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Abstract
Release of Information with Imperfect Memory

Ioannis Sarafidis
Yale University
2001

Recent experimental evidence in psychology and neuroscience has established that the
principles of similarity and repetition govern the recall process for episodic memories.
I use these two principles as building blocks in developing a formal model of memory
and explore its economic implications for a wide range of economic and social settings,
including political campaigns, news management prior to [POs, marketing for new
products, emplovee-performance evaluations and public opinion formation.

In chapter 1, What have you done for me lately? Release of Information and
Strategic Manipulation of Memories I start by deriving the memory model. I then
apply the model to an economic setting, by addressing the issue of how one should
time a fixed number of informative events, in order to manipulate the memories that
a forgetful assessor will eventually have. I show that the spacing of events is crucial
for what agents will remember and I characterize the spacing properties of optimal
profiles. The theoretical results translate to normative claims that can be exploited
by, among others, politicians involved in election campaigns, advertisers timing the
airing of commercial spots, managers controlling the release of corporate news and
employees timing their effort prior to a promotion decision.

Chapter 2 extends the model of the first chapter by relaxing the assumption that



the agent times a fixed number of events. Instead, the agent can generate events at
some cost. Such an extension Widens the applicability of the model and it paves the
way for future empirical testing of the model. I show that the driving forces behind
the two models may be different, but the following result is true in both models:
favorable past events, possibly stochastic, will make the agent more eager to release
more favorable events.

The dissertation concludes with chapter 3, Revising Non-Additive Priors. which
considers the problem of updating a convex capacity upon receipt of a signal. Convex
capacities arise in decision theory in an effort to model the Ellsberg paradox: the

psychological finding that people are overly averse to uncertainty.
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Introduction

The underlying motivation behinci this dissertation is an effort to bring insights from
psychology into economics. Until very recently economists had ignored the possibil-
ity of psychological factors affecting decision making processes, because agents were
assumed to be ;ational. However, in recent years there has been a growing interest
in bounded rationality, the idea that people’s ability to make rational choices is lim-
ited by cognitive limitations and psychological biases. The essays in this dissertation
belong to this vein of research, whose goal is to produce more realistig models by
injecting psychological insights about human behavior and cognition into economics.

In chapter 1, What have you done for me lately? Release of Information and
Strategic Manipulation of Memories, I use assumptions based on recent experimental
evidence from cognitive psychology to build a formal model of memory. I then explore
the model’s economic implications by addressing the issue of how one should time a
sequence of informative events in order to manipulate the memories of one’s forgetful
assessor. I believe that this is aﬁ important problem, because in a wide range of
economic interactions, agents are rewarded at some critical date on the basié of an
assessment of their past performance. In many such cases, an objective criterion that

summarizes past performance is not available and, as a result, assessors have to rely



on their memories of past informative events, which are not perfect.

To motivate the results, assume that an incumbent senator faces re-election at
some future date. Public support for the senator depends on the electorate’s memories
of past events pertaining to the senator, such as what side he took in a controversial
dispute, or how he handled a labor union crisis. Suppose, that a few months before
the election, our senator is lucky enough to get a series of positive boosts to his image
from a number of recent events. Now, he has to schedule the announcement of a new
popular tax plan and a public appearance that will generate a lot of positive publicity.
You have just been hired as his political consultant. How do you advise him?

At first glance the problem of information release with imperfect memory seems
trivial; the politician should simply release all good news close to the election date so
that they are memorable. However, the experimental evidence shows that the mech-
anisms behind human memory are more complicated, and the problem of releasing
information becomes more interesting. In particular, the experimental evidence shows
that memory operates on the principles of similarity (cue dependence) and repetition
(rehearsal). Loosely, cue-dependence refers to the phenomenon that current events
trigger memories of similar past events, and rehearsal refers to the fact that recalling
the memory of an event makes it more likely to be remembered in the future. With
cue-dependance and similarity in mind, the politician now faces a trade off. On the
one hand, since people forget, it is wise to time these two events as late as possible in
order to make them more memorabie at the time of the election. I refer to this as the

recency effect. On the other hand, he wants these events to reinforce the existing good



memories of past events. To maximize this rehearsal effect, the two events should be
scheduled as early as possible, to reinforce the “good news”, before these memories
fade away. Optimal decisions are dictated by this trade off between the recency and
the rehearsal effects.

I find that, as this sketch suggests, the timing of events is crucial for what the
assessors remember. In quasi-rational models, it is often the case that the order of
informative signals is important, since it determines how people will perceive future
events. In this model, what is important is not only the order (i.e., which event comes
first and which comes second), but the actual spacing (i.e., the amount of time that
elapses between the two events). The shorter the amount of time between two events
the more effective will the second one be in triggering the memory of the first. This
logic dictates that good news, referred to as successes, should be bunched together in
order to reinforce each other’s memories and, by the same token, bad news, referred
to as failures, should be spread apart. In addition, I show that the optimal rule for
when to release information has a nice simple form. Loosely speaking, we can think
of a streak of stochastic events (both good or bad) creating a “stock” of news. When
this stock is above a certain threshold level, it triggers the agent to try to generate
further successes. These successes reinforce fresh memories of past successes and they
guarantee that past failures will not be reinforced.

The results can be applied to executives managing news prior to an IPO, to advi-
sors managing political campaigﬁs, to advertisers scheduling the airing of commercial

spots prior to a product or movie release, to employees timing their efforts prior to a |
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promotion decision, and to students timing their class contributions prior to the end
of term. An application particularly close to home is the timing of publications and
seminars by junior faculty prior to a tenure decision or by a graduate student prior
to the job market.

The second chapter extends the model to allow for a convex cost for generating
additional events and a continuous choice variable. An extension along these lines
allows us to apply the model to settings where this new set of assumptions is more
relevant. Consider a worker who will be evaluated at some future date on the basis of
his past output performance. Each period he can increase the probability of high, as
opposed to low, output level by exerting more effort. In this case, there is no reason
to believe that working hard today will deplete the amount of effort that you can
exert tomorrow. Instead, assuming that effort is costly is more appropriate. I find
that the driving forces behind this model and that of chapter one are very different.
The assumption that there is no fixed budget is crucial, because there is no longer a
trade off between working hard now or later. However, I find that these two different
models give rise to a similar result, that the higher the stock of past news the more
motivated the agent will be to deliver a new success.

The third chapter, Revising Non-Additive Priors, is joint work with Ricky Lam.
We consider the problem of updating a convex capacity upon receipt of a signal of
known additive likelihoods. Convex capacities arise in modeling the psychological
finding that people are uncertainty averse, also known as the Ellsberg paradox. f‘or

motivation, consider an employer who has a subjective prior over the quality of a



worker and who knows the distribution for output conditioned on each level of quality.
How does she updaté her beliefs regarding quality upon observing some output level?
If her prior is additive, this problem is trivial: Bayes’ rule suffices. This involves two
steps: first, calculate the probability measure on the product space, of pairs of quality
and output, and then use Bayes’ rule to calculate the posterior beliefs for quality.
When the employer’s beliefs are represented by a capacity, calculating a measure
over the product space is no longer so simple.‘ We propose two rules: the first uses
the idea of Choquet integration over identity functions and produces a non-additive
measure over the product space; the second converts the initial non-additive measure
to a set of additive priors, and then applies Bayes’ rule to each element in this set.
We show that these rules are related but are not equivalent. We argue that their non-
equivalence highlights a limitation of non-additive measures. While this limitation
does not matter for the representation of uncertainty-averse preferences, it results in

a loss of information when beliefs have to be revised.
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1.1 Introduction

In a wide range of social and economic interactions, agents are rewarded at some
critical date on the basis Qf an assessment of their past performance. In many ‘such
cases, an objective criterion that summarizes past performance is not available and,
as a result, the agents that provide the assessment, referred to as the assessors, have
to rely on their memories of past informative events. For example, assume that an
incumbent senator faces re-election at some future date. Then, public support for
the senator depends on the electorate’s memories of past events pertaining to the
senator, such as what side the senator took in a controversial dispute, or how he!
handled a labor union crisis. In a labor market setting, the decision of whether to
promote an associate consultant to a VP, or what his bonus should be, may depend
on the memories that his superiors have over his past accomplishments. Similarly,
the success that a new SUV model will enjoy when it is launched depends on the
effectiveness of the advertising campaign that was used to support it.

This paper takes a bounded rationality stance, assuming that imperfect memory
is an indisputable limitation of human cognition. Using assumptions motivated by
research in cognitive psychology and neuroscience, I build a formal model of memory
and then explore its economic consequences by addressing the issue of how one should

time the sequence of informative events in order to manipulate the memories of one’s

!Throughout, male pronouns are reserved for the agents under assessement and female ones for

their assessors.



forgetful assessor. The results apply to any social or economic setting where products
or people undergo periodic assessment.

Motivation

To fix ideas, return to the example of a senator facing an election. If people had
perfect memory, the timing of past events would be unimportant. With imperfect
memory, however, different timing profiles of past events rank differently in creating
a positive image for the senator and making re-election more probable. Furthermore,
assume that the senator can time some events at his discretion, for example he can
choose when to schedule a public appearance on a TV show. How should he, then,
time the sequence of the events which are at his discretion?

Naively one may think that the problem of releasing information to a forgetful
assessor is as trivial as that: successes or good news (i.e., events whose memory
increases final payoffs) should be scheduled close to the critical date of assessment so
that they are more memorable and failures or bad news (i.e., events whose memory
decreases payoffs) should be released as early as possible so that their memories have
sufficient amount of time to decay. However, recent findings in cognitive psychology
suggest that the workings of human memory are more intricate and thus the problem
of releasing information becomes more complicated and more interesting than it first
appears.

In particular, experimental evidence shows that memory operates on the principles
of similarity and repetition. In a few words, more are to be found in the next section,

similarity refers to the phenomenon that current events trigger memories of similar



past events and repetition refers to the fact that recalling the memory of an event
makes it more likely to be remembered in the future. In the psychology literature, the
formal term for similarity is cue dependence and that for repetition is rehearsal. To
see how cue dependence and rehearsal matter assume that a few months before the
election date our senator is lucky enough to get a series of positive boosts to his image
from a number of recent events. In addition, he has to schedule the announcement of
a new popular tax plan and a public appearance that will generate a lot of positive
publicity. You have just been hired as his political consultant. How do you advise
him? On the one hand, since people forget it is wise to time these two events as late
as possible in order to make them more memorable at the time of the election. I refer
to this as the recency effect. On the other hand, you want these events to reinforce
the existing good memories of past events. To maximize this rehearsal effect the two
events should be scheduled as early as possible, to reinforce the existing memories of
“good news”, before these memories fade away. I show that optimal decisions, from
the point of view of thé agent (senator), are dictated by this trade off between the
recency and the rehearsal effects. Describing the origins and the properties of this
trade off is the core of this paper.

Results and applications

I find that the timing of events is crucial for what the assessors remember. In
quasi-rational models, it is often the case that the order of informative signals is
important, since it determines how people will perceive and interpret future events.

See, for example, the story model of learning due to Lam (2000) and the model of



confirmatory bias of R@bin and Schrag (1999). In this paper, what is important is
not only the order (i.e., which event comes first and which comes second), but the
actual spacing (i.e., the amount of time that elapses between the two events). The
shorter the amount of time the more effective will the second event be in triggering
the memory of the first one. This logic dictates that successes should be bunched
together in order to reinforce each other’s memories and, by the same token, failures
have minimal effect when they are spread apart over a long period of time.

In addition, I show that the optimal rule for when to release information has a
nice simple forﬁ. Loosely speaking, we can think of a streak of events (both good or
bad) creating a “stock” of news. When this stock is above a certain threshold level,
it triggers the agent to try to generate further successes. These successes not only
reinforce fresh memories of past successes, but also guarantee that past failures will
not be reinforced.

In an attempt to make the set up of the model less abstract, the paper develops the
main ideas in the election context discussed above. However, the theoretical results
can be applied normatively not only to advisors managing political campaigns, but
to executives managing news prior to an [PO, to advertisers scheduling the airing
of commercial spots prior to a movie or product launch, to employees managing
their effort prior to a pending promotion decision and to students timing their class
contribution prior to the end of the term. An application particular close to home is
the timing of publicatioﬁs and seminars by junior faculty prior to a tenure decision

or by a graduate student prior to the job market.
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Related Literature

This paper belongs to the vein of economic literature that injects psychological
insights on human behavior and cognition into existing economic models, in an at-
tempt to improve their descriptive power. Rabin (1998) outlines the goals of the
general research program. Some implications of imperfect memory for economic de-
cisions have been explored in Dow (1991) and Hirshleifer and Welch (1997). Also,
in a close predecessor to this paper, Mullainathan (1997) builds a model of memory
using the same principles of rehearsal and cue-dependence?®. In this line of work the
focus is on an agent’s own memory impgrfections and on how these can explain often-
observed decision making biases or empirical puzzles, such as inertia, impulsiveness,
the curse of knowledge and over/under reaction in financial markets.

What differentiates my paper from previous work on memory imperfections, as
well as from most of the existing literature in behavioral economics, is my investiga-
tion of the strategic considerations of bounded rationality. Such considerations arise
when a fully rational agent recognizes a cognitive limitation or bias, from which oth-
ers suffer, and he now faces the problem of how to modify his actions in order to
manipulate, or correct, it for his own benefit. In this paper, for example, the senator
recognizes that the electorate suffers from imperfect memory that obeys some princi-
ples and he times the sequence of events in an effort to manipulate the memories that
the electorate will have at election time. From that point of view, the spirit of this

paper is similar to Rabin and O'Donahue (1999). They consider the problem faced

2Mullainathan (1997) uses the alternative term, “associativeness”.
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by a principal in a moral hazard setting, who having recognized that the agent suffers
from time inconsistency, has to identify the appropriate contract that w111 prevent
the agent from procrastinating.

The ideas of the paper are organized as follows; section two summarizes the psy-
chological evidence that supports the assﬁmptions on which I build the model of
memory. Section three is the core of the paper, where I develop the model and derive
the results. Section four extends the model to advertising campaign applications.
Section five concludes and discusses possible extensibns. An appendix contains the

mathematical proofs of the results.

1.2 Experimental Evidence on Memory

In this section, I present an array of experimental evidence to motivate and justify
the assumptions, which I later use to build a formal mathematical model of memory.
The following summary is largely based on Schacter (1996) and Parkin (1993). Even
though, both of these sources have a strong emphasis on the work of theorists adhering
to the so called “Toronto School”, in this paper I use that part of their work which
is fairly non-controversial and shared by most memory researchers.

Until 1960 little was known. Memory is, for the most part, a subjective experience
and as a result its study fell out of the study domain of behaviorism, the ‘dominant
trend in psychology during the first half of the century. However, during the last forty

years cognitive psychologists, neuroscientists and clinicians working with amnesic
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patients have joined forces and have begun to outline some principles that govern
human memory. Two of the stylized facts that have emerged, and are relevant for our
purposes, are that a) rehearsal of the memory of an event facilitates its subsequent
recall and b) memory is a cue dependant process, which implies that current events
can trigger past memories of similar events.

Rehearsal

Clearly, the most important determinant of memory is time. The idea that the
passing of time erodes memories is indisputable, as it is supported not only by casual
observation and introspection, but by controlled experimental evidence. As early as
1885, Hermann Ebbinghaus used himself as a subject and nonsense syllables as the
target stimuli to study the rate of forgetting. He showed that forgetting is fast at
first but it declines as time passes.3

However, the passing of time is not always an enemy of memory. Vast experimental
and clinical evidence suggests that repéated exposure to the memory of an event,
referred to as rehearsal, increases its memorability. In fact, with adequate rehearsal

memories of distant events can be stronger than those for relative recent ones. In a

3Ebbinghaus used nonsense syllables, because, otherwise he reasoned, previous knowledge would
contaminate the recall process. Critics have pointed out that such a task lacks any ecological
validity and can not be fully representaive of human memory. In an effort to examine the effects of
time on autobiographical memories, Crovitz asked subjects to recall a specific event from their past
when presented with various words, such as table. As expected, few of the memories come from the
distant past, with the majority of memories coming from recent periods. This procedure is widely

used in clinical environments and is known as the Crovitz technique.
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typical experiment, two groups of subjects are présented with some stimuli objects,
such as pictures or words. After a short delay the first group is given a recall test.
The second group is given the recall test after a longer delay, but they are guided into
rehearsing the stimuli. It turns out that recall is superior for the second group, even
though, more time has elapsed between the initial exposure to the stimuli and the
moment of recall. In some cases, not only do distant events have a higher probability
of recall than recent ones, but memorability for a single event increases over time as
a result of rehearsal, a phenomenon referred to as hypermnesia. For example, in the
above type of experiment, it has been documented that when subjects are given a
series of recall tests, memory improves after every test.

The way rehearsal increases memorability is also evident in the so called “Serial
Position Curve”. Subjects are presented with a list of words to be remembered.
When the position of the word in the list is plotted against the probability of recall,
we obtain a U-shaped curve. As expected, words at the end of the list have high
probabilities of recall, (recency effect), but quite surprisingly words in the beginning
of the list have higher recall probabilities than words in the middle, (primacy effect).
Psychologists attribute the primacy effect to the fact that words in the beginning of
the list are rehearsed more than subsequent words. This hypothesis was examined by
Rundus (1971) who required his subjects to rehearse words out loud. When plotting
the serial position against the average number of rehearsals he obtained a downward
sloping curve, which fits nice to the hypothesis that the counterintuitive primacy

effect is attributed to rehearsal.
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Brain physiology provides a different a.ngie from which to expla.in the effects of
rehearsal on memorability. Neuroscientists have established that human experience is
fed into the brain by generating new synapses between neurons and by increasing the
strength of already existing ones. Quite naturally then, a memory-experience that is
encountered many times, due to rehearsal, should result in more and stronger synapses
and, consequently, should become easier to access and recall in the future. To verify
this hypothesis, Kandel et.al (1995) experimented with the sea slug Aplysia. One of
its characteristics is to react to unpleasant stimulus by withdrawing its gill, with the
response disappearing after a few minutes. However, as the experimenter increases
the number of unpleasant stimuli, the slug withdraws its gill for longer periods of
time. This suggests that repeated‘exposure to the stimuli makes its memory more
resistant to time. More importantly, they show that this effect arises because as the
number of shocks increases, an enhanced release of a neurotransmitter strengthens
the connection between the neurons receiving the shock and the ones responsible for
the gill withdrawal.

Finally, clinical evidence also highlights the important role of rehearsal. It is
common for amnesic patients to suffer from severe loss of memory for recent events
either prior (retrograde amnesia) or after (anterograde amnesia) the onset of their
condition, only to have no difficulty in recovering memories from their distant past.
A possible interpretation according to Schacter, is that “people talk about and think
about their past experiencesj the older the memory, the greater the opportunity for

such post-event rehearsal.”
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Memory as a cue dependant process

A second theme that has emerged from memory research is that the present en-
vironment, under some conditions, functions as a cue that facilitates recall of similar
past events. Watching a Brady Bunch episode, for example, can be very effective in
stimulating recall of long buried childhood memories.

More formally, Tulving and Osler (1968) conducted the following four phase ex-
periment. In phase 1 they presented subjects with a list of target words (engine)
paired with a closely related cue word (black). In phase 2, subjects were given a list
of words that were very closely associated with the target words of phase 1, (steam),
and subjects were asked to produce words they associated with these new phase 2
words. Of course there was a high probability that subjects would generate the phase
1 words. In phase 3, subjects were asked to look at the list they produced in phase
2 and determine which words they recognize as the target phase 1 words. Finally, in
phase 4, subjects were presented with the cue words of phase 1 and asked to recall
the target words with which they were paired. Quite surprisingly it was common for
subjects to recall words in phase 4, but they failed to recognize these same words in

phase 3.4

4The idea that memory is a cue dependant proccess goes back to Semon in 1904. However, mainly
because of his insistance to link memory to evolution his ideas were ignored. Tulving rediscovered
Semon’s original idea in an effort to disprove recognition generation models, according to which
memory operates on two stages; first the brain generates a list of possible candidates, and then each

candidate undergoes a recognition process. If that was the case, it would not be possible for subjects

16



To explain the results of their study, Tulving et. al. argued that memory is a
cue dependant process, where current events and experiences can bring to mind past
memories, even memories of distant events that appeared to be forgotten. Further-
more, Tulving and his colleague Thompson (1973) put forward the encoding specificity
principle according to which, the way we approach and encode an event when it oc-
curs determines what type of cue will be effective in facilitating its subsequent recall.
When there is a high degree of similarity and overlap between the way we encoded
an experience (or event) and the present environment, then recall will be superior.

However, similarity between the pfesent and the past, is not always defined in a
literal sense. What differentiates an effective from an ineffective cue is not always
literal similarity between the cue and the target, but whether the cue is successful in
reproducing the same type of emotion or mental image as the original episode. For
example, someone with my greek background can be elicited to recall an episode form
Homer’s “Iliad” by the mention of the word “Somalia”. The reason is that, as to most
Westerners, the mention of the word Somalia brings to mind the well publicized scene
of Somalis dragging the body of an American soldier in the streets of Mogadishu, just
like Achilles dragged the body of Hector behind his chariot in Troy.

To summarize, overwhelming experimental evidence from cognitive psychology
suggests that memory operates on the principles of repetition and similarity. Memo-
ries which are encountered repeatedly become increasingly accessible for future recall

and current events function as cues to facilitate recall of similar past events. These two

to fail to recall words in phase 3 only to recall them in phase 4.
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well documented stylized facts, referred to as rehearsal and cue dependance, provide
the basic ingredients with which I build the formal model of the next sections.

Some additional remarks

The discussion up to this point may have given the false impression that memory
imperfections are limited to our inability to remember or recognize events that oc-
curred in the past. However, psychology research with enormous judicial and social
repercussions reveals that humans suffer from a different memory imperfection; that
of incorrectly “remembering” events that never occurred. In the famous “remember
the time that...” study Elizabeth Loftus (1993) tried to compare childhood memories
of siblings. One sibling was briefed by the psychologist and would then describe a
fictitious but detailed experience, such as being lost in the mall, to the other sibling,
in the form: “remember the time that you were lost at the mall, and you were found
by a policeman, and our mother was so mad at you...”. In numerous cases subjects

agreed that they remembered these fictitious events. ® ©

5Some unfortunate people learn about such memory imperfections the hard way when they are
falsely accused of committing some hideous crime based on the testimony of eye witnesses.Schacter
(1996) discusses a nototious 1978 trial, where Fank Walus was falsely accussed of being a Nazi
war criminal, based on numerous testimonies that linked him to specific events. One ”witness”
"remembered” that Walus killed two children and their mother, another how Walus brutalized his

father.

6Along the same lines, there is strong evidence to suggest that the way we approach the past may
have an effect on what type of memory we derive from a certain event. Consider for example the

last time you were at a party. If you see yourself in the picture you have an observer perspective, as
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Such findings may be perplexing for those who want to believe, that the brain
is like a computer hard drive storing events as they ‘occur, with memory being a
flash light that enables us to search through and access the contents of the hard
drive. Despite its intuitive appeal, such a metaphor, which implies a one to one
correspondence between stored memories and realized events, is not corréct- Rather,
some psychologists theorize, memory relies heavily on reconstruction. In other words,
memories, instead of being actual snapshots of reality, they are only fragments of the
past. These fragments of the past interact with previous knowledge and elements of
the present, such as our desires, biases and motives to produce the experience of a
memory.

As a result, a complete model of memory should ideally focus not only on factors
that affect recall of past events, but factors that could probably lead to inventing
memories of events that never occurred, or memories that are only partially faithful
to reality. I see the absence of these factors from the model of the next sections as
a limitation. However, since psychologists have not yet identified any undisputable
principles and stylized facts behind false memories formation, as they have done with

the processes of encoding and recall of real memories, it is a limitation we have to

opposed to a field perspective in case you see the scene the same way you saw it when it occurred.
In experiments people assume a field perspective for emotionally charged memories and an observer
perspective for more objective type of episodes. More surprisingly however, when you direct people
to switch from the field to the observer perspective, these same memories have a reduced emotional

intensity.

19



live with.

1.3 The Model

To fix ideas, return to the example of the introduction, where an incumbent senator
faces re-election at some future date 7. During the period leading to the day of the
election, T, the electorate observes a series of events pertaining to the senator’s pop-
ularity, which are assumed to be of identical importance and strength, and for the
moment, only beneficial to the senator’s image. Such events could be for example,
how he used his negotiating skills to avoid an airline strike on Thanksgiving, an an-
nouncement for a state tax cut, his instrumental role in passing a popular legislation,
etc. Re-election is assumed to be more probable the more of such events the electorate
remembers at date 7. When memory imperfections is not an issue the timing of these
events is immaterial. However, if the electorate forgets, different timing profiles rank
differently in making re-election more probable. We can ask, for example, whether
re-election is more probable when a certain number of events are spread apart in
regular intervals, or when they are all bunched together sometime in the middle.
More interestingly, if we are in a stochastic environment where events are generated
by some random process, but at the same time the senator has some control on the
timing of some events, how should he then, or his campaign team, time the release of
those events which are at his discretion?

The first step in addressing these issues is to model explicitly the memory technol-
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ogy. The next subsection formalizes the problem of information release just described
and develops a simple model of memory, that incorporates the findings of the exper-
imental evidence discussed earlier. For the moment, I restrict attention to the case
where all information comes in the form of good news, i.e. events whose memories

increase final payoffs. Later on, I generalize to the case of both good and bad news.

1.3.1 The Basic Set up

Time is discrete and indexed by t = 1,2,3..., T. In each period ¢ < T, an event e, may
be realized, in which case we say we have a success and‘ we write e, = 1, as opposed
to e, = 0 when the event is not realized, that is e, € {0,1}. At the end of the last
period T, we have obtained a history e = {e;, ey, ..., er} of past realizations of the
events e;.

To model that recall is imperfect, let M} be the memorability, or strength, of
the memory e; = 1 at time £. Since a realization of an event can have meaningful
memorability only after it has occurred, M} = 0 for all ¢ > ¢, and we normalize
M =1. At time T, an agent (referred to as the assessor) who has been observing the
realizations of past events remembers a period 7 success only with some probability,
using the event e; = 0 as the default memory. I refer to this probability as the
recall probability for success i, and I assume it is some increasing function of the
memorability of success ¢ at time T, M.

By modeling the memory technoldgy this way, we implicitly assume that thé,

assessor can only forget successes that actually happened and can not invent memories
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for successes that never happened. Also, in using e; = 0 as the default memory in
case a period 7 success is forgotten, we interpret the event e, = 0 as a non- event, i.e.,
if e, = 0 then nothing happened that period. Later on, I generalize to the case where
the event e; = 0 is interpreted as the agent failing to deliver a success.

Next, I invoke the experimental results on memory, discussed in the previous sec-
tion, in order to model the evolution of M over time. The fact that memories fade
away with the passing of time dictates that M decreases with time. In particular,
I assume that memories decay exponentially at a constant rate (1 — p). More inter-
estingly, however, the experimental evidence suggests that similarity and repetition
increase memorability. In the context of our simple model, this translates to the
fact that a successful realization today can trigger past memories of successes. As
these past memories get triggered and rehearsed they become more memorable. This
is incorporated into the model by assuming that a success at time ¢, will enhance
the memorability of past successes, the enhancement being bigger for more recent
successes. To formalize this, I define b to denote the enhancement (boost) to the
memorability of success 7 by a possible success at time ¢.” The size of the increment
to the memorability of an event depends on the time that has elapsed between the
event itself and the later similar event that rehearses it. To capture this I assume
that the rehearsal of an event from time 7 by a similar event at time £+ 1 is a fraction
x < 1 of the rehearsal of that event by a similar event at time ¢; that is bi,, = xbj. It

is also natural to assume that the increment to the memorability of a period ¢ success

7As with M}, b} = 0 for all i > t and we normalize b} = 1.
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from a success at t + 1 is less than its current memorability thus x < p®. As long as

1 < t, all this can be neatly summarized in the following pair of equations,

My = pM; + b I{e =1} (1.1)

b§+1 = Kb (1.2)

where I is the usual indicator function, i.e. I{e, =1} =1 if e; = 1 and 0 otherwise.

Recall that the number of successes that a forgetful assessor actually remembers is
a random variable, with upper bound the actual number of successes, Y ~;_, I{e; = 1}.
If the probabilities of recall are proportional® to the memorabilities at time T, Mk,
then the ezpected number of successes that the agent recalls at time T is proportional

to the sum of the memorabilities at time T, denoted by Ar = Z;T=1 M:.. Using (1.1)

and (1.2) together with the initial conditions M} = b = 1 and summing over ¢ we

8Note that at time t + 1 the memorability of a period ¢ success is p.

9The memorability of a success can never be greater than ;1— , for any rate of memory decay

—-K

p- Therefore, chosing the constant of proportionality to be (1 — k), or smaller, guarantess that the

recall probabilities are well defined.
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can work out the evolution of A over time!°:

t+1

t : t
1 = Z M + e =1} = Z[PMZ + I{err1 = 1}bp] + I{er = 1}

i=1 i=1 i=1

t t
= oYM+ e = 14 Y b

=1 =1
t ¢
= p Z M} + I{epr; = 11 + rcz bi.) and
=1 ‘ i=1

t+1 t ¢
S0 = bt K =1 =3 H ¢ T =1

=1 i=1 i=1

If we define S; = Y _-_, b}, then we can rewrite the last pair of equations as

At-i-l = pA,, + I{€t+1 = 1} - (1 + ESt) (1.3)

SH—I = .‘ng + I{€t+1 = 1} (1.4)

Casting the model in terms of this new pair of equations allows for a different
interpretation. Memory decay, embedded in p, can be thought of as a discount rate
on the past, rather than on the future. Then, one could think of A, as a running total
stock variable that measures the number of successes that have occurred up to time
t, with past successes being “discounted” at rate (1 — p). More importantly, however,
when a new success is realized the stock A, is increased, but the incremental effect
of a new success has two components. A direct effect (plus 1), originating simply

from the fact that a new success has been realized, plus an indirect effect, (plus kS;)

10For notational convinience it is useful to define M} and b} even for events e; = 0, and set them

at zero for all values of t.
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coming from the fact that the new success triggers memories of past successes and
therefore become more memorable.

Our reduced form equations (1.3) and (1.4) give a convenient way to record this
indirect effect. One might think thaf the indirect effects of a new success would
depend on the exact sequence of zeros and ones that have occurred up to that point.
In fact, however, the variable S, acts as a summary statistic for the sequence: the
greater is S; the greater the indirect effect from a new success will be. We can think of
Sy =Y :_ bi as a “rehearsal stock”. Just as the running total stock A, decays at rate
(1—p), it is as if the rehearsal stock S; “decays” at rate (1—x). Our earlier assumption
that the rehearsal of an event from time 7 by a similar event at time ¢ is less than the
current memorability of that event, translates to saying that the rehearsal stock S,
decays a faster rate than the actual stock 4; (k < p & (1L — k) > (1 — p)).

From (1.4) it should be straightforward to see that S is a sum of powers of . To
see the connection between the actual vector of past realizations and the summary
statistic S;, note that the n®® power of x is present in S; if and only if a success
occurred in period ¢ —n. The fact that each point in time we can summarfze the past
in a stock variable, rather than having to carry the whole vector of past realizations, is
clearly an attractive feature of the model, especially given the fact that the pair (1.3)
and (1.4) is derived from the structural formulation of the M} and the b} equations,
which are, in turn, motivated directly from the psychology literature.

The rehearsal stock S; ma& rehearse a ‘memory for readers who are familiar‘with

models of addiction, as in Becker and Murphy (1988); growth with endogenous pref-
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erences, as in Ryder and Heal (1973); or Constantinides’ habit formation (1990). In
this line of work, the marginal utility of éonsumption depends on past levels of con-
sumption. Similarly, in the present model, the effect of a new success depends on
the stock of past memories as summarized by S;. The more vivid past memories are,
i.e. the higher the rehearsal stock S; is, the more effective a new success becomes
in triggering them. However, in this memory model the rehearsal stock S, is not
imposed exogenously. Rather, it is a variable that comes out in the reduced form (A4,
and S, equations) as a consequence of assumptions on the structural model (M; and
b: equations). Some further similarities between our memory model with the earlier
literature on addiction and habit formation, will become more apparent and further
discussed in a later section when I extend the present model to cover advertising
applications.

Some readers may find it useful to work through the following example.

Example 1. Let T =4 and e = (1,1,0,1). Let us first calculate A; using (1.1) and
(1.2), and then using the reduced form ezpressions (1.3) and (1.4).

By definition, M| = 1 and b} = 1. After one period, memorability decays to
p, but at the same time the realization e; = 1 boosts the memory of e; = 1 by
b} = &, so that M} = p + k. In period three memorability simply decays to give us
M} = p(p+k). The success in period 4 adds a boost of b, = k3, to the memorability that
has decayed for one more period for a total of M} = p*(p+k)+«3. Similarly, M3 =1,
M} = p, M} = p? + k2, and M} = 1. Again, by definition, Ay = M} + M; + M} =
PP+ k) +R3]+ [P +r]+1=p+p?(1 + k) + 1+ K2+ K

26



Now using (1.8) and (1.4) we have A; =S; =1; Ay =p+ (1 +£K), S2 =1 +kK;
A3 =plp+1+k), S3 = k(1 +kK). Finally, Ay = p*(p+1+£K) + 1+ k21 +x) =

P2+ (1 + k) + 1+ k2 + K3, as it should be.

As final remark, in the present set up, successes do not enhance past enhance-
ments, that is there are no second order effects from rehearsal. In the example above
the event e; = 1 enhances the memorability of e; = 1 by 3. However, the enhance-
ment would still be k3 even if we had e; = 0, which would no longer reinforce the
memory of e; = 1 in period t = 2. It is straightforward to include such second order
effects by letting S;y1 = kS; + I{e;+1 = 1}(1 + &S;). The nature of the following

results remains unchanged.

1.3.2 Optimal Profiles and Properties of the Model

Suppose now that an agent (senator) can exert some influence over the process that
generates the realizations of the events e, by making a choice c; between acting or
waiting, so that ¢, € {Act, Wait}. In case he acts he secures a success in that period,
whereas, if he waits, a success occurs stochastically, with probability p < 1. At time
T, the assessor (electorate), who has been observing the realizations of the events e,
rewards the agent (senator) on the basis of how many successes she remembers that
the agent has produced.

In addition, the agent is constrained by 3°;_ I{c; = Act} = B < T, that is he
can act for at most B periods. Such a constraint could refer to the fact that the
agent is “sitting” on B number of news which he can release at his discretion, as a
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politician who can choose when to announce a tax cut and reduction in the crime
rate. Alternatively, B could be a stock of effort or energy that is depleted every time
the agent acts in order to increase the pfobability of obtaining a success. Such an
interpretation may be more relevant for an employee-performance evaluation, where
an employee can affect his output quality, which can be either high (e, = 1) or the
usual status quo (e; = 0), by exerting high (c; = Act) or low effort (c; = Wait).
What is then the optimal action profile over time?

To a risk neutral agent, the optimal profile is deﬁﬁed as that profile that maximizes
Ar, the aggregate memorability of past successes at time T. More formally, the agent
solves the following program!!;

max Ar : (1.5)
st. Ar = pAc+I{e1 =1} - (1 +kS,)
Sir1 = kS +I{e;1 =1}
Prle;, = ligg=Act)=1
Pr(e;, = 1llcg =Wait) =p
T
and » I{c: = Act}=B

=1

The initial condition Sy may be greater than zero if at the time the agents first

encounters the problem there exists already a relevant history of events.

1Tn a more general fomulation we could assume that Pr(e; = l|c; = Act) = q, where p< ¢ < 1.
This complicates the arguments in the proofs but the nature of the subsequent results remains

unchanged.
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We can cast the above problem in a more fanﬁliar setting by letting V' (S, n, 7) be
the expected continuation payoff, assuming that choices are made in an optimal way.
There are three state variables: (S) the rehearsal stock which summarizes the past
history of events, (n) the number of periods that the agent can set c¢; = Act before
he exhausts the constraint 3"~ I{c, = Act} = B, and (7) the number of periods left
until the end. Notice that the running total stock variable A is not a state variable,
since the rehearsal stock S carries all past information which is relevant for optimal

decisions. Then, at time ¢ = 0 we face'?
V(Se, B,T) = max{V;t(So,B,T), Viwait(So, B, T)} (1.6)
where Voot (So, B, T) = pF (14 £Sy)+V(1 + kS, B—-1,T—-1) (1.7)
Vaait(So, B,T) = plpT (1 +&So) + V(1 + £So, B, T — 1)] (1.8)
+(1 —p)[V(kSe, B, T — 1)]

Since k < p'3, there exists a textittrade off between acting in any period ¢ rather
than in a subsequent period, say ¢ + k. Acting in period t + k is preferred from
a textitrecency point of view as successes closer to period T are more likely to be
remembered. However, acting in period ¢ is preferred form a textitrehearsal point of

view, as early successes are more powerful in reinforcing fresher previous memories.

The following example clarifies this observation.

Example 2. Let T = 2, B = 1, p = 0 and Syr_; =S . Here, the agent has one

121f n = 0, acting is not an option, so V,.:(S,n,7) is defined only as long as n > 0.
13For k > p, the problem is trivial and it is optimal to act the last B periods.
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available action with two remaining pertods. We must choose between acting early in
the penultimate period T — 1, or waiting and acting in the last period, T. If he acts
early, the resulting profile will be S |1, 0, where S‘ | denotes the rehearsal stock entering
the decision problem. If he waits the resulting profile will be S |0,1. The respective
continuation payoffs from these profile are:

S11,0 - p(1+« S)

510,1 > (1 +K2%25S)

Clearly, the recency effect (p < 1) favors waiting and acting the last period. The
rehearsal effect, however, favors acting early. An early success adds to the contin-
uation payoff an indirect effect of k in period T — 1 which decays for one period,
contributing a total of pk, as opposed to a late success that adds only k2. If S is above

the threshold of ﬁ, then acting early is optimal.

The logic behind this example can be generalized to the multiple period, multiple
action, stochastic (p > 0) case, yielding a simple rule for choosing optimally. Optimal
choices are driven by the trade off between the recency and the rehearsal effects.
When the rehearsal stock is above a certain threshold, the rehearsal effect dominates
over the recency effect and acting is preferred to waiting. The critical thresholds
that trigger the agent to act depend on the number of periods to go, 7, the number of
available actions, n, as well as on the decay parameters p and k. When there are fewer
periods to go, early successes are more attractive because there is now one less period
of memory decay, and as a result a lower rehearsal stock is needed to induce acting
early. The comparative statics with respect to the othér variables are less obvious
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and their discussion is postponed until later. All this ‘is formalized in the following
proposition, proved in the appendix |

PROPOSITION 1 (Thresholds) For every value of number of periods to go, T, and
number of actions still available, n, with n < T, there exists a threshold rehearsal
stock, H(t,nl|p, k), such that it is optimal to act if in period t and only if S >
H(r,n|p, k). Moreover, the thresholds are increasing in T; that is the fewer the periods

to go, the iower the rehearsal stock need be before it triggers the agent to act.

On the road to describing the optimal profile in greater detail it will be useful to
use the following lemma.

LEMMA (Acting increases the stock of teheatsal) Forany k <1,1+kS>S.

The proof is straightforward. Recall that S is a sum of powers of . Then, S is at
most . Rearranging S < ;1 yields the result. This result can also be understood
in an intuitive way. Assume that at time ¢ we have observed a certain history of
events, call it e’. A possible success in period t + 1 will boost all successes in e’. The
sum of these boosts will be «S;. Assume now that we observe a success in period t+1.
Now, a possible success in ¢ + 2 will boost all successes in e and the ¢ + 1 period
success. The sum of these boosts will be 1 + «S;. To see the result in the lemma,
observe that the ¢+ 2 period success boosts the t+1 period success by (weakly) more
than the period ¢ + 1 success boosts the most recent success in ef. Similarly, the ¢ +2
period success boosts the most recent success in ef by (weakly more) than the period
t + 1 success boosts the second most recent success in €' and so on.

We can now give a more precise characterization to the structure of the optimal
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profile. It turns out that it is never optimal to act in period ¢, then wait for some
k periods and then act again in period ¢ + k + 1. In the optimal profile, the periods
that the agent chooses to Act are bunched together one after the other. Therefore,
once the rehearsal stock passes the threshold level for some number of periods to go,
T, and number of available actions, n, we keep on acting until the supply of available
actions, B, has been exhausted.

PROPOSITION 2 (Bunching) If it is optimal to act in period t, it is also optimal to act
in period t+ 1. More formally, for any level of rehearsal stock S, number of available

actions n and periods to go T, with0 <n < 1,
V(S,n+1,7+1)=Vu(S,n+1,7+1) = V(1 +&S,n,7) = Vou(l + &S,n,7)

The formal proof is in the appendix!?, but the following example illustrates the
intuition behind the bunching structure of the optimal profile. This intuition is also

pivotal in understanding the forces that drive many of the results of this paper.

Example 3. Consider the case of T = 3,B =2, p =0 and Sy > 0. There are two
available actions and three remaining periods. We can act the first two periods, the

first and the last period, or the last two periods. For each case we obtain the following

141f we assumed instead that Pr(e; = 1|c; = Act) = q > p, we would obatin the following similar
result: Assume you act in period ¢ and you obtain a success. Then, it is optimal to act in the ¢ +1

period.
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profiles together with their respective continuation payoffs

e : Soll,1,0 = p*(1 + &Sp) + p(1 + & + K£%So)

’

e : S[1,0,1 = p*(1 +£So) + (1 + &* + £*Sy)

"

e : S5|0,1,1— p(l +£%So) + (1 + & + «3Sp)

I show algebraically that €, i.e., the profile where the successes are not bunched to-
gether, can not be optimal. It will be dominated by e, €”, or both.

Assume that € 1is preferred to e. Then,
(1 —0) > (p— K)&(1 + £So) (1.9)
If € is also preferred to €, we have
(1= p) + (1= k) < (o~ m)xSo (1.10)

Now using the fact that 1 + kS > S, it is immediate to see that (1.9) and (1.10)

can not hold simultaneously.

Now let us recover what (1.9) and (1.10) say in words. As before, there is a
recency effect and a rehearsal effect. The recency effect dictates that successes be as
late as possible. The rehearsal effect has two components: rehearsal of past successes,
which requires successes to be as early as possible, and rehearsal from possible future
successes that works in the same directioﬁ as the recency effect.

The history profile € can be obtained from e by moving the last success from

period T — 1 to period T. Thus, comparing the histories e and e is equivalent to
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asking whether it is optimal to act now rather than one period later given a stock of
1 + kSp. Acting early is clearly a “good” move from a past rehearsal point of view
(RHS of (1.9)) but not from a recency point of view (LHS). The effect of future
rehearsal does not come into play here. Similarly, the profile ¢” can be obtained from
¢ by moving the first success one period later, which is equivalent to asking whether
it is optimal to act now rather than one period later when the stock of rehearsal is Sy
and there is a future success in the last period. Again, acting early is a “good” move
from a rehearsal point of view (first term on the RHS of (1.10)), a “bad” move from
the recency perspective (LHS) and a “bad” move from the point of view of future
rehearsal (second term on the LHS). To complete the argument, observe that the
recency effect is of the same relative magnitude in both cases, the rehearsal effect is
stronger in the first case (1 + &Sp > Sp), and the effect from future rehearsal exists
only in the second case. Therefore, if € is preferred to e despite the large rehearsal
effect, it can not be the case that €’ is preferred to €.

It may also be useful to think of the bunching result as a statement regarding
the nature of the thresholds. If an agent decides to act with 7 remaining periods,
the next period decision involves one less period to go and one less action available.
We know that thresholds are increasing in the number of periods to go, 7, but we do
not know anything concerning the comparative statics with respect to the number
of available actions, n. Nevertheless. the bunching result allows us to describe how

thresholds evolve when the number of periods to go, 7, and the number of available
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actions, n, together decrease from one period fo the next. To see that, notice that
V(S,n+ Lr+ 1) =Veu(S,n+1,7+1) & S>H(T+1,n+1|p,K)
Having acted the stock of rehearsal has now evolved to 1 + «S. Similarly then
VA +&S,n,7) =Vou(l + kS, n,7) & 1+ &S > H(T,n|p, K).

Combining the last two inequalities yields the following corollary.
COROLLARY 1 The thresholds satisfy 1 +kH (T +1,n + 1|p, k) > H(7,n|p, ).

The result refers to the rate at which thresholds change with the number of avail-
able actions and periods to go, n and 7. In particular, as the number of available
actions, n, and the number of periods to go, T, together decrease from one period to
the next, the thresholds do not necessarily decrease. If they increase, however, they

can not do so faster than a ceratin rate.

1.3.3 The non-stochastic case

Some additional results can be proved for the case where p = 0 that is, a success is
obtained if and‘ only if the agents acts. This problem, though a special case, arises
when you are given a past history of events and B successes that you can place
in T periods in order to construct the history that maximizes Ar. To give a real
world flavor, assume again that at time t = 0 you are hired as a political consultant
to an incumbent senator facing re-election in period 7. She faces a past history of
events pertaining to her reputation (summarized in Sp) and she has B identical,
and beneficial to her reputation, evénts /announcements at her disposal that she can
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release any time before the election. Unlike before, there is no possibility of chance
good news if none are released. What do you advise her? By the earlier proposition,
we know that the B successes will be bunched together in consecutive periods. The
following result allows us to say even more.

ProprosiTION 3 (Either/Or) When p = 0, the optimal profile is to act the first B or
the last B periods.

The intuition for this result, proved in the appendix, is that rehearsal adds con-
vexity to the model. Assume for simplicity that B = 1 and that acting the second
rather than the first period is preferable. This means that the rehearsal effect from
the initial stock Sy is not enough to offset the recency effect. However, in deciding
whether acting the second or the third period, the rehearsal effect is even smaller,
since now the stock is only (kS;), whereas the relative magnitude of the recency effect
is the same as before. This means that, it will be preferable to act the third rather
than the second period and so on until the end. This logic generalizes for B > 1.

This result simplifies significantly the task of computing explicitly the thresholds,
since for every value of available actions n and periods to go 7 we only need compare
the continuation payoffs from acting the first n periods as opposed to the last n. Such
comparisons allow us to give the thresholds H (7, n|p, k) in closed form, and carry out
the comparative statics.

PROPOSITION 4 (Thresholds in closed form) When p = 0, the critical thresholds

H(r,n|p, k) satisfy

1—r™ n__n 1
a) H(t,n|p, k) = = = =
H ’ (pr—n__xr-»n) ne"’—n"

p—r
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b) H(r,n|p, k) is decreasing in the rate of memory decay, p
c) H(t +1,n+ 1|p,k) > H(7, n|p, k)

The first fraction in (a) shows the tension between the recency and the rehearsal
effect. The numerator is the benefit from acting the last n periods (recency), whereas
the denominator captures the benefit from getting a higher rehearsal boost by acting
the first n periods (rehearsal). The second fraction, does not depend on the number
of periods to go, 7, and simply adjusts for actions still available, n, which is also the
length of the string of success to be bunched. In particular, assume that we are in the
beginning of period t—n+1, with stock «S;_,, and we see n consecutive successes. The
numerator of the second fraction is the effect on A, ‘from the n consecutive successes
in periods ¢t — n + 1 through ¢, ignoring the effect from the rehearsal that these n
successes will induce on stock S;_,. This rehearsal effect is the denominator.

Thresholds are decreasing in p, the rate at which memory decays, because a higher
p makes the recency effect less pronounced, thus increasing the attractiveness of acting
early for every level of stock of rehearsal.

The third statement of the proposition, H(7 + 1,n + 1|p, k) > H(T,n|p, k), says
that as the number of periods to go, 7, and the number of available actions, n, together
decrease from one period to the next, the critical threshold that triggers the agent to
act decreases. This condition proves the bunching result for the special case p = 0
and it is in fact a stronger statement. To see that, recall that bunching goes through

as long as the critical thresholds decrease or at least do not increase fast enough!s,

15This was shown in the corollary, according to which, bunching requires that the critical thresh-
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as n and 7 together decrease from one period to the next.

The fact that H(7+1,n+1|p, k) > H(1, n|p, k) does not imply that thresholds are
increasing in the number of available actions, n. It turns out that tﬁe comparative
statics with respect to the number of available actions, n, are ambiguous. Sceptic
readers may convince themselves by verifying that H(4, 3|0.95,0.3) < H(4,2[0.95,0.3)
(decreasing in n) and H(3,2]0.95,0.3) > H(3,1[0.95,0.3) (increasing in n).

In light of the above observation, that thresholds are not increasing in the number
of available actions, n, the main bunching proposition is more surprising than it may
first appear. To see that, assume that with stock S, n + 1 available actions and 7+1
periods to go, it is optimal to act, that is V(S,n+ 1,7+ 1) = Vou (S, n + 1, 7 + 1).
Then, next period’s decision involves a rehearsal stock of 1 + kS and 7 periods to
go both of which favor acting by more than S and 7 + 1 favored acting in the first
period. This is because thresholdé are increasing in 7,the number of periods to go,
and because 1 + kS > S. However, having acted in the first period, the second
period decision involves n < n + 1 available actions, which may work in the opposite
direction, decreasing the attractiveness of acting. The bunching proposition says that

this last effect can not dictate choices, as it will always be offset.

olds satisfy 1 + kH(r + 1,n + 1{p, &) > H(r,n|p, k).
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1.3.4 Allowing for bad news

Up to this point we have been assuming that all news is good news. The nature of
information conveyed by realizations of the event e, is either beneficial (e, = 1), or
neutral (e, = 0) to the agent under assessment. In this section, I extend the model
to include bad news, as realizations of the event e, that are harmful for the agent and
whose effect he seeks to minimize.

Consequently, I include a third possible realization e, = —1 for the events e,
so that e, € {—1,0,1}. I refer to e, = —1 realizations as failures. The memory
technology that determines the recall probabilities for successes and failures is the
same as before, with failures rehearsing only past failures and successes rehearsing
only past successes. That is, the memorability for a period i failure (success) is

governed by!®

fo = pM; +bi I{ewy = -1} (1.11)

Kb} (1.12)

i
t+1
Assessment at period T depends now on both the number of successes and the

number of failures that the assessor remembers at time T. Let A7 = 3 ;cfije=—1} M.
(and AT = 3. tiie.=+1) M%) be the some of all memorabilities of all failures (successes)

up to time ¢.!” Now, the reduced form version of the model consists of two pairs of

1635 opposed to I{e;4+1 = 1} for successes
17Recall, that when the recall probability for a period i failure (success) is proportional to its

memorability at time 7', the expected number of failures (successes) that the assessor remembers at
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equations; one for successes and one for failures

Al = pAl+ I, - (L+kS]) (1.13)
Sl = s&SI+I, (1.14)
where j = — denotes failure and j = + denotes success, so that Sy =3, ;oo 1y b:

and S = > ic(ilei=+1} bi are the rehearsal stocks for failures and successes respec-
tively.

Assuming that the agent maximizes the net number of successes that the assessor
will remember on expectation at time 7" and specifying the following probabilities for

the event e; conditional on choice at time ¢, the maximization problem becomes

max A} — A7 (1.15)
st. Ay, = pAl+ I, -(1+«S])
Sia = wSI+I,

Pr(et = 1|Ct = ACt) =1
Pr(e, = | lice = Wait) = p;
Pr(e;, = —1jcc =Wait) =p_;

t
and Y I{c. = Act}=B

=1

where j = +, —, I;, I;;, are the indicator functions for e, = land e, = —1 respec-

tively and p; +p_; < 1.

time T is proportional to the sum of the memorabilities of all faiiures (successes) at T';

40



Clearly, the model including only good news is a special case (when p_; = 0) of this
more general model. I chose to discuss the special case first in an attempt to bring out
the main ideas in the least complicated setting possible. In this subsection, we want
to explore how the addition of failure events changes the nature of the existing results.
The intuition developed in the context of the simpler, success-only, model suggests
that optimal decisions should somehow depend on the rehearsal stocks, S* and S~.
One might think that since the objective function subtracts failures from successes,
optimal decisions should depend on the difference between the two rehearsal stocks.
This turns out to be false and the two rehearsal stocks, ST and S, enter optimal
decisions in a more surprising fashion.

As in the model including only good news, optimal decisions are dictated by the
trade off between the recency and the rehearsal effects. When the rehearsal stock
of successes, S*, is above some threshold level, the rehearsal effect dominates and
it is optimal for the agent to act and generate a success. However, generating a
period t success has now two functions; first it reinforces past successes and second it
guarantees that past failures will not be reinforced by a period t failure. As a result,
the agent is also triggered to act when the rehearsal stock for failures, S, is above
some threshold level. Therefore, acting is an optimal choice when either the rehearsal
stock for successes or the rehearsal stock for failures is above some threshold levels.
We can therefore state the following result,

PROPOSITION 5 (Thresholds for successes-failures) For every value of periods to go,

T, and any number of available actions, n, it is optimal to act if either of the following
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two statements holds
a) Fixing the rehearsal stock for failures, S~, the rehearéal stock for successes is above
some threshold level H* (T, n, S |p, k)
b) Fixing the rehearsal stock for successes, ST, the rehearsal stock for failures is above
some threshold level H—(T,n,S¥|p, k)
Moreover, the critical thresholds H*(7,n,S™|p,k) and H~(1,n,S¥|p,k) are both
increasing in the number of periods to go, T, that is the fewer the periods to go, the
less the respective critical threshold need be before it triggers the agent to act.

Since one agent’s successes can be someone else’s failures, this result has important
implications for the behavior of two, or more, agents who are competing for assessment
in front of a common assessor. To see that, return to our motivating example and
assume that our senator has received a substantial series of positive boosts to his
image. Then, both our senator and his opponent will be triggered to act and generate
further successes. Their motivation, however, is different. Our senator wants to
generate more successes to reinforce the fresh memories of his success (his rehearsal
stock for successes, S+, is high), whereas the opponent wants to generate successes
in an effort to guarantee that the fresh memories of his failures will not be reinforced
by future failures (his rehearsal stock for failures, S—, is high).

A special case of the model with both successes and failures is when p; +p_; =
That is, all news are either good or bad: there are no null events. This case is
identical to what we would have got in our original model with e; € {0, 1}, if we had

interpreted the events e, = 0 as the agent failing to deliver a success and with these
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failures subject to rehearsal. In this case, the benefit from generating a success is
completely symmetric with the benefit from avoiding a failure. As a result, optimal
decisions depend on the sum of the two rehearsal stocks, S* and S~. Notice that
this is not to say that we subtract the failure rehearsal stock from the success stock.
Rather, the incentive to act to avoid rehearsing failures is added to that aimed at
rehearsing successes.
PROPOSITION 6 (Single threshold) When p, + p_, = 1, for every value of periods
to go, T, and any number of available actions, n, there exists a single threshold
H+~(1,n|p, k), so that it is optimal to act if and only if (St +S~) > HY~(7,n|p, k).
The surprising implication of this result is, that if we return to our original set
up with e, € {0, 1} and reinterpret the events e, = 0 as failures subject to rehearsal,
optimal decisions will still depend on a single threshold level, as before.
Finally, the bunching structure of the optimal profile goes through, with the in-
tuition being the same as before. For completeness I state this as
COROLLARY 2 In the general case where e, € {—1,0, 1}, if it is optimal to act in
period t, then it will be optimal to act in period t + 1, as long as the constraint

St I{ct = Act} = B permits to do so.

1.3.5 Discussion of results and applications

In an effort to keep the set up of the model as concrete as possible, I have been
addressing the model in the context of a senator running for re-election. Nevertheless,

the general framework can be applied to almost any setting where products or people
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undergo periodic assessment. The following is a list of potential applications, in
addition to the election campaign that we have already discussed. They cover a wide
range of settings, from finance to marketing, and from evaluations at the workplace

to opinion formation on moral and public policy issues.
e executives managing the release of news prior to an IPO

e advertisers timing the airing of commercial spots prior to a new product/movie

release

e marketing executives choosing when to launch new products, following a recent

streak of good or bad news (Bridgestone-Firestone)
e employees timing their effort prior to a pending promotion/bonus decision
e evaluation of forecasters based on their past predictions

e public opinion formation; the NRA and the gun control lobbies scheduling their

actions following a streak of Columbine type shooting incidents
e students timing their class contribution prior to the end of term
e junior faculty timing their publications prior to a tenure decision

e Pop artists choosing when to release a new hit album, following a streak of hits

or flops

Keeping these applications in mind, the theoretical results can now be translated

to the following normative claims.



Bunch together your successes-spread apart your failures. In models of quasi-
bayesian and quasi-rational decision making the order of informative signals matters.
Rabin and Schrag (1999) argue that this is a consequence of a confirmatory bias,
whereas Lam (2000) shows that early signals may lock the decision maker into a
scenario-story, which affects the way new information is interpreted. In our model,
what is important is not only the order (i.e., which events comes first and Which
comes second), but the actual spacing (i.e., the amount of time that elapses between
informative events), since it determines the effectiveness of rehearsal. In particular,
rehearsal is most effective when all events are bunched together in consecutive periods.
This implies that agents evaluated on the basis of their past performance should seek
to time in close proximity the events that enhance their image and, by the opposite
logic, spread apart those events that are harmful to their image. This implies that

]

a stock market forecaster is more likely to achieve a “guru ” status in the mind
of investors, when he is lucky enough to make successful predictions in consecutive
months or years, rather than when his successes come in intervals. Similarly, a student
will create a more memorable good impression to his teacher if he manages to make
intelligent comments in a short interval of time.

The same logic can also be applied for public opinion formation on public and
moral issues, such as abortion and gun control. Assume, for example, that the a new
gun control legislation has been brought to congress. Public opinion is influenced by

various gun related crimes that make headlines, such as the Columbine high-school

shooting incident. The timing of these events is crucial for what people remember
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and consequently for whether they will choose to support the new bill. The bunching
result predicts that public support will reach its peak, when these random incidents
are recent, as dictated by common sense, but also when they are clustered together
in a short period of time, because this profile is most efficient in reinforcing the
memorabilities of each of these events. By the opposite logic, the cause of the NRA
will be least affected if these events are spread apart by big intervals of time.

Finally, advertisers seem to be aware of this bunching intuition, when they time
the airing of commercial spots back to back, or when they place the same billboard as
on consecutive billboards along a highway or a railway track.
Random events trigger information releases - Act immediately following a
streak of random events. The model implies a simple rule for releasing information.
We can think of random events as creating a rehearsal stock. When enough random
events push the rehearsal stock above some threshold level, the agent finds it optimal
to act and release information, in an effort to reinforce the past good memories (and
avoid reinforcement of the past bad memories), summarized in the rehearsal stock.
Indeed, this happens in our model despite the fact that there is a finite number of
actions to be used up, which implies that early actions come at the cost of not being
able to act later on. Moreover, once a random success pushes the rehearsal stock
above the threshold, the agent is triggered to act and he continues doing so until his
stock of available actions has been depleted.

This intuition can be manipulated by an employee timing his effort in the work-

place prior to a promotion decision. Our model implies that he can enhance his
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future reputation ‘by working hard the periods immediately following a streak of ran-
dom successes (periods with above average performance). Similarly, a student might
start offering frequent comments in a seminar class immediatély following a couple
lucky guesses of his on hard questions.

Stochastic events, good or bad alike, trigger abtions. Related to the above,
is the idea that random events induce information releases regardless of their nature.
Return to the gun-control legislation example. Assume that a year from now congress
will take a vote on the controversial bill, and a series of high school shooting accidents
have recently occurred. The recommendation that follows from our discussion of the
model including both good and bad news is that the recent accidents will trigger both
the gun control lobbies and the NRA to use their resources to try to generate events
that promote their respective causes. This way, the gun control lobbies can reinforce
the memories of the accidents and the NRA can prevent these same memories from

being reinforced.

1.4 Advertising Campaigns

Advertising is an obvious domain where memory imperfections play an important
role. For motivation, assume that the senator of our motivating example has raised
B dollars for his election campaign. How should he spend it over time in order
to obtain the maximum effecf at the date of the election. Firms that market new

products and studios releasing new movies also face the same problem, the critical
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date being the day the new product, or movie, is launched.

In the model developed in the previous section, each period the agent makes a
binary choice c¢; € {Act, Wait}, and the assessor remembers, with some probability,
individual events e, € {—1,0,1}. Advertising is a continuous choice variable. This
section is an attempt to combine some of the insights from the model of section three
together with the existing literature in advertising in order to incorporate memory
imperfections in advertising applications. |

Goodwill and optimal advertising expenditures

In the existing literature, dating back to Nerlove and Arrow (1962), advertising is
modeled by defining a stock of goodwill that summarizes the past effect of advertising
on demand. Then, the underlying structure becomes an optimal control problem with
the stock of goodwill as the state variable and the flow of advertising expenditure
as the control. For example, Arrow and Nerlove state the advertising expenditure

problem of a firm as

o0

max e " (Ge) — cay)]dt (1.16)
0

as

s.t.G, = a— oG, (1.17)

with G;as the stock of goodwill, a; the advertising expenditure flow, § a decay pa-
rameter, r the rate of interest, and c(-) and n(-) as the cost and revenue functions
respectively. Gould (1970) derives solutions for a wide range of combinations of « ()
and c(-) functions and Sethi (1977) provides an excellent summary for the use of‘

optimal control in extending the original Nerlove-Arrow formulation.
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Memory appears even in the early N erlove-Arrow formulation through the decay
parameter 6, but the framework is not rich enough to incorporate the principles of
repetition and similarity. Marketing textbooks devote‘whole chapters in discussing
their importance for effective advertising (see Sissors and Bumba, chapters 6-9) and
advertisers seem to realize their importance when scheduling two identical spots to
be aired back to back in the hope that the second will reinforce the memory of the
first.

Following the existing literature, I adopt the concept of the stock of goodwill, G,
which I assume it increases with advertising expenditufe, a,-‘ Memory imperfections
are incorporated in two ways: First memory decay implies that the stock of goodwill
depreciates at some rate 8. Second, in order to model rehearsal and cue dependence, I
assume that the marginal effect of advertising depends on the past stock of goodwill.
The higher the stock of goodwill, the more memorable past advertising is. There-
fore, current advertising will be more effective in triggering these memories and the

marginal effect on goodwill will be greater. These restrictions imply that
ét‘——- 'u,(at, Gg) - 6Gt (1.18)

where 1, > 0, Uuge <0, ug > 0, uge < 0 and uyg. > 0.
Equation (1.18) can be thought of as an analog of (1.3). Now, a senator with a

budget B for his election campaign, maximizes goodwill at time T, G(T'), subject to
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(1.18) and the isoperimetric constraint implied by the fixed budget B. That is,

max G(T) (1.19)

st. G = u(a,Ge) — G (1.20)
T

/ adt = B (1.21)
0

with Gy > 0 given.

The euler equation can be reduced to (see appendix)

Yaa 8 LG 6 o +6=0 (1.22)

Uq Uq

To extract more intuition from the euler equation, consider the discrete time
analog of (1.41). Letting p = 1 — §, replacing integrals with summation signs and

(1.18) with Goy1 = pG: + u(a41, pGe) we get (see appendix)
Ug(ars1, PGt) = pua(ar, pGe—1){1 + ug(@es1, pGy)] (1.23)

with the usual “marginal cost equals marginal benefit” interpretation. Assume, that
we are on the optimal path and we contemplate shifting one unit of expenditure
(a) from period ¢ to period £ + 1. The marginal benefit from increased expenditure in
period t+1is us(ass1, pGe), the LHS of (1.23). The marginal cost has two components.
First, there is the direct effect of decreased consumption in period t, which equals
pue(as, pGi—1), the‘ﬁrst term in the RHS of the euler equation. Second, there is an
indirect effect: less advertising in period ¢ results to a lower (by u,(a;, pG¢—1)) stock of

rehearsal at time ¢ + 1 and therefore lowers (by pug(a;+1, pG:)) the marginal benefit
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from expenditure in period ¢t + 1, since there is less to be rehearsed. The total'®
puq(as, pGe—1)uc(a@s1, pGt) is the second term in the expansion of the RHS of (1.23).

A closed form solution for the optimal advertising expenditure profile exists for the
special case where u(a, G) belongs to the Cobb-Douglas family, i.e. u(a,G) = Ka?G",
with 8 + v < 1. The parameter S captures the concavity of u(a, G) with respect to
a and the parameter v measures the importance of rehearsal. Substituting (1.18) in

the euler equation and carrying out the algebra, we get

a _ a-1)
a T T-B
a(t) = a(0)exp{ZE"2sy (1.24)

1-8
B&( 1—y
where a(0) = TJ_‘B L which can be obtained using the isoperimetric constraint.
exP{ (1_7) T}—l

In the optimal path, advertising expenditures increase over time exponentially at

rate ‘5((1:;’)). There are three forces at work here: a) memory decay, embodied in the

parameter §, that dictates expenditures to be timed as late as possible (recency effect),
b) degree of concavity of the u function with respect to a, captured in the parameter
B, which implies expenditure smoothing over time and c) rehearsal, through the
parameter <, that complements (b). One can easily verify, that the rate at which
expenditures grow as we approach the election date T is lower when the environment
is more rehearsal sensitive (high <), when u(a, G) is more concave in a (low 3) and

when memory decay is less pronounced (low §).

8Here we invoke the chain rule: 7.{2_‘("(%+1,PGt(ac))) = uG(at-H.:PGt)pa%:(u(at.th—l)) =

ug(ae+1, pGt)puc(ae, pGr—1)
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Therefore, rehearsal induces smoothing in excess of that implied by concavity
alone. When too little is spent early, future expenditures have little to rehearse.
In practical terms, this implies that advertising campaigns should start early on.
Advertising is most effective when there is a substantial stock of goodwill that can
be reinforced. Early spending creates that stock of goodwill and increases the ef-
fectiveness of future advertising expenditures. The following quote from a political
campaign manual, Guzzetta (1987), bears witness to the empirical validity of this the-
oretical prediction for political campaigns. The same logic applies to any advertising
campaign for a new brand or a new movie.

Even when the product is not necessarily an “offensive” one, it needs to be stated
over and over in order to penetrate your consciousness. Regrettably, politicians are in
an even more difficult position than most new products because generally they have a
high “negative” rating in the minds of the public. This is the primary reason why cam-
paigns have to start so early: only repetition over a long period of time can overcome
this natural barrier in the minds of the voters.

In parallel to the model of the previous section, one might expect a rehearsal effect
that competes with the recency effect and according to which, given some existing
stock of goodwill, it is optimal to act early when the stock is still memorable, rather
than later when the past stock has decayed and been forgotten. Such an effect is not
present here. Consider the choice between spending one unit today when the stock
is G¢, rather than tomorrow with stock pG,. By spending it today we get pGy, as

opposed to p”G} by spending it tomorrow. Since v, p < 1 it is always optimal to wait
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and spend tomorrow. This occurs because the stock of goodwill (stock of rehearsal in
the previous terminology) does not decay fast enough to offset the recency effect from
memory decay. In the model of section three, a trade off between the recency and
the rehearsal effects was achieved because the structural form of the model (M and
bi equations) implied that the stock of rehearsal decays at a rate faster than memory
decay. To get such a rehearsal effect here, we have to either modify the functional
form for u(-,-), or directly introduce a rehearsal stock that decays at a rate faster
than 4.

Relation to addiction and habit formation

In the advertising model just presented, the effect of past advertising was summa-
rized in a single variable, the stock of goodwill, which affected the marginal benefit
from current advertising. This mathematical structure can also be found in models-
of addiction and habit formation. For example, when working with preferences that
exhibit habit formation past consumption levels are assumed to be summarized in
a single state variable, which in turn affects the marginal utility from current con-
sumption. A seminal paper along these lines fs the model of rational addiction due to
Becker and Murphy (1989). To capture the effect of addiction, they assume that the
instantaneous utility function is a non separable function of current consumption c;,
and of past levels of consumption, summarized in the stock S;;that is utility at time
t is u(ct, S¢) with ucs # 0. The stock S; evolves similarly to the stock of goodwill in

the Nerlove-Arrow model. Then, the consumer solves'®

191n fact, this is a "stripped down” version of the Becker and Murphy original set up.
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Q0

max ulce,, Sy)e™"dt (1.25)
ag 0
s.t. ét = C — 55& (1.26)
T T
/ e-”[pgct]dt S Lo + e_rtwt(St)dt (1.27)
0 0

with & as the rate of depreciation, r the interest rate, p; the price of the consumption
good, w(-) the earnings function and L, the initial value of assets.

The mathematical structure of the rational addiction model and the advertising
model is so similar that one could even use the Becker and Murphy set up word
for word, and after renaming variables (¢, —advertising expenditure, S; — stock
of goodwill, u(-,-) —profit function, etc.) use it in order to address the advertising
problem of a firm over a horizon, when people forget at rate 4, but current advertising

expenditures can also reinforce past memories.

1.5 Conclusion

Imperfect memory is an undeniable fact of human cognition with profound social and
economic implications. Despite the current interest in psychology and economics,
with the exception of Mullainathan (1997), memory limitations have not found their
way into economic literature, even though they are discussed, but not modeled, in
marketing textbooks. It is true, that memory is a cdmplex process and memory re-
searchers have not fully understood its functions. However, some stylized facts that
govern the recall of episodic memories have emerged, and allow us to make a first
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step. The purpose of this paper was twofold: a) to use these stylized facts (cue depen-
dance and rehearsal in particular), as building blocks in developing a si.mpie model of
memory, and b) to apply the formal mathematical model to an economic setting, by
addressing the issue of how informative events be released to a forgetful agent, who
at some future date T is expected to make an assessment based on her memories of
these events. I showed that the spacing of events is an important determinant of what
memories peopie have and I described the spacing properties of optimal profiles for re-
leasing information. The general framework and the theoretical results can be applied
to wide range of settings including, political campaigns, advertising or marketing of
new products, evaluations at the workplace and public opinion formation.

I conclude by briefly discussing some possible extensions to the existing framework.
Many assessors: diversification. Throughout this paper, I assume that the agent
is assessed by only one agent (or all assessors use the same history of events). However,
there are many interesting applications, where an agent is assessed by two or more
different assessors, each using a different history of events. Once again, assume that
our politician maybe interested in gaining the support of two distinct, but equally
important, lobbies. Furthermore, assume that the event e, = 1 now means that “the
politician took an action that favors the objectives of the lobby at time ¢”. Different
lobbies have different agendas and as a result they use a diﬁ'érent history of events
to form their assessments. Should the politician concentrate his effort and energy
in satisfying one of the two lobbies or should he diversify trying to grant favors

evenly? Concavity in payoffs favors diversification, but memory imperfections dictate
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the opposite. Less divérsiﬁcation allows for greater benefits from rehearsal, as favors
granted to one lobby rehearse the memories of past favors granted to the same lobby.
Many agents: competing for assessment. In other settings two or more agents
are competing in front of a common assessor. In a presidential race, for example,
two candidates struggle to create the best impression for themselves in the eyes of
the public. Or in the gun control example the gun control lobbies competes against
the NRA. It would be of interest to extend the present model to include the game
theoretic interaction that emerges when each candidate, or lobby, releases informative
events worrying not only for his past record, but for the past record of his opponent

as well.
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1.7 Appendix

1.7.1 Notation

1. Let Vivai (S,n,7|S,n/,7) be the continuation payoff starting from the state
vector (S,n,7) when one follows the following rule: wait the first period and then
take actions that would have been optimal if you had started out with the state vector
(S',n',7) rather than (S,n, 7). Also, let Vac (S,n,7|S’,n',7) be the continuation
payoff starting from the state vector (S,n,7) when you follow the rule: a) act the
first period, then wait, b) if n > 1, when you act again you have to keep on acting
until you run out of available actions, that is until n = 0, c¢) in deciding when to act
for the second time take actions that would have been optimal if you had started out
with state vector (S',n’,7 ) instead.

2. Let Z(i) be the set of all profiles of zeros and ones of length ¢, that is Z(z) = {z €
Ri|z; = 1 or z = 0}. Also let |z| = i be the order (length) of z and |z!| = "5, 2;
be the number of ones in z. For example, letting z = (1,0,1,1,0,1), we have |z]| =
6, |zt = 4. |

3. Assume that the state vector is (S, n, 7). Let Q(S,n,7) be the set of all profiles
of zeros and ones after which the first action would be optimal. (Then, (S,n,7) =
0 = V(S,n,7) = Vau(S,n,7)). For example, let n = 1, 7 = 3 and the rehearsal
stock is S, satisfying S < H(3,1|p, k), but 1 + kS > H(2,1|p, ). Then, Q(S,n,7) =
{(1),(0,1), (0,0)}. Also, for every w € Q, let |w| be the order of the profile, and [w?]

be the number of ones in w.
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4. Let S be the rehearsal stock with 7 periods to go. Assume that in the 7 periods to
come we see a profile e € R™. Let CP(e, S) be the continuation payoff from a hjstqry
profile e starting with initial rehearsal stock S. For example, let e : S|1,1,0,1,0.
Then, CP(e, S) = p*(1 +kS) + p*(1 + £ + K2S) + p(1 + k2 + &3 + £1S).

5. Decompose CP(e, S) into the following two terms; a) D(e) : the continuation
payoff that profile e would induce even if S = 0, and b) RE(e) : the total rehearsal
effect that the successes in profile e will induce on the past rehearsal stock S, as
a proportion of S. Returning to the previous example of e : S§|1,1,0,1,0 we have;
RE(e) = p'k + p°K? + p(s:‘1 and D(e) = p* + p*(1 + &) + p(1 + k% + 3). Then,
CP(e,S) =D(e) + S - RE(e)

6. Let e be a profile of zeros and ones. A success immediately after this profile e
will rehearse all successes in e. Call the sum of ail these rehearsal boosts F(e). For

example, with e = (1,1,0,1,0), F(e) = k%2 + &* + &5.

1.7.2 Bunching

ProrosITION If it is optimal to act in period ¢, it is also optimal to act in period

t + 1. More formally, for any S, n and 7, with 0 <n < 7,

V(Sin+1,7+1)=Vou(S,n+1,7+1) = V(1 +&S,n,7) = Vour(l + £S,n,7)
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ProOOF

I prove the contrapositive statement that

VA +&S,n,7) = Vaur(l +&S,n,7) = V(S,n+ 1,7+ 1) = Vigoar(S,n + 1, 7+ 1)

(1.28)
The proof is by induction on n.
Let n = 1 be the base case for our induction.
Step 1: Show that with n =1
Vwait(L +£S,n,7) > Vau(l+&S,n,7) = (1-29)

I7wa,-t (S,n, 7|1l +&S,n,7) > ‘7Act (S,n,7|S,n, 7+ 1)

Let the state vector be (1 + &S, n, 7). Then, the instructions in Viy.i:(1 + &S, n, T)

and V(1 + &S, n, T) give rise to the profiles e! and e’ respectively

e : (1+kS)|w,1,2
e : 1+&S),w,z
with probability p,, = p*'H='l(1 — p)™—1-l'I-1z"l where w € Q(1 + &S, n,7), and
z € Z(t — 1 — |w]). Similarly V Wait (S,n, 7|1+ «S,n,T) and Vae (S,n,7|S,n, 7+ 1)
give rise to profiles e3> and e* with the same probability.
e : Swlz
et : S 1w,z
The continuation payoff from profiles e! and €3 is the same with the exception that the

successes in the profile (w, 1, z) rehearse 1+ xS in e! rather than S, as in €3. Similarly,
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the continuation payoff from profiles €2 and e* is the same with the exception that
the successes in the profile (1,w, z) rehearse 1 + &S in e? rather than S, as in e'.
Then the difference in the continuation payoffs between e! and e® is CP(e!,1+&S) —
CP(e3,S) = RE((w,1,2))(1 + &S — S). Similarly, CP(e?,1 + &S) — CP(e*,S) =
RE((1,w, 2))(1 + kS — S). The statement in (1.29) follows if?

CP(e!,1 + kS) —CP(e?, 1+ kS) < CP(e*,S) — CP(e!,S) &

CP(e',1 + kS) — CP(e3,S) < CP(e?,1 + &S) _ CP(e*,S) & RE((w,1,2)) <
RE((1,w, 2))

The desired statement RE((w,1,z)) < RE((1,w, 2)) hblds because the rehearsal
effect from the earliest success in (1,w, 2) is weakly bigger than the earliest success in
(w, 1, z), the effect from the second earliest success in (1,w, z) is weakly bigger than
the second earliest success in (w, 1, z) and so on. This holds for all w € Q and for all
z € Z.

Step 2: Show that (with n = 1)

I}Wait (S,n,7|lL+&S,n,7) > ‘7Act (S,n,7|S,n, T+ 1) = (1.30)

17Wm-t S,n, 7+ 11 +&S,n,7) > I7Act (S,n, 7+ 1|S,n, 7+ 1)

The instructions implied by V Wait (S,n, 7|1 + kS, n, ) and V act (S,n,7|S,n, 7 +1)

20Ty see this, it is important to note that the profiles e!,e?,e® and e* are all obtained with the

same probability, p.., -
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give rise to profiles e! and e? with probability p,,, = pl=' +'l(1 — p)7—1-l=" -l

el : Slw, 1,z

e : S|Lw,z

where w € Q(1 +&S,n,7) and z € Z(7 — 1 — |w|) as before. Also, ﬁwm (S,n, 7+

1|1 + &S, n,7) and Vac (S,n, 7 +1[S,n, 7+ 1) give rise to profiles e* and e*.

e : Slw,1,z,?

et : Slw,z?

The last element can be either a one or a zero. It is zero with probability 1 —p and one
with probability p. The “if” statement of (1.30) is equivalent to 3., 3" o Pz [CP(e!, S)—
CP(e?,S)] > 0. Similarly, the “then” statement of (1.30) is equivalent to
S ez Suco PlCP(E, §) = CP(4, )] > 0 & (1 = ) Toez Soea PrulpCP (e, S) -
pCP(e?, S)+PY ,cz D wea P=lpCP(e!, S)+1+F(w,1,2)—pCP(e?, S)~1-F(1,w, z)] >
0 p3 ez wenPl[CP(e!, S)~CP(e?, S)[4+p 3 ez uen PulF(w, 1, 2)~F(1,w, 2)] >
0

The first of the last two summation terms is positive by assumption. The sec-
ond summation term is also positive because for every z and every w, F(w,1,2) >
F(1,w, 2).This is because the first term in F(w, 1, z) is weakly greater than the first
term of F(1,w, z) and similarly for the second, third, and all other terms. (The first
term is the one coming from the boost to the fnemorabih'ty of the earliest success in

the respective profiles (w, 1, 2) and (1,w, 2).)
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Step 3: Show that (with n =1)

{7Wm—t (S,n, 7+ 1|1 +&S,n,7) > ﬁAa (S,n, T+ 1|S,n,7+1) =

WV(S,n+1,7+ 11 +&S,n,7)st.V > Vau(S,n+1,7+1) (1.31)

where V*(S,n,7|S’,n', 7) is the continuation payoff generated by some set of instruc-
tions with 7 periods to go, n available actions and rehearsal stock S. In particular let
that set of instructions be: a) act in consecutive periods and b) in deciding which pe-
riod to start acting pretend that the state vector you started out with were (S',n’,7)
instead and act optimally to that. The first two expressions in (1.31) give rise to

profiles

el : Sw,1,?,2

e : SlLw?z

where z € Z(1 — |w| — 1) and w € Q(1 + &S, n, 7). The last two expressions in (1.31)

give rise, with the same probability, to

e : Sw, 1,1,z

et : S|Il,w, 1,z

With probability p, the uncertain term “?” in e! and €? is a one and we have
CP(e!,S) — CP(e?,S) = CP(e?,S) — CP(e* S) = 0. With probability (1 — p),
the uncertain term is a zero, and we have CP(e!, S) —CP(é?, S) = —p¥*l(1+ F(w, 1))
and CP(e?, S) — CP(e*, S) = —(1 + pl*lF(1,w)).The result in (1.31) holds as long
CP(e!,S) — CP(e3,S8) < CP(e?,S) —CP(e*,S) & F(w, 1) > F(,w)
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This is true, as explained in step 2.
We have therefore established the contrapositive statement in (1.28) for n = 1,

which means that if the number of available actions is two, in the optimal profile they

are bunched together.

Now we can proceed using the induction hypothesis that the result holds for all n

up to k. Again we need a series of steps

Step 0: Show that forn = &

Vwait(1 +6S,n,7) > Vaa(l+kS,n,7) = (1.32)

Vwait(1 + &S, n,7) > I7Act (1+&S,n,7[S,n, 7+ 1)

The desired result follows by the definition of Viye:(1 + kS, n,7) which is defined
as the optimal set of instructions.

The rest of the proof mimics the proof of the base case n = 1. We need to conduct

the following three steps

Stepl’: Show that

Vwaeit(L + S, n,7) > ‘;Act 1+ &S,n,7|S,n,7+1) = (1.33)

I7Wm-t (S,n, 7|1+ kS,n, 1) > 174,;: (S,n,7|S,n, T+ 1)
Step 2. Show that

I7Wa,-t (S,n, 7|1 + &S,n,7) > 17.4.;: (S,n,7|S,n,7+1) = (1.34)

17Wm-t S,n,7+11+&S,n,7) > i;gct (S,n,7+1|S,n, 7+ 1)
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Step 3. Show that

Vwair (S, 7+ 11+ &S, 1,7) > Vau (S,n,7+1[S,n,7+1) = (135)

V' (S,n+1L,17+11+kS,n,71) > Vau(Sn+1,7+1)

where V*(S,n,7|S’,n’,7) is the same as in step 3 of the base case, n = 1.

The proof of each step is identical to that of the base case n = 1. I prove in
detail only step 1" in order to show its similarity to step 1 and the importance of the
induction hypothesis.

The first two set of instructions in (1.33) give rise with probability p,., = p!*' +%'[(1—

p) -l g

el : 1+kSlw,1,1,1,.,1,2

e : 1+kSl,w,1,1,..,1,2

where w € Q(1+.8,n,7) and z € Z(7 —n —|w|). The induction hypothesis is crucial,
because it imposes the restriction that the n successes will be bunched together in

profile e!. The last two sets of instructions in (1.33) give rise to

e : Slw,1,1,1,...,1,2

et : Slw,1,1,..,1,z

The desired result follows once you note that RE(w, 1,1,1,...,1,2) < RE(1,w,1,1,...,1, 2).

(See step 1 for the base ‘Case, n=1.)
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1.7.3 Thresholds

PROPOSITION For every value of number of periods to go, 7, and number of actions
still available, n, with n < 7,there exisﬁs a threshold rehearsal stock, H(t,n|p, ),
such that it is optimal to act if in period t and only if S > H(r, n|p, k). Moreover,
the thresholds are increasing in 7; that is the fewer the periods to go, the lower the
rehearsal stock need be before it triggers the agent to act.

PRrROOF

For the first part of the proposition it suffices to show that for any rehearsal stock
S <8,

Vwait(S,n, 1) > Vau(S,n,7) = (1.36)

‘7Wait (S',n,'r[S,n,'r) > ‘/act(s,rnar)

This implies that, fixing 7, the number of periods to go, and n, the number of
available actions, if it is optimal to wait with a rehearsal stock S, it is also optimal
to wait with a lower stock.

I use the same logic as in the proof of the bunching result. The first two state-
ments in (1.36) give rise to the following profiles with probability p,,, = p'* IH«'l(1 —
p)rnlti—lt

e : Sw,1,1,...,1,z

e : SL, .., w,z

where w € Q(S,n,7) and z € Z(r — |w| — n). We know that profiles e! and e? have
the property that the n successes are together by the bunching result. Similarly the
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last two statements in (1.36) give rise to
e : S|w,1,1,..1,2
et : S|, . Lw, 2

with the same probability, p,,. The profile e! is almost identical to profile €3, the
only difference being that all future successes rehearse the stock S rather than S'.
Therefore their difference, in terms of final payoff, is (S — S )RE(w,1,1,...,1, 2).
Similarly, the difference between profiles e? and e* is (S — S )RE(1, l‘, wesy 1w, 2). The
desired result in (1.36) holds because RE(1,1, ...,1,w, z) > RE(w,1,1, ..., 1, 2), for all
w and z. (This is as in step 1 of the bunching result).

Now, I show that the thresholds are increasing in T, thé number of periods to go.

It suffices to show that
Vivait(S;n,7) > Vau(S,n,7) = (1.37)
Vwaie (S0, 7 +1[S,1,7) > Veu(Sin,7+1)
This means that if it is optimal to wait with 7 periods to go, (S < H(7,n|p, k)), then
it would also be optimal to wait when we have the same rehearsal stock and 7 + 1
periods to go (S < H(7 + 1, n|p, k)).
Once again, I use the same logic as in the proof of the bunching result. The first

two statements in (1.37) give rise to the following profiles with probability p., =
plzll-*-lwll(l — p)f—n—lzll—lwll

el : Slw,1,1,...,1,2

e : S|, .., lw,z
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where w € Q(S,n,7) and z € Z(r — |w| —n). We know that profiles e! and e? have
the property that the n successes are together by the bunching result. Similarly the

last two statements in (1.37) give rise to

e : Sw,1,1,..,1,27?

et : S|y, .., 1Lw,z2?

with the same probability, p,.,. The last element can be one or zero with probabilities
p and 1 —p. The rest of the proof is identical to step 2" of the bunching result. (Note

that step 2’ leads to the same profiles e!, €2, e3 and e*.)

1.7.4 The non-stochastic case

Let A; and S, be the running total and rehearsal stocks respectively at time ¢t. Assume
that starting at time ¢ + 1 we have a sequence of n successes. Let 1" denote a profile
of n consecutive successes. At time £ + n the running total stock A,., equals
Apin = p*mA, + CP(1M, S,) = pt™ A, + D(1™) + RE(1™) - S,

One can easily verify that

D(A™) = g 4+ p" 2L+ k) +p" 31+ 6+ K2) + oo + L+ £+ K2+ .67 =

L[l—n" PN it i
1—pt 11—k p—K
RE(1") = s(p" ' + p" 2k + p"'62 + ... + £* 1) = k& ::_:n

We can, now, prove the results.
ProprosITION (Either/Or) When p = 0, the optimal profile is to act the first B or

the last B periods.
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PROOF

Let p=0,5=S,T>Band1<t<T- B—1. We know by the bunching
result that it is optimal to act in consecutive periods.

Assume that acting in periods ¢ + 1 through period ¢t + B is p‘referred to acting in
periods ¢ through ¢ + B — 1. Call the resulting history profiles e’ and e respectively.
I will show that preferring e’ to e, i.e. CP(e',S) > CP(e, S), implies that acting in
period ¢ + 2 through t + B + 1 results to a profile, e’, that is preferred to e", i.e.
CP(e",S) > CP(e,S)

e: S|0,0,0,1,1,..,1,0,0,0,0

e :5/0,0,0,0,1,1,..,1,0,0,0

e’ :85/0,0,0,0,0,1,1,...,1,0,0

CP(e,S) > CP(e,S) = pT~¢+B)[D(18)+RE(18)k!S] > pT~(t+B-1[D(18)+RE(18)kt1S]
& D(18)[1 — p| > RE(1®)x(p — K)S & S < s Al

Then, profile ¢” is preferred to profile e if and only if
CP(e',S) > CP(e,S) & pT~(t+B+1[D(18) + RE(18)k!*1S] > pT-¢+B)YD(18) +
RE(1B)ktS]

1—p D(lB)
S Fem) REGE) > S

Since k < 1, ﬁh%&?—) >S5 => ﬁ% > S. This proves the result.

PROPOSITION When p = 0, the critical thresholds H(r, n|p, k) satisfy:

1—x® o —x™ 1 1
— l—p™™ ™ { T P 5= ]1?‘
a‘) H(T’ an’ ’C) - (p”‘"—pc"’-") = Kgu_p,cif 2

p—r

b) H(1,n|p, k) is decreasing in p

c) H(t+1,n+1|p, k) > H(7,n|p, k)

69



ProOOF

Part (a): Let p =0, So = S and T" > B. We know that it is optimal to act m
consecutive periods starting in period 1 (profile e), or in period T — B +1 (profile e).
The respective continuation payofts are
e:S|1,1,...,1,0,0,0,0,0 — pT-B[D(18) + S - RE(1B)]
¢ : 5[0,0,0,0,0,1,1,...,1 — [D(18) + T-ES - RE(15)]

— B . . .
Therefore, we act the first B periods if S > (711:3’%::5)-::;(—(115)—). This implies that

0 prl_;”f;f_q ,ggf% is the threshold when we have T periods to go, 7 = T and B

available actions, n = B. Substituting D(1?) and RE(1?) from above we obtain part

(a) of the proposition.

n_.n

) . 1—pT—" 1 = Notice that
Part (b): Rewrite H(r,n|p, «) as { ;== =, H = }. Notice tha
g’;::" — pn—]. +pn—-2h.l +pn—1n2 + ...+ g1
which is increasing in p. We can also rewrite D(1") as
11—_':‘ _ pP;:zn =14+K+K2+ ..+ — ot — p"_ln - = 'Cn—-Lp

L—x™ —p “-—-;c"']
which is decreasing in p. Therefore, the expression —=“n—A£==— is decreasing in p.

p—r

" ___1_js also decreasing in p. Forgetting the

k(pT—r—KkT—") 1—p

Now [ show that the expression

. . K . . 1 2 N o
 in the denominator and replacing £ = 7 — n, we can rewrite it as +”+‘;th,+ r iy

The derivative w.r.t. p is negative as long as the following is also negative
l+20+30%+..+(z—1)p*Y[p* — k] — (L +p+ P +...+ p" Nzp* 1 =
1+204+30%+ ... +(z - 1)p*[p* = k%] — (1 +p+ 2 + ... + p* Dzp= -
zp™t — zp® — zptt — . —p® 2 =

—zp" == (z—1) —p*H (2 —2) —...— p*~2 (z— (z—1)) =K% [1+2p+3p* +...+(z—1) p7 2]
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which is indeed negative, since all terms are negative.

Part (¢): H(r + 1,n + llp, k) > H(7, nl|p, k) if and only if

[l__"n-i-l_ pn-{v-l_,‘n-(—l. [l—m"‘ ppn_‘n‘]

1—rx p p—r ] > tio= por o (1 — nn-{.l)(pn _ Kn) _ (1 —_ En) (pn+1 —_ KZ"'-H') >

pn-i-l_nn-(-—l. pt—K"

0 & (p* — k") — (p™*! — k™) + p"k*(p — £) > 0 & p" (1 — p) + p" 26(1 — p°) +
... + €77 1(1 — p") > 0 which is indeed true.
The propositions for the model including bad news, i.e., e € {—1,0, 1} are proved |

using identical techniques. Detailed proofs are available upon request from the author.

1.7.5 Advertising campaigns

In order to formulate the problem in a more familiar mathematical setting, we can
integrate forward (1.18). Then,
Cy= u(a;, Gi) — 0G, & e“{ét +0G,} = etu(as, Gy) & L(e%G,) = €’*u(a:, G) &
eGyT = [T e®tu(a,, Gy)dt & Gre’T — Go = [ e®*u(as, Gy)dt
Gr = Goe T + e~ j;)T eStu(a,, G, )dt

Therefore maximizing G(T') subject to (1.18) and (1.21) is identical to maximizing
fOT eStu(a;, G;)dt under the same set of constraints. This is a standard problem in

the calculus of variations (or optimal control theory) with the following first order

conditions:

G ulll+w] = (138)

9G : P +ug[l+] =0 | (1.39)
with 1, = \e™%, ¢, = pe—%, where ), and p are the lagrange multipliers correspond-
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ing to the C.J and the isoperimetric constraints respectively. Differentiating (1.38)

w.r.t. time we obtain:

[tae & +ttag G[L + ] + s P=0 (1.40)

o6

Dividing by u,[l + %] = ¢, using (1.39) and the fact that £ = —9, we obtain the

euler equation as a function of the parameter p and the derivatives of u(-, -).

. o 1 1[) __é Uga © UaG 2 _ —_
[u““a+u“GG]ua+[1+¢] —¢¢> ” a+ua G—ug+46=0 (1.41)

The discrete time version of the problem leads to the following Lagrangian

T

T T
L= Z pT ~tu(ae, pGe—1) — A Z[Gt — pG—1 — u(as, pGi—1)] — 1 Z a¢
t=1

t=1 t=1

where p = (1 — 4). The first order conditions are

da; : PT—tUa(at, pPGe_1) + Ata(as, pGe—1) = £

oG, : pT_tuG(at-i-l: PG:) — At + Ae1p + Aer1puc(aiq1, pGe) =0

Substituting and carrying out the algebra yields the euler equation

Ua(Ae 41, PGt) = pua(ay, PGz—l)[l + ug(@esr, PGt)]
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Chapter 2

Release of Information and Strategic Manipulation of
Memories: the convex cost case



2.1 Introduction

In chapter one, I built a simple model of memory, which I then used to examine
the implications of imperfect memory for the problem of releasing information. In
particular, I addressed the issue of how one should time a sequence of informative
events in order to manipulate the memories that his forgetful assessor will have at
some critical date. There are two important features in this model. First, the choice
variable for the agent who controls the release of information is binary: in each period
t you either time an event, or you do not. Second, the total amount of information
to be released is predetermined, as there is a fixed number of events to be scheduled.
I will refer to this as the fixed-budget binary choice model, or FBBC.

Here, I extend the model to allow for a continuous, rather than binary, choice
variable and, more importantly, a convex cost for generating events, rather than a
fixed “budget” of events. I believe that an extension along these lines is important for
two reasons. First, it widens the applicability of the model to economic settings where
this set of assumptions is more appropriate. Consider, for example, an employee who
is evaluated at some critical future date on the basis of his past output performance.
In each period he has to decide how much effort to exert. There is no reason to
believe that working hard today decreases the amount of effort that he can spare in
the future. Rather, it is more appropriate to assume that additional effort can always
be generated by incurring some cost, psychic or physical. Second, extending the

model in this direction paves the way to an empirical investigation of the model. For
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example, one could use data from actual advertising campaigns to see how companies
spend advertising money prior to the launch of a new product. Once again, the
decision variable, i.e. how much to spend on advertising in each period, is continuous
and the company can al§vays advertise more if it is willing to pay the additional cost.

Summary and Results

Recall from the detailed discussion in chapter one that there is a vast array of
experimental evidence to support the idea that memory opérates on the principles of
similarity and repetition. This implies that current events have the direct effect of
creating new memories and the indirect effect of reinforcing the memories of similar
past events. We can think of past events as if they are creating a rehearsal stock,
S. I show that the indirect effect of a current event depends only on the level of this
rehearsal stock S, rather than the exact history profile of past events.

Then, we can cast the problem of information release as a stochastic dynamic
optimization problem, where the agent tries to maximize the memorability of his
past successes, i.e. events that are beneficial to his reputation, subject to the memory
technology of his assessor. The state variable is exactly the rehearsal stock, S. In each
period the agent controls the probability of a success by exerting effort, but unlike
the model of chapter one there is no isoperimetric constraint on how much total effort
the agent can exert. Rather, the cost of effort is given by some convex cost function.

The problem can be solved by the means of backward induction. A closed form
solution is not available and I therefore solve the model numerically, by a grid search.

I also prove some qualitative results that hold under the general case. In particular, I
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show that effort is an increasing function of the rehearsal stock, S. That is, the more
past successes the agent has obtained, the more motivated he will be to produce
new successes in the future. This is an important result because it demonstrates
how stochastic events can generate action by the agents. Consider for example two
identical employees who are evaluated at some future date 7 on the basis of their
past output levels. At first, both start with equal rehearsal stocks and consequently
they choose equal effort levels. The luckier of the two will enjoy higher output and
in the next period he will have a higher rehearsal stock that he can reinforce. He
will therefore choose a higher effort level than his unlucky colleague. Now, as he puts
more effort it becomes more likely that he will be the lucky one in this second period
and accumulate an even greater rehearsal stock, compared to his colleague’s. He will
therefore choose more effort in the subsequent period and so on. In an ironic way,
if someone with perfect memory were monitoring the performance and the effort of
the two employees, she would identify the “lucky” one as a better employee, failing,
perhaps, to recognize that motivation depends crucially in early stochastic events
that are beyond anyone’s control.

A similar result was obtained in the context of the FBBC model of chapter one.
There, I showed that the agent will be triggered to act and try to produce a success
in a given period if f;he rehearsal stock in that period is above some threshold level.
Nevertheless, these two similar results are shown to be attributed to entirely different
forces. The assumption of convex cost of effort versus a fixed budget is crucial; altering

decisively the driving forces between the two models.
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In an effo;t to make this paper “read on its own”, some repetition between the
material in this chapter and chapter one is inevitable. In fact, I start by briefly
summarizing the memory technology as described, in more detail, in chapter one.
In section three I set up the model, solve it and prove some qualitative results. I
conclude in section four by briefly discussing how the model lends itself to future

empirical work.

2.2 A Brief Summary of the Memory Technology

The material presented in this section is a stripped down discussion of the memory
technology as presented in chapter one. It can be bypassed by readers acquainted
with it, but even they should know, by now, that rehearsal of past information can
help solidify memories.

The model is cast in discrete time indexed by £ =1, 2,3..,T. In each period t < 7T,
an event may be realized, in which case we write e, = 1, as opposed to e, = 0, in
case the event does not realize, that is e, € {0,1}. A realization of the event in some
period ¢, i.e. e, = 1, will be referred to as a success.

To model imperfect recall, I define M} to be the memorability, or strength, of
the memory e; = 1 at time ¢. Since a realization of an event can have meaningful
memorability only after it has oécurted, M} = 0 for all ¢ > t, and we normalize
M} = 1. At time T, an agent (referred to as the assessor) who has been observing the

realizations of past events remembers a period ¢ success only with some probability,
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using the event e; = 0 as the default memory. I refer to this probability as the
recall probability for success i, and I assume it is some increasing function of the
memorability of success 7 at time T, M}-.

To model the evolution of M{ over time, I invoke the experimental results on
memory. First, memories fade away with the passing of time, which dictates that
M} decreases with time. In particular, I assume that memories decay exponentially
at a constant rate (1. — p). Second, to incorporate the properties of rehearsal and
similarity, I assume that a success at time ¢ will enhance the memorability of past
successes, the enhancement being bigger for more recent successes.

I formalize this by defining b} to denote the enhancement (boost) to the memo-
rability of success ¢ by a pqssible success at time ¢.! I let the rehearsal of a period
i success from a success at time ¢t + 1 be a fraction £ < 1 of the rehearsal that this
period i success would enjoy from a success at time ¢ instead, that is b}, ; = «b}. It is
also natural to assume that the increment to the memorability of a period ¢ success
from a success at £ + 1 is less than its current memorability, thus x < p.2 As long as

i < t, we can neatly summarize this information in the following pair of equations:
1 = PM + b I{en = 1} (2.1)
by = Kb} (2.2)

where [ is the usual indicator function, i.e. I{e, =1} =1 if e, = 1 and 0 otherwise.

1As with M}, bi =0 for all i > t and we normalize b} = 1.
2Note that at time ¢ + 1 the memorability of a period ¢ success is p.
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Recall that the number of successes that a forgetful assessor actually remembers
is a random variable, with upper bound the actual number of successes, Y., I{e; =
1}. If the probabilities of recall at time T are proportional to the memorabilities of
each past success at time T, M%, then the ezpected number of successes that the
agent recalls at time T is proportional to the sum of the memorabilities at time T,
denoted by Ar = Zf_'__l M?.. Using (1.1) and (1.2) together with the initial conditions

M? = b =1, we can sum over ¢ to show that A, evolves as follows:

At+1 = pAt + I{eH_l = 1} - (1 + KSt) (2.3)

SH-I. == ICSt + I{e,.H = 1} (2.4)

where S, = 37, bi.

This new pair of equations allows for a different interpretation of the model.
Memory decay, embedded in p, can be thought of as a discount rate on the past, rather
than on the future. Then, one could think of A, as a running total stock variable that
measures successes that have occurred up to time ¢, each one “discounted” at rate
(1 —p). In each period that a new success is realized the stock A, is increased, but the
incremental effect of a new success has two distinct components. A direct effect (plus
1), originating simply from thg fact that a new success, and thus a new memory, has
been realized, plus an indirect effect, (plus xS;) coming from the fact that the new
success triggers memories of past successes and therefore become more memorable.

Our reduced form equations (2.3) and (2.4) give a convenient way to record this
indirect effect. One might think that the indirect effects of a new success would

79



depend on the exact sequence of zeros and ones that héve occurred up to that point.
In fact, however, the variable S, acts as a summary statistic for the sequence: the
greater is S; the greater the indirect effect from a new success will be. We can think of
S: = Y_i_, b} as a “rehearsal stock”. Just as the running total stock A, decays at rate
(1—p), it is as if the rehearsal stock S, “decays” at rate (1—k). Our earlier assumption
that the rehearsal of an event from time 7 by a similar event at time ¢ is less than the
current memorability of that event, translates to saying that the ‘rehearsal stock S,
decays a faster rate than the actual stock 4, (k < p & (1 — &) > (1 - p)).

I believe that being able to summarize, at each point in time, the past in a stock
variable, rather than having to carry the whole vector of past realizations, is an
attractive feature of the model. This proves to be a great simplification that allows
us to set up the problem of information release as a dynamic optimization problem,

where the rehearsal stock, S;, is one of the state variables.

2.3 The Model with Convex Cost of Effort

To metivate the model, consider an employee who will be evaluated by his boss, at
some known future date T, on the basis of his past performance. We can think of this
evaluation at time T as an end-of-year promotion, or bonus, decision. In each period
the employee’s performance can be either plain and ordinary, making no impression
to the boss, or it may be well above average and hence noticeable. In the latter case,

we say that the employee had a success. These successes are the events that the
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boss is called on to remember at time T, her faulty memory being governed by the
technology described in the previous section. The more successes she remembers the
higher the bonus to the employee, or the higher the chance for a promotion.

Each period the employee chooses effort, how hard to work. Let c; denote the
choice variable at time t and assume it lies in a closed interval, that is ¢; € [c,¢].
Effort comes with some increasing conver cost function g(c), but it increases the
probability of a success for that period, through some increasing concave function
p(c), with p(c) =0, p(¢) =1.

A risk neutral employee will choose his effort so as to maximize the expected
number of successes that his assessor will remember at time 7', which is Ay, minus
the total cost of effort. The maximization is df course subject to the assessor’s memory
technology, as summarized in the pair of equations (2.3) and (2.4). Therefore, the

employee solves

T
max Ar — Zq(ct) (2.5)
i=1
st Apry = pAi+ I{ewr1 =1} - (L +KSy)
Stt1 = &S+ I{et1 =1}
Pr(e: = 1lc) =plee)
Comparing this to the maﬁxnization problem in chapter one we can spot two

differences. First, the decision variable is no longer binary, ¢; € {c,¢},3 rather it

3In the jargon of the old model, ¢, € {Act, Wait}.
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is continuous in the interval [¢,¢]. More importantly, the employee of this model
can generate more effort each period by incurring some direct psychic cost. In the
previous model, there was no direct cost of effort, but today’s effort reduced the
amount of effort that the agent could spare in subsequent periods. This may be the
situation faced by a politician trying to decide when to time a predetermined number
of events, say, announce a popular tax cut and schedule a TV appearance that will
generate positive publicity. Or an advertiser deciding when to schedule the airing of
a limited number commercial spots. However, in the employee-evaluation example

the assumption of convex cost of effort fits better.

2.3.1 The Bellman equation

We now transform the stochastic dynamic maximization problem of (2.5) to the usual
Bellman equation formulation. Assume that we are in period £, carrying over some
running total A, and a rehearsal stock S;. Recall that a success in period ¢ has three
effects. First, it produces a new memory, adding one unit to the running total.
Second, it reinforces past memories, adding the term «S; to the running total for a
combined effect of (1 + «S;). Third, this new memory increases the rehearsal stock
for the future.

These are the effects that a period ¢ success has on the running total A,y; and on
the rehearsal stock S;, but it increases the agent’s payoff only through the effect it
has on A7, the running total at the critical time 7. Since the running total decays

at the rate (1 — p), the first two effects increase Ar, the running total at time T, by
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pT~t(1 + kS;). The third effect is accounted for by “updating” the rehearsal stock S,
to Si;+1 through equation (2.4). Therefore, even though the agent receives her payoff
at time T it is as if she receives a flow payoff each period there is a success, which
is discounted at rate p.* As a result, A, the running total at time ¢, can be dropped,
leaving us with two state variableé: the rehearsal stock S and the number of periods
to go, denoted by 7°. Then, denoting by V' (S, 7) the continuation payoff starting with

a rehearsal stock S and with 7 periods to go, we have

max V(S,T)=pl)p ' (1+&S) + V(A + &S, 7 — 1)] +[1 — p(c)]V(kS, T — 1) — ¢{c)
(2.6)
Since the problem terminates at time T, it can be solved by backward induction.

With only one period to go, the agent simply solves
max V(S,1) = p(c)(1 + &S) — q(c) (2.7)

If we assume specific functional forms for p(-) and g(-) we can solve for the optimal
choice for c as a function of the rehearsal stock, .S, which we can then plug into (2.7) to
obtain V' (S, 1) as a function of the rehearsal stock, S, and the two decay parameters,

p and k. For example, let p(c) = ¢® and ¢(c) = ¢?, with 0 < 8 <1 and v > 1. Then,

4Recall that here we discount the past and not the future.

SThatist=T—-t+1
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* (2.7) is solved by letting®
8 s
Ci = [:;'(1 + ES)]" (2‘8)

provided that ¢; <1 (and ¢; = 1 otherwise). This in turn implies (ignoring the corner

solution ¢; = 1)

V(S,1) = [5(1 + KS)|77 (L + KS) — [%(1 + kS)|7F = [%(1 + rcS)]TZ?(;ﬂy- —1)

(2.9)
Now, with two periods to go the agents solves
m?.xp(c)[p(l +&S) + V(1 +&S,1) = V(sS,1)] — q(c) + V(xS, 1) (2.10)
The optimal choice is”.
e = {g[p(l +KS) + V(1 + &8, 1) — V(xS, 1)} 77 (2.11)

Using (2.9) to substitute for V(1 + &S,1) and V (xS, 1) one can obtain the optimal
choice with two periods, c;, only as a function of the rehearsal stock, S, and the
parameters p, k, 8 and «. This, in turn, will give us V (S, 2), the value function with
two periods to go, only as a function of the rehearsal stock S and the parameters,
which we can use to compute the optimal choice with three periods to go, c3, and so

on. However, one can see that the expressions for the optimal choice and the value

€The subscript ¢ on the choice variable, c;, denotes that this is the optimal choice with i periods

to go.

Tprovided that c; < 1 and c; =1 otherwise
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function quickly become very complicated as we increase the number of periods to
go, and a closed form solution is not easily obtained. Of course, there may be other
functional forms for the probability mapping p(-) and the cost function ¢(-) that are

more convenient. Since I could not find any I proceed with numerical simulations.

2.3.2 Simulation results

In this section I simulate the model using the functional forms from the earlier ex-
ample, i.e. p(c) = ¢? and q(c) = ¢”. Also, for the rest of the discussion I assume the
following parameter values: p = 0.99,x = 0.35, 8 = 1,y = 2. To simulate the model
numerically, we need to discretize the state space. I let the rehearsal stock S take
the values {0, d, 2d, 34, .., li—,c 8 where d is some small increment, say 0.001. Time is
discrete by assumption. By discretizing the state space, we are able to compute the
continuation payoff and the optimal effort level, with T periods to go, for each posstble
value of the rehearsal stock S, instead of having to express them as (complicated)
functions of the rehearsal stock S.

With 7 periods to go, knowing the exact numerical value of the continuation payoff
for each possible value of the rehearsal stock S, allows us to compute the optimal effort
level for each possible value of the stock and 7+ 1 periods to go. This enables us to

compute the value that the continuation payoff takes, for each possible value of the

stock, and with 7 + 1 periods to go. And so on, inductively.

8Since the rehearsal stock S is a sum of powers of «, it is at most 1_1,:_.
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I then simulate the model to obtain the expected effort level for each period,

starting with zero initial rehearsal stock and T = 10 periods to go.

Figure 1
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The results are shown in the upper left portion of figure one. Average effort takes
this inverted (and tilted to the right) U-shape over time, which is typical and holds
for the whole range of possible parameter values. The agent initially increases his
effort level over time. After a certain point in‘time, when there are not many periods
to go, he starts decreasing his effort. In other words, he works early on to create a
high rehearsal stock. This makes his future actions more effective, allowing him to
slack off and reap the benefits of his past hard work.
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To give some intuition for this result, I plot in the upper right portion the optimal
effort level as a function of the state variables, periods to go and the rehearsal stock.
For a clearer picture look at the lower left portion, which plots the optimal effort level
against all possible values of the rehearsal stock S, keeping the number of periods to
go fized, at T = 3. We should extract the fact that effort is increasing in the rehearsal
stock®. This result is discussed at great length in the next subsection. Similarly, the
lower right portion plots the optimal effort level against the number of periods to go,
keeping the rehearsal stock fixed, at S = 0.5. We see that effort initially'® increases
as the number of periods to go decreases. Recent successes are more memorable,
therefore the agent should work harder as time goes by. However, there is a second
effect that decreases effort as the number of periods to go decreases. Working harder
leads to a higher probability of success and therefore a higher rehearsal stock for the
future. The fewer the periods to go, the fewer the number of periods that the agent
will be able to exploit this higher stock, and as a result the less of an incentive she has
to work hard. For example, with two periods to go, a higher probability of success
gives you a higher chance for grabbing the flow payoff of p(1 + kS), and a higher
probability of making your future rehearsal stock (1 + «S) rather than «S. With only
one period to go, you only care about the flow payoff. The rehearsal stock that you

will carry over for the future is not important since the model ends.

9The linearity is a consequence of the fact that we have chosen 8 = 1 and v = 2. It does not hold

in general. See equation (2.8).
10¢[nitially” here means reading the graph from the end, when we have many periods to go.
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2.3.3 A general result

In the numerical simulations effort appeared to be increasing in S, the rehearsal stock.
Next, I show that this result is a general feature in the model, and holds for arbitrary
choices for the parameters (p and &), for any concave probability mapping p(-) and
any convex cost function ¢(-). Focus on the first order éondition, obtained by the

Bellman equation in (2.6) given by
()P ' A+kS)+ V(A +&S,7—-1) = V(S,7—1)] =¢'(cr) (2.12)

Applying the implicit function theorem we can differentiate both sides with respect
to the rehearsal stock, S, to obtain, after some algebraic manipulation,

dc*(S,7) P ()P +Vi(1+kS,7—1) — Vi (&S, T — 1)]
aSs {d'(c) —p"()lp A +kS) + V(1 + &S, T —1) — V(kS,7 —1)]}

| (2.13)

where c* is the optimal choice that solves (2.12), and Vi(-,-) denotes the partial
derivative with respect to the first argument. Since the cost function g(-) is convex and
the probability mapping p(-) is concave the denominator is positive. The numerator
will be positive provided that the continuation payoff is convex with respect to its
first argument, i.e. Vj;(-,-) > 0. To compute this second derivative, we differentiate

the Bellman equation in (2.6) with respect to the rehearsal stock S, twice. First we

get!!

Vi(S,7) = plc)e[p" t + Vi(1 + kS, 7 — 1) = Vi(kS, 7 — 1)] + Vi (&S, T —1) (2.14)

11Recall, that we can ignore the change in the choice variable ¢, due to the envelope theorem.
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Differentiating once again with respect to the rehearsal stock, S,

dc(S, 1)
oS

+p{c)kVii(1 + kS, T — 1) +[1 — p(er)]&cVi1(kS, T — 1)

Viu(S,7) = p(er) ko +Vi(l +&S,7 — 1) — Vi(sS, T —1)] (2.15)

We now have the machinery to prove the following result.
PROPOSITION 1 For all periods to go, T, effort is increasing'? in the rehearsal

stock, that is Qﬂa%l > 0. Morover, the continuation payoff is convex with respect to

its first argument, that is Vy;(-,-) > 0.

Proof. The proof is by induction on the number of periods to go, 7. It is straight-
forward to verify that &°T(55,’11 > 0 (with equality when we have the corner solution
¢*(S,1) = 0)) and V4;(S,1) > 0. Assume that for some 7 > 1, V1;(S,7) > 0. Then,
by (2.13) we can be assured that ac—‘(%i) > 0 (with equality for the corner solution
¢*(S,7 + 1) = 1). This in turn implies, by (2.15), that V;1(S,7+1) > 0. ®

This result has the important implication that stochastic events that increase an
agent’s rehearsal stock can motivate the agent to exert more effort. More importantly,
stochastic events will force two identical agents to choose different effort levels, thus
inducing their actions to diverge in the future as well. To see that, assume that two
identical employees will be evaluated at some future period T. They start with the

same rehearsal stock, and as a result they choose the same effort level for the first

period. Assume that one gets lucky and obtains a success, whereas the second is

12Tt is weakly increasing only for the special case of a corner solution, c*(S,7) =1
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unlucky and does not get a success. In the second period, the lucky employee will
have a higher rehearsal stock and will choose a higher effort level. This means that a
success in the second period is more likely for him than for his unlucky colleague who
chose a lower effort level. Therefore, it is even more likely the first one will choose to
work harder in the third period and so on.

This situation is depicted in figure two where I plot the optimal effort level over
time for the “most lucky” employee, who always obtained a success, and the “most
unlucky” employee who never obtained a success. In period one both choose the same
effort level. In period two the lucky one has a higher stock to rehearse and he has an
incentive to work harder. In period three the difference between the rehearsal stocks
of the two employees is even greater and their respective actions diverge even further,
and so on. Notice, that in producing the plot in figure two we assumed that the lucky
employee will always produce a success and the unlucky one will never produce one.
Nevertheless, this assumption is “reinforced” by the actions of the agents, since the

lucky employee works harder and has indeed a higher chance of obtaining a success.

It is also ironic that an assessor with perfect memory monitoring the two employees
would conclude that the “lucky” employee has worked more and deserves a higher
payoff, perhaps not realizing that the difference in their performance is attributed to
early stochastic events, beyond the employees’ control.

A similar result was obtained in the context of the FBBC model of chapter one.
In particular, it was shown that the agent will be triggerred to act early on when the

rehearsal stock is above some threshold. In other words, the greater the rehearsal
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Figure 2

Optimal effort paths for “most lucky®, "most uniucky” and average employees
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stock, the greater the incentive to deliver a success now, rather than later on. Never-
theless this result, seemingly related to proposition 1, is attributed to different forces.
A quick way to see this is to notice that the result of the FBBC model rested crucially
in the assumption p > k, that the rehearsal stock decays faster than memory. This
assumption, however, was not used in the proof of proposition 1.

For a better explanation, recall that in the FBBC model the agent had a fixed
budget of effort, facing the question of when it is optimal to spare some effort and
increase the probability of a success. On the one hand, sparing some effort early on

is desirable because a potential success will reinforce existing past successes, whose
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memories are decaying very fast. This was termed the rehearsal effect. On the other
hand, waiting to spare the limited afnount of effort later on produces successés that are
themselves more memorable, termed the recency effect. Optimal actions are dictated
by a trade off between the recency and the rehearsal effect. The greater the rehearsal
stock, the greater the rehearsal effect, and hence the greater the incentive to work
hard. In the present model this trade off between recency and rehearsal is not present
since additional effort can always be generated, albeit at some cost. Instead the agent
equates the marginal benefit of effort to the marginal cost of effort, as in (2.12). The
higher the rehearsal stock, the greater the marginal benefit cf effort, and this is for
two reasons. First a higher stock results in a higher flow payoff which is received only
if there is a success, and second, more rehearsal stock increases the difference between
the continuation payoff if a success occurs, V(1 + &S, 7), and the continuation payoff

if a success does not occur, V(&S, 7).

2.4 Testable Implications?

In this chapter I extended the model of chapter one to include a continuous choice
variable and convex cost for generating events. I do not wish to make the claim
that one model is better than the other, or that one is a special case of the other.
Rather, I see the two models as complementing each other, each being applicable in
settings where its assumptions are more relevant. However, I do wish to claim that

the continuous choice convex cost model lends itself more easily to future empirical

92



work, which I briefly outline here.

The idea that memory relies heavily on similarity and repetition means that cur-
rent events not only create new memories, but that they rehéarse similar past memo-
ries as well. This fact has the important implication that the present decisions of an
agent manipulating her assessors’ memories will depend on past events. In particular,
the main result of this chapter was that the more memorable past favorable events
are, the more motivated will the agent be to work hard, or spend more.

Political campaigns provide a real world setting where one could potentially test
this hypothesis. Politicians spend big sums of money in advertisng campaigns in an
effort to create favorable impressions for themselves, and to a lesser extend, unfavor-
able impressions for their opponents. Assume that we had access to the expenditure
profile over time for various political campaign teams. We could then use opinion
polls at regular intervals as a proxy to summarize the effectiveness of past advertising
on the public’s perceptions, just as the rehearsal stock S summarizes the past history
of events in the abstract model. The hypothesis of the model would be verified if we
could detect a tendency to spend more money right afer the publication of a favorable

poll.
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Chapter 3

Revising Non-Additive Priors

With Ricky Lam

Many thanks to Ben Polak for teaching us decision theory, and for many fruitful discussions.
Ettore Damiano, David Pearce and Mario Simon made many helpful comments during the course
of this project. ‘



3.1 Introduction

In a wide range of dynamic economic situations with incomplete information, agents
are required to update their initial beliefs upon the receipt of some informative signal
or message. For example, an employer may update her prior on the quality of a
worker after observing the worker’s output. Or the manager of a potential entrant
in an industry may update his prior of being fought, a.fter observing the actions of
the incumbent firm to previbus entrants.

In the belief revision process, five different probability measures may be involved.
In order to clarify this, and to illustrate the questions addressed by this paper, we
consider the following concrete example. An employer has just hired an employee.
The worker can either be one who exerts high effort (6x) or one who exerts low effort
(0.). It is assumed that the employer does not observe the worker’s type but she does
observe the worker’s output, which again can be either high (yg) or low (y.). Define
the set of possible types and output levels to be © = {0g,0.} and Y = {ya,yc},
respectively. The state space is all possible combinations of the worker’s type and

the output produced; we denote this by: S =0 xY = {(8x,vx), Om,yr), O, ynm),
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(6r,yr)}- The five probability measures are:

v:2° —[0,1] The unconditional prior over types ©
w:2¥Y = [0,1] The unconditional measure over signals Y
o:25 —[0,1] The joint measure over the product space S =0 xY

p(.|6) :2¥ —[0,1] Conditional likelihood over signals Y, given a type 6 in ©
v(.|y):2® —[0,1] Posterior over types ©, given a signal y in ¥’

If these measures are all additive, the information contained in them can be sum-
marized in three equivalent ways: (a) by o, the joint probability over the product
space; (b) by the prior for types v, together with the set of likelihoods {u(-] }cos
and (c) by the unconditional measure over signals u, together with the set of pos-
teriors over types {v(.|y)},cy- DBayes’s theorem allows us to move among these
representations.

From the point of view of economic applications, agents typically possess infor-
mation in the form of (b). It is natural to assume that thé employer has initial
beliefs over the quality of the worker, and that her knowledge of the production pro-
cess implies knowledge about the distribution over output, conditioned on each of the
worker’s types.

Now, imagine that the employer’s knowledge‘is indeed in the form of (b), and that
a low output (yz) is realized. How does she update her beliefs on the employee’s type?

The updating problem is trivial. First, the employer transforms the representation
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in (b) to that in (a) by a simple rearrangement of Bayes’s rule. Forall@xy in © xY,
o [(0,9)] =v(6) - u(y | 6) (3.1)

Having obtained the joint beliefs over the product space, another application of

Bayes’s rule produces the posterior probability that the employee is type 6:

(6 92) = o 6,00) | {Gm,ve), GOr vl = s 28— (32)

This is essentially moving from representing the information using (a) to representing
it by (c).

In this updating framework, the prior measure v is subjective while the likelihood
distributions {x(. | 6)}4ce are often objective." Recent work in decision theory has
sought to represent the subjective beliefs of uncertainty-averse agents in the form of |
a non-additive measure. Schmeidler (1989) and Gilboa (1987) show that if the de-
cision ma_.ker’s preferences satisfy certain axioms that are consistent with uncertainty
aversion, then they choose as if they are maximizing Choquet expected utility. That
is, preferences can be represented by a utility function which requires an expectation
with respect to a non-additive measure.

If our hypothetical employer possesses such a prior, the three ways of representing

information discussed above are no longer equivalent: revising her beliefs over types

In the traditional view among economists, the subjective probability measure should be thought
of as arising from some representation of the decision maker’s preferences. In particular, Savage
(1954) and Anscombe and Aumann (1963) outline the axioms for an expected-utility representation.

Bayes’s rule can also be justified through preferences. (See Myerson 1991.)
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in the light of signals is no longer so obvious. This non-equivalence arises because
Bayes’s theorem does not hold for non-additive measures. Omne may think that the
Dempster-Shafer rule for calculating conditional capacities—which we will describe
subsequently—can be used in place of Bayes’s rule. This is partly justified by the work
of Gilboa and Schmeidler (1993), who show that a particular form of “pessimism” in
preferences leads to the rule as an updating device for non-additive measures.2

By analogy to the additive case, one may attempt to use the Dempster-Shafer
rule to construct joint beliefs ¢ and then condition on the relevant partition of the
product space to obtain posterior beliefs over types v(. | y). Unfortunately, the
first stage of this procedure fails. In general, unique beliefs over the state space
S cannot be obtained from the Dempster-Shafer rule alone. This has important
implications because in many economic applications, such as the example here, beliefs
over the state space S are not given in the specification of the problem. Although
the Dempster-Shafer rule can be used to calculate posteriors once the joint measure is
known, our maintained assumption is that information is presented to the economist
in the form of (b).

We propose two rules for defining a measure over the space S. Under the first
proposal, the value of a set in 25 is given by the iterated expectation of the corre-

sponding indicator function. Expectation is first taken with respect to {yu(. | #)}4cq

2The assumption is that when conditioning preferences on a particular event, the agent assumes
that the best possible outcome obtains in the impossible states. See Gilboa and Schmeidler for

details.
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and then with respect to v. We refer to this procedure as the Choquet-indicator rule.
With additive probability measures, this is of course the correct thing to do because
the expectation of an indicator function over a set is the probability of that set.
When beliefs are non-additive, we show that this rule still has desirable properties.
In the second approach, we recognize that the perception of uncertainty embodied
in v can be equivaiently represented by a set of additive measures, which we denote
by P. Each of these distributions over the type space © can be taken in turn and
used to construct a probability over the state space S. We refer to this rule as the
multiple-priors rule. It produces a set of distributions, denoted by Q.

The two rules are closely related, but not equivalent. This non-equivalence
arises because non-additive measures‘ are unable to capture certain restrictions on
the relative likelihood of events. While this does not matter for the representation of
uncertainty-averse beliefs, it results in a loss of information when beliefs have to be
revised.

The updating problem considered in this paper is in fact closely related to a
theoretical question which has received some attention in the literature. =~ When
an individual has non-additive beliefs, whether the objects of choice are Anscombe-
Aumann “horse-lotteries” (functions from states to lotteries over consequences) or
Savage acts (functions from states to consequences) affects her preference for ran-
domization. (Eichberger and Kelsey 1996) This in turn has implications for the
desirability of mixed strategies in games with uncertainty-averse players.

To see the relationship between this literature and our paper, note that the signal
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processing example has two stages of randomness. The first relates to uncertainty
about which element of © corresponds to reality (no objective probabilities are avail-
able), and the second relates to risk about which signal from Y will be received
(objective probabilities). This problem can thus be placed within the Anscombe-
Aumann model, where ﬁhe objects of choicé are precisely such two-stage lotteries.
Within this framework, the non-additive measure over types v should not be viewed
as primitive, but rather arising from the representation of some preference ordering
yA4 3

Obtaining beliefs over the state space can now be rephrased in terms of preferences.
We will show how the binary relation =44 over two-stage horse-lotteries induces an
ordering over one-stage acts in the Savage framework. Denote this induced relation
by =5V . Finding a measure over the product space S is then equivalent to finding
a Choquet expected utility representation for the Savage preferences =5V .

Based on the non-equivalence of the Choquet-indicator rule and the multiple-
priors rule, we argue that the difference between Anscombe-Aumann decision making
and the Savage framework arises, not from inherent differences between one and two-
stage lotteries, but from the inability of non-additive priors to model uncertainty as
precisely as multiple priors.

The rest of the paper is organized as follows. Section 2 provides the notation and
outlines some existing results. Section 3 presents the theoretical framework for our

updating problem. In section 4, we introduce the two rules for constructing beliefs

3The superscript refers to the Anscombe-Aumann setting.
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and discuss the relationship between them. Section 5 makes the case that, at least
within dynamic updating problems, a multiple-priors representation of uncertainty is
more appropriate. A summary, together with some conclusions, are to be found in

section 6.

3.2 Notation and Preliminaries

Let O be a finite set of types and Y denote the set of signals. From the specification
of the problem, we have a convex capacity v over O.

Definition (Capacity). A capacity or non-additive measure over © is a function
v : 22 — [0, 1] satisfving the following:

(1) v(0) =0,v(0) =1

(ii) For A;, A, €O, A; C Ay = v(4;) <v(A2)

If (ii) holds, v is monotone.

We say that v is convex, or supermodular, if in addition, the following holds:

(iii) v(A4; U A) > v(A1) +v(A42) —v(AL N A), for all Ay, A, € 2°

It is superadditive, if (iii) holds for disjoint A; and A,.

For each type 0 € O, there is an additive probability distribution over the set of
signals Y which may be received. These lotteries represent objective risk and we
denote them by {u(: | 6) }sco-

The most popular scheme for updating a convex capacity is the Dempster-Shafer

rule. For additive measures, this rule corresponds to Bayes’s rule.
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Definition (Dempster-Shafer). The Deinpsfer—Shafer update of a convex capacity v

conditioned on event is A C © is defined by the following expression. For all A; C A,

v(AL U A°) — v(A°)
1 —v(A°)

v(A, | A) = (3.3)

To see how our problem relates to the literature on decision theory, we need to
introduce preferences. Let 44 represent a preference ordering over horse-lotteries.
A horse-lottery in our notation is simply a mapping from © onto the set of probability
distributions over consequences, h:© — AC, where C is the set of consequences.
Denote the set of horse-lotteries by H.

Throughout, we assume that preferences =44 are primitive and that they sat-
isfy the Schmeidler (1989) axioms for representation as a Choquet expected utility

function so that for all h and A’ :
h =44 p' if and only if /Uohdu}/Uoh’du - (34)

where U is a von-Neuma.nn-Morgensfem linear utility function with a Bernoulli utility
function, u : C — R*, over consequences. The capacity over types v is obtained
from this representation. Calculating utility involves a two-stage expectation. In
the von-Neumann-Morgenstern utility, the expectation is with respect to the lotteries
over consequences. Expectation is then carried out using the Choquet integral which
is defined as follows:

Definition (Choquet Integral). Let g : © — R be a random variable.. The Choquet
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integral of g with respect to the capacity v is defined as:

/ g dv = giv(A4;) + Z gi [V (U;:'.___.]_Aj) -v (Uj-?__llAj)] (3.5)

=2

where g; is the i*t highest consequence under g and A; € 2° is the event in which
the consequence g; occurs.

Because a preference ordering which admits a Choquet expected utility represen-

tation can always be represented as a maxmin expected utility, we know from Gilboa

and Schmeidler (1989) that there exists a closed convex set P of additive probability

measures on ©, such that for all h and A’ :
h =44 h' if and only if min/Uohdp}min/Uoh’dp (3-6)
pEP peEP

Moreover, the set of multiple priors P is the core of v. We will abuse notation by
referring to p as both a measure and a vector.
Definition (Core). The core of a non-additive measure v, denoted by core(v) is

defined, as in the cooperative theory for transferable-utility games, by:

core(v) = {p = (p1,--- Dlo|) € Aleli-t Epi >v(A), forall AC 9} (3.7)

icA
For the purpose of the signaling problem, the set of probability distributions,
{u(. | 8)}sco, are objective and fixed. Therefore, to place our problem within the
Anscombe-Aumann decision setting, we have to restrict the set of horse-lotteries to

those in which the second-stage risk is given by some element of {u(. | 8)}¢co- The

consequences attached to these probabilities can differ between horse-lotteries. We
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denote this set of restﬁcted horse-lotteries by H, C H. To illustrate in the context
of our motivating example, consider the following capacity and likelihoods:
v(Bg) =%, v(0L) =3, and v({0g,0.}) =1
wlyn | 6m) = §, plyc | 0n) = % (3.8)
p(ye 100) =0, p(yc | 0c) =1
The employer’s prior over the worker’s type is characterized by ambiguity and results
in a non-additive measure. The production process yields a high output (yg) with
probability £ when the worker is a high-effort type (6g). It yields low output (yr)
with probability 1 if the worker is of the low-effort type (.). With these numbers,
elements of H, take the form of the following pair of lotteries: k() = (3, c1; &, ¢2);
h(8r) = (0,c3; 1,c4) where ¢; € C, for alli € {1,2,3,4}.

In the next section, it is necessary to compare preference orderings under -44
with those under Savage preferences -5V . Call the product space S = © x Y the set
of states. Savage preferences are defined over acts, which are mappings from states
to consequences, f : S — C. Denote the set of acts by F. To facilitate comparison
between =44 and =5, we need this additional definition:

Definition (Induced Act). Write Y = {y:,vs,...,yn} and consider lotteries over
consequences with the dimension of the support equal to the cardinality of Y; that
is, for all 8 in ©, h(0) = (u(yr|0),co4;--;4{(yn | 8),ca4.)- The act over states

induced by the horse-lottery h in H), is a mapping, f* : S — C, defined as:

6 xy) =coy (3.9)
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Notice that induced acts do not depend on the probabilities which are part of the
specification of horse-lotteries. In the Savage setting, the risk contained in lotteries
over consequences is modeléd explicitly as part of the description of the state. Con-
tinuing with the example above, the horse-lottery—h(fg) = (%,c1; £,¢2), h(6L) =
(0, c3; 1, c4)—in the Anscombe-Aumann framework induces the following Savage act:

f* = (c1,¢2,c3,c4). Figure 1 illustrates this example.

Figure 1
Type Signal State Likelihood @ Consequence
s1 = 0m,yn) plym |0u) =% c1
a
g —  s2=(0myr) w(yc|Ox)=1% c2
/(
¢
0 — s3=(0r,yr) wu(yg|6L)=0 c3
N
sa=(0r,yL) p(ye|0L) =1 Ca

Axiomatizations for both Choquet and maxmin expected utility exist in the Savage
setting. For Choquet expected utility, see Gilboa (1987) and Sarin and Wakker (1992).
Casadesus-Masanell et al. (1998) axiomatize the maxmin expected utility represen-
tation. One final piece of notation. We denote the capacity and the set of multiple

priors over the state space, S = © x Y, by o and Q, respectively.

3.3 Theoretical Framework

As we pointed out in the introduction, updating the capacity over types upon the
receipt of a signal requires the construction of beliefs on the product space S =
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© x Y. How should this—in general, non-additive—measure be constructed? What
desiderata should o possess?

By placing our problem within the framework of preferences, we obtain a very
natural property that o should satisfy. Assume that the capacity v over © is the
result of a representation of the primitive ordering =44 over horse lotteries in H,,.
Based on this preference ordering, we can define a relation =5V, over acts, according

to the following. For all h,h' € H,,,
hzAH e RV Y (3.10)

Having done so, constructing beliefs on the state space S amounts to finding a measure
o that represents =-5Y. That is, we want o to satisfy the following utility representa-

tion:
SV o /S u [f*(s)] do(s) > fs u[f"'(s)] do(s) (3.11)

We can obtain another perspective by re-stating the requirement in (3.10) as that
of finding a o such that the expected utility representation of the two preference

orderings are equivalent. For all k in H, we want,

/ Uh(8)] dv(8) = / u [fA(s)] do(s) (3.12)
e s
The left-hand-side contains the utility function which represents -44; the right-hand-

side contains the representation of -V . This equation can be written more explicitly

as:

[ [ wlrexv] dutwio)a@)= [ ulh@xy)] doloxy) (319
oJY

oxY
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Equation (3.13) allows us to restate the problem. The aim is to find a measure, o,
on the product space, S = © x Y, for which part of Fubini’s theorem holds. Fubini’s
theorem states that the order of the iterated integrals with respect to two marginal
measures do not matter and that both are equal to integration with respect to the
product measure. Condition (3.13) requires only that integration over Y, then ©, be
equivalent to integration with respect to the product measure.

Sarin and Wakker (1992) were the first to observe that, in general, it is not possible
to find a capacity o on S which satisfies (3.13). This can be illustrated in the context

of our example. Consider the following three horse-lotteries, A1, h2, h3:

hfl(eﬂ') = (%1 1; %1 0> 1 hl (0[:) = <0a 0; la 0)
h2(0H) = <%: 1; éa 0) ’ h2(0L) = (01 0; 17 1) (3'14)
Recall that each lottery is of the form hA(6) = (u(y1 | 9); c,; u(y2 | 0),c2) . These are

all elements of H, because the probabilities are identical and given by {u(- | 8)}sco-

Respectively, they induce the following acts in the Savage formulation:
M = (1,0,0,0)
2 = (1,0,0,1) (3.15)
f* = (2,0,0,1)
Without loss of generality, we assume that consequences are in utils, or that the
Bernoulli utility function is given by u(c) = c¢. To satisfy equation (3.13) for f** and
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fh2, it can then be verified that we need:

o [0, yr)] = 5

o ({0, yr), O, yc)} = &

(3.16)

However, with these values, the Choquet expected utility of the horse lottery h; in the
Anscombe-Aumann framework is given by [, f,-u (f**) dudv = Z while the Choquef
expected utility of the corresponding induced act f k3 in the Savage framework is given
by fsu(f*)do =2t

This difference between the two frameworks does have important implications.
For example, Eichberger and Kelsey (1996) show that in the Anscombe-Aumann
framework (represented by the left-hand-side of equation 3.13), uncertainty-averse
agents exhibit a preference for randomization, but they do not necessarily do so when
the objects of choice are Savage acts (the representation of the right—hand-side‘ of
3.13 ). We have shown that the difference also matters when agents are revising

non-additive priors upon the receipt of some signal.

3.4 Obtaining Beliefs Over the State Space

Having established that it is impossible to obtain a capacity o which satisfies the
desideratum of (3.13), we now consider some weaker desirable properties which we
may want a capacity over the state space to satisfy.

One obvious feature which we would like our rule to possess is that it should

correspond to Bayes’s rule in the special case of additive distributions. In order to
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ensure this, rectangular sets formed by partitioning S according to some element of

©—that is, sets of the form 6 x B, where # € © and B € 2¥—must have measure

given by:
o(@ x B) =v(0) - u(B | 6) (3-17)

This is of course just Bayes’s rule when v is additive. We will refer to (3.17) as the
multiplicative property. However, this still leaves the measure of many subsets in S,
including many rectangles, unspecified.

From the Dempster-Schafer rule, we have the following:

‘O’(OCUB) — o (6°)

B | 6) = =5 (3.18)
Rearranging,
c(0°UB) = w(B|06)[1~0o(6°)]+ 0o (6°)
= u(B|6)[1-v(°)] +v (6°) (3-19)

The right-hand-side of (3.19) is given by the specification of the problem. Thus
using the Dempster-Shafer rule we can obtain the value of the joint capacity on sets
of the form € U B, where B € 2Y and # € ©. We say that a capacity o satisfies the
Dempster-Shafer property if it obeys (3.19).

Even if we impose the multiplicative property of (3.17), as well as the Dempster-
Shafer property of (3.19), we do not obtain a unique capacity. In a similar spirit
to Hendon et al. (1991), we can characterize the set of capacities that we do obtain
by some limits if we require that o be monotone. Take for example the set £ =
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{(@x,yL), (6L, yr)} from figure 1. Although‘ equations (3.17) and (3.19) do not provide

a unique value for its measure, we can derive the following bound using a simple set

inclusion argument:
ma.x{cr(Og, y[,), O'(GL, yL)}‘ < O'(E) < min{a(OH U Y), 0'(0[, U Y)} (3.20)

These bounds can be calculated using the multiplicative property and the Dempster-

Shafer property.

3.4.1 The Choquet-Indicator Rule

We now propose a rule for obtaining a unique capacity over the state space which
satisfies the multiplicative and Dempster-Shafer properties. The definition is as
follows.

Definition (Choquet-Indicator Rule). A capacity o on S with marginal v over S
and a set of likelihood distributions {u(- | ) }sco over Y, is said to be generated by

the Choquet-indicator rule if for every E € 2%Y:

dm=LLm@mmwm (3.21)

where 1g is an indicator function over E.

Result. Let o be a capacity on © x Y calculated using the Choquet-indicator
rule. Then o satisfies the multiplicative and Dempster-Shafer properties in (3.17)
and (3.19), respectively.

Remark. By construction, over the set of acts, {f € F | u[f(s)] €{0,1} for all
s in S}, the Choquet-indicator rule satisfies (3.13), our original desideratum.
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The result is easy to verify. The remark says that, if one restricts attention to
acts which take on only two consequences, the Choquet-indicator (CI) rule maintains
the equivalence between the Anscombe-Aumann and the Savage frameworks. It is
constructed to do so. A comparison of equations (3.13) and (3.21) makes this obvious.

To illustrate how the CI rule works, consider the set {(®x,yn), (0L, yr)} from our

example above. Naively, one could make the following calculation:

v(0u) - p(ye | ) +v(Oc) - n(yc | 6r)

_ a1 =3
T 475 4 20

o [{(0x,yr), O, yr)}

(3.22)

This calculation assigns a probability of % to each of the two types, 0y and 6;. It
ignores the fact that, with the residual probability of %, either 84 or 4., will necessarily
occur. The CI rule corrects for this in the most “pessimistic” way. It assigns
the residual probability to that outcome which would produce the lowest Choquet
expectation, in this case (g, yg), as u(y;} |0n) =% < p(yc | 6L) =1

Despite being intuitive, and despite satisfying the multiplicative property and
the Dempster-Shafer property—both of which seem desirable—the CI rule does not
imply an equivalence between the Anscombe-Aumann and Savage frameworks. As
we pointed out in the previous section, no rule which generates a capacity can. If we
are willing to leave the ndn—additive framework, and allow uncertainty-averse beliefs
to be represented by a set of multiple additive priors, can we do better? In the next
subsection, we preseﬁt a rule for calculating multiple priors over states which yields

an equivalence result between the one and two-stage frameworks for decision making.
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Before this is done, we discuss the relationship between the Choquet-indicator rule
and the work of Ghirardato (1997). ' Ghirardato considered a situation where two
non-additive marginal measures are known. He asked what conditions are necessary
to obtain a capacity o on the product space which satisﬁes the Fubini theorem. He
showed that the theorem will hold if one restricts the set of acts to those which
are slice comonotonic and imposes on o a strengthening of independence, which he
termed the Fubini property®.

Definition (Fubini Property). A function g : © x Y — R is slice comonotonic if for
every 0,0’ € ©, g(8,-) and g(#',-) are comonotonic, and if for every y,y' €Y, g(-,y)
and g(-,y') are comonotonic. Define a comonotonic set as one in which the indicator
function over that set is slice-comonotonic. Now, a capacity o is said to satisfy the
Fubini property with respect to marginals, v over © and pu over Y, if the following

equation holds for every comonotonic set E € 29%Y :

o(E) = /e /Y 15 du(y) dv(6) (3.23)

where 1g is the indicator function over FE.

Our Choquet-indicator (CI) rule can be viewed as a strengthening of the Fubini
property; it imposes that (3.23) hold for all sets E € 25. (The CI rule also differs
from equation (3.23) in that one of the measures in the integral is a conditional one.)

Ghirardato’s definition does not require that equation (3.23) hold for all sets

4This is not to be confused with the Fubini theorem. The Fubini property is a characteristic of

capacities.

112



because, when applied to all elements in 25, the capacity generated by (3.23) does
not satisfy the “iterated integration” part of the Fubini theorem. It is not clear
whether one should define o(E) as [ [, 1gdpdv or [, g 1pdvdu. For comonotonic
sets, these two integrals are equivalent.

In our updating framework, the order of integration is clear so this part of Fubini’s
theorem is not a desirable restriction. By strengthening the Fubini property, we are
able to obtain a unique capacity over the product space; there are multiple capacities
over the product space S which satisfy the Fubini property. Ghirardato requires the
additional assumption of convexity to obtain uniqueness. In general, our CI rule
does not produce a convex capacity. However, we argue that this is not a weakness
since convexity restricts the kind of uncertainty which one can model. This point
will become clearer when we define the alternative way to obtain beliefs in the next

subsection.

3.4.2 The Multiple-Priors Rule

For an agent with preferences =44 over lotteries h € H who satisfy the axioms for
a Choquet expected utility representation with a convex capacity v over ©, Gilboa
and Schmeidler (1989) showed that the agent is behaviorally equivalent to one with
a maxmin expected utility; that is, one ﬁrho maximizes minpep fe U o h dp, where
P = core(v). In the other direction, assume that an agent possesses a maxmin
expected utility répresentation with a set of multiple priors P. The agent is identical

to one who maximizes Choquet expected utility with a capacity v, defined by v(A) =
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min,epp(A), if and only if v is convex and core(v) = P.

In light of these results, we can convert the capacity v, which is convex by assump-
tion, to the corresponding set of multiple priors P = core(v). Is it then possible to
obtain a set of additive beliefs @ over the product space S = © x Y so as to obtain
equivalence between the one and two-stage formulations? More formally, we require

Q@ to satisfy:

mip [ UO)] dp(6) = min [ wlr)] dats (3.29)
where again U is a von-Neumann-Morgenstern utility function with Bernoulli utility
u. This is simply the multiple priors analogue to equation (3.12). The left-hand-
side is the maxmin expected utility representation of >~44; the right-hand-side is the

representation of 2. Consider the following rule for calculating a set of distributions

Q over the state space using the priors over types, P = core(v), and the likelihoods,

{u(- | 0)}056 .
Q={g=_(q1,-qs) € A" | g, =p(8) x u(y | 6) for all p € P} (3.25)
where s = 8 x y. We refer to this as the multiple-priors (MP) rule. It simply takes

each prior in P in turn and applies a rearrangement of Bayes’s rule. In the case of

our motivating example, we obtain:

Q = {gelA¥|qe(d ], epe(x3] =0, auac[dE], a=4¢}
(3.26)
Figure 2 illustrates the projection of this set onto the (g1,¢z) space. We can com-

pletely represent the set in two dimensions because g3 = 0 and ¢ is on the simplex.
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These two restrictions reduce the degrees of freedom to. two.

Figure 2
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Proposition (Multiple-Priors Rule). The multiple-priors rule satisfies the Anscombe-

Aumann and Savage equivalence. That is, it satisfies equation (3.24) for all h € H,.

We omit the proof, since the result is a direct consequence of the fact that the Fubini
theorem holds with additive priors. This result, though simple, is somewhat surpris-
ing given that it cannot be obtained in terms of a capacity on S. Intuition will be
provided in the next subsection. “

Remark. The set of additive measures () generated from the multiple-priors rule

cannot in general be expressed as the core of any capacity.
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The figure above is an example of this remark. From the definition of equation (3.7),
we can see that a set can only be expressed as the core of some capacity if it can be
defined by a system of linear inequalities of the form ), , p; > v(A). Geometricaﬂy,
the set must have sides which are parallel to the sides of the simplex. In figure 2,
the set of distributions, @, is represented by the line segment connecting the points
(%,%,0,23) and (£,3,0,3). Since this line is not parallel to any of the sides of

the triangle, it cannot be expressed as the core of any capacity.

3.4.3 The Relationship Between the Two Rules

The two procedures for updating beliefs over types can be summarized as follows.
We begin with a convex, non-additive prior v over the set of types ©. One can
think of these beliefs as deriving from some Choquet expected utility representation
of the agent’s preferences in an Anscombe-Aumann setting. To obtain posterior .
beliefs after the receipt of some signal from Y, we need to first define beliefs over
the product space, S = © x Y. One way to do this is to use a rule based on the
Choquet integration of indicator acts. This yields a measure o which is in general
non-additive, reflecting the transfer of uncertainty and uncertainty aversion over the
types to uncertainty and uncertainty aversion over states. The measure o satisfies
the multiplicative property and the Dempster-Shafer property. It does not, however,
represent an ordering over Savage acts which is equivalent té the Anscombe-Aumann
preference ordering.

An alternative approach is to convert the non-additive measure » to an equivalent
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set of multiple priors, P. Multiple probability distributions over states can then be

obtained using Bayes’s rule. The resulting set is labeled Q.

Figure 3
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The main advantage of the multiple-priors approach is that it ensures an equivalence
between the one and two-stage frameworks.

If one wanted to remain within the non-additive framework, then an obvious
question is: which capacity comes “closest” to representing the uncertainty over states
embodied in the set @? It turns out that the capacity which does so is indeed the one
calculated from the CI rule. This idea can best be described graphically using our
example. Figure 2 shows that, among all sets of distributions which can be expressed
as the core of some capacity, the shaded rectangle is the smallest one which contains
Q. One can verify that, if we define o using the CI rule, then this rectangle is precisely
the set core(o). The theorem and corollary below formalize this.

Theorem (CI and MP Rules). Assume that v on O is convex. Let o be the capacity
on S defined by the Choquet-indicator rule and let Q be the set of multiple additive

measures on S derived from the multiple-priors rule. Then,
E) =ming(E | 3.27
o(F) = minq(E) (3-27)

for all E € S.
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Proof. From Schmeidler (1989), proposition (x), we have:

JRAEQEZORS Y Y RAUOEYO (3.28)
for any act h where v is convex. From our rules, o(E) = [y 1gdv(0) and min,eq ¢(E) =
mingep [ 1£dp(f). The result follows, by using the act 1g for & in (3.28). B
Corollary. Let o be the capacity on S defined under the Choquet-indicator rule and
let Q be the set on multiple additive measures on S derived from the multiple-priors

rule. Then,

Q C core(o) (3.29)

Proof. Let ¢ € Q. Assume, contra-hypothesis, that ¢ ¢ core(o). Then, there exists
E € S, such that ¢(F) < o(F). But this contradicts the theorem above. B

As an aside, the CI rule produces a capacity 0" which is not necessarily convex.
This is easy to verify in the example above. Despite this, we have the following
remark.
Remark. Because @ is always non-empty, the corollary implies that o has a core
which is non-empty.>

The theorem of this section, together with its corollary, provides a formal justifica-

tion for the Choquet-indicator rule. Given that the muitiple-priors rule satisfies the

5In a recent working paper, Ghirardato and Marinacci (1998) argue that, within the Savage
framework, ambiguity aversion corresponds to nonemptiness of the core, a property strictly weaker
than convexity. In light of this result, the CI rule maintains the initial uncertainty aversion even

though the capacity o on S is not convex.
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requirement of (3.24), we argue that the agent’s beliefs over the product spéce should
in fact be given by this rule. The Choquet-indicator rule can then be justified on
the grounds that it produces that capacity which comes the closest to the “correct”
beliefs.

Before concluding this section, we return to the original motivation for this paper
and construct, for our example, the posteriors on types, O, after the observation of a
low output, y;. Applying the Dempster-Schafer rule to the capacity o, generated by

the CI rule, we obtain the following posterior:

v(rlyc) = %

v(fr |y) =13 (3.30)
v({0u,0c} |yL) =1
This measure has the following core:
core[v(. |yr)] = {p = (pr.p2) € A | p1 € [, =]} (3.31)

We now wish to construct posterior beliefs over types using the set of additive distri-
butions on the product space calculated from the multiple-priors rule. Gilboa and
Schmeidler (1993) show that, for decision makers who can be represented both by
Choquet expected utility and by maxmin expected utility, the Dempster-Shafer rule
on capacities coincides with the combination of maximum likelihood and Bayes’s rule
applied to the set of multiple priors. Therefore, to enable comparison between the
Choquet indicator rule and the multiple-priors rule, we apply maxirﬁum likelihood to

the set @ and then use Bayes’s rule, element-by-element, to obtain posterior beliefs
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over types. This gives the following unique additive posterior:

{p=(pup) A p= =1} (3.32)

Comparing equations (3.31) and (3.32), it is clear that the CI rule yields posterior
beliefs which contain greater uncertainty than those obtained from the multiple-priors

rule.

3.5 The Argument for Multiple Priors

From the work of Gilboa and Schmeidler (1989), we know that the multiple-priors
framework is more general than that of convex capacities. Any convex capacity can
be represented as a set of multiple priors, whereas the converse is not true. What is
surprising about the updating example is that, even though we begin with beliefs on
types which can be represented equivalently by a capacity v or by a set of multiple
priors P, as soon as we introduce signals and attempt to construct beliefs on the
product space, the two frameworks diverge.

We believe that the updating problem considered in this papér highlights the
importance of the additional generality of multiple priors. A comparison of the core

of o from the CI rule, with Q from the MP rule, makes this point. In the example:
CO’I‘C(U) = {q € A3 l q € [5%, %] y @2 € [%, %] , @3=0, 4 € [_2%, %]} | (3.33)
Q = {qus IQ1€ [%’%] y Q2 € [%1%]1 q3=01 Q4€ [%,;—g] y q1 =4Q2}

(3.34)
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These two sets are identical except for the equation ¢, = 4¢, in (3.34). Capacities are
unable to capture restrictions on the relative likelihood of some events. The capacity
o is unable to restrict the probability of the first state, (0, yx), to be four times
that of the second, (8y,yr). Clearly, given that the risk associated with the signal is
objective, no matter what the agent’s original beliefs over types, the likelihood ratio
between these two states should remain 4 to 1. By trying to use capacities to capture
beliefs on the product space, the agent loses some of the information contained in the
signal and attributes to the problem greater uncertainty than is in fact present. In
turn, this leads to greater uncertainty in the posterior, as the sets in (3.31) and (3.32)
demonstrate.

Moreover, the inability of capacities to capture relative likelihoods is the reason
for the non-equivalence between the Anscombe-Aumann and the Savage frameworks.
(Recall that in the multiple-priors setting, the one and two-stage frameworks are
equivalent.) As a result, Eichberger and Kelsey’s (1996) claim that the Savage
framework is more appropriate for modeling uncertainty aversion is not justified.
There is really no inherent difference between one and two-stage lotteries as objects

of choice. Differences arise from a limitation of capacities.

3.6 Conclusion

In many dynamic economic situations, beliefs over the relevant state space are not

given by the specification of the problem. With additive measures, Bayes’s rule
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usually suffices to define a unique distribution over states. However, with ambiguous
beliefs represented by a non-additive measure, unique beliefs over the state space
cannot be obtained from the Dempster-Shafer rule alone.

We argued that obtaining beliefs over the state space is closely related to the issue
of whether one can move from the Anscombe-Aumann to the Savage setting while
maintaining the “same” preference ordering. This is impossible when capacities are
used to model uncertainty-aversion. However, using multiple additive distributions,
this equivalence between the two frameworks is possible. We then set out to find the
capacity which comes closest to the beliefs obtained using multiple-priors. Such a
capacity can be constructed by taking Choquet expectations of éppropriate indicator
functions.

Finally, we showed that the updating problems studied in our paper highlight the
advantage of multiple priors relative to non-additive measures. Capacities are unable
to place restrictions on the relative likelihood of events. This is a severe limitation

in dynamic problems where such ratios arise naturally from the updating of beliefs.
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