
Online Appendix
�The Response of Drug Expenditure to Non-Linear Contract Design:
Evidence from Medicare Part D�by Einav, Finkelstein, and Schrimpf

A. Spending around the deductible

The same standard economic theory that generates bunching at the (convex) kink as individuals

enter the gap, should also generate �missing mass�at the concave kink created by the sharp price

decreases when individuals hit the deductible amount or hit the catastrophic coverage limit (see

Figure I). It is di¢ cult to analyze the distribution of spending around the catastrophic limit.1 Online

Appendix Figure A3, however, shows no evidence of such missing mass around the deductible level

for individuals in plans with the standard deductibles. We exclude from the analysis the roughly

10% of people in plans with a (non-zero) deductible that is not the standard deductible level. As

with the location of the kink, the level of the deductible is set di¤erently each year in the standard

bene�t. It is $265 in 2007, $275 in 2008, and $295 in 2009.

This �nding of excess mass (bunching), but not missing mass, is mirrored in the labor supply

context where previous research has similarly found excess mass in annual earnings in convex kinks

but not missing mass at concave kinks (Saez 2010). One potential rationale for the bunching at

the gap but the lack of �missing mass� at the deductible amount might be that it is easier to

stop (or delay) utilization in response to an increase in price at the gap than it is to increase (or

speed up) utilization because of an anticipated decrease in price if one were to hit the deductible

level. It would be interesting to see if this lack of missing mass at non-convex kinks is a broader

phenomenon, and if so to understand why. In the context of health insurance, typical contracts

specify a price that is decreasing in total spending, so that most of the generated kinks are non-

convex. Some health insurance contracts, however, have convex kinks, such as high-deductible

Health Reimbursement Accounts, where the price the consumer faces increases discontinuously

when the employer contribution to help cover the deductible is exhausted (Lo Sasso et al. 2010).

1Analysis of the spending distribution around the catastrophic limit is noisy for two reasons. First, only few

people spend enough to put them in the range of the catastrophic limit, so sample sizes are small. Second, the

catastrophic limit is a function of out-of-pocket spending, not total spending. However, the distribution of out-of-

pocket spending changes mechanically when cost-sharing changes. We therefore would need to analyze the distribution

of total spending around the catastrophic limit, but the mapping (from out-of-pocket spending to its associated total

spending) introduces additional noise. Therefore, although we �nd no evidence of missing mass at the catastrophic

limit, given these data issues we do not consider the result particularly informative.
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B. Estimation details

Simulation We estimate our model using simulated minimum distance. As described in Section

IV.D: b' 2 argmin
'2	

(mn �ms('))
0Wn(mn �ms(')):

To calculate ms(') we simulate data given a vector of parameters. To do so, we �rst calculate the

value function for each latent type and plan combination as described below. For each observation

we then simulate S claim histories. Given a person�s chosen plan, age, and other characteristics we

simulate a sequence of claims. We �rst draw the person�s type mis from a multinomial distribution

with probabilities exp(zi�m)=
�PM

k=1 exp(zi�k)
�
. Then, starting from the �rst week of the year

(t = 51) and going until the �nal week of the year (t = 0), we simulate a claim history.2

Cumulative spending begins with xis;51 = 0. The initial health state, �ist, is drawn from its type

speci�c stationary distribution. Each week there is an event with probability �ist. When there is

an event, the log potential claim is log �ist � N(�mis
; �2mis

). The utility cost of not �lling the claim

is !ist, which is equal to �ist with probability 1 � pmis and uniform on (0; �ist) with probability

pmis . The claim is �lled if

�cj(�ist; xist) + �vjm(xist + �ist; t� 1; �ist) � �!ist + �vjm(xist; t� 1; �ist);

In this case, xist�1 = xist + �ist. Otherwise, xist�1 = xist. Finally, �ist�1 is drawn from Hm(�j�ist).
We repeat this simulation until t = 0. We then use the simulated data to calculate the statistics

described in Section IV.D. Since the number of observations is large, we use one simulation per

observation (S = 1).

Minimization Throughout the minimization of the objective function, the underlying random

draws are kept constant and only shifted and/or rescaled as the parameters change. Nonetheless,

the simulated objective is not continuous with respect to ' due to discrete changes in whether

some simulated potential claims are �lled or not. The large number of potential sequences of

claims makes smoothing the objective function di¢ cult. Instead, we use a minimization algorithm

that is robust to poorly behaved objectives, the covariance matrix adaptation evolution strategy

(CMA-ES) of Hansen (2006). Like simulated annealing and various genetic algorithms, CMA-ES

incorporates randomization, which makes it e¤ective for global minimization. Like quasi-Newton

methods, CMA-ES also builds a second order approximation to the objective function, which makes

CMA-ES much more e¢ cient than purely random or pattern based minimization algorithms. In

comparisons of optimization algorithms, CMA-ES is among the most e¤ective existing algorithms,

especially for non-convex non-smooth objective functions (Hansen et al. 2010; Rios and Sahinidis

2013). Andreasen (2010) shows that CMA-ES performs well for maximum likelihood estimation of

2For 65 year olds we start from the week they enrolled in Medicare Part D. Since our data only contains the

month, but not week, of enrollment, we draw the enrollment week from a uniform distribution within the enrollment

month.
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DSGE models. As discussed by Hansen and Kern (2004), an important parameter for the global

convergence of CMA-ES is the population size. We initially set the population size to the default

value of 15 (which is proportional to the logarithm of the dimension of the parameters), and then

increased it to 100. The computation is primarily CPU bound. The estimation takes roughly four

days to run on a server with two Intel Xeon E5-2670 eight-core processors.

Calculation of value function Each individual�s value function depends on her chosen plan, j,

and her unobserved type, m. As in equation (2) in the main text, the Bellman equation is

vjm(x; t; �) = Em

"
(1� �0)�vjm(x; t� 1; �0) + �0

 
max

(
�cj(�; x) + �vjm(x+ �; t� 1; �0);

�! + �vjm(x; t� 1; �0)

)!������
#
;

where the subscripts denote plan j and type m. The expectation is subscripted by m to emphasize

that it depends on the type-speci�c distribution of �, !, and �0. Given that vjm(x; 0; �) = 0, we can

compute an approximation to vjm sequentially. First, we approximate vjm(x; 1; �). Then, we use

that approximation to compute vjm(x; 2; �), and so on. To be more speci�c, let fxk;jgKk=1 be a large
set of values of x that cover the support of x. Then, given some approximation to vjm(x; t� 1; �),
say ~vjm(x; t� 1; �), we compute

vk;jm� = (1� �m)�~vjm(xk;j ; t� 1) + �mEm

"
max

(
�cj(�; xk;j) + �~vjm(xk;j + �; t� 1; �0);

�! + �~vjm(xk;j ; t� 1; �0)

)������m
#
:

We then calculate ~vjm(x; t; �) using linear interpolation between the f(xk;j ; vk;jm�)g values.3 We
allow xk;j to di¤er for each plan. For each plan, xk;j is set to 20 evenly spaced points between 0

and the deductible amount, 20 evenly spaced points between the deductible amount and the kink

location, 20 evenly spaced points in the gap, and only 2 points above the catastrophic limit. Thus,

plans with a deductible use K = 62 interpolation points and plans without a deductible use K = 42

interpolation points. Above the catastrophic limit, c(�; x) = C� for some constant C, so the value

function is constant and two interpolation points su¢ ce.

To calculate vk;jm�, we must integrate over �, !, and �0. �0 is discrete, so integrating over its

distribution is straightforward. For � and !, we must compute

Em [max f�cj(�; xk) + �~vjm(xk + �; t� 1; �) ; �! + �~vjm(xk; t� 1; �)g] :

We approximate the expectation over � using Gauss-Hermite quadrature with 30 integration points.

Given the assumed distribution of !=�, the remaining conditional expectation over ! given � has a

3We also experimented with shape preserving cubic interpolation. The resulting value function approximation is

very similar. We use linear interpolation in the estimation because it is less computationally intensive.
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closed form. In particular,

Em

"
max

(
�cj(�; xk;j) + �~vjm(xk;j + �; t� 1; �);

�! + �~vjm(xk;j ; t� 1; �)

)#
=

=Em

26664
P
�
cj(�;xk;j)��~vjm(xk;j+�;t�1;�)+�~vjm(xk;j ;t�1;�)

� � !
�

��� �� (�cj(�; xk;j) + �~vjm(xk;j + �; t� 1; �))+
+

0@ P
�
cj(�;xk;j)��~vjm(xk;j+�;t�1;�)+�~vjm(xk;j ;t�1;�)

� > !
�

��� �� �
�
�
E
h
�!

��� cj(�;xk;j)��~vjm(xk;j+�;t�1;�)+�~vjm(xk;j ;t�1;�)� > !
�

i
+ �~vjm(xk;j ; t� 1; �)

� 1A
37775 ;

where

P
�
C � !

�

��� �� =
8>>><>>>:
0 if C � 0

pmC if C 2 (0; 1)

1 if C � 1

and

E
h
!
���!
�
< C

i
=

8<:
Cpm
2 if C 2 [0; 1)

1� pm + pm
2 if C � 1

:

Code The estimation code is written in C++. It is available at https://bitbucket.org/paulschrimpf/medicared/

overview. It uses the covariance matrix adaptation evolution strategy (CMA-ES) of Hansen and

Kern (2004) and Hansen (2006) to minimize the objective function. ALGLIB (www.alglib.net) is

used for random number generation, interpolation, and integration.

C. More details about model extensions

In the main text we report results from various variants and extensions to the baseline model.

Some of the variations, like changing the number of types, are mechanical. Others require some

explanation. This section describes the two less trivial variations of the model, and how the value

function computation is altered for each.

C.1. Allowing for risk aversion

As stated in the main text, we introduce constant absolute risk aversion while maintaining perfect

intertemporal substitution by specifying recursive preferences as in Kreps and Porteus (1978) or

Epstein and Zin (1989). Individual preferences over a stochastic sequence of �ow utilities, futg, are
de�ned recursively as

Vt = ut + �

�
�1
�

�
logEt[e

��Vt+1 ];

where � is the coe¢ cient of absolute risk aversion. Using the form of ut in our model, this becomes

Vt = �`tdtcj(�t; xt) + `t(1� dt)(�!t) + �
�1
�

(
dt`t logE[exp(��Vt�1)jxt�1 = xt + �t; �t = �]+
+(1� dt`t) logE[exp(��Vt�1)jxt�1 = xt; �t = �]

)
;
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where `t = 1 if there was a prescription to potentially �ll and dt = 1 if the prescription was �lled.

The expected value function is

~v(x; t; �) =
X
�0

P (�0j�)

8><>: �0E

"
exp

 
��max

(
�cj(�; x) + ��1� log ~v(x+ �; t� 1; �

0);

�! + ��1� log ~v(x; �
0; t� 1)

)!#
+(1� �0)~v(x; t� 1; �0�)

9>=>; :
Let

v(x; t; �) =
�1
�
log ~v(x; t; �):

The Bellman equation for v is then

v(x; t; �) =
�1
�
log

0B@X
�0

P (�0j�)

8><>: �0E

"
exp

 
��max

(
�cj(�; x) + �v(x+ �; t� 1; �0);

�! + �v(x; t� 1; �0)

)!#
+(1� �0) exp(���v(x; t� 1; �0))

9>=>;
1CA

The expectation of the maximum is calculated in a similar way as in the risk neutral case.

C.2. Allowing for the delay of purchasing to subsequent year

As described in the main text, we assume that each prescription must be �lled either immediately, at

the start of next year, or never. A potential prescription comes with a monetary cost � and a utility

�ow cost of not �lling !. If a potential prescription is not �lled, then each period � depreciates at

rate ��h and ! depreciates at rate �h. Un�lled prescriptions may be �lled at the start of the next

year at a (known) expected price qi. We assume that qi is known and taken as given. To calculate

it, we calculate E[pjrisk score;plan] and assume that people use their current year risk score and
plan to predict next year�s end-of-year price. We compute qi = E[pjrisk score;plan] by dividing risk
score into 3 bins (lowest third, middle third, and highest third) and taking the average observed

end-of-year price in each plan and bin.

With these assumptions, the dynamic optimization is di¤erent for each plan and risk score bin,

so we subscript the value function by i to capture the idea that it varies with qi, which as described

varies by plan and risk score tercile. Then, the value functions can be written as

vi(x; t; �) =

Z 266664
(1� �0)�vi(x; t� 1; �0)+

+�0
R
max

8><>:
�cj(�; x) + �vi(x+ �; t� 1; �0);

�! 1�(��h)
t

1���h � �t�thqi� + �ivi(x; t� 1; �0)
� !
1���h + �vi(x; t� 1; �

0)

9>=>; dG(�; !)
377775 dH(�0j�);

To calculate the value function we must compute,

Z
�

Z


max

8><>:
�cj(�; x) + �vi(x+ �; t� 1; �0);

�! 1�(��h)
t

1���h � �t�thqi� + �vi(x; t� 1; �0)
� !
1���h + �vi(x; t� 1; �

0)

9>=>; dG(!j�)dG(�):
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We calculate the inner integral analytically using the assumption that !� � U(0; 1), and calculate
the outer integral using quadrature. The inner integral can be written as

B = �

Z 1

0
max

8>><>>:
�cj(�;x)+�vi(x+�;t�1;�0)

� ;

� r
1���h +

�vi(x;t�1;�0)
� ;

�r 1�(��h)
t

1���h � (��h)tqi + �vi(x;t�1;�0)
�

9>>=>>; dr:
The values of r where we switch from one of the three terms in the max to another are

r1 =

�
�h
�h

�t
qi(1� ��h)

r2 =
1� ��h
�

�
cj(�; x)� �vi(x+ �; ; t� 1; �0) + �vi(x; t� 1; �0)

�
r3 =

1� ��h
1� (��h)t

1

�

�
cj(�; x)� �vi(x+ �; t� 1; �0) + �vi(x; t� 1; �0)� (��h)tqi

�
If 0 � r1 � r2 � r3 � 1, then our expression for the inner integral becomes

B = �

0BB@
R r1
0 � r

1���h +
�vi(x;t�1;�0)

� dr+

+
R r3
r1
�r 1�(��h)

t

1���h � (��h)tqi + �vi(x;t�1;�0)
� dr+

+
R 1
r3
� cj(�;x)+�vi(x+�;;t�1;�0)

� dr

1CCA

=

0BB@ �� r21=2
1���h + r1�vi(x; t� 1; �

0)+

�1
2(r

2
3 � r21)

1�(��h)t
1���h +

�
�(��h)tqi� + �vi(x; t� 1; �0)

�
(r3 � r1)+

+(1� r3)
�
�cj(�; x) + �vi(x+ �; ; t� 1; �0)

�
1CCA :

It will always be true that 0 � r1 � 1. However, the rest of these inequalities need not hold. If

0 � r2 � r1 � r3, then the integral is

B = �

 R r2
0 � r

1���h +
�vi(x;t�1;�0)

� dr+

+
R 1
r2
� cj(�;x)+�vi(x+�;;t�1;�0)

� dr

!

=

 
�� r22=2

1���h + r2�vi(x; t� 1; �
0)+

+(1� r2)
�
�cj(�; x) + �vi(x+ �; ; t� 1; �0)

� ! :
Other cases are treated similarly.

Additional references mentioned only in the online appendix

Andreasen, Martin Møller. (2010). �How to Maximize the Likelihood Function for a DSGE Model.�

Computational Economics. 35(2): 127-154.

Lo Sasso, Anthony, Lorens Helmchen and Robert Kaestner. 2010. �The E¤ects of Consumer

Directed Health Plans on Health Care Spending.�Journal of Risk and Insurance 77(1): 85-103.
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Figure A1: A Graphical Illustration for The Rationale to Observe Bunching at The Kink

This �gure illustrates graphically the theoretical prediction that individuals will bunch at the convex kink point in

their budget set. The solid line illustrates the budget set of the same standard bene�t design as in Figure I; the

standard budget set has a kink (price increase) at $2,510 in total spending. By contrast, the dashed line considers an

alternative budget set with a linear budget (above the deductible) at the co-insurance arm�s cost sharing rate. The

solid and dashed indi¤erence curves represent two individuals with di¤erent healthcare needs who would have di¤erent

total drug spending under the linear contract. The (healthier) individual denoted by the solid indi¤erence curve is

not a¤ected by the introduction of this kink; his indi¤erence curve remains tangent to the lower part of the budget

set. The (sicker) individual with the dashed indi¤erence curves consumed above the kink under the linear budget

set; with the introduction of the kink her indi¤erence curve is now exactly tangent to the upper part of the budget

set at the kink. With the introduction of the kink, this latter individual would therefore decrease total spending to

the level of the kink location. By extension, any individual whose indi¤erence curve was tangent to the linear budget

set at a spending level between that of the two individuals shown would likewise decrease total spending to the level

of the kink location, thereby creating �bunching�at the kink.
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Figure A2: Distribution of Annual Drug Expenditure for Individuals with Non-Standard
Kink Location

Our baseline sample consists of individuals with a standard kink location. A small sample of individuals excluded

from the baseline sample have a kink at an amount that is di¤erent from the standard level. The modal non-standard

kink amount is $2,100; most of these plans are in 2007 or 2008. The �gure displays the histogram of total annual

prescription drug spending (in $20 bins) for individuals with the modal ($2,100) non-standard kink location in 2007

or 2008. Such individuals are not in our baseline sample. The x-axis reports total spending relative to the $2,100

kink location. The dashed vertical lines indicate the level of the standard kink locations in 2007 ($2,400) and 2008

($2,510). Frequencies are normalized to sum to 1 across the displayed range. N =12,189. The �gure shows that

for individuals in plans with the $2,100 kink location, there is evidence of excess mass around $2,100 but not at the

standard kink locations. Naturally, the �gure is somewhat noisier than the baseline analyses that use the considerably

larger baseline sample.
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Figure A3: Distribution of Annual Drug Expenditure Around The Deductible Amount

The �gure displays the histogram of total annual prescription drug spending (in $10 bins) for individuals in

our baseline sample in plans with the (year-speci�c) standard deductible amount (which was $265 in 2007,

$275 in 2008, and $295 in 2009). The x-axis reports total spending relative to the (year-speci�c) deductible

amount. Frequencies are normalized to sum to 1 across the displayed range. N =186,548.
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Figure A4: The Relationship between Excess Mass around The Kink and The Price
Change at The Kink

Figure graphs the excess mass in di¤erent plans against the size of the kink (i.e. the size of the price increase faced

by the consumer as she moves into the gap). The size of the circles is proportional to the number of bene�ciaries

in the plan. Analysis is limited to the approximately 80% of our baseline sample who are in plans with at least

1,000 bene�ciaries within $2,000 of the kink. Excess mass is calculated separately for each plan using the exact same

procedure described for Figure IV. The dashed line in the �gure represents the enrollee-weighted regression line of the

relationship between excess mass and kink size; the slope of the line is 0.19 (standard error = 0.08) and the regression

has an R-square of 0.011. N =1,985,697.
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Figure A5: An Alternative Measure to Compute Predicted Claim Propensity around The
Kink

Figure is the same as the December (bottom right) panel of Figure V of the main text, in which the dashed (�baseline�)

line is generated by regressing the logarithm of the share of individuals with no purchase in December in each $20

spending bin, using only individuals with annual spending (relative to the kink location) between -$2,000 and -$500,

on the mid-point of the spending amount in the bin, weighting each bin by the number of bene�ciaries in that bin.

This prediction forces the predictive line to be monotone in spending, and to asymptote to one as annual spending

approach in�nity. The solid (�alternative�) line shows how the prediction would change if the restriction is not

imposed. It is generated by regressing the share of individuals with purchase in December in each $20 spending bin,

using only individuals with annual spending (relative to the kink location) between -$2,000 and -$500, on a quadratic

function of the mid-point of the spending amount in the bin, weighting each bin by the number of bene�ciaries in

that bin. Online Appendix Table A1 shows how this alternative prediction a¤ects the quantitative results.
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Figure A6: Out-of-Sample Model Predictions for The Distribution of Annual Drug Ex-
penditure

Figure presents the out-of-sample �t of the model. Top left panel replicates the in-sample �t of the model as

in the top panel of Figure VI in the main text. Recall (see footnote 22 in the main text) that for estimation

we limit the baseline sample to the 500 most common plans, and then only use a 10% random subsample

to reduce the computational time. The top right panel presents the �t of the model predictions against

a di¤erent 10% random subsample. The bottom left presents the model prediction for other plans (those

that are not the 500 most common), taking these plans�features into account when generating predictions.

Finally, the bottom right panel presents the model prediction for 2010 spending (recall that our baseline

data covers 2007-2009 only). Here the �t is not as striking, presumably due to macroeconomic changes (e.g.,

in drug prices) that change over time. Still, the model�s prediction change (relative to the 2009 predictions)

in the right direction.
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Figure A7: Out-of-Sample Model Predictions for The Distribution of Annual Drug Ex-
penditure around The Kink

Figure presents the out-of-sample �t of the model. Top left panel replicates the in-sample �t of the model as in

the bottom panel of Figure VI in the main text. Recall (see footnote 22 in the main text) that for estimation

we limit the baseline sample to the 500 most common plans, and then only use a 10% random subsample

to reduce the computational time. The top right panel presents the �t of the model predictions against

a di¤erent 10% random subsample. The bottom left presents the model prediction for other plans (those

that are not the 500 most common), taking these plans�features into account when generating predictions.

Finally, the bottom right panel presents the model prediction for 2010 spending (recall that our baseline

data covers 2007-2009 only). Here the �t is not as striking, presumably due to macroeconomic changes (e.g.,

in drug prices) that change over time. Still, the model�s prediction change (relative to the 2009 predictions)

in the right direction.
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Figure A8: Out-of-Sample Model Predictions for The Monthly Propensity to Claim

Figure presents the out-of-sample �t of the model. Top left panel replicates the in-sample �t of the model

as in Figure VII of the main text. Recall (see footnote 22 in the main text) that for estimation we limit

the baseline sample to the 500 most common plans, and then only use a 10% random subsample to reduce

the computational time. The top right panel presents the �t of the model predictions against a di¤erent

10% random subsample. The bottom left presents the model prediction for other plans (those that are not

the 500 most common), taking these plans�features into account when generating predictions. Finally, the

bottom right panel presents the model prediction for 2010 spending (recall that our baseline data covers

2007-2009 only). Here the �t is not as striking, presumably due to macroeconomic changes (e.g., in drug

prices) that change over time. Still, the model�s prediction change (relative to the 2009 predictions) in the

right direction.
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Figure A9: Relative January Drug Expenditure for Deductible and No-Deductible Plans

Figure replicates the top panel of Figure IX, but does it separately for bene�ciaries who are enrolled in a deductible

plan (black bars, N = 305; 437) and no-deductible plan (gray bars, N = 1; 148; 102) in year y + 1. Figure shows

the individual�s relative January spending in year y + 1 as a function of her total annual spending (relative to the

kink location, which is normalized to 0) in the prior year (year y). �Relative� January spending in year y + 1 is

de�ned as the ratio of January spending in year y + 1 to average monthly spending in March through June (of

year y + 1). Each bar on the graph represents individuals within $50 above the value on the x-axis. The y-axis

reports the average, for each year t spending bin, of the �relative January spending�measure. The dashed, horizontal

�counterfactual�relative January spending is calculated as the average relative January spending for people -500 to

-2000 below the kink in year y:
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Table A1: Using an Alternative Measure to Quantify The Heterogeneity across Types of
Drugs in The Response to The Kink

Actual Predicted
P(Dec. Purchase) P(Dec. Purchase)

(1) (2) (3) (4) (6)

All 100.0 100.0 0.846 0.907 0.068  (0.002) 1.333

Chronic 69.6 77.1 0.762 0.841 0.094  (0.003) 1.323
Acute 30.4 22.9 0.532 0.612 0.129  (0.005) 1.335

Maintenance 85.1 90.1 0.807 0.879 0.082  (0.002) 1.350
Non­Maintenance 14.9 9.9 0.303 0.338 0.104  (0.008) 1.151

Brand 33.4 74.8 0.624 0.744 0.161  (0.003) 1.362
Generic 66.6 25.2 0.731 0.819 0.107  (0.003) 1.235

"Inappropriate" a 2.7 1.3 0.075 0.091 0.178  (0.018) 1.262

Excess January
spending

(5)

Drug Type
Percent of
purchases

Percent of
spending ($)

Percent decrease in
purchase probability

Table replicates Table IV in the main text, but uses a less restrictive way to generate �predicted� probabilities.

Online Appendix Figure A5 provides more details about the comparison between the primary and alternative way to

construct these predictions.
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Table A2: Estimated Price Elasticities as Implied by The Estimated Model Parameters

(Uniform) Price Reductiona Average Annual Spending Implied "Elasticity"b

0% (Baseline) 1,760
1.0% 1,769 ­0.54
2.5% 1,776 ­0.38
3.0% 1,779 ­0.36
3.5% 1,781 ­0.35
5.0% 1,789 ­0.33
7.5% 1,801 ­0.31

10.0% 1,813 ­0.30
15.0% 1,837 ­0.29
25.0% 1,887 ­0.29
50.0% 2,018 ­0.29
75.0% 2,163 ­0.31

Table shows the model�s estimate of the impact of various changes to the 2008 standard bene�t budget set (shown

in Figure I). The �rst row shows predicted average annual spending under the existing budget set. Other rows show

predicted average annual spending (and the implied �elasticity�) of various uniform price reductions to this budget

set.
a �Uniform price reduction� is achieved by reducing the price (i.e. consumer coinsurance) in every arm of the 2008

standard bene�t by the percent shown in the table.
b The implied �elasticity� is calculated by computing the ratio of the percent change in spending (relative to the

baseline) to the percent change in price (relative to the baseline).
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Table A3: Parameter Estimates from The Extension of The Model that Allows Cross-Year
Substitution

j=1 j=2 j=3 j=4 j=5

Parameter estimates:
Beta_0 0.00 3.45 3.94 ­4.51 ­4.43

­­ (0.0006) (0.0003) (0.0004) (0.0003)

Beta_Risk 0.00 ­2.49 ­2.85 4.07 6.06
­­ (0.0006) (0.0005) (0.0003) (0.0003)

Beta_65 0.00 ­0.10 1.19 1.08 ­1.52
­­ (0.0009) (0.0001) (0.0003) (0.0001)

δ
δω (=δθ)
μ ­0.04 3.98 3.00 4.30 4.25

(0.0001) (0.0044) (0.0001) (0.0045) (0.0046)

σ 2.46 1.29 1.64 0.28 1.46
(0.0001) (0.0040) (0.0040) (0.0025) (0.0060)

p 0.87 0.94 0.58 0.59 0.29
(0.0001) (0.0007) (0.0050) (0.0071) (0.0013)

λlow 0.005 0.09 0.44 0.64 0.31
(0.0001) (0.0004) (0.0017) (0.0035) (0.0012)

λhigh 0.006 0.12 0.58 0.84 0.41
(<0.0001) (0.0001) (0.0018) (0.0049) (0.0009)

Pr(λt=λlow|λt+1=λlow)
Pr(λt=λhigh|λt+1=λhigh)

Implied shares:
Overall 0.06 0.27 0.37 0.03 0.28

For age=65 0.01 0.14 0.85 0.00 0.00
For age>65 0.06 0.27 0.35 0.03 0.29

Other implied quantities:
d(Share)/d(Risk) 0.01 ­0.35 ­0.53 0.06 0.80

E(θ) 20 123 76 77 204

Implied annual expected spending:
Full insurance 6 753 2,280 3,338 4,295

0.25 coins. Rate 5 577 1,951 2,845 3,988

­­­­­­­­­­­­­­­­­­­ 0.661 (0.003) ­­­­­­­­­­­­­­­­­­­

­­­­­­­­­­­­­­­­­­­ 0.549 (0.002) ­­­­­­­­­­­­­­­­­­­
­­­­­­­­­­­­­­­­­­­ 0.566 (0.002) ­­­­­­­­­­­­­­­­­­­

­­­­­­­­­­­­­­­­­­­ 0.612 (0.003) ­­­­­­­­­­­­­­­­­­­

Top panel reports parameter estimates, with standard errors in parentheses, from the extension of the model that

allows for cross-year substitution. Standard errors are calculated using the asymptotic variance of the estimates (see

equation (10) in the main text), with M estimated by the numeric derivative of the objective function. Bottom panels

report implied quantities based on these parameters. Note that spending depends on the arrival rate of drug events

(�), the distribution of event size (�), as well as on the decision to claim, which is a¤ected by the features of the

contract and the parameter p.
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