Speed versus Resilience in Contagion

Andrew Koh
MIT

Stephen Morris
MIT

European Summer Symposium on Economic Theory (Gerzensee)

July 2023
Motivation

- Threshold contagion: Infected IFF $\geq q$ proportion of my neighbours infected
 - Pretty well-studied (Econ, CS, OR, Sociology...)

But there is a natural tension between these objects
- Specific to threshold contagion
- Exception: Centola and Macy (2007): simple vs complex contagion, tension in re-wiring simulations, will discuss later

Key intuition: many faraway (weak) links means fewer local (strong) links (in proportion)

This paper: simple(st) model which channels this?
Motivation

- Threshold contagion: Infected IFF $\geq q$ proportion of my neighbours infected
 - Pretty well-studied (Econ, CS, OR, Sociology...)
- (To our knowledge) literature tends to focus on either:
 - Resilience (min seed, max threshold etc.)
 - Speed (conditional on spreading, how quickly?)
Motivation

- Threshold contagion: Infected IFF $\geq q$ proportion of my neighbours infected
 - Pretty well-studied (Econ, CS, OR, Sociology...)

- (To our knowledge) literature tends to focus on either:
 - Resilience (min seed, max threshold etc.)
 - Speed (conditional on spreading, how quickly?)

- But there is a natural tension between these objects
 - Specific to threshold contagion
 - Exception: Centola and Macy (2007): simple vs complex contagion, tension in re-wiring simulations, will discuss later
Motivation

- **Threshold contagion**: Infected IFF \(q \) proportion of my neighbours infected
 - Pretty well-studied (Econ, CS, OR, Sociology...)
- (To our knowledge) literature tends to focus on either:
 - **Resilience** (min seed, max threshold etc.)
 - **Speed** (conditional on spreading, how quickly?)
- But there is a natural tension between these objects
 - Specific to threshold contagion
 - Exception: Centola and Macy (2007): simple vs complex contagion, tension in re-wiring simulations, will discuss later

Key intuition: many faraway (weak) links means fewer local (strong) links (in proportion)
- This paper: **simple(st) model** which channels this?
Model

- Develop continuous network model in 1 dimension (\mathbb{R})
- Analytically more tractable (c.f. global games)
- Deterministic dynamics but approximates large random graphs (Lovász)
- Link to Watts-Strogatz, Newman, Newman-Watts etc. models of random graphs (but also important differences. More on this later.)
- Other extensions: many dimensions, less structure on neighborhoods
- I am counting on network people to tell me (i) what generalizations are or aren’t important; (ii) how to test
Results

- **Tradeoff**: Contagion is faster in networks where it is harder to initiate contagion.
Results

- **Tradeoff**: contagion is *faster* in networks where it is *harder* to initiate contagion
- 3 simple propositions. Tradeoff...
 - *...is stark* when graphs ordered by FOSD: for every threshold, one is harder to initiate contagion & spreads faster;
 - *...can be absent* for fixed thresholds under ‘single-crossing’ ordering: worst of both worlds—easier to initiate contagion, but also spreads faster
 - *...always occurs* for any 2 graphs (but potentially different contagion thresholds);
Model

- infinite measure of agents indexed $i \in \mathbb{R}$ sitting on a line. Each agent has links of measure 1 (normalization).
- i’s links to the right given by $G_i : \mathbb{R}_+ \rightarrow [0, 1/2]$ (‘CDF’)
 - $G_i(x)$ is the weight i places on agents at location $[i, i + x]$.
- Assume:
 - G_i admits a density $g_i : \mathbb{R}_+ \rightarrow [0, 1]$ (‘$g(x)$ is the weight placed on agent x away’)
 - G_i has decreasing differences i.e., g strictly decreasing on support (‘homophily’)

![Diagram showing the model and the density function $g_i(x)$]
Model

- Impose **symmetry** and **translation invariance**
 - **symmetry**: i’s links on the left and right distributed identically
 - **translation invariance**: i’s distribution of links over $[i, i + x]$ same as that of i' over $[i', i' + x]$

- Work with (single) G directly (sufficient statistic) rather than with explicit description of neighbourhoods
Model

- Binary action space: \(\{0, 1\} \) ‘uninfected or infected’

q-contagion

Player \(i \) takes action 1 if and only if \(\geq q \) proportion of her neighbours take action 1.

- We will study the **evolution** of the set of infected agents.
- Let \(I_t \subseteq \mathbb{R} \) be the set of agent infected at \(t \)
- \(i \) is infected at time \(t + 1 \) if and only if

\[
\int_{-\infty}^{+\infty} 1[i - x \in I_t] g(x) \, dx \geq q
\]

- Kind of unwieldy carrying an infinite-dimensional object around
Key simplification \rightarrow interval contagion

- Key simplifications: I_0 interval $+$ g strictly decreasing
- Implies $\{I_t\}_t$ are intervals (immediately from induction)

$$G(\mu(I_0) + x) - G(x) = q$$

Discussion:
- I_0 is not minimal to induce contagion. (but can get LB)
- Homophily (at least in expectation) seems natural.
Defining resilience & speed

- Let’s keep track of measure of infected agents rather than sets.
 - Define \(m_t = \mu(I_t) \) ← measure of infected agents at \(t \)
 - Define \(a_t = m_t - m_{t-1} \) ← change in measure from \(t - 1 \) to \(t \)

Definition (Contagion occurring)

Contagion occurs if \(\lim_{t \to +\infty} m_t = +\infty \)

Definition (Resilience)

\(m_0(G, q) := \inf m_0 \quad s.t. \quad \text{contagion occurs} \)

- Note: could also fix \(m_0 \) and look at max threshold \(q \)

Definition ((Limit) Speed)

\(a_\infty(G, q) := \lim_{t \to \infty} a_t \)
Expression for m_0

- Tuple (G, m_0, q) sufficient to pin down contagion dynamics.

Lemma

Contagion occurs from (G, m_0, q) if and only if $G(m_0) > q$

- Sketch: (⇐ =) Take $I_0 = [x, x + m_0]$. WLOG b/c translation invariance. Let $a_1/2$ be additional measure infected at $t = 1$ on the left of I_0 and conjecture that > 0
- We know that the guy $x - a_1/2$ must be ‘indifferent’:

 $G(a_1/2 + m_0) - G(a_1/2) = q < G(m_0)$

If x strictly prefers to take 1,
then by dec. differences someone to the left must also take 1
Expression for m_0

Lemma

Contagion occurs from (G, m_0, q) if and only if $G(m_0) > q$

- Sketch: (⇒) Consider any $i < x$ and define $\epsilon := x - i$. If the condition on G doesn’t hold,

 $$q \geq G(m_0) > G(\epsilon + m_0) - G(\epsilon)$$

 because g is decreasing.

- But then any $i < x$ is not infected in period 1. So $m_{t+1} \leq m_t$ and $\lim_{t \to \infty} m_t \leq m_0 < +\infty$

- **Useful expression from the lemma:**

 $$m_0(G, q) = G^{-1}(q)$$

 (Min-Seed)

- Interpretation: **Local links** matter for resilience
 - $G(x)$ is the ‘CDF’ of links: ‘what proportion of my links are less than x distance away from me?’
 - $G^{-1}(q)$: ‘what’s the distance of guys around me which needs to be infected before q proportion of my neighbours are infected?’
Expression for a_∞

- Recall: $a_t = m_t - m_{t-1}$
- Define $\bar{G} := 1/2 - G$ as the anti-CDF
- If infection occurs, a_t solve the nonlinear diff. eqn.

$$\bar{G}(a_t/2) - \bar{G}(a_t/2 + m_{t-1}) = q$$

mass of infected neighbours:

$$\bar{G}(a_t/2) - \bar{G}(a_t/2 + m_{t-1})$$

infected at start of t (mass m_{t-1}) | newly infected at time t (mass $a_t/2$)
Expression for a_∞

$$\bar{G}(a_t/2) - \bar{G}(a_t/2 + m_{t-1}) = q$$

- Path $\{a_t\}_t$ will, in general, depend on G.
- Observe that if contagion occurs, a_t will be increasing.
 - from decreasing differences since $m_{t-1} = \sum_{0}^{t-1} a_s$ is growing
- But will converge to a limit:

 $$a_\infty := \lim_{t \to \infty} a_t$$

 $$= 2(\bar{G})^{-1}(q) \quad \text{since} \quad \lim_{m_{t-1} \to \infty} \bar{G}(a_t/2 + m_{t-1}) = 0.$$
 (Lim-Speed)

- Interpretation: **Distant links** matter for speed.
 - $\bar{G}^{-1}(q)$ is the distance ‘from the interval stretching to infinity’ required to have q proportion of neighbours
 - Contrast with **Min-Seed**: $m_0(G, q) = G^{-1}(q)$
Proposition

If $G, G' \in \mathcal{G}$ are such that $G \leq G'$, then for all $q \in (0, 1/2)$,

(i) G is more resilient than G' i.e., $m_0(G, q) \geq m_0(G', q)$; and

(ii) G has a quicker limit speed than G' i.e., $a_\infty(G, q) \geq a_\infty(G', q)$.

Tradeoff is **stark** when FOSD-ordered
Tradeoff is **stark** when FOSD-ordered

- Moving from G to G' as if we’re ‘shifting mass’ from nearby links (closer than x) further away (beyond \bar{x}).

![Diagram showing the tradeoff between G and G', with x and \bar{x} as reference points.](image-url)
Tradeoff is **stark** when FOSD-ordered

- **Proof immediate from expressions...**
- **Resilience:** Fix any $q \in (0, 1/2)$. $G \leq G'$ implies $G^{-1} \leq G'^{-1}$. Hence from our expression for m_0

 $$m_0(G, q) = G^{-1}(q) \leq G'^{-1}(q) = m_0(G', q).$$

- **Speed:** If contagion doesn’t occur, speed is identically zero. If it does, $G \leq G'$ implies $\overline{G} \geq \overline{G'}$ and so $(\overline{G})^{-1} \geq (\overline{G}')^{-1}$ and from our expression for a_∞,

 $$a_\infty(G, q) = 2(\overline{G})^{-1}(q) \geq 2(\overline{G'})^{-1}(q) = a_\infty(G', q).$$
Example: normal distributions

- Suppose that i’s links are ‘normally distributed’ (i is sitting in the middle so i’s links are $\sim N(i, \sigma^2)$)
- $G_\sigma(x) = \Phi(x/\sigma) - \frac{1}{2}$
- Invert and rearrange...

$$m_0(G_\sigma, q) = \sigma \cdot \Phi(q + \frac{1}{2})$$
$$a_\infty(G_\sigma, q) = 2\sigma \cdot \Phi(1 - q)$$

- High σ: more mass on faraway links.
Other ways to shift mass...

- Increasing the s.d. of normal is quite special...
- We’ve seen that local links matter for resilience; faraway links matter for speed.
- These two things can coexist by shifting ‘middle links’:
 - Closer: more local links, less resilient
 - Further: more tail links, quicker speed

Proposition

For $G, G' \in \mathcal{G}$, suppose that there exists some $\bar{x} \in (0, +\infty)$ such that for all $x' \leq \bar{x}$, $G(x') \leq G'(x')$ and for all $x'' \geq \bar{x}$, $G(x'') \geq G'(x'')$.

Then

(i) for sufficiently low values of q, G is both more resilient than G' as well as has slower limit speeds; and

(ii) for sufficiently high values of q, G is both less resilient than G' as well as has quicker limit speeds.
Other ways to shift mass...

Here \(G' \geq G \) before \(\bar{x} \), and the opposite after \(\bar{x} \). Implies that \(G' \) has more local links but also fatter tails.

Note that \(q \) controls ‘how local’ and ‘how far away’ the links need to be for them to matter for resilience and speed.

- lower \(q \) → more remote tails matter, more local neighbourhoods matter
Other ways to shift mass...

Sketch: Choose \(q' = G(\overline{x}) \) and note that by the condition of single crossing at \(\overline{x} \) in the proposition, for any \(q \leq q' \),

\[
m_0(G, q) = G^{-1}(q) \geq G'^{-1}(q) = m_0(G', q).
\]

with the reverse equality for \(q \geq q' \). Choose \(q'' = \overline{G}(\overline{x}) \) and for \(q \leq q'' \) by the condition in the proposition,

\[
a_\infty(G, q) = 2\overline{G}^{-1}(q) \leq 2\overline{G}'^{-1}(q) = a_\infty(G', q)
\]

with the reverse equality for \(q \geq q'' \). Part (i) follows for thresholds \(q \leq q' \land q'' \); part (ii) follows for thresholds \(q \geq q' \lor q'' \).
Other ways to shift mass...

- Cauchy: \(G_{C,\gamma}(x) = \frac{1}{\pi} \arctan(x/\gamma) \)
 - \(m_0(G_{C,\gamma}, q) = \gamma \cdot \tan(q\pi) \), \(a_\infty(G_{C,\gamma}, q) = 2\gamma \cdot \tan((\frac{1}{2} - q)\pi) \)

- Cauchy tails decay polynomially \((\propto 1/x^2)\) hence \(a_\infty \simeq 1/q^2 \).
 - Subgaussian: \(a_\infty \lesssim (\log(1/q))^{1/2} \)

- More generally, always have freedom to control:
 - tails: sub-exponential, heavy tailed, polynomial decay etc.
 - local ‘peakedness’
Tradeoff obtains for any pair of networks

- Note: need \(q < 1/2 \) for contagion to occur; same logic as Morris (2000)

Proposition

For \(G, G' \in \mathcal{G} \), if \(G \neq G' \) then there exists \(q, q' \in (0, 1/2) \) such that one is more resilient than the other under \(q \), but has a quicker limit speed than the other under \(q' \).

- Any two graphs exhibit the tradeoff for some contagion thresholds
- E.g., can find \(q = 0.3, \ q' = 0.1 \) so that
 - \(m_0(G, 0.1) > m_0(G', 0.1) \) \(\leftarrow \) G is more resilient than G'
 - \(a_\infty(G, 0.3) > a_\infty(G', 0.3) \) \(\leftarrow \) G spreads faster than G'
Tradeoff obtains for **any pair** of networks

Sketch pf.: let’s assume WLOG that $G(x) < G'(x)$ for some $x \in [0, \infty)$. This implies that there exists $y \in (G(x), G'(x))$ such that $G^{-1}(y) > x > G'^{-1}(y)$. Now set $q = y < 1/2$ and by the expressions

$$m_0(G, q) = G^{-1}(q) = G^{-1}(y)$$

$$> G'^{-1}(y) = G'^{-1}(q) = m_0(G', q).$$

Next, recall we defined $\overline{G} = 1/2 - G$. There exists $z \in (\overline{G}'(x), \overline{G}(x))$ such that $\overline{G}'^{-1}(z) < x < \overline{G}^{-1}(z)$ and setting $q' = z < 1/2$, we have

$$a_{\infty}(G, q') = \overline{G}^{-1}(q') = \overline{G}^{-1}(z)$$

$$> \overline{G}'^{-1}(z) = \overline{G}'^{-1}(q') = a_{\infty}(G', q').$$
Taking stock

- Tradeoff...
 - ...is stark when graphs ordered by FOSD: for every threshold, one is harder to initiate contagion & spreads faster;
 - ...can be absent for fixed thresholds under ‘single-crossing’ ordering: worst of both worlds—easier to initiate contagion, but also spreads faster
 - ...always occurs for any 2 graphs (but potentially different contagion thresholds);

- Extension 1: What is the link with random (discrete) graphs?

- Extension 2: Higher dimensions vs 1D
 - analytically quite ugly, but some results go through. We may simulate the rest....
(Informal) Link to finite mass population random discrete graphs

- So far we worked on \mathbb{R}. Allows us to speak of ‘limit speed’, work with canonical full-support distributions etc.
- Now: Unit measure of agents $i \in [0, 1]$.
 - Allows us to link contagion results to discrete random graphs: sample uniformly from $[0, 1]$ (see Lovász (2012))
- Define G as was our space of graphs on \mathbb{R}. Define G^T as the space of graphs over the unit circle $[0, 1]$ with similar conditions (density exists, homophily etc.)
- **Goal**: define a transformation $G \rightarrow G^T$ which preserves contagion dynamics (& tradeoffs) studied in \mathbb{R}.
Link to random discrete graphs

Goal: find map \(\psi_s : \mathcal{G} \rightarrow \mathcal{G}^T \) which ‘preserves contagion dynamics’

Here’s the map we use:

Let \(\psi_s \) be this map, where \(s \) controls the shrinkage factor: (in 1st step \(G_s(sx) = G(x) \))

\[
\lim_{t \to \infty} \lim_{s \to 0} a_t(\psi_s(G), q) = s \cdot a_\infty(G, q) \\
\lim_{s \to 0} m_0(\psi_s(G), q) = s \cdot m_0(G, q)
\]
Link to random discrete graphs

- For small but finite \(s \), exhibit the same tradeoffs.
 - Now with avg speed (up to full infected) rather than limit speed.
 - Could work directly on \([0, 1]\) but uglier.

Taking stock:

\[\infty \text{ measure} \xrightarrow{\text{now}} \text{Unit measure} \xrightarrow{\text{Random graphs}} \]

- Graphs in \(G^T \) are graphons: \(W : [0, 1]^2 \rightarrow [0, 1] \).
- \(W(i, j) \) : weight that \(i \) puts on \(j \). In our setting: \(W(i, j) = g(|i - j|) = W(j, i) \).
- Graphons approximate random graphs:
 - Sample \(S \) from \([0, 1]\) uniformly at random.
 - Let’s say \(S = \{i, j\} \). Then on the random graph, \(i \) and \(j \) are connected with probability \(W(i, j) \).

Recent paper in JET by Erol, Parise, and Teytelboym (2020): contagion on graphons approximate contagion on sampled graph
Higher dimensions

- General idea is to work on the Euclidian ball in \mathbb{R}^n. Analog of translation invariance and symmetry s.t. graph can once again be summarized by a single CDF
- But now the dimension, size of the ball, and distance all matter!

$$p^{n=2}(r, d, x)$$ gives the length of the arc of the dotted ball within the solid ball divided by the circumference of the dotted ball
Conclusion

- **Tradeoff**: contagion is faster in networks where it is harder to initiate contagion
Conclusion

- **Tradeoff**: contagion is *faster* in networks where it is *harder* to initiate contagion
- clear empirical implications
- special model but clearly generalizes: what is the right way to do so to make it compelling to network theorists?
Thanks!

