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Sargan Lectures

1 Linear IV model with weak instruments
2 Many Instruments
3 Weak GMM and other structural models
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Introduction

@ Linear regressions with i.i.d. data:
Yi =B'Xi++'Wi + e
can be estimated by OLS when we have exogeneity

o Ele/(X/; W,)] =0
e sometimes we assume E[e;|X;, W;] =0

@ In observational data exogeneity often does not hold

e Example 1: Angrist and Krueger (1991)
wage; = [ education; + controls + e;,

@ Reasons for violations of exogeneity include missing confounding
factors, simultaneity, mis-measurement
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Introduction

Yi=B'Xi ++W; + ¢

Common strategy in applied economics - Instrumental Variables

Instrument Z; is a variable the produces exogenous variation in the
regressor (conditional on controls)

e Z moves X (relevance)
o E[Ze] = 0 (exogeneity)

Example 1: Angrist and Krueger (1991)

wage; = [ education; + controls + e€;,

@ Instrument is quarter of birth
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Classic asymptotic results

Classic |V results

Yi = B'Xi ++'W; + e, with E[W;ej] =0

o Instruments Z; (K-dimensional) satisfy:
o exogeneity: E[Zie] =0
o relevance: X; = n'Z; + 0'W; + v;, rank(m) = dim(X;)

o GMM moment condition

E [(Yi — X —+/ Wi)(Z, W))] = 0
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Classic asymptotic results

Classic |V results

Yi = B'Xi + 7' Wi + &, with E[We]] = 0

@ Instruments Z; (K-dimensional)
@ In case of small dimensional W; asymptotic analysis is equivalent to
considering partialled out model

Vi=pXi+g

v!ith instrument Z;, where variables with tilde
Y = (I — WWW)"IW')Y are residuals from regression on W.

8/38



Classic asymptotic results

Classic |V results

e From now we concentrate on model without controls (controls are

partialled out):
’/i = B/Xi + ej,
o Instruments Z; (K-dimensional) satisfy:

o exogeneity: E[Zie] =0
o relevance: X; = 7'Z; + v;, rank(mw) = dim(X;)

o GMM estimator:

B(S) = arg mﬁin(Y — XB)ZSZ'(Y — XB)

where S is some positive-definite weight matrix
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Classic asymptotic results

Classic |V results

@ In just identified case weight matrix is unimportant
B=(Z'X)'Z'y
@ The logic of consistency and asymptotic gaussianity:

Vi3 - o) = (£2'x h T2

o Law of Large Numbers 17X —P E[Z;X/]
o CLT: ﬁZ’e = N(0,E[e?Z Z]])
o If E[Z;X]] is a full rank matrix (relevance), then B is consistent and

asymptotically gaussian
V(B - o) = N (0, (EIXZ))) " ElFZZ]) (EIZX})) ")
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Classic |V results

@ GMM estimator in an over-identified case:

B(S) = arg mﬁin(v — XB)ZSZ'(Y — XB)

where S is some positive-definite weight matrix

@ Under some conditions (relevance is one of them):
B(S) = (X'zsZ'X) ' X'z5Z'Y

is consistent and asymptotically gaussian
e Optimal choice of weight matrix $* = (E[e?Z;Z!]) !
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Classic asymptotic results

Classic |V results

e GMM estimator (let X be d-dimensional, d < K):
B(S) = arg min(Y — XB)ZSZ'(Y — XP)
o First order condition:

X'Z
n

SZ'(Y = XB)=0

combines instruments to a just identified set Zg =2-5 - @

o Optimal instrument
Z* = Z - (E[e!Z:Z]]) ! - E[Z:X]]
weights signal and noise optimally
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Classic asymptotic results

Classic |V results

GMM estimator: 3(S) = arg ming(Y — XB)'ZSZ'(Y — Xp)
Infeasible optimal choice of weight matrix S* = (E[e?Z;Z/]) !

We need () a consistent estimator of asymptotic variance of
Z/(Y - XB)
Feasible realizations of efficient IV:
o 2 step efficient GMM
~ A -1
Bacra = argming (Y = XBY Z [£(50)]  Z/(Y — X)
e Continuously updated GMM
—~ ~ —1
Beye = arg ming(Y — XB)'Z [2(5)} Z'(Y — XB)
@ Under homoskedasticity ¥(8p)  (Z'2)

o 2 Step GMM= TSLS
o CUE=LIML
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Classic asymptotic results

Summary

Classical asymptotics is based on two ideas:
1. A properly selected just-identified 1V is consistent and asymptotically
gaussian because:
o Numerator is gaussian (exogeneity important here)
o Denominator is consistent and full rank (relevance!)
2. Signal is strong enough that one can select consistently an optimal
instrument
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Examples of Weak IV

Example 1: Angrist and Krueger (1991)

wage; = [ education; + controls + e€;,

Instrument is quarter of birth

Empirical sample

o very large sample (> 300K observations)

o very low first stage R? (between .0001 and .0002)

@ quite tight standard errors for IV estimate
Bound, Jaeger and Baker (1995) randomly simulated quarter of birth
and re-run estimation - nothing in their IV estimates suggested that
they are invalid (!)

(]
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Examples of Weak IV

Euler equation
E[(Acty1 — T —Yry1)Ze] =0

Can estimate it two different ways:

Acti1 = 7+ Yreyr1 + e using instruments Z;

re41 = 0+ yAcer1 + ve using instruments Z;

We have ¢ =1/~

@ In data the standard confidence sets for 1) obtained in two ways do
not intersect
@ Problem: Ac;y; is hard to forecast (leads to weak instruments)

16/38



Weak IV phenomenon

Weak IV with 1 regressor and 1 instrument

Y; = B'X; + e;, with instrument Z;

@ Estimator does not depend on weight matrix (in just id case)

~ 2.4V 2 _ﬁZ,Z;e;
B = S ZiX; Vn(B — Bo) = 7%21_21_)([

@ Exogeneity means E[Z;ej] = 0, CLT holds under quite wide set of
assumptions: % > Ziei= N(0,X)

° %Z, ZiX; —P E[Z;Xj], by relevance E[Z;X;] # 0
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Weak IV phenomenon

Weak IV with 1 regressor and 1 instrument

2 Ziei

V(B - Bo) = W

o CLT for denominator % > (ZiXi —E[ZiXi]) = N(0,Q)
e Denominator 1 3. Z:X; ~ E[Z;X/] + ﬁN(o, Q)

e If noise %N(O,Q) is comparable in size to the signal E[Z;X;], the
numerator may be close to zero
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Weak identification: explanation

DI =

@ Here (90 = E[Z,‘X,‘] and 0 = %ZI Z,'X,'
- X:1)2 . . .
o Concentration parameter p? = % signal-to-noise ratio
measures the extent of problem

19/38



Weak IV phenomenon

Weak identification: explanation

a X €e
wB=po)=1\o" »
Q 14+

] fe = \/% ZiZ,-e,- = N(O, 1)
° & = ﬁ S A(ZiX; — E[Z:Xi]) = N(0,1)
@ & and & are correlated (endogeneity of X;), this creates a bias

o If the instrument is irrelevant (u = 0), then B—po= \/% g—j is
asymptotically centered at B\OLS

e Concentration parameter 2 serves as effective sample size
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Weak IV phenomenon

Weak identification: explanation
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@ Simulations from Stock et al (2002). Homoskedastic just identified
(K =1) case, 5 = 1, correlation of errors is 0.99
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Weak identification: pre-test

- X:1)2 . . .
o Concentration parameter y? = % signal-to-noise ratio
measures the extent of problem

o If 2 is small, 3 is biased towards OLS, t-statistics tests/confidence
sets are not reliable

o First stage regression X; = wZ; + v;

o First stage F-statistics for testing Hp : m = 0 is a good proxy for y? in
just-identified case with 1 endogenous regressor

@ Empirical rule of thumb: F > 10 gives reliable inference

@ This rule is not satisfactory outside of 1-regressor, 1-instrument
settings
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Full parameter inference
AR test

Yi=8'Xi+ e

Assumption is exogeneity: E[Zjej] =0
Want to test Hyp : 8 = (g in a reliable way

Idea: if (g is true parameter value then e; = Y; — 3)X is uncorrelated
with Z;

@ Under minor assumptions: % > Zi(Yi — By Xi) = N(0,X)
@ We can construct a consistent estimator of ¥

1

n

AR(Bo) = —(Y = BoX)'ZE 1 Z'(Y — poX) = xk
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Identification Robust Inference Full parameter inference

AR test
@ Intuition of AR test in a just identified case
o 61 =E[Z Y]] and 6, = L, Z}Y; and 6, = E[Z:X;] and
0 =132
o /n(f1 — 61) = N(0,%) and v/n(f2 — 62) = N(0,9Q)
@ Parameter of interest § = 9—; and B: g%

By delta-method /n(8 — ) = N(0, £3)
Classic asymptotics test for Hp : 8 = [y using t-statistics :
(B~ o) = N(O,1)

@ AR reformulates a hypothesis as Hy : 81 = Bof2 and tests this

hypothesis:
~ ~\2
(91 - ﬁ092)
AR(Bo) =

 Var(fy — Boba)
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Full parameter inference
AR test

@ One can test Hy : 8 = Py identification robust way accepting
2
AR(/BO) < Xk1-a
Optimal set in a class of robust test with some invariance property for
a just-identified case

Applicable in several regressors and or several instruments cases
Confidence set can be produced as a set of By accepted by AR test

Confidence set can be infinite (good feature)

Confidence set can be empty (has power against mis-specification)
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Identification Robust Inference Full parameter inference

Robust inference in over-identified case

Yi=0'Xi + e

@ Over-identified case: instrument Z; is K-dimensional and K > d

@ AR test is still robust towards weak identification, but has low power
when identification is strong

@ When instruments are strong, we can combine them in the efficient
way, and do AR test using only efficient instrument

@ This is the idea of LM test. Infeasible version (with weight 7):

1 ~ \-1
LM (Bo) = —(Y = 8oX)/(Zm) ('S ) (Zx)/(Y = oX) = 3
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Full parameter inference
LM test

The optimal combination is 7 = (I[E[e,-zZ,-Zi’])_1 E[Z; Xi]
When signal-to-noise ratio is low, it is hard to estimate the signal
E[Z;X;] well, getting variance is a challenge as well

We give up on variance - find an optimal combination for
homoskedatsic case only

Idea: use OLS for combining 7@ = (Z'Z)71Z'X

Problem: 7 is very volatile under weak IV and is correlated with Z’e.

Naive LM test does not have correct size under weak 1V:

1 .\ -1
LMnaive(f0) = = (Y = 5oX)(Z7) (%’Zﬁ) (Z7)(Y — BoX)
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Full parameter inference
LM test

o Kleibergen (2002): create a new estimator 7

e consistent for 7 if identification is strong
e asymptotically independent from Z’e if identification is weak

KLM(fo) = (Y — foX)/(Z7) (#57) " (ZRY(Y  foX)

— 1
o =7 cou(7, Z'e) (Var(z'e)) Z'e

T
e KLM test for Hg : 5 =

e has correct size irrespective of identification strength
e asymptotically efficient if identification is strong
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Identification Robust Inference Full parameter inference

Conditional inference

@ Under strong identification there are asymptotically uniformly most
powerful tests for Hy : 5 = fo (Wald, LM, LR)

@ Under weak identification, there is no asymptotically uniformly most
powerful (Andrews et al 2006)

e KLM may have very low power under weak identification (Moreira et
al 2024)

@ Can we use any other test statistics for Hp : 5 = g, like Wald or LR?
@ Problem: asymptotic distributions of Wald or LR depend on 7

@ Solution: Moreira (2003) - conditional inference
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Identification Robust Inference Full parameter inference

Conditional inference

@ Problem: You want to test Hy : 8 = Bo

o distribution of test statistics S depends on (nuisance) parameter 7
e critical values should depend on 7w
e you cannot estimate m with good enough precision

@ Solution (Moreira, 2003): there is (asymptotically) sufficient statistics
T form

o distribution of data (or any statistics) conditionally on 7 does not
depend on 7

o create critical values depending on 7 (random critical values!!!) to
control conditional size

P{S > cvo(t)|T =t} =«
@ Original idea: use simulations conditioning on samples with given
value of T

@ For some statistics like LR, no simulations are needed- there are
analytic way of calculating conditional p-value, (called CLR test)
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Identification Robust Inference Full parameter inference

Summary

@ If you want to either test Hp : 8 = [y or construct a confidence set
for g
o you should NOT use a pre-test for weak identification
o you should use identification robust test (or invert it for a confidence
set)

@ Arguments against pre-test

o first stage F works only for 1 regressor-1 instrument case, or
over-identified homoskedastic case

e even in simplest case it may create selection bias (Angrist and Kolesar,
2022)

@ Arguments for identification robust testing

e Control size irrespective of the identification strength

e Asymptotically efficient if identification is strong (KLM, CLR,
conditional Wald)
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Identification Robust Inference Full parameter inference
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32/38



LMY W T A NSNS  Sub-vector inference

Projection method

Yi = B1X1,i + B2 Xoi + €

Instruments Z; are at least d; + dh>-dimensional
(1 is the parameter of interest, 3, is nuisance

How to test Hy : 81 = B1,0? Confidence set for 51 only?
Projection method:
o Hypothesis Hy : 81 = B1,0 is accepted if Ho : B = (B1,0,52,0) is
accepted for some B, (search among all potential 5 0)

o Create a joint confidence set for 3, project it on 1 space
o Test (confidence set) for 3 should be done in identification robust way
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LMY W T A NSNS  Sub-vector inference

Projection method and power loss

@ Assume that test is done by using KLM statistics
@ Projection method test for Hy : 81 = P10 accepts if

?mMM%@&w=MMm&@nm3
2,0

where d = di + db

o If all parameters were strongly identified, and we knew that, we would
adjust degrees of freedom and used th

@ Indeed,
?MMM%m&MSMM%&thﬁ
2,0

so, projection test use conservative critical values (is not as powerful
as it could have been)
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LMY W T A NSNS  Sub-vector inference

Improvements over projection method

@ Want to test Hy : 51 = 5170
e If nuisance parameter is strongly identified then we can adjust critical
values for the degrees of freedom
o If nuisance parameter is weakly identified then distribution of most
tests are harder to assess, and they depend on nuisance parameters
o Projection method controls size (but typically not similar)

@ Need to ‘pre-test’ whether nuisance parameter is strong or weak

@ No perfect pre-test exists, but anything that improves power of
two-step procedure over projection method is good.

@ There are proposals of this type: Chaudhuri and Zivot (2011),
Andrews (2018), Guggenberger et al (2012)
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Estimation

@ When identification is weak, there is no consistent estimator exists

@ Under weak identification in just identified case, TSLS does not have
any moments, is median biased (towards OLS)

@ Under weak identification in over-identified case, TSLS is biased
towards OLS

@ LIML and TSLS behaves differently under weak identification

@ Porter and Hirano (2015) if instruments can be arbitrary weak, no
asymptotically mean-unbiased, no asymptotically median-unbiased
estimator exists

@ Andrews and Armstrong (2017) if the sign of first stage is known, one
can create an asymptotically unbiased estimator

36/38



Overview

© Summary and Open Questions



Summary and Open Questions

Summary

o Classical results in IV rely on relevance in two ways: (i) denominator
stabilize at a full rank matrix; (ii) consistency of optimal combination
of instrument

@ Weak identification distort both

o Inferences: AR test solves problem (i) by re-formulating hypothesis

o Inferences: (ii) is ‘solved’ by KLM, CLR tests

@ Estimation is hard, because of not well-defined criteria of quality
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Summary and Open Questions

Open questions

o (Very hard) Estimation - what can be or reported as an estimator? Or
should it be reported at all?

o (Hard) Seems that some pre-test for identification strength is needed
to improve performance for a sub-vector tests
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