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willingness to pay for quality)

2 the selling mechanism

classic screening problem [Mussa-Rosen (1982)] combined
with Bayesian persuasion / information design
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seller distorts allocation to reduce information rents at
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this model applies this logic again....

seller supresses socially valuable information to reduce
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digital economy motivation

sellers (or platforms) can partially control information of
buyers (we assume complete control)

an alternative digital economy relevant interpretation:

seller knows buyers’values but cannot use personalized
pricing

implementation of information structure by (explicit)
recommendation systems or (implicit) by presentation of
options
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methodology
a potentially messy problem will reduce to choosing (i) a
distribution of expected qualities; and (ii) a distribution of
expected values

revenue objective is a bilinear function of (i) and (ii)

there are two majorization constraints on (i) and (ii)
respectively

first half of talk will derive this representation; this will
allow us to.....

relate to "one majorization constraint" related literature,
e.g., Loertscher and Muir (JPE22), Myerson (MOR81),
Bergemann et al. (AERi22); also Kolotolin and Wolitsky
(2020wp) and Akbarpour, Dworczak and Kominers
(2022wp)
preview importance of interaction of screening and
persuasion
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model fundamentals

available qualities q have (exogenous) distribution Q on[
q, q
]

essentially same argument goes through if we endogenize
qualities with a convex production cost (Mussa and
Rosen (1982))

buyers’values v have cdf F on [v, v]

buyers have quasi-linear utility; willingness to pay for
quality q of buyer with "value" v is

v · q
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1. seller chooses information
the seller chooses a signal (experiment) that buyers will
observe s : [v, v]→ ∆ (S)

we write G for the induced distribution (i.e., cdf) of
expected values
Blackwell (1951): there exists a signal that induces
distribution of expected values G if and only if G is a
mean-preserving contraction of F (or G majorizes F ;
G � F ): ∫ v

v

F (t)dt ≤
∫ v

v

G(t)dt, ∀v ∈ [v, v]

with equality for v = v.
now G−1 : [0, 1]→ [v, v] and G−1 (t) is the expected
value of the tth quantile buyer
useful fact: F−1 � G−1 if and only if G � F (Shaked and
Shanthikumar (2007))
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2. seller also chooses mechanism (or menu)

seller chooses what lotteries over qualities to sell and
what prices to charge for them

we will appeal to the revelation principle given G and
consider a direct mechanism....

mechanism specifies an expected quality q (w) ∈ [0, q]
and price p (w) ∈ R+ for each expected value w ∈suppG

expected qualities may be generated by lotteries over
qualities (with or without exclusion)

the seller’s objective is to choose (q, p) to maximize
expected profits EG [p (w)] subjects to constraints:

1 (interim) individual rationality
2 incentive compatibility
3 feasibility : the expected qualities sold must be consistent
with available supply Q
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3. revenue as a function of allocation

1 local incentive compatibility implies q (w) is increasing;

2 individual rationality and discrete/continuum envelope
theorem pins down revenue....

E [p (w)] =

v∫
v


surplus︷ ︸︸ ︷
wq (w)−

information rent︷ ︸︸ ︷
w∫
v

q (t) dt

 dG (w)

payoff equivalence fails with discrete support, but formula
still follows from optimality
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4. feasibility
key change of variables

can define quantile allocation rule R−1 : [0, 1]→ [0, q]
where

R−1 (t) = q
(
G−1 (t)

)

now R ∈ ∆ ([0, q]) is the distribution of expected
qualities sold

the seller can pool qualities (mean preserving contraction)
but can also choose not to sell some qualities / exclude
buyers....
thus the allocation rule q (w) is feasible if and only if the
distribution of expected qualities satisfies∫ q

q

R−1(t)dt ≤
∫ q

q

Q−1(t), ∀q ∈
[
q, q
]

where we do NOT require equality when q = q
Kleiner et al (2021) say that Q−1 weakly majorizes R−1

(or Q−1 �w R−1)
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maximization with two majorization constraints

re-writing revenue with this change of variables (and
integration by parts), we have

E [p (w)] =

1∫
0

G−1 (t) (1− t) dR−1 (t)

so our maximization problem becomes

max
F−1�G−1
Q−1�wR−1

R−1 m’ble wrt G−1

1∫
0

G−1 (t) (1− t) dR−1 (t)

we think this representation of the problem is pretty
cool.....
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integration by parts and change of variable algebra

v∫
v


surplus︷ ︸︸ ︷
wq (w)−

information rent︷ ︸︸ ︷
w∫
v

q (t) dt

 dG (w)

=

v∫
v

(
w − 1−G (w)

g (w)

)
dG (w) , by IP

=

1∫
0

(
G−1 (t)− (1− t) dG

−1 (t)

dt

)
R−1 (t) , by CV t = G (w)

=

1∫
0

G−1 (t) (1− t) dR−1 (t) , by IP



context: fixed information problem

....with fixed information of buyers G = F

Loertscher-Muir "Monopoly Pricing, Optimal
Randomization and Resale" JPE ’22....

how to sell a fixed distribution of qualities optimally...

ironing solution (in continuum case): under irregular
distribution, alternating pooled intervals and full
separation regions
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fixed information: many player re-interpretation
ex ante symmetric buyers of a single (fixed quality) good

now interpret q as the probability that a (representative)
bidder is allocated the object

now Q−1 (t) = tN−1 is probability of tth quantile buyer
having the highest value (and being allocated the good in
the effi cient allocation)

this implies distribution of qualities/probabilities is

Q (q) = q
1

N−1

a (symmetric) quantile allocation Q−1 rule is feasible if it
is mean preserving contraction of effi cient allocation
(Border)
in this case, we have symmetric Myerson ’81, see also
Kleiner et al. ’21
under irregular distribution, alternating pooled intervals
and full separation regions
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2 optimal G and R consist of intervals only (no full
separation)
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3 optimal G and R consist of finite intervals only
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step 1: "standard"

optimal G and R are monotone partitional

fixing R−1, we are maximizing a linear functional of G−1

subject to a majorization constaint

(Myerson 81, Kleiner et al 21) the set of extreme points
of the convex set {G : G−1 ≺ F−1} are monotone
partitional

maximum is at an extreme point

intuition: ironing

similarly, fixing G−1....
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step 2: key novelty

optimal G and R are countable monotone partitional
(so no full separation)

idea of proof:

pooling allocation over a small interval leads to a
third-order decrease in revenue
pooling information over that small interval leads to a
second-order increase in revenue (via a decrease in
information rents)
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2a: pooling allocation, decrease in surplus /
revenue

suppose an optimal signal G is fully revealing on an
interval [v1, v2] with ∆ = v2 − v1 small

thus optimal allocation q∗ (v) is strictly increasing on
[v1, v2]

suppose we pooled allocation in this interval (and
assigned the average quality of the optimal allocation)
but kept information unchanged
the decrease in total surplus is of order

change in value︷ ︸︸ ︷
(v2 − v1) ×

change in quality︷ ︸︸ ︷
(q∗ (v2)− q∗ (v1))×

probability of v∈[v1,v2]︷ ︸︸ ︷
(F (v2)− F (v1))

or
∆3
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2b: pooling information, decrease in information
rents / increase in revenue

write µq and µv for the average quality and value on the
interval [v1, v2] under the optimal signal and allocation

under the pooled allocation, the quality increase at v1
from pooling is µq − q∗ (v1)

when information is unchanged, this quality increase is
priced at v1, i.e., the marginal type
when information is pooled, the quality increase is priced
at µv > v1, as the marginal type has higher value
this increase in revenue is reflected in payments of all
types v1 and higher
so increase in payments and thus profit is of order

increase in payment

(µv − v1) ×
quality increase(
µq − q∗ (v1)

)
×

probability v≥v1
(1− F (v1))

i.e., of order ∆2
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step 3: boring

optimal G and R are finite monotone partitional

preliminary result: quality increments are non-decreasing,
i.e., if we let qk be the quality level

∆qk+1 = qk+1 − qk ≥ qk − qk−1 = ∆qk

for all k

there is a first order condition w.r.t. to moving the
threshold between kth and (k + 1)th intervals
fails if ∆qk > ∆qk+1, i.e., it is optimal to lower threshold
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lower and upper bounds on values imply lower and upper
bounds on quality

preliminary result: quality increments are non-decreasing
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extension to understand the proof

suppose that information structure was chosen to
maximize the weighted sum of revenue and consumer
surplus (with perhaps negative weights)

suppose that the (positive) weight on revenue is more
than weight on consumer surplus

then pooling result goes through

pooling result breaks if "less than"...
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how many items?
Theorem (the optimality of single item)
If Q is convex, the optimal menu has a single item.

i.e., uniform lottery over qualities is sold at posted price
to included agents, full surplus extraction
Q convex = increasing density of qualities

argument: show inductively that pooling top two intervals
always improves revenue

intuition: combination of increasing density and upper
bound values creates benefit to separation
more results:

number of items is less than q
q

if we drop the upper bound on values, (countably)
infinite partition
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endogenizing qualities

exogenous distribution of qualities Q

as in (published) model of Loertscher and Muir (2002)

endogenous distribution of qualities

convex cost c (q) of producing quality q, where c (·) is
convex
as in model of Mussa and Rosen (1978)

earlier version of paper analyzed latter problem, current
version gives it as an extension

exogenous case cleaner theoretically
endogenous case more canonical



digital economy motivation

our setting reflects three notable features of the digital
economy:

1 sellers (or at least platforms and intermediaries) are
well-informed about buyers’values/match quality, and
sometimes more informed than buyers.....

we consider the extreme case where the buyer knows
nothing and the seller has access to full information

2 little personalized pricing, perhaps because....

this is the business model of the seller;
they can search under friends’or artificial digital
identities

3 but buyers receive information in the form of (implicit or
explicit) recommendations....
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recommender system implementation

the seller chooses

a finite menu
a recommendation rule mapping buyers’values to items

the menu is public

the recommendation rule satisfies an interim obedience
constraint



conclusion

we solved combination of mechanism and information
design in a (the most?) canonical setting

methodological takeaway: two majorization constraints

theory takeaway: classic conflict between effi ciency and
minimizing information rent translates into simple menus
(i.e., finite or single item)

a digital market takeaway: recommender systems are
more likely to be observed for horizontally differentiated
goods than vertically differentiated goods
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signal properties: monotone partitional
a signal G is monotone partitional if it partitions values
into convex informations sets (i.e., singletons or intervals)

Figure: A monotone partitional distribution G which majorizes
F (v) = v2. The distribution G has intervals of complete disclosure
and of pooled disclosure. The distributions F,G are on the left,
the quantile distributions F−1, G−1 on the right.



signal properties 2: pooling
a monotone partitional signal G is pooling if every set in
the partition is an interval (i.e., no singletons)
a monotone partitional signal G is finite if it consists of a
finite collection of sets

Figure: A finite and pooling monotone partitional distribution
G which majorizes F (v) = v2 and has only intervals of
pooled disclosure. The specific distribution G is the optimal
distribution for a quality distribution Q (q) = q1/4.



example

Figure: The given value and quality distributions F (v) = v2 and
Q (q) = q1/4 are depicted on the left. The associated optimal
monotone pooling distributions G and R are depicted on the right.



pooling argument I

we will argue that if there was any small interval [v1, v2]
with full separation, then profits would be improved by
pooling a small neighborhood of values....

the optimal allocation q∗ (v) is strictly increasing on
[v1, v2]

suppose we pooled values in this interval (and assigned
the average quality of the optimal allocation) but kept
information unchanged

the decrease in revenue is of order

change in value︷ ︸︸ ︷
(v2 − v1) ×

change in quality︷ ︸︸ ︷
(q∗ (v2)− q∗ (v1))×

probability of v∈[v1,v2]︷ ︸︸ ︷
(F (v2)− F (v1))

or (if ∆ = v1 − v2)
∆3



pooling argument II

so decrease in profit is of order ∆3



pooling argument III
write µq and µv for the average quality and value on the
interval [v1, v2] under the optimal signal and allocation
under the pooled allocation, the quality increase at v1
from pooling is µq − q∗ (v1)

when information is unchanged, this quality increase is
priced at v1, i.e., the marginal type
when information is pooled, the quality increase is priced
at µv > v1, as the marginal type has higher value
this increase in revenue is reflected in payments of all
types v1 and higher
so increase in payments and thus profit is at least

increase in payment

(µv − v1) ×
quality increase(
µq − q∗ (v1)

)
×

probability v≥v1
(1− F (v1))

this is of order ∆2
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