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Introduction

Linear regressions with i.i.d. data:

Yi = β′Xi + γ′Wi + ei

can be estimated by OLS when we have exogeneity

E[ei (X ′
i ;W

′
i )

′] = 0
sometimes we assume E[ei |Xi ,Wi ] = 0

In observational data exogeneity often does not hold

Example 1: Angrist and Krueger (1991)

wagei = β educationi + controls + ei ,

Reasons for violations of exogeneity include missing confounding
factors, simultaneity, mis-measurement

5 / 38



Introduction

Yi = β′Xi + γ′Wi + ei

Common strategy in applied economics - Instrumental Variables

Instrument Zi is a variable the produces exogenous variation in the
regressor (conditional on controls)

Z moves X (relevance)
E[Ze] = 0 (exogeneity)

Example 1: Angrist and Krueger (1991)

wagei = β educationi + controls + ei ,

Instrument is quarter of birth
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Classic asymptotic results

Classic IV results

Yi = β′Xi + γ′Wi + ei , with E[Wiei ] = 0

Instruments Zi (K -dimensional) satisfy:

exogeneity: E[Ziei ] = 0
relevance: Xi = π′Zi + δ′Wi + vi , rank(π) = dim(Xi )

GMM moment condition

E
[
(Yi − β′Xi − γ′Wi )(Z

′
i ,W

′
i )

′] = 0
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Classic asymptotic results

Classic IV results

Yi = β′Xi + γ′Wi + ei , with E[Wiei ] = 0

Instruments Zi (K -dimensional)

In case of small dimensional Wi asymptotic analysis is equivalent to
considering partialled out model

Ỹi = β′X̃i + ẽi

with instrument Z̃i , where variables with tilde
Ỹ = (I −W (W ′W )−1W ′)Y are residuals from regression on W .
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Classic asymptotic results

Classic IV results

From now we concentrate on model without controls (controls are
partialled out):

Yi = β′Xi + ei ,

Instruments Zi (K -dimensional) satisfy:

exogeneity: E[Ziei ] = 0
relevance: Xi = π′Zi + vi , rank(π) = dim(Xi )

GMM estimator:

β̂(S) = argmin
β

(Y − Xβ)′ZSZ ′(Y − Xβ)

where S is some positive-definite weight matrix
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Classic asymptotic results

Classic IV results

In just identified case weight matrix is unimportant

β̂ = (Z ′X )−1Z ′Y

The logic of consistency and asymptotic gaussianity:

√
n(β̂ − β0) =

(
1

n
Z ′X

)−1 1√
n
Z ′e

Law of Large Numbers 1
nZ

′X →p E[ZiX
′
i ]

CLT: 1√
n
Z ′e ⇒ N(0,E[e2i ZiZ

′
i ])

If E[ZiX
′
i ] is a full rank matrix (relevance), then β̂ is consistent and

asymptotically gaussian

√
n(β̂ − β0) ⇒ N

(
0,
(
E[XiZ

′
i ]
)−1 E[e2i ZiZ

′
i ]
(
E[ZiX

′
i ]
)−1

)
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Classic asymptotic results

Classic IV results

GMM estimator in an over-identified case:

β̂(S) = argmin
β

(Y − Xβ)′ZSZ ′(Y − Xβ)

where S is some positive-definite weight matrix

Under some conditions (relevance is one of them):

β̂(S) =
(
X ′ZSZ ′X

)−1
X ′ZSZ ′Y

is consistent and asymptotically gaussian

Optimal choice of weight matrix S∗ = (E[e2i ZiZ
′
i ])

−1
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Classic asymptotic results

Classic IV results

GMM estimator (let X be d-dimensional, d < K ):

β̂(S) = argmin
β

(Y − Xβ)′ZSZ ′(Y − Xβ)

First order condition:

X ′Z

n
SZ ′(Y − Xβ) = 0

combines instruments to a just identified set Zs = Z · S · (Z ′X )
n

Optimal instrument

Z ∗ = Z · (E[e2i ZiZ
′
i ])

−1 · E[ZiX
′
i ]

weights signal and noise optimally
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Classic asymptotic results

Classic IV results

GMM estimator: β̂(S) = argminβ(Y − Xβ)′ZSZ ′(Y − Xβ)

Infeasible optimal choice of weight matrix S∗ = (E[e2i ZiZ
′
i ])

−1

We need Σ̂(β) a consistent estimator of asymptotic variance of
Z ′(Y − Xβ)

Feasible realizations of efficient IV:

2 step efficient GMM

β̂2GMM = argminβ(Y − Xβ)′Z
[
Σ̂(β̂0)

]−1

Z ′(Y − Xβ)

Continuously updated GMM

β̂CUE = argminβ(Y − Xβ)′Z
[
Σ̂(β)

]−1

Z ′(Y − Xβ)

Under homoskedasticity Σ(β0) ∝ (Z ′Z )

2 Step GMM= TSLS
CUE=LIML
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Classic asymptotic results

Summary

Classical asymptotics is based on two ideas:

1. A properly selected just-identified IV is consistent and asymptotically
gaussian because:

Numerator is gaussian (exogeneity important here)
Denominator is consistent and full rank (relevance!)

2. Signal is strong enough that one can select consistently an optimal
instrument
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Weak IV phenomenon

Examples of Weak IV

Example 1: Angrist and Krueger (1991)

wagei = β educationi + controls + ei ,

Instrument is quarter of birth

Empirical sample

very large sample (> 300K observations)
very low first stage R2 (between .0001 and .0002)
quite tight standard errors for IV estimate

Bound, Jaeger and Baker (1995) randomly simulated quarter of birth
and re-run estimation - nothing in their IV estimates suggested that
they are invalid (!)
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Weak IV phenomenon

Examples of Weak IV

Euler equation
E[(∆ct+1 − τ − ψrt+1)Zt ] = 0

Can estimate it two different ways:

∆ct+1 = τ + ψrt+1 + et using instruments Zt

rt+1 = µ+ γ∆ct+1 + vt using instruments Zt

We have ψ = 1/γ

In data the standard confidence sets for ψ obtained in two ways do
not intersect

Problem: ∆ct+1 is hard to forecast (leads to weak instruments)
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Weak IV phenomenon

Weak IV with 1 regressor and 1 instrument

Yi = β′Xi + ei , with instrument Zi

Estimator does not depend on weight matrix (in just id case)

β̂ =

∑
i ZiYi∑
i ZiXi

;
√
n(β̂ − β0) =

1√
n

∑
i Ziei

1
n

∑
i ZiXi

Exogeneity means E[Ziei ] = 0, CLT holds under quite wide set of
assumptions: 1√

n

∑
i Ziei ⇒ N(0,Σ)

1
n

∑
i ZiXi →p E[ZiXi ], by relevance E[ZiXi ] ̸= 0
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Weak IV phenomenon

Weak IV with 1 regressor and 1 instrument

√
n(β̂ − β0) =

1√
n

∑
i Ziei

1
n

∑
i ZiXi

CLT for denominator 1√
n

∑
i (ZiXi − E[ZiXi ]) ⇒ N(0,Ω)

Denominator 1
n

∑
i ZiXi ≈ E[ZiXi ] +

1√
n
N(0,Ω)

If noise 1√
n
N(0,Ω) is comparable in size to the signal E[ZiXi ], the

numerator may be close to zero
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Weak IV phenomenon

Weak identification: explanation

𝜃̂𝜃 𝜃𝜃0

1
θ0

1
𝜃̂𝜃

Here θ0 = E[ZiXi ] and θ̂ =
1
n

∑
i ZiXi

Concentration parameter µ2 = (E[ZiXi ])
2

Var(ZiXi )/n
, signal-to-noise ratio

measures the extent of problem
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Weak IV phenomenon

Weak identification: explanation

µ(β̂ − β0) =

√
Σ

Ω
· ξe

1 + ξx
µ

ξe = 1√
nΣ

∑
i Ziei ⇒ N(0, 1)

ξx = 1√
nΩ

∑
i (ZiXi − E[ZiXi ]) ⇒ N(0, 1)

ξe and ξx are correlated (endogeneity of Xi ), this creates a bias

If the instrument is irrelevant (µ = 0), then β̂ − β0 =
√

Σ
Ω · ξe

ξx
is

asymptotically centered at β̂OLS

Concentration parameter µ2 serves as effective sample size
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Weak IV phenomenon

Weak identification: explanation

520 Journal of Business & Economic Statistics, October 2002

Figure 1. pdf of TSLS Estimator (a) and t Statistic (b) for �2/K =
0��25�10�100; One Instrument (K= 1); and �= �99, Computed by Monte
Carlo Simulation.

estimators under the assumptions of fixed instruments and
iid normal errors (e.g., Sawa 1969; Richardson 1968). How-
ever, the results in this literature, comprehensively reviewed
by Phillips (1984), are offputting and pose substantial compu-
tational challenges. Moreover, the assumptions of fixed instru-
ments and normal errors are generally too restrictive to be
appropriate in empirical application. To overcome these lim-
itations, researchers have used asymptotic approximations, to
which we now turn.

2.2 Asymptotic Approximations

Conventional asymptotic approximations to finite-sample
distributions are calculated for a fixed model in the limit that
T → �, but sometimes this approach does not provide the
most useful approximating distribution. This is the case for
the weak instruments problem; as is evident in Figure 1, the
usual fixed-model asymptotic normal approximations can be
quite poor when the concentration parameter is small, even if
the number of observations is large. For this reason, alterna-
tive asymptotic methods are used to analyze IV statistics in the
presence of weak instruments. Three such methods are Edge-
worth expansions, many-instrument asymptotics, and weak-
instrument asymptotics. These methods aim to improve the

quality of the approximations when the sample is large but
�2/K is not.

2.2.1. Edgeworth Expansions. An Edgeworth expansion
is a representation of the distribution of the statistic of inter-
est in powers of 1/

√
T . As Rothenberg (1984) pointed out

in the fixed-instrument, normal-error model, an Edgeworth
expansion in 1/

√
T with a fixed model is formally equivalent

to an Edgeworth expansion in 1/�. In this sense, Edgeworth
expansions improve on the conventional normal approximation
when � is small enough for the term in 1/�2 to matter, but not
so small that the terms in 1/�3 and higher matter. Rothenberg
(1984) suggested that the Edgeworth approximation is “excel-
lent” for �2 > 50 and “adequate” for �2 as small as 10, as
long as the number of instruments is small (less than �).
2.2.2. Many-Instrument Asymptotics. Although the prob-

lems of many instruments and weak instruments might at first
seem different, they are in fact related. With many strong
instruments, the adjusted R2 of the first-stage regression would
be nearly 1, so a small first-stage adjusted R2 indicates that
the instruments, taken as a set, are weak. Bekker (1994) for-
malized this notion by developing asymptotic approximations
for a sequence of models with fixed instruments and normal
errors, in which the number of instruments, K, is proportional
to the sample size and �2/K converges to a constant, finite
limit; similar approaches were taken by Anderson (1976),
Kunitomo (1980), and Morimune (1983). Many-instrument
asymptotic distributions are generally normal, and simulation
evidence suggests that these approximations are good for both
moderate and large values of K, although they cannot cap-
ture the nonnormality evident in the Nelson–Startz example of
Figure 1. Distributions derived using this approach generally
depend on the distribution of the errors (see Bekker and van
der Ploeg 1999), so some procedures that are justified using
many-instrument asymptotics require adjustments for nonnor-
mal errors. However, rate and consistency results are more
robust to nonnormality (see Chao and Swanson 2002).
2.2.3. Weak-Instrument Asymptotics. Like many-instru-

ment asymptotics, weak-instrument asymptotics (Staiger and
Stock 1997) involves a sequence of models chosen to keep
�2/K constant as T →�. However, unlike many-instrument
asymptotics, K is held fixed. Technically, the sequence of
models considered is the same as used to derive the local
asymptotic power of the first-stage F test (a “Pitman drift”
parameterization in which � is in a 1/

√
T neighborhood of

0). Staiger and Stock (1997) showed that under general condi-
tions on the errors and with random instruments, many results
that hold exactly in the fixed-instrument, normal-error model
can be reinterpreted as holding asymptotically, with simplifi-
cations arising from the consistency of Z′Z/T and of the esti-
mator for �2

v .

3. EMPIRICAL EXAMPLES

3.1 Estimating the Returns to Education

In an influential article, Angrist and Krueger (1991) pro-
posed using the quarter of birth as an instrument to circumvent
ability bias in estimating the returns to education. The date of
birth, they argued, should be uncorrelated with ability, so that

Simulations from Stock et al (2002). Homoskedastic just identified
(K = 1) case, Σ

Ω = 1, correlation of errors is 0.99
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Weak IV phenomenon

Weak identification: pre-test

Concentration parameter µ2 = (E[ZiXi ])
2

Var(ZiXi )/n
, signal-to-noise ratio

measures the extent of problem

If µ2 is small, β̂ is biased towards OLS, t-statistics tests/confidence
sets are not reliable

First stage regression Xi = πZi + vi

First stage F -statistics for testing H0 : π = 0 is a good proxy for µ2 in
just-identified case with 1 endogenous regressor

Empirical rule of thumb: F > 10 gives reliable inference

This rule is not satisfactory outside of 1-regressor, 1-instrument
settings
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Identification Robust Inference Full parameter inference

AR test

Yi = β′Xi + ei

Assumption is exogeneity: E[Ziei ] = 0

Want to test H0 : β = β0 in a reliable way

Idea: if β0 is true parameter value then ei = Yi − β′0Xi is uncorrelated
with Zi

Under minor assumptions: 1√
n

∑
i Zi (Yi − β′0Xi ) ⇒ N(0,Σ)

We can construct a consistent estimator of Σ

AR(β0) =
1

n
(Y − β0X )′Z Σ̂−1Z ′(Y − β0X ) ⇒ χ2

K
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Identification Robust Inference Full parameter inference

AR test

Intuition of AR test in a just identified case

θ1 = E[ZiYi ] and θ̂1 =
1
n

∑
i ZiYi and θ2 = E[ZiXi ] and

θ̂2 =
1
n

∑
i ZiXi

√
n(θ̂1 − θ1) ⇒ N(0,Σ) and

√
n(θ̂2 − θ2) ⇒ N(0,Ω)

Parameter of interest β = θ1
θ2

and β̂ = θ̂1
θ̂2

By delta-method
√
n(β̂ − β) ⇒ N(0,Σβ)

Classic asymptotics test for H0 : β = β0 using t-statistics :√
n
Σβ

(β̂ − β0) ⇒ N(0, 1)

AR reformulates a hypothesis as H0 : θ1 = β0θ2 and tests this
hypothesis:

AR(β0) =

(
θ̂1 − β0θ̂2

)2

Var(θ̂1 − β0θ̂2)

24 / 38



Identification Robust Inference Full parameter inference

AR test

One can test H0 : β = β0 identification robust way accepting
AR(β0) < χ2

k,1−α

Optimal set in a class of robust test with some invariance property for
a just-identified case

Applicable in several regressors and or several instruments cases

Confidence set can be produced as a set of β0 accepted by AR test

Confidence set can be infinite (good feature)

Confidence set can be empty (has power against mis-specification)
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Identification Robust Inference Full parameter inference

Robust inference in over-identified case

Yi = β′Xi + ei

Over-identified case: instrument Zi is K -dimensional and K > d

AR test is still robust towards weak identification, but has low power
when identification is strong

When instruments are strong, we can combine them in the efficient
way, and do AR test using only efficient instrument

This is the idea of LM test. Infeasible version (with weight π):

LM∗(β0) =
1

n
(Y − β0X )′(Zπ)

(
π′Σ̂π

)−1
(Zπ)′(Y − β0X ) ⇒ χ2

d
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Identification Robust Inference Full parameter inference

LM test

The optimal combination is π =
(
E[e2i ZiZ

′
i ]
)−1 E[ZiXi ]

When signal-to-noise ratio is low, it is hard to estimate the signal
E[ZiXi ] well, getting variance is a challenge as well

We give up on variance - find an optimal combination for
homoskedatsic case only

Idea: use OLS for combining π̂ = (Z ′Z )−1Z ′X

Problem: π̂ is very volatile under weak IV and is correlated with Z ′e.

Naive LM test does not have correct size under weak IV:

LMnaive(β0) =
1

n
(Y − β0X )′(Z π̂)

(
π̂′Σ̂π̂

)−1
(Z π̂)′(Y − β0X )

27 / 38



Identification Robust Inference Full parameter inference

LM test

Kleibergen (2002): create a new estimator π̃

consistent for π if identification is strong
asymptotically independent from Z ′e if identification is weak

KLM(β0) =
1

n
(Y − β0X )′(Z π̃)

(
π̃′Σ̂π̃

)−1
(Z π̃)′(Y − β0X )

π̃ = π̂ − ĉov(π̂,Z ′e)
(
V̂ar(Z ′e)

)−1
Z ′e

KLM test for H0 : β = β0
has correct size irrespective of identification strength
asymptotically efficient if identification is strong
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Identification Robust Inference Full parameter inference

Conditional inference

Under strong identification there are asymptotically uniformly most
powerful tests for H0 : β = β0 (Wald, LM, LR)

Under weak identification, there is no asymptotically uniformly most
powerful (Andrews et al 2006)

KLM may have very low power under weak identification (Moreira et
al 2024)

Can we use any other test statistics for H0 : β = β0, like Wald or LR?

Problem: asymptotic distributions of Wald or LR depend on π

Solution: Moreira (2003) - conditional inference
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Identification Robust Inference Full parameter inference

Conditional inference

Problem: You want to test H0 : β = β0
distribution of test statistics S depends on (nuisance) parameter π
critical values should depend on π
you cannot estimate π with good enough precision

Solution (Moreira, 2003): there is (asymptotically) sufficient statistics
T for π

distribution of data (or any statistics) conditionally on T does not
depend on π
create critical values depending on T (random critical values!!!) to
control conditional size

P{S > cvα(t)|T = t} = α

Original idea: use simulations conditioning on samples with given
value of T
For some statistics like LR, no simulations are needed- there are
analytic way of calculating conditional p-value, (called CLR test)
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Identification Robust Inference Full parameter inference

Summary

If you want to either test H0 : β = β0 or construct a confidence set
for β

you should NOT use a pre-test for weak identification
you should use identification robust test (or invert it for a confidence
set)

Arguments against pre-test

first stage F works only for 1 regressor-1 instrument case, or
over-identified homoskedastic case
even in simplest case it may create selection bias (Angrist and Kolesar,
2022)

Arguments for identification robust testing

Control size irrespective of the identification strength
Asymptotically efficient if identification is strong (KLM, CLR,
conditional Wald)
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Identification Robust Inference Full parameter inference
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Identification Robust Inference Sub-vector inference

Projection method

Yi = β1X1,i + β2X2,i + ei

Instruments Zi are at least d1 + d2-dimensional

β1 is the parameter of interest, β2 is nuisance

How to test H0 : β1 = β1,0? Confidence set for β1 only?

Projection method:

Hypothesis H0 : β1 = β1,0 is accepted if H̃0 : β = (β1,0, β2,0) is
accepted for some β2,0 (search among all potential β2,0)
Create a joint confidence set for β, project it on β1 space
Test (confidence set) for β should be done in identification robust way
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Identification Robust Inference Sub-vector inference

Projection method and power loss

Assume that test is done by using KLM statistics

Projection method test for H0 : β1 = β1,0 accepts if

min
β2,0

KLM(β1,0, β2,0) = KLM(β1,0, β̂2) ≤ χ2
d

where d = d1 + d2

If all parameters were strongly identified, and we knew that, we would
adjust degrees of freedom and used χ2

d1

Indeed,
min
β2,0

KLM(β1,0, β2,0) ≤ KLM(β1,0, β2,0) ∼ χ2
d

so, projection test use conservative critical values (is not as powerful
as it could have been)
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Identification Robust Inference Sub-vector inference

Improvements over projection method

Want to test H0 : β1 = β1,0
If nuisance parameter is strongly identified then we can adjust critical
values for the degrees of freedom
If nuisance parameter is weakly identified then distribution of most
tests are harder to assess, and they depend on nuisance parameters
Projection method controls size (but typically not similar)

Need to ‘pre-test’ whether nuisance parameter is strong or weak

No perfect pre-test exists, but anything that improves power of
two-step procedure over projection method is good.

There are proposals of this type: Chaudhuri and Zivot (2011),
Andrews (2018), Guggenberger et al (2012)
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Estimation

Estimation

When identification is weak, there is no consistent estimator exists

Under weak identification in just identified case, TSLS does not have
any moments, is median biased (towards OLS)

Under weak identification in over-identified case, TSLS is biased
towards OLS

LIML and TSLS behaves differently under weak identification

Porter and Hirano (2015) if instruments can be arbitrary weak, no
asymptotically mean-unbiased, no asymptotically median-unbiased
estimator exists

Andrews and Armstrong (2017) if the sign of first stage is known, one
can create an asymptotically unbiased estimator
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Summary and Open Questions

Summary

Classical results in IV rely on relevance in two ways: (i) denominator
stabilize at a full rank matrix; (ii) consistency of optimal combination
of instrument

Weak identification distort both

Inferences: AR test solves problem (i) by re-formulating hypothesis

Inferences: (ii) is ‘solved’ by KLM, CLR tests

Estimation is hard, because of not well-defined criteria of quality
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Summary and Open Questions

Open questions

(Very hard) Estimation - what can be or reported as an estimator? Or
should it be reported at all?

(Hard) Seems that some pre-test for identification strength is needed
to improve performance for a sub-vector tests
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