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Motivation
Threshold contagion: Infected IFF ≥ q proportion of
my neighbours infected

▶ Pretty well-studied (Econ, CS, OR, Sociology...)

(To our knowledge) literature tends to focus on
either:

▶ Resilience (min seed, max threshold etc.)
▶ Speed (conditional on spreading, how quickly?)

But there is a natural tension between these objects
▶ Specific to threshold contagion
▶ Exception: Centola and Macy (2007): simple vs complex

contagion, tension in re-wiring simulations, will discuss later

Key intuition: many faraway (weak) links means fewer
local (strong) links (in proportion)

This paper: simple(st) model which channels this?
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Model

Develop continuous network model in 1 dimension (R)
Analytically more tractable (c.f. global games)
Deterministic dynamics but approximates large random graphs
(Lovász)
Link to Watts-Strogatz, Newman, Newman-Watts etc. models
of random graphs (but also important differences. More on this
later.)
Other extensions: many dimensions, less structure on
neighborhoods
I am counting on network people to tell me (i) what
generalizations are or aren’t important; (ii) how to test



Results

Tradeoff: contagion is faster in networks where it is harder to
initiate contagion

3 simple propositions. Tradeoff...
▶ ...is stark when graphs ordered by FOSD: for every threshold,

one is harder to initiate contagion & spreads faster;
▶ ...can be absent for fixed thresholds under ‘single-crossing’

ordering: worst of both worlds—easier to initiate contagion, but
also spreads faster

▶ ...always occurs for any 2 graphs (but potentially different
contagion thresholds);
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Model
infinite measure of agents indexed i ∈ R sitting on a line. Each
agent has links of measure 1 (normalization).
i ’s links to the right given by Gi : R+ → [0, 1/2] (‘CDF’)

▶ Gi(x) is the weight i places on agents at location [i , i + x ].
Assume:

▶ Gi admits a density gi : R+ → [0, 1] (‘g(x) is the weight placed
on agent x away’)

▶ Gi has decreasing differences i.e., g strictly decreasing on
support (‘homophily’)



Model
Impose symmetry and translation invariance

▶ symmetry: i ’s links on the left and right distributed identically
▶ translation invariance: i ’s distribution of links over [i , i + x ]

same as that of i ′ over [i ′, i ′ + x ]

Work with (single) G directly (sufficient statistic) rather than
with explicit description of neighbourhoods



Model

Binary action space: {0, 1} ‘uninfected or infected’

q-contagion
Player i takes action 1 if and only if ≥ q proportion of her neighbours
take action 1.

We will study the evolution of the set of infected agents.
Let It ⊆ R be the set of agent infected at t
i is infected at time t + 1 if and only if∫ +∞

−∞
1[i − x ∈ It ]g(x)dx ≥ q

▶ Kind of unwieldy carrying an infinite-dimensional object around



Key simplification → interval contagion
Key simplifications: I0 interval + g strictly decreasing
Implies {It}t are intervals (immediately from induction)

Discussion:
▶ I0 is not minimal to induce contagion. (but can get LB)
▶ Homophily (at least in expectation) seems natural.



Defining resilience & speed
Let’s keep track of measure of infected agents rather than sets.

▶ Define mt = µ(It) ← measure of infected agents at t
▶ Define at = mt −mt−1 ← change in measure from t − 1 to t

Definition (Contagion occuring)
Contagion occurs if limt→+∞ mt = +∞

Definition (Resilience)
m0(G , q) := inf m0 s.t. contagion occurs

Note: could also fix m0 and look at max threshold q

Definition ((Limit) Speed)
a∞(G , q) := limt→∞ at



Expression for m0
Tuple (G ,m0, q) sufficient to pin down contagion dynamics.

Lemma
Contagion occurs from (G ,m0, q) if and only if G(m0) > q

Sketch: (⇐= )Take I0 = [x , x + m0]. WLOG b/c translation
invariance. Let a1/2 be additional measure infected at t = 1 on
the left of I0 and conjecture that > 0
We know that the guy x − a1/2 must be ‘indifferent’:

G(a1/2 + m0)− G(a1/2) = q < G(m0)



Expression for m0
Lemma
Contagion occurs from (G ,m0, q) if and only if G(m0) > q

Sketch: ( =⇒ ) Consider any i < x and define ϵ := x − i . If the
condition on G doesn’t hold,

q ≥ G(m0) > G(ϵ+ m0)− G(ϵ) becauseg is decreasing.
But then any i < x is not infected in period 1. So mt+1 ≤ mt
and limt→∞ mt ≤ m0 < +∞
Useful expression from the lemma:

m0(G , q) = G−1(q) (Min-Seed)
Interpretation: Local links matter for resilience

▶ G(x) is the ‘CDF’ of links: ‘what proportion of my links are less
than x distance away from me?’

▶ G−1(q): ‘what’s the distance of guys around me which needs to
be infected before q proportion of my neighbours are infected?’



Expression for a∞
Recall: at = mt −mt−1

Define G := 1/2− G as the anti-CDF
If infection occurs, at solve the nonlinear diff. eqn.

G(at/2)− G(at/2 + mt−1) = q



Expression for a∞
G(at/2)− G(at/2 + mt−1) = q

Path {at}t will, in general, depend on G .
Observe that if contagion occurs, at will be increasing.

▶ from decreasing differences since mt−1 =
∑t−1

0 as is growing
But will converge to a limit:

a∞ := lim
t→∞

at

= 2(G)−1(q) since lim
mt−1→∞

G(at/2 + mt−1) = 0.

(Lim-Speed)

Interpretation: Distant links matter for speed.
▶ G−1

(q) is the distance ‘from the interval stretching to infinity’
required to have q proportion of neighbours

▶ Contrast with Min-Seed: m0(G , q) = G−1(q)



Tradeoff is stark when FOSD-ordered

Proposition
If G ,G ′ ∈ G are such that G ≤ G ′, then for all q ∈ (0, 1/2),
(i) G is more resilient than G ′ i.e., m0(G , q) ≥ m0(G ′, q); and
(ii) G has a quicker limit speed than G ′ i.e., a∞(G , q) ≥ a∞(G ′, q).



Tradeoff is stark when FOSD-ordered

Moving from G to G ′ as if we’re ‘shifting mass’ from nearby
links (closer than x) further away (beyond x).



Tradeoff is stark when FOSD-ordered

Proof immediate from expressions...
Resilience: Fix any q ∈ (0, 1/2). G ≤ G ′ implies G−1 ≤ G ′−1.
Hence from our expression for m0

m0(G , q) = G−1(q)
≤ G ′−1

(q) = m0(G ′, q).

Speed: If contagion doesn’t occur, speed is identically zero. If it
does, G ≤ G ′ implies G ≥ G ′ and so (G)−1 ≥ (G ′

)−1 and from
our expression for a∞,

a∞(G , q) = 2(G)−1(q) ≥ 2(G ′)−1(q) = a∞(G ′, q).



Example: normal distributions
Suppose that i ’s links are ‘normally distributed’ (i is sitting in
the middle so i ’s links are ∼ N(i , σ2))
Gσ(x) = Φ(x/σ)− 1

2
Invert and rearrange...

m0(Gσ, q) = σ · Φ(q +
1
2) a∞(Gσ, q) = 2σ · Φ(1− q)

High σ: more mass on faraway links.



Other ways to shift mass...
Increasing the s.d. of normal is quite special...
We’ve seen that local links matter for resilience; faraway links
matter for speed.
These two things can coexist by shifting ‘middle links’:

▶ Closer: more local links, less resilient
▶ Further: more tail links, quicker speed

Proposition
For G ,G ′ ∈ G, suppose that there exists some x̄ ∈ (0,+∞) such that
for all x ′ ≤ x̄ , G(x ′) ≤ G ′(x ′) and for all x ′′ ≥ x̄ , G(x ′′) ≥ G ′(x ′′).
Then
(i) for sufficiently low values of q, G is both more resilient than G ′

as well as has slower limit speeds; and
(ii) for sufficiently high values of q, G is both less resilient than G ′

as well as has quicker limit speeds.



Other ways to shift mass...

Here G ′ ≥ G before x̄ , and the opposite after x . Implies that G ′

has more local links but also fatter tails
Note that q controls ‘how local’ and ‘how far away’ the links
need to be for them to matter for resilience and speed

▶ lower q → more remote tails matter, more local neighbourhoods
matter



Other ways to shift mass...
Sketch: Choose q′ = G(x) and note that by the condition of
single crossing at x in the proposition, for any q ≤ q′,

m0(G , q) = G−1(q)
≥ G ′−1(q) = m0(G ′, q).

with the reverse equality for q ≥ q′. choose q′′ = G(x) and for
q ≤ q′′ by the condition in the proposition,

a∞(G , q) = 2G−1
(q)

≤ 2G ′−1
(q) = a∞(G ′, q)

with the reverse equality for q ≥ q′′. Part (i) follows for
thresholds q ≤ q′ ∧ q′′; part (ii) follows for thresholds
q ≥ q′ ∨ q′′.



Other ways to shift mass...
Cauchy: GC ,γ(x) = 1

π
arctan(x/γ)

▶ m0(GC ,γ , q) = γ · tan(qπ), a∞(GC ,γ , q) = 2γ · tan((1
2 − q)π)

Cauchy tails decay polynomially (∝ 1/x2) hence a∞ ≃ 1/q2.
Subgaussian: a∞ ≲ (log(1/q))1/2

More generally, always have freedom to control:
▶ tails: sub-exponential, heavy tailed, polynomial decay etc.
▶ local ‘peakedness’



Tradeoff obtains for any pair of networks

Note: need q < 1/2 for contagion to occur; same logic as Morris
(2000)

Proposition
For G ,G ′ ∈ G, if G ̸= G ′ then there exists q, q′ ∈ (0, 1/2) such that
one is more resilient than the other under q, but has a quicker limit
speed than the other under q′.

Any two graphs exhibit the tradeoff for some contagion
thresholds
E.g., can find q = 0.3, q′ = 0.1 so that

▶ m0(G , 0.1) > m0(G ′, 0.1) ← G is more resilient than G’
▶ a∞(G , 0.3) > a∞(G ′, 0.3) ← G spreads faster than G’



Tradeoff obtains for any pair of networks
Sketch pf.: let’s assume WLOG that G(x) < G ′(x) for some
x ∈ [0,∞). This implies that there exists y ∈ (G(x),G ′(x))
such that G−1(y) > x > G ′−1(y). Now set q = y < 1/2 and by
the expressions

m0(G , q) = G−1(q) = G−1(y)
> G ′−1(y) = G ′−1(q) = m0(G ′, q).

Next, recall we defined G = 1/2− G . There exists
z ∈ (G ′

(x),G(x)) such that G ′−1
(z) < x < G−1

(z) and setting
q′ = z < 1/2, we have

a∞(G , q′) = G−1
(q′) = G−1

(z)

> G ′−1
(z) = G ′−1

(q′) = a∞(G ′, q′).



Taking stock
Tradeoff...

▶ ...is stark when graphs ordered by FOSD: for every threshold,
one is harder to initiate contagion & spreads faster;

▶ ...can be absent for fixed thresholds under ‘single-crossing’
ordering: worst of both worlds—easier to initiate contagion, but
also spreads faster

▶ ...always occurs for any 2 graphs (but potentially different
contagion thresholds);

Extension 1: What is the link with random (discrete) graphs?
▶ Scale & truncate model so that bounded measure. Graphons

approximate contagion dynamics of discrete random graph
sampled from it Lovász (2012)Erol et al. (2020)

Extension 2: Higher dimensions vs 1D
▶ analytically quite ugly, but some results go through. We may

simulate the rest....



(Informal) Link to finite mass population random
discrete graphs

So far we worked on R. Allows us to speak of ‘limit speed’, work
with canonical full-support distributions etc.
Now: Unit measure of agents i ∈ [0, 1].

▶ Allows us to link contagion results to discrete random graphs:
sample uniformly from [0, 1] (see Lovász (2012))

Define G as was our space of graphs on R. Define GT as the
space of graphs over the unit circle [0, 1] with similar conditions
(density exists, homophily etc.)
Goal: define a transformation G → GT which preserves
contagion dynamics (& tradeoffs) studied in R.



Link to random discrete graphs

Goal: find map ψs :G → GT which ‘preserves contagion dynamics’

Here’s the map we use:

Let ψs be this map, where s controls the shrinkage factor: (in
1st step Gs(sx) = G(x))

lim
t→∞

lim
s→0

at(ψs(G), q) = s · a∞(G , q) lim
s→0

m0(ψs(G), q) = s ·m0(G , q)



Link to random discrete graphs
For small but finite s, exhibit the same tradeoffs.

▶ Now with avg speed (up to full infected) rather than limit speed.
▶ Could work directly on [0, 1] but uglier.

Taking stock:
∞ measure −→︸︷︷︸

✓

Unit measure −→︸︷︷︸
now

Random graphs

Graphs in GT are graphons: W : [0, 1]2 → [0, 1].
W (i , j) : weight that i puts on j . In our setting:
W (i , j) = g(|i − j |) = W (j , i).
Graphons approximate random graphs:

▶ Sample S from [0, 1] uniformly at random.
▶ Let’s say S = {i , j}. Then on the random graph, i and j are

connected with probability W (i , j).
Recent paper in JET by Erol, Parise, and Teytelboym (2020):
contagion on graphons approximate contagion on sampled graph



Higher dimensions
General idea is to work on the Euclidian ball in Rn. Analog of
translation invariance and symmetry s.t. graph can once again
be summarized by a single CDF
But now the dimension, size of the ball, and distance all matter!



Conclusion

Tradeoff: contagion is faster in networks where it is harder to
initiate contagion

clear empirical implications
special model but clearly generalizes: what is the right way to do
so to make it compelling to network theorists?
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