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Business-Cycle Anatomy†

By  George-Marios Angeletos, Fabrice Collard, and Harris Dellas*

We propose a new strategy for dissecting the macroeconomic time 
series, provide a template for the  business-cycle propagation mech-
anism that best describes the data, and use its properties to appraise 
models of both the parsimonious and the  medium-scale variety. Our 
findings support the existence of a main  business-cycle driver but 
rule out the following candidates for this role: technology or other 
shocks that map to TFP movements; news about future productivity; 
and inflationary demand shocks of the textbook type. Models aimed 
at accommodating  demand-driven cycles without a strict reliance on 
nominal rigidity appear promising. (JEL C22, E10, E32)

One is led by the facts to conclude that, with respect to the qualitative 
behavior of comovements among series, business cycles are all alike. To 
theoretically inclined economists, this conclusion should be attractive and 
challenging, for it suggests the possibility of a unified explanation of busi-
ness cycles.

—Lucas (1977)

In their quest to explain macroeconomic fluctuations, macroeconomists 
have often relied on models in which a single, recurrent shock acts as the main 
 business-cycle driver.1 This practice is grounded not only on the desire to offer a 
parsimonious, unifying explanation as suggested by Lucas, but also on the prop-
erty that such a model may capture diverse  business-cycle triggers if these share 
a common propagation mechanism: multiple shocks that produce similar impulse 

1 Examples include the monetary shock in Lucas (1975), the TFP shock in Kydland and Prescott (1982), the 
sunspot in Benhabib and Farmer (1994), the investment shock in Justiniano, Primiceri, and Tambalotti (2010), the 
risk shock in Christiano, Motto, and Rostagno (2014), and the confidence shock in Angeletos, Collard, and Dellas 
(2018).
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responses for all variables of interest can be considered as essentially the same 
shock.2

Is there evidence of such a common propagation mechanism in macroeconomic 
data? And if yes, what does it look like?

We address these questions with the help of a new empirical strategy. The strat-
egy involves taking multiple cuts of the data. Each cut corresponds to a  structural 
vector autoregression (SVAR)-based shock that accounts for the maximal volatility 
of a particular variable over a particular frequency band. Whether these empirical 
objects have a true structural counterpart in the theory or not, their properties form a 
rich set of  cross-variable, static and dynamic restrictions, which can inform macro-
economic theory. We call this set the “anatomy.”

A core subset of the anatomy is the collection of the five shocks obtained by 
targeting the main macroeconomic quantities, namely unemployment, output, hours 
worked, consumption, and investment, over the  business-cycle frequencies. These 
shocks turn out to be interchangeable in the sense of giving rise to nearly the same 
impulse response functions (IRFs) for all the variables, as well as being highly cor-
related with one another.

The interchangeability of these empirical shocks supports parsimonious theories 
featuring a main, unifying, propagation mechanism. Their shared IRFs provide an 
empirical template of it.

In combination with other elements of our anatomy, this template rules out the 
following candidates for the main driver of the business cycle: technology or other 
shocks that map to TFP movements; news about future productivity; and inflation-
ary demand shocks of the textbook type.

Prominent members of the dynamic stochastic general equilibrium (DSGE) liter-
ature also lack the propagation mechanism seen in our anatomy of the data, despite 
their use of multiple shocks and flat Phillips curves and their good fit in other dimen-
sions. The problem seems to lie in the  flexible-price core of these models. Models 
that instead allow for  demand-driven cycles without a strict reliance on nominal 
rigidity hold promise.3

A. The Empirical Strategy

We first estimate a VAR (or a vector error correction model (VECM)) on the fol-
lowing ten macroeconomic variables over the  1955–2017 period: the unemployment 
rate; the  per capita levels of GDP, investment (inclusive of consumer durables), 
consumption (of  nondurables and services), and total hours worked; labor produc-
tivity in the  nonfarm business sector;  utilization-adjusted total factor productivity 
(TFP); the labor share; the inflation rate (GDP deflator); and the federal funds rate. 
We next compile a collection of shocks, each of which is identified by maximizing 

2 To echo Cochrane (1994, p. 298): “The study of shocks and propagation mechanisms are of course not sepa-
rate enterprises. Shocks are only visible if we specify something about how they propagate to observable variables.”

3 Recent examples include Angeletos, Collard, and Dellas (2018); Angeletos and La’O (2010, 2013); Angeletos 
and Lian (2020); Bai, Ríos-Rull, and Storesletten (2017); Beaudry and Portier (2014, 2018); Beaudry, Galizia, and 
Portier (2018); Benhabib, Wang, and Wen (2015); Eusepi and Preston (2015);  Huo and Rios-Rull (forthcoming) 
;Jaimovich and Rebelo (2009); Huo and Takayama (2015); and Ilut and Saijo (2018). Related is also the earlier 
literature on coordination failures (Diamond 1982, Benhabib and Farmer 1994, Guesnerie and Woodford 1993).
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its contribution to the volatility of a particular variable over either  business-cycle 
frequencies ( 6–32 quarters) or  long-run  frequencies (80– ∞ ). We finally inspect the 
empirical patterns encapsulated in each of these shocks, namely the implied IRFs 
and variance contributions.

This approach builds on the important work of Uhlig (2003). Our main contri-
bution  vis-à-vis this and other works that employ the  so-called  max-share identifi-
cation strategy (Barsky and Sims 2011, Faust 1998, Neville et al. 2014) lies in the 
multitude of the  one-dimensional cuts of the data considered, the empirical regular-
ities thus recovered, and the novel lessons drawn for theory.4

An additional contribution is to clarify the mapping from the frequency domain 
to the time domain: we show that the shock that dominates the  business-cycle fre-
quencies ( 6–32 quarters) is a shock whose footprint in the time domain peaks within 
a year or two. In other words, targeting  6–32 quarters in the time domain does not 
recover the business cycle.

Our approach also departs from standard practice in the SVAR literature, which 
aims at identifying empirical counterparts to specific theoretical shocks (for a 
review, see Ramey 2016). Instead, it sheds light on dynamic comovements by tak-
ing multiple cuts of the data, one per targeted variable and frequency band. These 
multiple cuts form a rich set of empirical restrictions that can discipline any theory, 
whether of the parsimonious type or the DSGE type.

B. The Main Business-Cycle Shock

Consider the shocks that target any of the following variables over the 
 business-cycle frequencies: unemployment, hours worked, GDP, and investment. 
These shocks are interchangeable in terms of the dynamic comovements, or the 
IRFs, they produce. Furthermore, any one of them accounts for about  three-quarters 
of the  business-cycle volatility of the targeted variable and for more than one-half 
of the  business-cycle volatility in the remaining variables, and also triggers strong 
positive comovement in all variables. In expanded specifications that include the 
output gap or the unemployment gap, the shocks identified by targeting any one of 
these gaps produce nearly identical patterns as well. Finally, the shock that targets 
consumption is less tightly connected in terms of variance contributions, but still 
similar in terms of dynamic comovements.

These findings offer support for theories featuring either a single, dominant, 
 business-cycle shock, or multiple shocks that leave the same footprint because they 
share the same propagation mechanism. With this idea in mind, we use the term 
Main Business Cycle (MBC) shock to refer to the common empirical footprint, 
in terms of IRFs, of the aforementioned  reduced-forms shocks. This provides the 
 sought-after template for what the propagation mechanism should be in any “good” 
model of the business cycle.5

4 A detailed discussion of how our method and results differ from those of Uhlig (2003) and various other works 
is offered in the next section.

5 As with any other filter that focuses on the  business-cycle frequencies of the data, the use of our template for 
model evaluation is of course based on the premise that  business-cycle models ought to be evaluated by such a met-
ric. This accords with a long tradition in macroeconomics. See, however, Canova (2020) for a contrarian view based 
on the property that the  business-cycle and  lower-frequency predictions of DSGE models are tightly tied together; 
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A central feature of this template is the interchangeability property, namely that 
all the aforementioned shocks produce essentially the same IRFs, or the same prop-
agation mechanism. Below, we describe additional stylized facts revealed via our 
anatomy and discuss the overall lessons for theory. At first, we draw lessons through 
the perspective of  single-shock models. Later, we switch to  multishock models and 
discuss the challenges and the use of our method in such models.

C. Disconnect from TFP and from the Long Run

The MBC shock is disconnected from TFP at all frequencies. It also accounts for 
little of the  long-term variation in output, investment, consumption, and labor pro-
ductivity. Symmetrically, the shocks that have the maximal contribution to  long-run 
volatility have a small contribution to the business cycle.

These findings challenge not only the baseline RBC model but also models that 
map other shocks, including financial, uncertainty, and sunspot shocks, into endog-
enous TFP fluctuations. Benhabib and Farmer (1994); Bloom et al. (2018); and Bai, 
Ríos-Rull, and Storesletten (2017) are notable examples of such models. In these 
models, the productivity movements over the  business-cycle frequencies ought to be 
tightly tied to the MBC shock, which is not the case.

These findings also challenge Beaudry and Portier (2006), Lorenzoni (2009), 
and other works that emphasize signals (news) of TFP and income in the medium to 
long run. If such news, noisy or not, were the main driver of the business cycle, the 
MBC shock would be a sufficient statistic of the available information about future 
TFP movements, which is hard to square with our findings. Instead, a  semistructural 
exercise based on our anatomy suggests that the contribution of TFP news to unem-
ployment fluctuations is in the order of 10 percent, which is broadly consistent with 
the estimate provided by Barsky and Sims (2011).

The MBC shock fits better the notion of an aggregate demand shock unrelated 
to productivity and the long run, in line with Blanchard and Quah (1989) and Galí 
(1999). However, as discussed below, this shock ought to be  non-inflationary, which 
may or may not fit the New Keynesian framework.

D. Disconnect from Inflation

The shock that targets unemployment accounts for less than 10 percent of the 
fluctuations in inflation, and conversely the shock that targets inflation explains a 
small fraction of unemployment fluctuations. A similar disconnect obtains between 
inflation and the labor share, a common proxy of the real marginal cost in the New 
Keynesian framework (Galí and Gertler 1999), as well as between inflation and the 
output or unemployment gap.6 This challenges the interpretation of the MBC shock 
as a demand shock of the textbook type.

and Beaudry, Galizia, and Portier (2020) for evidence suggestive of predictable  boom-bust phenomena that operate 
at both  business-cycle and  medium-run frequencies.

6 This disconnect is stronger in the  post-Volker period and echoes a large literature that documents, via other meth-
ods, the disappearance of the Phillips curve from the data (e.g., Atkeson and Ohanian 2001; Dotsey, Fujita, and Stark 
2018; Mavroeidis, Plagborg-Møller, and Stock 2014; Stock and Watson 2007, 2009). McLeay and Tenreyro (2020)  
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Could this disconnect reflect the confounding effects of an inflationary demand 
shock and a disinflationary supply shock? The answer is negative if the supply shock 
in the theory is proxied by the shock that accounts for TFP or labor productivity 
in the data, or the demand shock is the main driver of the business cycle and the 
Phillips curve is not exceedingly flat.

This brings us to the topic of how this disconnect and the Keynesian view of 
 demand-driven business cycles fit together in  state-of-the-art DSGE models. First, 
a sufficiently accommodative monetary policy is used to overcome the  Barro-King 
challenge (Barro and King 1984) and undo the negative comovement between 
employment and consumption induced by demand shocks in the  flexible-price core 
of these models. Second, overly flat Phillips curves for both wages and prices are 
used to make sure that  demand-driven fluctuations are nearly  noninflationary. And 
third, the bulk of the observed inflation fluctuations is accounted by a residual.

Whether this interpretation of the macroeconomic data is consistent with micro-
economic evidence on price and wage rigidity is the topic of a large, inconclu-
sive literature that is beyond the scope of this paper. A different possibility is that 
 demand-driven business cycles are not tied to nominal rigidity. Below we discuss 
how our anatomy of the macroeconomic data favors a model that accommodates 
this possibility.

E. The Anatomy of  Medium-Scale DSGE Models

Our empirical strategy was motivated by parsimonious models. Does its retain its 
probing power in  state-of-the-art,  medium-scale DSGE models?

Such models pose a direct challenge for the interpretation and use of the identi-
fied MBC shock, as this may correspond to a combination of multiple theoretical 
shocks, none of which individually has its properties.7 But at the same time, such 
models give rise to a larger set of  cross-variable, static, and dynamic restrictions that 
can be confronted with our  multidimensional anatomy of the data.

We demonstrate these ideas in Section V using two  off-the-self models. One is 
the  sticky-price model of Justiniano, Primiceri, and Tambalotti (2010); this is essen-
tially the same as that developed in Christiano, Eichenbaum, and Evans (2005) and 
Smets and Wouters (2007). Another one is the  flexible-price model found in an 
earlier paper of ours, Angeletos, Collard, and Dellas (2018): this is an extension of 
the RBC model that allows business cycles to be driven by variation in “confidence” 
and “news about the  short-run economic outlook.” We view the former as represen-
tative of the New Keynesian paradigm and the latter as an example of a literature 
that aims at accommodating  demand-driven business cycles without a strict reliance 
on nominal rigidity.

In each model, we perform an anatomy similar to that carried out in the data: we 
take different linear combinations of the theoretical shocks, each one constructed by 

argues that this fact may reflect the conduct of monetary policy, rather than a problem with the true, structural 
Phillips curve. We discuss why our evidence challenges this view in Section IID.

7 This difficulty is not specific to our approach. It concerns any approach that requires a single shock to drive 
some conditional variance in the data. For instance, Galí (1999) requires that a single shock drives productivity in 
the long run, an assumption inconsistent with the literature on news shocks.
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maximizing the  business-cycle volatility of a different variable. We then compare 
the  model-based objects to their empirical counterparts.

Both of the aforementioned two models match the disconnect of the MBC shock 
from TFP and inflation. However, the first model has difficulty matching the inter-
changeability property of the MBC template: the  reduced-form shocks obtained by 
targeting the key macroeconomic quantities are less similar in the model than their 
empirical counterparts. This is because this model, like many other members of the 
DSGE literature, attributes the business cycle to a fortuitous combination of special-
ized theoretical shocks, none of which generates the empirically relevant comove-
ment patterns in the key macroeconomic quantities. By contrast, the second model 
fits the patterns seen in the data because it contains a dominant shock, or propaga-
tion mechanism, that alone generates these patterns.

As an additional demonstration of the value of our method, we use it to evaluate 
the model of Christiano, Motto, and Rostagno (2014). This model is a leader in a 
new strand of the DSGE literature that includes financial frictions and uses finan-
cial (risk) shocks to drive the business cycle. We find that this model, too, but to a 
smaller degree, is subject to the challenge discussed above. It also misses some of 
the dynamic patterns seen in the data between the MBC shock, the credit spread and 
the level of credit.

In both Justiniano, Primiceri, and Tambalotti (2010) and Christiano, Motto, and 
Rostagno (2014), a large part of the difficulty to match the empirical template we 
provide in this paper can be traced to their  flexible-price core. Sticky prices, sticky 
wages, accommodative monetary policies, and various adjustment costs help amelio-
rate the problem but do not really fix it. In our view, this hints again at the value of 
theories that aim at accommodating  demand-driven cycle without a strict reliance on 
nominal rigidity. But even if one does not accept this conclusion, the conducted exer-
cises illustrate the probing power of our empirical strategy for models of any size.

I. Data and Method

The data used in our main specification consist of quarterly observations on 
the following ten macroeconomic variables: the unemployment rate ( u ); the real, 
 per capita levels of GDP ( Y ), investment ( I ), consumption ( C ); hours worked per 
person ( h ); labor productivity in the  nonfarm business sector ( Y/h ); the level of 
 utilization-adjusted total factor productivity (TFP); the labor share ( wh/Y ); the infla-
tion rate ( π ), as measured by the rate of change in the GDP deflator; and the nominal 
interest rate ( R ), as measured by the federal funds rate. The sample starts in 1955:I, 
the earliest date of availability for the federal funds rate, and ends in 2017:IV.

Following standard practice, and to ensure compatibility with the models used 
in Section V, our investment measure includes consumer expenditure on durables, 
while our consumption measure consists of expenditure on  nondurables and ser-
vices. Both measures are deflated by the GDP deflator. Section IIIC establishes the 
robustness of our results to the use of  component-specific deflators; to different 
samples, such as the pre- and  post-Volcker periods or excluding the Great Recession 
and the ZLB period; and to the incorporation of additional information, such as that 
contained in stock prices and financial variables. Appendix Section A contains the 
definitions and data sources.
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We now turn to the description of the empirical method. As mentioned in the intro-
duction, the method involves running a VAR on the aforementioned ten  variables 
and recovering certain “shocks.” As in the SVAR literature, any of the shocks con-
structed here represents a particular linear combination of the VAR residuals. What 
distinguishes our approach is the criterion used in the identification of such a linear 
combination.

Let the VAR take the form

  A (L)   X t   =  ν t  , 

where the following definitions apply:   X t    is an  N × 1  vector, containing the mac-
roeconomic variables under consideration;  A (L)  ≡  ∑ τ=0  

p    A τ    L   τ   is a matrix polyno-
mial in the backshift operator  L , with  A (0)  =  A 0   = I ;  p  is the number of lags 
included in the VAR; and   u t    is the vector of VAR residuals, with  E ( u t    u  t  ′  )  = Σ  for 
some positive definite matrix  Σ . Because of its large size, the VAR was estimated 
with Bayesian methods, using a Minnesota prior.8 Also, our baseline specification 
uses 2 lags, which is the number of lags suggested by standard Bayesian criteria. 
Section IIIC shows the robustness of our main findings to the inclusion of additional 
lags and the use of a VECM instead of a VAR.9

We assume the existence of a linear mapping between the residuals,   ν t   , and some 
mutually independent “structural” shocks,   ε t   , that is, we let

   ν t   = S ε t   

where  S  is an invertible  N × N  matrix and   ε t    is i.i.d. over time, with  E ( ε t    ε  t  ′  )  = I . 
These “structural” shocks may or may not correspond to the kind of structural shocks 
featured in theoretical models; they are transformations of the VAR residuals, whose 
interpretation is inherently delicate.

Let  S =  S ̃  Q , where   S ̃    is the Cholesky decomposition of  Σ , the covariance 
matrix of the VAR residuals, and  Q  is an orthonormal matrix, namely a matrix such 
that   Q   −1  = Q′.  We then have that   ε t   =  S   −1   ν t   = Q′   S ̃     −1   ν t   , which means that each 
one of the shocks in   ε t    corresponds to a column of the matrix  Q . Furthermore,  Q  
satisfies  QQ′ = I  by construction, which is equivalent to  S  satisfying  SS′ = Σ . But 
this by itself does not suffice to identify any of the underlying shocks: additional 
restrictions must be imposed on  Q  in order to identify any of them. The typical 
SVAR exercise in the literature employs exclusion or sign restrictions motivated by 
specific theories. We instead identify a shock by the requirement that it contains the 
maximal share of all the information in the data about the volatility of a particular 
variable in a particular frequency band.

Let us fill in the details. The Wold representation of the VAR is given by

   X t   = B (L)   ν t    ,

8 The posterior distributions were obtained using Gibbs sampling with 50,000 draws, and the reported highest 
posterior density intervals (HPDI) were obtained by the approach described in Koop (2003).

9 A VECM may be recommended if the analyst believes, perhaps on the basis of theory, that certain variables 
are  co-integrated. But a VECM is also sensitive to the assumed  co-integration relations, which explains why we, as 
much of the related empirical literature, use the VAR as our baseline specification.
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where  B (L)  = A   (L)    −1   is an infinite matrix polynomial, or  B (L)  =  ∑ τ=0  ∞     B τ    L   τ  . 
Replacing   ν t   =  S ̃  Q  ε t   , we can rewrite the above as follows:

   X t   = C (L) Q  ε t   = Γ (L)   ε t  , 

where  C (L)   and  Γ (L)   are infinite matrix polynomials,  C (L)  =  ∑ τ=0  ∞    C τ    L   τ   and  
 Γ (L)  =  ∑ τ=0  ∞    Γ τ    L   τ  , with   C τ   ≡  B τ    S ̃    and   Γ τ   ≡  C τ   Q  for all  τ ∈  {0, 1, 2, …}  . The 
sequence    { Γ τ  }   τ=0  ∞    represents the IRFs of the variables to the structural shocks. This 
is obtained from the sequence    { C τ  }   τ=0  ∞   , which encapsulates the Cholesky transfor-
mation of the VAR residuals.

For any pair   (k, j)  ∈   {1, …, N}    2  , take the  k  th variable in   X t    and the  j  th shock 
in   ε t   . As already noted, this shock corresponds to the  j  th column of the matrix  Q . 
Let this column be the vector  q . For any  τ ∈  {0, 1, …}  , the effect of this shock 
on the aforementioned variable at horizon  τ  is given by the   (k, j)   element of  
the matrix   Γ τ   ≡  C τ   Q , or equivalently by the number   C  τ   [k]   q , where   C  τ   [k]    henceforth 
denotes the  k  th row of the matrix   C τ   . Similarly, the contribution of this shock to the 
spectral density of this variable over the frequency band   [ ω ¯  ,   ̄  ω ]   is given by

  ϒ (q; k,  ω ¯  ,   ̄  ω )  ≡  ∫ ω∈ [ ω ¯  ,  ̄  ω ]   
 
    (  ̄ ¯  C    [k]   ( e   −iω ) q    C    [k]   ( e   −iω ) q)  dω 

  = q′ ( ∫ ω∈ [ ω ¯  ,  ̄  ω ]       ̄
¯  C    [k]   ( e   −iω )    C    [k]   ( e   −iω )  dω) q 

where, for any vector  v ,   v –   denotes its complex conjugate transpose.
Consider the matrix

  Θ (k,  ω ¯  ,   ̄  ω )  ≡  ∫ ω∈ [ ω ¯  ,  ̄  ω ]   
 
     ̄ ¯  C    [k]   ( e   −iω )    C    [k]   ( e   −iω )  dω .

This matrix captures the entire volatility of variable  k  over the aforementioned fre-
quency band, expressed in terms of the contributions of all the  Cholesky-transformed 
residuals. It can be obtained directly from the data (i.e., from the estimated VAR), 
without any assumption about  Q . The contribution of any structural shock can then 
be  rewritten as

(1)  ϒ (q; k,  ω ¯  ,   ̄  ω )  = q′Θ (k,  ω ¯  ,   ̄  ω ) q, 

where, as already explained,  q  is the column vector corresponding to that shock.
The above is true for any shock, no matter how it is identified. Our approach is 

to identify a shock by maximizing its contribution to the volatility of a particular 
variable over a particular frequency band, that is, to choose  q  so as to maximize the 
number given in (1). It follows that  q  is the eigenvector associated to the largest 
eigenvalue of the matrix  Θ (k,  ω ¯  ,   ̄  ω )  .

This approach is similar to the “ max-share” method developed in Faust (1998) 
and Uhlig (2003), and subsequently used by, inter alia, Barsky and Sims (2011) 
and Neville et al. (2014), except for two differences. First, we systematically vary 
the targeted variable and/or the targeted frequency band instead of committing to a 
specific such choice. That is, we provide multiple cuts of the data, instead of a single 
one, and draw lessons from their joint properties. Second, we identify shocks in the 
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frequency domain rather than the time domain. This allows us, not only to adopt 
the conventional definition of what the business cycle is in the data, namely the 
frequencies corresponding between 6 and 32 quarters, but also to clarify how this 
maps to the time domain: targeting  6–32q in the frequency domain is not equivalent 
to targeting  6–32q in the time domain. We expand on this point in Section IIIB.10

In the next section, we start by targeting unemployment and setting  
  [ ω ¯  ,   ̄  ω ]  =  [2π/32, 2π/6]  , which is the frequency band typically associated with the 
business cycle (e.g., Stock and Watson 1999). We then proceed to vary both the tar-
geted variable and the targeted frequency band. This produces many different cuts of 
the data, the collection of which comprises the “anatomy” offered in this paper and 
forms the basis of the lessons we draw for theory.

II. Empirical Findings

This section presents the main empirical findings and discusses a few tentative les-
sons for theory. These lessons are sharpest under our preferred perspective, namely, 
when seeking to understand the business cycle as the product of a single, dominant 
shock/mechanism. This is the perspective adopted in this section. Its relaxation in 
subsequent sections reveals the broader usefulness of our findings.

A. The Main Business-Cycle Shock: Targeting Unemployment

A key finding in this paper is that the shocks that target the aggregate quantities 
over the  business-cycle frequencies can be thought of as interchangeable facets of 
(what we call) the MBC shock. But as our anatomy consists of individual cuts of 
the data, we need to start with one of these shocks. We choose the shock that targets 
unemployment, rather than any of its “sister” shocks, because unemployment is the 
most widely recognized indicator of the state of the economy.

Figure 1 reports the impulse response functions (IRFs) of all the variables to this 
shock. As very similar IRFs are produced by the shocks that target the other key 
macroeconomic quantities, this figure plays a crucial role in our analysis: it serves 
as the empirical template for the propagation mechanism of models that contain a 
single or dominant  business-cycle driver.

Table 1 adds more information about the identified shock by reporting its contri-
bution to the volatility of all the variables over two frequency bands: the one used 
to construct it, which corresponds to the range between  6  and  32  quarters and is 
referred to as Short run in the table; and a different band, which is referred to as 
Long run and corresponds to the range between  80  quarters and  ∞ . This helps assess 
whether the identified shock can indeed account for the bulk of the  business-cycle 
fluctuations in the key macroeconomic quantities, as well as how large its footprint 
is on inflation or the long run.11

What are the main properties of the identified shock?

10 Our method also brings principle component analysis (PCA) to mind. We explore this relation in Section IIIA.
11 Online Appendix Figure 12 contains similar information in terms of the contributions of the identified shock 

to forecast error variances (FEV) at different horizons.
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First, over the  business-cycle frequencies, it explains about 75 percent of the vol-
atility in unemployment, 60 percent of that in investment and output, and 50 percent 
of that in hours. It also gives rise to a realistic business cycle, with all these variables 
and consumption moving in tandem. These properties together with those reported 
below justify labeling the identified shock as the “main business cycle shock.”

Second, the identified shock contains little statistical information about the 
 business-cycle variation in either TFP or labor productivity. This is prima facie 
inconsistent, not only with the baseline RBC model, but also with a class of models 
that let financial or other shocks trigger business cycles only, or primarily, by caus-
ing endogenous movements in productivity. We expand on this point in Section IIC. 
Also, the mild and  short-lived, procyclical response of labor productivity could 
reflect the impact of the latter on capacity utilization; this hypothesis is corroborated 
by the evidence in online Appendix Section G.2.

Table 1—Variance Contributions

 u  Y  h  I  C 

Short run (6–32 quarters) 73.7 57.8 46.9 61.1 20.0
[66.7, 79.8] [50.5, 65.1] [39.6, 53.9] [54.7, 67.9] [13.7, 27.0]

Long run (80– ∞  quarters) 21.6 4.9 5.3 5.0 4.3
[9.2, 38.6] [0.7, 16.5] [1.4, 15.2] [0.9, 17.1] [0.5, 15.7]

TFP  Y / h  wh / Y  π  R 

Short run (6–32 quarters) 5.7 23.6 26.9 6.8 21.8
[2.6, 10.8] [17.2, 31.0] [18.5, 35.6] [3.3, 12.0] [14.6, 30.9]

Long run (80– ∞  quarters) 4.4 4.2 3.6 5.4 8.6
[0.6, 15.4] [0.5, 14.8] [0.9, 11.9] [1.6, 13.9] [3.0, 19.3]

Notes: Variance contributions of the MBC shock at two frequency bands. The first row (Short run) corresponds to 
the range between  6  and  32  quarters, the second row (Long run) to the range between  80  quarters and  ∞ . The shock 
is constructed by targeting unemployment over the  6 – 32  range. The notation used for the variables is the same as 
that introduced in Section I. 68 percent HPDI in brackets.

Figure 1. Impulse Response Functions to the MBC Shock

Notes: Impulse Response Functions of all the variables to the identified MBC shock. Horizontal axis: time horizon 
in quarters. Shaded area: 68 percent Highest Posterior Density Interval (HPDI).
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Third, the effect on macroeconomic activity peaks within a year of its occurrence, 
fades out before long, and leaves a negligible footprint on the long run. This finding 
extends and reinforces the message of Blanchard and Quah (1989): what drives the 
business cycle appears to be distinct from what drives productivity and output in the 
longer term. This point is further corroborated later.

Fourth, the shock triggers a small, almost negligible, and delayed movement in 
inflation. This precludes the interpretation of the identified shock as an inflationary 
demand shock of the textbook variety. But it leaves two other interpretations open: 
a demand shock of the DSGE variety (a shock that moves output but not inflation 
due to a very flat Phillips curve); or a demand shock that operates outside the realm 
of nominal rigidities as in the models cited in footnote 3. We revisit this point in 
Sections IID and V.

Fifth, the shock triggers a strong, procyclical movement in the nominal interest 
rate, and in the real interest rate, too, since inflation hardly moves. At face value, 
this seems consistent with a monetary policy that raises the nominal interest in 
response to the boom triggered by the identified shock, stabilizes inflation, and per-
haps even closes the gap from  flexible-price outcomes (or, equivalently, tracks the 
natural rate of interest). This scenario is ruled out in the prevailing New Keynesian 
paradigm, because a gap from  flexible-price outcomes is needed in order to accom-
modate  demand-driven business cycles. But there is no way to verify or reject this 
assumption on purely empirical grounds, because the natural rate of interest and the 
 flexible-price outcomes are not directly observable (and not even defined outside 
specific models).

Finally, the shock triggers a countercyclical response in the labor share for the 
first few quarters, which is reversed later on. Relatedly, when looking at the response 
of the real wage, as inferred by the difference between the response of the labor 
share and that of labor productivity, we see that the real wage remains relatively flat 
in response to the identified shock. This is consistent with the  well-known, uncon-
ditional fact that real wages display very weak procyclicality, which is typically 
interpreted as being due to some form of  real-wage rigidity.

B. The Main Business-Cycle Shock: Targeting Other Quantities

Figure 2 compares the IRFs of the shock that targets the  business-cycle volatility 
of the unemployment rate (black line) to the IRFs of the shocks that are identified by 
targeting the  business-cycle volatility of some other key macroeconomic quantities: 
GDP, hours, investment, and consumption.

As is evident from the figure, these shocks are nearly indistinguishable: tar-
geting any one of the aforementioned variables seems to give rise to the same 
dynamic comovement properties. This explains the rationale of interpreting these 
 reduced-form shocks as interchangeable facets of the empirical footprint of the 
same propagation mechanism, or of what we have called the MBC shock.12 Online 

12 Recall that, for our purposes, different shocks that are observationally equivalent in terms of IRFs are essen-
tially one and the same shock. This perspective is consistent with standard practice in both the SVAR and the DSGE 
literatures: as echoed in the quote from Cochrane cited in footnote 2, shocks are visible, and hence distinguishable, 
only through the dynamic comovement patterns they induce in the variables of interest.
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Appendix G.7 reinforces this rationale by including in our VAR two familiar gap 
measures, the gap between actual and potential GDP and the gap between actual 
unemployment and NAIRU, and by showing that the shock that targets either gap is 
also indistinguishable from the shocks seen in Figure 2.

Table 2 and online Appendix Table 28 paint a complementary picture in terms of 
the variance contributions: the shock that targets any one of unemployment, GDP, the 
corresponding gaps, hours, and investment explains the bulk of the  business-cycle 
volatility in all of these variables. The following caveat applies to consumption: the 
shock that targets consumption explains less than one-quarter of the fluctuations in 
unemployment, hours, or investment; and symmetrically, the other shocks that make 
up our MBC template account for less than one-quarter of the fluctuations in con-
sumption.13 Nonetheless, the consumption shock is very similar to the other shocks 
with regard to both the IRFs and the disconnect from TFP and inflation. That is, it 
shares roughly the same propagation mechanism.

Finally, the interchangeability property extends from the IRFs to the time series 
produced by the different versions of the MBC shock. This is shown in Table 3. The 
table reports, for any of the variables of interest, the correlations between the times 
series of that variable produced by the unemployment shock and that produced by 
any of its sister shocks. The nearly perfect correlations seen in this table mean that 
recovered shocks are essentially the same, not only in terms of IRFs, but also in 
terms of realizations, as manifested in the times series they produce for the main 
variables of interest.14

13 Recall that consumption excludes spending on durables, which is instead included in investment.
14 Let  X ∈  {u, Y, C, I, h}   denote any one of the variables of interest. Next, let   X s    denote the  bandpass-filtered 

time series of the predicted value of that variable produced by the shock that targets the variable  s ∈  {u, Y, C, I, h}   
(where  s  may or may not coincide with  X ). We are using the band pass filter suggested by Christiano and Fitzgerald 
(2003). The typical cell in Table 3 reports, for a variable  X  (across rows) and a shock  s ≠ u  (across columns), the 
correlation of   X s    and   X u   . This summarizes the information seen in Appendix Figure B1, which depicts the full scat-
terplots of the series   X s    against the series   X u   , for all  X  and  s . The similarity is also present in terms of the innovations 
that correspond to the different shocks. For instance, the correlation between the ε identified by targeting unemploy-
ment and that identified by targeting output is 0.86. But these innovations, and the corresponding column vectors 

Figure 2. The Various Facets of the MBC Shock, IRFs

Note: Shaded area: 68 percent HPDI.

10 20

Unemployment

10 20

Output

10 20

Hours worked

10 20

 Investment

10 20

10 20

0.25

0.5

−0.5

−0.25

−0.5

0

0

0.5

−0.5

0

0.5

−0.5

0

0.1

−0.1

0

0.1

−0.1

0

0

0.5

1

0 0
0

2
0.5

0.51

10 20 10 20 10 20 10 20

Consumption

TFP Labor productivity Labor share In�ation Nominal interest rate

u shock Y shock I shock h shock C shock



3042 THE AMERICAN ECONOMIC REVIEW OCTOBER 2020

C. The Long Run and the Short Run

In the preceding analysis we recovered a MBC shock by targeting the business 
cycle frequencies. We now document the existence of an analogous object for the 
long-run frequencies. We also discuss the implications of our results for theories that 
link the business cycle to technology and news shocks.

Consider the shocks that target GDP, investment, consumption, TFP, and labor 
productivity at the frequencies corresponding to 80– ∞  quarters. Figure 3 and Table 
4 show that these shocks are nearly indistinguishable in terms of IRFs and variance 

of the matrix  Q , are not sufficiently meaningful in their own right. What matters is how these innovations propagate 
over time and across variables, which is what the IRFs seen in Figure 2 reveal, or how they manifest themselves in 
terms of the predicted time series   X s   , which explains the focus of Table 3 and Figure 9.

Table 2—The Various Facets of the MBC Shock, Variance Contributions

Targeted variable:  u  Y  h  I  C 

Unemployment 73.7 57.8 46.9 61.1 20.0
[66.7, 79.8] [50.5, 65.1] [39.6, 53.9] [54.7, 67.9] [13.7,27.0]

Output 55.6 79.8 44.0 66.5 32.6
[49.6,  61.7] [72.9, 86.2] [36.7,51.3] [61.0, 72.6] [26.0,39.2]

Hours worked 49.0 46.5 70.0 46.7 21.7
[41.8, 56.3] [38.0, 55.3] [63.0, 76.7] [37.3, 55.6] [15.6,28.5]

Investment 58.2 66.2 44.4 80.1 18.8
[52.3, 64.0] [60.2, 72.3] [36.8, 51.9] [73.5, 86.6] [12.5,26.3]

Consumption 18.3 30.9 19.5 16.2 67.8
[12.2, 25.8] [22.5, 39.3] [13.4, 26.1] [10.2, 24.1] [60.7, 75.3]

Targeted variable: TFP  Y / h  wh / Y  π  R 

Unemployment 5.7 23.6 26.9 6.8 21.8
[2.6, 10.8] [17.2, 31.0] [18.5, 35.6] [3.3, 12.0] [14.6, 30.9]

Output 4.1 41.0 40.5 10.6 16.8
[1.7, 8.4] [35.3, 47.2] [33.7, 46.8] [6.1, 16.1] [10.3, 25.0]

Hours worked 11.5 22.0 19.4 7.0 22.4
[6.4, 18.2] [15.4, 29.4] [11.1, 29.5] [3.5, 12.5] [14.6, 31.5]

Investment 3.7 33.9 36.5 7.4 20.6
[1.3, 7.9] [27.7, 40.2] [29.5, 43.4] [3.6, 12.5] [13.3, 29.1]

Consumption 1.5 12.6 9.8 9.5 4.5
[0.6, 3.4] [7.4, 18.4] [5.0, 16.9] [4.6, 16.9] [1.3, 10.3]

Notes: The rows correspond to different targets in the construction of the shock. The columns give the contributions 
of the constructed shock to the business-cycle volatility of the variables. 68 percent HPDI in brackets. 

Table 3—Correlations of Conditional Times Series

 Y  shock  I  shock  C  shock  h  shock

Unemployment 0.971 0.981 0.923 0.939
Output 0.997 0.997 0.989 0.992
Investment 0.990 0.996 0.934 0.989
Consumption 0.986 0.982 0.744 0.961
Hours worked 0.971 0.981 0.923 0.939

Note: Each row reports the correlation between each bandpass-filtered variable as predicted by 
the unemployment shock and that predicted by the other facets of the MBC shock. 
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contributions. Hence, one may advance the concept of the “main  long-run shock” in 
a manner analogous to that of the MBC.15

This finding also motivates us to repeat our exercises using a VECM in which the 
aforementioned quantities share a common stochastic trend, while the remaining 
variables are stationary. The use of such a VECM instead of our baseline VAR is 
recommended if the analyst has a strong prior that the aforementioned quantities are 
cointegrated: a prior that is not only imposed in standard models but also corrobo-
rated by the evidence presented above as well as by familiar co-integration tests. For 
robustness, we also consider a variant VECM in which we add a second stochastic 
trend that drives inflation and the nominal interest rate. This helps capture the famil-
iar indeterminacy of the  long-run values of these variables in theoretical models and 
their high persistence in the actual data.

15 We have verified that the shocks considered here are nearly identical to those identified by targeting the fre-
quency exactly at  ∞ , which amounts to imposing a set of  long-run restrictions as in Blanchard and Quah (1989) 
and Galí (1999). A similar picture also emerges from inspection of the first principal component over these long 
term data; see online Appendix Table 18.

Figure 3.  Long-Run Shocks

Note: Shaded area: 68 percent HPDI.
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Table 4—Long-Run Shocks, Contributions at Long-Run Frequencies (80-– ∞  Q) 

Targeted variable:  Y  I  C TFP  Y / h 

Output 99.7 96.7 99.6 96.3 97.2
[98.7, 99.9] [90.1, 99.0] [98.6, 99.9] [89.4, 98.9] [91.9, 99.2]

Investment 97.4 98.2 97.0 92.3 92.8
[90.2, 99.4] [94.8, 99.5] [89.6, 99.3] [77.2, 97.9] [76.4, 98.0]

Consumption 99.5 96.4 99.6 96.0 97.0
[98.2, 99.9] [89.3, 98.9] [98.6, 99.9] [88.9, 98.9] [91.4, 99.2]

TFP 97.6 93.7 97.6 98.7 98.6
[90.3, 99.4] [79.5, 98.2] [90.4, 99.5] [95.5, 99.7] [95.6, 99.7]

Labor productivity 98.5 94.2 98.7 98.0 99.1
[93.5, 99.6] [81.4, 98.4] [94.1, 99.7] [92.8, 99.5] [95.8, 99.8]

Note: 68 percent HPDI in brackets.
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These VECMs produce the same empirical properties for the MBC shock as 
those derived from the VARs and presented above. They also produce similar pat-
terns regarding the properties of the long-run shock. Table 5 demonstrates this with 
regard to the business cycle footprint of the long-run shock. This table reports the 
contribution of the main long-run shock, represented by the shock that targets TFP 
over the 80– ∞  range, to the volatilities of all the variables over the  6–32 range. 
The emerging picture is essentially the mirror image of that contained in the second 
row of Table 1. There, we reported that the MBC shock has a small contribution to 
the long run. Here, we see that the shock that accounts for the long run has a small 
footprint on the business cycle.

The disconnect between the short and the long run can also be seen in Figure 4, 
which shows the contribution of the MBC shock to the forecast error variance (FEV) 
of unemployment, output, and TFP at different time horizons.16 The MBC shock 
explains more than 60 percent of unemployment and output movements during the 
first two years, but less than 7 percent of the TFP movements at any horizon; and 
conversely, the main long-run shock explains nearly all the  long-run variation in 
investment and TFP, but less than 10 percent of the unemployment and investment 
movements over the first two years.17

How do these findings compare to related ones in the existing literature?
First, consider Blanchard and Quah (1989). This paper seeks to represent the data 

in terms of two shocks, a “supply shock” and a “demand shock.” To this goal, they 
run a VAR on two variables, GDP and unemployment; identify the supply shock as 
the shock that accounts for GDP movements in the very long run (at  ∞ ) and the 
demand shock as the residual shock; and document that the supply shock accounts 
for about 50 percent of the  business-cycle volatility in GDP and a bit more of that in 
unemployment. The additional information contained in our larger VAR reduces the 
contribution of the supply shock to about 12 percent for GDP and for unemployment.

16 The MBC shock is still identified in the frequency domain. The same picture emerges when the MBC is 
identified in the time domain, provided that one uses the “right” mapping between the two domains. See online 
Appendix Section E.

17 It is worth noting that the disconnect between the short and the long run extends from neutral technology, 
as measured by TFP, to  investment-specific technology, as measured by the relative price of investment; see 
online Appendix Section G.2.

Table 5—Long-Run TFP Shock, Contributions at Business-Cycle Frequencies 

 u  Y  h  I  C 

VAR 9.7 25.7 11.5 18.6 15.7
[3.9, 18.9] [11.7, 42.5] [5.1, 20.1] [8.2, 31.3] [6.7, 27.9]

VECM 12.1 11.7 8.0 10.6 8.6
[4.8, 22.1] [4.7, 22.4] [2.8, 16.3] [4.5, 19.3] [2.3, 18.5]

TFP  Y / h  wh / Y  π  R 

VAR 21.4 22.9 10.2 13.1 8.1
[6.6, 41.8] [11.4, 36.4] [2.8, 23.2] [4.9, 27.8] [2.8, 16.9]

VECM 11.5 11.2 9.5 7.7 11.1
[3.8, 26.6] [5.0,  22.4] [4.2, 18.6] [2.4, 21.1] [3.5, 25.2]

Note: 68 percent HPDI in brackets. 
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Second, consider Uhlig (2003), which is the closest predecessor to our paper. 
Similarly to Blanchard and Quah (1989), Uhlig (2003) pursues a  two-shock rep-
resentation of the data. The two shocks are identified by jointly maximizing the 
forecast error variance (FEV) in real GNP for horizons between 0 and 5 years. 
Uhlig offers a tentative interpretation of one shock as being a productivity shock 
of the RBC type and the other as a  cost-push shock of the New Keynesian type. 
This interpretation finds little support in our more extensive anatomy of the data, 
especially due to our finding of a disconnect between our MBC shock and TFP at 
all horizons.18 Furthermore, as explained in Section IIIB, once we move from the 
frequency to the time domain, the business cycle is best captured by targeting the 
FEVs of unemployment and GDP at 1 year, as opposed to longer horizons.

Third, consider Galí (1999) and Neville et al. (2014). Our  long-run TFP shock is 
essentially the same as the technology shock identified in those papers. Tables 4 and 
5 confirm their finding that this shock has a small contribution to the business cycle. 
This extends to the robustness exercises reviewed in Section IIIC.

Finally, consider Beaudry and Portier (2006). The first part of that paper uses a 
 two-variable VAR with TFP and the S&P500 index to identify a shock that has zero 
impact effect on TFP but accounts for the bulk of both the  short-run movements in 
stock prices and the  long-run movements in TFP. This shock is interpreted as “news” 
about future TFP. The second part proceeds to argue, using 3–5-variable VARs and 
additional identifying restrictions, that TFP news shocks account for about  50 per-
cent  of the  short-run volatility in hours and total private spending, about  80 percent  
of that in consumption, and about  80 percent  the  long-run movements in private 
spending. In short, TFP news emerges as the main driver of both the business cycle 
and the long run.

This picture is hard to reconcile with our results, as well as with those of Galí 
(1999) and Neville et al. (2014). If TFP news was the main driver of both the busi-
ness cycle and the long run, one would expect to see a strong connection between 
the two. But as seen in Table 5, the main  long-run shock identified here accounts for 
only  10 percent  of the  short-run volatility in unemployment, hours, and investment. 
A similar disconnect is found in Galí (1999) and Neville et al. (2014).

18 We emphasize that the interpretation offered in Uhlig (2003) was tentative as that paper was not completed. 
Also note that the approach adopted in that paper allows for the identification of the two shocks together but does 
not separate one shock from the other, so the aforementioned interpretation relied on particular orthogonalizations. 
Finally, because the VAR considered in that paper did not contain TFP, the disconnect documented here could not 
have been detected.

Figure 4. FEVs of Unemployment, GDP, and TFP to the MBC Shock

Note: Shaded area: 68 percent HPDI.
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Perhaps most tellingly, Figure 4 shows that the MBC shock accounts for nearly 
zero of the FEV of TFP at any horizon. That is, the MBC shock itself contains no 
news about future TFP.19

We believe that, while TFP news may be a  nontrivial contributor to macroeco-
nomic fluctuations, the numbers reported by Beaudry and Portier (2006) exaggerate 
its importance due to the use of smaller VARs and different identifying assumptions. 
We elaborate on these points in Section IV and Appendix Section C. There, we use 
a  semistructural exercise, based on our anatomy of the data, to shed new light on the 
 business-cycle effects of technology and news shocks. Our explorations suggest that 
the contribution of news shocks to unemployment fluctuations is about 10 percent, 
which is much more modest than that suggested by Beaudry and Portier (2006) and 
closer to that reported in Barsky and Sims (2011).

A similar challenge applies to Lorenzoni (2009). That paper emphasizes the role 
of noise in the signals of future TFP, but maintains the core hypothesis that the busi-
ness cycle is driven by shifts in the rational expectations of the long run, which is 
hard to reconcile with our findings.20

What is left open is the possibility that the identified MBC shock reflects either 
irrational beliefs about the long run, or news about the short run. A formalization 
of the latter kind of news is found in our companion paper (Angeletos, Collard, and 
Dellas 2018), to which we return in Section V.

D. Inflation and the Business Cycle

We now turn attention to the nexus of real economic activity and inflation. Our 
method identifies a weak link. First, as shown in the first row of Table 6 (which 
repeats a portion of the first row of Table 1), the identified MBC shock accounts for 
only 7 percent of the  business-cycle variation in inflation, which is as low as the corre-
sponding number for TFP. Second, the shock that targets inflation explains 83 percent 
of the  business-cycle volatility in inflation and only 4 to 8 percent of that in unem-
ployment, output, and investment. Third, the shock that targets inflation explains only 
2 percent of the labor share, a proxy of the real marginal cost or the “fundamental” in 
the New Keynesian Phillips Curve (Galí and Gertler 1999); and symmetrically, the 
shock that targets the labor share explains 86 percent of the labor share itself but only 
4 percent of inflation. Fourth, the shock that targets inflation is essentially orthogonal 
to the MBC shock, both in terms of innovations and in terms of induced series. For 
instance, the correlation between the ε identified by targeting inflation and that iden-
tified by targeting unemployment is 0.047. Finally, online Appendix Sections G.6 
and G.7 show that these findings are robust to different measures of inflation (GDP 
deflator versus CPI, PPI, or core inflation) and different measures of real slackness 
(unemployment versus unemployment gap or output gap).

What is the lesson for theory? Because of its transitory nature and its disconnect 
from TFP, it is tempting to interpret the MBC shock in the data as a demand shock 
in the New Keynesian model. However, in that model demand shocks generate 

19 As verified in row 9 of Table 8, these findings are robust to the inclusion of Stock Prices in the VAR.
20 By shifting the focus from the distinct theoretical formulation of news and noise shocks to their shared empir-

ical footprint in terms of VAR representations, we echo Chahrour and Jurado (2018).
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 business cycles only by inducing positive output gaps from  flexible-price outcomes. 
Furthermore, because replicating  flexible-price outcomes is equivalent to stabiliz-
ing inflation, such gaps are the main “fundamental” driving inflation. In particular, 
insofar as business cycles are predominantly  demand-driven and the Phillips curve 
is not exceedingly flat, the New Keynesian model imposes that inflation is the best 
predictor of future output gaps, or real marginal costs, similarly to how the basic 
 asset-pricing model imposes that asset prices are the best predictor of future earn-
ings. From this perspective, Table 6 suggests that the failure of the two models is 
comparable: the link between inflation and real economic activity is no stronger than 
the link between asset prices and earnings.21

Another challenge emerges from contrasting the magnitude of the actual inflation 
response to the identified MBC shock to that predicted by the calibrated, textbook 
version of the New Keynesian model under the interpretation of this shock as an 
aggregate demand shock: as illustrated in online Appendix Figure 25, the predicted 
response is over ten times larger than the observed one.

These challenges are familiar, albeit through other metrics.22 The DSGE liter-
ature has sought to address them by making the Phillips curve much flatter than, 
not only its textbook version, but also that implied by  menu-cost models calibrated 
to  microeconomic evidence; and by attributing almost the entirety of the observed 
inflation fluctuations to large markup shocks or some other “residual.”

The empirical foundations of these and other features that help improve the empir-
ical fit of DSGE models remain a contested issue. Needless to say, this does not mean 
that we question the empirical relevance of nominal rigidities, or the  nonneutrality of 
monetary policy. But we do wish to raise the possibility that the MBC shock in the data 
represents an aggregate demand shock of a different kind than that presently formalized 
in the New Keynesian framework, namely one that operates inside its  flexible-price 
core rather than outside it. This echoes the common message of Angeletos and La’O 
(2013), Beaudry and Portier (2014), and the literature cited in footnote 3.

Finally, consider the argument made in McLeay and Tenreyro (2020) that the dis-
appearance of the empirical Phillips curve in the  post-Volker era (i.e., the absence of a 

21 As one would expect, the link improves somewhat if we focus on the  pre-Volker period. See row 7 of Table 8.
22 For instance, the weak comovement of inflation and real economic activity is also evident in the uncondi-

tional moments, although it is less pronounced than that seen in Table 6. See also Atkeson and Ohanian (2001); 
Mavroeidis, Plagborg-Møller, and Stock (2014); Stock and Watson (2007, 2009); and Dotsey, Fujita, and Stark 
(2018) for examples of works that document a similar statistical disconnect between gaps and inflation as that 
documented here, albeit with different methods. And finally see the survey by Mavroeidis, Plagborg-Møller, and 
Stock (2014) and the references therein for empirical performance of the various incarnations of the Phillips curve.

Table 6—Inflation and the Business Cycle

Targeted variable:  u  Y  π  wh/Y 

Unemployment 73.7 57.8 6.8 26.9
[66.7, 79.8] [50.5, 65.1] [3.3, 12.0] [18.5, 35.6]

Inflation 4.2 8.0 83.3 1.9
[1.8, 8.6] [4.0, 13.1] [76.2, 88.3] [0.7, 4.4]

Labor share 26.0 35.6 4.0 85.4
[18.7, 33.5] [28.8, 42.6] [1.7, 7.6] [79.8, 90.4]

Note: 68 percent HPDI in brackets.
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strong positive relation between inflation and the output gap) may reflect a monetary 
policy that has done a good job in stabilizing the output gap against demand shocks 
and has let inflation be driven primarily by “residual” shocks. This argument may 
explain the disconnect seen in Table 6 in terms of variance contributions. But another 
key piece of evidence produced by our anatomy is the muted response of inflation 
to the MBC shock (seen earlier in Figures 1 and 2). This in turn requires either that 
the structural Phillips curve is exceedingly flat,23 which runs against the thesis of the 
aforementioned paper, or that the MBC shock is a demand shock that generates real-
istic business cycles even when monetary policy replicates  flexible-price allocations, 
which circles back to our preferred interpretation of the evidence.

III. Robustness

In this section we first discuss the relation between our approach and two alterna-
tives: principal component analysis, and identification in the time domain. We next 
report results from an extensive battery of robustness exercises conducted.

A. The MBC Shock and Principal Component Analysis

The finding that there is a single force that drives multiple measures of economic 
activity naturally invites a comparison to principal component analysis (PCA). Is 
our MBC shock similar to the first principal component of the data over business-cy-
cle frequencies? And if yes, are there any reasons to favor employing our method 
over PCA in pursuing an anatomy of the business cycle?24

To address the first question, we perform PCA in the frequency domain. For 
each variable   X j   ∈  {u, Y, h, I, …} ,  we construct the  bandpass-filtered variable   X  j  bc   
that isolates its business cycle frequencies ( 6–32 quarters). We then use the cova-
riance matrix of all the filtered variables to construct the first principal component, 
denoted by  PC 1   bc  . We finally project each   X  j  bc   on  PC 1   bc   and compute the  R2 of the 
projection. This gives the percentage of the  business-cycle volatility in variable  j  
accounted for by the principal component.25

Four different versions of this exercise are carried out. In the first version,   X   bc   is 
derived by applying the bandpass filter directly on the raw data, variable by vari-
able. In the second version, we first run a VAR on all the variables jointly, use it to 
estimate the  cross-spectrum of the data, and then construct the band passed vari-
ables   X  j  bc  . Hence, the bandpass filter is the ideal one in the latter case, whereas it is 
only an approximate one in the former.

In the third and fourth version, the filtered variables are normalized by their 
respective standard deviations before extracting the first principal component. Such 
a normalization is often employed in the PCA literature in order to cope with  scaling 

23 See online Appendix Section I.1 for the illustration of this point when the MBC shock maps directly to a 
demand shock in the New Keynesian model; and see online Appendix Section I.2 for the robustness of this point to 
letting the MBC shock map to a mixture of demand and supply shocks in the model.

24 We thank an anonymous referee for suggesting the exploration of these questions.
25 Recall that the first principal component is constructed by taking the eigenvector corresponding to the largest 

eigenvalue of the covariance matrix. It is thus designed to account for as much as possible of the volatility and the 
comovement of all the (filtered) variables at once.
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issues and/or to focus on the comovements in the data. But it also reduces the role 
played by the more volatile variables (e.g., investment), which may or may not 
be desirable depending on the context. As we do not have a strong prior on how 
to properly weight the variables, we carry the exercise on both normalized and 
 nonnormalized data.

The results are reported in Table 7. In all cases, the first principal component 
accounts for the bulk of the  business-cycle volatility in unemployment, hours, out-
put, and investment but for only a small fraction of the  business-cycle volatility in 
either TFP or inflation.

This is reassuring: the picture obtained here is similar to that obtained in Table 2 
about the various facets of the MBC shock. As shown in online Appendix Section F, 
a similarly reassuring connection holds between the main  long-run shock obtained 
by our method in the next section and the principal component obtained by applying 
PCA to the  long-run components of the data.

However, there are three key pieces of information that our approach produces 
but PCA does not. First, PCA is not useful for addressing the question of whether 
the forces that drive the business cycle and long run are related, because the afore-
mentioned two principal components are orthogonal to each other by construction. 
Second, PCA does not contain information about how the variables respond on 
impact and over time to a shock; that is, PCA does not accommodate the construc-
tion of IRFs, which are of paramount importance for our purposes. And third, by 
targeting individual variables, our method avoids the difficulties associated with 
having to choose the “best” weights in PCA and, more importantly, helps reveal 
patterns that prove useful in the validation of existing models or in the construction 
of new ones.

A version of Dynamic Factor Analysis, appropriately adapted to the frequency 
domain, could address the first two caveats and offer a useful complement to our 
approach. But it would not immediately accommodate the third point: the informa-
tion extracted by taking multiple cuts of the data.

B. MBC in the Frequency Domain versus the Time Domain

A  long-rooted convention in empirical macroeconomics identifies the business 
cycle with the fluctuations occurring in the  6–32 quarters range in the frequency 

Table 7—The First Principal Component, Business-Cycle Frequencies

 u  Y  h  I  C 

Raw data 75.3 92.3 81.2 99.8 60.2
VAR-based 60.5 86.0 58.2 99.7 23.7
Normalized data 91.5 86.8 91.3 80.6 76.7
VAR normalized 80.8 90.0 77.0 80.7 50.4

TFP  Y / h  wh / Y  π  R 

Raw data 6.1 17.7 3.0 2.3 12.3
VAR-based 0.6 22.8 11.6 2.5 12.8
Normalized data 17.3 2.6 0.3 19.2 38.2
VAR normalized 1.8 9.7 3.5 7.1 29.8
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domain (FD).26 In line with this tradition, our MBC shock is constructed by identi-
fying the shock that accounts the most of the volatility of unemployment and other 
key macro quantities in that range.

But suppose one wished to identify business cycles in the time domain (TD) 
instead. Which horizon(s) should one target?

At first glance, one may think that targeting volatility over the  6–32 quarters band 
in the FD is equivalent to targeting volatility over the  6–32 quarters horizon range 
in the TD. But this is wrong: such a relation does not hold for arbitrary DGPs (or 
arbitrary models), nor does it hold in the actual data.

We offer a comprehensive treatment of this issue in Appendix Section E by under-
taking two exercises, one theoretical and one empirical.

In the first exercise, we set up a 3  ×  3 model (three variables, three shocks). 
Although the model is deliberately abstract, its variables can loosely be interpreted 
as unemployment, output, and inflation. Its main purpose is to serve as a controlled 
laboratory environment, in which we can work out the properties of alternative map-
pings between the FD and the TD.

Within this controlled environment, we establish two properties of the MBC 
shock identified via our method, that is, by targeting the volatility of the first two 
variables over the  6–32 quarters in the FD: (i) this shock is notably different from 
the shock that targets  6–32 quarters in the TD; and (ii) this shock is nearly identical 
to the one that targets 4 quarters in the TD. This serves both as a proof of concept 
that the mapping between the FD and the TD is  nontrivial in general, and as an illus-
tration of the kind of model that best fits the data.

The second exercise completes the picture by showing that the two properties 
mentioned above indeed characterize the data. A hint that the second property is true 
in the data was already present in Figures 1 and 4, which showed that the footprint 
of our MBC shock in the TD, in terms of both IRFs and FEVs, peaked within a year 
or so.

These findings complement the picture painted in the rest of our paper. They also 
illustrate why  TD-based identification strategies that maximize the FEV contribu-
tion of a shock to unemployment or output at longer horizons could fail to capture 
business cycles.

C. Alternative Specifications

We now turn to the robustness of our main results along various dimensions 
(sample periods, set of variables, assumptions about stationarity, numbers of lags). 
The main exercises are described below; a few additional ones are relegated to the 
online Appendix.

Table 8 describes the variance contribution of the MBC shock over business-cy-
cle and longer-term frequencies, respectively, and across many alternative specifi-
cations (different samples, statistical models estimated, set of variables, numbers of 
lags). As in Table 1, we use the shock that targets unemployment as the measure of 

26 This convention stretches back at least to Mitchell. More recently, when researchers document  business-cycle 
moments whether in the data or in a model, they almost invariably use either the BP filter at the  6–32 quarters band 
or the HP filter, which is closely related (e.g., Stock and Watson 1999).
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Table 8—Robustness, Variance Contributions

Short-run contribution

 u  Y  h  I  C 

1. Benchmark 73.7 57.8 46.9 61.1 20.0
[66.7, 79.8] [50.5, 65.1] [39.6, 53.9] [54.7, 67.9] [13.7, 27.0]

2. 4 lags 74.4 57.7 48.8 62.0 20.8
[67.1, 80.6] [49.7, 64.8] [41.7, 55.8] [54.7, 69.0] [13.9, 28.3]

3. VECM(1) 62.5 52.4 48.2 54.6 36.6
[56.4, 68.9] [44.6, 59.3] [40.9, 54.8] [47.8, 60.7] [26.9, 47.1]

4. VECM(2) 65.1 54.7 49.8 54.4 43.7
[58.7, 72.0] [47.7, 62.3] [43.5, 56.2] [48.3, 61.8] [32.1, 54.5]

5. 1948–2017 78.2 64.8 49.2 63.5 19.9
[72.4, 84.1] [58.6, 70.9] [43.4, 55.9] [57.0, 69.7] [13.7, 26.7]

6. 1960–2007 69.1 60.4 49.8 62.7 24.5
[61.9, 75.4] [51.6, 67.5] [42.4, 56.7] [54.8, 69.8] [16.6, 34.9]

7. pre-Volcker 73.6 56.1 42.6 60.7 22.1
[63.6, 82.3] [46.1, 64.8] [32.2, 52.5] [51.6, 69.2] [12.6, 33.5]

8. post-Volcker 73.4 50.4 50.4 58.3 20.0
[64.8, 79.7] [41.8, 58.2] [41.7, 58.8] [50.1, 65.7] [12.3, 29.0]

9. Extended 59.5 50.5 45.8 53.2 22.1
[53.8, 65.5] [43.1, 58.2] [39.4, 51.3] [44.7, 59.7] [15.1, 31.3]

10. Financial 68.5 57.9 46.6 59.9 26.0
[62.1, 75.1] [50.0, 64.3] [39.5, 54.1] [52.6, 66.7] [17.9, 34.6]

11. Chained C&I 81.7 58.5 46.1 61.1 17.1
[75.8, 86.7] [52.1, 64.5] [39.3, 52.1] [55.1, 67.1] [11.7, 23.4]

Short-run contribution Long-run contribution

 π TFP  Y TFP

1. Benchmark 6.8 5.7 4.9 4.4
[3.3, 12.0] [2.6, 10.8] [0.7, 16.5] [0.6, 15.4]

2. 4 lags 6.7 6.3 4.2 3.6
[3.1, 12.1] [2.7, 11.3] [0.6, 14.1] [0.5, 13.0]

3. VECM(1) 8.8 13.1 13.7 13.7
[3.9, 18.1] [6.3, 23.4] [3.0, 32.0] [3.0, 32.0]

4. VECM(2) 12.2 14.4 15.8 15.8
[6.1, 20.4] [7.3, 23.2] [3.7, 33.5] [3.7, 33.5]

5. 1948–2017 5.7 6.2 6.6 6.1
[2.3, 10.2] [2.5, 11.2] [1.0, 18.4] [0.9, 18.4]

6. 1960–2007 12.4 5.3 3.3 3.2
[6.1, 20.3] [2.2, 11.3] [0.5, 12.6] [0.6, 11.9]

7. pre-Volcker 17.4 7.1 7.1 6.1
[9.5, 27.9] [2.7, 15.2] [1.0, 24.1] [0.8, 23.1]

8. post-Volcker 4.8 7.5 3.6 3.1
[1.9, 10.6] [3.1, 14.3] [0.7, 12.8] [0.6, 11.2]

9. Extended 11.9 5.0 3.8 4.0
[6.3, 20.7] [2.0, 10.3] [0.5, 16.9] [0.6, 17.3]

10. Financial 8.6 7.1 4.8 4.4
[3.9, 14.8] [2.9, 13.2] [0.6, 15.6] [0.6, 14.8]

11. Chained C&I 5.6 4.2 3.8 3.5
[2.5, 10.2] [1.6, 8.2] [0.6, 13.2] [0.5, 12.3]

Note: 68 percent HPDI in brackets. 
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the MBC shock. Online Appendix Section G reports similar tables for the shocks 
that target GDP, hours, etc. The first row in Table 8 corresponds to our baseline 
specification, that is, it repeats the information from Table 1. The remaining rows 
correspond to ten alternative specifications.

Row 2 corresponds to a VAR with four lags instead of two; the results with six or 
eight lags are almost the same and are thus omitted. Rows 3 and 4 correspond to two 
VECMs: the first allows for a single unit root that drives the real quantities, while 
the second allows inflation and the nominal interest rate to be driven by the first, 
“real” root as well as by a second, “nominal” root.

Row 5 extends the sample backwards to 1948, by replacing the Federal Reserve 
Rate with the  3-month  T-bill rate. Row 6 constrains the sample to  1960–2007, leav-
ing out the Great Recession and the ZLB; this is also the period used in the estima-
tion and validation of the two DSGE models considered in the next section. Rows 7 
and 8 split the sample to two  subsamples, pre- and  post-Volcker.

Row 9 adds the following three variables to the VAR: the S&P500 index, the 
relative price of investment, and capital utilization. Row 10 adds the credit spread 
between the interest rate on  BAA-rated corporate bonds and the 10-year US gov-
ernment bond rate, a common measure of the severity of financial frictions. Finally, 
row 11 considers a version where consumption and investment are deflated by their 
respective,  chained-type price indices rather than the GDP deflator, as a way to take 
 relative-price effects into account.27

The results speak for themselves. Across specifications (rows), the contribution 
of the identified shock to the variance of the key macroeconomic quantities remains 
almost unchanged.28 Similar results obtain in additional robustness exercises which 
we have undertaken but omit here for the sake of saving space.29

More importantly, the same robustness is present when considering the IRFs. We 
illustrate this in Figure 5 for the shock that targets unemployment for a select subset 
of the 11 specifications under consideration.30 This is  reassuring as the properties of 
the IRFs, and in particular the interchangeability of the various facets of the MBC 
shock, represent the key criterion for judging the empirical plausibility of a model’s 
propagation mechanism.31

27 Given that consumption is the sum of nondurables and services, and investment is the sum of gross private 
domestic investment and durables, some care must be taken to build the corresponding chained type price indices. 
The construction of the indices is detailed in online Appendix Section G.5.

28 The only sensitivities worth mentioning are the following. First, the VECMs raise slightly the  long-run footprint 
of the MBC shock and more noticeably its  short-run comovement with consumption. And second, the  pre-Volcker 
sample features a smaller disconnect between real economic activity and inflation than the  post-Volcker one.

29 For instance, we have verified that the properties of the MBC shock remain largely the same if we drop any 
one of the variables in our baseline VAR, or if we add labor market indicators such as vacancies. The results become 
sensitive only when the size of the VAR becomes very small. See Appendix Section C for an illustration. This is not 
surprising given the  well-known fragility of small VARs. To the contrary, this fact along with the already reported 
robustness to the addition of stock prices and other variables suggests that our baseline VAR has the “right” size in 
order to reveal robust properties.

30 The remaining specifications are also similar. They are omitted only because they would have  overcrowded 
the figure.

31 As can been seen by comparing the baseline and the  1960–2007 cases in Figure 5, the interchangeability 
property and the profile of the MBC shock are not sensitive to the inclusion or exclusion of the ZLB period. This fact 
may seem puzzling when viewed through the lenses of a model in which the ZLB constraint is binding and dramat-
ically changes the propagation of the main driver(s) of the business cycle. But if this constraint is largely bypassed 
by the effective use of other policy tools, the main propagation mechanism seen in the data need not change as one 
moves between ZLB and  non-ZLB samples; see Debortoli, Galí, and Gambetti (2019) for corroborating evidence. 
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Finally, while our anatomy is quite comprehensive, it could be further enriched 
by more refined cuts of the data. Consider, in particular, the following enrichment. 
For each variable  X ∈  {u, Y, h, I, C}  , first filter out the effect of the shock that 
accounts for most of the  business-cycle volatility in that variable (i.e., the kind of 
shocks we focus in this paper) and then construct the shock that accounts for most 
of the residual volatility in the same variable. These shocks, too, are largely inter-
changeable. They can thus be thought of as different facets of the same, secondary, 
 business-cycle shock. Online Appendix Section K details the empirical profile of 
this shock and contrasts it to that of the MBC shock.

IV. Interpretation

In this section, we first summarize what can be learned from the properties of our 
anatomy if one views them from a parsimonious,  single-shock perspective. We then 
discuss the robustness of such lessons and the use of our anatomy outside the realm 
of  single-shock models.

A. The Lesson for Parsimonious,  Single-Shock Models

In the introduction, we asked: is it possible to account for the bulk of the business 
cycle with a parsimonious,  single-shock model? And if so, how should this shock 
look like? Our empirical findings provide the following answer.

Tentative Lesson.—It is possible to account for the bulk of the  business-cycle 
fluctuations in unemployment, hours, GDP, investment, and, to a somewhat lesser 
extent, consumption using a parsimonious,  one-shock model, but only if this shock 
satisfies the following properties: it triggers strong, positive, and  short-lived comove-
ments in the aforementioned quantities; it is essentially orthogonal to both TFP and 

Yet another possibility is that the ZLB constraint matters for the amplitude of the business cycle but not for the 
propagation dynamics.

Figure 5. Robustness, IRFs

Note: Shaded area: 68 percent HPDI.
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inflation at all horizons; and it contains little news about the medium- and  long-run 
prospects.

As already discussed, these properties are hard to reconcile with the baseline 
RBC model, as well as with models that attribute the bulk of the business cycle to 
news about productivity and income in the medium to long run. They also speak 
against models in which financial, uncertainty, or other shocks matter primarily by 
triggering endogenous procyclical movements in aggregate TFP.32 In contrast, the 
evidence seems consistent with a shock that triggers transitory movements in the 
labor wedge, but only insofar as these movements occur without commensurate 
movements in aggregate TFP and without opposite movements in the real wage. 
This rules out shocks to labor supply, as well as productivity shocks intermediated 
by  labor-market frictions. But it leaves open the door to  flexible-price models that 
emphasize other sources of cyclical variation in the labor wedge.33

The evidence is also consistent with the Keynesian narrative that the bulk of the 
business cycle is due to shifts in aggregate demand, but only insofar as these shifts 
do not trigger significant movements in inflation. This, in turn, requires either a very 
flat Phillips curve, as in the DSGE literature, or demand shocks operating outside 
the realm of sticky prices and Phillips curves, as in Angeletos and La’O (2013), 
Beaudry and Portier (2014), and the additional literature cited in footnote 3.

B. The Anatomy of  Multishock Models

So far, we have attempted to give structural meaning to the identified MBC shock 
through the lenses of models that aspire to explain the bulk of the observed business 
cycles with a single shock/propagation mechanism. This choice reflects, in part, 
a “philosophical” preference for parsimony. But it begs the question of whether 
and how the provided empirical template can be used to guide theory beyond the 
comfort zone of one-shock models. As suggested in the introduction, the basic prob-
lem is that, in principle, any of the  reduced-form objects contained in our anatomy 
may map into a  uninterpretable combination of multiple theoretical shocks, none of 
which possesses the properties of the empirical object.

In this section, we use two examples to illustrate both this challenge and a partial 
resolution already embedded in our method. By design, our anatomy contains not 
only the  reduced-form shock that targets unemployment over the  business-cycle 
frequencies but also the other  reduced-form shocks we have discussed in the previ-
ous section. This additional information comes into play when there is more than 
one shock in the model and holds the key for the effectiveness of our anatomy in 
 multishock contexts. It turns out, at least within the set of  semistructural and  fully 
structural exercises considered in this and the next section, that this extra informa-
tion suffices to pin down the nature of the main driving force of the business cycle, 

32 Benhabib and Farmer (1994) and Bloom et al. (2018) are notable examples of such models: the former gen-
erates procyclical TFP movements out of animal spirits, the latter out of uncertainty shocks.

33 For example, in Angeletos, Collard, and Dellas (2018) the requisite movements in the measured labor wedge 
are the byproduct of a certain kind of waves of optimism and pessimism about the  short-term economic outlook; 
in Arellano, Bai, and Kehoe (2019) these movements are attributed to the interaction of financial frictions and 
 firm-level uncertainty shocks; and in Golosov and Menzio (2015) they obtain from animal spirits in frictional labor 
markets.
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corroborating the main claim from the previous section, namely, that this force cor-
responds to a  noninflationary, demand shock.34

Our first pedagogical example revisits the disconnect between the MBC shock 
and inflation within the textbook  AD–AS paradigm. Let the AD and AS equations 
be given by, respectively,

(2)   y t   = −  π t   +  v  t  d   and   π t   =  y t   −  v  t  s , 

where   y t    denotes output,   π t    denotes inflation, and   v  t  d   and   v  t  s   are the structural shocks 
to aggregate demand and aggregate supply, respectively. Imposing equilibrium gives

   y t   =   1 _ 2   ( v  t  d  +  v  t  s )   and   π t   =   1 _ 2   ( v  t  d  −  v  t  s ) . 

Assume now that   v  t  d   and   v  t  s   follow independent AR(1) processes, with the same 
persistence and variance. This implies (i) that each structural shock drives 50 per-
cent of the volatility of both output and inflation and (ii) that output and inflation 
are orthogonal to each other. As a result, our “output shock,” which is here given by 
output itself, accounts for 100 percent of the fluctuations in output and 0 percent of 
those in inflation. This matches the MBC shock seen in the data, but rather than rep-
resenting a single,  noninflationary,  business-cycle shock, it is the sum of two distinct 
structural shocks, an inflationary and a  disinflationary one.

Our second example demonstrates that a similar problem may plague the inter-
pretation of the finding that the short- and the long-run factors are disconnected. 
Consider a model that contains two types of TFP shocks, namely, unanticipated 
and anticipated (news) shocks. Suppose further that each shock contributes 50 
percent of the  long-run volatility in TFP and 50 percent of the  short-run volatility 
in unemployment. Finally, let the two shocks have symmetrically opposite effects 
on unemployment, one increasing it and the other decreasing it. The constructed 
“unemployment shock” then accounts for 100 percent of the  short-run fluctuations 
in unemployment and 0 percent of the  long-run fluctuations in TFP, which matches 
the disconnect of the short run and the long run seen in the data. Yet, the business 
cycle is not driven by a single, dominant, transitory shock. Instead, it is driven by 
two  unit-root shocks, which have the same  long-run effect on TFP but opposite 
 short-run effects on unemployment.

In both of these examples the basic challenge is the same: a  reduced-form shock 
identified via our method does not map into a “true” structural shock. Clearly, 
this problem is not unique to our method. For instance, the second example also 
invalidates the interpretation of the “demand and supply shocks” identified in 
Blanchard and Quah (1989), or the “technology shock” identified in Galí (1999).35 

34 Needless to say, this particular conclusion need not extend to arbitrary  multishock models, because any 
structural interpretation is ultimately  model-specific. But the use of our anatomy does extend, because the panoply 
of empirical restrictions contained can help model evaluation regardless of the model structure and the associated 
interpretation.

35 More generally, for any “structural” shock identified in the existing SVAR literature, one can always concoct 
examples that deconstruct it into a combination of two or more distinct shocks, none of which resembles the object 



3056 THE AMERICAN ECONOMIC REVIEW OCTOBER 2020

Nevertheless, additional, pertinent information can often remove this kind of chal-
lenge. Our approach amply provides such information in the form of a panoply of 
conditional,  cross-variable, static, and dynamic restrictions, which can be deployed 
in both  semistructural and  fully structural endeavors.

To illustrate the use of our method in a  semistructural context, consider the sec-
ond example. We used this example to argue that the disconnect between the short 
and the long run does not suffice to rule out technology, or news thereof, as the main 
 business-cycle driver. But this disconnect is not the only restriction contained in the 
anatomy. Another restriction is that the MBC shock accounts for essentially zero of 
the TFP fluctuations at any horizon. This helps reject the story proposed above: if 
that story were correct, the MBC shock would have been strongly correlated with 
current TFP, which is not the case.

We expand on this point in Appendix Section C. There, we impose no structure 
other than the assumption that TFP is driven by exactly two shocks, an unantici-
pated, permanent technology shock that has an immediate effect on TFP, and a news 
shock that has a delayed effect. We then show how two elements of our anatomy, 
namely the  reduced-form shocks that target TFP in the short and the long run, pro-
vide an estimate of the contribution of the news shock to the unemployment fluctu-
ations. This estimate turns out to be 13 percent in our baseline VAR and a bit lower 
in extended VARs that add stock prices.36

In online Appendix Section I, we carry out a similar  semistructural exercise in 
the context of the first example: we show that the simple story of offsetting demand 
and supply shocks does not work insofar as the supply shock can be proxied by the 
 reduced-form shock that captures the bulk of the TFP movements in the data. To 
put it differently, the supply shock has to be a markup shock. We then proceed to 
conduct a second, fully structural yet relatively parsimonious, exercise: we revisit 
the example through the lenses of a  two-variable,  two-shock, New Keynesian model 
and ask what it takes for this model to match the relevant elements of our anatomy, 
namely the dynamic responses of output and inflation to our identified output and 
inflation shocks. The answer turns out to be consistent with the interpretation of the 
output shock in the data as a dominant,  noninflationary demand shock in the model 
(and of the inflation shock as the markup shock).

All in all, these exercises illustrate how one can utilize additional elements of our 
anatomy and/or additional theoretical structure to extend the use of our method to 
 multishock environments. This also serves as a prelude for the analysis in the next 
section, which makes use of both more elaborate theoretical structures and a broader 
set of elements from our anatomy, keeping the balance between degrees of freedom 
and empirical restrictions.

identified in the data. Whether the problem is more severe in our case depends on whether one finds the premise of 
a dominant  business-cycle shock less defensible than those other identifying assumptions in the literature.

36 Another function of Appendix Section C is to show how the estimated contribution of the news shock depends 
on the number of variables included in the VAR. This corroborates a point made in Section IIC, that our conclusions 
about the importance of news shocks differ from those of Beaudry and Portier (2006) in large part due to the amount 
of data used.
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V. An Application to  Medium-Scale DSGE Models

We have argued that our method can be of use in  multishock environments thanks 
to the rich set of  cross-variable, dynamic restrictions it contains. We now put this 
argument on trial by applying our method to three  off-the-shelf DSGE models. This 
application illustrates how our method may help identify flaws in the propagation 
mechanism of such models that may have gone unnoticed otherwise.

We first study the properties of the  sticky-price model in Justiniano, Primiceri, and 
Tambalotti (2010)—henceforth, JPT—and the flexible-price model in Angeletos, 
Collard, and Dellas (2018)—henceforth, ACD. The first is a representative of the 
New Keynesian, DSGE paradigm.37 The second is an example of a recent literature 
that aims at disentangling  demand-driven fluctuations from nominal rigidities and 
Phillips curves (see the references in footnote 3).

Both models have been estimated and evaluated in the respective papers using 
familiar,  preexisting methods.38 The value added here is to revisit their performance 
through the lenses of our new method. We thus take each model as is and use it 
to construct the linear combinations of the theoretical shocks that maximize the 
 business-cycle volatility of GDP, investment, consumption, or hours worked in the 
model. These objects are the theoretical counterparts to the  reduced-form shocks that 
were previously identified in the data via our method. To avoid confusion between 
these objects and the primitive theoretical shocks, we henceforth refer to the former 
as “factors” and reserve the term “shocks” for the latter.39

Figure 6 reports the IRFs of the key variables to the various factors in the data 
(panel A) and in the two models (panel B for JPT, panel C for ACD).40 As seen in 
this figure, the various factors are highly interchangeable in ACD, as they are in the 
data, whereas they are more distinct in JPT. This is most evident in the responses of 
output and consumption to the various factors, as well as in the comparison of the 
consumption factor to the other factors.41

37 Indeed, it is essentially the same model as that in Smets and Wouters (2007), but with more appropriate map-
ping to the data. The measure of consumption used in Smets and Wouters (2007) includes expenditure on durables, 
which is at odds with the specification in the model. Justiniano, Primiceri, and Tambalotti (2010) fixes this problem 
by including such expenditure to the measure of investment, just as we have done both here and in Angeletos, 
Collard, and Dellas (2018). 

38 Both JPT and ACD have been estimated with Bayesian maximum likelihood. But whereas ACD has been esti-
mated on the frequency domain using the levels of all variables, JPT has been estimated on the time domain using 
the growth rates of output, investment, and consumption. Another difference concerns the sample used: 1954:III to 
2004:IV in JPT versus  1960:I–2007:IV in ACD. As shown in online Appendix Section J.2,  re-estimating the JPT in 
the exact same way as ACD does not change the  take-home lesson of this section. With this in mind, and to make 
sure that the two models are evaluated on the basis of the same sample period as that used in their estimation, the 
data underlying the top panels of Figure 6 refer to the VAR that appeared earlier as row [6] in Table 8, namely the 
one that spans the  1960:I–2007:IV period; as already emphasized, this makes little difference from our baseline 
specification.

39 Our “factors” should not be confused with those in dynamic factor analysis. Also, the construction of the 
factors in the models abstracts from  small-sample issues, because this seems ideal for revealing the theoretical 
mechanisms of these models. As shown in online Appendix Section J.1, however, the lessons drawn below are 
robust to a Monte Carlo exercise that accounts for sampling uncertainly.

40 For ACD, we omit the response of inflation because, since prices are flexible, it could be anything we want it 
to be without a consequence for real quantities.

41 Another noticeable feature is the magnitude of the responses, which are roughly twice as large as in JPT 
relative to the corresponding ones in either the data or ACD. This is because the original estimation of JPT, which 
is based on growth rates, produces excess volatility in the levels. As can be seen in online Appendix Figure 27, 
 re-estimating JPT in levels, and in the same way as in ACD, fixes this  excess-volatility problem but does not 
overcome the interchangeability challenge. Finally, the response of inflation appears to be much more sluggish in 
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We can offer a quantitative measure of these differences by constructing a metric of 
the interchangeability of factors in the data and in each of the models. Let   Z  v,k  

f    denote 
the impulse response function of variable  v ∈ V  to factor  f ∈ F , where  k ≥ 0  
indexes the horizon,  V  is the set of the four key macroeconomic  quantities (output, 
hours, consumption, and investment), and  F  is the set of the corresponding four fac-
tors. Next, let    Z 

–
  v,k   ≡ (1/4)  ∑ f∈F       Z  v,k  

f    and consider the following object:

   D v   =   1 _ 
4
     ∑ 
f∈F

  
 
    √ 

____________

    ∑ 
k=0

  
20

     ( Z  v,k  
f   −   Z 

–
  v,k  )    

2
    .

This is a measure of the dispersion of the IRFs of variable  v  across the factors. 
The closer   D v    is to zero, the greater the degree of interchangeability. Conversely, a 
large value for   D v    indicates low interchangeability  vis-à-vis that particular variable. 
Finally, let   D 

–
   ≡ (1/4)  ∑ v∈V       D v    This gives a metric of how interchangeable the fac-

tors are over all the variables of interest.
Table 9 reports the results of these calculations for the data and the two models 

(first row for the data, second row for JPT, third row for ACD). In each case, we 
report both the  variable-specific metrics   D v    (columns  Y   through  h ) and the average 
metric   D 

–
    (Average column). It is evident that ACD produces nearly the same inter-

changeability as that observed in the data, while JPT produces much less.

the data than in JPT, despite the inclusion of the hybrid versions of the price and wage Phillips curves. This seems 
interesting, although it may not be directly related to the main point we wish to make here regarding the inter-
changeability of factors.

Figure 6. The MBC Shock in the Data and the Models
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We now shed light on this result and on the mechanics of the two models by 
decomposing their factors in terms of the underlying theoretical shocks.

Consider first JPT. In this model, the four macroeconomic quantities, and hence 
also the factors that target them, are driven by different mixtures of three distinct 
theoretical shocks: the  investment-specific shock, the  discount-factor shock, and 
the technology shock. As is evident in panel A of Figure 7, none of these shocks 
looks like the MBC shock in the data. In particular, both the  investment-specific 
and  consumption-specific shock induce negative comovement between investment 
and consumption. And because each of these shocks contribute  differentially to the 
model’s factors, the latter are less interchangeable than the empirical counterparts.42

42 Although the anatomy of JPT offered here is new, the basic property that the  investment-specific shock in this 
model produces negative comovement between consumption and investment is known. This property originates in 
the problem first highlighted by Barro and King (1984) and would have been even sharper if it were not for the fol-
lowing three model ingredients:  time-nonseparable preferences, sticky prices, and a monetary policy that induces an 
expansion relative to flexible prices. Most of the existing attempts to fix the negative comovement problem maintain 
all three ingredients (Furlanetto, Natvik, and Seneca 2013; Ascari, Phaneuf, and Sims 2016). Molavi (2019) main-
tains the last two of them, sticky prices and accommodative monetary policy, but adds a  belief-based mechanism 
that, at least in principle, appears to have the potential of generating the requisite comovement even with flexible 
prices. An evaluation of the relative merits of these works  vis-à-vis ACD, whose good comovement properties do 
not rely on any of the aforementioned DSGE features, or any other member of the  flexible-price literature cited in 
footnote 3, is beyond the scope of this paper.

Table 9—Interchangeability of Factors

 Y  C  I  h Average

Data, 1960–2007 0.47 0.51 1.38 0.18 0.63
JPT 2.90 2.21 6.29 1.35 3.19
ACD 0.56 0.49 1.61 0.30 0.74

Notes: This table reports the distance of factors, measured in the way described in the main 
text. A number closer to zero indicates a larger degree of interchangeability.

Figure 7. MBC Shock in Data versus Key Theoretical Shocks in JPT and ACD
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Consider next ACD. In this model, all variables are driven, to a large extent, by 
the same shock, the confidence shock. As explained in more detail in Angeletos, 
Collard, and Dellas (2018), this shock is formalized as an extrinsic shock to 
 higher-order beliefs but ultimately helps capture the following, broader mechanism: 
waves of optimism and pessimism about the  short-term economic outlook without 
commensurate shifts in either TFP or the expectations of the long run.

Because optimism about the short run means that firms are bullish about their 
returns, the demand for both capital and labor goes up. And because such optimism 
entails relatively small changes in expected permanent income, it induces a rela-
tively weak wealth effect on labor supply. This bypasses the problem faced by the 
literature on news shocks, in which beliefs regard persistent income changes and 
entail large wealth effects, and allows for a positive comovement between consump-
tion, investment, and employment in the short run, even without the assistance of 
sticky prices and accommodative monetary policy.

The key observation for the present purposes, evident in panel B of Figure 7, is 
that this shock is quite similar to the MBC shock in the data, in terms of comove-
ments and relative volatilities. This helps explain why the factors in ACD are almost 
as interchangeable as those in the data. Basically, this is because a  bare-bones ver-
sion of ACD, which shuts down all shocks except the confidence shock, achieves 
perfect interchangeability without a big sacrifice in terms of matching the MBC 
shock in the data, a property clearly not shared by any  single-shock restriction of 
JPT and related DSGE models.

These lessons are robust to two additional exercises, which are reported in online 
Appendix Section J.2. In the first, we  re-estimate JPT with the same  frequency-domain 
method as that used in the estimation of ACD. In the second exercise, we  re-estimate 
both JPT and ACD on the basis of our anatomy, namely by minimizing the distance 
of each model from the data in terms of the IRFs of the output, consumption, invest-
ment, and hours to the four factors that target the same quantities. Both exercises 
help JPT produce more interchangeability, but the model still falls short of that 
found in the data as well as of that produced by the ACD model. The basic reason is 
that JPT does not contain a true structural shock/propagation mechanism like that 
seen in the data through our anatomy.

That said, the goal of these exercises is not to argue that ACD is superior to JPT, 
nor to question the importance of nominal rigidities, but rather to illustrate the prob-
ing power of our empirical method and to give guidance to future research. In the 
same vein, we have applied our method to another important DSGE model, that of 
Christiano, Motto, and Rostagno (2014)—henceforth, CMR.

This model is on the forefront of a new strand of the DSGE literature that pays 
close attention to the  real-financial nexus. Its main differences from the model 
used in Christiano, Eichenbaum, and Evans (2005) and Justiniano, Primiceri, and 
Tambalotti (2010) are the following three. First, it includes a financial friction that 
constrains investment, the latter been broadly defined to include consumer durables. 
Second, it contains a new structural shock (risk shock) that determines the severity 
of the financial friction.43 And third, it uses financial variables, most notably the 

43 To be precise, this shock comes in nine flavors, depending on whether it hits the idiosyncratic volatility of firm 
returns with a lag of 0, 1, 2, … , 8 quarters.
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credit spread between the gross nominal interest rate on debt and the risk-free rate 
and the level of credit to such firms in the estimation and validation of the model.

The anatomy of this model involves not only the behavior of the macroeconomic 
quantities we have focused on so far, but also that of the new, financial variables. 
We have thus extended our anatomy of the data in online Appendix Section G.3 to 
include information about these variables.44

Figure 8 conducts a similar exercise as Figure 6. Panel A reports the IRFs of a 
few key variables to the output, hours, investment, and consumption factors. Panel 
B reports the corresponding objects in the model. The only changes are the use of 
CMR instead of JPT or ACD; the focus on the  subsample used in the estimation of 
that model;45 and the addition of the impulse responses of the credit spread and the 
level of credit.

44 This is done in online Appendix Section G.3 using three complementary VARs. The first one is obtained by 
adding only the credit spread to our baseline VAR. This allows us to keep the original sample size and corresponds 
to what is reported as row 10 in Table 8 and online Appendix Tables 20–23. The second is obtained by adding the 
four financial variables used in CMR. In this case, data limitations force a shorter sample,  1971:I–2014:IV. The third 
is obtained by restricting the second VAR to  1985:I–2010:IV, which is the sample period used in the original esti-
mation of CMR. The three VARs produce similar results, underscoring the robustness not only of our main findings 
but also of the additional findings reported in Figure 8 regarding the  real-financial nexus.

45 That is, the empirical IRFs are obtained by using the last of the three VARs mentioned in footnote 44. 
Similarly to what we did in the case of JPT and ACD, this ensures that the model is evaluated on the basis of the 

Figure 8. Comparing  Business-Cycle Factors
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The following patterns emerge. First, CMR improves upon JPT in terms of the 
interchangeability of the output, hours, and investment factors (thanks to having 
an even more dominant  business-cycle driver), but it does worse in terms of both 
the response of consumption to the aforementioned factors and the response of all 
variables to the consumption factor. Second, CRM produces too much volatility and 
persistence compared to the data. Third, despite its use of a very flat Phillips curve 
and very sticky wages, CMR produces a much steeper relation between inflation 
and real economic activity than that seen in the data, underscoring its reliance on 
nominal rigidity. Finally, the model fails to capture the dynamics of the response of 
the credit spread to all of these factors: while in the data the credit spread appears to 
lead the MBC shock, in the sense that it peaks before the macroeconomic quantities, 
it does the opposite in the model.46

One may agree to disagree whether such model limitations are minor or signal 
a deeper problem with the propagation mechanism contained in mainstream DSGE 
models. Regardless, the exercises conducted in this section have illustrated the prob-
ing power of our method in the context of  medium-scale models.

VI. Conclusion

We have proposed a new strategy for dissecting macroeconomic time series and 
have used its findings to guide theory. The strategy involves the construction of a 
collection of  reduced-form shocks, each of which maximizes the volatility of a par-
ticular variable at particular frequencies. This yields a rich set of  one-dimensional 
cuts of the macroeconomic data, which comprises our “anatomy.”

Prominent elements of this anatomy are the shocks that target the unemployment 
rate, GDP, hours worked, investment, consumption, and the output or unemploy-
ment gap at the  business-cycle frequencies. The near interchangeability of these 
objects in terms of IRFs motivates the concept of the MBC shock: we use this term 
to refer to the dynamic comovement patterns that are common to all these cuts of 
the data. These include a strong, positive, and transient comovement between the 
aforementioned quantities; little relation with either inflation or TFP at any horizon; 
and a disconnect between the short run and the long run.

The identified MBC shock can serve as an empirical template for the propagation 
mechanism that models of any size and complexity must contain. On this basis, 
we argued that the data speak against theories that seek to attribute the bulk of the 
business cycle to any of the following forces: technology shocks; financial, uncer-
tainty, and other shocks that matter primarily by affecting aggregate TFP; news 
about medium- to  long-run productivity prospects; and inflationary demand shocks. 
We further showed that our approach helps detect flaws in  state-of-the-art DSGE 

period used in its estimation. But as already mentioned, the empirical patterns themselves are robust to the longer 
period spanned by our baseline specification.

46 The excessive persistence appears to be the product of the model’s reliance on very high adjustment costs for 
investment and very persistent shocks. The property that the business cycle leads, rather than lags, the credit spread 
appears to be driven by the model’s reliance on a number of news shocks, which have a relatively more pronounced 
and  front-loaded effect on investment, hours, and output than on the credit spread. And the inability to generate the 
requisite comovement between consumption and investment, or consumption and employment, echoes our earlier 
discussion of this issue within the context of JPT and the broader DSGE literature.
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models that could have otherwise gone unnoticed, most notably the lack of sufficient 
interchangeability in the sense described above.

We interpret these findings as signals of deficiency in the propagation mechanism 
contained in mainstream macroeconomic models, and as support for theories aimed 
at accommodating  demand-driven cycles without a strict reliance on nominal rigid-
ities. We hope that the characterization of the data performed in the present paper 
will stimulate further research in this direction, or otherwise guide macroeconomic 
theory.

Appendix

A. Data

The data are from the Federal Reserve Economic Database (FRED). TFP corre-
sponds to the TFP time series corrected for utilization produced by Fernald (2012) 
(downloaded 2016). Tables A1 and A2 describe the original data and the transfor-
mations used in our VARs. Table A3 reports the raw (unconditional) correlations 
over the  business-cycle frequencies.

B. Interchangeability in the Time Series

In the main text we emphasized the interchangeability of the various facets of 
the MBC shock in terms of IRFs. Figure B1 shows that a similar interchangeability 
property is present in terms of the time series generated by the  reduced-form shocks. 
Each row in this figure reports, for each one of the key macroeconomic quantities, 
the scatterplot of that variable as predicted by the  Y ,  I ,  C , and  h  shocks against its 
value as predicted by the unemployment shock. Table 3 summarizes the information 
contained in this figure in terms of correlations.

C. Application to News Shocks

In this section, we use our method to identify news shocks and examine how their 
properties, in particular their contribution to business cycles, vary with the size of 
the VAR used to identify the shocks. This serves two purposes. It sheds light on the 
source of the difference reported in the main text between our findings and those of 
Beaudry and Portier (2006). And it provides yet another example of the usefulness 
of our method outside the realm of  one-shock representations of the business cycle, 
in particular, in the context of  semistructural explorations.

The exercise conducted here is based on the premise that the vast majority, if not 
all, of the TFP fluctuations at all frequencies can be accounted for by two structural 
shocks: an unanticipated, permanent shock and a news shock. The former affects 
TFP both in the short and the long run, while the latter does not have an effect on 
impact.47

47 One may object to the assumption of only two TFP shocks, on the basis, for instance, that the “right” model 
features multiple news shocks, each one corresponding to different horizons at which TFP is expected to change. 
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As explained in Section IV, the accommodation of these two structural shocks 
complicates the interpretation of the empirical MBC shock and in particular of its 
disconnect from the long run: this disconnect is consistent with models in which the 
two structural shocks under consideration have significant but offsetting effects on 
unemployment in the short run. Still, insofar as only these two shocks drive TFP, and 
regardless of how many other shocks may drive unemployment, we can identify the 
news shock and its  business-cycle contribution as follows.

We first construct, via our method, the two empirical shocks that have the maximal 
contribution to the volatility of TFP in the  long-run and the  business-cycle frequen-
cies ( 80−∞  and  6−32  quarters, respectively). Denote these by   s  t  1   and   s  t  2  , respectively. 
These shocks do not have a structural interpretation but are linear combinations of 

But this is a slippery road that ultimately leads one to give up hope on “ atheoretic” endeavors and, instead, commit 
to a particular,  fully specified model. Clearly, each approach has its strengths and limitations. We follow the one 
approach here and the other in Section IV.

Table A1—Description of Data

Data Mnemonic Frequency Transform

Real gross domestic product per capita A939RX0Q048SBEA Q —
Gross domestic product GDP Q —
Gross domestic product: implicit price deflator GDPDEF Q —
Share of GDP: personal consumption 
 expenditures: nondurable goods

DNDGRE1Q156NBEA Q —

Share of GDP: personal consumption 
 expenditures: services

DSERRE1Q156NBEA Q —

Share of GDP: personal consumption 
 expenditures: durable goods

DDURRE1Q156NBEA Q —

Share of GDP: gross private domestic investment A006RE1Q156NBEA Q —
Nonfarm business sector: real output per hour of all persons OPHNFB Q —
Nonfarm business sector: labor share PRS85006173 Q —
Nonfarm business sector: average weekly hours PRS85006023 Q —
Civilian non-institutional population CNP16OV M EoP
Civilian unemployment rate UNRATE M Ave
Effective federal funds rate FEDFUNDS M Ave
Total factor productivity (growth rate) DTFPu Q —

Note: Q: Quarterly, M: Monthly, EoP: end of period, Ave: quarterly average. 

Table A2—Variables in the VARs

Real GDP per capital Y = 100 × log(A939RX0Q048SBEA)
Real consumption per capita C = 100 × log((DNDGRE1Q156NBEA 

 + DSERRE1Q156NBEA) 
 × A939RX0Q048SBEA)

Real investment per capita I = 100 × log((DDURRE1Q156NBEA 
 + A006RE1Q156NBEA) 
 × A939RX0Q048SBEA)

Hours worked h = 100 × log(PRS85006023 × CE16OV/CNP16OV)
Inflation rate  π  = 100 × log(GDPDEF/GDPDEF(−1))
Interest rate R = FEDFUNDS/4

Productivity (NFB) y/h = 100 × log(OPHNFB)
Labor share wh/y = 100 × log(PRS85006173)
TFP TFP = log(cumulative sum (DTFPu/4))
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the two “true” structural shocks, the unanticipated technology shock,   s  t  tech  , and the 
news shock,   s  t  news  . The two sets of shocks are related as follows:

   [  s  t  
1   

 s  t  2 
 ]  = A [   s  t  

tech   
 s  t  news 

 ]  

for some matrix  A . As long as both   s  t  1   and   s  t  2   have a  nonzero impact effect on TFP 
(which is true for all the specifications considered below), one can construct their 
unique (up to rescaling) linear combination that has a zero impact effect on TFP. 
This combination recovers the news shock.

We have implemented this identification strategy in our baseline VAR, as well as 
in several other smaller and larger VARs. We report results below for seven nested 
specifications, denoted as VAR    1    through VAR    7   . The smallest one, VAR    1   , contains 
only the main two variables of interest, TFP and unemployment. VAR    2    adds invest-
ment. VAR    3   , adds GDP, consumption, and hours, giving the “real core” of our base-
line VAR. The latter is herein denoted by VAR    4   ; this contains all the 10 variables 
described in Section II. VAR    5    adds the S&P500 index. VAR    6    adds capacity utiliza-
tion. VAR    7    adds the credit spread.

In all of the VARs, the two empirical shocks,   s  t  1   and   s  t  2  , together account for over 
95 percent of the volatility of TFP at the  long-run frequencies and for over 85 per-
cent of that at the  business-cycle frequencies. In our baseline specification, in par-
ticular, these numbers are 99 percent and 92 percent, respectively. In this regard, our 
 two-shock representation of TFP works well. Moreover, the effect of the identified 
news shock on the dynamics of TFP is quite similar across the VARs: see panel A 
of Figure C1. Such robustness, however, is absent in the relationship between news 

Table A3—Correlations (Bandpass Filtered, 6–32 Quarters)

  Y t     C t     I t     h t     u t   

  Y t   1.00 0.84 0.95 0.89 −0.88
  C t   0.84 1.00 0.76 0.82 −0.78
  I t   0.95 0.76 1.00 0.89 −0.85
  h t   0.89 0.82 0.89 1.00 −0.93
  u t   −0.88 −0.78 −0.85 −0.93 1.00
 TF P t   −0.19 −0.28 −0.24 −0.46 0.41
   (Y / h)  t   0.47 0.24 0.44 0.11 −0.06
   (wh / Y)  t   −0.15 0.05 −0.18 0.06 −0.16
  π t   0.21 0.31 0.13 0.29 −0.37
  R t   0.40 0.42 0.33 0.47 −0.59

 TF P t      (Y / h)  t      (wh / Y)  t     π t     R t   

  Y t   −0.19 0.47 −0.15 0.21 0.40
  C t   −0.28 0.24 0.05 0.31 0.42
  I t   −0.24 0.44 −0.18 0.13 0.33
  h t   −0.46 0.11 0.06 0.29 0.47
  u t   0.41 −0.06 −0.16 −0.37 −0.59
 TF P t   1.00 0.45 −0.23 −0.27 −0.34
   (Y / h)  t   0.45 1.00 −0.56 −0.30 −0.31
   (wh / Y)  t   −0.23 −0.56 1.00 0.31 0.23
  π t   −0.27 −0.30 0.31 1.00 0.72
  R t   −0.34 −0.31 0.23 0.72 1.00
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shocks and unemployment fluctuations; see panel B of Figure C1. In particular, the 
news shock switches from being strongly expansionary in the smallest VAR to being 
slightly contractionary in the largest VAR.

Figure C2 presents this sensitivity in terms of the contribution of the identified 
news shock to the volatility of unemployment at the  business-cycle frequencies. On 
the horizontal axis, we vary the size of the VAR used in the construction of   s  t  1   and   s  t  2   
and, thereby, of the news shock: as we move from left to right, we progressively add 
more data and, accordingly, increase the size of the VAR from 2 variables to a total 
of 13.

Figure C2 speaks for itself: as more information (in the form of the additional 
variables) is incorporated, the estimated contribution of the news shock declines 
dramatically, stabilizing at around 11 percent in the last four specifications. In our 
baseline specification, the number is 13 percent.
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Figure B1. The Various Facets of the MBC Shock, Scatterplots
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Due to the  well-known potential fragility of results from small VARs (Forni, 
Gambetti, and Sala 2019), we trust more the results from the medium and larger 
ones, especially because size ceases to matter after a certain size. Larger VARs con-
tain more information, while smaller ones may mechanically attribute a larger share 
of the business cycle to the news shock.

To illustrate the latter point, consider VAR    1   . In this specification, the news shock 
accounts for 97 percent of the  short-run fluctuations in unemployment. Why? In a 
two  variables–two shocks specification,   s  t  tech   and   s  t  news   must together account for all 
of the fluctuations in unemployment. Due to the assumption that   s  t  tech   is the only 
shock that has an immediate, impact effect on TFP,   s  t  tech   is closely associated with 
actual TFP in the short run. But as we have established, TFP is nearly orthogonal 
to unemployment at the  business-cycle frequencies (and beyond). It then follows 
that   s  t  tech   can account for only a trivial fraction of the unemployment fluctuations, 
which leaves   s  t  news   as the only shock to explain unemployment fluctuations. In short, 
this VAR mechanically attributes a large fraction of the business cycle to the news 
shock, simply because the only other allowed shock is a “dead horse” to start with.
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Figure C1. IRF of TFP and Unemployment to News Shock

Note: Shaded area: 68 percent HPDI for VAR    4    (baseline).

Figure C2. Variance Contribution of News Shock to Unemployment

Notes: Contribution of news shock to unemployment at  business-cycle frequencies. Gray line gives 
median, upper, and lower black lines give 68 percent HPDI. VAR  1    =    {u ,TFP } , VAR  2    =     VAR  1    ∪     {I}  , 
VAR  3    =     VAR  2    ∪     {Y, C, h}  , VAR  4    =     Baseline VAR, VAR  5    =     VAR  4    ∪     {SP500} ,  VAR  6    =     VAR  5    ∪     { utilization },   
VAR  7    =     VAR  6    ∪     { credit spread } .
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As we move to larger VARs, we add more data but also more shocks that can con-
tribute to the fluctuations in unemployment. So the role of news is bound to wither. 
Figure C2 shows that the decline is precipitous at first, but stabilizes once we reach 
the baseline specification.

This helps shed light on the main reason why our results differ from those in 
Beaudry and Portier: we use larger VARs than they do. Another part of the differ-
ence comes from using different identifying assumptions.

The exercise conducted here also serves another important purpose. Namely, it 
helps showcase the usefulness of our approach in the realm of  multishock models 
without a need for the explicit intermediation of a particular,  fully specified model. 
The key is to drop the exclusive focus on the MBC shock and include other fea-
tures of the anatomy, here, for instance, the shocks that target TFP in the short and 
the long run, and to utilize the  cross-equation restrictions associated with them. As 
shown in Section V, the same procedure also proves very effective in the context of 
 fully structural endeavors.
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