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ABSTRACT. Economists often estimate models using data from a particular domain, e.g.
estimating risk preferences in a particular subject pool or for a specific class of lotteries.
Whether a model’s predictions extrapolate well across domains depends on whether the es-
timated model has captured generalizable structure. We provide a tractable formulation for
this “out-of-domain” prediction problem and define the transfer error of a model based on
how well it performs on data from a new domain. We derive finite-sample forecast intervals
that are guaranteed to cover realized transfer errors with a user-selected probability when
domains are i.i.d. and use these intervals to compare the transferability of economic models
and black box algorithms for predicting certainty equivalents. We find that in this appli-
cation, the black box algorithms we consider outperform standard economic models when
estimated and tested on data from the same domain, but the economic models generalize

across domains better than the black-box algorithms do.
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1. INTRODUCTION

Economic models estimated on data from one context are often used to guide predictions
and policy in a range of other contexts. For example, a model of information diffusion
estimated on data of microfinance takeup in one Indian village may be used to guide policy
decisions about the seeding of microfinance in another village, and a model of risk preferences
estimated on willingness-to-pay data for certain lotteries may be used to predict willingness-
to-pay for new lotteries. How should the generalizability of a model to new settings be
assessed and predicted?

The generalizability of models is a classic concern in economics (Haavelmo), (1944; |Pearl
and Bareinboim, 2011; Tipton and Olsen, |2018; (Chassang and Kapon, 2022), but has a
new salience due to the rise of “black-box” machine learning prediction methods. Machine
learning methods have been shown to out-predict economic models (Hartford et al., 2016}
Plonsky et al., 2019; [Hofman et al.| 2021)) and identify new interpretable regularities that the
models do not capture (e.g., Fudenberg and Liang| (2019), Peterson et al.[2021], Ludwig and
Mullainathan| (2023))). At the same time, other papers (e.g. |Coveney et al.| (2016); |Athey
(2017); Beery et al| (2018); Manski (2021)) have argued that structured economic models
capture regularities that generalize well across domains, and may thus be more reliable for
making predictions in new contexts. Whether economic models in fact generalize better is
an important empirical question.

Our paper’s contribution is twofold. First, we provide a tractable approach for evaluating
cross-domain transfer performance based on techniques that generalize conformal inference
(e.g. |Vovk et all) [2005; [Barber et al., |2021; |Angelopoulos et al., 2022). In our statistical
model, behavior in different economic contexts is governed by different distributions. Unlike
previous approaches, we do not restrict these distributions to be close to one another, but
instead assume that they are i.i.d. Under this assumption, we derive finite-sample forecast
intervals for a large class of measures of transfer performance. These forecasts can be applied
to evaluate economic models, regression models, and black box algorithms alike[] Second, we
use these forecast intervals to compare the generalizability of economic models and black box
machine learning methods in a specific economic application (predicting certainty equivalents

for lotteries), and find that economic models generalize better.

1 We use the term “forecast interval,” rather than “confidence interval,” to reflect the random nature of the
target, namely the realized (rather than expected, median, etc.) transfer error, but they can also be viewed
as confidence intervals for these random targets.



Our conceptual framework, described in Section [2] is an extension of the familiar notion
of “out-of-sample” evaluation to “out-of-domain” evaluation. In the standard out-of-sample
test, a model’s free parameters are estimated on a training sample, and the predictions of
the estimated model are evaluated on a test sample, where the observations in the training
and test samples are drawn from the same distribution. We depart from this framework
by supposing that the distribution of the data varies across a set of “domains,” but that
these domain-specific distributions are themselves drawn i.i.d. from a meta-distribution. As
Section [2| explains, our results apply to a large class of measures for the transferability
for a model, which we call transfer errors. Transfer errors can be used to evaluate the
performance of many common empirical techniques, including using a model that is trained
on a sample from one domain to predict in a sample from an as-yet unobserved domain, and
asking whether a qualitative prediction based on estimated parameters from one sample will
generalize to another.

Section [3| shows how to construct forecast intervals with guaranteed coverage probability
for any transfer error, using a meta-data set of samples from already observed domains. Our
approach is to split the observed domains in the meta-data set into training and test domains,
estimate the parameters of the model on the samples from the training domains, and evaluate
its transfer error on each of the test domains. Pooling these transfer errors across different
choices of training and test domains yields an empirical distribution of transfer errors. We
show that for every quantile 7, the interval bounded by the 7-th and (1 — 7)-th quantiles of
the pooled transfer error is a valid forecast interval for the transfer error on a new, unseen
domain. We also relax our i.i.d. sampling assumption, deriving a modified procedure for
cases where the distributions in training domains are drawn i.i.d. from one distribution,
while the distribution in the target domain is drawn from another. Both procedures (and
all other methods described in this paper) are implemented in an R package (transferUQ),
available on GithubPl

Section [4] applies these procedures to compare the transferability of economic models and
black box algorithms in a classic economic problem: predicting certainty equivalents for
binary lotteries. The samples correspond to observations from different subject pools, so
a model’s transfer error describes how well it predicts outcomes in one subject pool when

estimated on data from another. We evaluate two models of risk preferences, expected utility

https://github.com/lihualei71/transferUQ
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and cumulative prospect theory, and two popular black box machine learning algorithms,
random forest and kernel regression. We find that although the black box algorithms out-
perform the economic models out-of-sample when trained and tested on data from the same
domain, the economic models generalize more reliably across domains. Specifically, while
the forecast intervals for the black box algorithms and economic models overlap, the forecast
intervals for the black box methods are wider, and their upper bounds are substantially
higher.

Why do the black boxes perform worse at transfer prediction in this setting? A natural
explanation, based on intuition from conventional out-of-sample testing, is that black boxes
are very flexible and hence learn idiosyncratic details that do not generalize across subject
pools. But when we restrict the analysis to a subset of our samples involving the same set
of lotteries, the resulting forecast intervals are nearly identical across all of the prediction
methods, so black box methods do not always transfer worse. Instead, black boxes seem to
transfer worse when the primary source of variation across samples is a shift in the marginal
distribution over features (i.e., which lotteries appear in the sample), rather than a shift in the
distribution of outcomes conditional on features (i.e., the distribution of certainty equivalents
given fixed lotteries). We leave to future work the question of what other properties of the
transfer problem are relevant for determining which of black box algorithms and economic

models are better suited to prediction.

1.1. Related Literature. This paper is situated at the intersection of several literatures
in economics, computer science, and statistics. These literatures consider several related
but distinct tasks: synthesizing evidence across different domains, improving the quality of
extrapolation from one domain to another, and quantifying the extent to which insights from
one domain generalize to another. Our results are most closely related to this third strand.
The first objective, synthesizing results across different domains, is a particular focus of
the literature on meta—analysisﬁ Our goal is instead to assess the cross-domain forecast
accuracy of a model. These problems are related, and Meager (2019) and Meager| (2022)
in particular provide posterior predictive intervals for new domains in the context of her
application. Unlike our approach, the predictive intervals reported in those papers are valid
only under a parametric model for the distribution of effects across domains.
3See (Card and Krueger| (1995), Benartzi et al.| (2017), DellaVigna and Pope| (2019), [Hummel and Maedche
(2019), Bandiera et al.| (2021)), Tmai et al.| (2020)) and |[Vivalt| (2020) among others.
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There is also a large literature that aims to extrapolate results from one domain to another.

Within computer science, the literature on domain generalization (Blanchard et al.[|2011] and

Muandet et al.2013) develops models that generalize well to new unseen domains (Zhou
et al. 2021ﬁ Similarly, several papers within economics (e.g., Hotz et al. 2005 and Dehejia)
2021)) use knowledge about the distribution of covariates to extrapolate out-of-domain.

In contrast, our focus is not on developing new models or algorithms with good out-of-domain

guarantees, but rather on developing forecast intervals for the out-of-domain performance of
models and algorithms that are used in practice.
Finally, the literature on external validity studies the extent to which results obtained in

one domain hold more generally. This paper does not focus on the generalizability of insights

from randomized control trials (e.g. Deaton, [2010; Imbens, [2010) or laboratory experiments
(e.g. Levitt and List}, 2007; |Al-Ubaydli and List} [2015)), but instead on a model’s generalizabil-

ity across exchangeable domains[] Our use of exchangeability to construct bounds extends

work on conformal inference (e.g. [Vovk et al., 2005; Barber et al., 2021; Angelopoulos et al.,
2022) by replacing the assumption of exchangeable observations with that of exchangeable

domainsﬂ Section relaxes this assumption; our results there connect to the literature on
sensitivity analysis (e.g. |Aronow and Lee| [2013; |Andrews and Oster] [2019; Nie et al., 2021}
Sahoo et al, 2022).

Finally, we join a small but growing body of work regarding the relative value of economic

models and black box algorithms, and how the two approaches can be combined for better

prediction and explanation of social science phenomena (Athey and Imbens|, 2016; Fudenberg

and Liang|, 2019; Agrawal et al., 2020). Several recent papers compare the predictiveness

of black box algorithms with that of more structured economic models[] While black box
methods are often very effective given a large quantity of data from the domain of interest,

our results suggest that they may be less effective at transferring predictions across domains.

4Our problem corresponds to homogeneous domain generalization, where the set of outcomes ) is constant
across domains, in contrast to heterogenous domain generalization, where the outcome set potentially varies
across domains as well. There is also a related literature on domain adaptation, which aims to improve
predictions when some data from the target domain is available — see Zhou et al. (2021)).
®Another set of papers study the generalizability of instrumental variables estimates (e.g. Angrist and
Fernandez-Val| [2013; [Bertanha and Imbens, [2020) and causal effects (e.g. [Pearl and Bareinboim, [2014;
Park et al., [2023).
°This also differentiates our work from the out-of-distribution prediction literature in computer science 1
2021), which bounds expected transfer error when the test and training distributions are close.

See e.g. Noti et al.| (2016), Plonsky et al.| (2017), Plonsky et al.| (2019), (Camerer et al.| (2019)), [Fudenberg|

land Liang (2019), and Ke et al.| (2020).




Hofman et al| (2021) organizes recent work in this area and concludes that more work
is needed on the question “how well does a predictive model fit to one data distribution

generalize to another?” Our paper takes an important step in this direction.

2. FRAMEWORK

2.1. Data generation process. Let X be a set of covariate vectors and ) be a set of
outcomes. An observation is a pair (z,y) € X x ), and a sample is a set of observations
S = {(z;,y:)}-;. We assume that samples Sy, Ss,... are generated i.i.d. from a meta-
distribution p € A(P x N) over joint distributions P = A(X x ) and sample sizes N. That
is, each sample Sy is generated by first drawing a distribution and sample size (Py,mg) ~ p,
and then independently drawing m, observations (z, y) from P, ﬁ For example, if the samples
are data from experiments conducted in different locations, then the i.i.d. assumption means
that each location is drawn independently from a fixed distribution. This assumption rules
out predictable patterns in how the joint distribution varies across samples, but allows for
arbitrary relationships between the realized distributions; in particular, we do not constrain
the distributions P;, Py to be close or share a common support over X or ).

The analyst has access to metadata consisting of n samples
M ={S1,...,Sq4,...S.}.

A set T is drawn uniformly over all subsets of {1,...,n} of size r < n, and the samples
St = (S4)deT are used to train the model. We refer to these samples as the training
samples or training data, and call a new sample S, ;; on which the model is evaluated the
target sample. The choice of r, i.e., the number of training samples, depends on what the
analyst wants to understand. In many contexts, including parameter calibration in structural
models (Greenwood et al., 1997; McKay et al., [2016; Oswald, 2019) and extrapolation of
treatment effect estimates beyond the experimental population (Mogstad and Torgovitsky),
2018; Tipton and Olsen, 2018; |Cattaneo et al.l 2021; Maeba, 2022), economists transfer
quantitative conclusions from a single domain to another. In this case » = 1, and the
relevant question is whether extrapolating from one sample leads to good predictions at the

new location. If instead experiments are run at » > 1 different locations and the observations

8This can be understood as a version of cluster sampling (Liang and Zeger} |1986; Bugni et al.| [2023)), where
our goal is to do predictive inference for new clusters. When p assigns probability 1 to a single distribution
in p € P or when p assigns probability 1 to m = 1, this reduces to i.i.d. sampling of observations from a
fixed joint distribution, but our focus is on settings where neither of these is the case.
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are aggregated and used to estimate a model (as in the meta-analyses of Meager| (2019,
2022))), the relevant question may be how well the estimated model on the aggregated data
generalizes to a new location, and r > 1 is appropriate.

We provide a method for constructing a forecast interval for what we call transfer errors.

Definition 1 (Transfer Errors). A transfer error is any random variable that can be written
as a function of the training St, the target sample 5,1, and potentially an independent

noise variable.

To simplify notation, we write these transfer errors as et 1, although their values depend
on the realization of the full vector (S;)/f" as well as the realization of the set of samples T
used for training.

This is a large class of variables that can measure many notions of transferability, including

the ones we describe below.

2.2. Model Transfer. Suppose we use the training samples St to select a prediction rule
fsy : X = Y, e.g., by estimating a parametric model or by fitting a black box algorithmﬂ If
this rule is used to predict outcomes in a different sample, how accurate will those predictions

be?

Ezample 1 (Certainty Equivalents). The covariates X describe different lotteries, i.e., each
covariate vector x includes a description of (say) two possible prizes and their corresponding
probabilities. The outcome y is the average willingness-to-pay for this lottery. A firm
acquires willingness-to-pay data from consumers in Illinois for a given set of lotteries, and
uses this data to estimate a model of risk preferences, e.g., estimating parameter values for
an Expected Utility model with CARA preferences. The firm then uses this estimated model
to predict willingness-to-pay from consumers in California for a different set of lotteries. How

accurate will those predictions be?

Ezxample 2 (Network Diffusion). The covariates X describes the network of relationships
across households in a village, and the identity of households which are seeded with infor-
mation about a microfinance program. The outcome y is the average takeup rate of the
program across households. A development economist observes the takeup decisions in a
single village in India following an experiment in which certain households are seeded with

9That is, let S denote the set of all finite sets of finite samples, and let Y be the set of all prediction rules.
Then a “model” is a mapping p : S — A(Y¥) and we write fs,. = p(St) for the realized prediction rule.
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information about the program. The economist uses this data to estimate a structural model
of information diffusion, and then predicts the average takeup rate in a new village using
the estimated model. How much less accurate will this prediction be than if the economist

could re-estimate the structural model on data from this new village?

Fix a loss function ¢ : Y x Y — R, , and define the error of prediction rule f on sample S

to be
1

5]

i.e., the average loss when using f to predict y given x. Our leading example of a transfer

e(f.9) > Uf(z),y)

(z,y)€S

error (Definition [1)) is the raw error of the model when it is estimated on the training samples

and used to predict outcomes in the target sample:

€T nt1 = €(fST, Sn+1) (1)

Any normalization of (1) with respect to a function of the target sample is also a transfer
error. For example, we might normalize with respect to the in-sample error of the model
when trained on the target sample,

er L= e(fSTasn+1> )
" e<f5n+1’ Sn+1>

This quantity reveals how much less accurate the model is than if it had been directly trained

(2)

on the target sample.
Alternatively, we might normalize with respect to a proxy for the best achievable error
on the target sample. Let m € M index a set of models that each prescribe rules f™ for

mapping data to prediction rules. Then

e(fST7 Sn-i—l)

milyep € <f§;+1, Sn+1>

(3)

reveals how much lower the accuracy of the transferred model fs. is compared to the best
in-sample accuracy using a model from Mm The main advantage of the specifications in

and is that the raw error in is very sensitive to how predictable y is given z

10This quantity (subtracted from 1) is similar to the “completeness” measure introduced in [Fudenberg et al.
(2022)), without the use of a baseline model to set a maximal reasonable error, and adapted for the transfer
setting by training and testing on samples drawn from different domains.
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in the target sample, which may differ across domains but is not directly related to the

transferability of the model.

2.3. Parameter Transfer. When a model has interpretable parameters, we may also be
interested in whether the parameter values estimated on the training data will be a good

proxy for the best-fitting parameters in the target sample.

Ezample 3 (Effectiveness of a Job Training Program). An economist has estimated the
effectiveness of a job training program using a data set from one location (as in |Hotz et al.
(2005)). How well does this estimate proxy for the effectiveness of the same job training

program when implemented at another location?

Ezample 4 (Loss Aversion). An economist observes on a data set of choice over lotteries that
“losses loom larger than gains,” specifically that the loss aversion parameter in Prospect
Theory has a value larger than 1. If the economist were to elicit choices over a different set

of lotteries, would this qualitative conclusion continue to hold?

Consider any model that can be defined as a set Fo = {fy}oco of prediction rules fy : X —
Y, which depend continuously on a parameter 6 in a compact parameter space ©. Given
any training data St, let 6(St) = arginf, o Y deT % > aer €(fo, Sa) be the parameter
value that minimizes a weighted sum of the errors across the samples in the training data,
and let fé( 1) denote the corresponding prediction ruleﬂ To assess parameter variation, first
fix a distance metric d(6,¢’) (e.g., Euclidean distance) to assess how different two parameter

vectors 6 and @' are. Then the transfer error

i = d (8(5r).0(Sr1) )

tells us how far apart the estimated parameters on the training data are from the best-fitting
parameters on the target sample.

We can also assess how well a qualitative prediction that is based on the estimated param-
eters will transfer to the target sample (e.g., a prediction that some coefficient is positive).

Let A denote any event that can be described as a function of the parameter 6. Then

1 if1 (é(sT) € A) ~1 (é(s,m) e A)

€Tn+1 = )
0 otherwise

HIf there are ties, break them arbitrarily



is a transfer error which tells us whether the prediction about A based on the training

samples also holds in the target sample.

2.4. Other Estimation Procedures. In the examples above, a model is trained on r
training samples and used to predict properties of a target sample. Our results apply also
for other training procedures. To avoid introducing extensive notation, we describe these

procedures informally.

Ezample 5 (Transfer Learning). In transfer learning problems in computer science (see e.g.,
Pan and Yang (2010])), some observations from the target sample are available in addition
to the training samples St. The model or algorithm is trained on these observations jointly,
with some specification of how to weight the target sample observations relative to the other

training data. The performance of a model estimated in this way is another transfer error.

Ezample 6 (Transfer of Specific Parameters). While some economic parameters are viewed as
constant across domains, other parameters may be viewed as domain-specific. For example,
spatial models of trade often have structural parameters (e.g., the elasticity of demand sub-
stitution between goods produced in different countries) whose values are set using estimates
from another paper, and “fundamentals” (e.g., productivity in each country), which are re-
estimated on each sample (see for example |Alfaro-Urena et al., 2023)). The performance of

a model that is estimated and evaluated in this way is a transfer error.

Ezample 7 (Using Cross-Validation to Tune Parameters). Our framework can also accommo-
date training procedures in which cross-validation is used to tune select model parameters.
For example, black box algorithms often have a complexity parameter (e.g., the penalization
parameter in LASSO or the depth of decision trees in a random forest algorithm). One
way of choosing the size of this parameter is based on out-of-sample fit (Hastie et al., 2009}
Chetverikov et al., |2021). In our setting, this means holding out one of the training sam-
ples to use for testing, training the algorithm on the remaining r — 1 training samples, and
evaluating fit on the remaining test sample. The chosen complexity parameter is the one
that yields the lowest average error across the r possible choices of the test sample. Fixing
this value for the complexity parameter, the algorithm is then fit to the entire training data.

The performance of such an algorithm on the target sample is a transfer error.

Ezxample 8 (Counterfactual Predictions). One way that economic models are used is to form
predictions for outcomes under policy changes that have yet to be implemented. For instance,

9



McFadden| (1974) predicted the demand impacts of the then-new BART rapid transit system
in the San Franciso Bay Area, and Pathak and Shi| (2013) predicted demand for schools
under changes to the Boston school choice system. One can generalize our framework to
cover the case where each sample Sy is instead a pair of two observations, S; = (S9,S%).
The pre-intervention samples (S7, ..., S9,,) are drawn i.i.d. from one distribution, while the
post-intervention samples (Si, ..., S} ;) are drawn i.i.d. from another. In this more general
setting, a transfer error is any function of the training pairs {(S9, S})}ser, the target pair
(S9.1,5% 1), and potentially an independent noise variable.

Our theoretical results generalize completely for transfer errors defined in this way; the
main limitation is the difficulty of obtaining sufficiently many pre- and post-intervention

pairs. We mention this potential application in the case that such data does eventually

become available.

3. THEORETICAL RESULTS

3.1. Main Results. Our goal is to develop forecast intervals for any transfer error er ;41
(Definition . That is, we will provide interval-valued functions of the meta-data M which
cover er,4+1 with the prescribed probability, regardless of the distribution p that governs
samples across domains. In many applications only a limited number of domains will be
observed, so our focus is on finite-sample results.

For any choice of training samples 7 C {1,...,n} and test sample d € {1,...,n}\T from
M, let el\T/fd be the (observed) transfer error from samples in 7 to sample dH Further, let
T, denote the set of all vectors of length s that consist of distinct elements from {1,...,t},
so that (for example) T, ;, corresponds to all possible choices of r training samples and a

single test sample from the metadata {1,...,n}. Then

FM:W S o, (4)

(Tvd)eTr+1,n

is the empirical distribution of transfer errors in the pooled sample {el}/fd (T,d) € Tran}
as we vary the samples in the metadata that are used for training and testing. (Throughout

we use d to denote the Dirac measure).

2For example, if we use the specification of transfer error in , then e7M,d is the raw error of the model
estimated on samples S and used for prediction on sample S .

10



Definition 2 (Upper and Lower Quantiles). For any distribution P let Q, (P) = inf{b :
P((—00,b]) > 7} and @ (P) = sup{b: P([b,00)) > 1 — 7} denote the upper and lower 7th

quantiles, respectively.
These quantiles coincide for continuously distributed variables with connected support.

Definition 3 (Quantiles of Fir). For any 7 € (0,1), let &M = Q. (Fum) and M = Q,  (Fu) be

the 7th upper quantile and (1 — 7)th lower quantile of the empirical distribution of transfer

1-7
errors in the pooled sample.

These quantiles can be used to construct a valid forecast interval for the transfer error on

the target sample:

Proposition 1. For any 7 € (0,1),

P (eqp < M) > 7 (” - T) , (5)

n+1
and
n—r
P (erni € [eM,eM]) > 2 —1.
(enmen € [2)) 2 27 (257
Thus (—oo,élTV[] is a level—(f(:—;")) one-sided forecast interval for et ,;, and [QITVI, élTVI} is a

level- (27 (Z:) - 1) forecast interval for ey ;.

The parameters r and 7 are choice variables. The size of 7 influences the width of the
forecast interval, where larger choices of 7 lead to wider forecast intervals with higher confi-
dence guarantees. The choice of r determines how many samples in the meta-data are used
for training versus testing. Larger choices of » mean that the model will be estimated on a
larger quantity of data, but we will have fewer samples on which to evaluate the performance
of the estimated model.

The next result shows that the guarantees in Proposition [1| are tight to O(1/n).

Claim 1. Assume that (el}/fd :(T,d) € Tr+1,n+1) almost surely has no ties. Then

~ n—r r+1 (n—r)!
P(er i < M) < .
<6T’+1_67)_T(n+1)+n+1+(n+1)!

and

) — +1 (n—r)
P (e M M) <o (B0 g g ] :
(€T,+1€[§T>€TD— T<n+1 + n+1+(n—|—1)!

11
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FIGURE 1. Matriz of transfer errors when training on one domain (row) and testing on
another (column,).

To gain intuition for the intervals in Proposition [I], fix a realization of the unordered set
{S1,...,5n, Sns1}. Because all samples are exchangeable by assumption, the realization of

erns1 (conditional on {S;}57]) is a uniform draw from

{eFa: (T,d) € Trprmin}- (6)

If we let e} denote the upper 7-th quantile of this empirical distribution, then by definition

P (eT n1 < e | {Sd}nH) > T. (7)

In the case r = 1 where precisely one sample is used for training, the set of pooled errors
@ is the shaded cells in Figure [1] (either yellow or blue), and the inequality in @ says that
the probability that the value of a randomly drawn cell falls below the 7th upper quantile
of cells is at least 7.

The analyst does not observe the target sample S, 1, and so does not know eX. As a
surrogate, we use e, the 7th upper quantile of the pooled sample of errors when transferring
across samples in M. In Figure , the probability that er,.; < @M is the probability that
the value of a randomly drawn shaded cell (yellow or blue) falls below the 7th quantile of

the yellow cells. By a straightforward counting argument,

P (ernp < x| {3 —7(7’21)/(:11) :T<Z;;>

n+1)

Applying the law of iterated expectations (with respect to the sample {S; yields the one-
sided forecast interval in , and a similar argument yields the two-sided forecast interval.
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3.2. Relaxing the i.i.d. Assumption. Our results so far assume that the distributions
governing the different samples S; are themselves independent and identically distributed.
This assumption is not always appropriate. For example, if the samples in the metadata are
from experiments run at different locations, the i.i.d. assumption fails if there is selection bias
over where experiments are runH We now relax this assumption to allow the distribution
governing the training samples and the distribution governing the target sample to be drawn
from different meta-distributions.

Specifically, suppose that the analyst’s metadata consists of samples Sy, ...,S, ~jq it as
in our main model, but S, is independently drawn from some other density v. Let
v(S)
p(S)

denote their likelihood ratio. As before, er,.; is the transfer error when training on r

w(S) =

samples drawn uniformly at random from {Si,...,S,}, and testing on S,1.

We again construct a forecast interval for er,.; using the pooled sample of transfer
errors across samples in the metadata, {el}/fd :(T,d) € 'I[‘r+17n}, giving different probabilities
to each e%l instead of uniform weights. Under the i.i.d. assumption, each sample in the
metadata is equally representative of the training and target distributions. When we relax
that assumption, then whether a sample S; is more representative of the training or testing
distribution depends on its relative likelihood under v and pu.

A crucial quantity is the following:

Definition 4. For every domain d € {1,...,n}, define
(n—r—1!  w(Sy)
(n=18 > w(S))

To interpret this quantity, consider an alternative data-generating process for the me