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Abstract

We study agents who are more likely to remember some experiences than

others but update beliefs as if the experiences they remember are the only ones

that occurred. To understand the long-run effects of selective memory we pro-

pose a new equilibrium concept, selective memory equilibrium. We show that if

the agent’s behavior converges, their limit strategy is a selective memory equi-

librium, and we provide a sufficient condition for behavior to converge. We use

this equilibrium concept to explore the consequences of several well-documented

biases, such as positive memory bias, associativeness, cognitive dissonance reduc-

tion, and confirmatory bias. We also show that there is a very close connection

between the outcomes of selective memory equilibria and the outcomes of mis-

specified learning.
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1 Introduction

We provide a new conceptual framework for the study of agents who have selective

memory in that they are more likely to recall some events than others. We assume

that selective memory is stochastic and exogenous, and allow the agent’s actions to

influence what they observe.1 In most of the paper, we also assume that agents are

unaware of their selective memory, so they update their beliefs as if the experiences they

remember are the only ones that occurred.2 These assumptions fit evidence from both

experimental and real-world settings. Although our work is inspired by the neuroscience

and psychology literature on memory, we do not try to develop a model that fully

matches the memory formation and retrieval process. Instead, we develop and motivate

a solution concept that makes it easy to obtain predictions about long-run actions and

beliefs for any given memory distortion.

Our focus is on selective memory’s long-run implications. We show that if an

agent’s behavior converges, their beliefs concentrate on the memory-weighted likelihood

maximizers, i.e., distributions that maximize the likelihood of a distorted version of the

true outcome distribution that gives more weight to realizations that are more likely

to be remembered. We also provide conditions on the agent’s payoff function and the

support of their prior that imply their behavior does converge. Whether or not these

conditions are satisfied, when behavior converges, it converges to a selective memory

equilibrium, which is a strategy that myopically maximizes their expected payoff against

a probability distribution over these maximizers. If all experiences are recalled with

the same probability, then memory limitations have no long-run effect. However, if

memory is selective and agents are more likely to remember some experiences than

others, selective memory can have a persistent effect. For example, an agent who is

more likely to recall when they performed well in a task than when they performed

poorly will underestimate the task’s difficulty and do it too often.

Our framework lets us analyze the long-run consequences of important and widely

documented forms of selective memory such as pleasant memory bias (Mischel, Ebbe-

1Memory has been informally described as stochastic since the early stages of the psychology
literature, as in James [1890], and recent evidence in neuroscience (e.g., Shadlen and Shohamy [2016])
and economics (e.g., Sial, Sydnor, and Taubinsky [2023]) supports this interpretation. Schacter [2008]
and Kahana [2012] discuss evidence that some experiences are recalled more often than others.

2Reder [2014], Zimmermann [2020], Gödker, Jiao, and Smeets [2022] provide evidence of partial
or complete unawareness of memory biases. The main results extend as stated to the case of an agent
that is aware they sometimes forget but are not aware that their memory is selective, and that does
not draw inference from their past actions.
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sen, and Zeiss [1976], Adler and Pansky [2020], Chew, Huang, and Zhao [2020] and

the related ego-boosting bias, Zimmermann [2020]), cognitive dissonance (Elkin and

Leippe [1986], Chammat et al. [2017], Gödker, Jiao, and Smeets [2022]), associative-

ness (Thomson and Tulving [1970], Tulving and Schacter [1990], Enke, Schwerter, and

Zimmermann [2022], Goetzmann, Watanabe, and Watanabe [2022]), confirmatory bias

(Hastie and Park [1986]), and the relative memorability of extreme outcomes (Cruciani,

Berardi, Cabib, and Conversi [2011]). In contrast, earlier papers on selective memory

each studied a specific form of memory bias, and most only considered short-run effects.

Under positive memory bias, the agent is more likely to recall experiences that

induce a larger utility. For example, Zimmermann [2020] finds that subjects who

received poor scores on an IQ test are more likely to state that they “cannot recall”

their test results, even though that answer is payoff dominated in the experiment, and

there were only three things for subjects to recall. Gödker, Jiao, and Smeets [2022] finds

that investors are more likely to remember positive returns of stocks they invested in

and that their selective memory distorts both their beliefs and their future investment

decisions in the direction our model predicts.

We show that positive memory bias can endogenously generate the same long-run

behavior as dogmatic overconfidence in a fixed learning environment. However, we

argue that the overconfidence that arises from selective memory is more susceptible

to external manipulation through changes in the feedback provided to the agent. For

example, coupling negative feedback on one dimension with positive feedback on an-

other will make the negative feedback be recalled more often, which leads to less bias

in long-run beliefs.3

Agents with associative memory are more likely to recall situations similar to the

current decision problem, for example, when they had a similar mood. In general, this

can lead the agent to underweight data relative to its true informativeness. However,

the simplest version of associativeness, similarity weighting (Kahana [2012]), does not

alter the possible long-run outcomes for a correctly specified agent: With similarity

weighting, all selective memory equilibria are (unitary) self-confirming equilibria (Bat-

tigalli [1987] and Fudenberg and Levine [1993a]).

We also study extreme experience bias, which makes experiences with more extreme

payoffs more memorable. We show that moderate risk aversion paired with this bias

may explain the extreme risk aversion revealed by the prices of safe and risky assets in

3This is suggested in the management literature by, e.g., Procházka, Ovcari, and Durinik [2020].
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financial markets. Moreover, we show that if rarer experiences are more easily recalled,

the agent overweights small probabilities as assumed in prospect theory.

Selective memory equilibrium resembles Berk-Nash equilibrium (Esponda and Pouzo

[2016]), which applies to agents with perfect memory but a misspecified prior. Indeed,

we show that every uniformly strict Berk-Nash equilibrium (Fudenberg, Lanzani, and

Strack [2021]) that is not supported by beliefs that assign strictly positive probability to

an impossible outcome is equivalent to a uniformly strict selective memory equilibrium

for some memory function and a full-support prior. Moreover, every uniformly strict

selective memory equilibrium is equivalent to a uniformly strict Berk-Nash equilibrium

with the appropriate prior support. However, this equivalence fails for equilibria that

are not uniformly strict.4 In addition, unlike Berk-Nash equilibria, selective mem-

ory equilibria generally do not reduce to self-confirming equilibria when the agent is

correctly specified. Importantly, the form of misspecification that would lead to the

same behavior as a given form of selective memory depends on the environment. That

is, particular forms of misspecification and selective memory that coincide under one

information structure could lead to very different comparative statics with respect to

changes in what the agent observes. To illustrate this, we show that combining positive

and negative feedback has qualitatively different effects on agents with ego-boosting

memory than on dogmatically overconfident agents.

Related Theoretical Work Mullainathan [2002] studies selective memory where

the probability of recalling an observation is the sum of a base rate, an “associative-

ness” term that measures the experience’s similarity to the current observation, and

a “rehearsal” term that indicates whether the experience was recalled in the previous

period. Like us, the paper assumes that agents are näıve about their selective memory.

It also assumes that signals are Gaussian and are not influenced by the agent’s actions.

Afrouzi, Kwon, Landier, Ma, and Thesmar [2020] also studies an agent forecasting the

next realization of an AR(1) process. It assumes the agent knows the data-generating

process and chooses which experiences to recall at a cost. Bordalo, Coffman, Gennaioli,

Schwerter, and Shleifer [2021] shows how memory depends on the relative frequency of

various characteristics and can be manipulated by making some observations stand out

more. None of these papers addresses our question of determining the agent’s long-run

beliefs and actions.

4A selective memory equilibrium is uniformly strict if it is the unique best reply to all the beliefs
supported on the memory-weighted likelihood maximizers.
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There is also a set of papers that study long-run behavior with selective attention

or recording, where whether an experience is recorded determines whether it will be

recalled in every future period, as in the model in Online Appendix B.6. Compte

and Postlewaite [2004] considers a myopic agent with the choice between a safe action

with a known payoff and a risky action whose outcome distribution is unknown. It

assumes that taking the risky action is sometimes a dominant strategy so that the

agent will eventually take it infinitely often and that periods with good performance

are more likely to be recorded. This leads to overconfidence, as in our Section 4.2

example. Schwartzstein [2014] studies the long-run beliefs of an agent whose attention

is based on perceived informational value. The agent recalls all of their observations

but naively does not realize they did not pay attention to some relevant aspects of what

they observed. As with selective memory and misspecified beliefs, this can lead the

agent to make systematically biased forecasts. Relatedly, Schweizer and De Vries [2022]

assumes that for exogenous reasons, the agent weights outcomes differently depending

on how extreme they were (compared to other outcomes) at the time they realized.

This can lead to probability distortions analogous to those of cumulative prospect

theory or selective memory with rare experience bias (see Section 4.3).

Wilson [2014] and Jehiel and Steiner [2020] study the optimal use of a finite mem-

ory by an agent who receives a stream of exogenous signals until they stop and take

a single action. Battigalli and Generoso [2021] proposes a formalism to separate as-

sumptions on the players’ objective information and memory in games. Bénabou and

Tirole [2002] considers a two-period model where a time-inconsistent agent receives

either a null signal or a bad signal in the first period, and at a cost can change the

probability that the second-period self recalls the bad signal. The resulting game need

not have a unique equilibrium, but in some cases, it can lead to overconfidence. Jehiel

[2021] proposes a multi-self solution concept to model “forgetful liars.” Further afield,

Malmendier and Nagel [2016], Malmendier and Shen [2023], and Malmendier, Pouzo,

and Vanasco [2020] consider models where agents weight events based on their age

when the events happened, and Nagel and Xu [2022] analyzes an asset pricing model

where the representative agent has fading memory.
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2 Setup

We study a sequence of choices made by a single agent. In every period t P N the agent

observes a signal s from the finite set S and then chooses an action a from the finite

set A. The realized signal s and the chosen action a induce an objective probability

distribution p˚
s,a P ∆pY q over the finite set of possible outcomes Y .5 A (pure) strategy

is a map σ : S Ñ A, and the agent’s flow payoff is given by the utility function

u : S ˆ A ˆ Y Ñ R.
We assume the agent knows the fixed and i.i.d. full-support distribution ζ P ∆pSq

over signals.6 They also know that the map from actions and signals to probability

distributions over outcomes is fixed and depends only on their current action and the

realized signal, but are uncertain about the outcome distributions each signal-action

pair induces. To model this uncertainty, we suppose that the agent has a prior µ

over data-generating processes p P ∆pY qSˆA, where ps,apyq denotes the probability of

outcome y P Y when signal s is observed and action a is played. The support of µ is Θ;

its elements are the p that the agent initially thinks are possible. The prior is correctly

specified if its support contains the true data-generating process p˚ P Θ; if not, the

prior is misspecified. To simplify the exposition, we will assume throughout the paper

that selective-memory agents are correctly specified, but this is not essential; all results

except for Proposition 1 are true as stated under the weaker assumption that Bayesian

updating is well-defined at every history that is reachable with positive probability.

We sometimes consider a prior with full support, by which we mean that every possible

data-generating process is in the support of the agent’s prior, i.e., Θ “ ∆pY qSˆA.

Assumption 1 (Maintained Assumption). The agent is correctly specified.

We maintain this assumption throughout the paper.

Objective Histories and Recalled Histories We assume that the agent always

recalls the signal they just observed. The agent’s memory of the outcomes correspond-

ing to past signal-action pairs is distorted by a collection of signal-dependent memory

functions ms1 : S ˆ A ˆ Y Ñ r0, 1s, where ms1ps, a, yq specifies the probability with

5We denote objective distributions with a superscript ˚.
6This assumption lets us focus on our key points. When beliefs about the signal distribution have

full support and are independent of beliefs about the contingent outcome distributions, the analysis
of the paper is unchanged.
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which the agent remembers a past realization of the signal, action, outcome triplet

ps, a, yq when they observe signal s1. We call these triplets experiences.

Let Ht “ pS ˆ A ˆ Y qt denote the set of all histories of length t, and H “ YtHt

the set of all histories. After objective history ht “ psτ , aτ , yτ qtτ“1 and signal st`1,

the recalled periods R are a random subset of t1, ..., tu. Period τ is remembered with

probability mst`1psτ , aτ , yτ q, independently of which other periods are remembered.

Thus, the distribution over subsets R Ď t1, .., tu is given by

P
“

R|psτ , aτ , yτ q
t
τ“1, st`1

‰

“
ź

τPR

mst`1psτ , aτ , yτ q
ź

τPt1,...,tuzR

p1 ´ mst`1psτ , aτ , yτ qq.

For every objective history ht and set of recalled periods R, the recalled history htpRq P

H|R| is the subsequence of recalled experiences listed in the order they realized.7

Beliefs We assume the agent recomputes their beliefs each period based on all of

their recollections, as opposed to simply updating their period-t beliefs on the basis

of their period-t observation, and that the agent is unaware of their selective memory

and näıvely updates their beliefs as if the experiences they remember are the only ones

that occurred,8 so that the posterior probability of every (measurable) C Ď Θ after

recalled history ht “ psτ , aτ , yτ qtτ“1 is

µpC|htq “

ş

C

śt
τ“1 psτ ,aτ pyτ qdµppq

ş

Θ

śt
τ“1 psτ ,aτ pyτ qdµppq

. (1)

In Appendix A.3, we show that if agents recognize that their memory is faulty but

believe it is not selective and do not make inferences about unrecalled observations

from their recalled past actions, the main results extend as stated.9

7Appendix A.1 gives a formal definition of recalled histories.
8See, e.g., d’Acremont, Schultz, and Bossaerts [2013] and Sial, Sydnor, and Taubinsky [2023] for

fMRI evidence that agents access their accumulated evidence each period when updating beliefs, and
Reder [2014] for evidence that agents are often näive about their selective memory and do not make
inferences about their forgotten observations from the actions they remember taking.

9Appendix A.3 maintains our assumption that the agent either remembers an experience perfectly
or not at all. We relax this in Online Appendix B.5, where the agent may remember some but not all
aspects of a past experience, such as one or two components of a multi-dimensional outcome. That
model assumes the agent is not fully näıve, because remembering that some experience occurred but
not all of its details might lead the agent to question their ability to perfectly recollect the past.
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Best Responses and Optimal Policies The agent’s belief determines the subjec-

tive expected utility of each action. Denote by BRps, νq the actions that maximize

expected utility when signal s is observed and the agent’s belief is ν P ∆pΘq:10

BRps, νq “ argmax
aPA

ż

Θ

ÿ

yPY

ups, a, yqps,apyqdνppq.

A policy π : H Ñ AS specifies a pure strategy for every recalled history. We assume

that the agent is myopic and uses an optimal policy, i.e., a map π : H Ñ AS such that

for every s P S and recalled history ht P H, πphtqpsq P BRps, µp¨|htqq.

2.1 Examples

We illustrate our model with five commonly studied examples of memory bias. In this

subsection, assumptions about the memory function m hold for all s, s1 P S, y, y1 P Y ,

and a P A.

Example 1 (Utility-Dependent Memory). In some cases, the probability of remember-

ing an experience depends on its associated utility, so that ms1ps, a, yq “ Φpups, a, yqq

for some Φ : R Ñ R`. Agents who are more likely to remember pleasant experi-

ences correspond to monotone increasing Φ; agents who are more likely to remember

extremely high or low utility realizations have Φ that is single-dipped.11 ▲

Example 2 (Positive Memory Bias). Positive memory bias is the tendency to over-

remember experiences that reflect positively on oneself, such as a high test score (see

Mischel, Ebbesen, and Zeiss [1976] for early experimental evidence of positive memory

bias and Adler and Pansky [2020] for a survey). To model this, we let one dimension

y1 P R of the outcome y reflect the self-image consequences of the experience, and

specify that ms1ps, a, yq “ Φpy1q for some increasing Φ : R Ñ R`. ▲

Example 3 (Cognitive Dissonance and Ex-post Regret). Cognitive dissonance is a

memory bias where the probability of recalling an experience depends on how well the

chosen alternative performed compared to the counterfactual payoff the agent would

10For every X Ď Rk, we let ∆pXq denote the set of Borel probability distributions on X endowed
with the topology of weak convergence.

11Because agents never make choices before the signal realizations, there is no way to pin down the
relationship between the utilities of two experiences that differ in their signal component. Therefore,
both here and in Example 3, the definitions of the biases should be interpreted as saying that there
are a u and a Φ such that the conditions are satisfied.
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have received under the ex-post optimal choice (Elkin and Leippe [1986]). This cor-

responds to ms1ps, a, yq “ Φpmaxa1PA ups, a1, yq ´ ups, a, yqq where Φ : R` Ñ r0, 1s is

decreasing. If the outcome includes the payoff that would have been obtained with

each action, the probability of remembering an outcome is decreasing in what Loomes

and Sugden [1982] called “regret” (see Lanzani [2022] for the version without a state

space that formally corresponds to the case we have here). ▲

Example 4 (Associative Memory and Similarity Weighting). To model associative

memory (Thomson and Tulving [1970]), assume that

msps, a, yq ą 0 and
msps, a, yq

msps1, a, yq
ą
ms1ps, a, yq

ms1ps1, a, yq
,

so that a signal is more likely to trigger memories of experiences where the signal was

the same. In general, signals represent the conditions under which the choice is made.

For example, when in a particular mood, agents tend to recall situations when they

were in that mood before (Matt, Vázquez, and Campbell [1992], Mayer, McCormick,

and Strong [1995]). For example, professional economic forecasters overweight periods

with a macroeconomic context similar to the current one, but only if they lived through

them, see Goetzmann, Watanabe, and Watanabe [2022].12

A leading special case is similarity-weighted memory, where the probability of re-

calling a past experience only depends on the context in which the choice is taken:

Here there is a metric d : S2 Ñ R`, and ms1ps, a, yq “ Φpdps, s1qq for some strictly

decreasing function Φ : R` Ñ r0, 1s. ▲

Example 5 (Confirmatory Memory Bias). The agent has confirmatory memory bias

(see Hastie and Park [1986] and Esponda, Vespa, and Yuksel [2023] for evidence of the

relevance of memory for confirmation bias) if they are more likely to remember experi-

ences that the prior deems more likely. Suppose the agent only has two hypotheses, as

in Lord, Ross, and Lepper [1979] and Rabin and Schrag [1999], so that Θ “ tp0, p1u,

with µpp0q ą µpp1q. Then, confirmatory memory bias corresponds to

p0s,apyq

p1s,apyq
ě pąq

p0s,apy1q

p1s,apy1q
ùñ ms1ps, a, yq ě pąqms1ps, a, y1

q . ▲

12Jehiel [2018] studies investors who make their decisions based only on the outcomes of projects
that were implemented after the same signal and ignore periods when the signal was different, and
Bordalo, Gennaioli, and Shleifer [2020] shows how similarity weighting can lead to the attribution and
projection biases.
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3 Long-Run Outcomes

Let Pπ denote the probability measure on sequences of experiences pSˆAˆY qN induced

by the objective signal and outcome distributions ζ and p˚, the agent’s memory m,

and policy π.13

Definition 1. A strategy σ is a

(i) Limit strategy if there is an optimal policy π such that

Pπ rsuptt : at ‰ σpstqu ă 8s ą 0.

(ii) Global attractor if for every optimal policy π

Pπ rsuptt : at ‰ σpstqu ă 8s “ 1.

In words, strategy σ is a limit strategy if there is positive probability that it will be

played in every period after some random but finite time, and it is a global attractor

if it is a limit with probability 1. This section gives some general results about limit

strategies.14 Section 4 then discusses the consequences of some specific memory biases.

3.1 Selective Memory Equilibrium

To characterize the strategies that can arise as limit behavior, we define for each strat-

egy σ the set of memory-weighted likelihood maximizers after signal s1:

Θm
s1 pσq : “ argmax

pPΘ

˜

ÿ

sPS

ζpsq
ÿ

yPY

ms1ps, σpsq, yqp˚
s,σpsqpyq log ps,σpsqpyq

¸

. (2)

These are the elements of Θ that maximize the likelihood of the memory-weighted

outcome distribution induced by σ. Note that only the relative sizes of the weights m

matter for determining Θm
s1 pσq: if m̂p¨q “ λmp¨q for some λ ą 0 then m̂ and m have

the same memory-weighted maximizers.

Assumption 2 (Maintained Assumption). For every s1, s P S, a P A, σ P S, y P Y

and p P Θm
s1 pσq, p˚

s,apyq ą 0 implies ps,apyq ą 0.

13This is the unique extension from the probabilities of the finite histories pS ˆ A ˆ Y qt, t P N.
14Example 12 shows that limit strategies may not exist without further assumptions.
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This assumption requires that every data-generating process that is a best memory-

weighted fit to some strategy cannot be ruled out in finite time when playing a different

action.15

Definition 2. A strategy σ is a

(i) Selective memory equilibrium if for all s P S there is νs P ∆pΘm
s pσqq such that

σpsq P BRps, νsq.

(ii) Uniformly strict selective memory equilibrium if for all s P S and all ν P ∆pΘm
s pσqq,

tσpsqu “ BRps, νq.

In a selective memory equilibrium σ, the action played after each signal s is a

best reply to some belief over memory-weighted likelihood maximizers given σ. The

uniformly strict version adds the restriction that there is the same unique best reply

for each of these maximizers. Both concepts allow the actions played in response to

different signals to be justified by different beliefs because which memories are triggered

depends on the current realization of the signal.

Theorem 1. Every limit strategy is a selective memory equilibrium.

To prove the theorem, we fix a strategy σ. We start by showing that if σ is a limit

strategy, then for some time t, there is an action sequence at such that if the agent

plays at and then σ afterward, there is positive probability that the induced sequence of

beliefs makes σ optimal at all periods τ ě t`1. Under a policy that converges to σ, the

empirical frequency after each signal s converges to the distribution given by p˚
s,σpsq

, a

variation of the Borel-Cantelli lemma (Claim 1) implies that almost surely the recalled

history is long, and the SSLN implies that a large recalled history is representative

of the memory-based outcome distribution. With this, we can extend Berk [1966]’s

concentration result to the beliefs given the recalled experiences to show that distri-

butions that don’t maximize the memory-weighted likelihood have vanishing posterior

probability on a set of representative recalled histories that has objective probability

converging to 1. But then σ must be the strategy must be a selective memory equi-

librium, as otherwise, it could not be a best reply to these beliefs concentrated on the

maximizers.

15It is known to be important in the misspecified learning literature, where it is usually implied
by the stronger assumption that the true data-generating process dominates all the agent’s mental
models. We refrain from making that simpler-to-state but stronger requirement to allow the natural
full-support prior on the action-independent models in our overconfidence application.
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Theorem 1 provides a learning foundation for some equilibrium concepts that have

been used in recent work. For example, Koszegi, Loewenstein, and Murooka [2021]

proposes an equilibrium concept where the agent is more likely to remember successes

than failures if they are in a good mood, and the agent’s mood is determined by

their self-esteem, which is a function of the number of past successes they remember.

This is a case of our model where the agent’s mood is an action chosen to match

their perceived probability of succeeding at a task (i.e., their perceived ability). Our

equilibrium concept then coincides with Koszegi, Loewenstein, and Murooka [2021]’s

“self-esteem personal equilibrium,” and Theorem 1 shows that any long-run learning

outcome must be such an equilibrium.

We also provide a foundation for Berk-Nash equilibrium based on selective memory.

For example, Section 4.2 shows that positive memory bias can lead to overconfidence.

Overconfidence has been modeled as the result of exogenous misspecification; the fact

that it can be endogenously derived from a well-documented memory bias provides a

micro-foundation for Berk-Nash equilibrium in this context. More generally, Proposi-

tion 6 shows that any Berk-Nash equilibrium can be micro-founded through selective

memory. Finally, Section 5.1 shows that in our setting, the long-run action of an

agent with underinference (Phillips and Edwards [1966]) must be a selective memory

equilibrium.

3.2 Global Convergence to Equilibrium

We now give a sufficient condition for the agent’s strategy to globally converge to a

selective memory equilibrium.

Assumption 3 (Identification).

(i) For all ps, s1, aq P S2 ˆ A,
ř

yPY p
˚
s,apyqms1ps, a, yq ą 0.

(ii) There is a p̂ P Θ such that for every ps, s1, aq P S2 ˆ A,

argmax
pPΘ

˜

ÿ

yPY

ms1ps, a, yqp˚
s,apyq log ps,apyq

¸

“ tp̂u .

The substantial assumption here is Assumption 3 (ii), which implies that there

exists a unique memory-weighted likelihood maximizer p̂ that is independent of the

action and the signal. This assumption is always satisfied if the agent correctly believes

their actions have no influence on the distribution of outcomes and has the same
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memory function for each action, as in the examples in Section 4. Beyond that, the

result needs there to be an outcome with positive probability of being remembered

for each ps, aq pair. The first part of our next result considers closed balls around the

data-generating process p̂, where the distance between two data-generating processes

is the maximum of the total variation distance between their signal-action contingent

distributions:

Bϵpp̂q “

"

q P ∆pY q
AˆS : max

sPS,aPA
||qs,a ´ p̂s,a||TV ă ϵ

*

.

Theorem 2. Under Assumption 3, for every optimal strategy π, and every ϵ ą 0

Pπ

”

lim
tÑ8

µpBϵpp̂q|htpRtqq “ 1
ı

“ 1.

If in addition BRps, δp̂q is a singleton for all s, then σ̂psq “ BRps, δp̂q is a global

attractor, and so it is a selective memory equilibrium.

The proof starts by using a mixingale law of large numbers to conclude that the

outcome frequency converges to the one predicted by the true data-generating process

and the agent’s actions. We then address the complication posed by the fact that

memory is stochastic, so even when the agent has played many times, their beliefs can

be very different from one period to the next, unlike in learning models with perfect

memory.

We first use the Chernoff inequality to provide an upper bound on the probability

that the recalled empirical frequency significantly diverges from the memory-distorted

version of the actual empirical frequency. This upper bound is then combined with the

Borel-Cantelli lemma to show that there is a γ P p0, 1q and a random but a.s. finite

time after which any signal-action pair with frequency at least γ doesn’t have a large

deviation from the memory-distorted empirical distribution of its induced consequences

and has recalled frequency bounded away from 0.

Assumption 3 implies that for every signal-action pair, model p̂ is the unique model

that best fits the memory-adjusted theoretical distribution, so because most of the

recalled memories are representative, beliefs concentrate on p̂. By the uniqueness of

the best reply, this implies that the behavior converges as well.
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Remark 1. In our model, the set of recalled histories is not only stochastic but non-

monotonic: the agent might remember a past event one day and not another, which

fits the evidence on memory retrieval, see, e.g., Kahana [2012]. Online Appendix B.6

analyses the limit implications of an alternative model where the memory function

determines the probability that an experience is recalled in the period just after it

occurs. If it is recalled, it is never forgotten; if not, it is never remembered. Because

experiences recalled at later dates include all those recalled earlier, in this alternative

model, the agent’s past actions don’t convey additional information. As with the model

we present here, any limit action must be a selective memory equilibrium.

4 Specific Forms of Selective Memory

4.1 Similarity-Weighted Memory and Self-Confirming Equilibrium

Definition 3. Strategy σ is a self-confirming equilibrium if for all s P S there is νs P

∆pΘq such that for all p P supp νs and s
1 P S, ps1,σps1q “ p˚

s1,σps1q
and σpsq P BRps, νsq.

Self-confirming equilibrium requires that agents have correct beliefs about the con-

sequences of their equilibrium strategy but allows them to have incorrect beliefs about

strategies they do not use. Fudenberg and Levine [1993b] shows that these equilibria

correspond to the steady states of a learning model with long-lived but myopic agents.16

Proposition 1. For an agent with similarity-weighted memory (Example 4), a strategy

is a selective memory equilibrium if and only if it is a self-confirming equilibrium.

More generally, this conclusion holds whenever ms1ps, a, yq does not depend on a or

y, as the true distribution is the best fit for every signal, so the weight assigned to each

signal does not matter. However, similarity weighting can change the set of selective

memory equilibria when the agent is misspecified.17

16More generally, if the agents have some discount factor that is strictly between 0 and 1, a self-
confirming equilibrium that is not a Nash equilibrium can be a steady state if the priors are sufficiently
concentrated in the neighborhood of that equilibrium.

17Also, even when there is a unique selective memory equilibrium, and it is objectively optimal,
the speed of convergence to the equilibrium can be influenced by similarity weighting. This is similar
to what happens with case-based decision theory (Gilboa and Schmeidler, 2001) and kernel density
estimation, where the optimal bandwidth trades off having enough observations with relying too much
on distant values.
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4.2 Ego-Boosting Memory Bias and Overconfidence

It is well established that many people are more likely to recall situations that reflect

positively on themselves.18 This leads to a particular kind of pleasant memory bias:

they are more likely to remember experiences that boost their self-assessment than

those that reduce it.

Consider a situation where the agent observes i.i.d. outcomes yt P Y Ă R that reveal

information about an ego-relevant characteristic such as IQ. There are no signals, A is

endowed with a linear order, and the agent (correctly) believes their action does not

affect the realized outcome. The next proposition shows that a larger bias leads to a

more positive limit belief and higher limit action. This provides a selective memory

foundation for the positive correlation between an agent’s happiness and the inaccuracy

of their beliefs documented in Alloy and Abramson [1979].

Proposition 2. Suppose that m,m1 and p˚ are constant in a, m1pa, yq “ fpyqmpa, yq

for some increasing function f , u is supermodular, and that Θ “ ∆pY q. The agent’s

long-run belief with memorym1 concentrates on a distribution of outcomes weakly higher

in first-order stochastic dominance than the distribution under the long-run belief with

memory m, and the limit action with memory m1 will be weakly higher than the limit

action with memory m.

Intuitively, because the prior assigns positive probability to all action-independent

outcome distributions, the memory-weighted likelihood maximizer will be the outcome

distribution that exactly matches what the agent remembers. The agent’s selective

memory makes this recalled history more favorable than the true one, and because the

agent’s utility function is supermodular, their limit action is weakly higher than the

objective optimum.

Example 6. Suppose that each period the agent takes an action a P t0, 1u, with

upa, yq “ apy ´ zq, z P p0, 1q. Here y is the outcome of an IQ test, which is either pass,

y “ 1, or fail, y “ 0, so a “ 1 is optimal if and only if the probability of passing the test

exceeds z. The agent passes the test with probability p˚. They always recall passed

IQ tests, and they recall failed tests with probability ϕ:

mpa, yq “

$

&

%

1 if y “ 1

ϕ if y “ 0
.

18See, e.g. Mischel, Ebbesen, and Zeiss [1976].
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In the long run, the agent believes that the probability of passing an IQ test is

p “
p˚

p˚
loomoon

Successes

` p1 ´ p˚
q ˆ ϕ

loooooomoooooon

Failures

“ p˚
`
p˚p1 ´ p˚qp1 ´ ϕq

ϕ ` p1 ´ ϕqp˚
.

For example, if the true probability p˚ is .5, and the agent remembers failing an IQ

test with probability .8, in the long run, they believe that they pass the test with

probability 5{9. Consequently, they will behave like an exogenously misspecified agent

who dogmatically believes their ability to pass is at least 5{9. Moreover, the difference

between p and p˚ is monotonic in the agent’s selectivity bias ϕ. ▲

This example relates to an experiment by Zimmermann [2020] in which subjects

took an IQ test and received three noisy observations of how well they performed

relative to other subjects. Zimmermann [2020] finds that all subjects can recall the

signals immediately after observing them, but subjects who received negative feedback

were less likely to recall the feedback a month later than subjects who received positive

feedback: subjects are roughly 20% more likely to state that they “cannot recall” the

result of the IQ test if the feedback was negative, even though that answer is payoff

dominated in the experiment and there were only three things for subjects to try to

recall.19 Thus at least in this experiment selective memory is a better explanation than

selective attention for long-run overconfidence.

Example 6 and Proposition 2 also relate to the literature on overconfidence and

financial decision-making. Walters and Fernbach [2021] finds investors are 10% less

likely to recall an investment that led to a loss compared to an investment that led

to a gain. Moreover, selective memory predicts overconfidence, and overconfidence is

reduced when investors rely less on memory. In an incentivized experiment, Gödker,

Jiao, and Smeets [2022] finds that subjects over-remember good investment outcomes

and under-remember bad investment outcomes. In line with the prediction of Proposi-

tion 2, this leads subjects to have overly optimistic beliefs about their investments and

reinvest in bad investments more often. Gervais and Odean [2001] studies a different

bias, where traders overweight successful trades when learning about their ability, this

can lead to overconfidence in a similar way as selective memory.

19Zimmermann [2020] finds that “negative feedback is indeed recalled with significantly lower ac-
curacy, compared to positive feedback.” Here lower accuracy means both that the agents are more
likely to report that they do not recall the experience and that they misreport the experience.
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Ego Boosting Bias and Misattribution We next show how an agent with ego-

boosting bias can misinterpret data about other aspects of the world.

Example 7. Suppose that, besides taking an IQ test, the agent works on a project with

a coworker. The outcome distributions pp, qq P r0, 1s2 and outcome py1, y2q P t0, 1u2 are

two dimensional, where the first component denotes whether or not the agent passed

an IQ test and the second component denotes whether a group project succeeded. The

agent passes the IQ test with probability p˚, and the project succeeds with probability

αp˚ ` p1 ´ αqq˚, where α is the share of the work done by the coworker. The agent

always remembers experiences with positive IQ test results and remembers experiences

with negative test results with probability ϕ P p0, 1q. Thus, beliefs concentrate on

p “ p˚
`

p˚p1 ´ p˚q

ϕ{p1 ´ ϕq ` p˚
q “ q˚

´
α

1 ´ α

p˚p1 ´ p˚q

ϕ{p1 ´ ϕq ` p˚
:

The agent underestimates the coworker’s ability, and the underestimation grows as

memory becomes more selective. ▲

To generalize this example, we consider a two-dimensional outcome space Y “

Z ˆZ Ă R2, where y1 corresponds to an ego-relevant characteristic, and is distributed

according to p˚. The second component y2 is drawn independently with probability

αp˚py2q ` p1 ´ αqq˚py2q for some α P p0, 1q. The agent knows that the outcomes are

independently drawn each period according to these conditions, but does not know p˚

or q˚, and their prior belief assigns positive probability to each of these distributions.20

Proposition 3. If m is constant in a and y2 and increasing in y1, then the agent’s

long-run belief about p concentrates on a distribution p̂ that is weakly higher in first-

order stochastic dominance than p˚, and the agent’s long-run belief about q concentrates

on a distribution that is weakly lower than q˚.

“Perhaps the most robust finding in the psychology of judgment is that people are

overconfident.” (DeBondt and Thaler, 1995, p. 389). The proposition provides an

explanation for two commonly found forms of overconfidence: (i) overestimation of

one’s own absolute level of performance and (ii) overestimate of performance relative

to others (see, e.g., Svenson, 1981; Merkle and Weber, 2011). For example, Gilovich

[2008] finds that 94% of the college professors thought they were better than their

average colleague.21

20Formally, Θ “ tr P ∆pZ ˆ Zq : rpy1, y2q “ ppy1qrαppy2q ` p1 ´ αqqpy2qs for some p, q P ∆pZqu,
21Benoıt and Dubra [2011] shows how this “I’m better-than-average effect” can be explained within
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Reinforcement through Actions Actions can play an important role in amplifying

the misconceptions caused by selective memory. For example, suppose that in the

setting of Example 7 the agent starts out with an unbiased belief about their coworker’s

ability, and each period t chooses the fraction αt of work to delegate to them. Because

here the memory-weighted likelihood maximizers do depend on the agent’s action,

Theorem 2 does not apply, but as in Heidhues, Kőszegi, and Strack [2018]’s analysis

of exogenously overconfident agents, there is a global attractor: As the agent over-

remembers their own successes, they become overconfident about their own ability,

and to explain the disappointingly low frequency of successes in the group project,

they became overly pessimistic about their coworker’s. The agent thus delegates less

work to their coworker, whose ability then has a smaller effect on output. To explain

the disappointingly low output, the agent becomes even more pessimistic about the

coworker’s ability, leading to even less delegation in the unique limit strategy.

More generally, Section 5.2 shows that the long-run belief induced by selective

memory equilibria can be replicated by exogenous misspecification in any fixed envi-

ronment, and vice versa. However, selective memory and exogenous misspecification

can lead to very different predictions about the effect of changes in information. Sup-

pose, for example, that negative feedback is delivered along with positive feedback

about an unrelated trait of the agent. Combining positive and negative information in

this way makes a “feedback sandwich,” which the management and psychology litera-

tures suggest strengthens the effect of feedback.22 If the positive feedback makes the

experiences with failed IQ tests less unpleasant, an agent with positive memory bias

would be more likely to remember them, so their long-run belief would move closer to

their actual ability, and they would be less biased about their coworker’s ability. In

contrast, with exogenous misspecification, positive feedback about an unrelated state

would not affect the agent’s beliefs about their own or their coworker’s ability.

4.3 Extreme Experience Bias and Risk Attitudes

This section shows that for choices over lotteries, memory distortions can generate the

same behavior as a distorted risk preference. We again simplify by supposing there are

no signals, and let the outcome y P R be the amount of money received by the agent,

a purely Bayesian framework; Benoıt, Dubra, and Moore [2015] provides more direct evidence for
relative overconfidence that rules out the purely rational explanation.

22Procházka, Ovcari, and Durinik [2020] describes an experiment where bundling negative feedback
with positive feedback about an unrelated domain helps agents perform better.
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with ups, a, yq “ vpyq for some concave v.

Extreme Experience Bias Suppose the agent chooses between a safe action a “ 0

that induces outcome y0 and a risky lottery a “ 1 with expected value ȳ. We say

that the agent has an extreme experience bias if the probability of remembering an

experiencem is an increasing function of the distance of the outcome y from its expected

value and does not depend on s or a:

mps, a, yq “ hp|y ´ ȳ|q (3)

for some increasing h : R` Ñ R`. Our next result shows that the risky lottery is

a selective memory equilibrium with extreme experience bias only if it is a selective

memory equilibrium with perfect memory. Moreover, Example 11 in the Online Ap-

pendix shows that extreme experience bias can shift the long-run outcome from the

lottery to the safe action. To state a result that holds for all concave utility functions,

we assume that the true distribution of outcomes is symmetric.23

Proposition 4. Suppose the distribution p˚
1 is symmetric and that the agent thinks all

outcome distributions are possible under the risky action.24 If choosing the lottery is

not a self-confirming equilibrium, it is not a selective memory equilibrium with extreme

experience bias.

Because the agent over-remembers extreme experiences, the environment seems

riskier than it truly is, so in the long run, they do not take the risky action if it would

not be optimal for an agent without extreme experience bias. By making the tail

realizations relatively more memorable, extreme experience bias makes a risk-averse

agent act as if they were even more risk-averse. This may help explain why the risk

aversion needed to match the real-world investment choices is unrealistically high: the

agents can be attracted by safe alternatives because they are moderately risk-averse,

and their memory exaggerates the riskiness of the uncertain alternatives. For example,

a single day when the stock market crashed might be more easily remembered than

many days of average returns, leading to a biased perception of its riskiness. Indeed,

the plausibility of this channel is supported by several studies that show that higher

working memory is associated, either directly or through a proxy measure of cognitive

23Extreme-experience bias can have the opposite effect of encouraging risk-taking behavior when
the true distribution is very asymmetric with a very low probability of a large payoff.

24That is, p˚
1 pȳ ` cq “ p˚

1 pȳ ´ cq for all c P R, and Θ “ tp P ∆pY qA : p0py0q “ 1u.
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ability, with lower risk aversion at both the intra- and interpersonal levels (see, e.g.,

Cokely and Kelley [2009], Boyle, Yu, Buchman, and Bennett [2012], and Benjamin,

Brown, and Shapiro [2013]).

Rare Experience Bias Similarly, some forms of selective memory are equivalent to

preferences that arise from distorting outcome probabilities. Suppose that the agent is

more likely to remember experiences that happen more rarely, i.e., there is a decreasing

function h : r0, 1s Ñ r0, 1s such that mps, a, yq “ hpp˚
1pyqq. In this case, in the long run

the agent believes that the outcome distribution for the risky action is

hpp˚
1pyqq

ř

zPY hpp˚
1pzqq

.

They will thus act as if they distort probabilities, as in prospect theory (Kahneman

and Tversky [1979]).25

5 Alternative Models

This section compares our selective memory model with underinference and misspeci-

fication, which are two other ways to model similar effects.

5.1 Underinference

The phenomenon of underinference (Phillips and Edwards [1966]) is distinct from se-

lective memory but has similar long-run implications, as we establish in Proposition 5.

Here agents remember (or are presented with) a record of past observations, so memory

is not an issue, and the agent’s beliefs are a deterministic function of the sequence of

observations. However, they underweight a given observation ps, a, yq when applying

Bayes rule. In particular, they use the deterministic updating rule

µU
pC|psi, ai, yiq

t
i“1q “

ş

C

śt
i“1ppsi,aipyiqqmpsi,ai,yiqdµppq

ş

Θ

śt
i“1pp

1
si,ai

pyiqqmpsi,ai,yiqdµpp1q
, (4)

for every measurable C Ď Θ, where mps, a, yq P r0, 1s is the underinference distortion

applied to experience ps, a, yq.

25We view this specification, where m depends on the theoretical frequency p˚, as a convenient
modeling shortcut for long-run outcome when instead m depends on the empirical outcome frequency.
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As with selective memory, this memory distortion leads beliefs to concentrate on

a set of memory-weighted likelihood maximizers, and as the next result shows, the

underinference distortion maps directly to a selective memory function.26

Proposition 5. If σ is a limit strategy with underinference distortionm, it is a selective

memory equilibrium with memory function m.

A leading special case is uniform underinference where mps, a, yq “ c ă 1 and the

agent discounts all observations by the same amount. In this case, Propositions 1 and

5 imply that the limit strategy for a correctly specified agent must be a self-confirming

equilibrium.27 It seems difficult to distinguish selective memory from underinference

bias using data about beliefs alone, and none of the data we have found includes

information on which histories the subjects recall (see Benjamin [2019] for a survey).

If signals are absent and actions are real-valued, the way actions respond to out-

comes can be used to distinguish underinference and selective memory. Under over-

confidence, the realization of yt is sufficient to predict whether at`1 is more or less than

at. Under selective memory, the set of past experiences retrieved at time t ` 1 may

differ from those at time t, so in general the previous period’s outcome and action are

not sufficient to predict how actions change. Moreover, the action sequence features

a sort of regression to the mean: after a particularly high action, the next action will

likely be lower.

In general, with an exogenous data-generating process, the agent’s beliefs will con-

verge to the same limit with selective memory as with underinference, so their limit

action will be the same. If the data-generating process is endogenous, random memory

realizations can induce switches in actions, reducing the set of actions that can be

long-run limits for a given memory function. The following example illustrates this

possibility.

Example 8. There are no signals, A “ ta1, a2u, Y “ t0, 1u, up¨, yq “ y, and the agent

knows the probability of y “ 1 given action a1 is some c P p0, 1q, i.e., pa1p1q “ p˚
a1p1q “ c

for all p P Θ. The agent does not know the probability of outcome 1 under action a2.

Their initial belief is that it is larger than that of action a1, so BRpµq “ b, although

there is p1 P Θ with p1
a2p1q ă c. The truth is that 1 ą p˚

a2p1q ą c, so action a2 is

26We identify the underinference distortion with the vector of memory functions that do not depend
on the current signal.

27Frick, Iijima, and Ishii [2021] shows that uniform underinference leads to the same speed of belief
convergence as correct updating in a setting with a fixed outcome distribution.
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optimal, but if m is constant and strictly positive, both a1 and a2 are selective memory

equilibria. In the underinference model, a1 is a limit action for any such m, and if

at “ a1, then aτ “ a1 for all τ ą t. Instead, with the selective memory model, a1 is not

a limit action because if a2 is played only a finite number of times, there is a positive

probability of forgetting all such experiences and only using the prior to choose the

action, which favors action a2. ▲

More generally, selective memory does not generate as much long-run inefficiency as

underinference: Whenever the agent believes that the consequences of different actions

are independent, if the expected utility of a selective memory equilibrium a under the

memory-weighted likelihood maximizer is lower than the ex-ante value of an alternative

b, then a is not a limit strategy.

5.2 Selective Memory and Misspecification

We now relate the long-run implications of selective memory to those ofmisspecification

in the sense of the statistics literature, where the true model is not in the support Θ

of the agent’s prior, and the agent remembers all past observations. The case studied

in the misspecification literature has perfect memory, so there m “ 1 and Θ1
s1pσq does

not depend on s1, so we simply write Θ1pσq.

Definition 4. A strategy σ is a

1. Berk-Nash equilibrium if there exists ν P ∆pΘ1pσqq such that for all s P S,

σpsq P BRps, νq.

2. Uniformly strict Berk-Nash equilibrium if for all ν P ∆pΘ1pσqq and all s P S,

tσpsqu “ BRps, νq.

Esponda and Pouzo [2016] shows that only Berk-Nash equilibria can be the long-run

outcomes of misspecified learning, and Fudenberg, Lanzani, and Strack [2021] shows

that in “rich” environments only uniformly strict Berk-Nash equilibria are stable long-

run outcomes.

There is a close relationship between the uniformly strict versions of Berk-Nash

equilibrium and selective memory equilibrium: For a given prior support Θ, every

uniformly strict Berk-Nash equilibrium is equivalent to a selective memory equilibrium

with full-support prior for some memory function, and every uniformly strict selective

memory equilibrium is equivalent to a Berk-Nash equilibrium for some support. To
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formalize this idea, we say that two equilibria are belief equivalent if they prescribe the

same strategies and the behavior after each signal can be justified by the same belief.

Definition 5. A Berk-Nash equilibrium σ with support Θ and a selective memory

equilibrium σ1 with support Θ̃ and memory function m are belief equivalent if σ “ σ1,

and for all s P S there exists a belief ν P ∆pΘ1pσq X Θ̃m
s pσqq such that σpsq P BRps, νq.

Two equilibria are belief equivalent if they prescribe the same strategies, and be-

havior after each signal can be justified by the same belief.

Proposition 6.

1. Every uniformly strict Berk-Nash equilibrium σ where supp qs,a Ď supp p˚
s,a for all

q P Θ1pσq, s P S and a P A is belief equivalent to a selective memory equilibrium

with full support for some strictly positive memory function.

2. Every uniformly strict selective memory equilibrium with support Θ is belief equiv-

alent to a uniformly strict Berk-Nash equilibrium for some Θ1.

The idea behind the first part of the proposition is that if we start from a maximizer

p with perfect memory but incomplete support, we can choose a memory function

that rescales the probability of each ps, a, yq by some constant times ps,apyq{p˚
s,apyq.

This makes the recalled frequency equal to p, so p is a weighted-memory likelihood

maximizer, and σ is the best reply.28 Here, the absolute continuity requirement is

needed because selective memory cannot replicate misspecifications where likelihood-

maximizing models model assign positive probability to an event that can never be

realized. To the best of our knowledge, all of the examples of misspecification studied

in the literature satisfy this restriction. The second part of the proposition is trivial:

To construct a uniformly strict Berk-Nash equilibrium that leads to the same beliefs

and behavior as in the selective memory equilibrium, we can endow the agent with a

degenerate belief that equals the belief in the specified selective memory equilibrium.

Remark 2. As we prove in Online Appendix B.3, the uniform strictness conditions of

Proposition 6 are needed:

1. There are Berk-Nash equilibria that are not belief equivalent to any selective

memory equilibrium with full support and strictly positive memory function.

28Every p2 that is outcome-equivalent under σ is also a maximizer, and this p2 may not have been
an element of Θ. Because σ need not be a best response to some of them, it need not be a uniformly
strict selective memory equilibrium.
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2. There are selective memory equilibria that are not belief equivalent to any Berk-

Nash equilibrium.

Moreover, selective memory equilibria need not be objectively optimal when the agent

knows that the distribution of outcomes is independent of their action (p˚
s,a “ p˚

s,a1 and

ps,a “ ps,a1 for every p P Θ, a, a1 P A, s P S).

To illustrate the equivalence result, consider a buyer who submits an offer for a

good in a double-blind two-sided auction where the price z is set at the buyer’s bid,

so the seller’s dominant strategy is to bid their value. Suppose that the buyer has an

exogenously fixed conviction that the price sellers ask is independent of the quality of

the good they are selling. If the buyer’s value of the good is x`v`ε where x P X Ď R
is the value for the seller, v P V Ď R measures the gains from trade, and ε is a

noise term, then in the Berk-Nash equilibrium they submit a bid that is too low, as in

Esponda [2008]. Proposition 6 shows that memory distortions can, over time, lead the

agent to believe that value and bid are independent and thus have the same long-run

behavior and beliefs. This is obtained with a memory function that gives more weight

to experiences with a larger gap between buyer’s values and ask prices.29

While Proposition 6 implies that selective memory and misspecification will have

similar long-run implications in a fixed environment, Section 4.2 shows that the two

models have different comparative statics with respect to changes in the environment.30

Thus empirical work might be able to distinguish between the two models based on

variations in information.

Persistence While agents undoubtedly are sometimes misspecified, some recent pa-

pers have theoretically questioned how likely these misperceptions are to persist and

proposed mechanisms by which agents might realize that some model not in the sup-

port of their initial beliefs better fits the data (Schwartzstein, 2014; Fudenberg and

Lanzani, 2023; He and Libgober, 2023; Lanzani, 2023). In contrast, an agent with a

selective memory and a full support prior will be able to explain their recollections

with one of their conjectured models and so have less reason to learn of their errors.

29Specificallympa, px, vqq “ k
“

ř

v1PV p˚px, v1q
ř

x1PX p˚px1, vq
‰

{p˚px, vq for sufficiently small k ą 0..
30Selective memory can arguably be viewed as a form of misspecification, as the agent is not aware

of their memory limitations. From that perspective, our results show that the classic misspecification
studied in Bayesian statistics is closely related to a psychologically-founded form of misspecification.
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6 Discussion

This is the first paper to explore the long-run implications of selective memory. Our

equilibrium concept and results make it easy to predict the long-run implications of

arbitrary memory biases, which should be of broad use in applied work. We illustrated

our framework by showing that it explains how overconfidence can arise from an ego-

boosting memory bias, and why agents may underestimate their co-workers’ abilities

even when they are correctly specified. It also lets us explain the excessive levels of risk

aversion implied by asset choice as the result of moderate risk aversion paired with an

extreme experience bias that leads agents to overestimate the riskiness of the assets.

Distinguishing Between Models To distinguish between selective memory and

underinference, one can elicit the agent’s beliefs.31 Underinference predicts that the

likelihood ratio between two data-generating processes θ and θ1 always increases be-

tween period t´ 1 and t if the period t´ 1 outcome was more likely under θ. Selective

memory allows for violations of this monotonicity, especially if at the beginning of

period t a signal triggering experiences favoring θ1 is observed, while this signal is ir-

relevant with underinference. A more direct way to distinguish selective memory from

other sources of mistaken inference, including misspecification, is to elicit both what

the agent remembers and what they believe, as in Gödker, Jiao, and Smeets [2022].

This allows one to estimate the memory function and qualitatively distinguish between

selective memory, misspecification, and underinference.

Convergence to Equilibria Theorem 2 gives sufficient conditions for there to be

a global attractor. Even when no such strategy exists, one could hope that there is

probability 1 of converging to some limit strategy, with which strategy occurs depending

both on the agent’s prior and on the realized outcomes. We hope to find sufficient

conditions for that in future work, along with (presumably weaker) conditions that

ensure a positive probability of converging to a limit strategy.

Partial näıveté We have assumed that agents treat the experiences they remember

as if these were the only ones that happened. Appendix A.3 considers agents who

are partially aware of their memory limitations. To do this, we assume that agents

know calendar time, and therefore how many observations they have not remembered.

31However, see Danz, Vesterlund, and Wilson [2022] for practical challenges in belief elicitation.
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We show how the degree of näıveté can amplify existing memory biases in the case of

ego-boosting memory bias.32 For an agent who is aware of their own forgetfulness but

unaware that their memory is selective, the selective memory equilibria under partial

and full näıveté coincide. At the other extreme, if agents are fully aware of their

memory function, any action that is optimal for the true data-generating process is

always a selective memory equilibrium.

Finite Memory In our model, the number of recalled experiences converges to in-

finity, as if the agent had perfect memory. In ongoing work, we modify the model to

make the expected number of recalled periods bounded. Here the agent’s beliefs need

not converge to a deterministic limit even when the strategy is fixed, which can make

the limit behavior stochastic. Thus instead of characterizing the possible limit strate-

gies, we show that if the frequency with which strategies are used converges, the limit

strategy distribution is generated by a best response to the distribution of memories it

generates. We hope to use this to model the effect of “rehearsal,” where an experience

recalled in one period is more likely to be recalled again.

Other Possible Extensions It would be relatively easy to extend our analysis to

agents who “misremember” and access false memories as opposed to simply forgetting

things that happened. A more substantive generalization would be from an agent

who believes that outcomes are i.i.d. to an agent who believes that outcomes follow

a Markov process. This would let us capture, the gambler’s fallacy (see Rabin and

Vayanos [2010] and He [2022]) if an outcome is more memorable when it is different

than the outcome in the previous period.33 Or it might be much easier for agents

to recall whether an experience happened at all than whether it happened five or

six times; we could capture this by using a memory function that is concave in the

number of times an experience occurred. Another generalization would be to memory

functions with recency bias, such as ms1 ,tpsτ , aτ , yτ q “ ms1 psτ , aτ , yτ qfpt´τq where f is

a decreasing function. As with associative memory, when the outcomes are exogenous,

this bias only leads to slower learning, but when actions are endogenous, it can prevent

the agent from locking on to the optimal action.

32However, as Example 9 in the Appendix shows, less näıve agents can take worse actions and get
lower payoffs.

33This extension could make use of the analysis of belief concentration for misspecified agents with
Markov models developed in Fudenberg, Lanzani, and Strack [2022].
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A Appendix

A.1 Preliminaries

For every t P N, we first explicitly describe the map

Ht ˆ 2t1,...,tu Ñ H
`

ht “ psi, ai, yiq
t
i“1 , R

˘

ÞÑ ht pRq

that transforms an objective history and a set of recalled periods into the recalled

history. Let n pk,Rq “ τ if τ is the k-th smallest number in R, i.e., n p1, Rq “ τ if τ is

the first period that is recalled, n p2, Rq “ τ if τ is the second period that is recalled,

so on and so forth. Then the list of recalled experiences in given by

ht pRq “
`

snpk,Rq, anpk,Rq, ynpk,Rq

˘|R|

k“1
. (5)

Combining equations (1) and (5) we have that the posterior probability of every mea-

surable C Ď Θ after objective history ht when the recalled periods are R ‰ H is

ş

C

ś

τPR psτ ,aτ pyτ qdµppq
ş

Θ

ś

τPR psτ ,aτ pyτ qdµppq
. (6)

We now state a few lemmas whose proofs are in the Online Appendix. For every

ht P H let fphtq P ∆pSˆAˆY q denote the empirical distribution over signals, actions,

and outcomes in ht “ psi, ai, yiq
t
i“1, and let

f̂pht, Rqps, a, yq “
1

|R|

ÿ

iPR

1psi,ai,yiqps, a, yq

denote the recalled empirical distribution in objective history ht when the recalled

periods are H ‰ R. Also, for every γ P ∆pS ˆ A ˆ Y q and p P ∆pY qSˆA let

Lpγ||pq “
ÿ

ps,a,yq

γps, a, yq logpps,apyqq

be the log-likelihood of the empirical distribution γ with respect to data generating

process p.

The next result shows that the posterior beliefs concentrate on the likelihood max-

imizers given the recalled empirical distribution.
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Lemma A.1. For all Borel measurable C,C 1 Ď ∆pY qSˆA, t P N, ht P Ht, and R Ď

t1, ..., tu,

µpC|htpRqq

1 ´ µpC 1|htpRqq
ě

µpCq

1 ´ µpC 1q
exp

˜

|R|

«

sup
pPΘzC1

Lpf̂pht, Rq||pq ´ inf
pPC

Lpf̂pht, Rq||pq

ff¸

.

Let Θm
s pσ, εq “ tp P Θ : Dq P Θm

s pσq, ||p ´ q||8 ď εu denote an ε ball around the

maximizers of the expected log-likelihood.

Lemma A.2. If σ is not a selective memory equilibrium, there are s1 P S and ε, C P

R`` such that for all ν P ∆pΘq,

νpΘm
s1 pσ, εqq

1 ´ νpΘm
s1 pσ, εqq

ą C ùñ σps1
q R BRps1, νq.

If σ is a uniformly strict selective memory equilibrium, there are ε, C P R`` such

that for all s P S and ν P ∆pΘq,

νpΘm
s pσ, εqq

1 ´ νpΘm
s pσ, εqq

ą C ùñ tσpsqu “ BRps, νq.

The next lemma says that if an action is an undominated response to some signal

s1 but cannot be played as a response to s1 in any selective memory equilibrium, then

after signal s1 the agent must have a non-zero chance of remembering at least one

possible experience ps, a, yq.

Lemma A.3. If σps1q P BRps1,∆pΘqqzBRps1,∆pΘm
s1 pσqqq, then there is

`

s, a, y
˘

P

S ˆ A ˆ Y with a “ σ psq, p˚
s,a

`

y
˘

ą 0, and

ms1

`

s, a, y
˘

“ : ℓ ą 0.

For any t P N, σ P AS and at P At let πσ,at P AH be the policy that prescribes

action aτ at period τ ď t and action σpsτ q at all periods τ ą t, and let Pσ,at be the

probability distribution induced by πσ,at . Throughout the Appendix, we let Rt denote

the random variable corresponding to the subset of periods recalled after pht, st`1q,

while we continue to use the non-bold version for its realizations.

The next lemma shows that if σ is a limit strategy, then for some time t, there is

an action sequence at such that if the agent plays at in the first t periods and then σ
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afterward, there is positive probability that the induced sequence of beliefs makes σ

optimal at all periods τ ě t ` 1.

Lemma A.4. Let σ P AS. If for every t P N, every at P At, and every optimal policy

π̃, Pσ,atrσpsτ`1q “ π̃phτ pRτ qqpsτ`1q for all τ ě ts “ 0 then σ is not a limit strategy.

For every σ P AS and s1 P S let

Mσps1
q “ max

pPΘ

˜

ÿ

sPS

ζpsq
ÿ

yPY

ms1ps, σpsq, yqp˚
s,σpsqpyq log ps,σpsqpyq

¸

be the maximal log-likelihood when the agent uses the strategy σ and observes signal

s1. Fix an arbitrary outcome y. Let ns,a,t the number of times the signal-action pair

ps, aq P SˆA occurred in periods t1, ..., tu and gs,a,t be the frequency of outcomes that

realized after signal s and action a until period t, i.e.,

gs,a,tpyq “
1

ns,a,t

t
ÿ

i“1

1tps,a,yqupsi, ai, yiq

with gs,a,tpyq “ 1tyupyq whenever ns,a,t “ 0. Similarly, let ñs,a,t be the number of times

the signal-action pair ps, aq is recalled at period t and fs,a,t be the frequency of outcomes

induced by signal s and action a that is recalled at period t, with fs,a,tpyq “ 1tyupyq

whenever ñs,a,t “ 0.

For every ps1, s, aq P S2 ˆ A and ε ą 0 and t P N let

Dtps
1, s, a, εq “ 1pε,`8q

ˆˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ñs,a,t

ns,a,t

fs,a,tp¨q ´ ms1 ps, a, ¨q gs,a,tp¨q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

˙

be an indicator function that is 1 if at period t there is a deviation of more than

ε between the recalled empirical frequency given s, a and the ms1-memory distorted

version of the true empirical frequency.

The next lemma shows that it is impossible to have infinitely many periods t where

an action-signal pair with realized frequency larger than γ at t has this sort of deviation.

Lemma A.5. For every π P AH, ps1, s, a, yq P S2 ˆ A ˆ Y and ε, γ ą 0,

Pπ

«

8
ÿ

t“1

Dtps
1, s, aq1pγ,8q

´ns,a,t

t

¯

1ps1qpst`1q ă 8

ff

“ 1. (7)
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A.2 Proof of Theorem 1

Proof. Suppose towards a contradiction that σ is a limit strategy under the optimal

policy π, but not a selective memory equilibrium. By Lemma A.2 there are s1 P S and

ε, C P R`` such that for all ν P ∆pΘq

νpΘm
s1 pσ, εqq

1 ´ νpΘm
s1 pσ, εqq

ą C ùñ σps1
q R BRps1, νq. (8)

Fix this s1 throughout the rest of the proof.

If σps1q R BRps1, νq for all ν P ∆pΘq, we immediately reach a contradiction by

definition of optimal policy, since by Kolmogorov 0 ´ 1 Law (see, e.g., Theorem 8.4.4

in Dudley [2018]) signal s1 will realize infinitely many times Pπ-a.s.

If σps1q P BRps1,∆pΘqq, Lemma A.3 implies there is an experience ps, a, yq that has

objective positive probability under σ and is recalled with positive probability ℓ under

signal s1. Now fix an objective history ht “ pst, at, ytq P Ht that has positive probability

under an optimal policy π, i.e., Pπrhts ą 0. We will show that if the agent plays σ at

every period after ht, Pσ,at almost surely the belief µτ p¨|hτ pRτ qq reaches a region where

no optimal policy prescribes σps1q after signal s1, i.e., σps1q R BRps1, µτ p¨|hτ pRτ qqq. By

Lemma A.4, this is enough to obtain the desired conclusion.

By the strong law of large numbers, for every ps, a, yq P S ˆ A ˆ Y

lim
τÑ8

fphτ qps, a, yq “

$

&

%

ζpsqp˚
s,a pyq if a “ σpsq

0 otherwise
Pσ,at a.s. on the cylinder ht.

Let p̃pσ, s1q P ∆pS ˆ A ˆ Y q be the induced distribution over remembered experiences

p̃pσ, s1
qps, a, yq “

$

&

%

ζpsqms1 ps,σpsq,yqp˚
s,σpsq

pyq
ř

ŷPY,ŝPS ζpŝqms1 pŝ,σpŝq,ŷqp˚
ŝ,σpŝq

pŷq
if a “ σpsq

0 otherwise
.

For every two periods τ 1 ą τ and R1 Ď t1, ..., τ 1u, the probability of recalling R1 at

time τ 1 conditional on the objective history hτ 1 is independent of the recalled periods

R at period τ , i.e., Pσ,at rRτ 1 “ R1, sτ 1`1|hτ 1s “ Pσ,at rRτ 1 “ R1, sτ 1`1|hτ 1 ,Rτ “ Rs . The

next claim shows that for every k P N, Pσ,at almost surely there is a τ ą t such that

sτ`1 “ s1, and the number of periods recalled after hτ , sτ 1`1 is larger than k. It is a

variation of the Borel-Cantelli lemma based on conditional instead of unconditional
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probabilities.

To state the claim, for every t P N, let Et denote the event that either |Rt| ď k or

st`1 ‰ s1 or both hold.

Claim 1. For all τ̂ P N and k P N, Pσ,at rXτěτ̂Eτ s “ 0.

Proof of Claim 1. For every τ P N and h “ psi, ai, yiq
τ
i“1 letNphq “

řτ´1
i“1 1tps,a,yqu psi, ai, yiq

be number of times ps, a, yq occurs between period 1 and τ . For any j P N, we have

Pσ,at
“

XτPtτ̂ ,...,τ̂`juEτ

‰

“

τ̂`j
ź

τ“τ̂

ÿ

hPHτ´1

Pσ,at phq p1 ´ Pσ,at r|Rτ | ą k, sτ 1`1 “ s1
| p|Rτ̂ | ď k, ..., |Rτ´1| ď k, hqsq

“

τ̂`j
ź

τ“τ̂

ÿ

hPHτ´1

Pσ,at phq p1 ´ Pσ,at r|Rτ | ą k, sτ 1`1 “ s1
|hsq

ď

τ̂`j
ź

τ“τ̂

¨

˝Pσ,at pth P Hτ´1 : Nphq ď kuq `
ÿ

hPHτ´1:Nphqěk`1

Pσ,at phq p1 ´ Pσ,at r|Rτ | ą k, sτ 1`1 “ s1
|hsq

˛

‚

ď

τ̂`j
ź

τ“τ̂

´

Pσ,at pth P Hτ´1 : Nphq ď kuq `
ř

hPHτ´1:Nphqěk`1 Pσ,at phq
`

1 ´ ℓk`1ζps1q
˘

¯

“

τ̂`j
ź

τ“τ̂

´

Pσ,at pth P Hτ´1 : Nphq ď kuq ` p1 ´ Pσ,at pth P Hτ´1 : Nphq ď kuqq
`

1 ´ ℓk`1ζps1q
˘

¯

“

τ̂`j
ź

τ“τ̂

`

1 ´ ℓk`1ζps1
q ` Pσ,at pth P Hτ´1 : Nphq ď kuq ℓk`1ζps1

q
˘

,

where the first equality follows from the law of iterated expectations, the first inequality

because for every τ P tτ̂ , ..., τ̂ ` ju,

ÿ

hPHτ´1:Nphqďk

Pσ,at phq p1 ´ Pσ,at r|Rτ | ą k, sτ 1`1 “ s1
|hsq ď

ÿ

hPHτ´1:Nphqďk

Pσ,at phq ,

and the second inequality follows from the fact that if signal s1 realized and ps, a, yq

appears at least k`1 times in the objective history, the probability of recalling at least

k ` 1 events is not smaller than ℓk`1. Since 1 ´ x ď ef´x for all x P R, the last term
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is smaller than

exp

˜

τ̂`j
ÿ

τ“τ̂

´ℓk`1ζps1
q ` Pσ,at pth P Hτ´1 : Nphq ď kuq ℓk`1ζps1

q

¸

.

By definition,
`

s, a, y
˘

has objective positive probability under σ, so there is τ̂ P N
and β P p0, 1q such that for every τ ě τ̂ , Pσ,at pth P Hτ´1 : Nphq ď kuq ă β ă 1. Thus

lim
jÑ8

Pσ,at
“

XτPtτ̂ ,...,τ̂`juEτ

‰

ď lim
jÑ8

exp

˜

τ̂`j
ÿ

τ“τ̂

´ℓk`1ζps1
q
k`1ζps1

q ` Pσ,at pth P Hτ´1 : Nphq ď kuq ℓk`1ζps1
q

¸

“ 0

proving the claim: For all τ̂ P N and k P N, Pσ,at rXτěτ̂Eτ s “ 0.

By the previous claim, for every t P N, and k P N``, Pσ,at almost surely

Dτ ą t : sτ`1 “ s1 and |Rτ | ą k. (9)

Claim 2. For every y P Y

Pσ,at

”
ˇ

ˇ

ˇ
τ : st`1 “ s1, ||f̂phτ ,Rτ q ´ p̃pσ, s1

q||8 ą ε
ˇ

ˇ

ˇ
“ 8

ı

“ 0. (10)

Proof of Claim 2. Let t P N, ht P Ht and ε ą 0. By the Chernoff inequality (see,

e.g., pages 23-24 of Boucheron, Lugosi, and Massart [2013]),

Pσ,at

«

ˇ

ˇ

ˇ

ˇ

Rτ

τ
f̂phτ ,Rτ q ´ p̃pσ, s1

q

ˇ

ˇ

ˇ

ˇ

ą ε | phτ , s
1
q

ff

ď 2|Y | exp

ˆ

´ετ

„

log 1{2 ´
logp1{2 ` εq ` logp1{2 ´ εq

2

ȷ˙

.

Since
8
ÿ

k“1

2 exp p´εkrlog 1{2 ´ ψpεqsq ă 8,

the result follows by the Borel-Cantelli lemma.

We show that eventually
νpΘm

s1 pσ,εqq

1´νpΘm
s1 pσ,εqq

ą C on the histories where conditions (9) and
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(10) are satisfied. Since they hold Pσ,at almost surely, the result follows by (8).

Let ε1 ă ε, κ P R`` be such that

κ ă inf
p1RΘm

s1 pσ,εq

˜

´
ÿ

sPS

ζpsq
ÿ

yPY

p˚
s,σpsqpyqms1ps, σpsq, yq log p1

s,σpsqpyq

¸

´ Mσps1
q

and

κ

2
ą sup

p1PΘm
s1 pσ,ε1q

˜

´
ÿ

sPS

ζpsq
ÿ

yPY

p˚
s,σpsqpyqms1ps, σpsq, yq log p1

s,σpsqpyq

¸

´ Mσps1
q

where their existence is guaranteed by the continuity in p of the memory-weighted

loglikelihood. So, by Lemma A.1

µpΘm
s1 pσ, εq|hτ pRτ qq

1 ´ µpΘm
s1 pσ, εq|hτ pRτ qq

ě
µpΘm

s1 pσ, ε1q|hτ pRτ qq

1 ´ µpΘm
s1 pσ, εq|hτ pRτ qq

ě
µ pΘm

s1 pσ, ε1qq

1 ´ µ pΘm
s1 pσ, εqq

exp

˜

|Rτ |

˜

inf
pRΘm

s1 pσ,εq
Dpf̂phτ , Rτ q||pq ´ sup

pPΘm
s1 pσ,ε1q

Dpf̂phτ , Rτ q||pq

¸¸

.

The last expression goes to `8 as τ Ñ 8, since (i) |Rτ | Ñ 8 by equation (9), and by

the definitions of κ and ε1, Assumption 2, as well as equation (10) we have

lim
τÑ8

inf
pRΘm

s1 pσ,εq
´

ÿ

ps,a,yq

f̂phτ , Rτ q ps, a, yq logpps,apyqq

´ sup
pPΘm

s1 pσ,ε1q

´
ÿ

ps,a,yq

f̂phτ , Rτ q ps, a, yq logpps,apyqq

“ ´ sup
pPΘm

s1 pσ,ε1q

´
ÿ

sPS

ζpsq
ÿ

yPY

ms1ps, σpsq, yqp˚
s,σpsqpyq logpps,σpsqpyqq

` inf
pRΘm

s1 pσ,εq
´

ÿ

sPS

ζpsq
ÿ

yPY

ms1ps, σpsq, yqp˚
s,σpsqpyq logpps,σpsqpyqq ą

κ

2
ą 0.

Proof of Theorem 2. First, we introduce some notation. Let

m : “ min
s1,s,aPS2ˆA

ÿ

yPY

p˚
s,apyqms1ps, a, yq ą 0,

32



and for every ps, s1, a, yq P S2 ˆ A ˆ Y , let

p̄s,apy|s1
q :“

ms1ps, a, yqp˚
s,apyq

ř

y1 ms1ps, a, y1qp˚
s,apy1q

denote the memory-adjusted version of the data-generating process.

Now we will prove the first part of the theorem, namely that

Pπ

”

lim
tÑ8

µpBϵpp̂q|htpRtqq “ 1
ı

“ 1.

The first step is to characterize the distribution of outcomes given the realized signals

and actions. Consider the stochastic processes pX
pŝ,â,ŷq

t qpŝ,â,ŷqPSˆAˆY,tPN defined by

Xŝ,â,ŷ
t “ p1tŷupytq ´ p˚

ŝ,âpŷqq1tpŝ,âqupst, atq @t P N.

These stochastic processes correspond to the deviation of the number of times each

y has appeared from their expected frequency given the signal realized and actions

chosen. They are measurable with respect to the filtration pFtqtPN generated by the

stochastic process of histories phtqtPN. These processes are not i.i.d., as previous out-

come realizations affect current period choices, but for each ps, a, yq P S ˆ A ˆ Y ,

ErX
ps,a,yq

t | Fts “ 0. Consequently, Xps,a,yq is a mixingale difference sequence, and

from the strong law of large numbers for mixingale sequences (see Theorem 2.7 in Hall

and Heyde, 2014 for the version that applies here) limnÑ8
1
n

řn
t“1X

ps,a,yq

t “ 0, Pπ-a.s.

Recall that ns,a,t is the number of periods in which the signal s is realized and the

action a is taken prior to t, and gs,a,t is the empirical distribution over outcomes in

these periods. Moreover

1

n

n
ÿ

t“1

X
ps,a,yq

t “
ns,a,t

n
pgs,a,tpyq ´ p˚

s,apyqq,

which implies that for every ε ą 0, γ ą 0, Pπ almost surely

lim sup
nÑ8

´

1rγ,8s

´ns,a,t

n

¯

¨ 1rε,8qp||gs,a,t ´ p˚
s,a||8q

¯

“ 0. (11)

Recall that ñs,a,t is the number of times the signal and action pair ps, aq is recalled at
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time t. By Lemma A.5, for every ps, s1, aq P S2 ˆ A, ε ą 0 and γ ą 0

Pπ

«

8
ÿ

t“1

Dtps
1, s, aq1pγ,8q

´ns,a,t

t

¯

1ps1qpst`1q ă 8

ff

“ 1. (12)

This implies that for every ps, s1, aq P S2 ˆ A, ε ą 0 and γ ą 0

Pπ

”
ˇ

ˇ

ˇ
t : ns,a,t

t
ą γ, st`1 “ s1 and

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
fs,a,tp¨q ´

ms1 ps,a,¨qgs,a,tp¨q
ř

y1PY ms1 ps,a,yqgs,a,tpy1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8
ą 2ε

ˇ

ˇ

ˇ
“ 8

ı

“ 0.

(13)

Observe that under data generating process q P Θ, the log-likelihood of any history

psi, ai, yiq
τ
i“1, τ ď t that the agent might recall at time t can be rewritten as

τ
ÿ

i“1

log qsi,aipyiq “
ÿ

ps,aqPSˆA

ñs,a,t

ÿ

yPY

fs,a,tpyq log qs,apyq

“
ÿ

ps,aqPSˆA

ñs,a,t

˜

´DKLpfs,a,t, qs,aq `
ÿ

yPY

fs,a,tpyq log fs,a,tpyq

¸

where DKLpq, q1q denotes the Kullback-Leibler divergence between q, q1 P ∆pY q. Thus

for every ϵ ą 0,

µpBϵpp̂q|psi, ai, yiq
τ
i“1q

1 ´ µpBϵpp̂q|psi, ai, yiqτi“1q
“

ş

Bϵpp̂q
exp

´

ř

ps,aqPSˆA ñs,a,t ´ DKLpfs,a,t, ps,aq

¯

dµppq

ş

ΘzBϵpp̂q
exp

´

ř

ps,aqPSˆA ñs,a,t ´ DKLpfs,a,t, qs,aq

¯

dµpqq
.

By Assumption 3, p̂ maximizes the log-likelihood and hence minimizes the divergence

from p̄ after every signal action pair. Thus, becauseDKL is jointly lower semicontinuous

(see, e.g., Lemma 1.4.3 in Dupuis and Ellis [2011]), there is ϵ̄ ą 0 such that for all

ps1, s, aq P S ˆ A and q P ΘzBϵpp̂q, DKLpp̄s,ap¨|s1q, qs,aq ą ϵ̄ ` DKLpp̄s,ap¨|s1q, p̂s,aq. By

equations (11) and (13), for every γ ą 0,Pπ almost surely

lim inf
tÑ8

p1{tq
ÿ

ps,aqPSˆA

ñs,a,tDKLpfs,a,t, qs,aq (14)

ď lim inf
tÑ8

p1{tq
ÿ

ps,aqPSˆA:ns,a,t{tďγ

ñs,a,tDKLpfs,a,t, qs,aq

ď lim inf
tÑ8

p1{tq
ÿ

ps,aqPSˆA:ns,a,t{tďγ

ñs,a,tpϵ̄ ` DKLpp̄s,ap¨|s1
q, p̂s,aqq
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for every q P ΘzBϵpp̂q.

Conversely, by Lemma 3 of Fudenberg, Lanzani, and Strack [2022], for all p P Θ

DKLpfs,a,t, ps,aq ď 2

ˆ

max
y

fs,a,tpyq

ps,apyq

˙

||fs,a,t ´ ps,a||TV .

Therefore by Assumption 2, we can choose ϵ1 small enough that if ||fs,a,t´p̄s,ap¨|s1q||TV ď

ϵ1, and p P Bϵ1pp̂q then

DKLpfs,a,t, ps,aq ď
ϵ̄

2
` DKLpp̄s,ap¨|s1

q, p̂s,aq

Pπ almost surely. Let K “ maxsPS,aPA,pPBϵ1 pp̂q,fP∆pY q:supp fĎpps,aq
DKLpf, p̂s,aq. Therefore,

we get that for all β P p0, 1q, Pπ-almost surely

lim
tÑ8

µpBϵ1pp̂q|htpRtqq

1 ´ µpBϵ1pp̂q|htpRtqq
“ lim

tÑ8

ş

Bϵ1 pp̂q
exp

´

´
ř

sPS,aPA ñs,a,tDKLpfs,a,t, ps,aq

¯

dµppq

ş

ΘzBϵ1 pp̂q
exp

´

´
ř

s,aPA ñs,a,tDKLpfs,a,t, qs,aq

¯

dµpqq

ě lim
tÑ8

ş

Bϵ1 pp̂q
exp

ˆ

´tβK ´
ř

sPS,aPA:
ñs,a,t

t
ą

β
|SˆA|

ñs,a,tDKLpfs,a,t, ps,aq

˙

dµppq

ş

ΘzBϵ1 pp̂q
exp

ˆ

´
ř

sPS,aPA:
ñs,a,t

t
ą

β
|SˆA|

ñs,a,tDKLpfs,a,t, qs,aq

˙

dµpqq

ě lim
tÑ8

µpBϵ1pp̂qq

1 ´ µpBϵ1pp̂qq
exp

´

t
”

´βK `
m

2
p1 ´ βq

´

ϵ̄ ´
ϵ̄

2

¯ı¯

where the last inequality follows by equations (12) and (14). For β small enough that

´βK`
m
2

p1 ´ βq
`

ϵ ´ ϵ
2

˘

ą 0, the right-hand side goes to infinity as t goes to infinity, so

the left-hand side must also diverge, which shows that Pπ

“

limtÑ8 µpBϵ1pp̂q|htpRtqq “

1
‰

“ 1. In particular, the random variable T defined as

T :“ suptt P N : µpBϵ1pp̂q|htpRtqq ă 1 ´ ϵ1
u (15)

is Pπ-almost surely finite.

To prove the second part of the theorem, note that because there is a unique best

response to p̂ for every signal s, σ̂ is a uniformly strict selective memory equilibrium. By

Lemma A.2, there is an ϵ such that σ̂psq is the response to s for any belief ν that assigns

probability at least 1 ´ ϵ to Bϵpp̂q. Since by equation (15) Pπ-almost surely there will

be a finite time T (that can depend on the sample path) with µpBϵpp̂q|htpRtqq ą 1 ´ ϵ

for all t ą T , the result follows.
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Proof of Proposition 1. We show that for every signal s P S, only data-generating

processes p for which ps,σpsq “ p˚
s,σpsq

are memory-weighted likelihood maximizers.

Fix ŝ P S and suppose that p is such that pσpŝq,ŝ ‰ p˚
σpŝq,ŝ. By the Gibbs inequality,

ÿ

yPY

p˚
s,σpsqpyq log p˚

σpsq,spyq ě
ÿ

yPY

p˚
s,σpsqpyq log ps,σpsqpyq

for all s P S, with strict inequality for s “ ŝ. This, together with dpŝ, ŝq “ 0 and

Φp0q ą 0, implies that

ÿ

sPS

ζpsq
ÿ

yPY

mŝps, σpsq, yqp˚
s,σpsqpyq log ps,σpsqpyq “

ÿ

sPS

ζpsqΦpdps, ŝqq
ÿ

yPY

p˚
s,σpsqpyq log ps,σpsqpyq

ă
ÿ

sPS

ζpsqΦpdps, ŝqq
ÿ

yPY

p˚
s,σpsqpyq log p˚

s,σpsqpyq

“
ÿ

sPS

ζpsq
ÿ

yPY

mŝps, σpsq, yqp˚
s,σpsqpyq log p˚

s,σpsqpyq

proving that p R Θm
ŝ pσq.

Proof of Proposition 2. From Theorem 2, we know that beliefs converge. We first

derive the long-run belief for m̃ P tm,m1u. Because the memory function m̃ and the

probability distribution over outcomes p˚ are independent of the agent’s action, this

long-run belief is unique and independent of a, so we suppress the dependence of p and

m̃ on a.

Because Θ “ ∆pY q, for every σ the unique memory-weighted likelihood maximizers

is the distribution

pm̃pyq “
m̃pyqp˚pyq

ř

zPY m̃pzqp˚pzq
,

and by Lemma A.1 the beliefs concentrate on pm̃. Moreover pm
1

pyq “ wpyqpmpyq,

where wpyq “ fpyq

ř

zPY mpzqp˚pzq
ř

zPY m1pzqp˚pzq
is non-decreasing, so z ÞÑ

ř

xďzppm
1

pxq ´ pmpxqq “
ř

xďz p
mpxqpwpxq ´ 1q is quasi-convex. It equals 0 for z ă minyPY y and for z ě

maxyPY y, so it is non-positive for z P rminyPY y,maxyPY ys, and pm
1

dominates pm in

first-order stochastic dominance. Every limit action must be optimal given pm̃ for

m̃ P tm,m1u by Theorem 1, so the agent’s action must be weakly higher under m1

than under m.

Proof of Proposition 3. From Theorem 2, we know that beliefs converge. Because

py1, y2q are subjectively independent conditional on the value of p, the learning problem
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decouples across the two dimensions. By Proposition 2, the long-run belief about p is

weakly higher than the true distribution p˚. The probability with which an outcome

is remembered is independent of the second component, so the agent learns αp˚py2q `

p1 ´ αqq˚py2q. They infer q to be

qpy2q “
αp˚py2q ` p1 ´ αqq˚py2q ´ αppy2q

1 ´ α
.

Thus q´q˚ ” α
1´α

pp˚´pq, and as p is greater than p˚ in first-order stochastic dominance,

it follows that q is lower than q˚ in first-order stochastic dominance.

Proof of Proposition 4. If a “ 1 is not a self-confirming equilibrium, then the safe

action a “ 0 is preferred to the risky action a “ 1, so
ř

yPY vpyqp˚
1pyq ă vpy0q. Because

the prior assigns positive probability to all distributions induced by action a1, the

unique memory-weighted likelihood maximizer p̂ under action 1 is such that

p̂1pyq :“
p˚
1pyqhp|y ´ ȳ|q

ř

zPY p
˚
1pzqhp|z ´ ȳ|q

.

Therefore, if a “ 1 is a selective memory equilibrium when mpyq “ hp|y ´ ȳ|q, then

vpy0q ď
ř

yPY p̂1pyqvpyq. We prove that this cannot be the case by showing that the

distribution p̂1 is second-order stochastically dominated by p˚
1 . To see this, observe

that as p˚
1 is symmetric around ȳ and hp|y ´ ȳ|q is symmetric around ȳ it follows that

p̂1 is symmetric around ȳ. As h is increasing it follows that p̂1´p˚
1 changes its sign from

positive to negative and back to positive so
ř

yďz p
˚
1pyq and

ř

yďz p̂1pyq cross only once,

at z “ ȳ. And since v is concave, Theorem 3 and Footnote 19 of Machina and Pratt

[1997] imply that
ř

yPY vpyqp˚pyq ě

ř

yPY p˚
1 pyqhp|y´ȳ|qvpyq

ř

yPY p˚
1 pyqhp|y´ȳ|q

and the risky action cannot be

a selective memory equilibrium.

Proof of Proposition 6. To prove part (1), let σ be a uniformly strict Berk-Nash

equilibrium, and let p1 be an arbitrary element of Θ1pσq. Since σ is a uniformly strict

Berk-Nash equilibrium, for all s P S, tσpsqu “ BRps, δp1q. Moreover, by the absolute

continuity condition, p˚
s,σpsq

pyq “ 0 implies p1
s,σpsq

pyq “ 0, so34 K :“ maxps,a,yqPSˆAˆY
p1
s,apyq

p˚
s,apyq

ă

8. Define m̃ by m̃s1ps, a, yq “
p1
s,apyq

Kp˚
s,apyq

if p˚
s,apyq ą 0 and m̃s1ps, a, yq “ 1{2 otherwise.

Then, for an agent with a full-support prior and memory function m̃ the memory-

34We use the convention that 0{0 “ 0.
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weighted likelihood maximizers for strategy σ after signal s1 are the elements of

argmax
pP∆pY qSˆA

ÿ

sPS

ζpsq
ÿ

yPY

m̃s1ps, σpsq, yqp˚
s,σpsqpyq log ps,σpsqpyq

“ argmax
pP∆pY qSˆA

ÿ

sPS

ζpsq
ÿ

yPY

p1
s,σpsq

pyq

K
log ps,σpsqpyq “ argmax

pP∆pY qSˆA

ÿ

sPS

ζpsq
ÿ

yPY

p1
s,σpsqpyq log ps,σpsqpyq.

Thus p1 maximizes the memory-weighted likelihood for all s1 P S, so σ is a selective

memory equilibrium with a full-support prior.

Part (2), the converse direction, is trivial: take Θ1 to be a singleton p such that for

all a P A and s P S, ps,apyq “ p1
s,apyq for some p1 P Θm

s pσq.

A.3 Partial näıveté

So far we have assumed that agents treat the experiences they remember as if these were

the only ones that happened. This section considers agents who are at least partially

aware of their memory limitations. We suppose throughout this section that actions

have no effect on the outcome distribution. We also assume that the agent either does

not remember their actions or believes they convey no information. Finally, we suppose

that agents know the current period and so know how many observations they have

forgotten. If the agent believes that they remember an occurrence of signal s P S and

outcome y P Y with probability m̂ps, yq P p0, 1s instead of the true probability mps, yq,

the subjective likelihood of recalling the periods R after pht, s
1q under data-generating

process p is proportional to
«

ÿ

sPS

ζpsq
ÿ

zPY

pspzqp1 ´ m̂s1ps, zqq

fft´|R|
ź

iPR

ζpsiqpsipyiqm̂s1psi, yiq .

Thus, the subjective log-likelihood equals

pt ´ |R|q log

«

ÿ

sPS

ζpsq
ÿ

zPY

pspzqp1 ´ m̂s1ps, zqq

ff

`
ÿ

yPY,sPS,τPR

1tps,yqupsτ , yτ q logppspyqm̂s1ps, yqq

(16)

where |R| is the number of events the agent remembers. (Note that the first term does

not appear when the agent believes they remember everything.)

Because the expected value of |R|{t is
ř

yPY

ř

sPS ζpsqp˚
s pyqms1ps, yq, (16) suggests

the following generalization of the definition the memory-weighted likelihood maximiz-
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ers:

Θm,m̂
s1 pσq“argmax

pPΘ

´

1 ´
ÿ

sPS

ÿ

yPY

ms1ps, yqζpsqp˚
s pyq

¯

log
´

1 ´
ÿ

sPS

ÿ

yPY

ζpsqpspyqm̂s1ps, yq

¯

`
ÿ

yPY

ÿ

sPS

ms1ps, yqζpsqp˚
s pyq log pm̂s1ps, yqpspyqq .

Definition 6. A selective memory equilibrium for a partially näıve agent is a strategy

σ such that for every s P S there exists a belief ν P Θm,m̂
s pσq with σpsq P BRps, νq.

For an agent who is aware of their own forgetfulness, but not aware that their mem-

ory is selective, i.e., who believes that their memory functionm is constant, Θm,m̂
s “ Θm

s

and the selective memory equilibria of a partially and fully näıve agent coincide.35 This

shows that what matters for our results is that the agent is unaware that their memory

is selective, not that they are unaware of their forgetfulness. At the other extreme, if

agents are fully aware of their memory function, selective memory equilibrium reduces

to self-confirming equilibrium because δp˚ P Θm,m
s1 .

The next result, whose proof is omitted, follows by observing that for a partially

näıve agent, the posterior probability of C after an objective history pht, st`1q when

the recalled periods are R is

ş

C

´

ś

τPR m̂st`1psτ , yτ qpsτ pyτ q

¯´

1 ´
ř

sPS

ř

yPY ζpsqpspyqm̂st`1ps, yq

¯t´|R|

dµppq

ş

Θ

´

ś

τPR m̂st`1psτ , yτ qpsτ pyτ q

¯´

1 ´
ř

sPS

ř

yPY ζpsqpspyqm̂st`1ps, yq

¯t´|R|

dµppq

,

and then using an argument analogous to the proof of Theorem 1.

Proposition 7. When the agent is partially näıve, every limit strategy is a selective

memory equilibrium.

Moreover, as with notions of partial näıveté in cursed equilibrium and quasi-hyperbolic

discounting, one can define a parametric notion of partial näıveté by assuming that

35This is true in particular when the agent is fully näıve and m̂ is identically 1, even though the
maximand becomes ill-defined. To see why, note that when m̂s1 p¨q “ ks1 for some constants ks1 ă 1,
the maximand is
´

1´
ÿ

sPS

ÿ

yPY

ms1 ps, yqζpsqp˚
s pyq

¯

log
´

1´ks1

¯

`
ÿ

yPY

ÿ

sPS

ms1 ps, yqζpsqp˚
s pyq log pks1 q`

ÿ

yPY

ÿ

sPS

ms1 ps, yqζpsqp˚
s pyq log ppspyqq .

The first terms do not depend on p, so Θm,m̂
s1 “ Θm

s1 , and in particular complete näıveté is reached in
the limit where all ks1 Ñ 1.
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m̂s1ps, yq “ p1´αq`αms1ps, yq. For α “ 0 the agent is fully näıve and unaware of their

memory limitations. For α “ 1 the agent is sophisticated and understands their mem-

ory limitations, and so has correct long-run beliefs. As the next proposition illustrates,

the degree of näıveté can amplify existing memory biases. Consider again the setting

of Section 4.2, which studied positive memory bias by assuming that y is a scalar and

mpyq is increasing in y.

Proposition 8. Suppose m and p˚ are constant in a and m is increasing in y, that

m̂pyq “ p1 ´ αq ` αmpyq, Θ “ ∆pY q, and u is supermodular. Then the agent’s long-

run belief concentrates on a distribution of outcomes that is increasing in first-order

stochastic dominance in p1 ´ αq, i.e., the näıveté of the agent.

The next example shows that the amount of näıveté can have a non-monotonic

effect when there are more than two actions.

Example 9. Suppose that the agent has three alternatives. They can either “do

nothing,” a “ n with certain payoff of 0, do a quick job a “ k with payoff 1 if the job

succeeds and ´1 otherwise, or do a careful and time-consuming job a “ h at cost 0.6

that yields 1 ´ .6 “ .4 if the project succeeds and ´1.6 otherwise. The probability of

success in the quick job is some unknown p P r0, 1s, while the probability of success

in the careful job is max t1, 2pu. The agent’s prior assigns positive probability to all

p P r0, 1s, where p is a reflection of the agent’s ability.

The true probability p˚ “ 0.2, so Ep˚rupn, ¨qs ą Ep˚rupk, ¨qs ą Ep˚ruph, ¨qs. Suppose

that the agent has ego-boosting bias, in that they recall successes and they recall failures

with probability 0.03. Here welfare is nonmonotone in the amount of partial näıveté

of the agent. For a fully sophisticated agent, the unique selective memory equilibrium

is the objectively optimal n, while a näıve agent has two selective memory equilibria,

n and k, with the latter sustained by the incorrect belief that their ability is so high

that k is better than h. However, if the agent believes that they recall the failures with

probability 0.12, playing the worst action h is a selective memory equilibrium because

the agent ends up believing that the probability of success is 0.5, which makes h the

unique best reply.
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B For Online Publication

B.1 Proof of Lemmas

Proof of Lemma A.1. Equation (6) implies that

µpC|htpRqq “

ş

C

ś

ps,a,yqPSˆAˆY pps,apyqq
ř

iPR 1tps,a,yqupsi,ai,yiqdµppq
ş

Θ

ś

ps,a,yqPSˆAˆY pps,apyqq
ř

iPR 1tps,a,yqupsi,ai,yiqdµppq

“

ş

C

ś

ps,a,yqPSˆAˆY pps,apyqq|R|f̂pht,Rqps,a,yqdµppq
ş

Θ

ś

ps,a,yqPSˆAˆY pps,apyqq|R|f̂pht,Rqps,a,yqdµppq

“

ş

C
exp

´

|R|
ř

ps,a,yqPSˆAˆY logpps,apyqqf̂pht, Rqps, a, yq

¯

dµppq

ş

Θ
exp

´

|R|
ř

ps,a,yqPSˆAˆY logpps,apyqqf̂pht, Rqps, a, yq

¯

dµppq

.

Therefore,

µpC|htpRqq

1 ´ µpC 1|htpRqq
“

ş

C
exp

´

|R|
ř

ps,a,yqPSˆAˆY logpps,apyqqf̂pht, Rqps, a, yq

¯

dµppq

ş

ΘzC1 exp
´

|R|
ř

ps,a,yqPSˆAˆY logpps,apyqqf̂pht, Rqps, a, yq

¯

dµppq

“

ş

C
exp

´

´|R|Lpf̂pht, Rq||pq

¯

dµppq

ş

ΘzC1 exp
´

´|R|Lpf̂pht, Rq||pq

¯

dµppq

ě
µpCq

1 ´ µpC 1q

exp
´

´|R| suppPC Lpf̂pht, Rq||pq

¯

exp
´

´|R| infpPΘzC1 Lpf̂pht, Rq||pq

¯ .

Proof of Lemma A.2. First we show that for every σ P AS, s P S, and ε ą 0, Θm
s pσq

and Θm
s pσ, εq are nonempty and compact. By Assumption 1, there exists a p1 P Θ such

that

E : “
ÿ

s1PS

ζps1
q

ÿ

yPY

msps
1, σpsq, yqp˚

s1,σps1qpyq log p1
s1,σps1qpyq ă 8,

so the function

p ÞÑ
ÿ

s1PS

ζps1
q

ÿ

yPY

msps
1, σpsq, yqp˚

s1,σps1qpyq log ps1,σps1qpyq
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is finite-valued and continuous on the nonempty and compact set

Θ X tp :
ÿ

s1PS

ζps1
q

ÿ

yPY

msps
1, σpsq, yqp˚

s1,σps1qpyq log ps1,σps1qpyq ď Eu

Therefore Θm
s pσq is nonempty and compact by Theorem 2.43 in Aliprantis and Border

[2013]. The result for Θm
s pσ, εq is an immediate consequence given the continuity of

the supnorm.

For the first part of the lemma, suppose σ is not a selective memory equilibrium.

Then there is an s1 P S such that σps1q R BRps1,∆pΘm
s1 pσqqq. The upper hemicontinuity

of the best reply map BRps1, ¨q and the compactness of Θm
s1 pσ, εq imply that there are

ε, C P R`` such that if
νpΘm

s1 pσ,εqq

1´νpΘm
s1 pσ,εqq

ą C then σps1q R BRps1, νq.

For the second part of the lemma, suppose σ is a uniformly strict selective memory

equilibrium. The upper hemicontinuity of the best reply map BRps, ¨q for all s P S and

the compactness of Θm
s pσ, εq imply that there are C, ε P R`` such that for all s P S if

νpΘm
s pσ, εqq ą Cp1 ´ νpΘm

s pσ, εqq then tσpsqu “ BRps, νq.

Proof of Lemma A.3. If a is an undominated response to s1 but is not inBRps1,∆pΘm
s1 pσqqq,

then Θm
s1 pσq ‰ Θ. But then there must be some experience that has objective positive

probability under σ that is recalled with positive probability under signal s1, as other-

wise the maximand function of equation (2) would be constant and all the elements of

Θ would be maximizers, i.e., Θm
s1 pσq “ Θ.

Proof of Lemma A.4. Fix an arbitrary optimal policy π̃, t P N, and a history

pst, at, ytq P Ht with Pπ̃pst, at, ytq ą 0. Let

τ “ mintt1 ą t : σpst1q ‰ π̃ppst
1´1, at

1´1, yt
1´1

qpRt1´1qqpst1qu

be the first time after pst, at, ytq when π̃ does not prescribe σ. Note that since

π̃pps
ˆt´1, a

ˆt´1, y
ˆt´1

qpRt̂´1qqpst̂q “ σpst̂q “ πσ,at
ppst̂´1, at̂´1, yt̂´1

qpRt̂´1qqpst̂`1q

for all t̂ P rt, τ ´ 1s, the agent’s belief until period τ is the same under πσ,at and π̃.

As Pπ̃pst
1

, at
1´1, yt

1´1, Rt1´1q ą 0 implies Pσ,atps
t1

, at
1´1, yt

1´1, Rt1´1q ą 0, the probability

that the agent uses strategy σ forever (i.e., τ “ 8) after history pst, at, ytq equals 0 by
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the assumption of the lemma. Thus, since for every optimal policy π̃ P AH

Pπ̃ rsuptt : at ‰ σpstqu ă 8s ď

8
ÿ

t“0

ÿ

htPHt

Pπ̃ rσpsτ`1q “ π̃phτ pRτ qqpsτ`1q, @τ ě t|htsPπ̃rhts “ 0,

σ is not a limit strategy.

Proof of Lemma A.5. Let t P N, pht, s
1q P Ht ˆ S and ε ą 0, and let ψpεq “

1
2
plogp1{2 ` εq ` logp1{2 ´ εqq. By the Chernoff inequality (see, e.g., pages 23-24 of

Boucheron, Lugosi, and Massart [2013]), for every ps, aq P S ˆ A

Pπ

«

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ñs,a,tfs,a,tpyq

ns,a,t

´ ms1 ps, a, yq gs,a,tpyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

ą ε | pht, s
1
q

ff

ď |Y |max
yPY

Pπ

«

ˇ

ˇ

ˇ

ˇ

ñs,a,tfs,a,tpyq

ns,a,t

´ ms1 ps, a, yq gs,a,tpyq

ˇ

ˇ

ˇ

ˇ

ą ε | pht, s
1
q

ff

ď 2|Y | exp p´εns,a,trlog 1{2 ´ ψpεqsq .

Now we combine these upper bounds with the Borel-Cantelli lemma to show that for

any signal-action pair ps, aq that occurs a non-vanishing fraction of time, there are

only finitely many periods where either only a small fraction of recalled histories have

recalled signal-action pair ps, aq or the recalled frequency is a large deviation in the

sense of the last display. Since

8
ÿ

i“1

2 exp p´εirlog 1{2 ´ ψpεqsq ă 8,

by the Borel-Cantelli lemma,

Pπ

«

8
ÿ

t“1

Dtps
1, s, aqIpγ,8q

´ns,a,t

t

¯

Ips1qpst`1q ă 8

ff

“ 1.

B.2 Proof of Proposition 5

Proof of Proposition 5. Suppose towards a contradiction that σ is a limit strat-

egy under the optimal policy π, but not a selective memory equilibrium. Then by

Lemma A.2 there are s1 P S and c, C P R`` such that if
νpΘm

s1 pσ,cqq

1´νpΘm
s1 pσ,cqq

ą C then
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σps1q R BRps1, νq. Let ht “ pst, at, ytq be a history with positive probability under

π. We show that if the agent plays the strategy πσ,at , then almost surely the under-

inference belief µUp¨|psτ , aτ , yτ qq is asymptotically in a region where no optimal policy

prescribes σ after signal s1. Since almost surely signal s1 occurs infinitely many times,

by Lemma A.4 this is enough to obtain the desired conclusion.

By the Strong Law of Large Numbers,

lim
τÑ8

fphτ qps, a, yq “

$

&

%

ζpsqp˚
s,a pyq if a “ σpsq

0 otherwise
(17)

Pπσ,at almost surely. Next, we express the posterior as a function of the observed fre-

quencies and show that it concentrates on the memory-weighted likelihood maximizers,

so the result follows from the upper hemicontinuity of BR. By the continuity in p of

the memory weighted log-likelihoodcan choose κ, c1 P R`` such that

κ ă inf
p1RΘm

s1 pσ,cq

˜

´
ÿ

sPS

ζpsq
ÿ

yPY

p˚
s,σpsqpyqms1ps, σpsq, yq log p1

s,σpsqpyq

¸

´ Mσps1
q

and

κ{2 ą sup
p1PΘm

s1 pσ,c1q

˜

´
ÿ

sPS

ζpsq
ÿ

yPY

p˚
s,σpsqpyqms1ps, σpsq, yq log p1

s,σpsqpyq

¸

´ Mσps1
q.

By equation (17), Assumption 2, and the definition of κ and c1, almost surely on the

cylinder ht we have

K : “ lim
tÑ8

inf
p1RΘm

s1 pσ,cq
´

ÿ

ps,a,yq

fphtps, a, yqqmps, a, yq logpp1
s,apyqq

´ lim
tÑ8

sup
p1PΘm

s1 pσ,c1q

´
ÿ

ps,a,yq

fphtps, a, yqqmps, a, yq logpp1
s,apyqq

“ ´ inf
p1RΘm

s1 pσ,cq

ÿ

sPS

ζpsq
ÿ

yPY

ms1ps, σpsq, yqp˚
s,σpsqpyq log p1

s,σpsqpyq

´ sup
p1PΘm

s1 pσ,c1q

´
ÿ

sPS

ζpsq
ÿ

yPY

ms1ps, σpsq, yqp˚
s,σpsqpyq log p1

s,σpsqpyq ą κ{2 ą 0.

By Lemma A.1,
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µpΘm
s1 pσ, cq|htq

1 ´ µpΘm
s1 pσ, cq|htq

ě

µ pΘm
s1 pσ, c1qq exp

´

supp1PΘm
s1 pσ,c1q ´

ř

ps,a,yq
tfphtps, a, yqqmps, a, yq logpp1

s,apyqq

¯

p1 ´ µ pΘm
s1 pσ, c1qqq exp

´

infp1RΘm
s1 pσ,cq ´

ř

ps,a,yq
tfphtps, a, yqqmps, a, yq logpp1

s,apyqq

¯

“
µ pΘm

s1 pσ, c1qq

p1 ´ µ pΘm
s1 pσ, c1qqq

expptKq,

which goes to 8 as t grows since K ą 0.

B.3 Proof of Remark 2

Proof. To prove the statements, we give three examples with a singleton signal space.

1. Suppose that Y “ t´1, 1u “ A, the probability of 1 is 0.5 regardless of a, and

that the agent does not have selective memory, but is misspecified, with r0, .2s Y r.8, 1s

as the support of the prior beliefs over the probability of 1 under both actions. Then,

both .2 and .8 are maximizers, which cannot arise from selective memory with a full-

support prior. This follows from full support and the strict concavity of the memory-

weighted likelihood if m is strictly positive for all positive-probability experiences, and

is immediate if m “ 0 for some pa, yq.

2. Suppose that Y “ t´1, 0, 1u “ A, upa, yq “ ay ` 1a“´1{20 ´ 1a“1{12, and

the probability distribution over outcomes is p1{2, 1{4, 1{4q regardless of a, with Θ “

tp1{2, 1{6, 1{3q, p1{3, 1{6, 1{2qu and mpa, yq “ 1 ´
1tpa,´1q:aPAupa,yq

2
. Then, both elements of

Θ are memory-weighted likelihood maximizers. Moreover, 0 is a selective memory

equilibrium that can only be sustained with beliefs that assign a probability between

1{4 and 7/20 to the data-generating process p1{2, 1{6, 1{3q and in particular must be

nondegenerate. But when the agent has perfect memory, there is no Θ1 for which

both elements of Θ are maximum likelihood maximizers. Thus 0 is a selective memory

equilibrium that is not belief equivalent to any Berk-Nash equilibrium.

3. Suppose Y “ t´1, 1u “ A and upa, yq “ ya. Then if mpa,´1q “ 0 ă mpa, 1q for

all a P A, and the agent has a full-support prior over the action-independent outcome

distributions, the only selective memory equilibrium is a “ 1 even if the true probability

of 1 under both actions is less than 1{2 so that the objectively optimal action is ´1.
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B.4 Proof of Proposition 8

Proof of Proposition 8. We first derive the long-run belief for a given subjective

memory function m̂. For every σ,

LΘ,m,m̂
pσq “ argmax

pP∆pY q

ÿ

yPY

logpppyqm̂pyqqmpyqp˚
pyq .

Taking first-order conditions of the associated Lagrangian shows there is a unique

element p of LΘ,m,m̂pσq, given by

ppyq “

mpyq

m̂pyq
p˚pyq

ř

zPY
mpzq

m̂pzq
p˚pzq

.

Thus the long-run beliefs under the objective memory function m and subjective mem-

ory function m̂ are the same as those of a fully näıve agent with memory function

m̃pyq “
mpyq

m̂pyq
who is not aware of their selective memory. Note that for m̂αpyq “

p1 ´ αq ` αmpyq and α ą α1,

mpyq

m̂αpyq

mpyq

m̂α1 pyq

“
m̂α1pyq

m̂αpyq
“

p1 ´ α1q ` α1mpyq

p1 ´ αq ` αmpyq

is decreasing in mpyq and hence in y. This lets us apply Proposition 2 to conclude that

the long-run belief under the subjective memory function m̂α1 will be weakly higher in

FOSD than that under the subjective memory function m̂α.

B.5 Partially Recalled Histories with Partial näıveté

Here we suppose that the outcome space has a product structure, i.e., Y “ ˆiPIYi

and that the agent may recall only some components of the outcome. Moreover, we

continue to allow for partial näıveté as in Appendix A.3. To model this case, we use

a collection of signal-dependent memory functions ms1 : pS ˆ A ˆ Y ˆ 2Iq Ñ r0, 1s,

where ms1ps, a, y, Bq specifies the probability an agent remembers the B Ď I outcome

components of a past realization of experience ps, a, yq and

ÿ

BP2I

ms1ps, a, y, Bq “ 1.
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Moreover, the agent believes that they remember an occurrence of signal s and outcome

y with probability m̂s1ps, y, Bq. Thus the recalled history at time t is the of recalled

experiences psτ , yτ , Bτ,tq
t
τ“1 where Bτ,t denotes the components of the period τ outcome

recalled at time t, and for all Borel measurable C Ď Θ

µpC|psτ , yτ , Bτ,tq
t
τ“1, s

1
q “

ş

C

śt
τ“1 m̂s1psτ ,

ś

iPI Ỹτ,i, Bτ,tqpsτ p
ś

iPI Ỹτ,iqdµppq
ş

Θ

śt
τ“1 m̂s1psτ ,

ś

iPI Ỹτ,i, Bτ,tqpsτ p
śt

τ“1 Ỹτ,iqdµppq

where Ỹτ,i “ Yi if i R Bτ,t and Ỹτ,i “ tyτ,iu if i P Bτ,t. With this, the results of the

paper carry through with the following adaptation of the concept of memory-weighted

likelihood maximizers:

Θm
s1 pσq “ argmax

pPΘ

ÿ

sPS

ζpsq
ÿ

BP2I

ÿ

yPY

ms1ps, y, Bqp˚
s pỸ pyqq log m̂s1ps, y, BqpspỸ pyqq

where Ỹ pyq “ Yi if i R B and Ỹ pyq “ tyiu if i P B.

Example 10 (Ego-Boosting Memory plus Cognitive Dissonance Reduction). Suppose

there are two tasks, each of which the agent can either pass or fail, i.e., Y1 “ Y2 “ t0, 1u,

and there is no signal. The agent is more likely to recall successes in each component,

but they are also more likely to recall the outcome of task 2 (a secondary task) if it

confirms the outcome of the first task. For example, we could have

mpp1, 1q, t1, 2uq “ 1,

mpp1, 0q, t1, 2uq “ 0.1, mpp1, 0q, t1uq “ 0.8, mpp1, 0q,Hq “ 0.1

mpp0, 1q, t2uq “ 0.7, mpp0, 1q,Hq “ 0.3

mpp0, 0q,Hq “ 0.9, mpp0, 0q, t1, 2uq “ 0.1.

As in the case with a unique component, a partially näıve agent can be described by

a perceived memory function that combines perfect memory with the true memory

function:

m̂py,Bq “ αmpy,Bq ` p1 ´ αq1 @y P Y,B Ď t1, .., Iu.

Suppose that the initial belief of the agent is that the probability of success is inde-

pendent and equal across tasks and is either p “ 0.9 or p1 “ 0.1 with equal prior

probability. Then after one period, if there was success only in task one, if the agent
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only recalls component 1 their posterior belief is

µpp|pp1, 0q, t1uq

“
rαmpp1, 1q, t1uq ` p1 ´ αqs p p1, 1q ` rαmpp1, 0q, t1uq ` p1 ´ αqs p p1, 0q

rαmpp1, 1q, t1uq ` p1 ´ αqs p p1, 1q ` rαmpp1, 0q, t1uq ` p1 ´ αqs p p1, 0q `

rαmpp1, 1q, t1uq ` p1 ´ αqs p1 p1, 1q ` rαmpp1, 0q, t1uq ` p1 ´ αqs p1 p1, 0q

“
p1 ´ αq0.92 ` p0.8α ` p1 ´ αqq 0.9 ˚ 0.1

p1 ´ αq0.92 ` p0.8α ` p1 ´ αqq 0.9 ˚ 0.1 ` p1 ´ αq0.12 ` p0.8α ` p1 ´ αqq 0.9 ˚ 0.1
.

In particular, a completely sophisticated agent (α “ 1) ends up with a posterior equal

to the prior, as they understand that the fact that they do not recall the second

component means it was a failure, and success in one dimension and failure in the

other leaves the prior unchanged. A completely näıve agent (α “ 0) instead ends up

with a posterior probability of 0.9 for the optimistic distribution p.

B.6 Permanent Memories

Suppose that the memory function m determines the probability that a particular

experience is recalled in the period just after it occurs. If it is recalled, it is never

forgotten; if it is not, it is never remembered. Then the belief process has the following

recursive formula: for all Borel measurable C Ď Θ,

µt`1pCq “

$

&

%

ş

C pst,at pytqdµtppq
ş

Θ pst,at pytqdµtppq
with probability mpst, at, ytq

µtpCq otherwise
.

It is easy to see that if the strategies in this dynamic system converge, they converge

to a selective memory equilibrium. However, as in Example 8 on underinference, the

fact that permanent memory is “less stochastic” allows behaviors that are not limit

strategies under selective memory to be limit strategies.

Example 11. In the setting of Proposition 4, let Y “ t0, 2.5, 4, 8u with y0 “ 2.5,

p˚
1p0q “ p˚

1p4q “ p˚
1p8q “ 1{3, and vpyq “

?
y. Then the unique selective memory

equilibrium with perfect memory is to play the risky lottery. However, under the

extreme event bias where mp0q “ mp8q “ 1, mp3q “ 1{2, mp4q “ 1{10 the unique

selective memory equilibrium is to play the safe action. ▲
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Example 12. Suppose that S is a singleton, Y “ t´1, 1u “ A, upa, yq “ ay and the

probability of 1 is 0.3 regardless of a. The agent (correctly) believes that the action does

not affect the outcome and assigns positive probability to every possible distribution

over outcomes. Let mpa, yq “ 1{100 if a “ y mpa, yq “ 1 otherwise, so the agent is

more likely to recall periods where their action mismatched the state than when they

matched. In this case, by Theorem 1 for every optimal policy π, the action process Pπ

almost surely does not converge. Indeed, the memory-weighted likelihood maximizers

for action 1 assigns probability 3{1000 to y “ 1, inducing 0 as the unique best reply,

while the memory-weighted likelihood maximizers for action ´1 assigns probability

993{1000 to y “ 1 inducing 1 as the unique best reply.
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