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Abstract. Economists often estimate models using data from a particular domain, e.g.

estimating risk preferences in a particular subject pool or for a specific class of lotteries.

Whether a model’s predictions extrapolate well across domains depends on whether the es-

timated model has captured generalizable structure. We provide a tractable formulation for

this “out-of-domain” prediction problem and define the transfer error of a model based on

how well it performs on data from a new domain. We derive finite-sample forecast intervals

that are guaranteed to cover realized transfer errors with a user-selected probability when

domains are iid, and use these intervals to compare the transferability of economic models

and black box algorithms for predicting certainty equivalents. We find that in this appli-

cation, the black box algorithms we consider outperform standard economic models when

estimated and tested on data from the same domain, but the economic models generalize

across domains better than the black-box algorithms do.
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1. Introduction

When we estimate models on data, we often hope that the estimated model will be useful

for making predictions in domains beyond the specific context from which the data were

drawn. For example, we might estimate a pricing model on purchase data from one popu-

lation of consumers and use it to predict demand in a new population with different demo-

graphics, or estimate a model of risk preferences on choices over insurance plans and use it to

predict choice over state-contingent consumption bundles. This paper provides a tractable

approach for evaluating cross-domain transfer performance, which (among other uses) can be

applied to compare the generalizability of economic models and black box machine learning

methods. Specifically, we derive finite-sample forecast intervals for a model’s out-of-domain

error, and then use them to evaluate the transferability of models and black box algorithms

for predicting risk preferences over binary lotteries.1 In this application, economic models

transfer more reliably than two popular black box algorithms.

The question of how well a model trained on data from one domain will perform in a new

domain dates back at least to Haavelmo (1944), and is a focus of work on external validity

(Pearl and Bareinboim, 2011; Tipton and Olsen, 2018; Chassang and Kapon, 2022) and out-

of-distribution prediction (Shen et al., 2021).2 Understanding the transfer performance of

various models is of increased relevance given the recent popularity of black-box machine

learning methods within economics (Hofman et al., 2021). Black box methods (such as

random forest algorithms) have been widely criticized for their lack of generalizability, and

one reason some economists prefer structured economic models is the belief that such models

are more likely to capture fundamental regularities that apply in a wide variety of domains

(Coveney et al., 2016; Athey, 2017; Manski, 2021). On the other hand, economic models

have also been criticized for failing to generalize. For example, although the theoretical

literature on risk preferences includes some of the most widely used models in economics, it

has been singled out as a setting where large datasets and flexible black box methods may

1 We use the term “forecast interval,” rather than “confidence interval,” to reflect the random nature of
target, namely the realized (rather than expected, median, etc.) transfer error, but we could view these
intervals as confidence intervals for these random targets.
2This literature considers other issues as well, such as whether parameter estimates or causal findings gen-
eralize to new domains.
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help identify new regularities and more complete models (e.g., Plonsky et al. 2019, Ke et al.

2020, and Peterson et al. 2021).3,4

Our conceptual framework, described in Section 2, is an extension of the usual “out-

of-sample” evaluation to “out-of-domain” evaluation. In the standard out-of-sample test,

a model’s free parameters are estimated on a training sample, and the predictions of the

estimated model are evaluated on a test sample, where the observations in the training and

test samples are drawn from the same distribution. We depart from this framework by

supposing that the distribution of the data varies across a set of “domains,” but that these

domain-specific distributions are themselves drawn iid. While this assumption is restrictive,

and rules out some interesting prediction problems, we view it as a useful first step that

yields easy-to-apply procedures which we then generalize.

We consider several measures for a model’s transferability across domains. First, we ask

how well the model will predict in a sample from an as-yet unobserved target domain. We

call this the model’s transfer error. Since the size of the raw transfer error can be difficult to

interpret, we then define a model’s normalized transfer error to be the ratio of its transfer

error to a proxy for the best achievable error on the sample from the target domain. Finally,

we ask how much is lost by transferring a model across domains instead of re-estimating

the model’s parameters on the new domain of interest. We call this the model’s transfer

deterioration. The first two measures can help select between models for making predictions

in new domains; the third measure indicates the value of obtaining data from the target

domain.

Section 3 shows how to construct forecast intervals with guaranteed coverage probability

for these measures, using a meta-data set of samples from already observed domains. To

construct a forecast interval for the estimated model’s transfer error on the new domain, we

split the observed domains in the meta-data set into training and test domains. We estimate

the parameters of the model on the samples from the training domains and evaluate its

transfer error on each of the test domains. Pooling these transfer errors across different

choices of training and test domains yields an empirical distribution of transfer errors. We

3Peterson et al. (2021) writes: “We believe that use of large datasets coupled with machine-learning algo-
rithms offers enormous potential for uncovering new cognitive and behavioral phenomena that would be
difficult to identify without such tools.”
4A second example is predicting play in games, where Hartford et al. (2016) says “[t]he recent success of
deep learning has demonstrated that predictive accuracy can often be enhanced. . . by fitting highly flexible
models that are capable of learning novel representations.”
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show that for every quantile τ , the interval bounded by the τ -th and (1− τ)-th quantiles of

the pooled transfer error is a valid forecast interval for the transfer error on a new, unseen

domain. The same method yields forecast intervals for our other two measures as well. We

next relax our iid sampling assumption, deriving a modified procedure for cases where the

distributions in training domains are drawn iid from one distribution, while the distribution

in the target domain is drawn from another.

Section 4 uses our results to evaluate the transferability of predictions of certainty equiv-

alents for binary lotteries. The samples correspond to observations from different subject

pools, so a model’s transfer error describes how well it predicts outcomes in one subject

pool when estimated on data from another. We evaluate two models of risk preferences, ex-

pected utility and cumulative prospect theory, and two popular black box machine learning

algorithms, random forest and kernel regression. We first consider a standard out-of-sample

test, where the training and test data are drawn from the same subject pool, and find that

the black box algorithms slightly outperform the economic models out-of-sample for most of

the subject pools. This could be because the black box learns general properties of the map

from lotteries to certainty equivalents that the economic models miss. Alternatively, it could

be that the gains of the black boxes are specific to the within-domain prediction task, and

do not correspond to improved generalizability. Transfer performance points to the latter:

while the forecast intervals for the black box algorithms and economic models overlap, the

forecast intervals for the black box methods are wider, and their upper bounds are substan-

tially higher. For example the 5th and 95th percentiles of the pooled Cumulative Prospect

Theory normalized transfer errors (which constitute an 81% forecast interval) are 1.02 and

2.62, while the same percentiles for a random forest algorithm are 1.02 and 6.42. Thus, even

though the economic models perform worse within-domain for most of the subject pools,

their predictions generalize more reliably across subject pools.

Why do the black boxes perform worse at transfer prediction in this setting? A natural

explanation, based on intuition from conventional out-of-sample testing, is that black boxes

are very flexible and hence learn idiosyncratic details that do not generalize across subject

pools. But when we restrict the analysis to a subset of our samples involving the same set

of lotteries, the resulting forecast intervals are nearly identical across all of the prediction

methods, so black box methods do not always transfer worse. Instead, black boxes seem to

transfer worse when the primary source of variation across samples is a shift in the marginal
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distribution over features (i.e. which lotteries appear in the sample), rather than a shift in

the distribution of outcomes conditional on features (the distribution of certainty equivalents

given fixed lotteries).

1.1. Related Literature. This paper is situated at the intersection of several literatures

in economics, computer science, and statistics. These literatures consider several related

but distinct tasks: synthesizing evidence across different domains, improving the quality of

extrapolation from one domain to another, and quantifying the extent to which insights from

one domain generalize to another. Our results are most closely related to this third strand.

The first objective, synthesizing results across different domains, is a particular focus of

the literature on meta-analysis.5 Our goal is instead to assess the cross-domain forecast

accuracy of a model. These problems are related, and Meager (2019) and Meager (2022)

in particular provide posterior predictive intervals for new domains in the context of her

application. Unlike our approach, the predictive intervals reported in those papers rely on a

parametric model for the distribution of effects across domains.

There is also a large literature that aims to extrapolate results from one domain to another.

Within computer science, the literature on domain generalization (Blanchard et al. 2011 and

Muandet et al. 2013) develops models that generalize well to new unseen domains (Zhou

et al., 2021).6 Similarly, several papers within economics (e.g., Hotz et al. 2005 and Dehejia

et al. 2021) use knowledge about the distribution of covariates to extrapolate out-of-domain.

In contrast, our focus is not on developing new models or algorithms with good out-of-domain

guarantees, but rather on developing forecast intervals for the out-of-domain performance of

models and algorithms that are used in practice.7

Finally, the literature on external validity studies the extent to which results obtained in

one domain hold more generally. This paper does not focus on the generalizability of insights

from randomized control trials (e.g. Deaton, 2010; Imbens, 2010) or laboratory experiments

5See Card and Krueger (1995), Benartzi et al. (2017), DellaVigna and Pope (2019), Hummel and Maedche
(2019), Bandiera et al. (2021), Imai et al. (2020) and Vivalt (2020) among others.
6Our problem corresponds to homogeneous domain generalization, where the set of outcomes Y is constant
across domains, in contrast to heterogenous domain generalization, where the outcome set potentially varies
across domains as well. There is also a related literature on domain adaptation, which aims to improve
predictions when some data from the target domain is available – see Zhou et al. (2021).
7We focus on models that are estimated on a particular domain and ported to another without adjustment,
but as discussed in Section P.1 our methods also apply to models that are re-estimated using some data from
the target domain.

4



(e.g. Levitt and List, 2007; Al-Ubaydli and List, 2015), but instead on a model’s generalizabil-

ity across exchangeable domains.8 Our use of exchangeability to construct bounds extends

work on conformal inference (e.g. Vovk et al., 2005; Barber et al., 2021; Angelopoulos et al.,

2022) by replacing the assumption of exchangeable observations with that of exchangeable

domains.9 Section 3.2 relaxes the exchangeability assumption; our results there connect to

the literature on sensitivity analysis (e.g. Aronow and Lee, 2013; Andrews and Oster, 2019;

Nie et al., 2021; Sahoo et al., 2022).

Finally, we join a small but growing body of work regarding the relative value of economic

models and black box algorithms, and how the two approaches can be combined for better

prediction and explanation of social science phenomena (Athey and Imbens, 2016; Fudenberg

and Liang, 2019; Agrawal et al., 2020). Several recent papers compare the predictiveness

of black box algorithms with that of more structured economic models.10 While black box

methods are often very effective given a large quantity of data from the domain of interest,

our results suggest that they may be less effective for transferring across domains. Hofman

et al. (2021) organizes recent work in this area and concludes that more work is needed on

the question “how well does a predictive model fit to one data distribution generalize to

another?” Our paper takes an important step in this direction.

2. Framework

2.1. Statistical model. There is a (random) feature or covariate vector X taking values

in the set X , and a (random) outcome Y taking values in the set Y . A prediction rule is

any mapping σ : X → Y , and Σ denotes the set of all such mappings. Prediction rules are

evaluated using a loss function ` : Y × Y → R+.

Definition 1. The error of prediction rule σ on sample S is

e(σ, S) =
1

|S|
∑

(x,y)∈S

`(σ(x), y)

i.e., the average loss when using σ to predict y given x.

8Another set of papers study the generalizability of instrumental variables estimates (e.g. Angrist and
Fernández-Val, 2013; Bertanha and Imbens, 2020) and causal effects (e.g. Pearl and Bareinboim, 2014;
Park et al., 2023).
9This also differentiates our work from the out-of-distribution prediction literature in computer science (Shen
et al., 2021), which bounds expected transfer error when the test and training distributions are close.
10See e.g. Noti et al. (2016), Plonsky et al. (2017), Plonsky et al. (2019), Camerer et al. (2019), Fudenberg
and Liang (2019), and Ke et al. (2020).
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In a conventional out-of-sample test, the analyst’s choice of prediction rule σ is based on

a training sample Strain of observations (x, y) drawn iid from a distribution p ∈ ∆(X × Y),

and the chosen prediction rule is evaluated on a test sample Stest of observations drawn iid

from the same distribution p. We generalize this framework by supposing that the analyst’s

choice of prediction rule is based on meta-data

M = {S1, . . . , Sn}

consisting of samples across different domains,11 and that the prediction rule is evaluated on

a sample Sn+1 from a new domain. Our main assumption (which we relax in Section 3.2)

is that samples are generated iid from a meta-distribution µ ∈ ∆(P × N) over distributions

P ≡ ∆(X × Y) and sample sizes N. We define Sd ∼iid µ to mean that each sample Sd

is generated by first independently drawing a distribution and sample size (Pd,md) ∼ µ,

and then independently drawing md observations (x, y) ∼iid Pd.12 This framework nests the

usual one when µ assigns probability 1 to a single distribution in p ∈ P or when µ assigns

probability 1 to m = 1, but we are primarily interested in settings where neither of these is

the case.

Based on the metadata M, the analyst chooses a prediction rule σ using a decision rule,

which is a (potentially randomized) map ρ from the set of all finite metadata into the set of

distributions on Σ. To develop forecast intervals for performance on the target sample Sn+1,

it will be useful to select σ using strict subsets of the observed samples in the meta-data.

For this purpose we let MT ≡ (St)t∈T denote the samples in metadata M that are indexed

to a selection of training domains T ⊆ {1, . . . , n}.
We focus on two classes of decision rules ρ:

Estimation of an Economic Model/Empirical Risk Minimization. Let Σ∗ be a set of predic-

tion rules derived from an economic model (for example, Expected Utility or Cumulative

Prospect Theory) and let ρΣ∗ be a decision rule that maps training samples MT to the

prediction rule in Σ∗ that minimizes the average error on those samples (and breaks ties

11The domains are distinguished in M. So, for example, the meta-data corresponding to observation of
samples S1 = {z1} and S2 = {z2, z3} is M = (S1, S2) = {{z1}, {z2, z3}} rather than M = {z1, z2, z3}.
12Section 3.3 discusses the iid assumption. We don’t require that Pd have support X ×Y, and in particular
allow the support of X to vary across domains.
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according to a pre-specified rule):13

ρΣ∗(MT ) ∈ argmin
σ∈Σ∗

1

|MT |
∑
S∈MT

e(σ, S). (1)

Training a Black Box Algorithm. We use “black box” as a catchall term for flexible prediction

methods which are not based on explicit economic structure; the specific black box methods

we consider in our application are random forests and kernel regression.

2.2. Measures of transferability. Our main results consider a random index set of train-

ing samples T, drawn from the uniform distribution over all subsets of {1, . . . , n} of a fixed

(user-selected) size r < n. Let MT denote this random selection of samples from M. Be-

low we propose several measures for transferability, which evaluate the performance of the

prediction rule ρ(MT) on a new target sample Sn+1 ∼ µ.

The first measure is the raw error of ρ(MT) on the new sample.

Definition 2 (Transfer Error). The transfer error of prediction rule ρ(MT) on target sample

Sn+1 is14

e(ρ(MT), Sn+1). (2)

This raw transfer error depends on the predictability of the target sample: If the outcomes

y in the target sample can only be poorly predicted using the features x, the lowest achievable

error may be large even given perfect knowledge of the distribution in that domain. This

lowest achievable error may also differ across domains, so it can potentially mask important

differences across models. We thus propose normalizing the transfer error by a proxy for the

best achievable error in the test domain. Specifically, we normalize transfer errors by the

smallest in-sample error achieved by decision rules within a pre-specified set R.15

Definition 3 (Normalized Transfer Error). Fix a finite set of decision rules R with ρ ∈ R.

The normalized transfer error of prediction rule ρ(MT) on test sample Sn+1 is

e(ρ(MT), Sn+1)

minρ̂∈R e(ρ̂(Sn+1), Sn+1)
. (3)

13Under standard continuity and compactness assumptions the minimum is attained.
14Here and throughout the paper, when we write a transfer error for a random prediction rule, we mean the
error with respect to a single draw of σ from the distribution.
15This measure is similar to the “completeness” measure introduced in Fudenberg et al. (2022), without the
use of a baseline model to set a maximal reasonable error, and adapted for the transfer setting by training
and testing on samples drawn from different domains.
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This quantity tells us how many times larger the transfer error of the prediction rule ρ(MT) is

than the best in-sample error achievable by a decision rule fromR. We expect the normalized

transfer error to be bounded below by 1 for all decision rules used in practice.16,17

Our third and final measure evaluates how much is lost by estimating a model on other

samples instead of re-training it on the sample of interest.

Definition 4 (Transfer Deterioration). The transfer deterioration of prediction rule ρ(MT)

on target sample Sn+1 is
e(ρ(MT), Sn+1)

e(ρ(Sn+1), Sn+1)
. (4)

This quantity tells us how many times larger a decision rule’s transfer error is than its in-

sample error e(ρ(Sn+1), Sn+1) in the test sample. We again expect this ratio to be bounded

below by 1 for rules used in practice (see footnote 16); it is equal to 1 only if the transfer

error of the model is the same as its in-sample error.18 The larger the transfer deterioration

of the decision rule, the more valuable it is to re-train the model on the new domain instead

of transferring parameters estimated from other domains.

3. Theoretical Results

3.1. IID Baseline. Our goal is to develop forecast intervals for the measures defined in

Section 2.2, i.e., interval-valued functions of the meta-data which cover the quantity with

prescribed probability, regardless of the distribution µ that governs samples across domains.

In many applications only a limited number of domains will be observed, so our focus is on

finite-sample results.

In this section, we let eT,n+1 denote the transfer error of the prediction rule ρ(MT) on

the target sample Sn+1 as defined in (2). Our results and proof techniques hold identically

for the other two measures, as well as the substantially broader class of random variables

discussed in Section 3.3. We use the metadata M = (S1, . . . , Sn) to construct a forecast

16 When R consists of empirical risk minimization rules (see Example 2.1), the normalized transfer error is
bounded below by 1 by construction, and a model achieves this lower bound only if the transfer error is as
low as the best in-sample error over R. Normalized transfer error is not bounded below by 1 for all decision
rules, for example random draws from Σ independent of the meta-data, but we do not expect such rules to
be used in practice.
17Normalized transfer error compares an out-of-sample object in the numerator to an in-sample object in
the denominator, which “stacks the deck” against ρ(MT ). An alternative measure in the same spirit would
divide through by a cross-validated error, where the training and test data are drawn from the same domain.
18This does not require MT and Sn+1 to be identical: it is sufficient for the training data MT and the
sample Sn+1 to lead to the same estimates for model parameters.
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interval for eT,n+1 in the following way. For any choice of training samples T ⊆ {1, . . . , n}
and test sample d ∈ {1, . . . , n}\T from M, let

eMT ,d = e(ρ(MT ), Sd)

be the (observed) transfer error from samples in T to sample d. Further define Ts,t to be the

set of all vectors of length s that consist of distinct elements from {1, . . . , t}. Then Tr+1,n

is the set of all possible choices of r training samples and a single target sample from the

metadata, and {
eMT ,d : (T , d) ∈ Tr+1,n

}
is the pooled sample of transfer errors. Finally, define

FM =
(n− r − 1)!

n!

∑
(T ,d)∈Tr+1,n

δeMT,d (5)

to be the empirical distribution of transfer errors in this pooled sample (where δ denotes the

Dirac measure).

Definition 5 (Upper and Lower Quantiles). For any distribution P let Qτ (P ) = inf{b :

P ((−∞, b]) ≥ τ} and Q
τ
(P ) = sup{b : P ([b,∞)) ≥ 1 − τ} denote the upper and lower τ th

quantiles, respectively.

These quantiles coincide for continuously distributed variables.

Definition 6 (Quantiles of FM). For any τ ∈ (0, 1), let eMτ ≡ Qτ (FM) and eMτ ≡ Q
1−τ (FM)

be the τ th upper quantile and (1−τ)th lower quantile of the empirical distribution of transfer

errors in the pooled sample.

These quantiles can be used to construct a valid forecast interval for the transfer error on

the target sample:

Proposition 1. For any τ ∈ (0, 1),

P
(
eT,n+1 ≤ ēMτ

)
≥ τ

(
n− r
n+ 1

)
, (6)

and

P
(
eT,n+1 ∈

[
eMτ , ē

M
τ

])
≥ 2τ

(
n− r
n+ 1

)
− 1.
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Thus
(
−∞, eMτ

]
is a level-

(
τ(n−r)
n+1

)
one-sided forecast interval for eT,n+1, and

[
eMτ , ē

M
τ

]
is a

level-
(
2τ
(
n−r
n+1

)
− 1
)

forecast interval for eT,n+1. The parameters r and τ are choice variables.

The size of τ influences the width of the forecast interval, where larger choices of τ lead to

wider forecast intervals with higher confidence guarantees. The choice of r determines how

many samples in the meta-data are used for training versus testing. Larger choices of r mean

that the model will be estimated on a larger quantity of data, but we will have fewer samples

on which to evaluate the performance of the estimated model.

The next result shows the extent to which the guarantees in Proposition 1 are tight.

Claim 1. Assume that
(
eMT ,d : (T , d) ∈ Tr+1,n+1

)
almost surely has no ties. Then

P
(
eT,n+1 ≤ ēMτ

)
≤ τ

(
n− r
n+ 1

)
+
r + 1

n+ 1
+

(n− r)!
(n+ 1)!

.

and

P
(
eT,n+1 ∈

[
eMτ , ē

M
τ

])
≤ 2τ

(
n− r
n+ 1

)
− 1 + 2

(
r + 1

n+ 1
+

(n− r)!
(n+ 1)!

)
.

To gain intuition for the intervals in Proposition 1, fix a realization of the unordered set

{S1, . . . , Sn, Sn+1}. Because by assumption all samples are exchangeable, the realization of

eT,n+1 (conditional on {Sd}n+1
d=1) is a uniform draw from{

eMT ,d : (T , d) ∈ Tr+1,n+1

}
. (7)

If we let e∗τ denote the upper τ -th quantile of this empirical distribution, then by definition

P
(
eT,n+1 ≤ e∗τ | {Sd}n+1

d=1

)
≥ τ. (8)

In the case r = 1 where precisely one sample is used for training, the set of pooled errors

(7) is the shaded cells in Figure 1 (either yellow or blue), and the inequality in (8) says that

the probability that the value of a randomly drawn cell falls below the τth upper quantile

of cells is at least τ .

The analyst does not observe the target sample Sn+1, and so does not know e∗τ . As a

surrogate, we use eMτ , the τth upper quantile of the pooled sample of errors when transferring

across samples in M. In Figure 1, the probability that eT,n+1 ≤ eMτ is the probability that

the value of a randomly drawn shaded cell (yellow or blue) falls below the τth quantile of
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1 2 . . . n-1 n n+1

1 - e1,2 . . . e1,n−1 e1,n e1,n+1
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...
...

...
...

. . . -
. . .

...
...

n− 1
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. . . - en−1,n
...

n en,1 . . . . . . en,n−1 - en,n+1

n+ 1 en+1,1 . . . . . . . . . en+1,n -

Figure 1. Matrix of transfer errors when training on one domain (row) and testing on
another (column).

the yellow cells. By a straightforward counting argument,

P
(
eT,n+1 ≤ eMτ | {Si}n+1

i=1

)
≥ τ

(
n

r + 1

)
/

(
n+ 1

r + 1

)
= τ

(
n− r
n+ 1

)
.

Applying the law of iterated expectations (with respect to the sample {Si}n+1
i=1 ) yields the one-

sided forecast interval in (6), and a similar argument yields the two-sided forecast interval.

3.2. Relaxing the IID Assumption. Our results so far assume that the distributions

governing the different samples Sd are themselves independent and identically distributed.

This assumption is not always appropriate. For example, if the samples in the metadata are

from experiments run at different locations, the iid assumption fails if there is selection bias

over where experiments are run.19 We now relax this assumption to allow the distribution

governing the training samples and the distribution governing the target sample to be drawn

from different meta-distributions.

Specifically, suppose that the analyst’s metadata consists of samples S1, . . . , Sn ∼iid µ as

in our main model, but Sn+1 is independently drawn from some other density ν. Let

ω(S) =
ν(S)

µ(S)

denote their likelihood ratio. As before, eT,n+1 is the transfer error when training on r

samples drawn uniformly at random from {S1, . . . , Sn}, and testing on Sn+1.

19One way this selection bias can arise is if the observed sites were chosen based on characteristics which are
correlated with effect sizes, as Allcott (2015) found in the Opower energy conservation experiments.
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We again construct a forecast interval for eT,n+1 using the pooled sample of transfer errors

across samples in the metadata,
{
eMT ,d : (T , d) ∈ Tr+1,n

}
, giving different probabilities to each

eMT,d instead of uniform weights. Under the iid assumption, each sample in the metadata

is equally representative of the training and target distributions, while when we relax that

assumption whether a sample Sd is more representative of the training or testing distribution

depends on its relative likelihood under ν and µ.

A crucial quantity is the following:

Definition 7. For every domain d ∈ {1, . . . , n}, define

Wd =
(n− r − 1)!

(n− 1)!

ω(Sd)∑n
j=1 ω(Sj)

. (9)

To interpret this quantity, consider an alternative data-generating process for the metadata

(mimicking the larger environment) where for some permutation π : {1, . . . , n} → {1, . . . , n},
the samples Sπ(1), . . . , Sπ(n−1) ∼iid µ while Sπ(n) ∼ ν. Fix a realization of the metadata

(S1, . . . , Sn), and suppose the analyst does not observe the permutation π. Let Π denote the

set of all permutations on {1, . . . , n}, and for any vector of sample indices (t1, . . . , tr, d) let

Π(t1,...,tr,d) = {π ∈ Π : (π(1), . . . , π(r)) = (t1, . . . , tr) and π(n) = d}

denote the permutations that specify (t1, . . . , tr) for training and d as the target. Then

conditional on a realization of the metadata (S1, . . . , Sn), the probability that (Sti)
r
i=1 are

the training samples and Sd is the test sample is20∑
π∈Π(t1,...,tr,d)

(
ν(Sπ(n)) ·

∏n−1
j=1 µ(Sπ(j))

)
∑

π∈Π

(
ν(Sπ(n)) ·

∏n−1
j=1 µ(Sπ(j))

) =

∑
π∈Π(t1,...,tr,d)

ω(Sπ(n))∑
π∈Π ω(Sπ(n))

=
(n− r − 1)! · ω(Sd)

(n− 1)! ·
∑n

j=1 ω(Sj)
= Wd.

This quantity depends only on the identity of the target sample d, and not on the identity

of the training samples t1, . . . , tr. Finally, let

F ω
M =

∑
(T ,d)∈Tr+1,n

Wd · δeMT ,d

be the weighted empirical distribution of transfer errors, where each sample d is weighted

according to Wd. When the two meta-distributions µ and ν are identical as in our main

20This is known as weighted exchangeability; see (Tibshirani et al., 2019).
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model, then Wd ≡ (n− r − 1)!/n! for every domain d, so the distribution F ω
M is simply FM

as defined in (5).

Definition 8 (Quantiles of F ω
M). For any likelihood ratio ω(·) and quantile τ ∈ (0, 1), define

ēM,ω
τ = Qτ (F ω

M) and eM,ω
τ = Q

1−τ (F ω
M) to be, respectively, the τ th upper quantile and

(1− τ)th lower quantile of the weighted distribution of transfer errors in the pooled sample.

Theorem 1. For any τ ∈ (0, 1),

P
(
eT,n+1 ≤ ēM,ω

τ

)
≥ τ · n− r

n
E

[∑n
j=1 ω(Sj)∑n+1
j=1 ω(Sj)

]
,

and

P
(
eT,n+1 ∈

[
eM,ω
τ , ēM,ω

τ

])
≥ 2τ · n− r

n
E

[∑n
j=1 ω(Sj)∑n+1
j=1 ω(Sj)

]
− 1.

This result strictly generalizes Proposition 1, since when w(·) is the identity then eM,ω
τ = eMτ

and eM,ω
τ = eMτ , and the bounds in this theorem reduce to those given in Proposition 1.

If the analyst does not know ω, but can uniformly upper and lower bound it across samples,

the following result applies.

Definition 9 (Bounded Likelihood-Ratios). For any Γ ≥ 1, let W(Γ) be the class of density

ratios that satisfy ω(S) ∈ [Γ−1,Γ] for all samples S.

Corollary 1. Suppose ω ∈ W(Γ). Then

P
(
eT,n+1 ≤ ēM,ω

τ

)
≥ τ

(
n− r
n+ Γ2

)
,

and

P
(
eT,n+1 ∈ [eM,ω

τ , ēM,ω
τ ]

)
≥ 2τ

(
n− r
n+ Γ2

)
− 1.

When there is no natural bound for w, it can still be possible in some cases to compare

the transferability of two methods. Fix any two decision rules ρ1 and ρ2 of interest, and let[
eM,ω

1,τ , eM,ω
1,τ

]
and

[
eM,ω

2,τ , eM,ω
2,τ

]
denote their respective forecast intervals. For each rule ρi, let

ēMi,τ (Γ) = sup
ω∈W(Γ)

ēM,ω
i,τ (10)

be the worst-case upper bound across likelihood ratios in W(Γ). As shown in Appendix Q

this quantity can be computed in O(nr+1) time.
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Definition 10 (Worst-Case Dominance). Say that ρ1 worst-case-upper-dominates ρ2 at the

τ -th quantile if

eM1,τ (Γ) ≤ eM2,τ (Γ) ∀Γ ≥ 1.

That is, ρ1 worst-case-upper-dominates ρ2 at the τ -th quantile if for every bound Γ, the

worst-case upper bound for decision rule ρ2 exceeds the worst-case for upper bound for

decision rule ρ1.

We can strengthen this comparison by requiring the upper bound of the forecast interval

for ρ1 to be smaller than the upper bound of the forecast interval for ρ2 pointwise for each

ω ∈ W(Γ), rather than simply comparing worst-case upper bounds.

Definition 11 (Everywhere Dominance). Say that ρ1 everywhere-upper-dominates ρ2 at the

τ -th quantile if

eM,ω
1,τ ≤ eM,ω

2,τ ∀Γ ≥ 1,∀ω ∈ W(Γ).

Many decision rules will not be comparable under either of these definitions, but both of

these orders do have bite in our application. The even stronger requirement that eM,ω
1,τ ≤ eM,ω

2,τ ,

i.e., that the upper bound of ρ1’s forecast interval is smaller than the lower bound of ρ2’s

forecast interval, is likely too stringent to be useful in practice.21

3.3. Discussion. What is a domain? The specified domains determine the transfer ques-

tion the analyst is interested in and the content of the iid sampling assumption. Suppose,

for instance, that the meta-data consists of experimental results from multiple papers, where

each paper reports results from experiments at multiple sites. If each site is treated as a sep-

arate domain, then iid sampling corresponds to drawing further sites, some from the papers

already observed and others from as-yet-unobserved papers. Alternatively, if each paper is

a separate domain, then iid sampling corresponds to drawing new papers, each with its own

sites.

Relationship between measures. On any fixed target sample, transfer error and nor-

malized transfer error generate the same ranking of models, since the denominator of nor-

malized transfer error is model-independent. In contrast, when performance is aggregated

across multiple target samples, transfer error and normalized transfer error will typically

21This stronger order has bite only when the transfer error for ρ1 across “the most dissimilar” training and
testing domains is lower than the transfer error for ρ2 for “the most similar” training and testing domains,
which seems unlikely.
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lead to different rankings. This is because normalized transfer error penalizes a model more

for performing worse on samples where the best achievable error is low than on samples that

are hard to predict, while transfer error does not.

Transfer deterioration is designed to address a different question than the other measures,

and a ranking of models by their transfer deterioration need not coincide with a ranking of

models using either transfer error or normalized transfer error. For example, a model that

achieves approximately constant but large errors across samples would have low transfer

deterioration (showing that retraining would not be worthwhile), but high transfer error.

Evaluating transfer performance versus learning a “best” cross-domain pre-

diction rule. Economists often use estimated parameter values from one domain to make

predictions and inform policy decisions in another. For example, we might have data on

prices, demand, demographics, and tax revenue under a particular tax rate, and use a struc-

tural model to extrapolate to revenue under another tax rate.22 If we also had data on how

well such extrapolations had performed in the past, we could under suitable assumptions use

this past performance to predict how well they are likely to perform in the future.

A complementary question is how to estimate a “best” prediction rule for transfer. One

might use cross-validation across domains to tune parameters, build a Bayesian hierarchical

model that explicitly models a distribution over domains, or choose parameters with worst-

case guarantees (as in the literature on distributionally robust optimization, e.g. Rahimian

and Mehrotra 2019). The development of estimation procedures that lead to better transfer

performance is interesting, but it is distinct from providing forecast intervals for transfer

performance. In our application we examine the transfer performance of estimation proce-

dures that have previously been used in the literature. However, each of the approaches

mentioned above can be formalized as a decision rule (see Appendix P.2 for details), so our

results imply forecast intervals for their transfer performance.

Non-Prediction Targets. While we have framed our discussion in terms of prediction,

we can apply our results to many other problems by re-defining eMT ,d. For instance, if we

were interested in estimating some parameter across domains, we could take eMT ,d to measure

the difference between the estimates based on MT and those based on Sd. In this case,

Proposition 1 provides a predictive interval for the estimate in a new domain. Alternatively,

22For instance, the model may impose structural assumptions about how consumer responses to (as yet
unobserved) tax changes relate to their responses to (observed) price changes due to other factors.
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we could consider approaches designed to extrapolate across domains, as in Hotz et al.

(2005)’s extrapolation of the efficacy of job training programs to different locations using

differences in the distribution of covariates. Here we could define eMT ,d as the difference

between the effect predicted based on the training locations T and the covariate distribution

at location d and the effect estimated at location d. In this case, Proposition 1 provides

a forecast interval for the cross-domain extrapolation error. More generally, Proposition 1

provides a forecast interval for any function of the data in the training and target domains;

See Online Appendix P.1.

Number of Domains Versus Observations. The meta-data involve both a finite num-

ber of observed domains and a finite number of observations per domain. These two sources

of finiteness enter into our results in different ways. Increasing the number of observations

per domain changes the distribution of eT,n+1: In the limit of infinitely many observations

per domain, the error eT,n+1 measures how well the best predictor from the model class in

the training domains transfers across domains, while if the number of observations is small,

the error eT,n+1 measures how well an imperfectly estimated model transfers. In contrast,

increasing the number of observed domains (holding fixed the distribution over sample sizes

within each domain) does not change the distribution of eT,n+1, but instead allows this

distribution to be estimated more precisely.

Counterfactual Predictions. One important way that economic models are sometimes

used is to form predictions for outcomes under policy changes that have yet to be imple-

mented. For instance, McFadden (1974) predicted the demand impacts of the then-new

BART rapid transit system in the San Franciso Bay Area, and Pathak and Shi (2013) pre-

dicted demand for schools under changes to the Boston school choice system. If we view the

pre-intervention period as the “training” data, and the post-intervention period as the “test”

data, the two seem unlikely to satisfy our exchangeability assumption. However, our results

do extend to such settings when there are iid pairs of train-test domains, where the training

domain represents the pre-intervention data used to form a counterfactual prediction, and

the test domain represents the post-intervention data used to evaluate the prediction.

4. Application

To illustrate our methods, we evaluate the transferability of predictions of certainty equiv-

alents for binary lotteries, where the domains correspond to different subject pools. Section
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4.1 describes our metadata, and Section 4.2 describes the decision rules we consider. Sec-

tion 4.3 conducts “within-domain” out-of-sample tests, where the training and test data are

drawn from the same domain. Section 4.4 constructs forecast intervals for transfer error,

normalized transfer error, and transfer deterioration.

4.1. Data. Our metadata consists of samples of certainty equivalents from 44 subject pools,

which we treat as the domains. These data are drawn from 14 papers in experimental

economics, with twelve papers contributing one sample each, one paper contributing two,

and a final paper (a study of risk preferences across countries) contributing 30 samples. In

Online Appendix R.2, we repeat our analysis with each paper treated as a separate domain,

and show that the results are qualitatively similar.23 Our samples range in size from 72

observations to 8906 observations, with an average of 2752.7 observations per sample.24 We

convert all prizes to dollars using purchasing power parity exchange rates (from OECD 2022)

in the year of the paper’s publication

Within each sample, observations take the form (z1, z2, p; y), where z1 and z2 denote the

possible prizes of the lottery (and we adopt the convention that |z1| > |z2|), p is the proba-

bility of z1, and y is the reported certainty equivalent by a given subject. Thus our feature

space is X = R × R × [0, 1], the outcome space is Y = R, and a prediction rule is any

mapping from binary lotteries into predictions of the reported certainty equivalent. We use

squared-error loss `(y, y′) = (y − y′)2 to evaluate the error of the prediction, but for ease of

interpretation we report results in terms of root-mean-squared error, which puts the errors in

the same units as the prizes.25 Since different subjects report different certainty equivalents

for the same lottery, the best achievable error is generally bounded away from zero.

4.2. Models and black boxes. We consider several possible decision rules ρ.

Expected Utility. First we consider an expected utility agent with a CRRA utility function

parameterized by η ≥ 0. For η 6= 1, define

vη(z) =

{
z1−η−1

1−η if z ≥ 0

− (−z)1−η−1
1−η if z < 0

23In both cases, the domains sometime combines observations from different experimental treatments. In
Etchart-Vincent and l’Haridon (2011), we pool reported certainty equivalents across three payment condi-
tions: real losses, hypothetical-losses, and losses-from-initial-endowment.
24Online Appendix R.1 describes our data sources in more detail.
25This transformation is possible because none of the results in this paper change if we redefine e(σ, S) =

g
(

1
|S|
∑

(x,y)∈S `(σ(x), y)
)

for any function g. Root-mean-squared error corresponds to setting g(x) =
√
x.
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and for η = 1, set vη(z) = ln(z) for positive prizes and vη(z) = − ln(−z) for negative prizes.

For each η ≥ 0, define the prediction rule ση to be

ση(z1, z2, p) = v−1
η

(
p · vη(z1) + (1− p) · vη(z2)

)
.

That is, the prediction rule ση maps each lottery into the predicted certainty equivalent

for an EU agent with utility function vη. The corresponding decision rule ρEU maps each

meta-data realization MT to the prediction rule in ΣEU ≡ {ση : η ≥ 0} that minimizes the

error on the meta-data, as described in (1).

Cumulative Prospect Theory. Next we consider the set of prediction rules ΣCPT derived

from the parametric form of Cumulative Prospect Theory (CPT) first proposed by Goldstein

and Einhorn (1987) and Lattimore et al. (1992). Fixing values for the model’s parameters

(α, β, δ, γ), each lottery (z1, z2, p) is assigned a utility

w(p)v(z1) + (1− w(p))v(z2)

where

v(z) =

{
zα if z ≥ 0

−(−z)β if z < 0
(11)

is a value function for money, and

w(p) =
δpγ

δpγ + (1− p)γ
(12)

is a probability weighting function.

For each α, β, γ, δ, the prediction rule σ(α,β,γ,δ) is defined as

σ(α,β,γ,δ)(z1, z2, p) = v−1
(
w(p)v(z1) + (1− w(p))v(z2)

)
.

That is, the prediction rule maps each lottery into the predicted certainty equivalent under

CPT with parameters (α, β, γ, δ). Following the literature, we impose the restriction that

the parameters belong to the set Θ = {(α, β, γ, δ) : α, β, γ ∈ [0, 1], δ ≥ 0} and define the set

of CPT prediction rules to be ΣCPT ≡ {σθ}θ∈Θ. The corresponding decision rule ρCPT maps

each meta-data realization MT to the prediction rule in ΣCPT that minimizes the error on

the training data, as described in (1).

We also evaluate prediction rules corresponding to restricted specifications of CPT that

have appeared elsewhere in the literature: CPT with free parameters α and β (setting δ =

γ = 1) describes an expected utility decision-maker whose utility function is as given in (11);
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CPT with free parameters α, β and γ (setting δ = 1) is the specification used in Karmarkar

(1978); and CPT with free parameters δ and γ (setting α = β = 1) describes a risk-

neutral CPT agent whose utility function over money is u(z) = z but who exhibits nonlinear

probability weighting.26 Additionally, we include CPT with the single free parameter γ

(setting α = β = δ = 1), which Fudenberg et al. (2021) found to be an especially effective

one-parameter specification.

Black Boxes. Finally, we consider decision rules ρ corresponding to two machine learning

algorithms. First, we train a random forest, which is an ensemble learning method consisting

of a collection of decision trees.27 Second, we train a kernelized ridge regression model,

which modifies OLS to weight observations at nearby covariate vectors more heavily, and

additionally places a penalty term on the size of the coefficients. Specifically, we use the radial

basis function kernel κ(x, x̃) = e−γ‖x−x̃‖
2
2 to assess the similarity between covariate vectors x

and x̃. Given training data {(xi, yi)}Ni=1, the estimated weight vector is ~w = (K + λIN)−1~y,

where K is the N × N matrix whose (i, j)-th entry is κ(xi, xj), IN is the N × N identity

matrix, and ~y = (y1, . . . , yN)′ is the vector of observed outcomes in the training data. The

estimated prediction rule is σ(x) =
∑N

i=1 wiκ(x, xi).

There are at least two approaches for cross-validating hyper-parameters such as the size

of the trees in the random forest algorithm. First, in settings with multiple training domains

one can cross-validate across training domains. This procedure is not relevant to our analysis

in Section 4.4, which considers transfer from a single training domain to a single test domain,

but we use it in Appendix R.7 when we consider multiple training domains. Second, one can

cross-validate across observations within the training domains. Since we are interested in

cross-domain performance, rather than within-domain performance, it is not clear that this

will improve performance, and indeed we find that choosing the hyper-parameters via within-

domain cross-validation leads to worse transfer performance than using default values. Thus

26See Fehr-Duda and Epper (2012) for further discussion of these different parametric forms, and some
non-nested versions that have been used in the literature.
27A decision tree recursively partitions the input space, and learns a constant prediction for each partition
element. The random forest algorithm collects the output of the individual decision trees, and returns their
average as the prediction. Each decision tree is trained with a sample (of equal size to our training data)
drawn with replacement from the actual training data. At each decision node, the tree splits the training
samples into two groups using a True/False question about the value of some feature, where the split is
chosen to greedily minimize mean squared error.
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in our main analysis with a single training domain, we set all hyper-parameters to default

values.28

4.3. Within-domain performance. We first evaluate how these models perform when

trained and evaluated on data from the same subject pool. We compute the tenfold cross-

validated out-of-sample error for each decision rule in each of the 44 domains.29 The two

black box methods (random forest and kernel regression) each achieve lower cross-validated

error than EU and CPT in 38 of the 44 domains, although the improvement is not large.

Figure 2 reports the CDF of tenfold cross-validated errors for the random forest, kernel

regression, EU, and CPT.30
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Figure 2. CDF of Cross-Validated Errors. (The CDFs for kernel regression and random
forest overlap.)

To obtain simpler summary statistics for the comparison between the economic models

and black boxes, we normalize each economic model’s error (in each domain) by the random

forest error. Table 1 averages this ratio across domains and shows that on average, the cross-

validated errors of the economic models are slightly larger than the random forest error: The

CPT error is on average 1.06 times the random forest error, and the EU error is on average

1.21 times the random forest error.31

28Specifically, we set λ = 1 and γ = 1/(#covariates) = 1/3 in the kernel regression algorithm. See Pedregosa
et al. (2011) and Chapter 14 of Murphy (2012) for further reference. For the random forest model, we set the
maximum depth to none, which means that nodes are expanded until all leaves are pure or until all leaves
contain 1 samples.
29We split the sample into ten subsets at random, choose nine of the ten subsets for training, and evaluate
the estimated model’s error on the final subset. The tenfold cross-validated error is the average of the
out-of-sample errors on the ten possible choices of test set.
30Online Appendix R.3 shows that the CDFs for in-sample errors are likewise very close.
31The numbers in Table 1 are very similar if we normalized by the kernel regression error instead.
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Model Normalized Error

EU 1.21

CPT variants
γ 1.12
α, β 1.22
δ, γ 1.08
α, β, γ 1.07
α, β, δ, γ 1.06

Table 1. Average ratio of out-of-sample errors relative to random forest.

These results suggest that the different prediction methods we consider are comparable for

within-domain prediction, with the black boxes performing slightly better. But the results

do not distinguish whether the economic models and black boxes achieve similar out-of-

sample errors by selecting approximately the same prediction rules, or if the rules they select

lead to substantially different predictions out-of-domain. We also cannot determine whether

the slightly better within-domain performance of the black box algorithms is achieved by

learning generalizable structure that the economic models miss, or if the gains of the black

boxes are confined to the domains on which they were trained. We next separate these

explanations by evaluating the transfer performance of the models.

4.4. Transfer performance. We use the results in Section 3 to construct forecast intervals

for transfer error, normalized transfer error, and transfer deterioration for each of the decision

rules described above. In our meta-data there are n = 44 domains, and we choose r = 1 of

these to use as the training domain. This choice of r corresponds to the question, “If I draw

one domain at random, and then try to generalize to another domain, how well do I do?”

Figure 3 displays two-sided forecast intervals for transfer error, normalized transfer error

(where R includes all decision rules shown in the figure), and transfer deterioration. These

forecast intervals use τ = 0.95, so the upper bound of the forecast interval is the 95th

percentile of the pooled transfer errors (across choices of the training and test domains), and

the lower bound of the forecast interval is the 5th percentile of the pooled transfer errors.32

Applying Proposition 1, these are 81% forecast intervals. Choosing larger τ results in wider

forecast intervals that have higher coverage levels, and we report some of these alternative

forecast intervals in Online Appendix R.5, including a 91% forecast interval.

32See Table 5 in Appendix R.4 for the exact numbers.
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Figure 3. 81% (n=44, τ = 0.95) forecast intervals for (a) transfer error, (b) normalized
transfer error (with R consisting of the decision rules shown in the figure), and (c) transfer
deterioration.

Our main takeaway from Figure 3 is that although the prediction methods we consider

are very similar from the perspective of within-domain prediction, they have very different

out-of-domain implications.

Panel (a) of Figure 3 shows that the black box forecast intervals for transfer error have up-

per bounds that are roughly twice those of the economic models. For the normalized transfer

error, which removes the common variation across models that emerges from variation in the

predictability of the different target samples, the contrast between the economic models and

the black boxes grows larger. Thus, although the economic models and the black box models

select prediction rules that are close for the purposes of prediction in the training domain,
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they sometimes have very different performances in the test domain, and the prediction rules

selected by the economic models generalize substantially better.

Panel (c) of Figure 3 shows an even starker contrast between the black boxes and economic

models, which suggests that the value of retraining a black box on the target domain is

quite high while it is less important to re-estimate the economic models. The ordering of

the upper bounds of the forecast intervals is roughly consistent with the number of free

parameters (with the exception of CPT(α, β), which has lower transfer deterioration than

the single-parameter EU model and also CPT(γ)).

All of the forecast intervals overlap for each of the three measures. This is not surprising,

as variation in the transfer error due to the random selection of training and target domains

cannot be eliminated even with data from many domains. We expect the black box intervals

and the economic model intervals to overlap so long as the economic model errors on “upper

tail” training and target domain pairs exceed the black box errors on “lower tail” training

and target domain pairs. Section 5 provides confidence intervals for different population

quantities, including quantiles of the transfer error distribution and the expected transfer

error, whose width we do expect to vanish as the number of domains grow large. There, we

find similar conclusions with regards to the relative performance of the black box algorithms

and economic models.

The appendix provides several robustness checks and complementary analyses. Online

Appendix R.5 plots the τ -th percentile of pooled transfer errors as τ varies, demonstrating

that forecast intervals constructed using other choices of τ (besides τ = 0.95) would look

similar to those shown in the main text. Online Appendix R.6 provides 81% forecast intervals

for the ratio of the CPT error to the random forest error, and finds that the random forest

error is sometimes much higher than the CPT error, but is rarely much lower. Online

Appendix R.7 considers an alternative choice for the number of training domains, setting

r = 3 instead of r = 1. While the results are similar, the contrast between the economic

models and black boxes is not as large, suggesting that the relative performance of the black

boxes improves given a larger number of training domains. Online Appendix R.2 provides

forecast intervals when each of the 14 papers is treated as a different domain; once again the

black box methods transfer worse than the economic models do.

We next use our theoretical results from Section 3.2 to study the consequences of relaxing

the iid assumption in our comparison of CPT(α, β, δ, γ) and RF. Since the main differences
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observed above concerned the upper bounds of our forecast intervals, we limit attention to

τ ≥ 0.5, and compare the methods in terms of worst-case and everywhere upper-dominance

with respect to all three measures of the transfer performance. These results are summarized

in Table 2.

Type transfer error normalized transfer error transfer deterioration

Worst-case dominance τ ≥ 0.5 τ ≥ 0.5 τ ≥ 0.5
Everywhere dominance τ ≥ 0.954 τ ≥ 0.866 τ ≥ 0.647

Table 2. Comparison between CPT and RF in terms of worst-case and everywhere upper-
dominance. Each cell gives the range of τ at which CPT dominates RF.

Table 2 shows that CPT worst-case-upper-dominates RF at all quantiles τ ≥ 0.5 and

for all three measures of transfer performance. Hence, our finding that the upper tail of

transfer errors is larger for RF than for CPT is fully robust to relaxing the assumption that

the training and test domains are drawn from the same distribution, provided that for a

given degree of relaxation we are comfortable comparing the upper bound for one method

to the upper bound for the other. In Appendix R.8, we provide a more detailed view of

worst-case-upper-dominance by plotting ēMτ (Γ) as functions of τ and Γ, respectively.

We can also consider the more demanding everywhere-upper-dominance criterion, which

asks what happens if we relax our iid sampling assumption in a way which is as favorable to

RF (and as unfavorable to CPT) as possible. We find a substantial degree of robustness even

under this highly demanding criterion: CPT everywhere-upper-dominates RF in transfer

error for all τ ≥ 0.954, everywhere-dominates in normalized transfer error for τ ≥ 0.866, and

everywhere dominates in transfer deterioration for τ ≥ 0.647.

4.5. Do black boxes transfer poorly because they are too flexible? One tempting

explanation of our empirical findings is that because the black boxes are more flexible than

the economic models, they can learn idiosyncratic details that do not generalize across subject

pools, such as that some subject pools tend to value lotteries depending on specific digits

they contain.33 This would lead the black boxes to have better within-domain prediction

for those subject pools, but worse transfer performance if the regularity does not generalize

across subject pools.

33For example, Fortin et al. (2014) find that in neighborhoods with a higher than average percentage of
Chinese residents, homes with address numbers ending in “4” are sold at a 2.2% discount and those ending
in “8” are sold at a 2.5% premium.
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While the flexibility of black box algorithms is likely an important determinant of their

transfer performance, there are at least two reasons this cannot be a complete explanation

of our results. First, the flexibility gap between the black boxes and economic models is not

large: many conditional mean functions (for binary lotteries) can be well approximated by

CPT for some choice of parameters values α, β, δ, γ (Fudenberg et al., 2021).

Second, black boxes do not always transfer worse. One of the papers we use is based on

samples of certainty equivalents from 30 countries (l’Haridon and Vieider, 2019). Crucially,

of the 30 samples from this paper, 29 samples report certainty equivalents for the same 27

lotteries, and the remaining sample reports certainty equivalents for 23 of those lotteries.

We repeat our analysis using these 30 samples as the domains, and find that the forecast

intervals for transfer error are indistinguishable across the prediction methods (Panel (a) of

Figure 4). There is some separation between the forecast intervals for the remaining two

measures, but in both cases the CPT and random forest forecast intervals are more similar

than in the original data.

These observations show that flexible prediction methods do not always transfer poorly,

although they do perform poorly in certain kinds of transfer prediction tasks. The next

section explores one potential explanation.

4.6. Two kinds of transfer problems. Our framework allows the distribution P governing

the training sample and the distribution P ′ governing the test sample to differ. At one

extreme, P and P ′ may share a common marginal distribution on the feature space X ,

but have very different conditional distributions PY |X and P ′Y |X (known as model shift). In

our application, this would mean that the distribution over lotteries is the same, but the

conditional distribution of reported certainty equivalents is different across domains. At

another extreme, the conditional distributions PY |X and P ′Y |X might be the same, but the

marginal distributions over the feature space could differ across domains, e.g., if different

kinds of lotteries are used in different domains (known as covariate shift).

Our findings in Figure 4 suggest that black boxes do as well as economic models at transfer

prediction when the primary source of variation across distributions is a shift in the condi-

tional distribution, rather than a shift in the marginal distribution over features. Intuitively,

the observed training data necessarily involves only a small part of the feature space (e.g., a

specific set of lotteries). The black box algorithms and economic models both search through

a class of prediction rules to find the one that best fits the observed data. In our application,
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Figure 4. 78% (n=30, τ=0.95) forecast intervals using samples in l’Haridon and Vieider (2019).

this means finding a prediction rule that does a good job of predicting certainty equivalents

for the lotteries in the training data. If the conditional distributions PY |X governing the test

and training samples are different, the best predictions in the training sample will not be

the best predictions in the test sample. But economic models and black box algorithms are

disadvantaged for transfer prediction in the same way.

In contrast, when the set of lotteries varies across samples, then transfer prediction neces-

sarily involves extrapolation. If the economic model has identified structure that is shared

across settings, then fixing its parameters at values selected to perform best on the training

data will improve predictions for the test lotteries. This need not be true for an algorithm

that hasn’t identified a structure that relates behavior across lotteries.

For a simple, stylized, example of this contrast, consider three domains with degenerate

distributions over observations. In domain 1, the distribution is degenerate at the lottery
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(z1, z2, p) = (10, 0, 1/2) and certainty equivalent y = 3. In domain 2, the distribution is

degenerate at the lottery (z1, z2, p) = (10, 0, 1/2) and certainty equivalent y = 4. In domain

3, the distribution is degenerate at a new lottery (z1, z2, p) = (20, 10, 1/10) and certainty

equivalent y = 11. Suppose EU and a decision tree are both trained on a sample from

domain 1. The CRRA parameter η ≈ 0.64 perfectly fits the observation (10, 0, 1/2; 3), as

does the trivial decision tree that predicts y = 3 for all lotteries. The estimated EU model

and decision tree are equivalent for predicting observations in domain 2: both predict y = 3

and achieve a mean-squared error of 1. But their errors are very different on domain 3:

the EU prediction for the new lottery is approximately 10.8 with a mean-squared error of

approximately 0.05, while the decision tree’s prediction is 3 with a mean-squared error of 64.

4.7. Predicting the relative transfer performance of black boxes and economic

models. The preceding sections suggest that the relative transfer performance of black

boxes and economic models is determined primarily by shifts in which lotteries are sampled,

rather than shifts in behavior conditional on those lotteries. To further test this conjecture,

we examine how well we can predict the ratio of the random forest transfer error to the CPT

transfer error, e(ρRF (MT ), Sd)/e(ρ
CPT (MT ), Sd), given information about the training and

test lotteries but not about the distribution of certainty equivalents in either sample. If the

relative performance of these methods depended importantly on behavioral shifts in the two

domains—i.e., a change in the distribution of certainty equivalents for the same lotteries—

then we would expect prediction of the relative performance based on lottery information

alone to be poor. We find instead that lottery information has substantial predictive power

for this ratio.

For each sample S = {(z1,i, z2,i, pi; yi)}mi=1, we consider the following features:

• the mean, standard deviation, max, and min value of z1 among the lotteries in S

• the mean, standard deviation, max, and min value of z2 among the lotteries in S

• the mean, standard deviation, max, and min value of p among the lotteries in S

• the mean, standard deviation, max, and min value of 1− p among the lotteries in S

• the mean, standard deviation, max, and min of pz1 + (1 − p)z2 among the lotteries

in S

• the size of S

• an indicator variable for whether z1, z2 ≥ 0 for all lotteries in S
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We consider three possible feature sets: (a) Training Only, which includes all features

derived from the training sample MT ; (b) Test Only, which includes all features derived

from the test sample Sd, (c) Both, which includes all features derived from the training

sample MT and the test sample Sd. We evaluate two prediction methods: OLS and a

random forest algorithm. Table 3 reports tenfold cross-validated errors for each of these

feature sets and prediction methods. As a benchmark, we also consider the best possible

constant prediction.

Train Only Test Only Both

Constant 2.57 2.57 2.57
OLS 1.00 2.61 0.94
RF 0.98 2.52 0.76

Table 3. Cross-Validated MSE

predict 5.47
number of train-test pairs: 129

MSE: 14.28
number of train-test pairs: 1763

MSE: 0.60

FALSE TRUE

predict 1.43

stddev(z1)> 0

Figure 5. Best 1-split decision tree based on training and test features.

The best constant prediction achieves a mean-squared error of 2.57, which can be more

than halved using features of the training set alone. Using features of both the training

and test sets, the random forest algorithm reduces error to 30% of the constant model.

Crucially, the random forest algorithm is permitted to learn nonlinear combinations of the

input features, and thus discover relationships between the training and test lotteries that

are relevant to the relative performance of the black box and the economic model.

The random forest algorithm is too opaque to deliver insight into how it achieves these

better predictions, but we can obtain some understanding by examining the best 1-split
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decision tree, shown in Figure 5 below. This decision tree achieves a cross-validated MSE of

1.75, reducing the error of the constant model by 32%. It partitions the set of (train,test)

domain pairs into two groups depending on whether the standard deviation of z1 (the larger

prize) in the training set of lotteries exceeds zero. There are three domains in which the

prizes (z1, z2) are held constant across all training lotteries (although the probabilities vary).

In the 129 transfer prediction tasks where one of these three domains is used for training,

the decision tree predicts the ratio of the random forest error to the CPT error to be 5.47.

For all other transfer prediction tasks, the decision tree predicts 1.43.

This finding reinforces our intuition that the relative performance of the black boxes and

economic models is driven in part by whether the training sample covers the relevant part of

the feature space. When the training observations concentrate on an unrepresentative part

of the feature space (such as all lotteries that share a common pair of prize outcomes), then

the black boxes transfer much more poorly than economic models.

Our results also clarify a contrast between transfer performance and classical out-of-sample

performance. In out-of-sample testing, the marginal distribution on X is the same for the

training and test samples, so the set of training lotteries is likely to be representative of

the set of test lotteries as long as the training sample is sufficiently large. When test and

training samples are governed by distributions with different marginals on X , the set of

training lotteries can be unrepresentative of the set of test lotteries regardless of the number

of training observations. Training on observations pooled across many domains alleviates the

potential unrepresentativeness of the training data, but the number of domains needed will

depend on properties of the distribution: An environment where each domain puts weight

on exactly one lottery that is itself sampled iid may be difficult for black-box algorithms,34

while an environment where the marginal distribution is degenerate on the same lottery in

all domains may be easier. There is no analog in out-of-sample testing for the role played

by variation in the marginal distribution on X across domains. Moving beyond our specific

application, we expect this variation to be an important determinant of the relative transfer

performance of black box algorithms and economic models in general.

34In this edge case, the number of domains needed for black boxes to achieve good transfer performance is
likely comparable to the number of observations needed for good out-of-sample performance, which can be
quite large.
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5. Extensions and further results

Our main results focus on forecasting realized transfer errors, which is useful when we want

to know the range of plausible errors in transferring a given model to a new domain. We

now complement those results with procedures for inference focused on population quanti-

ties: Section 5.2 provides confidence intervals for quantiles of the transfer error distribution,

and Section 5.3 provides a confidence interval for the expected transfer error. Since these

quantities can be perfectly recovered given data from an infinite number of domains, we

expect the lengths of these intervals to vanish as the number of observed domains grows

large, unlike the forecast intervals from Section 3.

5.1. Preliminary Lemma. We start by establishing a bound that will be useful in the

subsequent construction of confidence intervals. Let

U =
(n− k)!

n!

∑
(i1,...,ik)∈Tr+1,n

φ(Zi1 , . . . , Zik)

be an arbitrary U-statistic of degree k with a bounded (and potentially asymmetric) kernel

φ that takes values in [0, 1].

Definition 12. For every n, k ∈ Z+ and x, y ∈ R, define

Bn,k(x; y) ≡ min

{
b1
n,k(x; y), b2

n,k(x; y), b3
n,k(x; y)

}
where

b1
n,k(x; y) ≡ exp

{
−dn/ke

(
x ∧ y log

(
x ∧ y
y

)
+ (1− x ∧ y) log

(
1− x ∧ y

1− y

))}
b2
n,k(x; y) ≡ e · P (Binom(dn/ke; y) ≤ ddn/ke · xe)

b3
n,k(x; y) ≡ min

λ>0

nλ

k

(
x− λ

λ+ kG(λ)
y

)
Lemma 1. If φ(Z1, . . . , Zk) ∈ [0, 1] almost surely, then P (U ≤ x) ≤ Bn,k(x;E(U)) for every

x ∈ [0, 1].

5.2. Quantiles of transfer error. Let F denote the CDF of eT,n+1, which we assume is

continuous. This section builds a confidence interval for the β-th quantile of F , denoted qβ.
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For arbitrary q ∈ R and realized metadata M = {S1, . . . , Sn}, define

ϕ(q,M) =
(n− r − 1)!

n!

∑
(d1,...,dr+1)∈Tr+1,n

I(e(d1,...,dr),dr+1) ≤ q)

where I(·) is the indicator function, recalling that e(d1,...,dr),dr+1 denotes the observed transfer

error from samples (Sd1 , . . . , Sdr) to sample Sdr+1 . This is the fraction of observed transfer

errors in the metadata (from r training samples to one test sample) that are less than q.

Then Uβ ≡ ϕ(qβ,M) is a U-statistic where by definition, E[Uβ] = β. Lemma 1 then implies

P(Uβ ≤ x) ≤ Bn,r+1(x, β) P(Uβ ≥ x) = P(1− Uβ ≤ 1− x) ≤ Bn,r+1(1− x, 1− β). (13)

Definition 13. For any quantile β ∈ (0, 1) and confidence level 1− α ∈ (0, 1), let û+
β (α) =

inf{u : Bn,r+1(u; β) ≥ α} and û−β (α) = sup{u : Bn,r+1(1 − u; 1 − β) ≥ α}. Further define

q̂Lβ (α) ≡ min
{
q : ϕ(q,M) ≥ û+

β (α)
}

and q̂Uβ (α) ≡ max {q : ϕ(q,M) ≤ û−r (α)} .

Since Bn,r+1(u; ·) is right-continuous in u, it follows from (13) that P(Uβ < û+
β (α)) ≤ α and

P(Uβ > û−β (α)) ≤ α. Since ϕ(q,M) is monotonically increasing in q, the event {Uβ < û+
β (α)}

is equivalent to {qβ < q̂L
β (α)}, while {Uβ > û−β (α)} is equivalent to {qβ > q̂U

β (α)}. Thus we

obtain:

Proposition 2. For any quantile β ∈ (0, 1) and confidence level 1− α ∈ (0, 1),

P(qβ ≤ q̂Uβ (α)) ≥ 1− α

and

P
(
qβ ∈

[
q̂Lβ (α/2), q̂Uβ (α/2)

])
≥ 1− α.

Figure 6 applies Proposition 2 to construct two-sided 81% confidence interval for the

median transfer error, median normalized transfer error, and median transfer deterioration.

As in Figure 3, these confidence intervals are substantially wider for the black box algorithms,

and have higher upper bounds.

5.3. Expected transfer error. This section constructs confidence intervals for the ex-

pected transfer error, µ ≡ E(eT,n+1), under the assumption that transfer errors are uniformly

bounded (in which case it is without loss to set eT,n+1 ∈ [0, 1]). Define the U-statistic

U =
(n− r − 1)!

n!

∑
(d1,...,dr+1)∈Tr+1,n

e(d1,...,dr),dr+1 .
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Figure 6. 81% confidence intervals for the median of (a) transfer error, (b) normalized
transfer error, and (c) transfer deterioration.

Because E[U ] = µ, Lemma 1 implies that P(U ≤ x) ≤ Bn,r+1(x, µ) and P(U ≥ x) ≤
Bn,r+1(1− x, 1− µ) for all x ∈ R.

Definition 14. For any confidence guarantee 1−α ∈ (0, 1), let µ̂+(α) = sup{µ : Bn,r+1(U ;µ) ≥
α} and µ̂−(α) = inf{µ : Bn,r+1(1− U ; 1− µ) ≥ α}.

It follows from (13) that P(U < û+(α)) ≤ α and P(U > û−(α)) ≤ α, which implies:

Proposition 3. If eT,d ∈ [0, 1] almost surely, then

P
(
µ ≤ µ̂+(α)

)
≥ 1− α

and

P
(
µ ∈ [µ̂−(α/2), µ̂+(α/2)]

)
≥ 1− α.
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Figure 7 applies this result to construct a two-sided 81% confidence intervals for our trans-

ferability measures. Since our main measures are not bounded, we report instead confidence

intervals for the expectation of the inverse of normalized transfer error, i.e.,

minρ̂∈R e(ρ̂(Sn+1), Sn+1)

e(ρ(MT), Sn+1)
∈ [0, 1]

and the inverse of transfer deterioration, i.e.,

e(ρ(Sn+1), Sn+1)

e(ρ(MT), Sn+1)
∈ [0, 1].

Lower values for these measures correspond to worse transfer performance. We find again

that the confidence intervals for the black box algorithms are qualitatively worse than those

for the economic models.
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Figure 7. 81% forecast intervals for (a) expected inverse normalized transfer error, (b)
expected inverse transfer deterioration.

6. Conclusion

Our measures of transfer error quantify how well a model’s performance on one domain

extrapolates to other domains. We applied these measures to show that the predictions

of expected utility theory and cumulative prospect theory outperform those of black box

models on out-of-domain tests, even though the black boxes generally have lower out-of-

sample prediction errors within a given domain. The relatively worse transfer performance

of the black boxes seems to be because the black box algorithms have not identified structure

that is commonly shared across domains, and thus cannot effectively extrapolate behavior
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from one set of features to another. Our finding that the economic models transfer better

supports the intuition that economic models can recover regularities that are general across

a variety of domains.
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Appendix A. Proofs

A.1. Notation. Throughout let N ≡ {1, . . . , n}. The set Tr,n consists of all vectors of

length r with distinct values in N . For any (d1, . . . , dr+1) ∈ Tr+1,n+1, let f(d1, . . . , dr+1) =

e(d1,...,dr),dr+1 denote the transfer error from training samples Sd1 , . . . , Sdr to test sample Sdr+1 .

A.2. Proofs of Proposition 1 and Claim 1. Since T is a random subset of {1, . . . , n}
that is independent of {S1, . . . , Sn+1},

P (eT,n+1 ∈ A) = P(e(1,...,r),n+1 ∈ A)

for any event A that is independent of T. Thus, it suffices to prove Proposition 1 by replacing

T with (1, . . . , r). We start by proving the one-sided guarantee:

P
(
e(1,...,r),n+1 ≤ ēMτ

)
≥ τ

(
1− r + 1

n+ 1

)
.

Throughout the proof we condition on the unordered samples {S1, . . . , Sn+1} and denote by

{S(1), . . . , S(n+1)} any typical realization. Ranging over all possible choices of r (ordered)

training environments and a single test environment from {1, . . . , n+ 1} yields the multiset

39



of transfer errors35

C =

{
f(d1, . . . , dr+1) : (d1, . . . , dr+1) ∈ Tr+1,n+1

}
, (A.1)

which has size (n+ 1)!/(n− r)!. The subset of these transfer errors that don’t use sample k

for either training or testing is

C−k =

(
f(d1, . . . , dr+1) : (d1, . . . , dr+1) ∈ Tr+1,n+1, dj 6= k, j = 1, . . . , r + 1

)
,

which has size n!/(n − r − 1)!. For any τ ∈ [0, 1], let Ē∗τ denote the dτn!/(n − r − 1)!e-th
smallest element in C, and let Ēk,τ denote the dτn!/(n− r− 1)!e-th smallest element in C−k.
Since C−k ⊆ C,

Ēk,τ ≥ Ē∗τ for all k and τ . (A.2)

Let F denote the sigma-field generated by the unordered set {S(1), . . . , S(n+1)}. Exchange-

ability implies that(
e(1,...,r),n+1, ēτ

)
| F d

=

(
f(π∗(1), . . . ,π∗(r),π∗(n+ 1)), Ēπ∗(n+1),τ

)
where π∗ denotes a random permutation drawn from the uniform distribution over all per-

mutations on {1, . . . , n+ 1}. Thus

P
(
e(1,...,r),n+1 ≤ ēτ | F

)
= Pπ∗

(
f(π∗(1), . . . ,π∗(r),π∗(n+ 1)) ≤ Ēπ∗(n+1),τ

)
. (A.3)

It follows that

P
(
e(1,...,r),n+1 ≤ ēτ | F

)
≥ Pπ∗

(
f(π∗(1), . . . ,π∗(r),π∗(n+ 1)) ≤ Ē∗τ

)
by (A.2) and (A.3)

=
(n− r)!
(n+ 1)!

∑
(d1,...,dr+1)∈Tr+1,n+1

I(f(d1, . . . , dr+1) ≤ Ē∗τ )

=
(n− r)!
(n+ 1)!

∑
f∈C

I(f ≤ Ē∗τ )

≥ (n− r)!
(n+ 1)!

⌈
τ

n!

(n− r − 1)!

⌉
≥ τ

(
1− r + 1

n+ 1

)
.

The one-sided guarantee then follows from the law of iterated expectation.

35A multiset is a set-like, unordered collection where repeated values are multiply counted.
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Turning to the two-sided guarantee, we first notice that the one-sided guarantee implies

P
(
e(1,...,r),n+1 > ēMτ

)
≤ 1− τ + τ

r + 1

n+ 1
,

and, by symmetry,

P
(
e(1,...,r),n+1 < eMτ

)
≤ 1− τ + τ

r + 1

n+ 1
.

Thus,

P
(
e(1,...,r),n+1 ∈

[
eMτ , ē

M
τ

])
≥ 2τ − 1− 2τ

r + 1

n+ 1
.

This completes the proof of Proposition 1.

To prove Claim 1, define Ē ′τ to be the b(1−τ)n!/(n−r−1)!+1c-th largest element in C as

defined in (A.1). Since |C−k| = n!/(n− r− 1)!, the quantity Ēk,τ is also the b(1− τ)n!/(n−
r − 1)! + 1c-th largest element in C−k. So Ēk,τ ≤ Ē ′τ for any k and τ .

By (A.3), P
(
e(1,...,r),n+1 ≤ ēτ | F

)
≤ Pπ∗

(
f(π∗(1), . . . ,π∗(r),π∗(n+ 1)) ≤ Ē ′τ

)
=

(n− r)!
(n+ 1)!

∑
(d1,...,dr+1)∈Tr+1,n+1

I(f(d1, . . . , dr+1) ≤ Ē ′τ )

=
(n− r)!
(n+ 1)!

∑
f∈C

I(f ≤ Ē ′τ ).

Claim 1 assumes that C has no ties almost surely, so
∑

f∈C I(f > Ē ′τ ) =
⌊
(1− τ) n!

(n−r−1)!

⌋
.

Thus

P
(
e(1,...,r),n+1 ≤ ēτ | F

)
≤ (n− r)!

(n+ 1)!

(
|C| −

⌊
(1− τ)

n!

(n− r − 1)!

⌋)
≤ (n− r)!

(n+ 1)!

(
(n+ 1)!

(n− r)!
− (1− τ)

n!

(n− r − 1)!
+ 1

)
= τ + (1− τ)

r + 1

n+ 1
+

(n− r)!
(n+ 1)!

.

The two-sided guarantee follows by symmetry.

A.3. Proof of Theorem 1. Again let F denote the sigma-field generated by the unordered

set {S1, . . . , S(n+1)}. Under the assumed data-generating process,

e(d1,...,dr),n+1 | F
d
= f(πw(d1), . . . ,πw(dr),π

w(n+ 1)), ∀(d1, . . . , dr) ∈ Tr,n.
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where πw is a random permutation on {1, . . . , n+ 1} distributed according to

P(πw = π) =
1

n!

w(Sπ(n+1))∑n+1
j=1 ω(Sj)

. (A.4)

On the other hand, T
d
= (πn(1), . . . ,πn(r)) where πn denotes a uniform random permutation

on {1, . . . , n}, so eT,n+1 | F
d
= f(πw ◦ πn(1), . . . ,πw ◦ πn(r),πw(n+ 1)). By (A.4), we have

eT,n+1 | F
d
= f(πw(1), . . . ,πw(r),πw(n+ 1)). (A.5)

For any (d1, . . . , dr, k) ∈ Tr+1,n+1,

P((πw(1), . . . ,πw(r),πw(n+ 1)) = (d1, . . . , dr, k)) =
(n− r)!
n!

w(Sk)∑n+1
j=1 ω(Sj)

, W ′
k.

Thus,

eT,n+1 | F ∼
∑

(d1,...,dr,k)∈Tr+1,n+1

W ′
k · δf(d1,...,dr,k).

Note that for any random variable Z ∼ F , P(Z ≤ Q̄τ (F )) ≥ τ . Then

P

eT,n+1 ≤ Q̄τ

 ∑
(d1,...,dr,k)∈Tr+1,n+1

W ′
k · δf(d1,...,dr,k)

 | F
 ≥ τ. (A.6)

The value f(d1, . . . , dr, k) can be observed iff d1, . . . , dr, k are all not equal to n + 1. The

above unobserved upper confidence bound can be replaced by setting all unobserved f -values

to ∞, i.e.,

Q̄τ

 ∑
(d1,...,dr,k)∈Tr+1,n

W ′
k · δf(d1,...,dr,k) + Ωn+1 · δ∞

 .

where

Ωn+1 =
∑

(d1,...,dr,k)∈Tr+1,n+1\Tr+1,n

W ′
k.

Via a simple counting argument, we obtain that

Ωn+1 =
n!

(n− r)!
W ′
n+1 +

r(n− 1)!

(n− r)!

n∑
k=1

W ′
k

=
r

n
+

(n− 1)!

(n− r − 1)!
W ′
n+1

=
r

n
+
n− r
n

w(Sn+1)∑n+1
j=1 ω(Sj)

. (A.7)
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where the second to last equality uses
∑n+1

k=1 W
′
k = (n−r)!

n!
. By (A.7) and (9), we have Wk =

W ′k
1−Ωn+1

, so

Q̄τ

 ∑
(d1,...,dr,k)∈Tr+1,n

W ′
k · δf(d1,...,dr,k) + Ωn+1 · δ∞


= Q̄ τ

1−Ωn+1

 ∑
(d1,...,dr,k)∈Tr+1,n

Wk · δf(d1,...,dr,k)

 ,

where the RHS is ∞ if τ ≤ Ωn+1.

Replacing τ by τ(1− Ωn+1), (A.6) implies that

P

eT,n+1 ≤ Q̄τ

 ∑
(d1,...,dr,k)∈Tr+1,n

Wk · δf(d1,...,dr,k)

 | F
 ≥ τ(1− Ωn+1).

The theorem now follows from the law of iterated expectation.

A.4. Proof of Lemma 1. Hoeffding (1963) shows that P (U ≤ x) ≤ b1
n,k(x,E(U)), and

Bates et al. (2021) shows that P (U ≤ x) ≤ b2
n,k(x,E(U)). To show that if x ∈ [0, 1] then

P (U ≤ x) ≤ b3
n,k(x,E(U)) we use a series of intermediate result to extend a result of Bates

et al. (2021) on U-statistics of degree 2 with bounded kernels to U-statistics with bounded

kernels for any order k ≥ 2.

Let Z1, . . . , Zn be iid random variables and φ : Rk → [0, 1] be a bounded function. Then

a U-statistic of degree k is defined as

U =
(n− k)!

n!

∑
i1,...,ik

φ(Zi1 , . . . , Zik), (A.8)

where
∑

i1,...,ik
denotes the sum over all k-tuples in N with mutually distinct elements. The

average of Zi is a special case of (A.8) with k = 1 and φ(z) = z.

Let m = bn/kc and πn : N 7→ N be a uniformly random permutation. For each permu-

tation π, define

Wπ =
1

m

m∑
j=1

φ
(
Zπ((j−1)k+1), . . . , Zπ(jk)

)
.

Note that the summands in Wπ are independent given π. Then U = Eπn [Wπn ], where Eπn

denotes the expectation with respect to πn when conditioning on Z1, . . . , Zn. By Jensen’s

inequality, for any convex function ψ, E[ψ(U)] = E[ψ(Eπn [Wπn ])] ≤ E[Eπnψ(Wπn)] =
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Eπn [Eψ(Wπn)]. Since Wπ has identical distributions for all π,

E[ψ(U)] ≤ E[ψ(Wid)] (A.9)

where id is the permutation that maps each element to itself.

Recalling that Hoeffding’s inequality is derived from the moment-generating function

ψ(z) = eλz (Hoeffding, 1963), and the Bentkus inequality is derived from the piecewise linear

function ψ(z) = (z − t)+ (Bentkus, 2004), the following tail inequalities for U-statistics are

a direct consequence of (A.9).

Proposition A.1. Let U be a U-statistic of order k with a bounded kernel φ ∈ [0, 1] in the

form of (A.8) and m = bn/kc. Then

(1) (Hoeffding inequality for U-statistics, Section 5 of Hoeffding 1963)

P(U ≤ x) ≤ exp {−mh1 (x ∧ E[U ];E[U ])} ,

where

h1(y;µ) = y log

(
y

µ

)
+ (1− y) log

(
1− y
1− µ

)
.

(2) (Bentkus inequality for U-statistics, modified from Bentkus 2004)

P (U ≤ x) ≤ eP (Bin (m;E[U ]) ≤ dmxe) .

Other concentration inequalities can be derived from the leave-one-out property. Write

U(Z1, . . . , Zn) for U and let Ui = infzi U(Z1, . . . , Zi−1, zi, Zi+1, . . . , Zn). Note that Ui is inde-

pendent of Zi. Since φ(·) ≥ 0, we have 0 ≤ U − Ui ≤ (n−k)!
n!

∑k
j=1

∑
i1,...,ik,ij=i

φ(Zi1 , . . . , Zik)

so n
k
(U − Ui) ≤ 1 and

n∑
i=1

(U − Ui)2 ≤ ((n− k)!)2

(n!)2

n∑
i=1

 k∑
j=1

∑
i1,...,ik,ij=i

φ(Zi1 , . . . , Zik)

2

(i)

≤ k(n− k)!

n · n!

k∑
j=1

n∑
i=1

∑
i1,...,ik,ij=i

φ(Zi1 , . . . , Zik)
2

(ii)

≤ k(n− k)!

n · n!

k∑
j=1

n∑
i=1

∑
i1,...,ik,ij=i

φ(Zi1 , . . . , Zik)

=
k2

n
U,

44



where (i) applies the Cauchy-Schwarz inequality and (ii) uses the fact that φ(·) ≤ 1. If we let

W = (n/k)U and Wi = (n/k)Ui, then W −Wi ≤ 1,
∑n

i=1(W −Wi)
2 ≤ kW. This implies

that W as a function of Z1, . . . , Zn satisfies the assumptions for the claim (34) in Theorem

13 of Maurer (2006) with constant a = k.36

Proposition A.2 (Theorem 13, Maurer 2006). Let G(λ) = (eλ − λ − 1)/λ. Then for any

λ > 0,

logE[eλ(E[W ]−W )] ≤ kλG(λ)

λ+ kG(λ)
E[W ].

This further implies that for any x ∈ (0,E[U ]),

P (U ≤ x) ≤ exp

{
min
λ>0

nλ

k

(
x− λ

λ+ kG(λ)
E[U ]

)}
.

Putting Proposition A.1 and Proposition A.2 together yields Lemma 1.

36Theorem 13 of Maurer (2006) states a weaker result that logE[eλ(E[W ]−W )] ≤ kE[W ]
2 λ2. The stronger

version stated here can be found in the second last display in the proof of Theorem 13 of Maurer (2006).
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Appendix P. Supplementary Material to Section 2

P.1. Other choices for eT,d.

Example 1 (Ratios of Model Errors). For any two decision rules ρ and ρ′, set

eT,d ≡
e(ρ(MT ), Sd)

e(ρ′(MT ), Sd)

to be the ratio of the transfer errors of the two decision rules.

Example 2 (Partial Transfer). Choose an economic model that can be represented as Σ∗ =

{σθ,λ}θ∈Θ,λ∈Λ for compact sets Θ and Λ. The parameters in Λ are domain-specific parameters

that will be re-estimated on the target sample, while the parameters in Θ are transferred

across domains. For any θ and sample S, define e(θ, S) = minλ∈Λ
1
|S|
∑

(x,y)∈S `(σθ,λ(x), y)

to be the minimal achievable error on the sample S when optimizing over λ given the fixed

value of θ. The partial transfer error from MT to S is e(θMT , S), where

θMT ∈ argmin
θ∈Θ

∑
S∈MT

min
λ∈Λ

e(σθ,λ, S)

is a best-fitting value of θ on the training data MT .37 Set eT,d ≡ e(θMT , Sd) to be the partial

transfer error on sample Sd.

P.2. Other decision rules.

Example 3 (Domain Cross-Validation). Let R∗ be a family of decision rules, for example

random forest algorithms with decision trees restricted to different depths. Let

ρ∗MT ∈ argmin
ρ̃∈R∗

∑
t∈T

e(ρ̃(MT \{t}), St) ∀MT ∈M, |T | ≥ 2

37The decision rule ρ should specify a way to break ties.
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and set ρ(MT ) = ρ∗(MT ). That is, we pick the decision rule which, among the set of candi-

dates R∗, attains the best average leave-one-domain-out error across our training domains,

and then apply that rule to the full training data.

Example 4 (Distributionally Robust Optimization (DRO)). DRO chooses model parameters

to minimize worst-case error with respect to a neighborhood of distributions around the

training data. Specify a distance function D(P, P ′) for the distance between any two prob-

ability measures P, P ′ ∈ ∆(X × Y) and choose a neighborhood size ε. For any meta-data

realization MT , let PMT denote the empirical distribution of the pooled set of observations

across the samples in the meta-data. As in Example 2.1, consider a set of prediction rules

Σ∗. We define ρΣ∗ to satisfy

ρΣ∗(MT ) ∈ argmin
σ∈Σ∗

(
max

P∈Bε(PMT )
EP [`(σ(x), y)]

)
.

That is, the chosen prediction rule is the one that minimizes the worst-case error on distri-

butions in the neighborhood of the observed data.

Example 5 (Hierarchical Bayesian Model). A Hierarchical Bayesian model posits a para-

metric form for the data generating process in each domain d, with parameters θd that can

vary across domains. For instance, we might model the outcome y as normally distributed

conditional on the features x, with conditional variance ςd and conditional mean σθd(x), and

specify a family of priors π(θd, ςd; γ) for the domain-level parameters (θd, ςd), as well as a

prior π(γ) on the hyperparameter γ which is common across domains, and indexes the dis-

tribution of (θd, ςd). In this case the log-likelihood for the training data in domain d, fixing

ςd and varying θd, is proportional to squared error loss. The hierarchical Bayes decision rule

ρHB(MT ) for squared error loss then computes the posterior on (γ, {θd : d ∈ T}) based on

the training data MT and sets the prediction rule based on features x in domain d′ equal to

the posterior mean of σθd′ (x).

Appendix Q. Supplementary Material to Section 3.2

Q.1. Algorithm for evaluating worst-case-upper-dominance. We provide an algo-

rithm that computes ēτ (Γ) with a single τ in O(rnr+1 log n) time and computes ēτ (Γ) for all

τ ∈ (0, 1) in O(rnr+1 log n + nr+2) time. Recall the definition of C in (A.1). First, sort the

2



elements in C as

f(1) ≤ f(2) ≤ . . . ≤ f(|Tr+1,n|),

where

f(j) = f(d(j)), d(j) = (d
(j)
1 , . . . , d

(j)
r+1) ∈ Tr+1,n.

Let ψ(j) ∈ {0, 1}n with

ψ
(j)
i = I

(
d

(j)
r+1 = i

)
.

Further define the cumulative sum of ψ(j) as

Ψ(j) =

j∑
`=1

ψ(`).

Let w = (ω(S1), . . . , ω(Sn))T and 1n = (1, 1, . . . , 1)T . By (9), for each j,

f(j) ≥ ēM,ω
τ ⇐⇒ (n− r − 1)!

(n− 1)!

wTΨ(j)

wT1n
≥ τ.

Therefore,

ēM,ω
τ = fJω , where Jωτ = min

{
j :

wTΨ(j)

wT1n
≥ τ

(n− 1)!

(n− r − 1)!

}
.

By definition, the set of w generated by all ω ∈ W(Γ) is [Γ−1,Γ]n. Thus,

ēMτ (Γ) = fJτ (Γ), where Jτ (Γ) = min

{
j : min

w∈[Γ−1,Γ]n

wTΨ(j)

wT1n
≥ τ

(n− 1)!

(n− r − 1)!

}
. (Q.1)

Via some algebra, we can further simplify the expression of ēMτ (Γ).

Theorem Q.1. Let Ψ̄
(j)
k be the average of the k-smallest coordinates of Ψ(j) and

Qj(Γ) =
j

n
+ min

k∈N

Ψ̄
(j)
k −

j
n

1 + n
k(Γ2−1)

.

Then Qj(Γ) is strictly increasing in both j and Γ. Moreover, ēMτ (Γ) = f(Jτ (Γ)), where

Jτ (Γ) = min

{
j ≥ τ

n!

(n− r − 1)!
: Qj(Γ) ≥ τ

(n− 1)!

(n− r − 1)!

}
.

Proof. First, we prove that

min
w∈[Γ−1,Γ]n

wTΨ(j)

wT1n
= min

w∈{Γ−1,Γ}n

wTΨ(j)

wT1n
. (Q.2)
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Let gj(w) = wTΨ(j)/wT1n. Then gj is continuous and bounded on the closed set [Γ−1,Γ]n

and thus the minimum can be achieved. Let

w(j)(Γ) = argmin
w:gj(w)=minw∈[Γ−1,Γ]n gj(w)

n∑
i=1

min
{
|wi − Γ|, |wi − Γ−1|

}
.

Suppose there exists i ∈ N such that w
(j)
i (Γ) ∈ (Γ−1,Γ). Then

gj(wi, w−i) =
Ψ

(j)
i wi + Ψ

(j)T
−i w−i

wi + 1Tn−1w−i
= Ψ

(j)
i +

Ψ
(j)T
−i w−i −Ψ

(j)
i · 1Tn−1w−i

wi + 1Tn−1w−i
,

where Ψ
(j)
−i and w−i are the leave-i-th-entry subvectors of Ψ(j) and w. Clearly, gj is a monotone

function of wi for any given w−i. Since w(j)(Γ) is a minimizer and w
(j)
i (Γ) ∈ (Γ−1,Γ), we

must have Ψ
(j)T
−i w−i −Ψ

(j)
i · 1Tn−1w−i = 0. Define w̃(j)(Γ) with

w̃
(j)
i (Γ) = Γ, w̃

(j)
−i (Γ) = w

(j)
−i (Γ).

Then

gj(w̃
(j)(Γ)) = gj(w

(j)(Γ)) = min
w∈[Γ−1,Γ]n

gj(w),

while

n∑
i=1

min
{
|w̃(j)

i (Γ)− Γ|, |w̃(j)
i (Γ)− Γ−1|

}
<

n∑
i=1

min
{
|w(j)

i (Γ)− Γ|, |w(j)
i (Γ)− Γ−1|

}
.

This contradicts the definition of w(j)(Γ), so w(j)(Γ) ∈ {Γ−1,Γ}n, which completes the proof

of (Q.2).

For any w ∈ {Γ−1,Γ}n with |{i : wi = Γ}| = k, the Fréchet-Hoeffding inequality implies

that Γ’s are allocated to the k smallest entries of Ψ(j). Thus,

min
w∈{Γ−1,Γ}n

wTΨ(j)

wT1n
= min

k∈N∪{0}

ΓkΨ̄
(j)
k + Γ−1(1TnΨ

(j)
i − kΨ̄

(j)
k )

Γk + Γ−1(n− k)
.

By definition, 1TnΨ
(j)
i = j. Then for each k, the above expression can be simplified as

ΓkΨ̄
(j)
k + Γ−1(1TnΨ

(j)
i − kΨ̄

(j)
k )

Γk + Γ−1(n− k)
=

ΓkΨ̄
(j)
k + Γ−1(j − kΨ̄

(j)
k )

Γk + Γ−1(n− k)

=
(Γ− Γ−1)kΨ̄

(j)
k + Γ−1j

(Γ− Γ−1)k + Γ−1n
=
j

n
+

(Γ− Γ−1)k
(

Ψ̄
(j)
k −

j
n

)
(Γ− Γ−1)k + Γ−1n

=
j

n
+

Ψ̄
(j)
k −

j
n

1 + n
k(Γ2−1)

.
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The above expression is j/n for both k = n and k = 0, so we can remove 0 from the

minimum, and thus

min
w∈[Γ−1,Γ]n

wTΨ(j)

wT1n
= Qj(Γ).

By (Q.1),

ēMτ (Γ) = min

{
j : Qj(Γ) ≥ τ

(n− 1)!

(n− r − 1)!

}
.

Finally, we can restrict to j ≥ τn!/(n− r − 1)! because Qj(Γ) ≤ j
n

by taking k = n. �

Since Qj(Γ) is increasing in j, Jτ (Γ) can be found via binary search with iteration com-

plexity O(log nr+1) = O(r log n). Each iteration costs at most O(n) operations to sort the

entries of Ψ(j) based on the ordered version of Ψ(j−1), since there is only entry updated, and

O(n) additional operations to compute Qj(Γ). Thus, the overall computational overhead

after obtaining (f(1), . . . , f(|Tr+1,n|)) is just O(rn log n), which is much smaller than the cost

of sorting f -values O(nr+1 log nr+1) = O(rnr+1 log n).

In some cases, we want to compute ēMτ (Γ) for all τ ∈ [0, 1] at once. The following result

links ēMτ (Γ) to an induced distribution on the f ’s.

Corollary Q.1. For any Γ ≥ 1, let µΓ be a weighted measure with

µΓ =

|Tr+1,n|∑
j=1

(n− r − 1)!

(n− 1)!
(Qj(Γ)−Qj−1(Γ)) · δf(j)

,

where Q0(Γ) = 0. Then ēMτ (Γ) is the τ -th quantile of µΓ.

Since the ordering takes O(rnr+1 log n) time and computing each Qj(Γ) takes O(n) time,

the total computational cost to compute ēMτ (Γ) for all τ ∈ [0, 1] is O(rnr+1 log n+ nr+2).

Q.2. Algorithm for evaluating everywhere dominance. Let f(j),1 and f(j),2 be the j-th

largest transfer errors for method 1 and 2, respectively. Similarly, the count vectors for two

methods are denoted by Ψ(j),1 and Ψ(j),2. Then method 1 does NOT everywhere-upper-

dominate method 2 at the τ -th quantile if and only if there exists j1, j2 ∈ {1, . . . , |Tr+1,n|}
and W ∈ [0,∞)n such that

f(j1),1 > f(j2),2,
(n− r − 1)!

(n− 1)!

wTΨ(j1−1),1

wT1n
< τ ≤ (n− r − 1)!

(n− 1)!

wTΨ(j2),2

wT1n
. (Q.3)

Above Ψ(0),1 = (0, 0, . . . , 0)T .
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To avoid pairwise comparisons, which incur O(n2(r+1)) computation, we can check (Q.3)

by only focusing on j1 = m(j), j2 = j where

m(j) = min{j′ : f(j′),1 > f(j),2}.

It is easy to see that (Q.3) holds for some pair (j1, j2) ∈ {1, . . . , |Tr+1,n|}2 if and only if it

holds for (m(j), j) for some j ∈ {1, . . . , |Tr+1,n|}. For any given j, (Q.3) reduces to

(n− r − 1)!

(n− 1)!

wTΨ(m(j)−1),1

wT1n
< τ ≤ (n− r − 1)!

(n− 1)!

wTΨ(j),2

wT1n
, w ∈ [0,∞)n.

This is equivalent to solving the following linear fractional programming problem and then

checking if the objective is below τ :

min
wTa(j)

wT1n
, s.t.,

wT b(j)

wT1n
≥ τ, w ∈ [0,∞)n,

where

a(j) = Ψ(m(j)),1 · (n− r − 1)!

n− 1)!
, b(j) = Ψ(j),2 · (n− r − 1)!

(n− 1)!
.

We can apply the Charnes-Cooper transformation (Charnes and Cooper, 1962) by introduc-

ing v = w/wT1n to transform it into a linear programming problem:

min vTa(j), s.t., vT b(j) ≥ τ, vT1n = 1, v ∈ [0,∞)n. (Q.4)

Solving these O(nr+1) LP problems can be accelerated by the following two observations:

(1) Using the same argument as in the last step of the proof of Theorem Q.1, we can

restrict

j ≥ τ
n!

(n− r − 1)!
.

(2) When a
(j)
i ≥ b

(j)
i for every i ∈ N , then the objective of (Q.4) can never be below τ .

Appendix R. Supplementary material for Section 4

R.1. Description of data. We briefly describe the individual samples in our meta-data.

There are 44 domains in total.

Table 4

Source of Data # Obs # Subj # Lottery Country Gains Only

Abdellaoui et al. (2015) 801 89 3 France Y

Fan et al. (2019) 4750 125 19 US Y
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Bouchouicha and Vieider (2017) 3162 94 66 UK N

Sutter et al. (2013) 661 661 4 Austria Y

Etchart-Vincent and l’Haridon (2011) 3036 46 20 France N

Fehr-Duda et al. (2010) 8560 153 56 China N

Lefebvre et al. (2010) 72 72 2 France Y

Halevy (2007) 366 122 2 Canada Y

Anderhub et al. (2001) 183 61 1 Israel Y

Murad et al. (2016) 2131 86 25 UK Y

Dean and Ortoleva (2019) 1032 179 3 US Y

Bernheim and Sprenger (2020) 1071 153 7 US Y

Bruhin et al. (2010) 8906 179 50 Switzerland N

Bruhin et al. (2010) 4669 118 40 Switzerland N

l’Haridon and Vieider (2019) 1708 61 27 Australia N

l’Haridon and Vieider (2019) 2548 95 27 Belgium N

l’Haridon and Vieider (2019) 2350 84 27 Brazil N

l’Haridon and Vieider (2019) 2240 80 27 Cambodia N

l’Haridon and Vieider (2019) 2687 96 27 Chile N

l’Haridon and Vieider (2019) 5711 204 27 China N

l’Haridon and Vieider (2019) 3072 128 23 Colombia N

l’Haridon and Vieider (2019) 2968 106 27 Costa Rica N

l’Haridon and Vieider (2019) 2770 99 27 Czech Republic N

l’Haridon and Vieider (2019) 3906 140 27 Ethiopia N

l’Haridon and Vieider (2019) 2604 93 27 France N

l’Haridon and Vieider (2019) 3639 130 27 Germany N

l’Haridon and Vieider (2019) 2352 84 27 Guatemala N

l’Haridon and Vieider (2019) 2492 89 27 India N

l’Haridon and Vieider (2019) 2352 84 27 Japan N

l’Haridon and Vieider (2019) 2716 97 27 Kyrgyzstan N

l’Haridon and Vieider (2019) 1791 64 27 Malaysia N

l’Haridon and Vieider (2019) 3360 120 27 Nicaragua N

l’Haridon and Vieider (2019) 5638 202 27 Nigeria N

l’Haridon and Vieider (2019) 2660 95 27 Peru N

l’Haridon and Vieider (2019) 2491 89 27 Poland N

l’Haridon and Vieider (2019) 1959 70 27 Russia N

l’Haridon and Vieider (2019) 1819 65 27 Saudi Arabia N

l’Haridon and Vieider (2019) 1988 71 27 South Africa N

l’Haridon and Vieider (2019) 2240 80 27 Spain N
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l’Haridon and Vieider (2019) 2212 79 27 Thailand N

l’Haridon and Vieider (2019) 2070 74 27 Tunisia N

l’Haridon and Vieider (2019) 2240 80 27 UK N

l’Haridon and Vieider (2019) 2701 97 27 US N

l’Haridon and Vieider (2019) 2436 87 27 Vietnam N

R.2. Papers as domains. We now consider an alternative definition of domains, with

each of the 14 papers representing a different domain. This changes the content of the

iid assumption imposed in Section 3, where we now assume that samples are iid across

papers, but may be dependent across subject pools within the same paper. We repeat our

main analysis and report 65% two-sided forecast intervals in Figure 8. These intervals are

qualitatively similar to those reported in Figure 3.

0 10000 20000 30000 40000
Transfer error

KR

RF

EU

αβ

γ

αβγ

δγ

αβδγ

M
od

el
s

(a) Transfer error

2 4 6 8
Normalized transfer error

RF

KR

αβγ

EU

αβ

αβδγ

γ

δγ

M
od

el
s

(b) Normalized transfer error

2 4 6 8
Transfer deterioration

RF

KR

αβγ

αβδγ

δγ

γ

αβ

EU

M
od

el
s

(c) Transfer deterioration

Figure 8. 65% (n=14, τ = 0.95) forecast intervals for each of the three measures, treating
each paper as a separate domain.
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R.3. In-sample errors. Figure 9 displays the CDFs of the in-sample errors of EU, CPT,

the random forest algorithm, and kernel regression. As in Figure 2 (which reported out-of-

sample errors), these curves are nearly indistinguishable.
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KR

Figure 9. CDF of in-sample errors

R.4. Supplementary tables and figures for main analysis. Table 5 reports the forecast

intervals that are depicted in Figure 3.

Model Transfer Error Normalized Error Deterioration

CPT variants
γ [2.50,15.83] [1.03,2.54] [1.00,1.47]
α, β [2.56,16.13] [1.04,2.35] [1.00,1.30]
δ, γ [2.48,17.19] [1.02,2.47] [1.00,1.53]
α, β, γ [2.47,15.91] [1.02,2.60] [1.00,1.85]
α, β, δ, γ [2.46,15.99] [1.02,2.62] [1.00,1.82]

EU models
EU [2.56,16.41] [1.04,2.14] [1.00,1.30]

ML algorithms
Random Forest [2.71,31.39] [1.02,6.42] [1.02,6.42]
Kernel Regression [2.75,33.62] [1.02,5.33] [1.01,5.29]

Table 5. 81% (n=44, τ = 0.95) forecast intervals

R.5. Alternative forecast intervals. In this section, we report alternative forecast inter-

vals for our three measures. Table 6 constructs 91% two-sided forecast intervals (setting

τ = 1),38 and Table 7 reports 91% one-sided forecast intervals (setting τ = 0.95). All of the

38The lower bounds of these intervals are the minimum transfer error (among the pooled transfer errors)
and the upper bounds are the maximum transfer error.
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forecast intervals are qualitatively similar to the 81% two-sided forecast intervals reported

in the main text.

Model Transfer Error Normalized Error Deterioration

CPT main variants
γ [0.81,23104.96] [1.01,7.31] [1.00,7.22]
α, β [0.71,19999.41] [1.00,5.28] [1.00,5.27]
δ, γ [0.71,23052.76] [1.00,7.25] [1.00,7.18]
α, β, γ [0.71,28122.26] [1.00,5.65] [1.00,5.60]
α, β, δ, γ [0.71,27959.10] [1.00,6.01] [1.00,5.95]

EU models
EU [0.72,22787.99] [1.00,4.44] [1.00,1.75]

ML algorithms
Random Forest [0.96,42520.49] [1.01,33.17] [1.01,33.17]
Kernel Regression [1.01,42519.23] [1.01,6.835] [1.00,6.79]

Table 6. 91% (n=44, τ = 1) two-sided forecast intervals

Model Transfer Error Normalized Error Deterioration

CPT main variants
γ [0,15.83] [1,2.54] [1,1.47]
α, β [0,16.13] [1,2.35] [1,1.30]
δ, γ [0,17.19] [1,2.47] [1,1.53]
α, β, γ [0,15.91] [1,2.60] [1,1.85]
α, β, δ, γ [0,15.99] [1,2.62] [1,1.82]

EU models
EU [0,16.41] [1,2.14] [1,1.30]

ML algorithms
Random Forest [0,31.39] [1,6.42] [1,6.42]
Kernel Regression [0,33.62] [1,5.33] [1,5.29]

Table 7. 91% (n=44, τ = 0.95) one-sided forecast intervals

Finally, Figure 10 plots the τ -th percentile of the pooled transfer errors as τ varies. The

figure shows that the qualitative conclusions we have drawn about the relative performance

of black boxes and economic models are not specific to any choice of τ .39 In fact, in Panels

(a) and (c), the black box curves lie everywhere above the CPT and EU curves, so both the

lower and upper bounds of the black boxes’ forecast intervals are higher than those of the

economic models for every choice of τ .

39To improve readability, we remove extreme numbers by truncating τ ∈ [5, 95], and show results only for
the αβγδ specification of the CPT model.
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Figure 10. Error percentiles from 5 to 95 (truncated for readability).

R.6. Forecast intervals for the ratio of CPT and RF errors. Let ρCPT denote the

decision rule corresponding to CPT, and ρRF denote the decision rule corresponding to the

random forest algorithm. Define

eT ,d =
e(ρRF (MT ), Sd)

e(ρCPT (MT ), Sd)

to be the ratio of the random forest transfer error to the CPT transfer error, henceforth the

transfer error ratio.

Panel (a) of Figure 11 reports 81% two-sided forecast intervals for the transfer error ratio

for each CPT specification. The lower bound for each CPT model is approximately 0.9,

while the upper bound is as large as 4.5. Panel (b) of the figure is a histogram of transfer
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Figure 11. Forecast intervals, density, and cdf for the ratio of the random forest transfer
error to the CPT transfer error.

error ratios for the 4-parameter CPT model when the training domains T and the target

domains d are drawn uniformly at random from the set of domains in the meta-data. This

distribution has a large cluster of ratios around 1 (i.e., CPT transfer errors are similar to

the random forest errors) and a long right tail of ratios achieving a max value of 32.8 (i.e.,

the random forest error can be up to 32 times as large as the CPT error). The cumulative

distribution function of eT,d, reported in Panel (c) of Figure 11, shows that the random forest

algorithm outperforms CPT in approximately 35% of (T, d) pairs, although CPT rarely has

a much worse transfer error than the random forest and is sometimes much better.

R.7. Alternative Choice of r. Here we consider an alternative choice for the number of

training domains, setting r = 3 instead of r = 1. This corresponds to randomly choosing
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3 of the 44 domains to be the training domains, finding the best prediction rule for this

pooled data, and using the estimated prediction rule to predict the remaining 41 samples.

For this analysis we use domain cross-validation to select tuning parameters for the black

box algorithms, as described in Example 3.
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Figure 12. 73% (n=44, τ = 0.95) forecast intervals for (a) transfer error, (b) normalized
transfer error, and (c) transfer deterioration, with the choice of r = 3.

Figure 12 is the analog of Figure 3. Again we choose τ = 0.95, thus constructing forecast

intervals whose lower bounds are the 5% percentile of pooled transfer errors, and whose upper

bounds are the 95% percentile of pooled transfer errors. Applying Proposition 1, these are

73% forecast intervals. The most notable change is that the random forest forecast interval

shrinks considerably, which suggests that the transfer error of the random forest algorithm

becomes less variable when it is trained on more domains. Otherwise, all of the qualitative

statements in the main text for r = 1 continue to hold. In particular, as with r = 1, we find
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that the forecast intervals for all three of our measures have higher lower and upper bounds

for the black box algorithms than for the CPT specifications.

R.8. More details on worst-case dominance. Figures 13 and 14 compare the worst case

upper bound of the forecast intervals for CPT and RF for our three transfer measures as

either γ or τ varies. In each case the dominance relation is clear.
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ê τ
(Γ

)

method CPT RF

τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

1 Γ
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Figure 13. The worst case upper prediction bound êτ (Γ) (as defined in (10)) for (a) trans-
fer errors, (b) normalized transfer errors, and (c) transfer deterioration of CPT and RF
as a function of Γ ∈ [1,∞), discretized at 100/i(i = 0, 1, . . . , 100), at different quantiles
τ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.
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Figure 14. The worst case upper prediction bound êτ (Γ) (as defined in (10)) for (a) trans-
fer errors, (b) normalized transfer errors, and (c) transfer deterioration of CPT and RF as
a function of τ ∈ [0.5, 1] without discretization for Γ ∈ {1, 2, 5, 10,∞}.
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