ×Θ) be the push-forward measure of σ⊗ (λ× F )

through the map (x, ω, θ) 7→ (ζ (x, ω) , θ). Clearly, πλ satisfies C and O by construction. We

next show that πλ satisfies PRD. Take any non-decreasing function A (x) and fix θ, θ′ ∈ Θ

such that θ ≥ θ′. We have∫
X

A (z) dπλ (z|θ) =

∫
X×Ω

A (z) d (σ ⊗ λ) (z, ω|θ) =
∫
Ω

(∫
X

A (x) dπω (x|θ)
)
dλ (ω)

≥
∫
Ω

(∫
X

A (x) dπω (x|θ′)
)
dλ (ω) =

∫
X×Ω

A (z) d (σ ⊗ λ) (z, ω|θ′)

=

∫
X

A (z) dπλ (z|θ′)

implying that πλ satisfies PRD. By Proposition 2, it follows that πλ is implementable. More-

over, by construction πλ is implemented by a random bi-pooling policy.

Proof of Corollary 9. Under the maintained assumptions of the corollary, the expression

of the mediator’s expected revenue derived in Proposition 2 becomes∫ 1

0

tπ (θ) dF (θ) =

∫
X×Θ

(θ − hF (θ))A (x) +B (x) dπ (x, θ)− Sπ (0)

=

∫
X×Θ

(
2θ − θ̄

)
A (x) +B (x) dπ (x, θ)− Sπ (0)

=

∫
X

(
2Eπ

[
θ̃|x

]
− θ̄

)
A (x) +B (x) dHπ (x)− Sπ (0)

=

∫
X

(
2x− θ̄

)
A (x) +B (x) dHπ (x)− Sπ (0)

where the third equality follows by the law of iterated expectations and the last equality

follows because π satisfies O. With entirely analogous steps we obtain that expression for
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the sender’s expected payoff becomes∫ 1

0

Sπ (θ) dF (θ) =

∫
X

(
θ̄ − x

)
A (x) dHπ (x) + Sπ (0) .

Given that these two expressions only depend on the marginal distribution Hπ the result

follows.

D Optimal Outcomes

In this appendix, we prove all the statements of Section 5.

Proof of Proposition 5. First, observe that the full disclosure outcome πFD is monotone

partitional and induced by the map ϕFD (θ) = θ. Therefore, full disclosure is implementable

by Corollary 8. Next, consider the relaxed problem

max
π∈∆(X×Θ)

∫
X×Θ

J (x, θ) dπ (x, θ)

s.t. C and O

where we removed the SCM constraint. It follows that if πFD is (uniquely) optimal for this

relax problem, then it must be optimal for the original monopolistic mediator problem in

Lemma 2. By Theorem 1 in Catonini and Stepanov (2022), under the condition in equation

22, the full-disclosure outcome is optimal for the relaxed problem, hence it is optimal for the

original problem. Moreover, when in addition J (x, θ) is strictly convex in θ, Theorem 5 in

Kolotilin et al. (2022a) implies that the full-disclosure outcome is uniquely optimal in the

relaxed problem, hence it is uniquely optimal in the original problem.

Conversely, assume J (x, θ) satisfies the condition in equation 23 and assume by contra-

diction that πFD is optimal. Theorem 2 in Catonini and Stepanov (2022) implies that an

alternative monotone partitional outcome π̂ that fully reveals the states θ ̸∈ (θ1, θ2) and

completely pools the states θ ∈ (θ1, θ2) is such that∫
X×Θ

J (x, θ) dπ̂ (x, θ) >

∫
Θ

J (θ, θ) dF (θ) ,

thereby implying πFD is not optimal in the relaxed problem. Given that π̂ is monotone

partitional, it is implementable and therefore πFD cannot be optimal in the original problem
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either.

Proof of Proposition 7. We prove the result for J (x). The corresponding result for

V (x, x) follows completely analogous steps. By combining Corollary 9 and Lemma 2 the

monopolistic mediator problem becomes

max
π∈∆(X×Θ)

∫ 1

0

(
2x− θ̄

)
A (x) +B (x) dHπ (x)

subject to C, O, and SCM. By Proposition 4, for everyH ∈ ∆(X), there exists π satisfying all

the three previous conditions and such that Hπ = H if and only if H ∈ CX (F ). Therefore,

we can rewrite the previous problem as

max
H∈CX(F )

∫ 1

0

(
2x− θ̄

)
A (x) +B (x) dH (x) .

Given that this is a linear problem in H, by the Bauer’s maximum principle, there exists an

optimal solution H∗ that is an extreme point of CX (F ). By Theorem 1 and Proposition 2

in Arieli et al. (2023), H∗ can be induced by a implementable bi-pooling policy π∗. Finally,

points 1 and 2 of the statement follow by Theorems 1 and 2 in Kolotilin et al. (2022b).

Proof of Proposition 8. Observe that J (x) = V (x, x)− I (x). When I (x) is concave, it

follows from Corollary 1 in Curello and Sinander (2022) that V (x, x) is coarsely less convex

that J (x). Given that V (x, x) is bell-shaped, it follows from Theorem 2 in Curello and

Sinander (2022), that more information is disclosed in the monopolistic mediator case than

in the sender’s preferred case.

Proof of Corollary 10. The first part of the corollary follows because whenG(x) is convex,

V (x) in (25) is also convex. Therefore, we can apply Proposition 6 to conclude that full

disclosure is optimal. Next, observe that

J ′′(x) = (1 + δ)xg′(x) + 2(1 + δ)g(x)− δg′(x) = g(x)(2(1 + δ) + ((1 + δ)x)− δ)
g′(x)

g(x)
,

so J(x) is convex if and only if (26) holds. This implies the second statement by Propositions

5 and 7.
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The last part of the corollary follows from two implications of concavity of G(r). First,

V (x) is S-shaped because V ′′(x) = g(x)(xg′(x)/g(x) + 2) crosses zero once from above due

to concavity of G(r). To see this observe that g′(x)/g(x) < 0 and it is decreasing by log-

concavity of G(r). Second, we have I ′′(x) = δ(1 − x)g′(x) − 2g(x) < 0 for all x ∈ X. This

implies that I(x) is concave, hence by Proposition 8 the desired result follows.

Proof of Proposition 9. Assume that G (r) = r, that b (r) is strictly concave and observe

that in this case B (x) =
∫ x

0
b (r) dr. The case where b (r) is strictly convex is completely

analogous and therefore omitted. Observe that

V (x, θ) = αθx+B (x) .

With this, we have

V (x) = αx2 +B (x) and J (x) = 2αx2 − αx+B (x) .

Observe that the linear term in J (x) is irrelevant in the objective function for the monopo-

listic case because
∫
X
αxdH (x) = αxF for all H ∈ CX (F ). Next, define αM = 2α, αS = α,

and

U (x, κ) = κx2 +B (x) ∀κ ≥ 0.

With this notation, the optimization problems in the monopolistic and the sender’s preferred

cases can be rewritten as

max
H∈CX(F )

∫
U (x, αi) dH (x) i ∈ {M,S} .

Next, consider the optimization problem

max
H∈CX(F )

∫
U (x, κ) dH (x) ∀κ ≥ 0 (41)

and observe that U ′′
i (x, κ) = κ+b′ (x) for all κ ≥ 0. Given that b′ (x) is strictly decreasing, for

every κ ≥ 0, it follows that U (x, κ) is strictly convex on [0, xκ] and strictly concave on [xκ, 1]

where xκ = min {max {0, x̂κ} , 1} and where x̂κ ∈ R is the unique solution of κ+ b′ (x) = 0.

Theorem 1 in Kolotilin et al. (2022b) implies that Problem 41 has a unique solution and this

is induced by an upper-censorship policy. Moreover, the optimal threshold θ̂κ is the unique
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solution of

max
θ̂∈[0,1]

{∫ θ̂

0

U (x, κ) dx+ U
(
m

(
θ̂
)
, κ

)(
1− θ̂

)}

where m
(
θ̂
)
= EF

[
θ̃|θ̃ ≥ θ̂

]
. We next show that θ̂κ is strictly increasing in κ. Define

Υ
(
θ̂, κ

)
=

∫ θ̂

0

U (x, κ) dx+ U
(
m

(
θ̂
)
, κ

)(
1− θ̂

)
and observe that

∂

∂θ̂∂κ
Υ
(
θ̂, κ

)
= Uκ

(
θ̂, κ

)
+ Uxκ

(
m

(
θ̂
)
, κ

)(
1− θ̂

)
− Uκ

(
m

(
θ̂
)
, κ

)
= θ̂2 + 2m

(
θ̂
)(

1− θ̂
)
−m

(
θ̂
)2

= 2m
(
θ̂
)(

1− θ̂
)
−
(
m

(
θ̂
)
+ θ̂

)(
m

(
θ̂
)
− θ̂

)
> 0

where the last inequality follows from the fact that 2m
(
θ̂
)
>

(
m

(
θ̂
)
+ θ̂

)
and

(
1− θ̂

)
>(

m
(
θ̂
)
− θ̂

)
> 0. This proves that Υ is strictly supermodular, hence by Theorem 4 in

Milgrom and Shannon (1994) it follows that θ̂κ is strictly increasing in κ.

Proofs of Lemma 3 and Remark 4. Under the maintained assumption of Section 5.2,

for every implementable outcome distribution π ∈ ∆(X ×Θ), we have∫
X×Θ

J (x, θ) dπ (x, θ) =

∫
X×Θ

α (θ − hF (θ))x+ βx− γ
x2

2
dπ (x, θ)

=

∫
Θ

α (θ − hF (θ))Eπ [x̃|θ] dF (θ)− γ
Eπ [x̃

2]

2
+ βxF

=

∫
Θ

α (θ − hF (θ))Eπ [x̃|θ] dF (θ)− γ
Eπ

[
x̃Eπ

[
θ̃|x̃

]]
2

+ βxF

=

∫
Θ

α (θ − hF (θ))Eπ [x̃|θ] dF (θ)− γ
Eπ

[
x̃θ̃

]
2

+ βxF

=

∫
Θ

α (θ − hF (θ))Eπ [x̃|θ] dF (θ)− γ

∫
Θ

θEπ [x̃|θ]
2

dF (θ) + βxF

=

∫
Θ

((
α− γ

2

)
θ − αhF (θ)

)
Eπ [x̃|θ] dF (θ) + βxF

where the third equality follows by O and the fourth and fifth equalities follow by applying
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twice the law of iterated expectation. With this, by Lemma 2, the monopolistic mediator

problem is

max
π∈∆(X×Θ)

∫
X×Θ

J (x, θ) dπ (x, θ) = max
π∈∆(X×Θ)

∫
Θ

((
α− γ

2

)
θ − αhF (θ)

)
Eπ [x̃|θ] dF (θ) + βxF

subject to C, O, and SCM. Given that xF does not depend on π, the result follows.

For the sender’s preferred case, analogous steps yield that∫
X×Θ

V (x, θ) dπ (x, θ) =

∫
Θ

(α− γ) θEπ [x̃|θ] dF (θ) + βxF .

By applying the law of iterated expectation twice, the right-hand side can be written as∫
X

(
α− γ

2

)
Eπ

[
θ̃|x

]
xdHπ (x) =

∫
X

(
α− γ

2

)
x2dHπ (x) ,

implying that the sender’s expected payoff depends on the marginal distribution Hπ only.

Finally, Proposition 6 implies that, in this case, full disclosure is uniquely optimal when

α > γ/2 and that no disclosure is uniquely optimal when α < γ/2.

Proof of Lemma 4. First suppose that there exist an implementable π ∈ ∆(X ×Θ) such

that the push-forward of F through of the map θ 7→ Eπ [x̃|θ] is L. For every continuous and

convex function φ (x) we have that∫ 1

0

φ (x) dL (x) =

∫
Θ

φ (Eπ [x̃|θ]) dF (θ) ≤
∫
Θ

Eπ [φ (x̃) |θ] dF (θ)

=

∫
X

φ (x) dHπ (x) ≤
∫
X

φ (θ) dF (θ) ,

implying that L ∈ CX (Hπ) ⊆ CX (F ). We prove the converse in two steps. First, we prove

that if L is such that qL is an extreme point of CV (qF ), then there exists an implementable

π that induces L. Second, we prove that the space of implementable second-order quantile

functions qL is convex. Together these steps yield the result.

Next, fix L ∈ CX (F ) such that qL is an extreme point of CV (qF ). By Theorem 1 in

Kleiner et al. (2021), it follows that there exists a countable collection of disjoint intervals
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{[zi, z̄i)}i∈N with [zi, z̄i) ⊆ [0, 1] such that

qL (z) =

 qF (z) if z ̸∈i∈N [zi, zi)∫ z̄i
zi

qF (s)ds

zi−z̄i
if z ∈ [zi, zi)

. (42)

Next, define the function ϕL : Θ → X as

ϕL (θ) =

 θ if F (θ) ̸∈i∈N [zi, zi)∫ z̄i
zi

qF (s)ds

zi−z̄i
if F (θ) ∈ [zi, zi)

.

Because F (θ) is strictly increasing, it follows that ϕL is non-decreasing. Moreover, by

construction we have

EF

[
θ̃|ϕL (θ)

]
= ϕL (θ)

for all θ ∈ Θ. Therefore, ϕL defines a monotone partitional outcome πϕL
. Moreover, the con-

ditional distribution of πϕL
over X given any θ ∈ Θ is degenerate, hence EπϕL

[x̃|θ] = ϕL (θ)

for all θ ∈ Θ. The push-forward of F through ϕL (θ) is equal to L by construction and

therefore L is implementable.

Proof of Proposition 10. By Lemma 3, for any implementable outcome distribution π,

the mediator’s revenue is∫
Θ

((
α− γ

2

)
θ − αhF (θ)

)
Eπ [x̃|θ] dF (θ) .

Next, consider the change of variable t = F (θ), or equivalently θ = qF (t). In particular, we

have

hF (qF (t)) = (1− t) q′F (t)

and

Eπ [x̃|qF (t)] = qLπ (t) .

By recalling the definition of wF (t) =
((
α− γ

2

)
qF (t)− α (1− t) q′F (t)

)
, the expected rev-

enue can be rewritten as ∫ 1

0

wF (t) qLπ (t) dt.

Let ext (CV (qF )) denote the set of extreme points of CV (qF ). For every implementable
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outcome distribution π, we obtain

max
π∈∆(X×Θ):π implementable

∫ 1

0

wF (t) qLπ (t) dt ≤ max
qL∈CV (qF )

∫ 1

0

wF (t) qL (t) dt

= max
qL∈ext(CV (qF ))

∫ 1

0

wF (t) qL (t) dt

≤ max
π∈∆(X×Θ):π implementable

∫ 1

0

wF (t) qLπ (t) dt

where the first inequality follows from the first part of Lemma 4, the second equality follows

from the Bauer’s maximum principle and the fact that the objective function in the maxi-

mization is linear in qL, and the last inequality follows from the second part of Lemma 4.

This proves the first part of the proposition. Next, consider the problem

max
qL∈CV (qF )

∫ 1

0

wF (t) qL (t) dt. (43)

This problem admits a solution because of compactness of CV (qF ). Moreover, there exists

a solution in ext (CV (qF )) again by Bauer’s maximum principle. By Lemma 4, for every

solution qL ∈ ext (CV (qF )) there exists an implementable outcome distribution π such that

Lπ = L. By the first part of the proof, π must be optimal for the monopolistic mediator

problem. Moreover, the monotone partition ϕπ corresponding to π is given by

ϕπ (θ) =

{
θ if F (θ) ̸∈i∈N [zi, zi)

EF

[
θ̃|F (θ) ∈ [zi, zi)

]
if F (θ) ∈ [zi, zi)

(44)

where {[zi, z̄i)}i∈N is the unique collection of intervals representing L as in equation 42.

Next, define WF (t) =
∫ t

0
wF (z) dz and fix qL ∈ ext (CV (qF )) as in equation 42 with re-

spect to the countable collection of intervals {[zi, z̄i)}i∈N. Given that qF is strictly increasing,

Proposition 2 in implies that qL solves problem 43 if and only if co (W ) (t) is affine on [zi, z̄i)

for every i ∈ N and cav (WF ) (t) = WF (t) otherwise. The second part of the statement then

follows by the definition of ϕπ (θ) in equation 44.

Proof of Proposition 11. We prove only point 1 since point 2 follows by a completely

symmetric argument. Given that wF (t) is strictly quasiconcave, there exists t̂ ∈ [0, 1] such

that w′
F (t) > 0 if t < t̂ and w′

F (t) < 0 if t > t̂. it follows that WF (t) is strictly convex if
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t < t̂ and strictly concave if t > t̂. Therefore the convex hull of W is defined as

cav (WF ) (t) =

{
WF (t) if t ≤ t∗

wF (t∗) (t− t∗) +WF (t∗) if t > t∗

where t∗ is uniquely defined by

wF (t∗) (1− t∗) = 1−WF (t∗)

when the solution of the previous equation is in (0, 1) and respectively by t∗ = 0 if WF (t) is

convex and by t∗ = 1 if WF (t) is concave. Next, define

qL (t) =

{
qF (t) if t ≤ t∗∫ 1

t∗ qF (s)ds

1−t∗
if t > t∗

.

Then qL is the unique quantile function that satisfies the optimality conditions of Proposition

10 with respect to the single interval [t∗, 1]. Finally, the unique monotone partition ϕL induc-

ing L defined in the proof of Proposition 10 is upper-censorship with threshold θ∗ = qF (t∗).

E Transparency and Credibility

In this appendix, we prove all the statements of Section 6.

Proof of Proposition 12. First, recall that F is an absolutely continuous distribution and

that V is strictly supermodular. By Theorem 2.9 and Remark 2.13 in Santambrogio (2015),

π ∈ ∆(X ×Θ) is optimal for

max
π̃∈∆(Hπ ,F )

∫
X×Θ

V (x, θ) dπ̃ (x, θ) (45)

if and only if it is the unique monotone coupling between Hπ and F , that is the coupling

induced by the monotone map θ 7→ Tπ (θ) = qH (F (θ)). Because Tπ is monotone, it follows

that if π is credibly implementable, then it is monotone partitional. Conversely, if π is

monotone partitional, then by Theorem 2.9 in Santambrogio (2015) it follows that π solves

the problem in equation 45.

The equivalence between (i) and (ii) follows steps analogous to those in Proposition 2 in

Krishna and Morgan (2008). Fix a transparent mechanism (MS, t) where MS is the reporting

space for the sender and t : MS → R is the report-dependent transfer from the sender to
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the mediator. Recall that by Assumption 2, we restrict to deterministic payments and

to mechanisms and equilibria that induce full participation and punishment beliefs. With

this, given a transparent mechanism (MS, t), an equilibrium is a strategy for the sender

αS : Θ → ∆(MS), a strategy for the receiver αR : MS → ∆(X), and a belief map for the

receiver β : MR → ∆(Θ).

We now prove that (i) implies (iii). Suppose that (αS, αR, β) is an equilibrium under the

transparent communication mechanism (MS, t). Recall that because the receiver’s unique

best response is equal to the conditional expectation of the state given their beliefs, it must

be the case that αR (mS) is a degenerate distribution for every mR. For every state θ ∈ Θ,

define

x (θ) = sup {αR (mS) ∈ X : mS ∈ supp (αS (·|θ))} ,

x (θ) = inf {αR (mS) ∈ X : mS ∈ supp (αS (·|θ))} ,

that is, the “largest” and “smallest” actions induced in state θ, respectively. Consider two

states θ1 < θ2. Then we claim that x (θ1) ≤ x (θ2). Suppose by contradiction that x (θ1) >

x (θ2). Fix an arbitrary sequence {xn
1}n∈N ⊆ {αR (mS) ∈ X : mS ∈ supp (αS (·|θ1))} such

that xn
1 ↑ x (θ1). Similarly, fix an arbitrary sequence {xn

2}n∈N ⊆ {αR (mS) ∈ X : mS ∈ supp (αS (·|θ2))}
such that xn

2 ↓ x (θ2). For n large enough, xn
1 > xn

2 . Next, for all n ∈ N, let tn1 and tn2 re-

spectively denote the transfers associated with xn
1 and xn

2 . These are well defined because

each x ∈ x (θ1) is such that x = αR (mS) for some mS ∈supp(αS (·|θ1)) inducing a payment

t (mS). Moreover, if there exists a message m′
S ∈supp(αS (·|θ1)) such that x = αR (m′

S), then

incentive compatibility of the equilibrium implies that t (mS) = t (m′
S). This shows that tn1

and tn2 are well defined. Similarly, by incentive compatibility of the equilibrium we must

have that, for all n ∈ N,
V (xn

1 , θ1)− tn1 ≥ V (xn
2 , θ1)− tn2 .

Because Vxθ > 0, we have that

V (xn
1 , θ2)− V (xn

2 , θ2) > tn1 − tn2

which implies that type θ2 has strictly positive profitable deviation by playing the message

that induce xn
1 and tn1 instead of the one inducing xn

2 and tn2 in the support of their candidate

equilibrium strategy. This directly contradicts the incentive compatibility of the equilibrium,

hence we must have that x (θ1) ≤ x (θ2). In particular, this shows that the map θ 7→ x (θ)

must be non-decreasing.

Next, fix θ ∈ Θ such that x (θ) < x (θ). Then, from the first part of the proof, for all
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θ′ < θ, we have x (θ′) ≤ x (θ) < x (θ) and so the function x (θ) must be discontinuous at

θ. Given that non-decreasing functions can have at most a countable number of disconti-

nuity points, we can have that x (θ) < x (θ) for at most a countable number of points θ.

To summarize, we have so far shown that, in any equilibrium of any transparent communi-

cation mechanism, there exists a unique conditional expectation x (θ), and hence a unique

corresponding transfer t (θ), in almost every state. We now construct an equilibrium under a

communication mechanism with MS = Θ that is outcome equivalent to the original commu-

nication mechanism in the sense that, for almost every θ, the induced conditional expectation

and the resulting transfer is the same, and the outcome is monotone partitional. Consider

the direct communication mechanism (Θ, t).45 Define Φ (θ) = {θ′ ∈ Θ : x (θ′) = x (θ)} to be

the set of states in which the conditional expectation induced is the same as that induced in

state θ. By the monotonicity of x (θ′), Φ (θ) is a possibly degenerate interval. To complete

the proof, let the pure strategy of the agent in the direct communication mechanism be as

follows: for all θ′ ∈ Φ (θ), send message ϕ (θ) = EF

[
θ̃|θ̃ ∈ Φ (θ)

]
. This strategy leads the

receiver to hold posterior beliefs identical to those in the original equilibrium of the indirect

transparent communication mechanism, and so the conditional expectation of the receiver in

state θ is the same in the two equilibria. Thus, this pure strategy equilibrium of the direct

contract (Θ, t) is outcome equivalent to the original equilibrium. Finally, observe that by

construction ϕ (θ) = EF

[
θ̃|ϕ (θ)

]
because ϕ is measurable with respect to the sigma-algebra

generated by the map Φ : Θ → 2Θ. Therefore, ϕ induce a monotone partitional outcome π.

This completes the proof that (i) implies (iii).

For the converse, let ϕ the monotone partition inducing π and define

tϕ (θ) = V (ϕ (θ) , θ)−
∫ θ

0

Vθ (ϕ (s) , s) ds− Sϕ (0)

for some constant Sϕ (0) ≥ 0. Next, consider the direct mechanism (Θ, tϕ) and the corre-

sponding equilibrium such that the strategy of the sender is αS (θ) = δϕ(θ) for all θ ∈ Θ,

the strategy of the receiver is αR (x) = EF

[
θ̃|ϕ

(
θ̃
)
= x

]
for all x ∈ X = Θ, and the belief

map of the receiver is β (·|x) = F
(
·|ϕ

(
θ̃
)
= x

)
for all x ∈ X = Θ. It is immediate to see

that the proposed candidate equilibrium of the transparent mechanism (Θ, t) is indeed an

equilibrium because ϕ is a monotone partition and that tϕ has been constructed by using

standard envelope formula.

45Observe that the first part of the proof showed that the equilibrium transfer is uniquely defined for
almost all θ. Here, with an abuse of notation, we let t (θ) denote the uniquely defined transfer over a
full-measure subset of Θ and let t (θ) = 0 for all the other states.
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F Additional Appendix: D1 Refinement

In this section, we show that, given any communication mechanism, if there exists a corre-

sponding equilibrium that satisfies (1) and (2), then this survives a continuous-state-and-

action version of the D1 refinement.46 First, we observe that the only relevant out-of-path

message for the D1 test is mS = ∅. In fact, suppose that there exists a message mS ∈ MS

that is not in the support of the equilibrium considered. Then we can just redefine the

mechanism so that mS is not available for the sender. The original equilibrium will still be

an equilibrium for the new communication mechanism. Next, we define what it means that

an equilibrium fails the D1 test with respect to mS = ∅.

Definition 10. Fix a communication mechanism (MS,MR, σ) and a corresponding equilib-

rium (αS, αR, β). We say that thus equilibrium fail the D1 test with respect to mR = ∅ if

there are types θ, θ′ ∈ Θ such that θ ∈ supp(β(·|∅)) and

{
x ∈ X : S∗

σ,(αS ,αR,β)(θ) ≤ V (x, θ)
}
⊂

{
x ∈ X : S∗

σ,(αS ,αR,β)(θ
′) < V (x, θ′)

}
, (46)

where S∗
σ,(αS ,αR,β)(θ) is the expected payoff of type θ given the communication mechanism σ

and equilibrium (αS, αR, β).
47

Observe that the two sets in (46) are in X. This follows because the message mR is payoff

irrelevant for the receiver, hence BR(Θ,∅) = X, where BR(Θ,∅) is the set of the receiver’s

bets response for some state θ ∈ Θ and given message mR = ∅.

Lemma 5. Fix a communication mechanism (MS,MR, σ) and a corresponding equilibrium

(αS, αR, β) that satisfies (1), (2), and such that S∗
σ,(αS ,αR,β)(θ) = 0. Then, this equilibrium

does not fail the D1 test with respect to mR = ∅.

Proof. Consider an equilibrium as in the statement. Because by assumption β(·|∅) = δ0,

the only state that we need to check is θ = 0. Therefore, we have

{
x ∈ X : S∗

σ,(αS ,αR,β)(θ) ≤ V (x, θ)
}
= {x ∈ X : 0 ≤ V (x, 0)} = X

where the first equality follows from the assumption that S∗
σ,(αS ,αR,β)(0) = 0 and the second

equality follows from the fact that V (0, 0) = 0 and V is strictly increasing in x. This shows

46See for example Fudenberg and Tirole (1991). See also Rappoport (2022) and Quigley and Walter
(2023) for models that combine mechanism design and information design, that have infinitely many states
and actions, and where the D1 refinement is invoked to refine out-of-path beliefs of the receiver conditional
on no participation of the sender.

47The notation ⊂ means “strict subset of.”
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that equation 46 cannot hold in this case.
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