Speed versus Resilience in Contagion

Andrew Koh Stephen Morris MIT MIT

European Summer Symposium on Economic Theory (Gerzensee)

July 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Threshold contagion: Infected IFF ≥ q proportion of my neighbours infected

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Pretty well-studied (Econ, CS, OR, Sociology...)

- Threshold contagion: Infected IFF ≥ q proportion of my neighbours infected
 - Pretty well-studied (Econ, CS, OR, Sociology...)
- (To our knowledge) literature tends to focus on either:
 - Resilience (min seed, max threshold etc.)
 - Speed (conditional on spreading, how quickly?)

- Threshold contagion: Infected IFF ≥ q proportion of my neighbours infected
 - Pretty well-studied (Econ, CS, OR, Sociology...)
- (To our knowledge) literature tends to focus on either:
 - Resilience (min seed, max threshold etc.)
 - Speed (conditional on spreading, how quickly?)
- But there is a natural tension between these objects
 - Specific to threshold contagion
 - Exception: Centola and Macy (2007): simple vs complex contagion, tension in re-wiring simulations, will discuss later

- Threshold contagion: Infected IFF ≥ q proportion of my neighbours infected
 - Pretty well-studied (Econ, CS, OR, Sociology...)
- (To our knowledge) literature tends to focus on either:
 - Resilience (min seed, max threshold etc.)
 - Speed (conditional on spreading, how quickly?)
- But there is a natural tension between these objects
 - Specific to threshold contagion
 - Exception: Centola and Macy (2007): simple vs complex contagion, tension in re-wiring simulations, will discuss later

Key intuition: many faraway (weak) links means fewer local (strong) links (in proportion)

• This paper: **simple(st) model** which channels this?

- Develop continuous network model in 1 dimension (\mathbb{R})
- Analytically more tractable (c.f. global games)
- Deterministic dynamics but approximates large random graphs (Lovász)
- Link to Watts-Strogatz, Newman, Newman-Watts etc. models of random graphs (but also important differences. More on this later.)

- Other extensions: many dimensions, less structure on neighborhoods
- I am counting on network people to tell me (i) what generalizations are or aren't important; (ii) how to test

• **Tradeoff**: contagion is **faster** in networks where it is **harder** to initiate contagion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Results

- **Tradeoff**: contagion is **faster** in networks where it is **harder** to initiate contagion
- 3 simple propositions. Tradeoff...
 - ...is stark when graphs ordered by FOSD: for every threshold, one is harder to initiate contagion & spreads faster;
 - ...can be absent for fixed thresholds under 'single-crossing' ordering: worst of both worlds—easier to initiate contagion, but also spreads faster

 ...always occurs for any 2 graphs (but potentially different contagion thresholds);

- infinite measure of agents indexed *i* ∈ ℝ sitting on a line. Each agent has links of measure 1 (normalization).
- *i*'s links to the right given by $G_i : \mathbb{R}_+ \to [0, 1/2]$ ('CDF')
 - $G_i(x)$ is the weight *i* places on agents at location [i, i + x].
- Assume:
 - ▶ G_i admits a density $g_i : \mathbb{R}_+ \to [0,1]$ ('g(x) is the weight placed on agent x away')
 - ► G_i has decreasing differences i.e., g strictly decreasing on support ('homophily')

- Impose symmetry and translation invariance
 - symmetry: i's links on the left and right distributed identically
 - translation invariance: i's distribution of links over [i, i + x] same as that of i' over [i', i' + x]

 Work with (single) G directly (sufficient statistic) rather than with explicit description of neighbourhoods

 \bullet Binary action space: $\{0,1\}$ 'uninfected or infected'

q-contagion

Player *i* takes action 1 if and only if $\geq q$ proportion of her neighbours take action 1.

- We will study the **evolution** of the set of infected agents.
- Let $I_t \subseteq \mathbb{R}$ be the set of agent infected at t
- *i* is infected at time t + 1 if and only if

$$\int_{-\infty}^{+\infty} \mathbb{1}[i-x \in I_t]g(x)dx \ge q$$

Kind of unwieldy carrying an infinite-dimensional object around

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Key simplification \rightarrow interval contagion

- Key simplifications: I_0 interval + g strictly decreasing
- Implies $\{I_t\}_t$ are intervals (immediately from induction)

• Discussion:

• I_0 is not minimal to induce contagion. (but can get LB)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Homophily (at least in expectation) seems natural.

Defining resilience & speed

- Let's keep track of measure of infected agents rather than sets.
 - **Define** $m_t = \mu(I_t) \leftarrow$ measure of infected agents at t
 - **Define** $a_t = m_t m_{t-1} \leftarrow$ change in measure from t 1 to t

Definition (Contagion occuring)

Contagion occurs if $\lim_{t o +\infty} m_t = +\infty$

Definition (Resilience)

 $m_0(G,q) := \inf m_0 \quad s.t. \quad \text{contagion occurs}$

• Note: could also fix m_0 and look at max threshold q

Definition ((Limit) Speed) $a_{\infty}(G,q) := \lim_{t \to \infty} a_t$

Expression for m_0

• Tuple (G, m_0, q) sufficient to pin down contagion dynamics.

Lemma

Contagion occurs from (G, m_0, q) if and only if $G(m_0) > q$

- Sketch: (\iff)Take $I_0 = [x, x + m_0]$. WLOG b/c translation invariance. Let $a_1/2$ be additional measure infected at t = 1 on the left of I_0 and conjecture that > 0
- We know that the guy $x a_1/2$ must be 'indifferent':

$$G(a_1/2 + m_0) - G(a_1/2) = q < G(m_0)$$

If x strictly prefers to take 1, then by dec. differences someone to the left must also take 1

Expression for m_0

Lemma

Contagion occurs from (G, m_0, q) if and only if $G(m_0) > q$

Sketch: (⇒) Consider any i < x and define ε := x − i. If the condition on G doesn't hold,

 $q \geq G(m_0) > G(\epsilon + m_0) - G(\epsilon)$ becauseg is decreasing.

- But then any i < x is not infected in period 1. So $m_{t+1} \leq m_t$ and $\lim_{t \to \infty} m_t \leq m_0 < +\infty$
- Useful expression from the lemma:

$$m_0(G,q) = G^{-1}(q)$$
 (Min-Seed)

- Interpretation: Local links matter for resilience
 - ► G(x) is the 'CDF' of links: 'what proportion of my links are less than x distance away from me?'
 - ► G⁻¹(q): 'what's the distance of guys around me which needs to be infected before q proportion of my neighbours are infected?'_{>>>}

Expression for a_{∞}

- Recall: $a_t = m_t m_{t-1}$
- Define $\overline{G} := 1/2 G$ as the anti-CDF
- If infection occurs, a_t solve the nonlinear diff. eqn.

Expression for a_{∞}

$$\overline{G}(a_t/2) - \overline{G}(a_t/2 + m_{t-1}) = q$$

- Path $\{a_t\}_t$ will, in general, depend on G.
- Observe that if contagion occurs, a_t will be increasing.
 - from decreasing differences since $m_{t-1} = \sum_{0}^{t-1} a_s$ is growing
- But will converge to a limit:

$$\begin{aligned} a_{\infty} &:= \lim_{t \to \infty} a_t \\ &= \boxed{2(\overline{G})^{-1}(q)} \quad \text{since} \quad \lim_{m_{t-1} \to \infty} \overline{G}(a_t/2 + m_{t-1}) = 0. \end{aligned}$$
(Lim-Speed)

- Interpretation: Distant links matter for speed.
 - $\overline{G}^{-1}(q)$ is the distance 'from the interval stretching to infinity' required to have q proportion of neighbours
 - Contrast with **Min-Seed:** $m_0(G,q) = G^{-1}(q)$

Tradeoff is stark when FOSD-ordered

Proposition

If $G, G' \in \mathcal{G}$ are such that $G \leq G'$, then for all $q \in (0, 1/2)$, (i) G is more resilient than G' i.e., $m_0(G, q) \geq m_0(G', q)$; and (ii) G has a quicker limit speed than G' i.e., $a_{\infty}(G, q) \geq a_{\infty}(G', q)$.

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Tradeoff is stark when FOSD-ordered

• Moving from G to G' as if we're 'shifting mass' from nearby links (closer than <u>x</u>) further away (beyond \overline{x}).

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Tradeoff is stark when FOSD-ordered

- Proof immediate from expressions...
- Resilience: Fix any q ∈ (0, 1/2). G ≤ G' implies G⁻¹ ≤ G'⁻¹. Hence from our expression for m₀

$$egin{aligned} m_0(G,q) &= G^{-1}(q) \ &\leq G'^{-1}(q) = m_0(G',q). \end{aligned}$$

• Speed: If contagion doesn't occur, speed is identically zero. If it does, $G \leq G'$ implies $\overline{G} \geq \overline{G}'$ and so $(\overline{G})^{-1} \geq (\overline{G}')^{-1}$ and from our expression for a_{∞} ,

$$a_\infty(G,q)=2(\overline{G})^{-1}(q)\geq 2(\overline{G'})^{-1}(q)=a_\infty(G',q).$$

Example: normal distributions

 Suppose that *i*'s links are 'normally distributed' (*i* is sitting in the middle so *i*'s links are ~ N(*i*, σ²))

•
$$G_{\sigma}(x) = \Phi(x/\sigma) - \frac{1}{2}$$

Invert and rearrange...

$$m_0(G_\sigma,q) = \sigma \cdot \Phi(q+rac{1}{2})$$
 $a_\infty(G_\sigma,q) = 2\sigma \cdot \Phi(1-q)$

• High σ : more mass on faraway links.

- Increasing the s.d. of normal is quite special...
- We've seen that local links matter for resilience; faraway links matter for speed.
- These two things can coexist by shifting 'middle links':
 - Closer: more local links, less resilient
 - Further: more tail links, quicker speed

Proposition

For $G, G' \in \mathcal{G}$, suppose that there exists some $\bar{x} \in (0, +\infty)$ such that for all $x' \leq \bar{x}$, $G(x') \leq G'(x')$ and for all $x'' \geq \bar{x}$, $G(x'') \geq G'(x'')$. Then

- (i) for sufficiently low values of q, G is both more resilient than G' as well as has slower limit speeds; and
- (ii) for sufficiently high values of q, G is both less resilient than G' as well as has quicker limit speeds.

- Here G' ≥ G before x̄, and the opposite after x̄. Implies that G' has more local links but also fatter tails
- Note that *q* controls 'how local' and 'how far away' the links need to be for them to matter for resilience and speed
 - ► lower q → more remote tails matter, more local neighbourhoods matter

Sketch: Choose q' = G(x̄) and note that by the condition of single crossing at x̄ in the proposition, for any q ≤ q',

$$egin{aligned} &m_0(G,q)=G^{-1}(q)\ &\geq G'^{-1}(q)=m_0(G',q). \end{aligned}$$

with the reverse equality for $q \ge q'$. choose $q'' = \overline{G}(\overline{x})$ and for $q \le q''$ by the condition in the proposition,

$$egin{aligned} \mathsf{a}_\infty({G},q) &= 2\overline{G}^{-1}(q) \ &\leq 2\overline{G'}^{-1}(q) = \mathsf{a}_\infty({G'},q) \end{aligned}$$

with the reverse equality for $q \ge q''$. Part (i) follows for thresholds $q \le q' \land q''$; part (ii) follows for thresholds $q \ge q' \lor q''$.

• Cauchy: $G_{C,\gamma}(x) = \frac{1}{\pi} \arctan(x/\gamma)$ • $m_0(G_{C,\gamma},q) = \gamma \cdot \tan(q\pi), \ a_{\infty}(G_{C,\gamma},q) = 2\gamma \cdot \tan((\frac{1}{2}-q)\pi)$

- Cauchy tails decay polynomially $(\propto 1/x^2)$ hence $a_{\infty} \simeq 1/q^2$. Subgaussian: $a_{\infty} \lesssim (\log(1/q))^{1/2}$
- More generally, always have freedom to control:
 - tails: sub-exponential, heavy tailed, polynomial decay etc.
 - local 'peakedness'

Tradeoff obtains for any pair of networks

Note: need q < 1/2 for contagion to occur; same logic as Morris (2000)

Proposition

For $G, G' \in \mathcal{G}$, if $G \neq G'$ then there exists $q, q' \in (0, 1/2)$ such that one is more resilient than the other under q, but has a quicker limit speed than the other under q'.

- Any two graphs exhibit the tradeoff for <u>some</u> contagion thresholds
- E.g., can find q = 0.3, q' = 0.1 so that
 - ▶ $m_0(G, 0.1) > m_0(G', 0.1) \leftarrow$ G is more resilient than G'
 - ▶ $a_\infty(G,0.3) > a_\infty(G',0.3) \leftarrow$ G spreads faster than G'

Tradeoff obtains for any pair of networks

Sketch pf.: let's assume WLOG that G(x) < G'(x) for some x ∈ [0,∞). This implies that there exists y ∈ (G(x), G'(x)) such that G⁻¹(y) > x > G'⁻¹(y). Now set q = y < 1/2 and by the expressions

$$egin{aligned} m_0(G,q) &= G^{-1}(q) = G^{-1}(y) \ &> G'^{-1}(y) = G'^{-1}(q) = m_0(G',q). \end{aligned}$$

• Next, recall we defined $\overline{G} = 1/2 - G$. There exists $z \in (\overline{G}'(x), \overline{G}(x))$ such that $\overline{G'}^{-1}(z) < x < \overline{G}^{-1}(z)$ and setting q' = z < 1/2, we have

$$egin{aligned} &a_{\infty}(G,q')=\overline{G}^{-1}(q')=\overline{G}^{-1}(z)\ &>\overline{G'}^{-1}(z)=\overline{G'}^{-1}(q')=a_{\infty}(G',q'). \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Taking stock

- Tradeoff...
 - ...is stark when graphs ordered by FOSD: for every threshold, one is harder to initiate contagion & spreads faster;
 - ...can be absent for fixed thresholds under 'single-crossing' ordering: worst of both worlds—easier to initiate contagion, but also spreads faster
 - ...always occurs for any 2 graphs (but potentially different contagion thresholds);
- Extension 1: What is the link with random (discrete) graphs?
 - Scale & truncate model so that bounded measure. Graphons approximate contagion dynamics of discrete random graph sampled from it Lovász (2012)Erol et al. (2020)
- Extension 2: Higher dimensions vs 1D
 - analytically quite ugly, but some results go through. We may simulate the rest....

(Informal) Link to finite mass population random discrete graphs

- So far we worked on \mathbb{R} . Allows us to speak of 'limit speed', work with canonical full-support distributions etc.
- Now: Unit measure of agents $i \in [0, 1]$.
 - Allows us to link contagion results to discrete random graphs: sample uniformly from [0, 1] (see Lovász (2012))
- Define G as was our space of graphs on ℝ. Define G^T as the space of graphs over the unit circle [0, 1] with similar conditions (density exists, homophily etc.)
- **Goal**: define a transformation $\mathcal{G} \to \mathcal{G}^{\mathcal{T}}$ which preserves contagion dynamics (& tradeoffs) studied in \mathbb{R} .

Link to random discrete graphs

Goal: find map $\psi_s: \mathcal{G} \to \mathcal{G}^T$ which 'preserves contagion dynamics'

• Here's the map we use:

Let ψ_s be this map, where s controls the shrinkage factor: (in 1st step G_s(sx) = G(x))

 $\lim_{t\to\infty}\lim_{s\to 0}a_t(\psi_s(G),q)=s\cdot a_\infty(G,q)\left|\lim_{s\to 0}m_0(\psi_s(G),q)=s\cdot m_0(G,q)\right|$

Link to random discrete graphs

- For small but finite *s*, exhibit the same tradeoffs.
 - Now with avg speed (up to full infected) rather than limit speed.
 - ▶ Could work directly on [0,1] but uglier.
- Taking stock:

- Graphs in $\mathcal{G}^{\mathcal{T}}$ are graphons: $W : [0,1]^2 \rightarrow [0,1].$
- W(i,j): weight that *i* puts on *j*. In our setting: W(i,j) = g(|i-j|) = W(j,i).
- Graphons approximate random graphs:
 - Sample *S* from [0, 1] uniformly at random.
 - ▶ Let's say S = {i, j}. Then on the random graph, i and j are connected with probability W(i, j).
- Recent paper in JET by Erol, Parise, and Teytelboym (2020): contagion on graphons approximate contagion on sampled graph

Higher dimensions

- General idea is to work on the Euclidian ball in ℝⁿ. Analog of translation invariance and symmetry s.t. graph can once again be summarized by a single CDF
- But now the dimension, size of the ball, and distance all matter!

Conclusion

• **Tradeoff**: contagion is **faster** in networks where it is **harder** to initiate contagion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conclusion

- **Tradeoff**: contagion is **faster** in networks where it is **harder** to initiate contagion
- clear empirical implications
- special model but clearly generalizes: what is the right way to do so to make it compelling to network theorists?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Thanks!

- CENTOLA, D. AND M. MACY (2007): "Complex contagions and the weakness of long ties," *American journal of Sociology*, 113, 702–734.
- EROL, S., F. PARISE, AND A. TEYTELBOYM (2020): "Contagion in graphons," *Available at SSRN*.
- LOVÁSZ, L. (2012): Large networks and graph limits, vol. 60, American Mathematical Soc.
- MORRIS, S. (2000): "Contagion," *The Review of Economic Studies*, 67, 57–78.