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Supporting Information Text
Related Work

Work on equilibrium cooperation in repeated games began with studies of reciprocal altruism with general stage games where
a fixed set of players interacts repeatedly with a commonly known start date and a common notion of calendar time (1-3),
and has been expanded to allow for various sorts of noise and imperfect observability (4-8). In contrast, most evolutionary
analyses of repeated games have focused on the prisoner’s dilemma (9-23), though a few evolutionary analyses have considered
more complex stage games (24, 25). Similarly, most laboratory and field studies of the effects of repeated interaction have also
focused on the prisoner’s dilemma (9, 26-28), though some papers consider variants with an additional third action (29, 30).

Reciprocal altruism is an important force in long-term relationships among a relatively small number players, such as
business partnerships or collusive agreements among firms, but there are many social settings where people manage to cooperate
even though direct reciprocation is impossible. These interactions are better modelled as games with repeated random matching
(31). When the population is small compared to the discount factor, cooperation in the prisoner’s dilemma can be enforced by
contagion equilibria even when players have no information at all about each other’s past actions (32-34). These equilibria do
not exist when the population is large compared to the discount factor, so they are ruled out by our assumption of a continuum
population.

Previous research on indirect reciprocity in large populations has studied the enforcement of cooperation as an equilibrium
using first-order information. Takahashi (35) shows that cooperation can be supported as a strict equilibrium when the
PD exhibits strategic complementarity; however, his model does not allow noise or the inflow of new players, and assumes
players can use a commonly known calendar to coordinate their play. Heller and Mohlin (36) show that, under strategic
complementarity, the presence of a small share of players who always defect allows cooperation to be sustained as a stable
(though not necessarily strict) equilibrium when players are infinitely lived and infinitely patient and are restricted to using
stationary strategies. The broader importance of strategic complementarity has long been recognized in economics (37, 38) and
game theory (39, 40).

Many papers study the evolutionary selection of cooperation using image scoring (41-52). With image scoring, each player
has first-order information about their partner, but conditions their action only on their partner’s record and not on their
own record. These strategies are never a strict equilibrium, and are typically unstable in environments with noise (47, 53).
With more complex “higher order” record systems such as standing, cooperation can typically be enforced in a wide range of
games (32, 44, 54-62). Most research has focused on the case where each player has only two states: for instance, Ohtsuko and
Iwasa (44, 63) consider all possible record systems of this type, and show that only 8 of them allow an ESS with high levels of
coooperation. Our first-order records can take on any integer values, so they do not fall into this class, even though behavior is
determined by a binary classification of the records. Another innovation in our model is to consider steady-state equilibria in a
model with a constant inflow of new players, even without any evolutionary dynamics. This approach has previously been used
to model industry dynamics in economics (64, 65), but is novel in the context of models of cooperation and repeated games.

The key novel aspects of our framework may thus be summarized as follows:

1. Information (“records”) depends only on a player’s own past actions, but players condition their behavior on their own
record as well as their current partner’s record.

2. The presence of strategic complementarity implies that such two-sided conditioning can generate strict incentives for
cooperation.

3. Records are integers, and can therefore remain “good” even if they are repeatedly hit by noise (as is inevitable when
players are long-lived).

4. The presence of a constant inflow of new players implies that the population share with “good” records can remain
positive even in steady state.

Model Description

Here we formally present the model and the steady-state and equilibrium concepts.

Time is discrete and doubly infinite: ¢t € {...,—2,—-1,0,1,2,...}. There is a unit mass of individuals, each with survival
probability v € (0, 1), and an inflow of 1 — v newborns each period to keep the population size constant.

Every period, individuals randomly match in pairs to play the PD (Fig. 1). Each individual carries a record k € N :=
{0,1,2,...}. Newborns have record 0. When two players meet, they observe each other’s records and nothing else. A strategy
is a mapping s : N x N — {C, D}. All players use the same strategy. When the players use strategy s, the distribution over
next-period records of a player with record k¥ who meets a player with record k’ is given by

r,(C) w/ prob. 1 —e, r4(D) w/ prob. e if s(k, k") =C
ri(D) w/ prob. 1 if s(k,k’) = Dendequation*’

¢k,k’ (s) = {

where 7 (C') is the next-period record when a player with current record k is recorded as playing C' and ri (D) is the next-period
record when a player with current record k is recorded as playing D. For the Counting D’s record system, r;(C) = k and
ri(D) =k +1 for all k£ € N. More generally, for each k € N, 7,(C) and (D) can be arbitrary integers.
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The state of the system p € A(N) describes the share of the population with each record, where y, € [0,1] denotes the
share with record k. The evolution of the state over time under strategy s is described by the update map fs : A(N) — A(N),
given by

Fs O] =1 =7+ ) Y e b o (3)[0],

k/ k//
s(u)[k] == ’YZ Z fger Hogyrr Per e (8)[K] for K # 0.
k/ k//

A steady state under strategy s is a state p such that fs(u) = .
Given a strategy s and state u, the expected flow payoff of a player with record k is mx(s, ) = >, , ppru(s(k, k), s(k', k)),
where w is the (normalized) PD payoff function given by

1 (ahag) = (C,C)
w(ar, as) = -1 if (a1,a2) = (C, D) .

1+g if (a1,a2) =(D,C)

0 if (a1,a2) = (D, D)

Denote the probability that a player with current record k has record k&’ ¢ periods in the future by ¢, (s, 1)*(k"). The continuation
payoff of a player with record k is then Vi (s, 1) = (1—=7) D2 (7" >, dr(s, )" (K')mrr (s, ). A player’s objective is to maximize
their expected lifetime payoff.

A pair (s,u) is an equilibrium if p is a steady—state under s and, for each own record k and opponent’s record k’,
s(k, k") € {C, D} maximizes (1 —y)u(a,s(k’,k)) +~v_,. (p(k,a)[k"]) Vi (s, ) over a € {C, D}, where p(k, a)[k"] denotes the
probability that a player with record k£ who takes action a acquires next-period record k. An equilibrium is strict if the
maximizer is unique for all pairs (k, k).

This equilibrium definition encompasses two forms of strategic robustness. First, we allow agents to maximize over all
possible strategies, as opposed to only strategies from some pre-selected set. Second, we focus on strict equilibria, which remain
equilibria under “small” perturbations of the model.

Limit Cooperation under Grim K Strategies

Under GrimK strategies, a matched pair of players cooperate if and only if both records are below a pre-specified cutoff K:
that is, s(k, k') = C if max{k,k'} < K and s(k,k’) = D if max{k,k'} > K.

We call an individual a cooperator if their record is below K and a defector otherwise. Note that each individual may be a
cooperator for some periods of their life and a defector for other periods.

Given an equilibrium strategy GrimkK, let u© = Zk:_ol 1y, denote the corresponding steady-state share of cooperators.
Note that, in a steady state with cooperator share uc, mutual cooperation is played in share (uc)2 of all matches. Let ﬁc (v,€)
be the maximal share of cooperators in any GrimK equilibrium (allowing for every possible K) when the survival probability
is v and the noise level is .

The following theorem characterizes the performance of equilibria in GrimK strategies in the double limit of interest
(33, 35, 44, 63, 66) where the survival probability approaches 1—so that players expect to live a long time and the “shadow of
the future” looms large—and the noise level approaches 0—so that players who play C' are unlikely to be recorded as playing D.

Theorem 1.

l . 1
lim g (y,e) = ¢ 9<ta
(v,e)—(1,00" 7" 0 if 9> 1

To prove the theorem, let 8 : (0,1) x (0,1) x (0,1) — (0,1) be the function given by

(1 - (1 —e)u)

L=yl —e)u® "
When players use GrimK strategies and the share of cooperators is uc, /B(’y,E,/J,C) is the probability that a player with
cooperator record k survives to reach record k + 1. (This probability is the same for all k < K.)

/8(7157:“0) = [1]

Lemma 2. There is a GrimK equilibrium with cooperator share uC if and only if the following conditions hold:

1. Feasibility:

p =1-B(y,e,n)". 2]
2. Incentives:
Gogl-i)e sy, 3
1 l
< g 4]
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Note that u© = 0 solves [2] when K = 0. Forany K > 0,0 < 1—8(v,&,%)¥ and 1 > 1—8(7,¢,1)¥, so by the intermediate
value theorem, [2] has some solution p € (0,1). Thus, there is at least one steady state for every GrimK strategy. For some
strategies, there are multiple steady states, but never more than K + 1, because [2] can be rewritten as a polynomial equation
in u© with degree K + 1.

The upper bounds on the equilibrium share of cooperators in Figure 2 are the suprema of the u© € (0,1) that satisfy [3]
and [4] for the corresponding (7, &) parameters. When no u© € (0,1) satisfy [3] and [4], the upper bound is 0, since Grim0
(where everyone plays D) is always a strict equilibrium.

To see how the g > 1/(1+1) case of Theorem 1 comes from Lemma 2, note that

(1—e)(1—p)
1—(1—¢e)pc =1

Thus, [3] requires 4 > g. Moreover, combining u© > g with [4] gives v(1 — &)g < I/(1 +1). Taking the (v,¢) — (1,0) limit of
this inequality gives g < 1/(1+1). Thus, when g > /(1 +1), it follows that lim, c)_ 1 0) & (v,€) = 0.

All that remains is to show that lim(, o) 1,0y (7, €) = I/(1 +1) when g > 1/(1 +1). Since lime—o(1 —¢&)(1 —p%)/(1— (1 -
e)u®) =1 for any fixed p and lim(, o) 1,0y 1/(7(1 — €)) = 1, it follows that values of 4 smaller than, but arbitrarily close to,
1/(1 +1) satisfy [3] and [4] in the double limit. Thus, the only difficulty is showing the feasibility of 1 as a steady-state level
of cooperation: because K must be an integer, some values of u¢ cannot be generated by any K, for given values of  and e.
The following result shows that this “integer problem” becomes irrelevant in the limit. That is, any value of u € (0,1) can be
approximated arbitrarily closely by a feasible steady-state share of cooperators for some GrimK strategy as (y,¢) — (1,0).

Lemma 3. Fiz any u© € (0,1). For all A > 0, there exist ¥ < 1 and € > 0 such that, for all v > 7 and € < g, there exists nc
that satisfies [2] for some K such that |p€ — pu©| < A.

To complete the proof of Theorem 1, we now prove Lemmas 2 and 3.

Proof of Lemma 2. We first establish the feasibility condition of Lemma 2, and then we establish its incentives condition.
The feasibility condition comes from the following lemma.

Lemma 4. In a GrimK equilibrium with cooperator share u°, M = 5(7,8,uc)k(1 = B(v,e, pw)) forallk < K.
To see why Lemma 4 implies the feasibility condition of Lemma 2, note that

K-1

N’C = Z /8(’7387/1’C)k(1 - /8(7757MC)) =1- /8(7’87MC)K

k=0

Proof of Lemma 4. The inflow into record 0 is 1 — ~y, while the outflow from record 0 is (1 — (1 — &)u)p,. Setting these equal
gives

_ 1-v

S 1-A(1—e)uc

Additionally, for every 0 < k < K, the inflow into record k is v(1 — (1 — €)u“)p,,_,, while the outflow from record k is

Ho =1-B(y,e,u).

(1 —~v(1 — &)u)puy,. Setting these equal gives

0= 0-e®) o
kT Wﬂkfl =B(v,e, 10 Vbg_q-
Combining this with py = 1 — B(v, &, u€) gives p, = B(y, &, uC)* (1 — B(v,,uC)) for 0 < k < K — 1. .

We now establish the incentive condition of Lemma 2. We will see that the incentive constraint [3] guarantees that a
record-0 cooperator plays C' against an opponent playing C, and the incentive constraint [4] guarantees that a record-(K — 1)
cooperator plays D against an opponent playing D. Record-0 cooperators are the cooperators most tempted to defect against
a cooperative opponent and record-(K — 1) cooperators are the cooperators most tempted to cooperate against a defecting
opponent, so these constraints guarantee the incentives of all cooperators are satisfied.

Formally, to establish the incentive condition, we rely on the following lemma.

Lemma 5. In a GrimK equilibrium with cooperator share u°,

v Ja = By, e, u) ) ifk < K
"~ o if k> K.
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To derive the incentive condition of Lemma 2 from Lemma 5, note that the expected continuation payoff of a record-0 player
from playing C' is (1 — &)V 4 V1, while the expected continuation payoff from playing D is Vi. Thus, a record 0 player strictly
prefers to play C against an opponent playing C' iff (1 —¢)vy(Vo — V41)/(1 — ) > g. Combining Lemmas 4 and 5 gives

k o_ (1-¢)1 _MC)
) /IJC_ 1_(1_5)//60 luc7

v vy l—e c
(- 1) e

(1-¢) T1-(1-¢

so [3] follows. Moreover, the expected continuation payoff of a record K — 1 player from playing C' is (1 — &)Vk—1 + eVk, while
the expected continuation payoff from playing D is Vk. Thus, a record K — 1 player strictly prefers to play D against an
opponent playing D iff (1 —e)y(Vk—-1 — Vk)/(1 —7) < l. Lemma 5 gives

c

~ _ y(1 —e)p
(1-9)g 77(VK71 - Vk) = T A=)’

and setting this to be less than [ gives [4].

Proof of Lemma 5. The flow payoff for any record £ > K is 0, s0 V, =0 for k > K. For k < K, V;; = (1 — NpC + ~(1 —
Vi +v(1 — (1 — €)u€)Vir1, which gives Vi = (1 — B(v, &, u))p€ + B(v, &, u€)Vir1. Combining this with Vx = 0 gives
Vi = (1 = B(v,6, u)E")uC for k < K. [ |

Proof of Lemma 3. The proof first establishes some properties of two functions, K and d, which we now introduce.
Let K : (0,1) x (0,1) x (0,1) — Ry be the function given by

- _ (-9
Koot = ate )

By construction, K (v, e, u) is the unique K € Ry such that u© =1 — (v, &, u®)¥. Let d: (0,1] x [0,1) x (0,1) = R be the
function given by

(5]

c c aiﬁo (7,6,%) .
d(v,e, 1) = T4 In(1 —p)(A —p )ﬁ(wysyuc)ln(ﬁ(%auc)) iy <1
(1—e)In(1—p%)(1—p) e
1+ ify=1

1—(1—e)u®

The p derivative of K (v, e, u©) is related to d(v,e, ) by the following lemma.
Lemma 6. K : (0,1) x (0,1) x (0,1) — Ry is differentiable in u with derivative given by
(e €)= — d(y, e 1)
opc (1= p®)In(B(y,e,19)

Proof of Lemma 6. From [5], it follows that K (v,e, u€) is differentiable in € with derivative given by

aB
ln(ﬂ(%agc)) In(1—p%) BMCCE%E,LLQ
1—p B(v,e,19)
— (7, 1) = —
ouc In(B(y, e, u¢))?

BB (v,e,u)
L4 In(1 = p)(1 = 4 B(%eibucc) In(B(v,e,1%))
B (1= ) In(B(v,e, 1))
d(vy,e, 1)

=TT ) WBe 0 "

The following two lemmas concern properties of d(v,e, u) that will be useful for the proof of Lemma 3.

Lemma 7. d:(0,1] x [0,1) x (0,1) — R 4s well-defined and continuous.

Proof of Lemma 7. Since (7, e, u€) is differentiable and only takes values in (0, 1), it follows that d(v, e, u) is well-defined.
Moreover, since 3(v, e, 1) is continuously differentiable for all x€ € (0, 1), d(v, &, u€) is continuous for v < 1. All that remains
is to check that d(v,e, u©) is continuous for v = 1.

First, note that d(1,¢, ,uc) is continuous in (g, ,uC). Thus, we need only check the limit in which v approaches 1, but never
equals 1. Note that

98 (y,e,u) _2=e)d=y)
ouc ™ _ (1—(1-e)p®)?
5(7757uc)1n(/6(7757 MC)) 6(7757uc)1n(5(77€7 /’LC)) [6]
_ ( (1 -¢) )(1—5(%&#0))
ﬁ(’%gaﬂc)(l - 7(1 - 5)1”‘0) ln(ﬂ('Y?g?ﬂc)) '
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It is clear that

“(1— _
lim 4= ____ loe 7]
G2 en) B, & u)(1 = 3(1 = &ac) (1= (1 —-euc)
F#1
for all (e, ) € [0,1) x (0,1). For ~ close to 1,
(B(v,e,1)) = B(v,6,1°) = 1+ O((B(y, &, 1) = 1)?).
Thus,
: 1-B(7,8,i%)
G2 —1en®) In(B(7,& 1))
F#1
for all (e, 1) € [0,1) x (0,1). Equations 6, 7, and 8 together imply that d(v, e, u¢) is continuous for v = 1. |
Lemma 8. d(1, 0,,uc) has precisely one zero in u€ € (0,1), and the zero is located at p© =1 — 1/e.
Proof of Lemma 8. This follows from the fact that d(1,0, ) = 1+ In(1 — ). [ |

With these preliminaries established, we now present the proof of Lemma 3.

Completing the Proof of Lemma 3. Fix some i€ € (0,1) such that i€ # 1 — 1/e. Lemma 8 says d(1,0, i°) # 0. Because of
this and the continuity of d, there exist some A > 0 and some § > 0, 7' < 1, and > 0 such that |d(v, e, uC)| > X for all v > 7/,
e <& and [u¢ — i% < 6.
Additionally, note that lim,_1inf. ,cyec02)x(uC—s,uc+8) BV, €, 1) = 1. Together these facts imply that there exists some
7 < 1 such that
d(v, e, 1) L2
(1= p9)In(B(v,e,19))| = min{s, A}

and K(v,e,u¢) > 1for all vy >7, e <7, and |u® — i°| < . It thus follows that

oK c
'auc(%&ﬂ )

> C I ~C
sup [K(v,e,p07) = K(v,6,07 ) >1
1€ —C |<min{5,A}

for all v > 7, £ < . Hence, there exists some 2€ within A of i€ and some non-negative integer K such that K (v,,0°) = K,
which implies that i€ is feasible since € = 1 — (v, ¢, 1) E. |

Limit Cooperation under Trigger Strategies

We characterize the maximum level of cooperation that the class of trigger strategies can achieve in the (y,&) — (1,0) limit.
Recall that this is the class of strategies that satisfy the following properties: (i) The set of all possible records can be partitioned
into two classes, “good records” G and “bad records” B. (ii) Partners cooperate if and only if they both have good records:
s(k,k") = C for all pairs (k, k') € G x G, and s(k, k') = D for all other pairs (k,k’). (iii) The class B is absorbing: if k € B,
then every record k' that can be reached starting at record k is also in B. As with GrimK, let u© = > wec Hi denote the

steady-state share of cooperators in a trigger strategy equilibrium, and let ﬁc (7, €) be the maximal share of cooperators in any
trigger strategy equilibrium when the survival probability is v and the noise level is €.

Theorem 9.
lim C(

E) =
st )

! . 1
— if g <
7 {1+L S

This result shows that the maximum level of cooperation in the double limit achieved by strategies in the GrimK class
equals that of the broader trigger strategy class. Since every GrimK strategy is a trigger strategy, the maximum level of
cooperation achieved by trigger strategies weakly exceeds the maximum level achieved by GrimK strategies. Thus, it suffices

to show that limsup, .)_ (1,0 ﬁc(% €) <1/(1+1) when g < 1/(1+1) and limsup, ¢y, (1,0 ﬁc(fy,g) =0 when g > /(1 +1).
This is a consequence of the following two lemmas.

Lemma 10. In any trigger strategy equilibrium, v(1 — e)u® < 1/(1+1).
Lemma 11. In any trigger strategy equilibrium, uc >g.

To see that Theorem 9 follows from Lemmas 10 and 11, note that v(1 — &)u® < 1/(1 + 1) implies that u© < 1/(141) in the
(v,€) = (1,0) limit. Thus, limsup., .y_(1,0) ﬁc(w,e) < 1/(1+1). Moreover, combining x© < 1/(1+1) with 4 > g implies that

. —C
limsup ., oy 1,00# (7,€) =0 when g > 1/(1+1).
We now present the proofs of Lemma 10 and 11.

6 of 22 Daniel Clark, Drew Fudenberg, Alexander Wolitzky
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Proof of Lemma 10. Let k be a cooperator record. It must be that if a player with current record k is recorded as playing C'
their next period record would also be a cooperator record. Otherwise, the player with record k would be better-off always
playing D.

We can use this to obtain a lower bound on the value functions at cooperator records. Let ZG := infreg Vi be the infimum
of the value functions at cooperator records. We will show that

VO s ) - ), g

The reason for this is that it must be suboptimal for a player with a cooperator record k to play C' against D, so Vi must satisfy
Vi > (L= (L +1) = 1) +7(1 = &) Vi) +7eViro)s
> (1= A+D) =) +7(1 =)V )
where the second inequality follows from the fact that Vi > 0 for all k" € N, which implies V. (py > 0. Thus,
Vi > (L= (1 +1) =) +(1 - )V
for all cooperator records r € G, which likewise implies
VO Q-+ —1)+y01-eV°

Solving this for V¢ gives

VO s ) - ),

so we conclude that the expression in [9] does indeed give a lower bound for V&,

Let k" be a cooperator record at which a player will transition to defector status if they are recorded as playing D. There
must be such a record in any equilibrium with cooperation, as otherwise every player would always play D. A necessary
condition for record k' players to prefer to rather play D rather than C against D is

1 =l+7v1 =€)V, () <O.
Since Vi) 2 VE, it follows that
—1=y)l+y(1-2V° <o,
which by [9] implies

(=1 - W)~ ) <0

Solving this inequality gives

l
1-— =
Tl =eu” <5 7
|
Proof of Lemma 11. For any cooperator record k, we have
Vi = (1= u +9(1 = )u“Vopioy + (1 = (1 =))WV - [10]
The condition for a record k preciprocator to prefer playing C rather than D against C' is
(1 —=e)v(Vepo) = Vepoy) > (1= 7)g. (11]
Combining [10] and [11] gives
1-¢ c v
S S — Vo (Vi =V, . 12
= uC <u |2 1_7(Vk Vk(c*))>>g [12]

Let V< = supcq Vi be the supremum of the value functions at cooperator records. Since [12] holds for all cooperator
records k € G and V,, (c) < VG7 we have

1—¢ C —G
- -V7)>g. 13
17(176)/JC<M )79 113
The expected lifetime payoff of a newborn player is Vo = (,uc)z, so V° > (1©)2. Combining this with [13] gives
(1-e)1-u%) ¢
Sl 2AS R PSR
which implies € > g, since (1 —e)(1 — ) /(1 — (1 —e)u®) < 1. [ |
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Convergence of GrimK Strategies

We now derive a key stability property of GrimK strategies. Fix an arbitrary initial record distribution u° € A(N). When all
individuals use GrimK strategies, the population share with record k at time ¢, 1!, evolves according to

+ C,
ot =1 =y 4yl =) g,
Cit t

[14]
it =51 = (1 —e)pS k| + v — )l for 0 < k < K,

Cit __ K-1 ¢
where p&" =3 """ g

Fixing K, we say that distribution p dominates (or is more favorable than) distribution f if, for every k < K, ZZ:O wi >
ZEZO fip; that is, if for every k < K the share of the population with record no worse than k is greater under distribution g
than under distribution fi. Under the GrimK strategy, let @ denote the steady state with the largest share of cooperators, and
let p denote the steady state with the smallest share of cooperators.

Theorem 12.

1. If u° dominates i, then limy_ oo u' = fi.

2. 1If ,uo is dominated by i, then lims oo put = e

Let 1, = ZZ:O 1y, denote the share of the population with record no worse than k. From Equation 14, it follows that

agtt =1 — 7+ (1 — &)z 16, 15
xf:rl =1—y+yzh_1 +y(1 —e)al_ (zh —z}_1) for 0 < k < K.

To see this, note that xg = py and zx—1 = 1€, so rewriting the first line in Equation 14 gives the first line in Equation 15.
Additionally, for 0 < k < K, Equation 14 gives

w =t =y y Y g (1=,

E<k k<k—1

=1—7+yz4_1 + (1 — &)zk_1(zh — THo1)-

Lemma 13. The update map in Equation 15 is weakly increasing: If (zh, ..., x4 _1) > (&b, ..., &% _1), then (xf™, ... attt ) >
(@ E ).

Proof of Lemma 13. The right-hand side of the first line in Equation 15 depends only on the product of zf and z% _,, and it is
strictly increasing in this product. The right-hand side of the second line in Equation 15 depends only on z},_, =}, and x%_;,
and, holding fixed any two of these variables, it is weakly increasing in the third variable. |

Proof of Theorem 12. We prove the first statement of Theorem 12. A similar argument handles the second statement. Let
(%5, ..., &% _) denote the time-path corresponding to the highest possible initial conditions, i.e. (Z3,...,2%_;) = (1,...,1). By
Lemma 13, (5T, ..., #5') < (&8, ...,#%_,) for all t. Thus, it follows that lim;— e (25, ..., % _1) = infe (&, ..., #%_1), so in
particular lim— o0 (2§, ..., #% _1) exists. Since the update rules in Equation 15 are continuous, it follows that lim¢— o (25, ..., #% _1)
must be a steady state of the system. By Lemma 13 and the fact that (Zo,...,Tx—1) is the steady state with the highest share
of cooperators, it follows that lim;— o (£5, ..., Z%_1) = (To, ..., Tr—1).

Now, fix some (2, ...,2%_1) > (Zo, ..., Tx—1). By Lemma 13,
(507"'7EK—1) < (:ré7 "'7"133(71) < (5565 "'7‘%tK71)

for all ¢, so it follows that lim;—eo(z6, ..., 2% _1) = (To, ..., Tr—1)- [ |

Evolutionary Analysis

We have so far analyzed the efficiency of GrimK equilibrium steady states (Theorem 1) and convergence to such steady states
when all players use the GrimK strategy (Theorem 12). To further examine the robustness of GrimK strategies, we now
perform two types of evolutionary analysis. In the next subsection, we show that, when g < /(1 + 1), there are sequences of
GrimK equilibria that obtain the maximum cooperator share of I/(1 4 1) as (v,€) — (1,0) that are robust to invasion by a
small mass of mutants who follow any other GrimK' strategy, such as Always Defect (i.e., Grim0). In the following subsection,
we report simulations of the evolutionary dynamic when a GrimK steady state is invaded by mutants playing another GrimK’
strategy.
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23 Steady-State Robustness. We consider the following notion of steady-state robustness.

N
@

22¢  Definition 1. A GrimK equilibrium with share of cooperators uC is steady-state robust to mutants if, for every K' # K
25 and a > 0, there exists some 6 > 0 such that when the share of players playing GrimK is 1 — 4 and the share of players playing
26 GrimK' is § with 6 < 6, then

227 o There is a steady state where the fraction of players playing GrimK that are cooperators, i€, satisfies |i° — u°| < a,
228 and

229 o [t is strictly optimal to play GrimK.

230 We show that, whenever strategic complementarities are strong enough to support a cooperative GrimK equilibrium, there

1 is a sequence of GrimK equilibria that are robust to mutants and attains the maximum cooperation level of /(1 + 1) when
expected lifespans are long and noise is small.

2

@

2

@
(S

25 Theorem 14. Suppose that g < 1/(1+1). There is a family of GrimK equilibria giving a share of cooperators uC(v,e) for
284 parameters 7y, such that:

235 1. limgy o) (1,0 /.LC(’y, e)=1/(14+1), and

236 2. There is some 5 < 1 and € > 0 such that, when v > 7% and € < €, the GrimK equilibrium with share of cooperators
237 7 (v, €) 1is steady-state robust to mutants.

2 Proof. We assume that K’ < K; the proof for K’ > K is analogous. Fix some g < ji° < 1/(1 +1) satisfying 2 # 1 —1/e. By
29 Lemmas 2 and 3, we know that there exists some family of GrimK equilibria Wlth share of cooperators [i (7, €) such that
200 limy c)—5(1,0 ;]C(fy, ¢) = i°. Fix some 7, ¢, and consider the modified environment where share 1 — § of the players use the
a1 GrimK strategy corresponding to i€ (v,¢) and share § of the players use some other GrimK'.

242 Let uﬁ denote the share of the players playing Grim K that have record less than K, let ,ufé/ be the share of GrimK players
s with record less than K’ and let ,u? be the share of the players playing GrimK' that have record less than K’. Then in an

24 steady state we have

i
=

i =1 By, (1—)ug +duse ),
i = 1= Blye, (1 6)up + ot )<,
=17 By, e, (1= ), + dppe)™
pg = 1= Bly.e. (1= 8)upe + )

225 This can be rewritten as

pi + B(v,e, (1 - 8)ufs +oul ) —1=0,

)=
) = il 4 By, (1= 8l + ouls )™ —1 =0, 16
E
)

&, /J‘K7/“LK’71L‘LK 7.“‘K’

(7,

fror(ve, umﬂKuMK g

h K i AT By (1= 8)uges + o)™ —1=0,
(; pgs + Bly.e, (1= 8)ufer + opg) —1=0.

K
fx (¢, NKaMK'»MK 7:uK

’
K’
’

& MK7MK’>:U’K 7:u’K
a7 Note that pp = ﬁc( €), uKQ—-l——ﬁmgsﬁc( ) px = 1= By 61 = B(v,6, 1 (v,e)), pr =
as 1 — B(y,e,1 = B(y,e i%(y,6))* )X solves [16] when § = 0. The partial derivatives of the left-hand side of [16] evaluated at
29 this point are given by

[ork 8fK ark ark T
3M§ 3H K 6;1,?/ 8#1%;
ark, af}i, R, ofg
oufe  oul,  ouk’ aﬂfg
! / 7 ’
org afjg ark ofrE
3M}I§ ok K 6;1,?/ 8#}15;
! / ! ’
. ofK, 8ff§, ofr,  ork, [17]
émK o ok’ ém;j
1+ Kp5— 2% 0 00
’
KR8 1 00
= _ gl ’
0 ,VK K K/,BK —1 8(1% 1 0
1 pK’'—1 d,B
i 0 K'p BT 0 1
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252

253
254
255
256
257
258
259

260

262

263
264
265
266
267
268

269

270

271

272

273

274

275

276

277

Because i (7,€) = 1= B(y,¢&, 1 (7,))" and K = In(1 — i (y,€))/ In(B(v, e, i (7,€))),

L+ KB, 5, e))K—li—ﬂcw,e,ﬂcw, )

iz (7,6, 1 (7,€))
B(v,e, 1° (% £))In(B(7,e, i (v,€)))

=1+1n(1 = 2%(y,8))(1 - i (7,2))

Recall that

oy _ 11=(1—e)u) 11—y
= =1- .
lrens)=73= (1 —e)u® L—~(1—¢e)pc
Thus, lim(ﬂY -0 By, e, ¢ ( €)) = 1. Hence, it follows that for high v and small €, In(8(y,¢, i%(7,¢))) = —(1 —

81,2, (119))) + O(1 — B(y,£, 7 (7,€))2. Moreover,

5 - (1= ~¢)
alTC(%g’HC(%g)) T T A1 —9)ul(y, )2

11 —¢) )
1—~(1— )iy, )(1—/5‘(7,6,#0(%6)))-

Combining these results gives us

- are (1,61 (7,€)) 1
o 010) By, i ( By, &, i) 1—pa%
Since lim(, ¢)—(1,0) In(1 — 19 (7,2))(1 — i (7,€)) = In(1 — a°) (1 — i), it further follows that
(’Y,E%ELO) 1+ Kﬁ(’% g, ﬂc (’77 5)) ai(r% g, /’L (’ya E)) =1+ ln(l - p’) [18}

Since i # 1 — 1/e, we have 1+ In(1 — f1) # 0. Thus, using [18], we conclude that the determinant of the matrix of partial
derivatives in [17] is non-zero, and so can appeal to the implicit function theorem to conclude that for sufficiently high + and
small ¢, for each K’ # K and « > 0, there is some 61 > 0 such that when the share of players playing GrimK is 1 — § and the
share of players playing GrimK' is § with 6 < &1, there is a steady state where the fraction of players using GrimK that are
cooperators, u© , is such that | ucl - (v,€)| < a. Additionally, because the GrimK equilibrium with share of cooperators
sl (v,¢€) is a strict equilibrium where players have uniformly strict incentives to play according to GrimK at every own record
and partner record, it follows that there is some 0 < § < &1 such that, when the share of players playing GrimK is 1 — ¢
and the share of players playing GrimK’ is § with § < §, there is a steady state with share of cooperators ucl such that
|/ACI — i°(v,€)| < a where it is strictly optimal to play Grimi.

|

Dynamics. We performed a simulation to capture dynamic evolution. We considered a population initially playing the Grimb
equilibrium with steady-state share of cooperators of ,uc ~ 0.8998 when v = 0.9, = 0.1,g = 0.4, = 2.8 that is infected
with a mutant population playing Griml at ¢ = 0. The initial share of the population that played Grim5 was .95, and the
complementary share of 0.05 played Griml. At ¢t = 0, all of the Grim1 mutants had record 0, while the record shares of the
Grimb population were proportional to those in the original steady state. At period t, the players match, observe each others’
records (but not what population their opponent belongs to), and then play as their strategy dictates. We denote the average
payoff of the Grimb players and Grim1 players at period ¢ by 775t and 7"t regpectively.

The evolution of the system from period t — 1 to ¢ was driven by the average payoffs and sizes of the two populations at ¢t — 1.
In particular, at any period ¢ > 0, the share of the newborn players that belonged to the Grim5 population (,uNGTims”t) was
proportional to the product of p&7™% =1 and £¢7™5=1 and similarly the share of the 1 — 4 newborn players that belonged
to the Grim1 population (uNGTiml’t) was proportional to the product of p&™™1¢t=1 and 7¢™™Ht=1  Formally,

MGrzmS,tflﬂ_G'rzmS,tf 1

NGrimb5,t __ (1 _ 'Y)
ILLGrim5,t—l7TGrim5,t—1 + MGriml,t—lﬂ-Gm’ml,t—l
Griml,t—1__Griml,t—1
NGriml,t __ H T ' (1 _ )
K - MGrim5,t717TG'rim5,t71 + MGriml,tflﬂ-Griml,tfl )

Supplementary Fig. 1 presents the results of this simulation. Supplementary Fig. la depicts the evolution of the
share of players that use Grim5 and are cooperators (i.e. have record k < 5). Initially, this share is below the steady-state
value of &~ 0.8998, and is decreasing as the Grim1 mutants obtain high payoffs relative to the normal Grim5 players on average.
However, the share of cooperator Grimb players eventually begins to increase and approaches its steady-state value as the
mutants die out.

The reason the mutants eventually die out is that their payoffs eventually decline, as depicted in Supplementary Fig. 1b.
The tendency of the Grim1 players to defect means that they tend to move to high records relatively quickly, and so while
they initially receive a high payoff from defecting against cooperators, this advantage is short lived.
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We found similar results when the mutant population plays Grim9 rather than Griml1, although the average payoff in the
mutant population never exceeded that in the normal population. And we again found similar results when a population initially
playing the Grim8 equilibrium with steady-state share of cooperators of ;€ ~ 0.613315 and v = 0.95,& = 0.05,g = 0.5,l =4
is infected with a mutant population playing Grim3 at t = 0, and for when it is infected with a mutant population playing
Grim13.

Public Goods

Our analysis so far has taken the basic unit of social interaction to be the standard 2-player prisoner’s dilemma. However, there
are important social interactions that involve many players: the management of the commons and other public resources is a
leading example (67-70). Such multiplayer public goods games have been the subject of extensive theoretical and experimental
research (48, 71-75). Here we show that a simple variant of GrimK strategies can support positive robust cooperation in the
multiplayer public goods game when there is sufficient strategic complementarity.

We use the same model as considered so far, except that now in each period the players randomly match in groups of size n,
for some fixed integer n > 2. All players in each group simultaneously decide whether to Contribute (C) or Not Contribute (D).
If exactly x of the n players in the group contribute, each group member receives a benefit of f(z) > 0, where f : N — Ry
is a strictly increasing function with f(0) = 0. In addition, each player who contributes incurs a private cost of ¢ > 0. This
coincides with the 2-player PD when n =2, f(1)=1+g, f(2)=1l+2+g,andc=1+1+g.

For each z € {0,...,n — 1}, let A(z) = f(z + 1) — f(z) denote the marginal benefit to each member when there is an
additional contribution. Assume that A(z) < ¢ < nA(x) for each z € {0,...,n — 1}. This assumption makes the public good
game an n-player PD, in that D is the selfishly optimal action while everyone playing C is socially optimal.

We consider the same record system as in the 2-player PD: Newborns have record 0. If a player plays D, their record
increases by 1. If a player plays C, their record increases by 1 with probability € > 0, and remains constant with probability
1—e.

As in the 2-player PD, we find that a key determinant of the prospects for robust cooperation is the degree of strategic
complementarity or substitutability in the social dilemma. In the public good game, we say that the interaction exhibits
strategic complementarity if A(z) is increasing in z (i.e., contributing is more valuable when more partners contribute), and
exhibits strategic substitutability if A(z) is decreasing in x.

We first show that with strategic substitutability the unique strict equilibrium is Never Contribute. This generalizes our
finding that Always Defect is the unique strict equilibrium in the 2-player PD when g > .

Theorem 15. For any n > 2, if the public good game exhibits strategic substitutability, the unique strict equilibrium is Never
Contribute.

Proof. Suppose n players who all have the same record k meet. By symmetry, either they all contribute or none of them
contribute. In the former case, contributing is optimal for a record-k player when all partners contribute, so by strategic
substitutability contributing is also optimal for a record-k player when a smaller number of partners contribute. Thus, a
record-k player contributes regardless of their partners’ records. In the latter case, not contributing is optimal for a record-k
player when no partners contribute, so by strategic substitutability not contributing is also optimal for a record-k player when
a larger number of partners contribute.

We have established that, for each k, record-k players do not condition their behavior on their opponents’ records. Hence,
the distribution of future opposing actions faced by any player is independent of their record. This implies that not contributing
is always optimal. |

We now turn to the case of strategic complementarity and consider the following simple generalization of GrimK strategies:
Records k < K are considered to be “good,” while records £ > K are considered “bad.” When n players meet, they all
contribute if all of their records are good; otherwise, none of them contribute.

For GrimK strategies to form an equilibrium, two incentive constraints must be satisfied: First, a player with record 0 (the
“safest” good record) must want to contribute in a group with n — 1 other good-record players. Second, a player with record
K — 1 (the “most fragile” good record) must not want to contribute in a group where no one else contributes.

Welet g =c— A(n—1) and | = ¢ — A(0). Note that

Vo= (1= )" (f(n) =) +7(1 =) ()" Vo +y(1 = (1= ) (u)" Vi,

which gives .
— Cy\n—1
1—(1—e)(uS)r1 ((u)" (f(n) =) = Vo).

By a similar argument to Lemma 5, it can be established that Vo = u©(u®)" "' (f(n) — ¢). We thus find that the cooperation
constraint for a record 0 player is

(=)= (o= Vi) =

1—¢
T (=)o)

(L= 1)) (f(n) =) > g. [19]

In addition,
Vieer = (1= )()" (£ () = o) +4(1 = &) ()" Vi1
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gives

2 ’Y(l - E) Cy\n—1
1- Vieos = )
(L =e) Vi = 7 ey )" () — o)
Thus, the defection constraint for a record K — 1 player is
11 —¢)

(W) () —e) <L,

1—~(1—¢2)(u°)

which gives

n—1 1 ! 1 et ! T
(W™ < A —2) fn) —c+1 e ut < (7(15)) (f(n) c+l) ' [20]

This gives u€ < (1/(f(n) — ¢+ 1))=Y in the (v,e) — (1,0) limit.
Moreover, in the limit where e — 0, [19] gives

1—pu Crn—1 1 Cyn—1
— W) T () —)2ge W) (f(n)—c) =g
L= ()t o ey
Note that (uc)”*l/ Z:;;QO (uc)m is increasing in €. Thus, this inequality, along with the previous upper bound for x, puts
the following requirement on the parameters:
1
1= (sayeem) ™7 l
f(n)—c+l
—o>
e L () -0 >q.
o= A

which simplifies to

N
9<<1—<f(n)c+z) )z. 21]

So far we have established [21], which is a necessary condition on the g,! parameters for any cooperation to be sustainable
with GrimK strategies in the (v,¢) — (1,0) limit. We can further characterize the maximum limit share of cooperators in
GrimK equilibria using very similar arguments as those in Lemmas 2 and 3.

Theorem 16.

1

1
! 1 . . n—1
(f(n)—c-H) ng <(1- (f(n)—c+l> l

ﬁ5(775): ﬁ .
0 ifg> 1—(%) I

(7,8)—=(1,0)

Theorem 16 shows that GrimK strategies can support robust social cooperation in the n-player public goods game in much
the same manner as in the 2-player PD. To see how this result reduces to Theorem 1 in the 2-player PD, note that f(2) —c =1,
so (I/(f(n) —c+ 1)Y= Y =1/(1+1) when n = 2.

In the 2-player PD, we found that the class of GrimK strategies could achieve the same level of cooperation as a more
general class of trigger strategies in the limit where (y,e) — (1,0). We note that such a result holds here as well for the class of
trigger strategies that satisfy: (i) The set of all possible records can be partitioned into two classes, “good records” G and “bad
records” B. (ii) When n players meet, they all contribute if all of their records are good and none of them contribute if any
one of them has a bad record. (iii) The class B is absorbing: if k € B, then every record k' that can be reached starting at
record k is also in B.

Appendix

Convergence Matlab Files.

% Parameters

gamma = 0.8;

epsilon = 0.02;

T 100; % Time periods

WSTSTTSTSITSTSTSITSSITSISTSITSSTSIITSITSSI TSI TSITSIITSII o
% Griml
k = 1;

% Initialize Cooperator Share Arrays
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sa cooperator_share_high = zeros (T,1); % Highest trajectory

sz cooperator_share_steady = 0.248359xones(T,1); % Steady state

ss cooperator_share_low = zeros (T,1); % Lowest trajectory

352

#6 % Initialize Period Share Distribution Arrays

s share_ distribution_ high = zeros (k,1);

sz share_distribution__high (1) = 1; % Highest trajectory

#s share_ distribution_ low = zeros (k,1); % Lowest trajectory

369

s % Iterate Over Time Periods

@ for t = 1:T

382 % Highest Trajectory

388 cooperator__share__high(t) = sum(share_distribution__high); % Compute cooperator share
38a share__distribution__high = update_grim_k(gamma, epsilon ,k,...

326 share_distribution_high); % Update period share distribution
326

322 % Lowest Trajectory

378 cooperator_share_low(t) = sum(share_distribution_low); % Compute cooperator share
320 share_ distribution_low = update_grim_ k(gamma, epsilon ,k,...

379 share__distribution_low); % Update period share distribution
;e end

332

s % Format Figure

s b = 0:T-1;

ass dimensions = [0,0,10,6];

s figure(’units’, inch’, position’ ,dimensions)
sz hold on
ass plot (t,cooperator_share_high, —«’, linewidth’2);

s plot(t,cooperator_share_steady, —x’, linewidth’,2);
as plot (t,cooperator_share low , —«’, linewidth’, 2);
sa  hold off

sz set(gca, TickLabellnterpreter’, latex’);

us set(gca, FontSize’ ,32, FontWeight’, bold’);

ae xlabel (’Time ($t$)’, ’Interpreter’, ’latex’);

ws yl = ylabel(’Share of Cooperators ($\mu {C}$)’, ’Interpreter’, ’latex’);
as yl.Position(1l) = yl.Position(1l) 4+ abs(yl.Position (1) * 0.4);

sz yl.Position(2) = yl.Position(2) — abs(yl.Position(2) x 0.1);

s ylim ([0, 1]);
s xlim ([0,30]) ;

s legend ({ Highest Trajectory’,’Steady State’,’Lowest Trajectory’},...

388 "Location’, ’northeast’, Interpreter’,’latex’);
sz set(gef, color’,'w’);

s hold off

38a

ws  STSITSITSITSITSITSITSI TSI TSITSSITSITSITSITSIITSIITT o
we % Grim2

wz k = 2;

453

woe % Initialize Cooperator Share Arrays

409 cooperator_share_high = zeros (T,1); % Highest trajectory
wa cooperator_share_high steady = .985542xo0nes (T,1); % Highest steady state
w2 cooperator_share_middle_ steady = .918367xones(T,1); % Middle stead state
w8 cooperator__share_low_ steady = .647111xones(T,1); % Lowest steady state
wa cooperator_share_low = zeros (T,1); % Lowest trajectory
466

we % Initialize Period Share Distribution Arrays

sz share_distribution__high = zeros (k,1);

ws share_distribution__high (1) = 1; % Highest trajectory

wo share_ distribution_low = zeros (k,1); % Lowest trajectory

479

am % Iterate Over Time Periods
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a2z for t = 1:T

18 % Highest Trajectory

418 cooperator__share__high(t) = sum(share_distribution__high); % Compute cooperator share
426 share_distribution_high = update_grim_ k(gamma, epsilon ,k,...

az6 share_distribution__high); % Update period share distribution

427

478 % Lowest Trajectory

az0 cooperator_share_low(t) = sum(share_distribution_low); % Compute cooperator share
489 share_distribution_low = update_grim_ k(gamma, epsilon ,k,...

488 share_distribution_low); % Update period share distribution

a2z end

488

wa % Format Figure

w5t = 0:T-1;

6 dimensions = [0,0,10,6];

sz figure(’units’,’inch’, position’ ,dimensions)

3 hold on

0 plot(t,cooperator_share_high, —«’, 'linewidth’,2);

wo plot (t,cooperator_share_high steady, —«’, linewidth’,2);

wa plot(t,cooperator_share_middle_steady, —x’, linewidth’,2);

w2 plot(t,cooperator_share_ low_steady, —x’, linewidth’,2);

w8 plot(t,cooperator_share_low, —x’ ’linewidth’, 2);

s hold off

ws set(gca,’ TickLabellnterpreter’, latex’);

w6 set (gca, FontSize’ ;32, FontWeight’, bold’);

wz xlabel(’'Time ($t$)’, ’'Interpreter’, ’latex’);

w8 yl = ylabel(’Share of Cooperators ($\mu {C}$)’, ’'Interpreter’, ’latex’);
wo yl.Position (1) = yl.Position (1) + abs(yl.Position (1) * 0.4);

wo yl.Position(2) = yl.Position(2) — abs(yl.Position(2) x 0.1);

wa ylim ([0, 1]);

vz xlim ([0,30]);

ws legend ({ Highest Trajectory’, Highest Steady State’,’Middle Steady State’ ,...

o "Lowest Steady State’,’Lowest Trajectory’}, Location’,’southeast’ ,...
66 "Interpreter ’,’latex ’);

s set (gcf, color’,'w’);

wz hold off

453

sa function updated_share_distribution = update_grim_k(gamma, epsilon ,k,...
458 share__distribution)

4568

sa % Initialize Updated Share Distribution Array

s updated__share_ distribution = zeros(k,1);

458

swe % Update Share Distribution Array

s updated__share_distribution(1,1) = 1 — gamma +

469 gammax (1 — epsilon)ssum(share_distribution)=*share_distribution(1);

488

wa  if k>1

488 for i = 2:k

488 updated_share_distribution(i,1) =

482 gammax(l—(l—epsilon)*sum(share_distribution))*share_distribution (i—1)...
488 + gammax(1l—epsilon )*sum(share distribution)*share distribution (i);
488 end

a0 end

418

am end

473

47+ Evolutionary Dynamics Matlab Files.
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478
47€
4738
478
47%
486
487
483
489
480
488
48@
483
488
489
496
497
498
499
490
498
49e
493
498
499
506
507
508
509
5840

588

% Parameters

gamma = 0.9;
epsilon = 0.1;
g = 0.4;
1 = 2.8;
T = 100; % Time periods

% Normal — Grim5, Mutant — Griml

k normal = 5;

k_mutant = 1;

k = max(k_normal ,k_mutant) ;

% Initialize Normal Cooperator Share Arrays
normal_cooperator__shares = zeros (T,1); % Time series
normal_cooperator_shares_steady = 0.899754xones(T,1); % Steady state

% Initialize Normal Total Share Array
normal total share zeros (T,1); % Time series
period_normal_total_share 0.95; % Period value

% Initialize Normal Share Distribution Arrays
normal share distribution = zeros (T,k); % Time series

period_normal_share_distribution = zeros(1,k); % Period value
% Set inital normal share distribution to be proportional to steady state
% distribution
for i=1:k normal
period_normal_share_distribution(1,i) =
period_normal_total_ sharexbeta (gamma, epsilon ,0.899754) (i—1)...
*(1—beta (gamma, epsilon ,0.899754) ) ;
end
if k>k normal
for i=k mnormal+1:k
period_normal_share_distribution(1,i) =
period_normal_total sharexbeta (gamma, epsilon ,0.899754) " (k_normal) ...
sgamma  (i—k_normal—1)#(1—gamma) ;
end

end

% Initialize Normal Average Payoff Array
normal_payoff = zeros(T,1);

% Initialize Mutant Total Share Array
mutant total share zeros (T,1); % Time series
period__mutant_total share = l—period_normal_total share; % Period value

% Initialize Mutant Share Distribution Arrays

mutant_ share distribution = zeros (T,k); % Time series

period_mutant_share_distribution = zeros (1,k); % Period value

period_mutant_share_ distribution(1,1) = period__mutant_total_share; % Initial mutants have
record 0

% Initialize Mutant Average Payoff Array
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mutant_payoff = zeros(T,1);

% Iterate Over Time Periods

for t = 1:T

% Update Shares

normal_total_share(t,1) = period_normal_total_share;

normal_share_ distribution(t,:) = period_normal_share_distribution (1,:);

normal_cooperator_shares(t) = sum(period_normal_share_distribution (1,1:k_normal));

mutant_total_ share(t,1) = period_mutant_total share;

mutant__share_distribution(t,:) = period_mutant_share_distribution(1,:);

% Compute Period Payoffs

[period__normal__payoff , period_mutant__payoff] =
payoffs__general(g,l,k_normal,k_mutant, period_normal_total_share ,...
period__normal_share_distribution ,period__mutant_total share ,...
period_mutant_share_ distribution);

% Update Payoff Time Series

normal_payoff(t,1) = period_normal_ payoff;

mutant__payoff(t,1) = period__mutant_ payoff;

% Compute Updated Period Shares

[period _normal total share,period normal share distribution (1,:) ,...
period__mutant_total_share ,period_mutant_share_distribution (1,:)]...
= dynamic_update_general (gamma, epsilon ,k_normal ,k_mutant , ...
period_normal_ total share,period normal share_ distribution(1,:) ,...
period_mutant_total share,period_mutant_share_distribution(1,:) ,...
period__normal_payoff , period__mutant__payoff);

end

% Format Figures

t = 0:T-1;

dimensions = [0,0,10,6];

figure (’units’,’inch’, position’,dimensions)

hold on

plot (t ,normal__cooperator__shares,  —«’, ' linewidth’, 1);

plot (t ,normal_cooperator_shares_steady, —x’, linewidth’, 1);

set (gca, ' TickLabellnterpreter’,’latex ’);

set (gca, 'FontSize’ ,24, FontWeight ', ’bold ") ;

xlabel ("Time ($t$)’, ’Interpreter’, ’latex’);

yl = ylabel (’Share of Normal Cooperators’, ’'Interpreter’, ’latex’);

yl.Position (1) = yl.Position (1) + abs(yl.Position (1) % 0.4);

yl.Position (2) = yl.Position(2) + abs(yl.Position(2) * 0.05);

ylim ([.8, 1]);

xlim ([0,60]) ;

legend ({ ’$Grim5$ Cooperators’,’Steady State’},’Location’, northeast’ ...
"Interpreter’,’latex ’);

set (gef, "color’,'w’);

hold off

figure (’units’,’inch’, position’,dimensions)

hold on

plot (t,normal_payoff,  —«’, linewidth’, 1);

plot (t,mutant_payoff, ’—x«’, linewidth ’, 1);

set (gca, TickLabellnterpreter ’, latex ’);

set (gca, 'FontSize’,24, FontWeight ', ’bold ") ;

xlabel ("Time ($t$)’, ’Interpreter’, ’latex’);

yl = ylabel(’Average Payoffs’, ’Interpreter’, ’latex’);
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yl.Position (1) = yl.Position(1) + abs(yl.Position(1) * 0.25);

yl.Position (2) = yl.Position(2) + abs(yl.Position(2) % 0.2);

ylim ([0, 1.5]);

xlim ([0,60]) ;

legend ({ ’$Grim5$ Players’,’$Grim1$ Players’}, Location’, 'northeast’ ...
"Interpreter’,’latex’);

set (gef, color’,’'w’);

hold off

function f = beta(gamma, epsilon ,cooperator_share)

f = gammax(1—(1—epsilon)*cooperator share)/(l1—gammax(l—epsilon)*cooperator share);

end

function [ratio_normal,ratio_mutant] =
proper_ratios_general (period_normal_total_ share,period_mutant_total_ share ,...
period__normal_payoff , period_mutant__payoff)

if (period_normal_ payoff>0) && (period_mutant_payoff>0)
ratio_normal = period_normal_ total_ sharexperiod_normal payoff /...
(period_normal_total sharexperiod_normal payoff +
period__mutant__total_sharesperiod__mutant_payoff);
ratio_mutant = period__mutant_total sharexperiod_mutant_payoff /...
(period_normal_total sharexperiod_normal_ payoff +
period__mutant_total_ sharesxperiod__mutant_payoff);
end

if (period_normal_payoff >0) && (period__mutant_payoff<=0)
ratio_normal = 1;
ratio_ mutant = 0;

end

if (period_normal_payoff<=0) && (period__mutant__payoff>0)
ratio_normal = 0;
ratio_ mutant = 1;

end

if (period normal payoff<=0) && (period mutant payoff<=0)

ratio_normal = period_normal_ total share/(period_normal_ total share +
period__mutant_total_ share);
ratio_mutant = period__mutant_total share/(period_normal_ total share +
period__mutant_total share);
end
end
function [period normal payoff,period mutant payoff] = payoffs general(g,l,...

k_normal ,k_mutant, period_normal_total share,period_normal_share_distribution ,...

period_mutant_total share,period _mutant_share_distribution)

normal__cooperator_share = sum(period_normal_share_distribution (1,1:k_normal));
mutant__cooperator__share = sum(period__mutant_share_distribution (1,1:k_mutant));

if k_ normal>k mutant
% Compute the Share of Mutant Players Misperceived by Normal Players
misperceived__mutant_share =

sum(period_mutant_share_ distribution (1,k_mutant+1:k_normal));

% Compute "Total Population Payoffs"
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total normal payoff = normal cooperator sharex((normal cooperator share...
+mutant__cooperator_share)x1 — misperceived_mutant_sharexl);

total_mutant__payoff = mutant_cooperator_sharex(normal_cooperator_share...
+mutanticooperatorishare)*1 +
misperceived__mutant__sharesnormal_cooperator_sharex(l+4g);

if k_mutant>k normal
% Compute the Share of Normal Players Misperceived by Mutant Players

misperceived__normal_share sum (period__normal_share__distribution (1,k_normal+1:k_mutant)

% Compute "Total Population Payoffs"
total normal payoff = normal cooperator_ sharex(normal cooperator_share...
+mutant__cooperator_share)*1 + misperceived _normal_sharesmutant_cooperator_sharex(1+

total _mutant_payoff = mutant__cooperator_share ...
((normal_cooperator_share + mutant_cooperator_share)*1l —
misperceived__normal_sharex1);

% Compute Average Payoffs

period_normal_payoff = total _normal_payoff/period_normal_total_share;
period__mutant__payoff = total _mutant_payoff/period__mutant_total_ share;
end

function [updated__period_normal_total_share,updated__period_normal_ share_distribution ,...
updated__period__mutant_total share,updated_period_mutant_share_distribution] =
dynamic__update_ general (gamma, epsilon ,k_normal ,k_mutant , ...
period__normal_total share,period_normal_share_ distribution ,...
period__mutant_total_share,period__mutant_share_ distribution ,...
period__normal_payoff , period_mutant_ payoff)
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k = max(k_normal ,k_mutant) ;
% Compute Ratios are Normal
[ratio_normal ,ratio_mutant] =
proper_ratios__general (period_normal_total_share ,...
period_mutant_total_share,period_normal_ payoff, period_mutant_payoff);

of Incoming Players

% Compute Updated Total Share of Normal and Mutant Players

updated__period_normal_total_share
ratio_normal;

updated__period_mutant_total share = gammasxperiod_ mutant_total share 4+ (1—gamma)x
ratio__mutant;

gammaxperiod__normal_total_share + (1—gamma)x*

% Initialize Updated Share Distribution
updated__period_normal_share_distribution
updated__period__mutant__share_distribution = zeros(1,k);

zeros (1,k);

VISSTTTSSTTTSSTITS VITSSTTTISS

% Compute Updated Period Normal Share Distribution

% Compute Share of Players

mu_c = sum(period_normal_ share_distribution(1,1:k_normal)) +
sum (period_mutant__share_ distribution (1,1:k_normal));

Cooperators by Normal Players

% Computed Updated Normal Shares
updated_period_normal share distribution(1,1)
gammax(l—epsilon )*mu_c+period__normal_share_distribution (1,1) +
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(1—gamma)*ratio_normal;

for 1i=2:k normal
updated_period_normal_share_ distribution(1,i) =
gammax(1—(1—epsilon )*mu_c)*period_normal_share_distribution(1,i—-1) +
gammax(1l—epsilon )*mu_c*period_normal_share_distribution(1,i);
end

if k_mutant>k normal
updated_period_normal_share_distribution(1,k_normal+1) =
gammax(1l—(1—epsilon )*mu_c)*period__normal_share_distribution (1,k_normal);

if k_mutant>k normal+1
for i=k normal+2:k mutant
updated_period_normal_ share_ distribution(1,i) =
gammakperiod__normal_share_ distribution (1,i—1);
end
end

end

% Compute Updated Period Mutant Share Distribution

% Compute Share of Players Perceived as Cooperators by Normal Players
mu_c = sum(period_normal_ share_distribution(1,1:k_mutant)) +
sum(period_mutant_share_distribution (1,1:k_mutant));

% Computed Updated Mutant Shares
updated__period_mutant_share_distribution(1,1) =
gammax(l—epsilon )*mu_c+period__mutant_share_distribution (1,1) +
(1—gamma) *xratio__mutant ;

for 1=2:k mutant
updated__period__mutant_share_distribution(1,i) =
gammax(1—(1—epsilon )*mu_c)*period_mutant__share_distribution(1,i—-1) +
gammax(1—epsilon )*mu_c*period_mutant_share_distribution(1,i);
end

if k normal>k mutant
updated_period_ mutant_share_distribution (1,k_mutant+1) =
gammax(1—(1—epsilon )*mu_c)*period__mutant__share_distribution (1,k_mutant);
end

if k normal>k mutant+1
for i=k mutant+2:k normal
updated__period__mutant_share_distribution(1,i) =
gammakperiod _mutant_share_distribution(1,i—1);
end
end

end
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Supplementary Figure 1. Evolutionary dynamics. a, The blue curve depicts the evolution of the share of players that use Grim5 and are cooperators (i.e. have some
record k < 5). b, The average payoffs in the normal Grim5 population (blue curve) and in the mutant Grim1 population (red curve).
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