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Abstract

We provide a characterization of when an action is rationalizable
in a binary action coordination game in terms of beliefs and higher
order beliefs. The characterization sheds light on when a global game
yields a unique outcome. In particular, we can separate those features
of the noisy information approach to global games that are important
for uniqueness from those that are merely incidental. We derive two
su¢ cient conditions for uniqueness that do not make any reference to
the relative precision of public and private signals.
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1 Introduction

Games often have many equilibria. Even when they have a single equilib-

rium, they often have many actions that are rationalizable, and are therefore

consistent with common knowledge of rationality. Yet a pathbreaking pa-

per by Carlsson and van Damme (1993) suggested a natural perturbation of

complete information that gives rise to a unique rationalizable equilibrium

for each player. They introduced the idea of �global games� - where any

payo¤s of the game are possible and each player observes the true payo¤s

of the game with a small amount of noise. They showed - for the case

of two player two action games - that as the noise about payo¤s become

small, there is a unique equilibrium; the equilibrium strategies played also

constitute the unique rationalizable strategies. This result has since been

generalized in a number of directions and used in a number of applications.1

When the global game approach can be applied to more general games, it can

be used to derive unique predictions in settings where the underlying com-

plete information game has multiple equilibria, making it possible to carry

out comparative static and policy analysis.

However, a number of recent papers have raised questions both on the

basic theoretical rationale for global games and the applicability of the frame-

work for the analysis of real world problems. Three strands of the argument

from the literature are particularly worthy of note.

1. In most economic environments where coordination is important, in-

teractions endogenously generate informative public information that

might be used as a coordination device. An especially important source

1Morris and Shin (1998) analyzed a global game with a continuum of players making
binary choices, and this case has been studied in a number of later applications. Morris
and Shin (2003) survey some theory and applications of global games.
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of endogenous public information are market prices (see Atkeson (2001),

Tarashev (2003), Hellwig, Mukherji and Tsyvinski (2006) and Angele-

tos and Werning (2006))2. When prices convey information, increased

precision of private information will feed increased accuracy of (endoge-

nous) public signals. Thus uniqueness conditions will fail if private

signals are su¢ ciently accurate.

2. While asymmetric information may exist in a large variety of economic

settings, it does not always conform to the global game notion of �noisy

signals�. Global game results turn on the relative precision of private

and public signals, but if we do not know what these noisy signals are

in real life, debates about relative precisions have no conceptual basis

(see, for example, Kurz (2006), Sims (2005a, 2005b), Svensson (2006),

Woodford (2005)).

3. While common knowledge of payo¤s is relaxed in global games, there

is still assumed to be common knowledge of the information structure,

which is surely a no more realistic assumption. A recent paper by

Weinstein andYildiz (2007) shows that the exact form of the perturba-

tion away from common knowledge of payo¤s is crucial in determining

the rationalizable outcome. The global game prediction is not the

only possible perturbation that yields unique rationalizable outcomes.

What claim does the global game approach have for being a �natural�

or �reasonable�perturbation?

The objective of our paper is to evaluate these arguments and questions

concerning the global game methodology, and to provide a framework that

2Angeletos, Hellwig and Pavan (2006a, 2006b) note (inter alia) how other sources of
endogenous public information may lead to multiplicity in such coordination games.
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can both deepen our understanding of the theoretical basis for global games

and to provide guidance for applied researchers on the scope (and limitations)

of the global game approach.

The canonical information structure associated with the global game ap-

proach is one where players observe the underlying fundamental variable with

some noise. This is for the historical reason that the early papers (Carlsson

and van Damme (1993), Morris and Shin (1998)) adopted this formalism.

The noise is a convenient way to relax common knowledge of the fundamen-

tals, but in subsequent applications of global games the noisy information

structure has been taken more literally - as players failing (literally) to ob-

serve the true fundamentals perfectly. Many of the criticisms of the global

game approach presumes such a literal interpretation of the global games

approach.

However, there are pitfalls in taking the noisy information structure too

literally, as the underlying logic of the argument becomes identi�ed with a

particular formalism, and the general scope of the approach becomes ob-

scured by debates surrounding the merits or otherwise of the particular for-

malism. The logic underlying the global game approach turns out to be

more robust, and is not tied to taking noisy signals literally.

In this paper, we revisit the belief foundations of global games. We

know already that the failure of common knowledge of the fundamentals is

a necessary condition for generating the global game outcome, but the more

demanding task is to show precisely how beliefs depart from the complete

information benchmark. We have two objectives in this paper.

First, we link the global game analysis with the earlier literature on com-

mon knowledge and interactive epistemology - to the framework popularized

by Aumann (1976) and Monderer and Samet (1989). We provide a frame-
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work that can encompass global games (especially their countable state ana-

logues) within a framework of interactive beliefs. We de�ne an operator

on the type space that has a strong resemblance to the p-belief operator of

Monderer and Samet (1989), and show how rationalizability corresponds to

common belief in this generalized belief operator. The perspective is that of

an outside observer who observes only whether a player chooses one action

or the other. The fact that a particular action has been chosen reveals much

about the player�s beliefs - both about the fundamentals of the environment,

but also about the beliefs and higher order beliefs of other players. The

belief operators that we identify correspond with to the revealed strength of

beliefs that a player holds about the environment and the other players. In

this sense, we take the viewpoint of an outside observer (such as an empirical

economist) who attempts to piece together the beliefs from the action chosen.

In this way, we can characterize the higher order beliefs that underpin play

in global games, thereby answering the question of how the departure from

common knowledge is achieved in global games.

Second, the revealed beliefs approach yields insights on the question of

when there is a unique rationalizable outcome in the global game. By using

the framework of the generalized belief operators, we identify two sets of

su¢ cient conditions on the common beliefs of the types that ensure unique

rationalizability. Essentially, the property that matters is the stationarity of

beliefs with respect to the ordering of types. Global game arguments work

because the beliefs that player types have over their neighboring types do not

change abruptly as we consider types along the ordering. A special case of

such insensitivity of beliefs along the type space is the case when each type

believes he is �typical�. We show that uniqueness in the noisy information

approach to global games with public and private information uses precisely
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this strong version of insensitivity of beliefs to the order.

The rest of the paper is structured as follows. We begin in section 2 with

a leading example that illustrates many of the features that will make an

appearance in the general argument. We then characterize the higher order

beliefs that are necessary and su¢ cient for rationalizability, and revisit some

familiar examples of global games from the applied literature, and illustrate

our result. Section 5 then builds on earlier results to shed light on uniqueness.

We discuss two su¢ cient conditions for uniqueness that do not make reference

to noisy signals, or relative precisions of private and public signals.

2 Example

There are I players who choose from finvest, not investg. There is a cost of
investing, p 2 (0; 1). The payo¤ to investing depends on the fundamental

state �. There are dominance thresholds � and �� with � < �� such that �not

invest�is dominant when � falls below the lower threshold � and �invest�is

dominant when � is above the upper threshold ��. When � < �, the gross

return to investing is zero irrespective of the actions of the other players, so

that investing yields a sure payo¤ of �p. When � > ��, the gross return to

investing is 1 irrespective of the actions of the other players so that investing

yields a sure payo¤ of 1� p.

When � � � � ��, the gross return to investing is 1 if and only if proportion
q or more of the players (including oneself) invest, where 0 < q < 1. The

payo¤ matrix is

at least q invest less than q invest
invest 1� p �p

not invest 0 0
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2.1 Reconstructing the Belief Hierarchy

For an outside observer (an empirical economist, say), the observable features

of the problem are quite coarse. The outside observer sees only whether a

player invests or not. But when combined with the knowledge of the payo¤s

and the players�rationality, the decision to invest reveals much about that

player�s beliefs - both about the fundamentals �, but also about the beliefs

of other players.

Suppose player i is seen to invest. Then, either i has a dominant action

to invest, or he p-believes all of the following.

1. � � �

2. proportion q or more either have a dominant action to invest or p-

believe that � � �

3. proportion q or more either have a dominant action to invest or p-

believe that [proportion q or more either have a dominant action to

invest or p-believe that � � �]

4. and so on ...

p-belief of statement 1 is a necessary condition for investing, since other-

wise the expected payo¤ to investing is negative irrespective of the actions

of the other players. But then, other players will have reached a similar

conclusion. So, player i must also p-believe statement 2, since otherwise

there is probability less than p that proportion q or more players consider

�invest�as being �rst-order undominated. Then, fewer than q will invest.

In general, the failue to p-believe statement n + 1 is a reason not to invest,

because there is probability less than p that proportion q or more players

consider �invest�as being n-th order undominated.
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In this way, unless i �nds it dominant to invest, p-belief of all the state-

ments in the list is necessary for �invest� to be chosen. Conversely, when

a player p-believes all of the statements in the list, this is also su¢ cient for

�invest�to survive the iterated deletion of dominated strategies.

There is an exactly analogous hierarchy of beliefs that are revealed by a

player who chooses not to invest. Player j who does not invest reveals that

either he �nds it dominant not to invest, of he (1� p)-believes of all of the

following statements.

1. � � ��

2. proportion 1 � q or more either have a dominant action not to invest

or (1� p)-believe that � � ��

3. proportion 1�q or more either have a dominant action not to invest or
(1� p)-believe that [proportion 1 � q or more either have a dominant

action not to invest or (1� p)-believe that � � ��]

4. and so on ...

These statements are individually necessary and jointly su¢ cient for �not

invest�to survive the iterated deletion of interim dominated strategies.

2.2 Information Structure

To explore when one or other action may be supported as an iteratively

undominated action, we introduce an information structure. Suppose �

takes realizations in the set of integers Z = f� � � ;�2� 1; 0; 1; 2; 3; � � � g and
there is a prior density � over Z. There are I = 2n+1 players who play the
investment game.
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The players receive noisy signals concerning �. Let si be player i�s signal

realization. si takes values in Z. Conditional on �, player i is equally likely

to observe any signal between ��n to �+n, but we depart from the familiar
global game assumption that players�signals are independent conditional on

�. The purpose of this departure is to construct an information structure

that is as close as possible in spirit to the continuum player global game, as

we will elaborate below. Conditional on �, each signal realization between

�� n and �+ n is observed by precisely one player. No two players observe
the same signal, and each possible realization between � � n and � + n is

observed by some player.

One way in which our information structure could be generated is through

the following procedure. Conditional on �, a player is selected randomly to

receive the highest signal (namely � + n). Each player has equal chance

of being selected. Next, the second highest signal realization, � + n � 1
is given to a player chosen from the remaining pool of players, where each

player has equal chance of being selected, and so on. Once the ranking has

been chosen (unknown to the players themselves), each player observes his

signal, and makes inferences based on this signal. The information structure

arrived at in this way has the following two features.

� Any two players can be strictly ranked according to their signal real-
izations.

� Conditional on �, player i has equal chance of observing any signal

realization between � � n and � + n.

Conditional on observing signal realization si, player i�s posterior density

has support over the interval [si � n; si + n], and

� (� j si)
� (�0 j si)

=
� (�)

� (�0)
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for �, �0 in the support. Among other things, this means that the posterior

densities can be ranked by �rst-degree stochastic dominance.

We can trace a player�s beliefs about his rank in the population, as mea-

sured by the realization of his signal relative to those of others. Player i

with signal si has the highest signal realization when � = si�n. So, player i
believes he has the highest signal with probability � (si � n j si). In general,
player i with signal si believes that he has the k + 1-th highest signal in the

population with probability � (si � n+ k j si). Let �k (si) be the probabil-

ity that player i assigns to there being k � 1 players with signals lower than
himself, conditional on signal si. Then �k (si) = � (si + n� k + 1 j si). Let

� (si) � (�1 (si) ; �2 (si) ; � � � ; �I (si))

be the pro�le of i�s beliefs over his rank order, conditional on si.

2.3 Evident Events

For the next step, see �gure 1. Fix �̂, and let ŝ be the highest signal

realization such that proportion q or more of players have signal realizations

that are ŝ or higher at �̂. Denote by p̂ the probability that � � �̂ conditional

on ŝ. We then have:

1. When � � �̂, proportion q or more players receive signal ŝ or higher.

This follows from the �rst-degree stochastic dominance of signal real-

izations as � increases.

2. When si � ŝ, player i p̂-believes that � � �̂. This follows from the

�rst-degree stochastic dominance of the posterior density over � as si

increases.
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Figure 1: Evident events

So, when � � �̂, proportion q or more of the players p̂-believe that � � �̂.

We say that the event
n
�j� � �̂

o
is (q; p̂)-evident when this holds. Our de-

�nition generalizes Monderer and Samet�s (1989) notion of p-evident events,

where we keep track of the proportion q of players who p-believe an event.

Suppose now that �̂ � �, and that player i p̂-believes
n
�j� � �̂

o
. Then

he p̂-believes all of the following:

1. � � �

2. proportion q or more p̂-believe that � � �

3. proportion q or more p̂-believe that [proportion q or more p̂-believe that

� � �]

4. � � �

Say that there is common (q; p)-belief that � � � when this list holds.

From the list of statements in section 2.1, �invest� is rationalizable for i if

p̂ � p. We also have the reverse implication. �Invest�is rationalizable only
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Figure 2: Case when p̂ � p and r̂ � 1� p

if p̂ � p. This is because when player i has a dominant action to invest,

he p̂-believes that � � �̂. So, the �either-or� clause concerning dominant

action types is subsumed under the p̂-belief of
n
�j� � �̂

o
. Since our space

of signals and fundamentals is countable, common (q; p)-belief implies the

existence of a (q; p)-evident event, since otherwise the countable intersection

of events satisfying each clause yields the empty event. Following an exactly

analogous line of reasoning for when �not invest�is rationalizable, we have:

Claim 1 �Invest�is rationalizable for i if and only if i p-believes some (q; p)-

evident subset of f�j� � �g. �Not invest� is rationalizable for i if and only

if i (1� p)-believes some (1� q; 1� p)-evident subset of
�
�j� � ��

	
.

Figure 2 illustrates a case when both actions may be rationalizable. When

p̂ � p and r̂ � 1 � p, the event f�j� � �g is (q; p)-evident, and
�
�j� � ��

	
is (1� q; 1� p)-evident. Unique rationalizability rests on ruling out such

cases.

2.4 Uniqueness

Consider the rank pro�les � (si) and � (s0i) at two di¤erent signal realizations

si and s0i. Write � (s0i) D � (si) when � (s0i) weakly dominates � (si) in the
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Figure 3: Decreasing rank beliefs

sense of �rst degree stochastic dominance. Say that rank beliefs are weakly

increasing in signals when s0i � si implies � (s0i) D � (si).

Let s and �s be signal realizations illustrated in �gure 2. s is the highest

signal such that at �, proportion q or more have signal s or higher. �s is the

lowest signal such that at ��, 1� q or more have signal �s or lower.

We then have the following su¢ cient condition for uniqueness.

Claim 2 If rank beliefs are weakly decreasing in signals in fsi j s � si � �sg,
then there is a unique rationalizable outcome in the investment game, except

possibly at one value of �.

When rank beliefs are weakly decreasing in signals, a player believes that

his rank is low when he receives a high signal. Suppose that a student �nds

out that his test score is high, and what matters is just his relative ranking

in the class. Is the high score good news or bad news? When rank beliefs

are decreasing in signals, this is bad news. The fact that he has received a

high score indicates that the test must have been very easy, so that others

have received even higher scores. Such beliefs correspond to priors that are

locally U-shaped, such as that illustrated in �gure 3.
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Let p̂ (�) be the largest probability h with which f�0j�0 � �g is common
(q; h)-belief. When rank beliefs are weakly decreasing, p̂ (�) is increasing in �.

If p̂ (�) < p for all � in the undominated region, then there is no (q; p)-evident

subevent of f�j� � �g. Thus, suppose p̂ (�) � p above some threshold ��.

Then, f�j� � ��g is common (q; p)-belief at all � � ��, but f�j� � ��g is not
(1� q; 1� p)-belief at all � < ��. Below the threshold ��, f�j� � ��g is not
common (q; p)-belief , but f�j� � ��g is (1� q; 1� p)-belief. At �� itself,

both actions may be rationalizable, but this is due to the probability atom

on �� arising from the fact that � is drawn from a discrete space. Otherwise,

there is a unique rationalizable outcome.

We note the following corollaries, bearing in mind that the results hold

except possibly at one value of �.

Corollary 3 If � (�) is a constant function over fsi j s � si � �sg, then there
is a unique rationalizable outcome in the investment game.

For instance, � (�) would be constant over fsi j s � si � �sg if the prior �
is a geometric density over the relevant interval, so that � (�) =� (� + 1) =

� (� + j) =� (� + j + 1).

Also, although we have conducted the discussion with a common prior

�, our argument could easily be extended for the case where players hold

di¤erent priors over �. Izmalkov and Yildiz (2006) examine an information

structure where some players are systematically more optimistic than others.

Our framework could accommodate such information structures.

An even more restrictive special case is when � is not only constant over

signals, but its cross-section is uniform over the possible rank orders, in the

sense that

� (si) =
�
1
I
; 1
I
; � � � ; 1

I

�
(1)
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If (1) holds, player i believes he has equal probability of being ranked any-

where in the population. Player i believes that he is �typical� in quite

a strong sense. The uniqueness result for continuum action global games

with Gaussian fundamentals and signals rests of approaching the analogue

of (1). When � (si) is uniform, we can characterize the unique rationalizable

outcome crisply.

Corollary 4 Suppose � (si) =
�
1
I
; 1
I
; � � � ; 1

I

�
whenever s � si � �s. Then,

�invest� is the unique rationalizable action in the �rst-order undominated

region when p + q < 1. �Not invest� is the unique rationalizable action in

the �rst-order undominated region when p+ q > 1.

The corollary follows from the fact that when � uniform, p̂ = 1 � q.

�Invest� is rationalizable when p̂ > p. That is, when p + q < 1. �Not

Invest�is rationalizable when 1� p̂ > 1� p. That is, when p+ q > 1.

2.5 Comparison to Gaussian Information Structures

Given the importance of rank order beliefs, let us retrace what the analogous

rank order beliefs are in the familiar Gaussian information structure that is

commonly used in continuum player global games. Player i�s private signal

is given by

xi = � + "i

where � is a Gaussian random variable with mean y and variance 1=�, and

"i is Gaussian with mean zero and variance 1=�. The random variables f"ig
are mutually independent, and independent of �.

Denote by � (x) the proportion of players whose signal is x or less. The

���stands for �lower�. Then, � (x) is a random variable with realizations in

the unit interval, and which is a function of the random variables f�; "igi2[0;1]
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and the threshold x. We derive the density function of � (xi) conditional on

xi. Let

G (zjxi) (2)

be the cumulative distribution function of � (xi) conditional on xi, evaluated

at z. In other words,

G (zjxi) = Pr (� (xi) � zjxi) (3)

so that, G (zjxi) is the probability that the proportion of players with signal
lower than xi is z or less, conditional on xi. Figure 4 illustrates the derivation

of G (zjxi).
Given �, the proportion of players who have signal below xi is

�
�p

� (xi � �)
�

(4)

where � (�) is the cumulative distribution function for the standard normal.
Let �̂ be the realization of � at which this proportion is exactly z. In other
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words,

�̂ = xi �
��1 (z)p

�
(5)

The top panel of �gure 4 illustrates �̂. When � � �̂, the proportion of players

that have signal below xi is z or less. In other words, � (xi) � z whenever

� � �̂. Hence, G (zjxi) is the probability of
n
�j� � �̂

o
conditional on xi.

The bottom panel of �gure 4 illustrates the argument. Conditional on xi,

the density over � is normal with mean

�y + �xi
�+ �

(6)

and precision � + �. The probability that � � �̂ is the area under this

density to the right of �̂, namely

1� �
�p

�+ �
�
�̂ � �y+�xi

�+�

��
(7)

This expression gives G (zjx). Substituting out �̂ by using (5) and re-

arranging, we can re-write (7) to give:

G (zjxi) = �
�

�p
�+�

(y � xi) +
q

�+�
�
��1 (z)

�
(8)

In the special case when � !1, the private signal becomes in�nitely precise.
In this limit,

G (zjx)! �
�
��1 (z)

�
= z

so that G is the identity function. In other words, the c.d.f. of � (xi) is

the 45 degree line, and hence the density over � (xi) is uniform. Thus, in

this limit, player i believes that he is �typical� in quite a strong sense, in

that he puts equal weight on every realization of � (xi). In this sense, the

uniform density over � is exactly analogous to the rank belief pro�le � (:)

being uniform.
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3 Common Belief in Global Games

We now generalize our argument of the previous section. In so doing, we

characterize the hierarchy of beliefs that underpin actions in global games.

We will also apply these insights in considering the hierarchy of beliefs that

ensure a unique rationalizable outcome in the global game.

3.1 Setting

There are I players, I = f1; 2; :::; Ig and a countable set of payo¤ states, �.
A type space is a collection T = (Ti; �i)

I
i=1, where Ti is the set of types of

player i and �i : Ti ! �(T�i ��). We consider binary action games, where
each player i will choose ai 2 f0; 1g. We write �i (Z; �) for the payo¤ gain

to player i of choosing action 1 over choosing action 0 if Z � I n fig is the
set of his opponents who choose action 1 and the payo¤ state is �. In other

words, if ui (a; �) were player i�s payo¤ if action pro�le a is chosen and state

is �, the function �i is de�ned as

�i (fj 6= ijaj = 1g ; �) = ui (1; a�i; �)� ui (0; a�i; �) .

Thus a game is parameterized by payo¤s � =(�1; ::; �I). Throughout the

paper, we will consider supermodular games which in this context means:

Assumption. (Supermodularity) �i (Z; �) is increasing in Z, i.e., Z � Z 0 )
�i (Z; �) � �i (Z

0; �)

3.2 Product Events

The relevant state space for our problem is 
 = T1 � T2 � ::: � TI � � and
an event would ordinarily be de�ned as a subset of 
. However, we will be

interested in a special class of product events corresponding to each player
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i�s type ti belonging to a subset Fi � Ti. Thus a product event is a vector

F = (F1; :::; FI) 2
I
�
i=1
2Ti. We will be highlighting two interpretations of

product events.

First, a product event F uniquely de�nes an equivalent ordinary event

XF � 
 with

XF = f(t1; :::; tI ; �) 2 
 jti 2 Fi for each i = 1; :::; I g .

Where no confusion arises, we will identify a product event F with its equiv-

alent ordinary event XF . In keeping with this interpretation, we will write

t 2 F if ti 2 Fi for each i = 1; :::; I and we will de�ne a natural partial order
on product events by set inclusion, so F � E if Fi � Ei for each i = 1; ::; I.

Second, because we are focussing on binary action games, the set of prod-

uct events is isomorphic to the set of strategy pro�les. Thus we can identify

the product event F with the strategy pro�le where player i chooses action

1 if and only if ti 2 Fi.
Denote by S the class of product events. Now S is a complete lattice

under the partial order � and the join E _ F and meet E ^ F of a pair of

events E and F are de�ned as

E _ F � (Ei [ Fi)Ii=1
E ^ F � (Ei \ Fi)Ii=1

We write

? =

0@ I timesz }| {
?; ::;?

1A and T = (T1; :::; TI)

for the smallest and largest elements of S, respectively.
Notice that the meet operation corresponds to intersection of the equiv-

alent ordinary events, i.e.,

XE^F = XE \XF
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and that the (set inclusion) ordering on product events generates the same

ordering as set inclusion on their equivalent ordinary events, i.e.,

F � E if and only if XF � XE.

There is also a natural de�nition of the negation of an event, :F , with

:F = : (Fi)Ii=1 � (v Fi)
I
i=1 .

Now the class of product events is closed under f_;^;:g. The de�nitions

of join can be extended to any countable collection of simple events in the

natural way, and we will appeal to these de�nitions later. Also, we note the

following properties of these operations.

::F = F; :; = T; :T = ;

: (E _ F ) = :E \ :F

3.3 Generalized Belief Operators

We will de�ne player i�s �i-belief function B�i
i : S ! 2Ti as follows. Let

ZF;i (t) be the set of players other than i such that tj 2 Fj; thus ZF;i : T ! 2I

is de�ned as

ZF;i (t1; � � � ; tI) = fj 2 I j j 6= i and tj 2 Fjg .

For any random variable f : T��! R, write Eti (f) for type ti�s expectation
of f , so

Eti (f) =
X
t�i;�

�i [ti] (t�i; �) f ((ti; t�i) ; �) .

Now

B�i
i (F ) = fti 2 Fi jEti (�i (ZF;i; �)) � 0g ,
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Thus B�i
i (F ) is player i�s best response to the strategy pro�le F , since

ti 2 B�i
i (F ) exactly if action 1 is a best response for player i if he thinks each

opponent j chooses action 1 only if tj 2 Tj. We dub B�i
i a "belief function"

because ti 2 B�i
i (F ) reveals that type ti puts su¢ ciently high probability on

some or all of his opponents having types tj 2 Tj. The more likely is F ,

the greater is player i�s incentive to play action 1 himself. Hence, his taking

action 1 reveals that he places high weight on F .

De�ne B� (F ) as the product set:

B� (F ) =
�
B�i
i (F )

�I
i=1
;

B� (F ) identi�es the set of type pro�les for whom playing 1 is a best reply

when other players play 1 on event F ; equivalently, it is the set of types with

high beliefs that F is true.

The generalized belief operator B� : S ! S satis�es the following prop-
erties:

B1. F � F 0 ) B� (F ) � B� (F 0)

B2. B� (F ) � F for all F

B3. If F n is a decreasing sequence, then B� (^nF n) = ^nB� (F n).

B4.
�
B�
�n
(F ) is a decreasing sequence

B1 states that B� is an increasing operator on the lattice S; it is an im-
plication of supermodularity, and shows that our interpretation of �revealed

beliefs�is consistent with the deductive closure of beliefs. That is, if F im-

plies F 0, then belief in F implies belief in F 0. B2 follows from the de�nition.

B3 is a continuity axiom: it is implied by B1 if the type space is �nite. In

B4,
�
B�
�k
denotes the k-fold application of the B� operator. B4 follows

from B1 and B2.
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De�nition 5 Event F is �-evident if it is a �xed point of B�, i.e.,

F = B� (F )

By B2, this is equivalent to the requirement that F � B� (F ). Note that

event F is �-evident if and only if the strategy pro�le F is an equilibrium of

the incomplete information game (where indi¤erent types choose action 1).

De�nition 6 Event C� (F ) is the largest �-evident contained in F , so (by

B1)

C� (F ) �
k̂�1

�
B�
�k
(F ) .

If t 2 C� (F ), we say that there is common �-belief at t. At t, everyone
�-believes F , everyone �-believes that everyone �-believes F , and so on.

These de�nitions parallel de�nitions in the formal economics literature on

common beliefs, and we can use them to report a �xed point characterization

of common �-belief in the manner of Aumann (1976) and Monderer and

Samet (1989):

Proposition 7 Event F is common �-belief at t if and only if there exists

a �-evident event F 0 such that t 2 F 0 � F ;

Proof. For the �if�direction, note that since F 0 is �-evident, we have F 0 �
B� (F 0) � B�

�
B� (F 0)

�
� � � � . From property B1, we then have F 0 � F �

B � (F ) � B�
�
B� (F )

�
� � � � . Hence, F is �-evident at t. For the �only

if�direction, if F is common �-belief at t, then C� (F ) = B�
�
C� (F )

�
, so

that C� (F ) is �-evident.

Lemma 8 C� (T ) is the largest �-evident event, i.e., if F 0 is �-evident then

F 0 � T .
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This lemma shows that C� (T ) is the equilibrium of the incomplete in-

formation game where action 1 is played the most. It is therefore a very

special case of the observation of Vives (1990) that the largest equilibrium

of a supermodular game can be found looking at the limit of best response

dynamics starting at the largest strategy pro�le.

3.4 Characterizing Rationalizability

We now characterize rationalizable strategy pro�les in terms of our general-

ized belief operators, in the analogous way that we characterized rational-

izable strategies in our leading example of the investment game. We �rst

de�ne rationalizable actions as follows.

De�nition 9 Action ai is rationalizable for type ti if ai 2 R�i (�; ti), where

R0i (�; ti) = f0; 1g

Rk+1i (�; ti) =

8>>>>>><>>>>>>:
ai 2 Rki (�; ti)

������������

there exists �i 2 �(T�i ��� f0; 1g) such that
(1) �i (t�i; �; a�i) > 0) aj 2 Rkj (�; tj) for all j 6= i

(2)
X
a�i

�i (t�i; �; a�i) = �i (t�i; � jti )

(3) ai 2 argmax
a0i

X
t�i;�;a�i

�i (t�i; �; a�i)ui ((a
0
i; a�i) ; �)

9>>>>>>=>>>>>>;
R�i (�; ti) = \

k�1
Rki (�; ti)

This corresponds to the de�nition of �interim correlated rationalizability�

in Dekel, Fudenberg and Morris [DFM] (2007), who gave a formal epistemic

argument that the interim correlated rationalizable actions are exactly those

that are consistent with common knowledge of rationality and a type�s higher

order beliefs about �. They also show that there is the standard equivalence

between (correlated) rationalizability and iterated dominance. An action is

interim correlated rationalizable if and only if it survives iterated deletion
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of strictly interim dominated strategies (claim 1). The "correlation" in the

de�nition arises because a player�s type is allowed to have any - perhaps cor-

related - beliefs over others�actions, types and payo¤ states � as long as he

puts probability 1 on others�actions being rationalizable for their types (part

(1) of the de�nition) and his beliefs are consistent with that type�s beliefs

about others types and payo¤ state. The alternative "interim independent

rationalizability" solution concept discussed in DFM puts conditional inde-

pendence restrictions on those beliefs. However, there will not be a di¤erence

between the ex and interim solution concepts in this environment because su-

permodularity will ensure that the critical conditional beliefs over opponents�

actions will be point beliefs.

Now we have our characterization of rationalizable actions.

Proposition 10 Action 1 is rationalizable for type ti if and only if ti 2
C �
i (T ).

Recall that a product event F can be understood as a strategy pro�le,

where Fi is the set of types of player i. The operator B is then the best

response map on strategy pro�les. Now T corresponds to the largest strat-

egy pro�le and C� (T ) is the strategy pro�le that arises in the limit when

we iteratively apply the best response function. Thus the above proposition

re�ects the well known fact that best response dynamics starting with the

largest strategy pro�le converges to the largest equilibrium in an incomplete

information game with supermodular payo¤s (Vives (1990)) and the largest

equilibrium also correspondence to the largest rationalizable strategy pro�le

(Milgrom and Roberts (1991)). As noted above, the di¤erence between ex

ante and interim rationalizability will not matter in this setting. For com-

pleteness, we will report a direct argument for the proposition which high-
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lights the "infection argument" logic from the higher order beliefs literature

and introduces some techniques we will appear to later.

Proof. In proving this result, it is insightful to introduce a dual operator to

the B� operator. For any product event F , de�ne S� (F ) as

S� (F ) � :B� (:F ) (9)

To interpret S� (F ), note that

S� (F ) =
�
v B�i

i

�
(v Fi)

I
i=1

��I
i=1

B�i
i

�
(v Fi)

I
i=1

�
is the set of player i�s types for whom action 1 is a best reply

when, for all j 6= i, player j plays action 0 on Fj. Then v B�i
i

�
�Ii=1 v Fi

�
is the set of player i�s types who strictly prefer to play action 0 when player

j plays action 0 on Fj, for all j 6= i. Thus, S� (F ) is the set of type pro�les

who strictly prefer to play action 0 when action zero is played on F . Note

that S� (F ) is a simple event, when F is a simple event.

In particular, when F = ;, the event S� (;) consists of the type pro�les
for whom playing action 0 is strictly dominant. This is so, since the these

types strictly prefer to play action 0 even if no other types play action 0.

The event

S�
�
S� (;)

�
consists of type pro�les who strictly prefer to play action 0 when all type

pro�les in S� (;) play action 0. In other words, S�
�
S� (;)

�
is the set of

type pro�les who strictly prefer action 0 when faced with types who do not

use �rst-order dominated actions. Iterating the S� operator, the event�
S�
�k+1

(;)
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is the set of type pro�les who strictly prefer action 0 when faced with types

who do not use kth order dominated actions. Then, the join de�ned asW
k�1
�
S�
�k
(;) (10)

is the simple event consisting of type pro�les who strictly prefer to play action

0 after the iterated deletion of strictly dominated strategies. Thus, action

1 is rationalizable for player i if only if action 1 is a best reply when other

types play action 1 in the negation of (10). That is, action 1 is rationalizable

for type ti player i if and only if

ti 2 B�i
i

�
:
W
k�1

�
S�
�k
(;)
�

= B�i
i

�T
k�1 :

�
S�
�k
(;)
�

= B�i
i

�T
k�1

�
B�
�k
(T )
�

= B�i
i

�
C� (T )

�
This proves the proposition.

Naturally, we can carry out an exactly analogous analysis for action 0.

De�ne e�i be e�i (Z; �) = ��i (I n (Z [ fig)) .
Then we have

Proposition 11 Action 0 is rationalizable for type ti if and only if ti 2
C
e�
i (T ).

Say that dominance solvability holds if R�i ( �; ti) = f0g or f1g for all i
and ti.

Corollary 12 There is a unique rationalizable action for each type if and

only if C� (T ) = :Ce� (T ).
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4 Characterizing Belief Hierarchies

We are now in a position to utilize our result on rationalizability to charac-

terize the belief hierarchies of players in a global game. We take the point

of view of an outside observer. We have just observed a player taking action

1. What can we infer from the action about the beliefs of the player? We

illustrate the scope of the generalized belief operator by listing a number

of examples of global games, some of which have received attention in the

applied literature in �nancial economics and macroeconomics.

We start with our leading example, discussed in an earlier section.

Investment Game Revisited

When � � � � ��, then successful coordination is possible only if proportion
q or more invest. The cost of investing is p 2 (0; 1), and the gross return to
investing is 1. The payo¤ to not investing is 0. In this case, we have

�i (Z; �) =

8<:
1� p if � > ��
1� p, if #Z+1

I
� q and � � � � ��

�p, otherwise

From our proposition on rationalizability, �invest� is rationalizable for a

player if and only if the player p-believes all of the following

1. � � �

2. � � � or proportion at least q p-believe that � � 0

3. � � � or proportion at least q p-believe that [� � � or proportion at

least q p-believes that � � 0]

4. and so on...
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�Regime Change�Game

There is a cost of investing of p 2 (0; 1). The gross return to investing is 1
if proportion investing is at least f (�), and it is 0 otherwise. The payo¤ to

not investing is 0. These are the payo¤s in Morris and Shin�s (1998) paper

on currency attacks. The �i function that corresponding to these payo¤s is

given by

�i (Z; �) =

�
1� p, if #Z+1

I
� f (�)

�p, otherwise
Coordination is successful only if the proportion investing is least f (�), where

f is a non-increasing function of the fundamentals �.

Assume that f (�) > 1 if and only if � < 0. In this case, Invest is

a rationalizable action for a player if and only if he p-believes all of the

following.

1. � � 0

2. the proportion of players who p-believe that � � 0 is at least f (�)

3. the proportion of players who p-believe that [the proportion of players

who p-believe that � � 0 at least f (�)] is at least f (�)

4. and so on....

Linear �Regime Change�Game

This is the special case of the regime change game where

f (�) = 1� �.

Thus, the gross return to investing is 1 if proportion investing is at least 1��,
and it is 0 otherwise. The payo¤ to not investing is 0. The �i function
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corresponding to these payo¤s is

�i (Z; �) =

�
1� p, if #Z+1

I
� 1� �

�p, otherwise

These payo¤s have become the canonical global game payo¤ structure in

recent papers, such as Dasgupta (2001), Metz (2002), Angeletos, Hellwig and

Pavan (2006, 2007), and others.3

For the linear regime change game, invest is a rationalizable action for a

player if and only if he p-believes all of the following.

1. � � 0

2. the proportion of players who p-believe that � � 0 is at least 1� �

3. the proportion of players who p-believe [the proportion of players who

p-believe that � � 0 at least 1� �] is at least 1� �

4. and so on....

Linear Payo¤Game

Payo¤ to invest is �� l, where l is the proportion of opponents not investing.
Payo¤ to not invest is 0.

�i (Z; �) = � � 1 + #Z

I � 1

These payo¤s were examined by Morris and Shin (2001, 2003), and has

�gured in applied papers such as Plantin, Sapra and Shin (2005). Invest is

rationalizable for player 1 only if all of the following hold.

1. player 1�s expectation of � is at least 0, i.e., E1 (�) � 0
3Morris and Shin introduced these payo¤s in their 1999 invited lecture at the Econo-

metric Society European meetings in Santiago de Compostella, eventually published as
Morris and Shin (2004).
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2. player 1�s expectation of � is at least one minus player 1�s expectation of

the proportion of others with expectation of � at least 0, i.e., E1 (�) �
1� Pr1 (E2 (�) � 0)

3. player 1�s expecation of � is at least one minus player 1�s expectations

of the proportion of others with expectation of � at least one minus

others�expectation of the proportion of others with expectation of � at

least 0

4. and so on ...

The two person version of this game has an especially simple structure.

The payo¤ function is

Invest Not Invest
Invest �; � � � 1; 0
Not Invest 0; � � 1 0; 0

Then invest is rationalizable for player 1 if and only if all of the following

hold.

1. player 1�s expectation of � is at least 0, i.e., E1 (�) � 0

2. player 1�s expectation of � is at least one minus player 1�s proba-

bility that player 2�s expectation of � is at least 0, i.e., E1 (�) �
1� Pr1 (E2 (�) � 0)

3. player 1�s expecation of � is at least one minus player 1�s probability

that player 2�s probability that player 1�s expectation of � is at least 0,

i.e., E1 (�) � 1� Pr1 (E2 (�) � 1� Pr2 (E1 (�) � 0))

4. and so on ...
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Contribution Game

The public good contribution game is a �private values�version of a global

game. Let � � RI . The cost of investing is ��i. The return to investing
is 0 if proportion at least � invest, �1 otherwise.

�i (Z; �) =

�
�i, if

#Z
I�1 � �

�i � 1, otherwise
In this context, invest is rationalizable for player 1 only if all of the

following hold.

1. player 1�s expectation of �1 is at least 0, e.g., E1 (�1) � 0

2. player 1�s expectation of �1 is at least one minus player 1�s probability

that the proportion of others with expectation of �i at least 0 is at least

�.

3. and so on ...

5 Uniqueness

We now turn our attention to su¢ cient conditions for dominance solvability.

The perspective of common belief gives us new insights into the properties

belief hierarchies that yield uniqueness. We report on two su¢ cient condi-

tions for uniqueness. We begin with the common certainty of rank beliefs.

5.1 Common Certainty of Rank Beliefs

Common certainty of rank beliefs relies on a large degree of symmetry in

the game, and has considerable a¢ nity with many uses of global games seen

in the applied literature. The argument for uniqueness is a generalization
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of the argument we gave for the example of the investment game given in

section 2.

Payo¤s � are separable-symmetric if there exist a non-decreasing function

g : f0; 1; ::; I � 1g ! R and a function h : �! R such that

�i (Z; �) = g (#Z) + h (�)

for all i = 1; ::; I, Z � I=fig and � 2 �. We will maintain this assumption
throughout this section. With separable-symmetric payo¤s, a type ti 2 Ti

has a strictly dominant strategy to choose action 1 if

g (0) +
X
t�i;�

�i (ti) [t�i; �]h (�) > 0;

and a type ti 2 Ti has a strictly dominant strategy to choose action 0 if

g (I � 1) +
X
t�i;�

�i (ti) [t�i; �]h (�) < 0.

Limit dominance is satis�ed if there exists at least one type of one player

with a strictly dominant strategy to choose action 1 and at least one type of

one player with a strictly dominant strategy to choose action 0. A type is

said to be strategic if neither action is strictly dominant for that type.

We introduce the following complete order on the union of all types,

T[ = [Ii=1Ti:

ti � tj if
X
t�i;�

�i (ti) [t�i; �]h (�) �
X
t�j ;�

�j (tj) [t�j; �]h (�) .

In other words, each type is ordered by his beliefs on the fundamentals �.

High types are those that have high expectations of fundamentals. Now let

�i : Ti ! �(f0; :::; I � 1g) be a player�s belief about his rank, so

�i (ti) [k] =
X
t�i;�

�i (ti) [f(t�i; �) j# fj 6= ijtj � tigg = k � 1] .
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Now �i (ti) [k] is the probability that player i attaches to there being exactly

k � 1 players�having a lower expectation of �. De�ne

�i (ti) � (�i (ti) [1] ; �i (ti) [2] ; � � � ; �i (ti) [I])

as the mapping that associates with each type the density over possible ranks

for that player. Constant common rank beliefs of strategic types is satis�ed

if there exists r� 2 �(f0; :::; I � 1g) such that for each player i and each
strategic type ti 2 Ti, �i (ti) = r�.

Finally, we will use three "technical" assumptions. We label them tech-

nical assumptions because they satis�ed for free in the standard continuous

signal global game environment with smooth densities. One merit of our

discrete formulation is that it forces us to make explicit assumptions that

are implicit in the standard formulation.

There is uniform separation if there exists "� > 0 such that for any i and

ti; t
0
i 2 Ti,X

t�i;�

�i (ti) [t�i; �]h (�) 6=
X
t�i;�

�i (t
0
i) [t�i; �]h (�)

)

������
X
t�i;�

�i (ti) [t�i; �]h (�)�
X
t�i;�

�i (t
0
i) [t�i; �]h (�)

������ � "�

In other words, if one type of a player has a higher expectation of � than

another, the di¤erence exceeds some uniform amount "�. There are no rank

ties if ti � tj or tj � ti for all i 6= j. There are no common rank payo¤ ties

if
I�1X
n=0

r� (n+ 1) g (n) +
X
t�i;�

�i (ti) [t�i; �]h (�) 6= 0

for all i and ti 2 Ti.
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Proposition 13 If separable-symmetric payo¤s, limit dominance, constant

common rank beliefs of strategic types, uniform separation, no rank ties and

no common rank payo¤ ties satis�ed, then dominance solvability holds. If r�

is the common rank belief held by all strategic types, action 1 is the unique

rationalizable action for type ti of player i if

I�1X
n=0

r� (n+ 1) g (n) +
X
t�i;�

�i (ti) [t�i; �]h (�) > 0;

and action 0 is the unique rationalizable action of type ti of player i if

I�1X
n=0

r� (n+ 1) g (n) +
X
t�i;�

�i (ti) [t�i; �]h (�) < 0.

We can paraphrase our result as: Common certainty of common rank

beliefs for strategic types implies dominance solvability, where "common cer-

tainty" denotes "common 1-belief," which is often described as common

knowledge in the economics literature.

Proof. Limit dominance implies that there exists a player j and type tj such

that

c = g (0) +
X
t�j ;�

�j
�
tj
�
[t�j; �]h (�) > 0. (11)

Now for each i,

�
ti 2 Ti

��ti � tj
	
=

8<:ti 2 Ti
������g (0) +

X
t�i;�

�i (ti) [t�i; �]h (�) � c

9=; (12)

� S�ii (?) .

Now we establish the following claim by induction on k: for each i and
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k = 0; 1; :::8>><>>:ti 2 Ti
��������
I�1X
n=0

8<:
r� (n+ 1) g (n)

+
X
t�i;�

�i (ti) [t�i; �]h (�)

9=; � c+
I�1X
n=0

r� (n+ 1) g (n)� g (0)� "�k

> 0

9>>=>>;(13)
� S�ii

�
S�
�k
(?) ,

where "� is de�ned by the uniform separation assumption. Recall that

S�ii
�
S�
�k
(?) is the set of types of player i such that his unique kth level

rationalizable action is to play 1. For k = 0, the claim follows from (11) and

(12). Suppose that the claim holds for k � 1 and that ti 2 Ti satis�es
I�1X
n=0

r� (n+ 1) g (n)+
X
t�i;�

�i (ti) [t�i; �]h (�) = c+
I�1X
n=0

r� (n+ 1) g (n)�g (0)�"�k > 0.

(14)

If ti has a dominant strategy to play action 1, then ti 2 S�ii (?) �
S�ii

�
S�
�k
(?); (14) implies that ti does not have a dominant strategy ac-

tion to play action 0. If ti does not have a dominant strategy, then common

rank beliefs implies �i (ti) = r�. Type ti is certain (by uniform separation

and the induction hypothesis) that all higher ranked players have types tj 2
S
�j
j

�
S�
�k�1

(?) and therefore have a unique (k � 1) th rationalizable action
to play action 1. So the expected payo¤ to playing action 1 is at least

I�1X
n=0

r� (n+ 1) g (n) +
X
t�i;�

�i (ti) [t�i; �]h (�)

and ti 2 S�ii
�
S�
�k
(?). This establishes the inductive step.

Now (13) implies8<:ti 2 Ti
������
I�1X
n=0

r� (n+ 1) g (n) +
X
t�i;�

�i (ti) [t�i; �]h (�) > 0

9=; � [k�1S�ii
�
S�
�k
(?)

= fti 2 Ti jRi (�; ti) = f1gg .
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A symmetric argument implies8<:ti 2 Ti
������
I�1X
n=0

r� (n+ 1) g (n) +
X
t�i;�

�i (ti) [t�i; �]h (�) < 0

9=; � [k�1S
e�i
i

h
S
e�ik (?)

= fti 2 Ti jRi (�; ti) = f0gg .

No payo¤ ties implies8<:ti 2 Ti
������
I�1X
n=0

r� (n+ 1) g (n) +
X
t�i;�

�i (ti) [t�i; �]h (�) < 0

9=; = ?.

We brie�y report two simple weakenings of the common rank beliefs under

which the result will continue to hold.

First, consider the �rst order stochastic dominance order on rank beliefs,

so that r D r0 if, for each n = 1; :::; I,
nX
i=1

r (i) �
nX
i=1

r0 (i)

Say that there is decreasing common rank beliefs if, for any ti 2 Ti and

tj 2 Tj,
ti � tj ) �i (ti) E �j (tj)

Now if we replaced the assumption of common and constant rank beliefs of

strategic types with common and decreasing rank beliefs of strategic types,

we would again have dominance solvability. In particular, action 1 (0) would

be the unique rationalizable action if
I�1X
n=0

�i (ti) [n+ 1] +
X
t�i;�

�i (ti) [t�i; �]h (�) > ( < )0.

Second, suppose that rank beliefs were not constant but that they did

not change too fast relative to the expectations of fundamentals. Let

� = g (I � 1)� g (0)
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measure the strategic sensitivity of the game. Write �(r; r0) for the distance

between the rank beliefs r and r0:

�(r; r0) = max
n=1;::;I

�����
nX
i=1

r (i)�
nX
i=1

r0 (i)

����� .
Say that there is near constant common rank beliefs if, for any ti 2 Ti and

tj 2 Tj,

�
�
�i (ti) ; �j (ti)

�
:� �

������
X
t�i;�

�i (ti) [t�i; �]h (�)�
X
t�j ;�

�j
�
t0j
�
[t�j; �]h (�)

������ .
Now if we replaced the assumption of common and constant rank beliefs of

strategic types with near constant common rank beliefs of strategic types, we

would again have dominance solvability. Morris and Shin (2005) describe

a uniqueness result using this idea (where the near constant rank beliefs

is delivered by "bounded marginals on di¤erences" property. Mason and

Valentinyi (2006) also used a related idea.

5.2 Common Certainty of Beliefs in Di¤erences

We now present a second set of su¢ cient conditions for uniqueness that

allows for asymmetry across players. Payo¤s � are separable if there exist

increasing functions �1i : 2
I=fig ! R and �2i : �! R such that

�i (Z; �) = �1i (Z) + �2i (�)

The type space of each player is two-dimensional. A type has two compo-

nents. The �rst component is completely ordered and we identify it with

the set of integers Z. The second component is any �nite set 	i. Thus, for
each i, we have a bijection

gi : Ti ! Z �	i.
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The �rst component of a type can be interpreted as a signal received about

the fundamentals �, so that higher �rst components are associated with

higher beliefs about �. The second component is some other dimension

along which players vary. However, note that the ordering applies only to

the types of a single player, whereas the condition of common certainty of

rank beliefs applied the ordering to the union of all types, and so we were

ranking across players, also.

We now introduce our assumptions. Denote by gi1 (ti) the �rst compo-

nent of gi (ti).

Assumption (Uniform Monotonicity): There exists " > 0 such that

gi1 (ti) > gi1 (t
0
i)

)
X
t�i;�

�i (ti) [t�i; �]�
2
i (�) >

X
t�i;�

�i (ti) [t�i; �]�
2
i (�) + "

for all i, ti, t0i.

Assumption (Limit Dominance): For each i, there exist ti and ti such that

�1i (I=fig) +
X
t�i;�

�i (ti) [t�i; �]�
2
i (�) < 0

and �1i (?) +
X
t�i;�

�i
�
ti
�
[t�i; �]�

2
i (�) > 0.

Assumption (�-Di¤use Beliefs): There exists � > 0 such that, for each i

and, for each j 6= i, hj : 	j ! Z,X
ft�i:gj1(tj)=hj(gj2(tj)) for some jg;�

�i (ti) [t�i; �] < �

The last assumption and the uniformity requirement in the �rst as-

sumption can be thought of as technical assumptions: they are required
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only because we are allowing for discrete type spaces and are not re-

quired (or are implicit) in the standard continuous signals global games

framework.

Finally, we come to our key de�nition. De�ne player i�s beliefs about

di¤erences �i : Ti ! �
�
(Z �	j)j 6=i

�
as follows:

�i (ti)
h��

�j; j
�
j 6=i ; �

�i
= �i (ti)

hn�
g�1j

�
gi1 (ti) + �j;  j

��
j 6=i

o
��

i
. (15)

To grasp the expression on the right hand side, note that g�1j
�
gi1 (ti) + �j;  j

�
is the type of player j whose �rst component is gi1 (ti)+�j, and whose second

component is  j. Thus, type ti�s beliefs about di¤erences are ti�s beliefs over

other players�types where player j�s type is distance �j away along the �rst

component.

Our su¢ cient condition for uniqueness rests on the beliefs about di¤er-

ences being insensitive to the ranking of a particular player�s type. In other

words, the function �i de�ned in (15) is a constant function with respect to

the �rst component of a player�s type.

Proposition 14 Assume uniform monotonicity and limit dominance. Then

there exists � > 0 such that, if � � � and there are �-di¤use beliefs, then

common certainty of beliefs in di¤erences implies dominance solvability.

Proof. Figure 5 illustrates the argument. For each k = 0; 1; :::, there

exists hki : 	i ! Z and non-increasing h
k

i : 	i ! Z such that hki ( i) is

non-decreasing in k for each  i, h
k

i ( i) is non-increasing in k for each  i,

1 2 Rki (�; ti) if and only if gi1 (ti) � hki (gi2 (ti))

and 0 2 Rki (�; ti) if and only if gi1 (ti) � h
k

i (gi2 (ti))
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Figure 5: Translation

This can be proved by standard monotone methods, see, e.g., van Zandt and

Vives (2006). Thus there exist h�i ; h
�
i : 	i ! Z such that h�i ( i) � h

�
i ( i)

for all  i 2 	i and

1 2 R�i (�; ti) if and only if gi1 (ti) � h�i (gi2 (ti)) (16)

and 0 2 R�i (�; ti) if and only if gi1 (ti) � h
�
i (gi2 (ti))

Now we prove uniqueness by �rst supposing that h�i 6= h
�
i (and then proving

a contradiction). Let c be the smallest integer such that h
�
i ( i) � h�i ( i)+c

for all i and  i 2 	i. Observe that c > 0 and that there exists i and  �i 2 	i
satisfying h

�
i ( 

�
i ) = h�i ( 

�
i ) + c. Now observe that by (16), we know that

1 2 R�i
�
�; g�ii (h

�
i ( 

�
i ) ;  

�
i )
�

and thus8>><>>:
X
t�i;�

�i
�
g�ii (h

�
i ( 

�
i ) ;  

�
i )
�
[t�i; �]�

1
i

��
j : gj1 (tj) � h�j (gj2 (tj))

	�
+
X
t�i;�

�i
�
g�ii (h

�
i ( 

�
i ) ;  

�
i )
�
[t�i; �]�

2
i (�)

9>>=>>; � 0
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Now suppose that player i is type g�1i (h�i ( 
�
i ) + c;  �i ) and believes this his

opponents are choosing action 1 if and only if gj1 (tj) � h�j (gj2 (tj))+c. Then

by common knowledge of beliefs in di¤erencesX
t�i;�

�i
�
g�ii (h

�
i ( 

�
i ) + c;  �i )

�
[t�i; �]�

1
i

��
j : gj1 (tj) � h�j (gj2 (tj)) + c

	�
=

X
t�i;�

�i
�
g�ii (h

�
i ( 

�
i ) ;  

�
i )
�
[t�i; �]�

1
i

��
j : gj1 (tj) � h�j (gj2 (tj))

	�
These are the payo¤s from the strategic part of the payo¤ function that de-

pends on the actions of others. On the other hand, the part of the payo¤

function that depends on the fundamentals � can be ordered by the assump-

tion of monotonicityX
t�i;�

�i
�
g�ii (h

�
i ( 

�
i ) + c;  �i )

�
[t�i; �]�

2
i (�)

�
X
t�i;�

�i
�
g�ii (h

�
i ( 

�
i ) ;  

�
i )
�
[t�i; �]�

2
i (�) + c"

so, adding the two parts of the payo¤ function together, we have8>><>>:
X
t�i;�

�i
�
g�ii (h

�
i ( 

�
i ) + c;  �i )

�
[t�i; �]�

1
i

��
j : gj1 (tj) � h�j (gj2 (tj) + c)

	�
+
X
t�i;�

�i
�
g�ii (h

�
i ( 

�
i ) + c;  �i )

�
[t�i; �]�

2
i (�)

9>>=>>; � c"

Now observe that
�
j : gj1 (tj) � h�j (gj2 (tj) + c)

	
�
n
j : gj1 (tj) > h

�
j (gj2 (tj))

o
unless gj1 (tj) = h

�
j (gj2 (tj)) for some j. ThusX

t�i;�

�i
�
g�ii (h

�
i ( 

�
i ) + c;  �i )

�
[t�i; �]�

1
i

�n
j : gj1 (tj) > h

�
j (gj2 (tj))

o�
�

X
t�i;�

�i
�
g�ii (h

�
i ( 

�
i ) + c;  �i )

�
[t�i; �]�

1
i

��
j : gj1 (tj) � h�j (gj2 (tj) + c)

	�
� �
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and so8>><>>:
X
t�i;�

�i

�
g�ii

�
h
�
i ( 

�
i ) ;  

�
i

��
[t�i; �]�

1
i

�n
j : gj1 (tj) > h

�
j (gj2 (tj))

o�
+
X
t�i;�

�i

�
g�ii

�
h
�
i ( 

�
i ) ;  

�
i

��
[t�i; �]�

2
i (�)

9>>=>>;
� c"� �

�
�1i (I= fig)� �1i (?)

�
For su¢ ciently small �, the right hand side is strictly positive, contradicting

our assumption that

0 2 R�i
�
�; g�ii

�
h
�
i ( 

�
i ) ;  

�
i

��
.

This proof appeals to the "translation" argument of contradiction of

Frankel, Morris and Pauzner (FMP) (2003). In FMP, there were one di-

mensional continuous types but many (countable or continuum) actions for

each player. Here we have a binary action game, but allow multidimen-

sional discrete signals and not restricting to the standard noisy information

structure of global games. Oury (2005) gives results for multidimensional

global games (with multidimensional actions and signals) in the standard

noise framework. In the next section, we present a simple example of mul-

tidimensional signal binary action game with continuous signals.

6 Multidimensional Example

Global game applications have typically focussed on games that are symmet-

ric across players with one dimensional signals. Here, we sketch a simple

example that is asymmetric across players and allows for multiple dimen-

sional signals. It thus illustrates how the logic of proposition 14 could be
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useful in applications. For simplicity, we simply present a continuous signals

example. At some cost of tractability, we could discretize the example so

that 14 applied.

Two players must decide whether to "invest" or "not invest". The cost

of investing is either p or p, where 0 < p < p < 1. Player i is high cost

with probability �i. The return to investing is 1 if (i) � > � or (ii) if � � �

and the other player invests; otherwise the return to investing is 0. Let � be

uniformly distributed on the real line. Player i observes a signal xi = �+ "i,

where each "i is independently distributed with full support density f . Thus

"1� "2 and "2� "1 are both distributed with the same symmetric density, h,
where

h (�) =

1Z
"1=�1

f ("1) f ("1 � �) d"1

Write H for the corresponding c.d.f. Assume that � < � and that � � �

is very large.

A pure strategy for player i is a pair si = (si; si), where si; si : R!finvest,not investg
and si (xi) (si (xi)) is player i�s action if his cost is low (high). Strategy si is

a x�i = (x
�
i ; x

�
i ) threshold strategy for player i if

si (xi) =

�
invest, if xi � x�i
not invest, if xi < x�i

and

si (xi) =

�
invest, if xi � x�i
not invest, if xi < x�i

Proposition 15 There is an essentially unique equilibrium of this game in

threshold strategies. There exists � (independent of � and �) such that, if

�1p+
�
1� �1p

�
+ �2p+

�
1� �2p

�
< 1
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player i invests xi � � + �; and if

�1p+
�
1� �1p

�
+ �2p+

�
1� �2p

�
> 1

player i does not invest xi � � � �.

Thus the proposition identi�es whether or investment occurs in (most

of) the interval
�
�; �
�
where there are multiple equilibria under complete

information.

Proof. Now suppose that there exist a threshold strategy pro�le charac-

terized by x�1 = (x�1; x
�
1) and x

�
2 = (x�2; x

�
2), with � � x�i � x�i � � such

that the best response to the strategy pro�le is to invest more. Then the

action "invest" will infect the intermediate region. Does there exist such a

threshold strategy pro�le? Assume speci�cally that the expected payo¤ to

investing for the marginal signal is c. Then we must have:

�2 Pr (x2 � x�2jx1 = x�1) + (1� �2) Pr (x2 � x�2jx1 = x�1)� p = c

�2 Pr (x2 � x�2jx1 = x�1) + (1� �2) Pr (x2 � x�2jx1 = x�1)� p = c

�1 Pr (x1 � x�1jx2 = x�2) + (1� �1) Pr (x1 � x�1jx2 = x�2)� p = c

�1 Pr (x1 � x�1jx2 = x�2) + (1� �1) Pr (x1 � x�1jx2 = x�2)� p = c

Now substitute in that

Pr
�
xj � bx�j jxi = bx�i � = Pr �xi � xj = "i � "j � bx�i � bx�j� = H

�bx�i � bx�j�
so

�2H (x
�
1 � x�2) + (1� �2)H (x

�
1 � x�2)� p = c (17)

�2H (x
�
1 � x�2) + (1� �2)H (x

�
1 � x�2)� p = c (18)

�1H (x
�
2 � x�1) + (1� �1)H (x

�
2 � x�1)� p = c (19)

�1H (x
�
2 � x�1) + (1� �1)H (x

�
2 � x�1)� p = c (20)
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Now observe that since h is symmetric by construction, H (�x) = 1�H (x).
Thus (19) and (20) can be re-written as

�1 (1�H (x�1 � x�2)) + (1� �1) (1�H (x�1 � x�2))� p = c (21)

�1 (1�H (x�1 � x�2)) + (1� �1) (1�H (x�1 � x�2))� p = c (22)

Now multiplying equations (17), (18), (21) and (22) by 1��1; �1; 1��2 and
�2 respectively, we get:

(1� �1)�2H (x
�
1 � x�2) + (1� �1) (1� �2)H (x

�
1 � x�2)� (1� �1) p = (1� �1) c(23)

�1�2H (x
�
1 � x�2) + �1 (1� �2)H (x

�
1 � x�2)� �1p = �1c (24)

�1 (1� �2) (1�H (x�1 � x�2)) + (1� �1) (1� �2) (1�H (x�1 � x�2))� (1� �2) p = (1� �2) c(25)

�1�2 (1�H (x�1 � x�2)) + (1� �1)�2 (1�H (x�1 � x�2))� �2p = �2c (26)

Now summing equations (23), (24), (25) and (26), we obtain:

1�
�
�1p+

�
1� �1p

��
�
�
�2p+

�
1� �2p

��
= 2c

or

c =
1

2

�
1�

�
�1p+ (1� �1) p

�
�
�
�2p+

�
1� �2p

���
Thus for any H, investment invades if and only if the average expected cost

of investment is at most 1
2
.

7 Concluding Remarks

This paper has aimed at achieving the following objectives. First, we have

presented a global game analysis where we dispense with talk of �noisy sig-

nals�, and instead deal with type spaces directly. Second, with our frame-

work, we have been able to characterize the higher-order beliefs that allow

the global game argument to �work�. Essentially, the property that matters
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is the stationarity of beliefs with respect to the ordering of types in the region

where the players do not have dominant actions. Finally, by characteriz-

ing the beliefs and higher order beliefs that are necessary and su¢ cient for

an action to be rationalizable, we have shed light on precisely what kind of

departure from common knowledge is underpinning play in global games.

By focusing on the underlying belief foundations as the basis for play in

global games, we have taken a step away from the practice of identifying the

global game approach as being tied to a particular formalism of noisy signals

with public and private information. To the extent that multiplicity is

restored in some cases, it is because one or more of the stationarity of beliefs

with respect to types is violated. Reorienting the questions in this way tells

us whether the particular context is a plausible setting for analysis. The

new perspective can therefore be illuminating in helping applied researchers

to settle questions of when uniqueness may be a reasonable outcome.
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