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Question

what is the optimal information structure to maximize the
buyer surplus in an auction if the seller is choosing the optimal
mechanism?



Motivation

in many allocation problems the choice of information
disclosure interacts strongly with the mechanism that
guides the allocation

recommender system and item/menu pricing in digital
marketplaces

bidding algorithms in digital advertising



Example: Digital Advertising I

advertisers are bidding for display or sponsored product
advertisements

match between advertisers and viewers on websites of
publishers are made through intermediaries

a demand side platform seeks to make bids across
websites to maximize surplus of advertisers (to be as
attractive as possible for the advertisers)

a supply side platform seeks to design the auction to
maximize the revenue for the publishers

demand and supply platform receive a commission of the
surplus



Example: Digital Advertising II

demand-side platform (DSP)

advertisers and agencies use DSP to set the parameters
of “real-time bids” for ad impressions based on relevant
attributes of the ad space and the viewer navigating to
it; these attributes may be demographic, behavioral,
contextual, or location-based

supply-side platform (SSP)

a supply-side platform, or SSP, enables publisher to sell
their ad space to multiple ad exchanges, it controls how
their ad space is sold by setting price floors, what types
of advertisers can bid



Example: Digital Advertising III

a prominent tool of the demand side platform is to
manage the match information between advertiser and
viewer through the design of bidding categories and
characteristics.

the demand side platform seeks to influence the
information regarding values and bids

the supply side platform chooses the optimal auction
format



Question

what is the optimal information structure to maximize the
buyer (i.e., DSP) surplus in an auction if the seller (i.e., SSP)
is choosing the optimal selling mechanism?



Result 1: Optimality of Positive Regular
Distributions

optimal information structure will always generate a
positive regular distribution

an implication of regularity is that (in our symmetric
setting) the optimal auction can always be implemented
by a second price auction with a reserve price

thus bidders induce/force seller to adopt second price
auction (with reserve price)

excluded bidders



Result 2: Linear Revenue Function

complete characterization of optimal information structure

information structure generates a distribution of posterior
expectations of the bidders with three segments:

1 lower segment: bidders excluded, might as well receive
complete information in this segment that agrees with
their prior distribution

2 intermediate segment: bidders pooled with truncated
generalized Pareto distribution inducing decreasing linear
revenue

3 upper segment: each bidder again has complete
information



Model



Model
seller offers an indivisible good to N bidders

bidder i has value v ∈ R+ for probability qi ∈ [0, 1]
against transfer pi ∈ R+

u(vi, qi, pi) = viqi − pi

value vi has common prior distribution F , independent
and identical across all i:

F ∈ ∆([v, v̄]), 0 ≤ v < v̄ ≤ ∞

seller maximizes revenue:

N∑
i=1

pi



Information Design
bidder may not observe their ex post value vi but rather
observe a signal s(v) about their value

posterior distribution of values

w = E [v |s ]

is denoted by
G ∈ ∆([v, v̄])

there exists an information signal that induces a
distribution G of expected values if and only if G is a
mean-preserving contraction of F , i.e.,∫ v

v

F (t)dt ≤
∫ v

v

G(t)dt, ∀v ∈ [v, v̄], ⇔ F ≺ G

with equality for v = v, “G majorizes F”



Mechanism

direct and symmetric (interim) mechanism:

Q,P : [v, v̄]→ [0, 1]× R+,

where Q(v) is probability of winning, and P (v) is payment

incentive compatibility and participation constraints:

wQ(w)− P (w) ≥ wQ(w′)− P (w′);

wQ(w)− P (w) ≥ 0; ∀w,w′ ∈ R+

feasibility of symmetric allocation rule Q (w)

sequential game: first information, then mechanism

NOT simultaneous move game



Related Literature I

single buyer chooses information and seller chooses
optimal mechanism [Roesler/Szentes AER 2017]

an optimal information structure is a truncated Pareto
distribution with:

1 zero virtual utility, constant revenue
2 no exclusion at the bottom, effi ciency
3 multiple solutions at the upper tail, one solution is
always a truncated Pareto distribution

Condorelli/Szentes (JPE 2020) consider the case where
distribution of values chosen without majorization
constraint

this paper: many buyers



Related Literature II

many buyers (bidders) but effi cient mechanism (absolute
second price auction): [BHM/Sorokin/Winter AER:I
2022]

buyer optimal information structure is:

complete information disclosure at upper interval of
support
single pooling interval at lower interval of support
quantile threshold between two regimes is independent
of prior distribution, dependent only on the number of
bidders

this paper: optimal information structure given revenue
maximizing mechanism



Related Literature III

information structure and mechanism jointly maximize
revenue

many buyers; Bergemann and Pesendorfer (JET 2008)
one buyer, but variable quality (BHM wp 2023)

this paper: information structure maximizes buyer
surplus



Bidder Surplus
in Quantile Space



Quantile Space
quantile space t ∈ [0, 1] rather than value space v ∈ R+ :

v = F−1 (t)

denote inverses:

V (t) , F−1(t) and W (t) , G−1(t).

majorization reverses:

F ≺ G⇔ V � W

revenue of single bidder is

v (1− F (v)) or F−1(t)(1− t) or V (t) (1− t)

we write

πv(t) , V (t)(1− t) and πw(t) , W (t)(1− t)



Feasible Mechanism
effi cient allocation rule q assigns object with probability
one to bidder in highest quantile:

q(t) , tN−1

a quantile allocation rule r is feasible if and only if q
weakly majorizes, i.e.,∫ 1

t

r(s)ds ≤
∫ 1

t

q(s)ds, for all t ∈ [0, 1]

weakly majorizes because we do not impose equality at
t = 0

we write
r ≺w q

symmetric allocation and mechanism



Revenue in Quantile Space
allocation rule r (t) determines payments via envelope
theorem:

Π , N

(∫ 1

0

(1− t)W (t)dr(t) + r(0)W (0)

)
revenue (=profit) selling from quantile t up

πw (t) = (1− t)W (t)

marginal revenue is virtual utility:

−dπw
dt

= − [(1− t)W ′(t)−W (t)] = W (t)−1−G (W (t))

g (W (t))

since quantile

t = G (W (t)) , so W ′ (t) =
1

g (W (t))



Bidder Surplus in Quantile Space

bidder surplus of an individual bidder is:

U ,
∫ 1

0

r(t)W (t)dt− Π

N

=

∫ 1

0

r(t)W (t)dt−
(∫ 1

0

W (t)(1− t)dr(t) + r(0)W (0)

)



Bidders’Surplus Maximization
maximum bidder surplus U∗ is given by

max
{W :W≺V }
{r:r≺wq}

∫ 1

0

r(t)W (t)dt−
∫ 1

0

(1− t)W (t)dr(t)− r(0)W (0)

s.t. r ∈ arg max
{r̂:r̂≺wq}

∫ 1

0

(1− t)W (t)dr̂(t) + r̂(0)W (0)

three constraints:
1 majorization

{W :W ≺ V }
2 feasibility

{r : r ≺w q}
3 optimal mechanism

r ∈ argmax
{r̂:r̂≺wq}

∫ 1

0
(1− t)W (t)dr̂(t) + r̂(0)W (0)



Three Steps
1 replace majorization constraint...

{W : W ≺ V }

with support constraint

w ∈ [0, 1]

2 replace support constraint

w ∈ [0, 1]

with support constraint

w ∈ [m, 1]

3 restore majorization constraint...

{W : W ≺ V }



1. Optimality without Value
Majorization Constraint



Optimal Revenue of Seller I

denote by cav[π] the concavification of π

Proposition (Seller’s Revenue)
For any given information structure W , the seller’s revenue is:

max
{r:r≺wq}

∫ 1

0

πw(t)dr(t) = q(tx)πw(tx) +

∫ 1

tx

cav[πw](t)dq(t),

with
tx ∈ arg max

t
πw(t).



Optimal Revenue of Seller II

exclusion below zero virtual utility tx where

dπw(t)

dt
= 0⇔ w − 1−G (w)

g (w)
= 0

effi cient allocation beyond tx:

r (t)⇒ q (t)

Myerson (1981), Kleiner et al. (2021)



Positive Regular Information Structure

consider the following set of information structures:

W+ , {W ∈ ∆[0, 1] : W (t)(1−t) is decreasing and concave}

virtual values:

W (t)− 1−G (W (t))

g (W (t))
, ∀t

are nonnegative and increasing

positive regular information structure



Positive Regular Information Structure is Optimal

optimal choice is in smaller class of information structures

Proposition (Positive Regular is Optimal)
An information structure W ∗ is optimal only if W ∗ ∈ W+.

suppose W were not positive regular so either
π∗w(t) < cav[π∗w](t) or tx > 0

can generate more bidder surplus with

Ŵ (t) =

{
cav[π∗w](t)

1−t if t ≥ tx
cav[π∗w](tx)

1−t if t < tx.

Ŵ first-order stochastically dominates W , yet generates
the same revenue



(Absolute) Second Price Auction is Optimal

so optimal mechanism is simple

Corollary (Second Price Auction is Optimal)
An absolute second price auction is an optimal auction for all
W ∈ W+, and in particular W ∗ ∈ W+.

zero exclusion, or tx = 0

effi cient allocation everywhere:

r (t)⇒ q (t)



A Simpler Problem

But knowing that allocation takes this form, we can give more
concise description of our optimization problem:

W ∗ ∈ arg max
W∈W+

∫ 1

0

W (t)
ds(t)

dt
dt

where
s(t) , −q(t)(1− t)



Reflecting Second Price Auction

s (t) represents the difference between the first and
second order statistic

this is information rent

writing w(1) and w(2) for first and second-order statistics

for any t ∈ [0, 1]:

P{w(1) ≤ W (t)} = tN

P{w(2) ≤ W (t)} = NtN−1 − (N − 1)tN .

difference of order statistics at quantile t is s(t):

s(t) = −q(t)(1− t)
=

(
P{w(1) ≤ W (t)} − P{w(2) ≤ W (t)}

)
/N



Optimal Information Structure and Shape of s(t)

since
s (t) = −q(t)(1− t) = tN−1(1− t),

s is quasiconvex, first decreasing, then increasing

minimum and inflection point

ts , arg min
t∈[0,1]

s(t); ti , arg min
t∈[0,1]

ds(t)

dt
.

relate only to N , number of bidders

ti =
N − 2

N
<
N − 1

N
= ts;



Shape of s(t)
depends on N only: N = 4



Shape of s(t)
depends on N only:



Optimal Control Problem

we have

W ∗ ∈ arg max
W∈W+

∫ 1

0

W (t)
ds(t)

dt
dt

choose W (t) to maximize the integral

weight is given by differential

ds(t)

dt

changes sign once from negative to positive

W (t) is monotone ⇒ suggests 0, 1 step function as
optimal solution

W ∈ W+ ⇔ W (t) (1− t) is decreasing and concave is a
second constraint



Truncated Pareto Distribution
Pareto distribution with mass point at w = 1 with
probability 1− tz...

tz = lim
w→1

G(w)

where

G (w) =

{
1− 1−tz

w
if 1− tz ≤ w < 1;

1 if w = 1.

probability tz of mass point set lower bound of support

Proposition (Optimal Information Structure)
An optimal information structure G∗ (w) has:

G (w) =

{
1− 1−tz

w
if 1− tz ≤ w < 1;

1 if w = 1.



Truncated Pareto Distribution

restate the Pareto distribution in quantile space

Corollary (Value W ∗ and Revenue π∗)
An optimal information structure W ∗ has:

1 W ∗(t) = (1− tz) / (1− t) for some t ∈ [0, 1− tz];
2 The revenue function is

π∗ (t) =

{
1− tz if t < tz;

1− t if t ≥ tz.

3 The virtual utility is zero (except at 1)



Pareto Distribution
truncated Pareto distribution: N = 2



Pareto Distribution
truncated Pareto distribution varies with N



Revenue Function

revenue function with N = 2, 4, 6



2. Optimality with tight
support constraintt



Tighten Support Restrictions

suppose
w ∈ [m, 1] , m > 0

range of private information becomes smaller

now maintaining zero virtual utility is becoming impossible

still, the best way to generate information rent is to keep
the seller at a constant virtual utility

zero virtual utility is replaced by constant but positive
virtual utility



Decreasing Demand Elasticity
remember w ∈ [m, 1] ,m > 0

Proposition (Optimal Information Structure)
Every optimal information structure G∗ (w) has

G∗(w) =

{
1− (1−tz)(α+1)

α+w
if m < w < 1;

1 if w = 1;

where α is:

α =
(1− tz)−m

tz
.

generalized Pareto distribution with location and scale
parameter

linear decreasing rather than constant revenue function



Linear Revenue Function
Corollary (Value W ∗ and Revenue π∗)
A information structure W ∗ is optimal iff:

1 Value W ∗(t) is given by

W (t) = (1 + α)
1− tz
1− t − α;

2 Revenue function is

π∗ (t) =

{
(1− tz)− α(tz − t) if t ≤ tz;

(1− t) if t ≥ tz.

revenue function is linear in quantile

slope of revenue function is α



Distributions with Support Constraint
support constraint m = 0.4



support constraint m = 0.4



3. Optimality with tight
support constraintt



Include Majorization Constraint

adding back majorization constraint

{W : W ≺ V }

in particular, restoring Bayes plausibility

where might problems arise:

1 suffi cient low to justify collusion may exist
2 high values may not exist (e.g., mass point at top of
distribution)l



Optimal Revenue

optimal revenue for any fixed information structure

denote by cav[πw] the concavification of πw
denote by tx a critical quantile below which the seller
excludes bidder

tx ∈ arg max
t
πw(t)

Proposition (Seller’s Revenue)
For any given distribution G, the seller’s revenue is given by:

max
{r:r≺wq}

∫ 1

0

πw(t)dr(t) = q(tx)πw(tx) +

∫ 1

tx

cav[πw](t)dq(t).



Almost Positive Regular Distribution

almost positive regular distribution W+(tx) ,
W ≺ V :

∀t < tx : W (t) = V (t) , V (t) (1− t) ≤ W (tx) (1− tx) ;
∀t > tx : W (t) (1− t) decreasing and concave


any distribution in W(tx) has the following properties:

1 revenue-maximizing quantile is tx;
2 any information structure in W(tx) is decreasing and
concave for t > tx

3 information structure is complete information for t < tx.



Implication of Regular Distribution

what is the optimal mechanism for regular distribution

Proposition (Implication of Regularity)
If W ∈ W(tx) then

1 a second-price auction with reserve price W (tx)
maximizes revenue;

2 bidders whose expected value is below the reserve price
know their ex post value;

3 any W satisfying these two properties also satisfies
W ∈ W(tx), for some tx ∈ [0, 1].

allocates is interim effi cient above the reserve price

winning bidder 6= bidder with highest ex post value



Optimality of Regular Distribution

bidder-optimal information structure is indeed regular

Theorem (Regular is Optimal)
An information structure W ∗ solves U∗ only if W ∗ ∈ W(tx)
for some tx ∈ [0, 1].

if seller pools allocation, it decreases total surplus and
increases profit; hence, it is detrimental for bidder surplus

bidder-optimal information structure induces seller to
allocate good interim effi ciently (if expected value above
the reserve price)



Maximizing Bidders’Surplus

we aim to solve U∗ :

max
{W :W≺V }
{r:r≺wq}

∫ 1

0

r(t)W (t)dt−
(∫ 1

0

W (t)(1− t)dr(t) + r(0)W (0)

)

subject to: r ∈ arg max
{r̂:r̂≺wq}

∫ 1

0

(1− t)W (t)dr̂(t) + r̂(0)W (0)

we replace the inner optimization problem by an effi cient
allocation and a reserve price:

max
{W :W≺V }
{r:r≺wq}

∫ 1

0

r(t)W (t)dt−
(∫ 1

0

W (t)(1− t)dr(t) + r(0)W (0)

)



Bidder Optimal Information
Structure



Bidder Surplus Expressed in Order Statistics

bidder surplus using this function

Corollary (Computing Bidder-Optimal W ∗)
An information structures W ∗ is optimal iff it solves:

W ∗ ∈ arg max
tx∈[0,1],W∈W(tx)

(∫ 1

tx

W (t)
ds(t)

dt
dt− (1− tx)q(tx)W (tx)

)



Bidder Optimal Information Structure

Theorem (Bidder Optimal Information Structure)
A bidder-optimal information structure G∗ (w) has

G∗(w) =

{
1− (1−tz)(α+1)

α+w
if w ∈ [W (tx) ,W (tz)] ;

F (w) if w /∈ [W (tx) ,W (tz)] .

for some parameters (α, tx, tz). Furthermore, α ≥ 0 and, if
tx > 0, then α = 0.



Bidder Surplus and Revenue Function

Proposition (Bidder Optimal Revenue Function)
Any bidder-optimal revenue function π∗w is given by:

π∗w(t) =

{
π(tz)− α(t− tz) if t ∈ [tx, tz];

π(t) if t 6∈ [tx, tz].

for some parameters (tx, tz). Furthermore, α ≥ 0 and, if
tx > 0, then α = 0.



Nature of Solution: Distribution



Nature of Solution: Density



Nature of Solution: Revenue

Figure: Profit Functions in Quantile Space for Uniform Distribution
F (v) = v.



Conclusion

interaction of information design and mechanism design

bidder optimal information structure conflates values to
generate information rents

complete disclosure at the lower and upper tail

demand management in the intermediate rangeλ



Extensions

1 maximize total surplus - λ.profits

our case λ = 1, also λ = 0 (effi ciency), λ =∞ (minmax)

2 multiunit
3 large market
4 asymmetric / correlated
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