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Abstract

We prove the folk theorem for discounted repeated games with anonymous ran-

dom matching. We allow non-uniform matching, include asymmetric payoffs, and

place no restrictions on the stage game other than full dimensionality. No record-

keeping or communication devices– including cheap talk communication and public

randomization– are necessary.
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1 Introduction

In a repeated game with anonymous random matching, a finite population of players re-

peatedly breaks into pairs to play 2-player games. Each period, a player observes only her

partner’s action– not his identity, and not any other player’s action. We prove the folk

theorem in this environment. In particular, when the players are suffi ciently patient, they

can sustain the same payoffs as if everyone’s identity and actions were publicly observed at

the end of each period.

Because players receive so little information under anonymous random matching, this

environment has long been used as a benchmark against which to measure the value of

various record-keeping devices and institutions, such as fiat money, merchant coalitions and

guilds, credit bureaus, online rating systems, “standing”and “image scoring”in evolutionary

biology, and in-group monitoring within ethnic groups.1 The main implication of our result is

that, even in this information-poor benchmark environment, patient players can obtain any

feasible and individually rational payoffs without any record-keeping devices or institutions

beyond their individual memories and the ability to count periods. Thus, any role for such

institutions must result from impatience of the players, or perhaps from the possibility of

constructing “simpler,”“more robust,”or “more realistic”equilibria when more information

is available.2

Our folk theorem thus admits both positive and negative interpretations. The positive

interpretation is that a very wide range of cooperative behaviors are possible despite minimal

information. The negative interpretation is that, in a finite population of patient long-run

players, it is diffi cult to justify the value of information-sharing institutions on effi ciency

grounds alone. In particular, in these environments the assumptions that monitoring is

decentralized and players are anonymous– which might have been expected to restrict the

set of attainable payoffs in some games– turn out to be completely payoff-irrelevant.

1On money, see Kiyotaki and Wright (1989, 1993), Kocherlakota (1998), Wallace (2001), Araujo (2004),
Aliprantis, Camera, and Puzzello (2007). On merchants, see Greif (1993), Greif, Milgrom, and Weingast
(1994), Milgrom, North, and Weingast (1990). On credit bureaus, see Klein (1992), Padilla and Pagano
(2000). On online rating systems, see Friedman and Resnick (2001). On standing and image scoring, see
Sugden (1986), Nowak and Sigmund, (1998). On ethnic conflict, see Fearon and Laitin (1996).

2Of course, our result first fixes the population size N and then takes δ → 1. If the population is very
large, the required discount factor is very close to 1.
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Our approach is to view the repeated random matching game as a single repeated game

with imperfect private monitoring and apply techniques from the literature on the folk the-

orem with private monitoring. The main obstacle to this approach is that, when viewed as

a single repeated game, the random matching game fails standard statistical identifiability

conditions (e.g., Fudenberg, Levine, and Maskin’s (1994) pairwise identifiability) and full

support conditions. To overcome this obstacle, we show that players can be given incen-

tives to truthfully share their observations– despite communicating only via payoff-relevant

actions– and that the aggregated observations of a player’s opponents always identify her

action. Our paper thus connects three literatures: repeated games with random matching,

repeated games with private monitoring, and secure communication in repeated games.

Random matching Kandori (1992), Ellison (1994), and Harrington (1995) show that

cooperation can be sustained in the repeated prisoners’dilemma with anonymous random

matching via “contagion strategies,”where a single defection triggers the breakdown of coop-

eration throughout the population. This approach does not generalize beyond the prisoners’

dilemma. Even within the prisoners’dilemma, it cannot be used to support asymmetric

equilibria, where for example a subset of players are allowed to defect while others must

cooperate. In contrast, our theorem covers all games (subject to a mild full dimensionality

condition) and all feasible and individually rational payoffs.

Deb (2017) proves the folk theorem for asymmetric games where players from distinct

communities fill different player-roles, cheap talk communication between partners is allowed,

and all players from the same community receive the same payoff. We instead consider

random matching within a single population (though our approach readily generalizes to

multiple communities), allow asymmetric payoffs, and– most importantly– disallow cheap

talk.3 Deb and González-Díaz (2017) also disallow cheap talk in the 2-community model,

but they impose some conditions on the stage game, restrict attention to symmetric payoffs

that Pareto dominate a Nash equilibrium (thus obtaining a “Nash threat”folk theorem), and

require the population to be suffi ciently large. Their proof is completely different from ours,

as they generalize the contagion strategy approach, while we build on the block belief-free

3Ruling out cheap talk seems essential, as the point of our analysis is to see what outcomes are possible
in the absence of record-keeping and communication devices.
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approach introduced by Hörner and Olszewski (2006) to study repeated games with almost-

perfect monitoring– we compare these two approaches below. Deb, González-Díaz, and

Renault (2017) prove a general folk theorem for N -community games without discounting.

Another difference from all of these papers is that we allow matching to be non-uniform, and

even non-i.i.d..

Other random matching models assume players directly observe some information about

their partners’past play. Okuno-Fujiwara and Postlewaite (1995) and Dal Bó (2007) con-

sider finite population models; notably, the latter paper allows asymmetric payoffs. Rosen-

thal (1979), Takahashi (2010), Heller and Mohlin (2017), and Bhaskar and Thomas (2018)

consider continuum models.

Private monitoring The literature on repeated games with imperfect private moni-

toring is too large to survey here. The folk theorem with public cheap talk communication

is proved by Compte (1998) and Kandori and Matsushima (1998). Piccione (2002), Ely

and Välimäki (2002), Matsushima (2004), Ely, Hörner and Olszewski (2005), Hörner and

Olszewski (2006), and Yamamoto (2012) develop belief-free techniques that we build on.

Sugaya (2017) proves a general folk theorem under identifiability and full support condi-

tions. These conditions are violated with anonymous random matching, but some ideas

from Sugaya’s proof are nonetheless useful. We explain the connection to this literature in

Section 3.5.

Secure communication The most challenging part of our proof is providing incentives

for secure communication with anonymous random matching, when communication can be

executed only through payoff-relevant actions. As far as we know, ours is the first paper

to address this problem. Incentives for secure communication have however been studied in

the related setting of repeated games played on fixed networks (Ben-Porath and Kahneman,

1996; Renault and Tomala, 1998; Lippert and Spagnolo, 2011; Laclau, 2012, 2014; Nava and

Piccione, 2014; Wolitzky, 2015). While the technical overlap with this literature is slight,

our non-uniform matching model can approximate a fixed network, as we allow the case

where a player “almost always” interacts with the same partners. As will be seen, in this

setting we construct general-purpose communication protocols that are “fast,”“accurate,”

“secure,”and “error-proof.”
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2 Model and Folk Theorem

There is a finite set of players I = {1, ..., N}, with N ≥ 4 even. In every period t = 1, 2, . . .,

players match in pairs to play a finite, symmetric 2-player game with action set A and payoff

function u : A×A→ R, with |A| ≥ 2. Let a0, a1 ∈ A denote two arbitrary, distinct actions.

Pairs are formed as follows: (i) a matching µ is a partition of the population into pairs,

(ii) there is an exogenous distribution p over matchings, and (iii) the period-t matching µt is

drawn from p i.i.d. across periods.4 We assume p has full support and let ε̄ > 0 denote the

minimum of p(µ) over all matchings. As there are at least 3 possible matchings when N ≥ 4,

we have ε̄ ≤ 1
3
. Let µ (i) denote player i’s partner in matching µ. Let pi,j =

∑
µ:µ(i)=j p (µ)

denote the probability that players i and j are matched.

Players are anonymous– each player observes only the actions she faces and not her

opponents’ identities. Formally, letting ai,t ∈ A denote player i’s period-t action, player

i’s observation in period t is the pair (ai,t, ωi,t), where ωi,t = aµt(i),t. Say that a profile of

observations (ai, ωi)i∈I is feasible if there exists an action profile a = (a1, . . . aN) ∈
∏

i∈I A =

AN and a matching µ such that ωi = aµ(i) for all i ∈ I. Player i’s history at the beginning of

period t is denoted ht−1
i = (ai,τ , ωi,τ )

t−1
τ=1, with h

0
i = ∅. Players maximize expected discounted

payoffs with common discount factor δ < 1. Let E (δ) denote the sequential equilibrium

payoff set with discount factor δ.5

For any action profile a ∈ AN , player i’s expected payoff at action profile a is given by

ûi (a) =
∑
j 6=i

pi,ju (ai, aj) .

Thus, the (convex hull of the) feasible payoffset in theN -player game is F = co
(
{û (a)}a∈AN

)
,

where û (a) = (û1 (a) , . . . , ûn (a)). Let ū = max(a,a′)∈A2 |u (a, a′)| be the greatest magnitude

of any feasible payoff, and let u = minα∈∆(A) maxa∈A u (a, α) be the minmax payoff. Let

αmin ∈ argminα∈∆(A) maxa∈A u (a, α) be a minmax strategy in the 2-player game; to minmax

4The extension to non-i.i.d. matching is considered in Section 4.
5In defining sequential equilibrium, the choice of topology on the sets of beliefs and strategies does not

matter for us– for concreteness, take it to be the product topology. This is another point of contrast with
the approaches in Deb (2017) and Deb and González-Díaz (2017), where choosing the product topology is
essential.
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player i in the N -player game, every player but i plays αmin. Denote the set of feasible and

individually rational payoffs by F ∗ = {v ∈ F : vi ≥ u ∀i ∈ I}.

We assume F ∗ has dimension N . This condition is generic: letting

ei =
(
u
(
a0, a1

)
,
(
(1− pj,i)u

(
a1, a1

)
+ pj,iu

(
a1, a0

))
j 6=i

)
∈ RN

be the payoff vector when player i plays a0 and all other players play a1, the vectors (ei)i∈I

are linearly independent for generic values of u (a0, a1), u (a1, a0), and u (a1, a1).6

In this setting, we establish the folk theorem:

Theorem 1 For all v ∈ int (F ∗), there exists δ̄ < 1 such that v ∈ E (δ) for all δ > δ̄.

3 Key Ideas of the Equilibrium Construction

We provide a constructive proof of the folk theorem. Most of the proof is deferred to the

appendix. Here we begin the proof and introduce the key ideas underlying the construction.

We view the repeated game as an infinite sequence of finite blocks of periods. Deviations

from equilibrium play are detected as a result of communication among the players (described

below) and are then punished in two ways. First, within the block where the deviation

occurs, players switch to mutual minmaxing. Second, the deviator’s continuation payoff at

the start of the next block is reduced, while other players’continuation payoffs are adjusted

to compensate them for any cost of punishing the deviator.7

Thus, within a block, all players’payoffs are tied together, as in a contagion equilibrium of

the form introduced by Kandori (1992), Ellison (1994), and Harrington (1995). Across blocks,

however, each player’s continuation value is independent of her opponents’. Thus, while the

6Full-dimensionality of F ∗ and full-dimensionality of the underlying 2-player game are logically indepen-
dent. If the 2-player game is a pure coordination game (with payoff dimension 1) then F ∗ has full dimension.
Conversely, with N = 4 and uniform matching, the 2-player game

a0 a1

a0 4, 4 1, 3
a1 3, 1 0, 0

has full dimension, while F ∗ has dimension 1.
7This basic of idea of “rewarding the punishers”dates back to Fudenberg and Maskin (1986).
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key challenge in constructing a contagion equilibrium is providing incentives to carry out

punishments, in our construction the challenges are instead providing incentives for correct

play within each block and (especially) providing incentives for truthful communication.

We now describe the structure of our equilibrium. Players follow automaton strategies.

In each block, each player i ∈ I has two possible states– denoted xi ∈ {G,B}, for “good”

and “bad.”A player’s state in the current block and her history in the current block jointly

determine her state in the next block. We specify each player i’s block strategy in state xi–

denoted σi(xi)– and the state transition rules so that (i) for every realization of the other

players’states x−i ∈ {G,B}N−1, both σi(G) and σi(B) are optimal strategies for player i

(that is, as in Hörner and Olszewski (2006), the equilibrium is block belief-free), and (ii)

player i’s equilibrium continuation payoff is completely determined by the state of player

(i− 1) (modN). In particular, player i’s continuation payoff is high (low) if xi−1 = G (B).

Player i’s state transition rule can thus be used to control player i+ 1’s continuation payoff.

Play within a block proceeds as follows. First, there is an “initial talk phase,”where

players communicate to coordinate on the state profile x ∈ {G,B}N . Then, there is a “play

and talk”phase, during which players repeat the following “sub-block”multiple times: they

play actions that attain the target payoffs at state profile x for many periods, and then

communicate to see if anyone deviated. If players detect a deviation, they switch to the

minmaxing strategy starting in the next sub-block. This is followed by a “final talk phase,”

where players communicate a summary of the entire block history.

Since all communication is via payoff-relevant actions, to attain the target payoffs the

players must spend most of their time in the “play”phases. In particular, they cannot take

the time to communicate about every play period. Instead, when players communicate to

identify deviations, player i−1 chooses one period at random from the preceding play phase

and communicates this choice to the other players, who then share their information about

that period only. Since player i does not know in advance which period player i − 1 will

choose, this scheme can provide incentives for the entire play phase. However, for this to

work, we need to show that (i) players −i can communicate in a manner such that player i

cannot profitably deviate by attempting to manipulate the outcome of communication, and

(ii) once players −i successfully share their information, they can identify player i’s action.
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In sum, the four key ideas that underlie the construction are as follows:

1. Identifiability We first show that it is possible to perfectly identify any player’s

action by aggregating the observations of all of her opponents.

2. Communication modules Given identifiability, the next question– and the key

challenge in proving the theorem– is how to elicit players’information about their past

actions and observations. We accomplish this by introducing several communication

modules: finite repetitions of the stage game in which players communicate via actions,

along with terminal payoffs (reward functions) that make such communication incentive

compatible. As we will discuss, we must construct protocols for sharing information

via actions that are “fast,”“accurate,”“secure,”and “error-proof.”

3. Block structure If players truthfully share information– and thus actions are identified–

we can apply relatively standard techniques to sustain any feasible and individually

rational payoff in a block belief-free equilibrium.

4. Reward functions The careful construction of reward functions (i.e., continuation

payoffs from the next block, controlled by other players’ state transitions) provides

incentives for correct play and truthful communication within each block. This ties

together the communication modules and the block structure.

We describe these four aspects of the proof in turn.

3.1 Identifiability

Suppose in some period players −i play a−i and observe ω−i. Assume for now that players

−i can perfectly aggregate their observations. Then the profile (a−i, ω−i) of i’s opponents’

actions and observations perfectly identifies player i’s action and observation, (ai, ωi).

Lemma 1 There exists a function ϕ : A−i×A−i → Ai×Ai such that, if (ai, ωi)i∈I is feasible,

then ϕ (a−i, ω−i) = (ai, ωi).

Proof. Since matching occurs in pairs, the total number of players who observe the same

action they play (i.e., observe ωn = an) is always even. Therefore, if there exists a ∈ A such
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that the number of i’s opponents for whom ωn = an = a is odd, then ωi = ai = a. If instead

this number is even for every a ∈ A, then ai 6= ωi. (Otherwise, the total number of players

with ωn = an = ai would be odd.) In this case, there is one action a such that more of i’s

opponents observe ωn = a than play an = a, and there is another action ω such that more

of i’s opponents play an = ω than observe ωn = ω. This pair (a, ω) must then equal (ai, ωi).

Thus, if players −i can aggregate their observations, they can perfectly monitor player i.

While convenient, this perfect monitoring property is not necessary for our proof approach:

in Section 4 and the Supplementary Appendix, we show that our proof extends to almost-

perfect monitoring within matches. Nonetheless, perfect monitoring simplifies the proof

while letting us focus on its most novel element: incentivizing truthful communication. We

therefore maintain this assumption in the text.

3.2 Communication Protocols

The heart of the proof is the construction of communication modules that give players in-

centives to share information. It is helpful to start by explaining what properties we will

need the modules to satisfy. To do so, we provide a more detailed description of each “talk”

phase within a block, starting from the end of the block and moving backwards.

The final talk phase at the end of a block comprises three phases. In the last phase,

player i − 1 chooses one period t at random from all the previous periods in the block and

communicates it to the other players, who then communicate their period t information to

player i− 1. Player i− 1 then slightly adjusts her state transition probability such that the

effect of discounting in player i’s payoff is cancelled out: when player i − 1 chooses period

t, she increases player i’s continuation payoff by 1
Pr(t is chosen)

(
1− δt−1

)
ûi(at), where at is

identified from communication. Recall that player i− 1’s state affects player i’s payoff only.

Hence, in this communication phase, players −i are indifferent to the outcome of commu-

nication. Moreover, even player i has only a very small potential gain from manipulating

communication when δ is large (once we fix the length of the block). Since it is always pos-

sible to provide small incentives without sacrificing much effi ciency, for this communication

phase we simply need a protocol that lets players −i communicate their histories quickly
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and accurately. The basic communication module introduced below is suffi cient for this.

In the penultimate talk phase, players −i aggregate their histories from all previous talk

phases in the block. Player i− 1 uses this information to adjust her state transition. As will

be seen, the impact of this adjustment on player i’s payoff can be large, so player i may have

a strong incentive to manipulate the outcome of communication if possible. Hence, for this

communication phase we need a communication module with the property that (i) players

−i communicate their histories quickly and accurately, and (ii) there is no history at which

player i believes she can manipulate the outcome of communication to her benefit. We will

show that the secure communication module constructed below has this property. The same

module will also suffi ce for the third-to-last talk phase.

In the remaining talk phases (i.e., the talk phase after each play phase, and the initial

talk phase), there is an additional diffi culty: since these phases affect not only continuation

payoffs at the end of the block but also continuation play within the block, all players (not

only the one “about whom the others are talking”) have a strong incentive to manipulate

communication if possible. For these communication phases, we thus need a communication

module that no player can profitably manipulate. We construct the verified communication

module to have this property.

We also introduce another communication module of secondary importance– the jam-

ming coordination module. This will be described later.

A basic building block of any communication module is a communication protocol : a

procedure for players to communicate via actions (formally, a strategy profile in a finitely

repeated game). The description of a communication protocol does not include payoff func-

tions and thus entails no claims about incentive compatibility. After constructing the com-

munication protocols, we augment each of them with a reward function to construct the

communication modules, and then verify sequential rationality.

There are thus four communication protocols: the basic protocol, the secure protocol, the

verified protocol, and the jamming coordination protocol. In this subsection, we present the

first three and derive the key statistical properties for the first two. The remaining details–

as well as the reward functions used to provide incentives– are described in the appendix.

The reward functions are previewed in Section 3.4.
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We will repeatedly use the following exponential bound on the probability that a pair of

players fails to match even once during a set of T periods:

Lemma 2 For any set of T periods T ∈ NT and any pair of distinct players i, j ∈ I,

Pr (µt(i) 6= j ∀t ∈ T) ≤ exp (−ε̄T ) .

Proof. Pr (µt(i) 6= j ∀t ∈ T) ≤ (1− ε̄)T = exp (T log (1− ε̄)) ≤ exp (−ε̄T ).

3.2.1 Basic Communication Protocol

The basic protocol lets a player i ∈ I broadcast a message mi from a setMi = {1, . . . , |Mi|}.

We call player i the sender and call the other players receivers. Let T be a constant to be

determined, and let dxe denote the least integer greater than x. We require the following

properties:

1. Communication is fast : The protocol takes 2T dlog2 |Mi|e periods.

2. Communication is accurate: At the end of the protocol, each receiver j 6= i creates an

inference mi(j) ∈ Mi ∪ {0} (if mi (j) = 0, we say j fails to infer a message). With

probability of order 1−exp (−T ), j’s inference is correct: mi(j) = mi.8 Moreover, either

j’s inference is correct or j fails to infer a message: if mi (j) 6= mi then mi(j) = 0.

We show the following protocol has the desired properties:9

Basic Communication Protocol for Player i to Send Message mi with Repeti-

tion T :

• Divide the 2T dlog2 |Mi|e periods into dlog2 |Mi|e intervals of 2T periods each.

• For t ∈ {1, . . . , dlog2 |Mi|e},
8This phrasing is slightly loose: more precisely, Pr (mi (j) = mi) ≥ 1 − dlog2 |Mi|e exp (−ε̄T ). Similar

caveats apply whenever we summarize a protocol as having the property that a certain probability is “of
order 1− exp (−T ).”

9In what follows, instructions of the form “play action a in period t”are to be read as unconditional on
a player’s past actions and observations. Thus, a communication protocol is formally a strategy profile, not
only a description of on-path play.
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— If the tth digit of the binary expansion of mi− 1 is 0, player i plays a0 for the first

half of the tth interval (i.e., the first T periods in the interval) and plays a1 for

the second half of the tth interval (i.e., the last T periods in the interval).

— If the tth digit of the binary expansion of mi− 1 is 1, player i plays a1 for the first

half of the tth interval and plays a0 for the second half of the tth interval.

We call a set of T periods where player i takes a constant action a half-interval.

• Each player j 6= i plays a0 throughout the protocol.

• At the end of the protocol, each player j 6= i creates an inference mi (j) ∈Mi ∪ {0} as

follows (as a function of her history (aj,t, ωj,t)
2T dlog2|Mi|e
t=1 ):

— If, for some t ∈ {1, . . . , dlog2 |Mi|e}, ωj,τ 6∈ {a0, a1} for some period τ in the tth

interval, player j sets mi (j) = 0.

— If, for some t ∈ {1, . . . , dlog2 |Mi|e}, ωj,τ 6= a1 for every period τ in the tth interval,

player j sets mi (j) = 0.

— If, for some t ∈ {1, . . . , dlog2 |Mi|e}, ωj,τ = ωj,τ ′ = a1 for some period τ in the first

half of the tth interval and some period τ ′ in the second half of the tth interval,

player j sets mi (j) = 0.

—Otherwise, player j constructs a number m̂ ∈ {0, . . . , dlog2 |Mi|e − 1} as follows:

∗ If ωj,τ = a1 for some period τ in the first half of the tth interval and ωj,τ = a0

for every period τ in the second half of the tth interval, player j sets the tth

digit of the binary expansion of m̂ equal to 1.

∗ If ωj,τ = a1 for some period τ in the second half of the tth interval and

ωj,τ = a0 for every period τ in the first half of the tth interval, player j sets

the tth digit of the binary expansion of m̂ equal to 0.

— If m̂ ≤ |Mi| − 1, player j sets mi (j) = m̂ + 1. If m̂ ≥ |Mi| (which is possible if

log2 |Mi| is not an integer), player j sets mi (j) = 0.
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With this protocol, communication is fast by construction. Let us check that it is also

accurate. When all players follow the protocol, mi (j) = mi if and only if player j matches

with player i at least once in every T -period half-interval where player i plays a1. Hence, by

Lemma 2,

Pr (mi (j) = mi) ≥ 1− dlog2 |Mi|e exp (−ε̄T ) ∀j 6= i. (1)

Moreover, when all players follow the protocol, if mi (j) 6= mi then mi(j) = 0.

In particular, mi (j) = mi unless the realized matching process is erroneous, in that, for

some T -period half-interval, some pair of players do not match with each other even once.

Erroneous match realizations occur with low probability, but pose an important complication.

3.2.2 Secure Communication Protocol

We now define a generalization of the basic protocol, which lets player i send a message in

a way that is harder for any receiver to manipulate. We do this by designating a certain

set of players as jamming players, denoted Ijam ⊂ I\ {i}, and with small probability having

them play in a way that “jams”attempts to manipulate communication. When Ijam = ∅,

the secure protocol reduces to the basic protocol. More specifically, we construct a protocol

with the following properties:

1. Conditional on the event that no player jams communication, communication is fast

and accurate (as in the basic communication protocol).

2. Communication is receiver-secure: for each player j 6∈ Ijam∪{i}, the distribution of her

observations (ωj,t)t is independent of her strategy, and for each observation sequence

(ωj,t)t one of the following two conditions is satisfied:

(a) For each action sequence (aj,t)t, conditional on (aj,t, ωj,t)t, the probability that

some player jammed communication is of order 1− exp (−T ).

(b) For each action sequence (aj,t)t and each player j
′ 6= i, j, conditional on (aj,t, ωj,t)t

and the event that no player jams communication, the probability that mi(j
′) ∈

{mi, 0} is of order 1 − exp (−T ); moreover, if player j follows the protocol then

the probability that mi(j
′) = mi is of order 1− exp (−T ).
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The use of jamming players to make communication secure is a key innovation in our

proof. Jamming players are prescribed to mix between a0 and a1 on path, where playing a1

jams communication. This guarantees that either other players attribute their observations

to the on-path play of jamming players (Condition 2(a); this occurs if a1 is observed “fre-

quently”) or player i’s message mi is transmitted successfully (Condition 2(b); this occurs if

a1 is observed “infrequently”). It is therefore impossible for any player j 6= i to manipulate

the protocol and successfully transmit an incorrect message m′i /∈ {mi, 0}.

Secure Communication Protocol for Player i to Send Message mi with Repe-

tition T and Jamming Players Ijam:

• Divide the 2T dlog2 |Mi|e periods of the protocol into dlog2 |Mi|e intervals of 2T periods

each.

• Player i behaves as in the basic communication protocol.

• Each player j /∈ Ijam ∪ {i} behaves as in the basic communication protocol (i.e., plays

a0 throughout the protocol).

• For each player j ∈ Ijam, in the first period of each T -period half-interval (i.e., in periods

t = kT + 1 for k ∈ {0, 1, . . . , 2 dlog2 |Mi|e − 1}), player j plays a0 with probability

1− T−9 and plays a1 with probability T−9. She then repeats the chosen action for the

remainder of the half-interval (i.e., plays aj,t = aj,kT+1 for t ∈ {kT + 2, ..., (k + 1)T}).

• At the end of the protocol, each player j 6= i infers a message mi (j) ∈ Mi ∪ {0} as in

the basic communication protocol.

For j ∈ Ijam and k ∈ {0, 1, . . . , 2 dlog2 |Mi|e − 1}, if aj,kT+1 = a0 we say player j plays

REG (“regular”) in the kth half-interval, and if aj,(k−1)T+1 6= a0 we say player j plays JAM

(“jamming”) in the kth half-interval. Thus, player j plays REG and JAM with probabilities

1− T−9 and T−9 in each half-interval, independently across each half-interval.

Let us check that communication is accurate and receiver-secure. Denote the event

that all jamming players play REG throughout the protocol by ALLREG. Conditional on
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ALLREG, all players behave identically in the secure protocol and the basic protocol. In

particular, conditional on ALLREG, inequality (1) holds and mi (j) 6= 0 implies mi (j) = mi

∀j 6= i. Moreover,

Pr (mi (j) = mi ∀j 6= i ∩ ALLREG) ≥ 1−N dlog2 |Mi|e
(
exp (−ε̄T ) + 2T−9

)
. (2)

In turn, receiver-security is captured by the following lemma:

Lemma 3 For any player j 6= i with Ijam\ {j} 6= ∅ and any sequence of observations

(ωj,t)
2T dlog2|Mi|e
t=1 that arises with positive probability when players −j follow the secure proto-

col, at least one of the following two conditions holds:

1. For all (aj,t)
2T dlog2|Mi|e
t=1 , we have

Pr
(
ALLREG| (aj,t, ωj,t)2T dlog2|Mi|e

t=1

)
≤ T 9 exp

(
−1

4
ε̄T

)
. (3)

2. The following two conditions hold:

(a) For all (aj,t)
2T dlog2|Mi|e
t=1 , we have

Pr
(
mi (j

′) ∈ {mi, 0} ∀j′ /∈ {i, j} | (aj,t, ωj,t)2T dlog2|Mi|e
t=1 , ALLREG

)
≥ 1−N dlog2 |Mi|e exp

(
−ε̄4T

)
. (4)

(b) If aj,t = a0 for all t ∈ {1, . . . , 2T dlog2 |Mi|e}, then

Pr
(
mi (j

′) = mi ∀j′ /∈ {i, j} | (aj,t, ωj,t)2T dlog2|Mi|e
t=1 , ALLREG

)
≥ 1−N dlog2 |Mi|e exp

(
−ε̄4T

)
. (5)

Note that Conditions 1 and 2 are not mutually exclusive. The proof (in the appendix)

shows that Condition 1 holds if ωj,t = a1 for at least (1− ε̄3)T periods in some half-interval,

while Condition 2 holds if ωj,t = a1 for at most (1− ε̄3)T periods in every half-interval.

Intuitively, in the former case, player j observes a1 frequently, so from her perspective the
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probability that a jamming player played JAM is not too low. In the latter case, player

j observes a1 less frequently. In this case, assuming no jamming player played JAM, the

message is likely to have transmitted successfully.10

In the module we will construct to support this protocol, player j’s payoff is independent

of her opponents’inferences whenever ALLREG does not hold, and her payoff is minimized

when mi (j
′) = 0 for some j′ 6= j. Hence, when Condition 1 holds, player i believes that

the gain from manipulating communication is very small; while when Condition 2 holds,

deviations only decrease her payoff.

3.2.3 Verified Communication Protocol

In the verified communication protocol, player i first broadcasts a message mi ∈ Mi in

2 dlog2 |Mi|e periods using the basic communication protocol (with T = 1). Then, each

player (including player i herself) sequentially broadcasts her actions and observations from

these 2 dlog2 |Mi|e periods using the secure communication protocol with repetition T . The

verified protocol thus takes a total of T (|Mi| , T ) periods, where

T (|Mi| , T ) := 2 dlog2 |Mi|e+ 2
⌈
log2 |A|

4dlog2|Mi|e
⌉
NT. (6)

Roughly speaking, in this protocol, “cross-checking” observations ensures security against

attempted manipulations by any player.

Verified Communication Protocol for Player i to Send Message mi with Rep-

etition T :

At the beginning of the verified protocol, each player j has two possible types, denoted

ζj ∈ {reg, jam}. A strategy in the protocol is thus a mapping from {reg, jam} and protocol

histories to actions. Let Ijam =
{
j : ζj = jam

}
. The protocol consists of N + 1 rounds.

• Message round
10Some upper bound on the frequency of ωj,t = a1 is clearly needed here: for example, if player j observes

a1 in every period in some half-interval and no one plays JAM, then player j must have met player i in every
period, so the message cannot have transmitted to the other players.
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—Player i sends message mi ∈ Mi as in the basic communication protocol with

T = 1.11

—Each player j 6= i plays a0 throughout the round.

Let T (msg) denote the set of 2 dlog2 |Mi|e periods comprising the message round.

• j-checking round, for each j ∈ I. Each checking round consists of
⌈
log2 |A|

4dlog2|Mi|e
⌉
in-

tervals. Each interval consists of 2T periods. Let T (j) denote the set of 2T
⌈
log2 |A|

4dlog2|Mi|e
⌉

periods comprising the j-checking round.

—Player j sends message (aj,t, ωj,t)t∈T(msg) ∈ A4dlog2|Mi|e as in the basic communica-

tion protocol.

—Each player n /∈ Ijam ∪ {j} plays a0 throughout the round.

— In each half-interval, each player n ∈ Ijam \ {j} mixes between REG and JAM

with probabilities 1− T−9 and T−9, as in the secure communication protocol.

—Each player n 6= j infers a message (aj,t(n), ωj,t(n))t∈T(msg) ∈ A4dlog2|Mi|e ∪ {0} as

in the basic communication protocol.

• At the end of the protocol, each player n ∈ I creates a final inference mi(n) ∈Mi∪{0}

as follows:

— If (aj,t(n), ωj,t(n))t∈T(msg) = 0 for some j 6= n, then mi(n) = 0.

—Otherwise, if the vector (aj,t(n), ωj,t(n))t∈T(msg),j∈I is not feasible– that is, for some

j′ ∈ I and t ∈ T (msg), (aj′,t(n), ωj′,t(n)) 6= ϕ((aj,t(n), ωj,t(n))j 6=j′) (see Lemma 1

for the definition of ϕ)– then mi(n) = 0.

— If (aj,t(n), ωj,t(n))t∈T(msg),j∈I is feasible and (ai,t(n))t∈T(msg) corresponds to the bi-

nary expansion of some m̂i ∈Mi, then mi(n) = m̂i.

— If (aj,t(n), ωj,t(n))t∈T(msg),j∈I is feasible but (ai,t(n))t∈T(msg) does not correspond to

the binary expansion of some m̂i ∈ Mi, then mi(n) is set equal to an arbitrary,

pre-determined element of Mi– for concreteness, let mi (n) = 1.

11To make following the verified communication protocol sequentially rational, we will subsequently slightly
modify player i’s prescribed behavior after she herself deviates from the protocol. See Section C.3.
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In the verified protocol, we call player i the initial sender, and we say player j ∈ I is a

sender in period t if t ∈ T (j) or [j = i and t ∈ T (msg)]. We say players coordinate on mi

if mi(n) = mi for all n ∈ I.

The core of the proof involves the interaction between the verified protocol and two other

key concepts: suspicious histories and erroneous opponents’ histories. Roughly speaking,

a history hj for player j is “suspicious” if it arises only after some player deviates, some

jamming player plays JAM, or the realized matching process is erroneous. Similarly, a profile

of player j’s opponents’histories h−j is “erroneous”if it arises whenever some jamming player

plays JAM or the realized matching process is erroneous.

In Lemma 6 (in the appendix), we establish a key property of the verified protocol: For

any player j 6= i, if all players follow the protocol then either (i) all players successfully receive

message mi or (ii) player j’s opponents’histories h−j are erroneous. If players −j follow the

protocol but player j deviates then either (i’) all players successfully receive message mi,

(ii’) player j’s opponents’histories h−j are erroneous, or (iii’) some player n 6= j becomes

suspicious. Given this lemma, to provide incentives for truthful communication, we punish

player j if some player n 6= j becomes suspicious while h−j is not erroneous, and we give player

j a payoff that is greater than the punishment payoff and independent of her opponents’

inferences of mi if h−j is erroneous. With this scheme, if player j attempts to manipulate

her opponents’inferences, either (in case i’) she fails, (in case ii’) her opponents’histories are

erroneous, or (in case iii’) she makes someone suspicious and is punished. Moreover, if the

realized matching process is such that (i) occurs on path, then player j’s deviation results

in either (i’) or (iii’). Since player j cannot influence whether jamming players play JAM or

whether the matching process is erroneous, she has an incentive to follow the protocol.

Similarly, for the initial sender i, if all players follow the protocol then either (i) all players

successfully receive message mi or (ii) h−i is erroneous. If players −i follow the protocol

but player i deviates then either (i’) all players receive some common message m̃i ∈ Mi,

(ii’) player i’s opponents’histories h−i are erroneous, or (iii’) some player j 6= i becomes

suspicious (intuitively, due to cross-checking in the checking rounds). A similar construction

of continuation payoffs as for player j 6= i, together with the assumption that player i weakly
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prefers every player inferring mi to every player inferring any m̃i 6= mi, establishes player i’s

incentive to follow the protocol.

As a player’s opponents’histories are erroneous whenever a jamming player plays JAM

or the realized matching process is erroneous, and a player’s payoff is constant whenever

her opponents’histories are erroneous, a player can condition on the event that all jamming

players play REG and the realized matching process is non-erroneous when choosing her

continuation strategy. This property is the key to handling erroneous histories.

In sum, we establish that the verified protocol satisfies the following properties:

1. Communication is fast, accurate, and receiver-secure, as in the secure communication

protocol.

2. Communication is sender-secure: if a deviation by a player sending a message (either

the initial sender or the sender in a checking round) affects another player’s inference,

either this is inconsequential (because the deviator’s opponents’histories are already

erroneous) or it induces a suspicious history.

3. Communication is error-proof : if the players miscoordinate, then each player’s contin-

uation payoff is independent of her own strategy and her opponents’inferences.

3.2.4 Jamming Coordination Protocol

In the jamming coordination protocol, the players jointly determine who among them will

serve as jamming players in the subsequent communication protocols. The protocol takes

2 periods, and we describe it in the appendix (Section B.3). The idea is that each player

mixes over all actions, playing a1 with small probability, and players who observe a1 become

jamming players. This protocol allows each player to believe that her opponents are jamming

players with positive probability at any history.

3.3 Block Belief-Free Structure

In this section, we first describe the equilibrium conditions for the block belief-free construc-

tion. We then construct the sequences of actions used to attain the target equilibrium payoff.
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Finally, we specify how play in each block unfolds over time.

3.3.1 Block Belief-Free Equilibrium Conditions

We view the repeated game as an infinite sequence of T ∗∗-period blocks.12 At the beginning

of each block, each player i chooses a state xi ∈ {G,B}. Given xi, player i plays a behavior

strategy σ∗i (xi) within the block: in every period t = 1, ..., T ∗∗ of a block, σ∗i (xi) specifies a

mixed action as a function of player i’s extended block history (Li, ht−1
i ), where Li encodes

the result of private randomization conducted by player i at the beginning of the block (the

details are specified in Section E.3), and ht−1
i = (ai,τ , ωi,τ )

t−1
τ=1 ∈ H t−1

i . Denote player i’s

strategy set in the T ∗∗-period game by Σi.

Player i’s payoff at the beginning of each block is determined solely by player (i− 1)’s

state, xi−1 ∈ {G,B}, and is denoted v∗i (xi−1) ∈ R. Moreover, the distribution over player

(i− 1)’s state for the following block depends only on player (i− 1)’s state and extended

history in the current block. Therefore, player i’s continuation payoff at the end of a block

is a function only of player (i− 1)’s state and extended history. Denote this continuation

payoff by w∗i (xi−1, h
T ∗∗
i−1).

We now present conditions under which a given payoff vector v ∈ RN is attainable in a

block belief-free equilibrium. These are similar to the conditions in Hörner and Olszewski

(2006), with one significant difference: Hörner and Olszewski assume monitoring has full

support, so in their model Nash and sequential equilibrium coincide, and there is no need to

keep track of players’beliefs. In contrast, our model does not have full support, so we must

introduce beliefs, verify Kreps-Wilson consistency, and– most subtly– ensure that beliefs

respect the block belief-free equilibrium structure, in that sequential rationality is satisfied

conditional on each possible state vector x−i ∈ {G,B}N−1. To do this, we keep track

of players’beliefs conditional on each vector x−i ∈ {G,B}N−1. This approach implicitly

determines a complete, unconditional belief system, but since sequential rationality is always

imposed conditional on x−i, these unconditional beliefs do not enter into our analysis.

Formally, an ex post belief system β = (βi)i∈I consists of, for each player i ∈ I, opposing

state vector x−i ∈ {G,B}N−1, period t ∈ {1, . . . , T ∗∗}, and block history ht−1
i ∈ H t−1

i , a

12We reserve the notation T ∗ for the length of a particular subset of a block, defined in Section 3.3.3.
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probability distribution βi
(
·|x−i, ht−1

i

)
∈ ∆

(
H t−1
−i
)
. Together with a block strategy pro-

file (σi (xi))i∈I,xi∈{G,B}, an ex post belief system is consistent if there exists a sequence

of completely mixed block strategy profiles
((
σki (xi)

)
i∈I,xi∈{G,B}

)
k∈N

converging pointwise

to (σi (xi))i∈I,xi∈{G,B} such that, for each i ∈ I, x−i ∈ {G,B}N−1, t ∈ {1, ..., T ∗∗}, and

ht−1 ∈ H t−1, we have

β(ht−1
−i |x−i, ht−1

i ) = lim
k→∞

Pr(
σkj (xj))

j 6=i
(
ht−1
−i |x−i, ht−1

i

)
.13

We are now ready to present the equilibrium conditions. In what follows, Eσ [·] denotes

expectation with respect to strategy profile σ, and E(σ,β) [·|·] denotes conditional expectation

with respect to assessment (strategy profile and beliefs) (σ, β).

For all v ∈ RN and δ < 1, if there exist T ∗∗ ∈ N, strategies (σ∗i (xi))i∈I,xi∈{G,B}, con-

sistent ex post belief system β∗, values (v∗i (xi−1))i∈I,xi−1∈{G,B}, and continuation payoffs(
w∗i (xi−1, h

T ∗∗
i−1)

)
i∈I,xi−1∈{G,B},hT

∗∗
i−1 ∈HT∗∗

i−1
such that the following conditions hold for all i ∈ I,

then v ∈ E(δ):

1. [Sequential Rationality] For all x ∈ {G,B}N and ht−1
i ∈ H t−1

i ,

σ∗i (xi) ∈ argmax
σi∈Σi

E((σi,σ∗−i(x−i)),β∗)

[
(1− δ)

T ∗∗∑
τ=1

δτ−1ûi (aτ ) + δT
∗∗
w∗i (xi−1, h

T ∗∗

i−1)|x−i, ht−1
i

]
.

(7)

(Here, the sum
∑T ∗∗

τ=1 could alternatively be written as
∑T ∗∗

τ=t, since payoffs already

incurred in ht−1
i are sunk. In addition, sequential rationality is imposed for every vector

x−i ∈ {G,B}N−1. This is the defining feature of a block belief-free construction.)

2. [Promise Keeping] For all x ∈ {G,B}N ,

v∗i (xi−1) = Eσ∗(x)

[
(1− δ)

T ∗∗∑
t=1

δt−1ûi (at) + δT
∗∗
w∗i (xi−1, h

T ∗∗

i−1)

]
. (8)

13With this definition, it is clear that, whenever an ex post belief system is consistent, the corresponding
unconditional belief system is consistent in the usual Kreps-Wilson sense.
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3. [Self-Generation] For all xi−1 ∈ {G,B} and hT
∗∗

i−1 ,

w∗i (xi−1, h
T ∗∗

i−1) ∈ [v∗i (B), v∗i (G)]. (9)

4. [Full Dimensionality]

v∗i (B) < vi < v∗i (G). (10)

(I.e., player i− 1 can randomize her initial state to deliver player i’s target payoff vi.)

Defining π∗i (xi−1, h
T ∗∗
i−1) := δT

∗∗

1−δ
(
wi(xi−1, h

T ∗∗
i−1)− v∗i (xi−1)

)
, we rewrite (7)—(10) as follows:

1. [Sequential Rationality] For all x ∈ {G,B}N and ht−1
i ∈ H t−1

i ,

σ∗i (xi) ∈ argmax
σi∈Σi

E((σi,σ∗−i(x−i)),β∗)

[
T ∗∗∑
τ=1

δτ−1ûi (aτ ) + π∗i (xi−1, h
T ∗∗

i−1)|ht−1
i

]
. (11)

2. [Promise Keeping] For all x ∈ {G,B}N ,

v∗i (xi−1) = Eσ∗(x)

[
1− δ

1− δT ∗∗
T ∗∗∑
t=1

δt−1ûi (at) + π∗i (xi−1, h
T ∗∗

i−1)

]
. (12)

3. [Self-Generation] For all xi−1 ∈ {G,B} and hT
∗∗

i−1 ,

1− δ
δT
∗∗ π

∗
i (G, h

T ∗∗

i−1) ≤ 0,
1− δ
δT
∗∗ π

∗
i (B, h

T ∗∗

i−1) ≥ 0,

∣∣∣∣1− δδT
∗∗ π

∗
i (xi−1, h

T ∗∗

i−1)

∣∣∣∣ ≤ v∗i (G)− v∗i (B).

(13)

4. [Full Dimensionality] The same as (10).

Lemma 4 (Hörner and Olszewski (2006)) For all v ∈ RN and δ ∈ [0, 1), if there exist

T ∗∗ ∈ N, (σ∗i (xi))i∈I,xi∈{G,B}, β
∗, (v∗i (xi−1))i∈I,xi−1∈{G,B}, and

(
π∗i (xi−1, h

T ∗∗
i−1)

)
i∈I,xi−1∈{G,B},hT

∗∗
i−1 ∈HT∗∗

i−1

such that Conditions (10)—(13) are satisfied, then v ∈ E(δ).
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3.3.2 Target Payoff and Actions

For all v ∈ int (F ∗), there exist payoff vectors (v̄i (xi−1))i∈I,xi−1∈{G,B} ∈ R2N such that

(v̄i (xi−1))i∈I ∈ int (F ∗) ∀ (xi−1)i∈I ∈ {G,B}
N and u < v̄i (B) < vi < v̄i (G) ∀i ∈ I. Define

ε∗ :=
1

10
min
i

min {v̄i (G)− vi, vi − v̄i (B) , v̄i (B)− u} .

We approximate the payoffvectors (v̄i (xi−1))i∈I,xi−1∈{G,B} by sequences of action profiles: for

all ε∗ > 0, there exist Kv ∈ N and a sequence of action profiles
(
ak (x)

)Kv

k=1
∈ ANKv ∀x ∈

{G,B}N such that, for all i ∈ I and xi−1 ∈ {G,B}, we have
∣∣∣ 1
Kv

∑Kv

k=1 ûi
(
ak (x)

)
− v̄i (xi−1)

∣∣∣ <
ε∗. Let ûi (x) = 1

Kv

∑Kv

k=1 ûi
(
ak (x)

)
.

Next, fix (vi (xi−1))i∈I,xi−1∈{G,B} ∈ R
2N and sequences of action profile

(
(ak (x))Kv

k=1

)
x∈{G,B}N ∈

A2NKv such that, for all i ∈ I,

vi (G) = min
x:xi−1=G

ûi (x) ,

vi (B) = max
x:xi−1=B

ûi (x) > u+ 9ε∗, and

vi (B) + 9ε∗ < vi < vi (G)− 9ε∗. (14)

Players will repeat the target action sequence (ak (x))Kv
k=1 over L “sub-blocks,”where

L :=

⌈
2ū (1 +Kv)

ε∗

⌉
. (15)

For l > Kv, let ali (x) = a
l(modKv)
i (x).14

3.3.3 Calendar Time Structure

We now specify the calendar time structure of a block. The length of a block is parameterized

by T0 ∈ N. A block unfolds in the following consecutive phases. For most phases, we give a

precise description of play followed by a more intuitive description in parentheses.

14Hörner and Olszewski (2006) and several subsequent papers present their constructions under the as-
sumption that Kv = 1. With random matching, this assumption is usually with loss. For example, in the
prisoner’s dilemma, to punish player 1 while keeping her opponents’payoffs close to u (C,C), we must cycle
through action profiles where player 1 and most of her opponents cooperate, while different subsets of her
opponents take turns defecting. We thus present our construction for arbitrary Kv.
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1. Jamming Coordination Phase: The jamming coordination protocol is played. This

takes 2 periods. (“The players coordinate on who will serve as jamming players.”)

2. Initial Communication Phase: Each player i ∈ I sends xi ∈ {G,B} using the verified

communication protocol with repetition T0. As the verified protocol with repetition T

and message set Mi takes T (|Mi| , T ) periods, this phase takes a total of NT (2, T0)

periods. (“The players coordinate on x.”)

3. Initial Contagion Phase (“Contagion Phase 0”): For each i ∈ I, using the verified

communication protocol with repetition T0, player i communicates whether or not she

has detected a deviation from equilibrium play. This takes NT (2, T0) periods. (“Any

suspicion spreads.”)

4. Sub-Block l ∈ {1, ..., L}: Each sub-block l consists of

(a) Main Phase l: The main phase takes (T0)6 periods. Let T(main(l)) denote the

set of periods in main phase l. Play is described in Section F. (“If player i

has not detected a deviation, she plays ali (x (i)) in every period, where x (i) is

her inference of x in the initial communication phase. If player i has detected a

deviation, she plays αmin in every period.”)

(b) Communication Phase l, Part 1: For each i ∈ I, player i − 1 selects ti−1 (l) ∈

T(main(l)) uniformly at random and sends the number ti−1 (l) using the verified

communication protocol with repetition T0. This takes NT ((T0)6 , T0) periods.

(“Players select random periods to monitor.”)

(c) Communication Phase l, Part 2: For each i, n ∈ I, player n sends
(
an,ti−1(l)(n), ωn,ti−1(l)(n)

)
using the verified communication protocol with repetition T0, where ti−1 (l) (n) is

player n’s inference of ti−1 (l) in part 1 of Communication Phase l. This takes

NT (|A|2 , T0) periods. (“Players share information about the selected periods.”)

(d) Contagion Phase l: The same as Contagion Phase 0.
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It will be useful to denote the last period of contagion phase L by T ∗. That is,

T ∗ (T0) = 2 + 2NT (2, T0)︸ ︷︷ ︸
jamming coordination, initial communication, and contagion

+ LT 6
0︸︷︷︸

main phases

+ LN
[
T ((T0)6 , T0) +NT (|A|2 , T0) + T (2, T0)

]︸ ︷︷ ︸
communication phases part (1)’s, communication phases part (2)’s, and contagion

.

Note that the main phases comprise almost the entirety of the first T ∗ (T0) periods

when T0 is suffi ciently large.

5. Final Communication Phase to Share Information from Main Phases: This additional

communication phase is described in Sections E.3 and J.7. It uses a combination of

the secure and verified communication protocols. In this phase, players −i share their

main-phase histories to construct the reward function for player i. As in the earlier

communication phases, players communicate only about randomly chosen periods.

Let T1 (T0) denote the last period of this phase, so the phase takes T1 (T0) − T ∗ (T0)

periods. As we will see, for all ε > 0, for suffi ciently large T0 we have

T 3
0 < T1 (T0)− T ∗ (T0) < T 3+ε

0 . (16)

6. Final Communication Phase to Share Information from Non-Main Phases: This ad-

ditional communication phase is described in Sections E.2 and J.6. It uses the secure

communication protocol. In this phase, players −i share their non-main-phase histo-

ries. Since non-main phases are much shorter than main phases, players can take the

time to communicate about all of them. This renders the verified protocol unnecessary.

Let T2 (T0) denote the last period of this phase, so the phase takes T2 (T0) − T1 (T0)

periods. For all ε > 0, for suffi ciently large T0 we will have

T
11
2

0 < T2 (T0)− T1 (T0) < T
11
2

+ε

0 . (17)

7. Final Communication Phase to Cancel Discounting: This additional communication
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phase is described in Sections E.1 and J.5. It uses the basic communication protocol.

In this phase, players −i share their observations regarding another randomly chosen

period. If they learn that an action profile for which player i has a high payoff was

played earlier rather than later, player i’s continuation payoff is slightly reduced to

cancel out the effect of discounting.

Let T ∗∗ (T0) denote the last period of this phase, so the phase takes T ∗∗ (T0)− T2 (T0)

periods. For all ε > 0, for suffi ciently large T0 we will have

T 3
0 < T ∗∗ (T0)− T2 (T0) < T 3+ε

0 . (18)

In total, the length of a block as a function of T0 is T ∗∗ (T0). For all ε > 0, for suffi ciently

large T0 we have

LT 6
0 < T ∗∗ (T0) < (1 + ε)LT 6

0 .

Note that, as T0 →∞, block payoffs are almost entirely determined by main phase payoffs.

3.4 Reward Functions

Finally, we briefly preview some key features of the reward function πi
(
xi−1, h

T ∗∗
i−1

)
to be

constructed (or equivalently the continuation payoff function wi
(
xi−1, h

T ∗∗
i−1

)
).

On-Path Continuation Payoffs These are defined to satisfy self-generation and

promise-keeping: given target payoff vi(xi−1) and main-phase payoff ûi(x), define contin-

uation payoffs wi
(
xi−1, h

T ∗∗
i−1

)
∈ [vi (B) , vi (G)] such that

(
1− δT ∗∗

)
û(x) + δT

∗∗E
[
wi
(
xi−1, h

T ∗∗

i−1

)
|x
]

= vi(xi−1). (19)

Let wi(x) = E
[
wi
(
xi−1, h

T ∗∗
i−1

)
|x
]
.

Final Communication Phases In the final communication phases, each player i − 1

collects information from players −i to construct player i’s continuation payoff. As players

−i are indifferent to the result of such communication, we need only consider promise-

keeping, self-generation, and incentive-compatibility for player i. For promise-keeping, we
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slightly adjust player i’s continuation payoff to account for the possibility of erroneous match

realizations or jamming in the final communication phases: this is achieved using two simple

reward adjustment lemmas derived in Section D. Since the required adjustment is small

when T0 is large, this does not violate self-generation. Finally, since the probability that

player i can successfully manipulate communication is very small given Lemma 3, a further

small adjustment is suffi cient to ensure incentive-compatibility.

Given these properties of the final communication phases, in the rest of the block the

players can condition on the event that all messages transmit correctly in the final phases.

In particular, players anticipate that all non-main-phase histories will be communicated, one

random period from each main phase will be communicated (for each player), and any player

who deviates in the block will “confess”her deviation.

Continuation Payoffs Following an Opponent’s Deviation We require that, if in

the final communication phases some player j 6= i confesses to deviating in the block, player

i is made indifferent over all play paths. That is, player i’s continuation payoff is

wi(xi−1)− 1− δ
δT
∗∗

∑
t∈non-main phase δ

t−1ûi(at)−
1− δ
δT
∗∗

∑
t∈main phase

1{t is chosen}
Pr (t is chosen)

δt−1ûi(at),

(20)

where “t is chosen”means that, in the final communication phase to share information from

main phases, players −i aggregate information about (a−i,t, ω−i,t) and identify (ai,t, ωi,t) =

ϕ (a−i,t, ω−i,t). Here, we must ensure that wi(xi−1) is far enough from the boundary of

[vi (B) , vi (G)] to satisfy self-generation. In expectation, player i’s continuation payoff equals

wi(xi−1)− 1− δ
δT
∗∗

∑
t∈non-main or main phase δ

t−1ûi(at),

which leaves her indifferent over all play paths (at)
T ∗∗

t=1. Consequently, prior to the final

communication phases, players condition on the event that their opponents do not deviate.

Initial Communication Phase and Phase l ∈ {1, . . . , L} The most important feature

of the reward functions in these phases is that a player is made indifferent over all play

paths if either an erroneous match realization or jamming occurs (as identified by the final

communication about non-main phases). Therefore, players condition on the event that
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matching is non-erroneous and jamming does not occur.

Continuation Payoffs Following One’s Own Deviation If the outcome of commu-

nication phase l is that player i is determined to have deviated from her prescribed action

ali (x) in main phase l, then player i is minmaxed beginning in main phase l + 1 and her

continuation payoff is set to vi (B).

Let us verify that this punishment is suffi cient to deter deviations. Suppose player i

deviates in τ distinct periods in main phase l. This deviation yields a benefit of at most

(1− δ) 2ūτ . Meanwhile, it is detected if and only if one of these periods is chosen for

monitoring, which occurs with probability τ/ (T0)6. The expected penalty associated with

the deviation is therefore approximately

τ

(T0)6

[(
1− δT ∗∗−tl+1

)
(ûi(x)− u) + δT

∗∗−tl+1 (wi(x)− vi(B))
]
,

where tl+1 is the first period of main phase l + 1 and we have ignored the negligible payoffs

accrued during non-main phases. By (14) and (19), for suffi ciently large δ we have ûi(x)−u >

9ε∗ and wi(x)− vi(B) >
(
1− δT ∗∗

)
/δT

∗∗ × 9ε∗. The expected penalty is thus at least

τ

(T0)6

[
1− δT ∗∗−tl+1 + δT

∗∗−tl+1
(
1− δT ∗∗

)
/δT

∗∗]
9ε∗.

Therefore, the ratio of deviation gain to expected penalty is at most

(1− δ) (T0)6

1− δT ∗∗−tl+1 + δT
∗∗−tl+1

(
1− δT ∗∗

)
/δT

∗∗
2ū

9ε∗
−→
δ→1

(T0)6

2T ∗∗ − tl+1

2ū

9ε∗
≤ 1

L

2ū

9ε∗
.

Since L > 2ū/9ε∗, deviations are deterred when δ close to 1.

Jamming Coordination Phase We have not described how to provide incentives to

follow the jamming coordination protocol. Since the complete history of play in this phase

is communicated during the final communication phases, this is fairly straightforward. The

details are deferred to Section C.4.
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3.5 Relation to the Private Monitoring Literature

Some readers may wish to understand in more detail how our construction relates to existing

work on the folk theorem with private monitoring. Our goal is to construct a block belief-

free equilibrium as in Hörner and Olszewski (2006). To allow accurate communication in

the presence of random matching, we have players repeat actions and messages and apply a

concentration inequality (Lemma 2). In this sense, our construction joins the line of research

combining belief-free equilibria and review strategies, following Matsushima (2004). The

closest papers in this literature are Yamamoto (2012) and Sugaya (2017).

Yamamoto shows how to combine belief-free equilibria and review strategies in general

repeated games. There are two key differences with our approach. First, Yamamoto’s

construction relies on conditional independence: player i’s signal and player j’s signal are

independent conditional on actions. Thus, player i cannot learn player j’s inference from her

own signals. In contrast, with random matching signals are not conditionally independent.

For example, if player j’s signals imply that she matched with the sender in every period

in a communication phase, she can infer that her opponents did not match with the sender.

We control this novel learning effect via the innovation of introducing jamming players.

Second, Yamamoto assumes pairwise identifiability (i.e., each player can unilaterally

identify other players’deviations) and constructs a belief-free equilibrium (i.e., each player

is indifferent among all actions that are ever played with positive probability, regardless of

her opponents’histories). The former property ensures that communication is not necessary

for monitoring, and the latter ensures that communication is also not necessary for providing

incentives to punish. Indeed, in Yamamoto’s construction, communication following main

phases is used only to ensure that different punishers do not miscoordinate– somewhat like

the contagion phase in our construction.

In contrast, our monitoring structure does not satisfy pairwise identifiability. Hence,

to monitor deviations, players must aggregate information by communication. This necessi-

tates the construction of secure communication protocols, so the deviator cannot manipulate

communication. In addition, since our equilibrium is not belief-free, players may have strict

incentives to infer each other’s messages correctly. To control the resulting incentives to
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experiment, we must construct communication protocols that are accurate (if a player suc-

cessfully infers a message, her inference is always correct) and error-proof (if she fails to infer

a message, her continuation payoff is independent of her opponents’inferences).

Sugaya proves a general folk theorem by generalizing Yamamoto’s construction to condi-

tionally dependent monitoring. As in the current paper, mixed strategies are used to control

incentives after erroneous histories that arise with small ex ante equilibrium probability. In

particular, after observing such a history, a player believes this observation results from a

rare realization of her opponents’mixed strategies. By specifying her continuation payoff

to be constant after such erroneous realizations, the player is incentivized to adhere to the

same continuation play as after non-erroneous histories.

However, the N -player version of Sugaya’s construction still assumes pairwise identifia-

bility. This makes communication straightforward, as when player i “sends a message”to

player j, player j can construct a statistic whose distribution depends on player i’s message

but is independent of unilateral deviations by players −i. In the current paper, pairwise

identifiability is robustly violated, so we must introduce novel communication protocols that

let players share information securely.

4 Extensions

An advantage of our approach is that it is amenable to further extensions. We present three:

imperfect monitoring within matches, non-pairwise matching, and non-i.i.d. matching. Our

goal is not so much to establish the most general results possible but to illustrate the broader

applicability of our proof technique– to this end, in this section we allow some slight sim-

plifying assumptions, such as access to public randomization and modest restrictions on the

stage game. Proofs are deferred to the Supplementary Appendix.

4.1 Almost-Perfect Within-Match Monitoring

We can allow almost-perfect monitoring within a match. This is not surprising since we build

on Hörner and Olszewski (2006), who prove the folk theorem with almost-perfect monitoring.

The required modifications to our proof are relatively minor. First, we have jamming
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players mix over all actions, rather than just a0 and a1. This makes players attribute un-

expected observations to randomization by jamming players rather than monitoring errors.

Second, players’reward functions must be adjusted to account for the possibility of monitor-

ing errors– this complicates matters slightly relative to the perfect within-match monitoring

case, where Lemma 1 ensured that a player’s opponents can perfectly identify her history

once they aggregate their information. Third, it is useful to introduce a small probabil-

ity that the block is extended to include a final “long communication phase”on which the

required reward adjustments can be based.

Formally, a within-match monitoring structure (q,Ω) consists of a finite signal space Ω

and a mapping q : A× A → Ω× Ω, where q(ωi, ωµ(i)|ai, aµ(i)) is the probability that player

i observes signal ωi and her partner observes signal ωµ(i) when i plays ai and her partner

plays aµ(i). Assume without loss of generality that q has full support. Let qi denote the

marginal distribution of q over i’s signal. We say monitoring is ε-perfect if Ω = A and

qi(aµ(i)|ai, aµ(i)) ≥ 1 − ε ∀
(
ai, aµ(i)

)
∈ A2. Let E (δ, q) denote the sequential equilibrium

payoff set with discount factor δ and monitoring structure q.

Theorem 2 Suppose public randomization is available. For all v ∈ int (F ∗), there exist

δ̄ < 1 and ε̄ > 0 such that v ∈ E (δ, q) for all δ > δ̄ and all ε-perfect within-match monitoring

structures q with ε ≤ ε̄.

Note that Theorem 2 assumes public randomization, in contrast to both our main result

and Hörner and Olszewski’s folk theorem. In the proof, public randomization is used to

decide when to extend the block by including a long communication phase.

4.2 Non-Pairwise Matching

The assumption that matching is pairwise is also restrictive. For example, this requires

that all players “play the game”the same number of times, and thus rules out a distinction

between frequent and infrequent participants. Our approach can however be extended to

this setting, with some restrictions on the structure of the game and the target payoff set.

A matching µ is now an arbitrary partition of the population into groups, rather than

pairs. (A group of size 1 means a player is “unmatched”in the current period.) We continue
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to assume that matches are drawn from a fixed i.i.d. distribution p. We also assume that

there is an upper bound M ≤ N on the size of a group, and that any partition of the

population into groups of size ≤M occurs with probability at least ε̄ > 0.

Whenever n∗ ≤M players are matched together in a group, they play a finite game with

action sets (Ai∗ [n
∗])n

∗

i∗=1 and payoff functions (u∗i∗ [n∗])n
∗

i∗=1, where Ai∗ [n
∗] ≥ 2 ∀i∗. We allow

two possible structures for the n∗-player games:

1. Symmetric stage games: For each n∗ ≤ M , the n∗-player game is symmetric: all

players have the same action set A[n∗] and payoff function u[n∗] : A[n∗]n
∗ → R. At

the end of each period, every player observes the number of her partners who take

each action a ∈ A: letting µt (i) denote the set of player i’s period-t partners, player

i’s period-t signal is ωi,t =
(
n∗(i), (ωi,t(a))a∈A[n∗(i)]

)
, where n∗ (i) = 1 + |µt (i)| and

ωi,t(a) =
∣∣{µt (i) : aµt(i) = a}

∣∣ ∀a ∈ A [n∗ (i)].

Each player i’s strategy in the one-shot game is a mapping from n∗(i) to an element

of A[n∗ (i)]. Let Ā denote the pure strategy set in the one-shot game (it is the same

for every player). Let Āmix denote the mixed strategy set.

Let F = co
({(

ui
(
(ān)n∈I

))
i

}
ān∈Ā ∀n

)
. Given a mixed strategy profile (ᾱn)n∈I ∈∏

n∈I Ā
mix, let ui

(
(ᾱn)n∈I

)
:= maxāi∈Ā ûi

(
āi, (ᾱn)n 6=i

)
denote the highest payoffplayer

i can attain against (ᾱn)n6=i. Our target payoff set is

F ∗ =

{
v ∈ F : ∃

(
ᾱmin
n

)
n∈I ∈

∏
n∈I

Āmix such that vi ≥ ui

((
ᾱmin
n

)
n∈I

)
∀i ∈ I

}
.

In general, this set is smaller than the feasible and individually rational payoff set.

However, it equals this set if the distribution over matches is symmetric across play-

ers. Moreover, for any match distribution, taking
(
ᾱmin
n

)
n∈I to be a symmetric Nash

equilibrium yields a “Nash threat”folk theorem.

2. Random player-roles: For each n∗ ≤ M , the n∗-player game is arbitrary, but

each player in In∗ is randomly assigned one of the n∗ player-roles. When player

i ∈ In∗ is assigned player-role i∗, she has action set Ai∗ [n∗] and payoff function

ui∗ [n
∗] : (Ai∗ [n

∗])n
∗

i∗=1 → R. Let i∗(i) denote player i’s assigned role. Player i’s period-t
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signal is ωi,t = (n∗(i), i∗(i), (ai∗,t (i))n
∗(i)
i∗=1 ), where ai∗,t (i) is the period-t action of the

player assigned to role i∗ in i’s match.

Each player i’s strategy in the one-shot game is a mapping from (n∗(i), i∗(i)) to an

element of Ai∗(i)[n∗ (i)]. Given this definition, Ā, Āmix, F , ui
(
(ᾱn)n∈I

)
, and F ∗ are

defined as in the symmetric stage game specification.

Theorem 3 With non-pairwise matching and either symmetric stage games or random

player-roles, for all v ∈ int (F ∗), there exists δ̄ < 1 such that v ∈ E (δ) for all δ > δ̄.

Again, the required modifications to the proof are minor. A player must now report her

group size and player-role (if applicable) in addition to her action and observation. Given

this additional information, Lemma 1 generalizes to non-pairwise matching. In addition, the

jamming coordination protocol must be modified to ensure that each player believes some

of her opponents are jamming players with high enough probability, regardless of the sizes

of the groups in which she herself matches.

4.3 Non-I.I.D. Matching

We can also extend our approach to situations where (pairwise) matching is determined by a

Markov process that depends on both the current match and the current action profile. This

encompasses models with endogenous match separation, such as finite population versions of

Shapiro and Stiglitz (1984), Datta (1996), Kranton (1996), Carmichael and MacLeod (1997),

Eeckhout (2006), Fujiwara-Greve and Okuno-Fujiwara (2009), and Peski and Szentes (2013).

Let the distribution over period-t matches p(·|at−1, µt−1) depend on the previous action

profile at−1 and match µt−1. Assume p(·|at−1, µt−1) has full support for each at−1, µt−1, and

let ε̄ > 0 denote the minimum of p(µt|at−1, µt−1) over all at−1, µt−1, and µt.

We impose some identifiability conditions on p(·|at−1, µt−1). Order theN (N − 1) /2 pairs

of distinct players (i, j) ∈ I2, and denote the resulting sequence by C. Suppose in each period

t = 1, ..., N (N − 1) /2 players i, j ∈ Ct– the tth element of C– play a1 and other players

play a0. Call this strategy σ̄. Let yt = 1 denote the event that the pair of players in Ct

match with each other in period t, and let yt = 0 denote the complementary event. Let

32



yC = (yt)
N(N−1)/2
t=1 . We assume yC statistically identifies the period-1 match µ1: letting P be

the matrix with dimension

N/2−1∏
k=0

(N − 2k − 1)︸ ︷︷ ︸
# of possible matches

× 2N(N−1)/2︸ ︷︷ ︸
# of possible values for yC

whose (µ, yC)-element corresponds to the probability of yC when µ1 = µ and the players

follow σ̄, we assume P has full row rank.

We also assume that, for each a ∈ AN , the
∏N/2−1

k=0 (N − 2k − 1)×
∏N/2−1

k=0 (N − 2k − 1)

matrix Q(a) with
(
µt−1, µt

)
-element p

(
µt|a, µt−1

)
has full rank. That is, µt statistically

identifies µt−1.

The feasible payoff set is defined as follows: Let F (µ1, δ) be the set of payoffs v ∈ RN

that are attained by some strategy profile in the repeated game with initial match µ1 and

discount factor δ, allowing public randomization. In the Supplementary Appendix, we show

that limδ→1 F (µ1, δ) exists and is independent of µ1. The feasible payoff set is then defined

as F = limδ→1 F (µ1, δ) for arbitrary µ1. We also show that F = limκ→∞ limδ→1 F
κ (µ1, δ),

where F κ (µ1, δ) is the set of payoffs attainable by the infinite repetition of a strategy in the

κ-period finitely repeated game with initial match µ1, for any µ1.
15

The minmax payoff is the same as in the i.i.d. case: u = minα∈∆(A) maxa∈A u (a, α). The

set of feasible and individually rational payoffs is F ∗ = {v ∈ F : vi ≥ u ∀i ∈ I}.

Theorem 4 With non-i.i.d. matching, for all v ∈ int (F ∗), there exists δ̄ < 1 such that

v ∈ E (δ) for all δ > δ̄.

The required modifications to the proof are now more substantial. The basic idea is to

exploit the fact that, for large enough T , any two matches separated by T periods are almost

independent. This lets us preserve the block belief-free structure of the main construction.

15Since players cannot observe the period-t match µt, we have a stochastic game with hidden state and
private signals. Platzman (1980), Rosenberg, Solan, and Vieille (2002), and Yamamoto (2017) have shown
the same result with public signals. In this case, the feasible payoff set is the solution to a single-agent
partially observable Markov decision problem, and can be characterized by dynamic programming. This is
no longer possible with private signals, and we use a novel argument based on the minmax theorem.
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5 Discussion

Multiple player-roles and multiple communities: As seen in Section 4.2, our approach

allows multiple player-roles. This accommodates settings with one-sided moral hazard within

a match. We can also extend our result to allow the population to be divided into multiple

communities, where each community is assigned a fixed role. For example, in a stage-game

between a buyer and a seller, we can accommodate both the case where each player is always

either a buyer or a seller, and the case where each player can play different roles.

Cheap talk and public randomization: The folk theorem would be easy to prove

if we allowed public (“broadcast”) cheap talk communication. This would make detecting

deviations straightforward, and then cooperation could be sustained by punishing deviations

through mutual minmaxing. Deb (2017) considers a setting with private (within-match)

cheap talk and shows that it is possible to partially detect deviations, and then applies the

perfect monitoring version of Hörner and Olszewski. On the other hand, allowing public

randomization would not simplify our construction much.16

Incomplete information: A concern in random matching models is that equilibria may

not be robust to incomplete information. For example, the contagion strategies of Kandori,

Ellison, and Harrington perform poorly in the presence of a few “commitment types”who

always defect. Our approach of viewing the random matching game as a single N -player

game and controlling each player’s continuation payoff separately should be more robust to

these considerations. This idea is hard to formalize, however, as incomplete information can

undermine the communication modules in our construction. Nonetheless, we conjecture that

our approach could be combined with that in Fudenberg and Yamamoto (2010) to give a

partial folk theorem for ex post equilibria in settings with incomplete information.

Low discount factors: We have emphasized a range of advantages of the block belief-

free approach over the contagion approach in constructing equilibria in anonymous random

matching games. A relative disadvantage is that our construction requires a very high

16In Phase 5 of our construction, each player i randomly chooses period numbers (ti (l))
L
l=1 and commu-

nicates them to her opponents. With public randomization, we could eliminate this phase by letting nature
select these random periods.
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discount factor as a function of the population size, while contagion strategies are remarkably

effective (in the prisoners’dilemma) even for fairly low δ.17 Nonetheless, following Hörner

and Takahashi (2016), it can be shown that the asymptotic rate of convergence of our

constructed equilibrium set to F ∗ is at least (1− δ)−1/2 for generic stage games. More

broadly, formalizing and investigating performance criteria for low δ in general anonymous

random matching games is an interesting direction for future research.
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[44] Pęski, Marcin and Balázs Szentes (2013), “Spontaneous Discrimination,”American Eco-
nomic Review, 103, 2412-2436.

[45] Piccione, Michele (2002), “The Repeated Prisoner’s Dilemma with Imperfect Private
Monitoring,”Journal of Economic Theory, 102, 70-83.

[46] Renault, Jérôme and Tristan Tomala (1998), “Repeated Proximity Games,” Interna-
tional Journal of Game Theory, 27, 539-559.

[47] Rosenthal, Robert (1979), “Sequences of Games with Varying Opponents,”Economet-
rica, 47, 1353-1366.

[48] Shapiro, Carl and Joseph Stiglitz (1984), “Equilibrium Unemployment as a Worker
Discipline Device,”American Economic Review, 74, 433-444.

[49] Sugaya, Takuo (2017), “The Folk Theorem in Repeated Games with Private Monitor-
ing,”working paper.

[50] Sugden, Robert (1986), The Economics of Rights, Cooperation and Welfare, Oxford:
Basil Blackwell.

[51] Takahashi, Satoru (2010), “Community Enforcement when Players Observe Partners’
Past Play,”Journal of Economic Theory, 145, 42-62.

[52] Wallace, Neil (2001), “Whither Monetary Economics?”International Economic Review,
42, 847-869.

[53] Wolitzky, Alexander (2015), “Communication with Tokens in Repeated Games on Net-
works,”Theoretical Economics, 10, 67-101.

[54] Yamamoto, Yuichi (2012), “Characterizing Belief-Free Review-Strategy Equilibrium
Payoffs under Conditional Independence,”Journal of Economic Theory, 147, 1998-2027.

38



Appendix: Proof of Theorem 1

A Overview of the Proof and Notation

• First, in Section B, we establish statistical properties of the secure, verified, and

jamming coordination protocols.

• Next, in Section C, we augment the protocols with reward functions to construct the

communication modules. We then establish incentive properties of the four modules:

basic, secure, verified, and jamming coordination.

• Third, in Section D, we establish two reward adjustment lemmas, used to correct for

the possibility of unlikely communication errors (which are caused by both erroneous

match realizations and jamming players).

• Fourth, in Section E, we prove several reduction lemmas that simplify the discounted,

infinitely repeated game: (i) we reduce the game to an undiscounted, finitely repeated

game with final-period reward functions, (ii) we show that, as a result of communica-

tion, the final-period reward functions can exhibit some dependence on other players’

histories, and (iii) we show that it suffi ces to establish optimality of each player’s strat-

egy only at histories consistent with her opponents’equilibrium strategies. Proving

these lemmas involves the basic, secure, and verified communication modules, as well

as the reward adjustment lemmas.

• In Section F, we use the reduction lemmas and the verified and jamming coordination

modules to construct the equilibrium strategies.

• In Section G, we construct the final reward function, which sums the rewards for the

main phases, communication phases, and contagion phases.

• Finally, in Sections H and I, we verify the equilibrium conditions.

• Section J collects the proofs of several lemmas used earlier.
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The proof uses a range of terminology to refer to sets of consecutive periods that carry

meaning in the construction. The following glossary collects this terminology, ordered from

the longest set of periods (a block) to the shortest (a single period).

Terminology Meaning

Block T ∗∗ periods, structured as in Section 3.3.3.

Sub-Block
Consecutive Main, Communication, and Contagion Phases.

There are L sub-blocks in each block. See Section 3.3.3.

Phase A major component of a block. See Section 3.3.3.

Sub-Phase
A complete play of a communication protocol within a phase.

See Section F.

Round A major component of the verified protocol. See Section 3.2.3.

Interval 2T consecutive periods in the basic, secure, or verified protocol.

Half-Interval T consecutive periods in the basic, secure, or verified protocol.

Period A single play of the game.

Table 1: Glossary of Terminology Describing Timing

We also collect some notation that will be used repeatedly in the proof, indicating where

the definitions may be found.

Notation Meaning

vi The target payoff.

vi(G) The lowest payoff when players coordinate on x with xi−1 = G (see (14)).

vi (B) The highest payoff when players coordinate on x with xi−1 = B (see (14)).

u The minmax payoff (see Section 2).

ū The greatest magnitude of any feasible payoff (see Section 2).

uG The smallest feasible payoff (see (63)).

uB The largest feasible payoff (see (63)).

Table 2: Glossary of Notation for Payoffs
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In addition, recall that, by (14), u+ 18ε∗ < vi (B) + 9ε∗ < vi < vi (G)− 9ε∗.

Notation Meaning

πcancel
i (a−i, ω−i) Reward to make player indifferent over actions with payoff 0 (see (28)).

πai (a−i, ω−i) Reward to give payoff 0 if ai = a and −1 otherwise (see (29)).

πi,t(h
T′
−i)

Reward to give payoff 0 if player follows verified protocol in

checking rounds, and give payoff − 1 otherwise (see (34)).

πcancel
i (xi−1, a−i, ω−i)

Reward to make player indifferent over actions with payoff uxi−1 ,

while satisfying self-generation (see (64)).

πvii (xi−1, a−i, ω−i)
Reward to make player indifferent over actions with payoff vi (xi−1) ,

while satisfying self-generation if all players play ak(x) (see (64)).

πvii (xi−1, a−i, ω−i|αmin)
Reward to make player i indifferent over actions with payoff vi (xi−1)

when opponents play αmin (see (64)).

Table 3: Glossary of Notation for Reward Functions

Finally, we use standard asymptotic notation: “f (T0) = O (g (T0))” means “∃C >

0,∃T̄ > 0 : ∀T0 > T̄ , |f (T0)| ≤ Cg (T0).”

B Communication Protocols

In this section and Section C, we view each protocol as a distinct, finitely-repeated game.

A “protocol history” is a history in such a game: if T is the set of periods comprising a

protocol, a protocol history for player j is a vector hj = (aj,t, ωj,t)t∈T ∈ Hj. Denote the set

of protocol history profiles by H =
∏

j∈I Hj.

B.1 Secure Communication Protocol

Lemma 3 in the text provides the required properties. Here, we provide the proof.

Fix j 6= i with Ijam\ {j} 6= ∅. We claim that (3) holds if ωj,t = a1 for more than (1− ε̄3)T

periods in some half-interval, while (4) and (5) hold if ωj,t = a1 for at most (1− ε̄3)T periods
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in every half-interval.

First suppose there is an half-interval S in which ωj,t = a1 for γ periods, with γ >

(1− ε̄3)T . Fix a player j′ ∈ Ijam\ {j}. Let j′JAMS denote the event that, in half-interval

S, player j′ plays JAM and all other jamming players play REG. Let (aj,t, ωj,t)
2T dlog2|Mi|e
t=1 |S

denote the restriction of (aj,t, ωj,t)
2T dlog2|Mi|e
t=1 to half-interval S. Then

Pr
(

(aj,t, ωj,t)
2T dlog2|Mi|e
t=1 |S|j′JAMS

)
Pr
(

(aj,t, ωj,t)
2T dlog2|Mi|e
t=1 |S|ALLREG

) =

(
pi,j + pj′,j

pi,j

)γ (
1− pi,j − pj′,j

1− pi,j

)T−γ
≥ exp

(((
1− ε̄3

)
log

pi,j + pj′,j
pi,j

+ ε̄3 log
1− pi,j − pj′,j

1− pi,j

)
T

)
.

Since log
pi,j+pj′,j

pi,j
≥ log (1 + ε̄) ≥ ε̄ − 1

2
ε̄2 ≥ 1

2
ε̄ and log

1−pi,j−pj′,j
1−pi,j ≥ − pj′,j

1−pi,j ≥ −
1−ε̄
ε̄
(and

ε̄ ≤ 1
3
), we have

(
1− ε̄3

)
log

pi,j + pj′,j
pi,j

+ ε̄3 log
1− pi,j − pj′,j

1− pi,j
≥
(
1− ε̄3

) 1

2
ε̄+ ε̄3

(
−1− ε̄

ε̄

)
≥ 1

4
ε̄.

Hence, by Bayes’rule,

Pr
(
ALLREG| (aj,t, ωj,t)2T dlog2|Mi|e

t=1

)
≤

1 +
Pr (j′JAMS) Pr

(
(aj,t, ωj,t)

2T dlog2|Mi|e
t=1 |S|j′JAMS

)
Pr (ALLREG) Pr

(
(aj,t, ωj,t)

2T dlog2|Mi|e
t=1 |S|ALLREG

)
−1

≤

1 + T−9
Pr
(

(aj,t, ωj,t)
2T dlog2|Mi|e
t=1 |S|j′JAMS

)
Pr
(

(aj,t, ωj,t)
2T dlog2|Mi|e
t=1 |S|ALLREG

)
−1

≤
[
1 + T−9 exp

(
1

4
ε̄T

)]−1

≤ T 9 exp

(
−1

4
ε̄T

)
.

This establishes (3).

Next suppose ωj,t = a1 for at most (1− ε̄3)T periods in every half-interval. Then, in

each half-interval where player i plays a1, player i matches with a player other than j in at

least ε̄3T0 periods. Suppose player j plays a0 throughout the protocol. For all j′ /∈ {i, j},

if player i matches with player j′ at least once in each half-interval where player i plays a1,

42



and ALLREG occurs, then mi (j
′) = mi. Hence, by Lemma 2,

Pr
(
mi (j

′) = mi|
(
a0, ωj,t

)2T dlog2|Mi|e
t=1

, ALLREG
)
≥ 1− dlog2 |Mi|e exp

(
−ε̄ε̄3T

)
.

Applying this bound repeatedly for each j′ 6= i, j, we obtain

Pr
(
mi (j

′) = mi ∀j′ /∈ {i, j} |
(
a0, ωj,t

)2T dlog2|Mi|e
t=1

, ALLREG
)
≥ 1−N dlog2 |Mi|e exp

(
−ε̄4T

)
.

This establishes (5). Similarly– regardless of player j’s behavior– if player i matches with

player j′ 6= i, j in some period in each half-interval where player i plays a1, then mi (j
′) ∈

{mi, 0}. (In particular, mi (j
′) = 0 if j ever matches with j′ while playing aj /∈ {a0, a1}, or if

i and j match with j′ while playing a1 in different halves of the same interval, andmi (j
′) = 1

otherwise.) Hence, (4) also holds.

B.2 Verified Communication Protocol

B.2.1 Notation

Let σ∗,mii denote player i’s prescribed protocol strategy. For j 6= i, let σ∗j denote player j’s

prescribed protocol strategy. Let σ∗,mi =
(
σ∗,mii , σ∗−i

)
. For j ∈ I, let Σj denote the set of

possible protocol strategies for j.

For each j, j′ ∈ I, player j’s equilibrium strategy in the j′-checking round is determined

by (aj,t, ωj,t)t∈T(msg) and ζj ∈ {reg, jam} (independently of mi). We say player j follows σ∗j

in the j′-checking round if, for each τ ∈ T(j′), her action ai,τ is in the support of σ∗j given

(aj,t, ωj,t)t∈T(msg), ζj ∈ {reg, jam}, and (aj,t, ωj,t)t∈T(j′),t≤τ−1.

Let H<j′ denote the set of protocol history profiles at the beginning of T(j′) that arise

with positive probability under some strategy profile σ. Given h<j
′ ∈ H<j′ , let HT(j′)

j |h<j′

denote the set of protocol history profiles during T(j′) that are reached from h<j
′
with

positive probability under some strategy profile (σj, σ
∗
−j) with σj ∈ Σj (i.e., when players

−j follow the protocol).
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B.2.2 Suspicious Histories

For each j ∈ I, say that player j is suspicious at protocol history hj, denoted susp (hj) = 1,

if mi(j) = 0. Otherwise, susp (hj) = 0. Note that susp (hj) = 1 only if some player deviates,

some jamming player plays JAM, or the realized matching process is erroneous. (Recall

that the matching process is erroneous if, for some half-interval, some pair of players do not

match with each other even once.)

B.2.3 Regular and Erroneous Opponents’Histories

We classify each of player j’s opponents’history profiles as regular or erroneous, θj (h−j, ζ) ∈

{R,E}. (Note that this classification can also depend on the type profile ζ = (ζn)n∈I .)

When we construct a module based on this protocol, this variable will be used to construct

continuation payoffs. In particular, θj (h−j, ζ) = E will imply that player j’s continuation

payoff does not depend on her opponents’inferences.

For j, j′ ∈ I, we first define θj (h−j, ζ, j
′) = E (“j’s opponents’histories in the j′-checking

round are erroneous”) if and only if one or more of the following four conditions holds:

1. ζj = jam.

2. There exists n ∈ Ijam \ {j, j′} who plays JAM in some half-interval in T (j′).

3. [Condition FAIL] j 6= j′ and there exist a half-interval S in T (j′) and a player n 6= j′

such that player j′ plays a1 throughout S but ωn,t = a0 for all t ∈ S. (Note that

whether this event occurs is determined by h−j, as Lemma 1 implies that hj is uniquely

determined by h−j.)

4. [Condition FAILj’] j = j′, player j′ follows σ∗j′ in the j
′-checking round, and there exist

a half-interval S in T (j′) and a player n 6= j′ such that player j′ plays a1 throughout

S but ωn,t = a0 for all t ∈ S. (Again, this event is determined by h−j, by Lemma 1.)

(Note that θj (h−j, ζ, j
′) depends on h−j only through h

T(j′)
−j and hT(msg)

−j , the latter because

whether player j′ follows σ∗j′ in the j
′-checking round (in [Condition FAILj’]) depends on

(aj′,t, ωj′,t)t∈T(msg).)
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We define θj (h−j, ζ) = E if and only if either θj (h−j, ζ, j
′) = E for some j′ ∈ I or some

player j′ 6= j deviates from σ∗j′ in any checking round. Otherwise, define θj (h−j, ζ) = R. In

addition, for each j′ ∈ I, let JAMj′,−j denote the event that there exists n ∈ Ijam\{j, j′} who

plays JAM in some half-interval in T(j′). Let REGj′,−j denote the complementary event.

Lemma 5 For each player j ∈ I, each type profile ζ ∈ {reg, jam}N , and each history profile

h<j
′ ∈ H<j′,

1. If all players follow σ∗ in the j′-checking round, then Pr
(
θj (h−j, ζ, j

′) = E|h<j′ , ζ
)
is

the same for every h<j
′ ∈ H<j′.

2. σ∗j′ ∈ argmaxσj′∈ΣT
j′

Pr

(
σj′ ,σ

∗
−j′

) (
θj′ (h−j′ , ζ, j

′) = E|ζ, h<j′
)
.

3. If all players follow σ∗ in the j′-checking round and (aj′,t(n), ωj′,t(n))t∈T(msg) 6= (aj′,t, ωj′,t)t∈T(msg)

for some n ∈ I, then (aj′,t(n), ωj′,t(n))t∈T(msg) = 0 and θj (h−j, ζ, j
′) = E.

4. If player j′ follows σ∗j′ in the j
′-checking round, (aj′,t(n), ωj′,t(n))t∈T(msg) 6= (aj′,t, ωj′,t)t∈T(msg)

for some n ∈ I, and θj (h−j, ζ, j
′) = R, then (aj′,t(n), ωj′,t(n))t∈T(msg) = 0.

5. If j 6= j′, players −j follow σ∗−j in the j′-checking round, and (aj′,t(j), ωj′,t(j))t∈T(msg) 6=

mi(j
′), then θj (h−j, ζ, j

′) = E.

Proof.

1. For any message (aj′,t, ωj′,t)t∈T(msg), player j′ plays a1 the same number of times in

each interval. Hence, the probability that FAIL (or FAILj’) holds is independent of

(aj′,t, ωj′,t)t∈T(msg).

2. If player j′ deviates from σ∗j′ then FAILj’does not hold. Moreover, Conditions 1 and

2 for θj (h−j, ζ, j
′) = E are independent of σj, and FAIL only applies when j 6= j′.

Hence, the desired inequality holds.

3. If j ∈ Ijam or a player in Ijam\{j, j′} plays JAM in some half-interval, then θj (h−j, ζ, j
′) =

E by construction. If j /∈ Ijam and all players Ijam \ {j, j′} play REG in every half-

interval, then (aj′,t(n), ωj′,t(n))t∈T(msg) 6= (aj′,t, ωj′,t)t∈T(msg) only if player n does not ob-

serve a1 in some half-interval where player j′ plays a1. Hence, (aj′,t(n), ωj′,t(n))t∈T(msg) =

0 and FAIL or FAILj’holds.
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4. If θj (h−j, ζ, j
′) = R then each player n 6= j′ observes a1 in each half-interval where

player j′ plays a1. Hence, (aj′,t(n), ωj′,t(n))t∈T(msg) 6= (aj′,t, ωj′,t)t∈T(msg) implies

(aj′,t(n), ωj′,t(n))t∈T(msg) = 0.

5. When players −j follow σ∗−j, (aj′,t(j), ωj′,t(j))t∈T(msg) 6= (aj′,t, ωj′,t)t∈T(msg) only if player

j does not observe a1 in some half-interval where player j′ plays a1. Hence, FAIL holds.

B.2.4 Statistical Properties

The next lemma establishes the key properties of the verified protocol.

Lemma 6 Suppose that

2N2
⌈
log2 |A|

4dlog2|Mi|e
⌉ (

1 + T 9 exp (−ε̄T )
)
≤ T. (21)

Then the following claims hold for every mi ∈Mi and every type profile ζ ∈ {reg, jam}N :

1. For any j 6= i and any σj ∈ ΣT
j , given strategy profile

(
σj, σ

∗,mi
−j
)
, either (i) mi (n) = mi

for all n ∈ I, (ii) susp (hn) = 1 for some n 6= j, or (iii) θj (h−j, ζ) = E. Moreover,

susp (hj) = 1 implies θj (h−j, ζ) = E.

2. For any σi ∈ ΣT
i , given

(
σi, σ

∗
−i
)
, either (i) there exists m̂i ∈ Mi with mi (n) = m̂i

for all n ∈ I, (ii) susp (hn) = 1 for some n 6= i, or (iii) θi (h−i, ζ) = E. Moreover,

susp (hi) = 1 implies θi (h−i, ζ) = E.

3. Given σ∗,mi, for any j ∈ I, either (i) mi (n) = mi and susp (hn) = 0 for all n ∈ I, or

(ii) θj (h−j, ζ) = E.

4. Given σ∗,mi, with probability at least 1 − T−8, all of the following events occur: (i)

mi (n) = mi for all n ∈ I, (ii) susp (hn) = 0 for all n ∈ I, and (iii) θn (h−n, ζ) = R

for all n 6∈ Ijam.

5. For anymi,m
′
i ∈Mi and j ∈ I, Prσ

∗,mi (θj (h−j, ζ) = R|ζ) = Prσ
∗,m′i (θj (h−j, ζ) = R|ζ).
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The proof is relegated to Section J (as are all other proofs that do not immediately

follow the corresponding claims). Intuitively, θj (h−j, ζ) = E only if some player plays JAM

or matching is erroneous, which is unlikely. Moreover, since the sender plays a1 with the

same frequency for all mi, the probability of this event is independent of mi.

The next lemma is analogous to Lemma 3 and is used later in the proof. Unlike Lemmas

5—6, this lemma involves conditions on players’ beliefs about the type profile (ζn)n∈I ∈

{reg, jam}N . To express these conditions, we assume each player n has a prior probability

distribution over (ζn)n∈I at the beginning of the protocol. Let Prn (·|·) denote conditional

probability under player n’s prior.

Lemma 7 Fix any j ∈ I, j′ 6= j, and h<j
′ ∈ H<j′. Suppose that, for all hT(j′)

j ∈ HT(j′)
j |h<j′ ,

Prj

(
ζj′ = jam ∀j′ 6= j|mi, h

<j′ ,h
T(j′)
j

)
≥ T−4(N−1)−1.

Then, for all hT(j′)
j ∈ HT(j′)

j |h<j′ , at least one of the following two conditions holds:

1. We have

Prj

(
JAMj′,−j|mi, h

<j′ , h
T(j′)
j

)
≥ 1− T 4(N−1)+10 exp

(
−1

4
ε̄T

)
. (22)

2. The following two conditions hold:

(a) For all (aj,t)t∈T(j′),

Prj

 (aj′,t(n), ωj′,t(n))t∈T(msg) ∈
{

0, (aj′,t, ωj′,t)t∈T(msg)

}
∀n 6= j

|mi, h
<j′ , h

T(j′)
j , REGj′,−j


≥ 1−N

⌈
log2 |A|

2dlog2|Mi|e
⌉

exp
(
−ε̄4T

)
. (23)

(b) If aj,t = a0 for all t ∈ T(j′), then

Prj

 (aj′,t(n), ωj′,t(n))t∈T(msg) = (aj′,t, ωj′,t)t∈T(msg) ∀n 6= j

|mi, h
<j′ , h

T(j′)
j , REGj′,−j


≥ 1−N

⌈
log2 |A|

2dlog2|Mi|e
⌉

exp
(
−ε̄4T

)
. (24)
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Proof. The same as Lemma 3, except that T 4(N−1)+10 replaces T 9 in (3), as now Ijam\ {j}

is non-empty with probability at least T−4(N−1)−1 rather than 1.

B.3 Jamming Coordination Protocol

This protocol is used to coordinate on the identities of the jamming players Ijam ⊆ I. The

protocol is again parametrized by T ∈ N. It takes 2 periods.

Jamming Coordination Protocol with Parameter T :

• In each of the two periods, each player i plays a1 with probability T−2 and plays each

a 6= a1 with probability (1− T−2) / (|A| − 1), independently across periods.

Given a protocol history hi, we define ζ i(hi) = jam if ωi,t = a1 for some t ∈ {1, 2}. That

is, a player becomes a jamming player if she observes a1 in either period.

Let Pi(hi) = Pr
(
ζj(hj) = jam ∀j 6= i|hi

)
. For every protocol history hi, the probability

that all players in I\{i, µt(i)} play a1 in both periods t and µ1(i) 6= µ2(i) is at least ε̄T−4(N−2).

Conditional on this event, the probability that ζj(hj) = jam ∀j 6= i is 1. Hence,

Pi(hi) ≥ ε̄T−4(N−2). (25)

C Communication Modules

A communication module is a finitely repeated game derived by augmenting a communi-

cation protocol with a reward function that makes following the communication protocol a

sequential equilibrium or belief-free equilibrium. As a module is just a protocol augmented

with a payoff function, we use the term module history interchangeably with protocol history.

C.1 Basic Communication Module

Our first module augments the basic communication protocol. It thus defines a 2T dlog2 |Mi|e-

period game, where i, Mi, and T are parameters. For each player n ∈ I, payoff functions in
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the module take the form

∑
t∈T

δt−1ûn (at) + πn (hn−1) + wn (h) , (26)

where ûn is the stage-game payoff function; πn is a reward function that depends only on

player n − 1’s module history; and wn is a continuation payoff function that depends on

the entire module history. We wish to construct a reward function such that, when viewed

as a strategy profile in this finitely repeated game, the basic communication protocol is a

belief-free equilibrium.

Definition 1 A strategy profile σ is a belief-free equilibrium (BFE) if, for each player i and

history hi, the continuation strategy σi|hi is a best response against σ−i|h−i for every opposing

history profile h−i.

We say that the premise for basic communication with magnitude K is satisfied if the

following conditions hold:

1. Player i is indifferent about the result of communication: wi (h) = 0 for all h.

2. For each player n 6= i, the range of wn (h) is bounded by K:

max
h,h̃

∣∣∣wn (h)− wn(h̃)
∣∣∣ < K.

Lemma 8 For each i ∈ I, Mi, T , w, and K ≥ 2ū/ε̄ satisfying the premise for basic com-

munication with magnitude K, there exists a family of functions
(
πn : HT

n−1 → R
)
n∈I such

that the following hold:

1. With payoff functions (26), the basic communication protocol is a BFE for every δ ∈

[0, 1).

2. For each n ∈ I and mi ∈Mi, E
[∑

t∈T δ
t−1ûn (at) + πn (hn−1)

]
= 0.

3. For each n ∈ I and t ∈ T,

max
hn−1,h̃n−1

∣∣∣πn (hn−1)− πn
(
h̃n−1

)∣∣∣ < 2
ū+K

ε̄
|T| . (27)
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Intuitively, for each receiver n 6= i, player n− 1 rewards player n every time she observes

a0, which incentivizes player n to play a0 throughout the module. Although whether player

i (the sender) plays a0 or a1 also affects the probability that player n − 1 observes a0 in a

given period (since i and n− 1 may match), the expected number of rewards is independent

of mi because player i plays a0 and a1 with the same frequency for every mi. In addition,

whether player i plays a0 in the first or second half-interval affects player n’s instantaneous

utility through discounting, and we must adjust the rewards to cancel this effect.

For player i, player i−1 makes her indifferent between playing a0 and a1 in every period.

This is straightforward since player i−1’s observations statistically identify player i’s actions.

Finally, note that Lemma 8 concerns the complete information game where the continu-

ation payoff functions (wn)n∈I are known. However, as the statement of the lemma holds for

each realization of (wn)n∈I , the same argument applies for the incomplete information game

where (wn)n∈I is unknown but the premise for communication is satisfied for each (wn)n∈I .

The same remark applies for Lemmas 9, 10, and 11.

C.2 Secure Communication Module

We now augment the secure communication protocol in the case where Ijam is a singleton.

Fix the sender i and another player i∗ with i 6= i∗, i∗ − 1. Let Ijam = {i∗ − 1}.

Recalling the specification of the protocol in Section 3.2, player i’s strategy is determined

by mi, and others’strategies are independent of mi. Let (σmii , σ−i)mi∈Mi
denote the specified

collection of strategy profiles (one for each mi ∈Mi).

We introduce some building blocks of the reward functions. (We will use these in later

modules as well.) By Lemma 1, there exists a function πcancel
i (a−i, ω−i) : AN−1 × AN−1 →R

such that, for each a ∈ AN , we have

ûi (a) + πcancel
i (a−i, ω−i) = 0. (28)

Thus, the function πcancel
i (a−i,, ω−i) cancels player i’s instantaneous utility.

Similarly, there exists a function πa
0

i (a−i, ω−i) : AN−1 × AN−1 →R such that, for each
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a ∈ AN , we have

πa
0

i (a−i, ω−i) =

 0 ai = a0

−1 ai 6= a0
. (29)

Thus, the function πa
0

i (a−i,, ω−i) rewards player i for playing a0.

For each n ∈ I, payoff functions in the secure communication module are given by

∑
t∈T

ûn (at) +
∑
t∈T

(
πcancel
n (a−n,t, ω−n,t) + 1{n=i∗}π

a0

n (a−n,t, ω−n,t)
)

+ wn (h)

=
∑
t∈T

1{n=i∗}π
a0

n (a−n,t, ω−n,t) + wn (h) , (30)

for some function wn : HT → R. (Note that we neglect discounting in this equation,

in contrast to equation (26) for the basic communication module. The reason is that, as

described in the text, the basic communication module will be used at the very end of each

block to cancel the effects of discounting in the remainder of the block. So we must account

for discounting directly only in the basic communication module.)

We will give conditions on (wn)n∈I under which (σmii , σ−i)mi∈Mi
is an “i∗-quasi-belief-free

equilibrium”of the resulting finitely repeated game. Intuitively, this means that the strategy

of each player n 6= i∗ is sequentially rational for every opposing history profile, and player

i∗’s strategy is sequentially rational for some consistent belief system. In addition, sequential

rationality for player i∗ is imposed ex post with respect to mi. This ensures that the module

will remain incentive compatible when viewed as one part of the infinitely repeated game.

Definition 2 A family of strategy profiles (σmii , σ−i)mi∈Mi
is an i∗-quasi-belief-free equilib-

rium (i∗-QBFE) if (i) for each player n 6= i∗ and history hn, the continuation strategy σn|hn is

a best response against σ−n|h−n for every opposing history profile h−n, and (ii) for player i∗,

there exists a sequence of families of completely mixed strategy profiles
(

(σmi,ki , σk−i)mi∈Mi

)∞
k=1

and a corresponding family of belief systems β(h−i∗|mi, hi∗) (where β(h−i∗|mi, hi∗) is the limit

of conditional probabilities derived from
((
σmi,ki , σk−i

))∞
k=1
) such that, for each mi and ht−1

i∗ ,

σi∗ ∈ argmax
σ̃i∗∈Σi∗

E(σ̃i∗ ,σ
mi
−i∗)

[∑
t∈T

πa
0

i∗ (a−i∗,t, ω−i∗,t) + wi∗ (h) |mi, h
t−1
i∗

]
,
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where the expectation is taken with respect to β(ht−1
−i∗ |mi, h

t−1
i∗ ).

We say that the premise for secure communication for player i∗ with magnitude TK is

satisfied if the following conditions hold:

1. All players but player i∗ are indifferent about the result of communication: wn (h) = 0

for all h and n 6= i∗.

2. If player i∗− 1 deviates from σi∗−1 or ALLREG does not occur,18 then wi∗ (h) = 0 for

all h.

3. If player i∗− 1 follows σi∗−1 and ALLREG occurs, then the following conditions hold:

(a) If mi (i
∗ − 1) ∈ Mi ∪ {0} is the same under protocol histories h and h̃, then

wi∗ (h) = wi∗(h̃). Under this condition, we abuse notation and write wi∗ (h) =

wi∗ (mi (i
∗ − 1)).

(b) The range of wi∗ (mi (i
∗ − 1)) is bounded by TK :

max
mi,m̃i∈Mi∪{0}

|wi∗ (mi)− wi∗ (m̃i)| < TK . (31)

(c) wi∗ (0) ≤ wi∗ (mi (i
∗ − 1)) for all mi (i

∗ − 1) ∈Mi.

We now specify player i∗’s beliefs. In particular, we specify that, after any off-path

observation, she assigns probability 1 to the event that player i∗ − 1 deviated (and hence,

if the above premise holds, wi∗ (h) = 0). This belief is clearly consistent: for concreteness,

define ((σmi,ki , σk−i)mi∈Mi
)∞k=1 by letting player i

∗ − 1 tremble uniformly over all actions with

probability k−1 at each history, and letting every other player tremble uniformly over all

actions with probability k−k at each history.

Lemma 9 For each i∗ ∈ I, i ∈ I\ {i∗ − 1, i∗}, Mi, w, and K satisfying the premise for

secure communication for player i∗ with magnitude TK, if

dlog2 |Mi|eT 9+K exp
(
−ε̄4T

)
≤ 1, (32)

18As in the verified protocol, player i∗ − 1 follows σi∗−1 if, for each τ , her action ai∗−1,τ is in the support
of σi∗−1 given (ai∗−1,t, ωi∗−1,t)t≤τ−1. Since i∗ − 1 6= i, the support is independent of mi. Player i∗ − 1
deviates from σi∗−1 if she does not follow σi∗−1.

52



then with payoff functions (30) the secure communication protocol, together with the above

belief system for player i, is an i∗-QBFE.

Proof. By construction, players other than i∗ are indifferent over all actions throughout the

module.

For player i∗, fix a period t ∈ T and history (ai∗,τ , ωi∗,τ )τ∈T,τ≤t−1. Suppose ωi∗,τ ∈ {a0, a1}

for each τ ≤ t − 1. By the same argument as for Lemma 3, for every possible continuation

history (ai∗,τ , ωi∗,τ )τ∈T,τ≥t, with probability at least

1− dlog2 |Mi|eT 9 exp
(
−ε̄4T

)
(33)

conditional on (ai∗,τ , ωi∗,τ )τ∈T, either ALLREG does not occur or [mi (i
∗ − 1) ∈ {mi, 0}, and

mi (i
∗ − 1) = mi if ai∗,τ = a0 for all τ ∈ T]. Moreover, if (ωi∗,τ )τ∈T is such that [mi (i

∗ − 1) ∈

{mi, 0} and mi (i
∗ − 1) = mi if ai∗,τ = a0 for all τ ∈ T], then by definition of mi(i

∗ − 1),

we have mi (i
∗ − 1) = mi if and only if ai∗,τ = a0 for each τ ∈ T such that µτ (i∗) = i∗ − 1

and τ is in a half-interval where player i plays a0. Hence, since wi∗ (0) ≤ wi∗ (mi (i
∗ − 1)) for

all mi (i
∗ − 1) ∈ Mi, taking ai∗,τ = a0 for each τ ≥ t maximizes wi∗ (h) with probability at

least (33). Given this, (31) and (32) imply that the reward term πa
0

i∗ (a−i∗,τ , ω−i∗,τ ) in (30)

outweighs any possible benefit to player i∗ from playing a 6= a0 in an attempt to manipulate

mi (i
∗ − 1).

If instead ωi∗,τ 6∈ {a0, a1} for some τ ≤ t − 1, then by construction of the belief system

player i∗ believes wi∗ (h) = 0 with probability 1. Hence, player i∗ maximizes the reward term

πa
0

i∗ (a−i∗,τ , ω−i∗,τ ) in (30), so playing a0 as prescribed is optimal.

C.3 Verified Communication Module

We now augment the verified communication protocol. Throughout this subsection, fix

m∗i ∈Mi and let σ∗ denote the prescribed protocol strategy profile given m∗i . As in (29), for

each j ∈ I and t ∈ T (j), given (aj,t, ωj,t)t∈T(msg) identified from h−j by Lemma 1, calculate
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the equilibrium action āj,t and define

π
āj,t
j (h−j) =

 0 aj,t = āj,t

−1 aj,t 6= āj,t
. (34)

Suppose each player j’s payoff equals

πj
(
h−j, ζj

)
+ wj (h, ζ) , (35)

where the reward function πj
(
h−j, ζj

)
is given by

πj
(
h−j, ζj

)
= 1{ζj=reg}

∑
t∈T\T(j)

πa
0

j (a−j,t, ω−j,t) +
∑
t∈T(j)

π
āj,t
j (h−j) . (36)

As in (30), we ignore player j’s instantaneous payoffs, as these can be cancelled by adding

πcancel
i to the reward function.

We say that the premise for verified communication to send message m∗i ∈ Mi with

magnitude TK is satisfied if there exist
(
vEj
)
j∈I ∈ R

N , and
(
vmij
)
j∈I,mi∈Mi∪{0}

∈ RN such

that, for all j ∈ I and h ∈ H, the following conditions hold:

1. If θj (h−j, ζ) = E, then wj (h, ζ) = TKvEj .

2. If θj (h−j, ζ) = R and susp (hn) = 1 for some n 6= j, then wj (h, ζ) = TKv0
j .

3. If θj (h−j, ζ) = R , susp (hn) = 0 for all n 6= j, and ∃m̂i ∈ Mi such that mi (n) = m̂i

for all n ∈ I, then wj (h, ζ) = TKvm̂ij .

4. v0
j ≤ min

{
minmi∈Mi

vmij , vEj
}
.

5. vm
∗
i

i ≥ vm̂ii for all m̂i ∈Mi ∪ {0}.

The interpretation of the above variables is that vEj is player j’s normalized continuation

payoff after erroneous opposing histories; v0
j is player j’s normalized punishment payoff

(which results if θj (h−j, ζ) = R and susp (hn) = 1 for some n 6= j); and vmij is player j’s

normalized continuation payoff after players coordinate on message mi. Denote the range of
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wj(h, ζ)/TK by

v̄ := max
j∈I

{
max

{
vEj ,
(
vmij
)
mi∈Mi

}
− v0

j

}
.

We modify player i’s strategy in the message round after she herself deviates as follows:

Recall that we define mi(n) = 1 if player n infers some (ai,t)t∈T(msg) not corresponding to

the binary expansion of any message. We can thus view the play of such (ai,t)t∈T(msg) as

sending message mi = 1. With this interpretation, for each ht−1
i , let Mi(h

t−1
i ) ⊂ Mi be the

(non-empty) set of messages m̃i such that (ai,τ )
t−1
τ=1 is consistent with the binary expansion

of m̃i; and let M∗
i (ht−1

i ) = arg maxmi∈Mi(h
t−1
i ) v

mi
i be the elements that maximize vmii . Given

ht−1
i , if m∗i ∈ M∗

i (ht−1
i ), player i plays ai,t corresponding to the binary expansion of m∗i ;

otherwise, she plays ai,t corresponding to the binary expansion of some mi ∈M∗
i (ht−1

i ).

Call a history σ-consistent if it is reached with positive probability under strategy profile

σ. Recall that Prj (·|·) denotes conditional probability under player j’s prior on (ζn)n∈I .

Recall that H<j′ is the set of module history profiles at the beginning of T(j′) that are

σ-consistent for some σ ∈ Σ, and let HT(j′)
j |h<j′ be the set of module histories during T(j′)

that are (σj, σ
∗
−j)-consistent for some σj ∈ Σj given h<j

′
. We assume that, for every player

j, j′ ∈ I, module strategy σj, h<j
′ ∈ H<j′ , and hj ∈ HT(j′)

j |h<j′ ,

Prj

(
n ∈ Ijam ∀n 6= j|h<j′ , hj

)
≥ T−4(N−1). (37)

Lemma 10 Suppose that

4v̄N
⌈
log2 |A|

2dlog2|Mi|e
⌉
T 4(N−1)+10+K exp(−ε̄4T ) ≤ 1 and

v̄TK−8 ≤ 1
2
.

(38)

If the premise for verified communication with magnitude TK and (37) are satisfied, then

with payoff functions (35) the verified communication protocol is a sequential equilibrium. In

addition, if there exists i∗ ∈ I \ {i} such that Ijam = I\ {i∗} and vEj = vmij for all j 6= i∗

and mi ∈ Mi ∪ 0, while for player i∗ the premise for verified communication and (37) are

satisfied, then with payoff functions (35) the verified communication protocol is an i∗-QBFE.

Intuitively, so long as the prior probability that players jam is not too low, whenever
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player j observes an erroneous history she believes that JAM is played and θj (h−j, ζ) =

E. Otherwise, she believes that all other players match with the sender at least once in

each half-interval. Hence, if she deviates and changes some player’s inference, this induces

susp (hn) = 1 and yields the punishment payoff v0
j .

C.4 Jamming Coordination Module

We now augment the jamming coordination protocol. For each i ∈ I, payoff functions take

the form
2∑
t=1

πindiff
i,t (h−i|T ) + wi(h|T ), (39)

where we have made explicit the dependence of the reward function and continuation payoff

function on T . Again, as in (30), we ignore player i’s instantaneous payoffs.

We say that the premise for jamming coordination is satisfied if there exist K ≥ 1 and

T̄ ≥ 1 such that, for all T > T̄ , there exist w̄i(T ) ∈ R and (vi (Ijam\{i}|T ))Ijam\{i}⊂I\{i} ∈

R2N−1
satisfying the following conditions:

1. wi(h|T ) = w̄i(T ) for every protocol history h such that ωi,t = a1 for some t ∈ {1, 2}.

2. wi(h|T ) = vi (Ijam\{i}|T ) for every protocol history h such that ωi,t 6= a1 for each t.

3. The range of vi (Ijam\{i}|T ) is at most 1:

max
i∈I,Ijam\{i}, ˜Ijam\{i}⊂I\{i}

∣∣∣vi (Ijam\{i}|T )− vi( ˜Ijam\{i}|T )
∣∣∣ ≤ 1. (40)

4. The difference between vi (Ijam\{i}|T ) and w̄i (T ) is bounded by T 6K:

max
i∈I,Ijam\{i}⊂I\{i}

|vi(Ijam\{i}|T )− w̄i(T )| ≤ T 6K. (41)

Lemma 11 There exists a family of functions
(
πindiff
i,t (h−i|T )

)
t∈{1,2},T∈N indexed by T such

that

1. We have

lim
T→∞

max
h−i

∣∣∑2
t=1 π

indiff
i,t (h−i|T )

∣∣
T

= 0. (42)
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2. If the premise for jamming coordination is satisfied, then there exists T̄ > 0 such that,

with payoffs (39), the jamming coordination protocol is a sequential equilibrium for all

T > T̄ .

Intuitively, whether player i observes ωi,t = a1 or ωi,t 6= a1 for t = 1, 2 is independent

of her own strategy. Hence, incentives come solely from the fact that playing a1 changes

Ijam\{i}. Since the effect of changing Ijam\{i} on continuation payoffs is bounded indepen-

dent of T , this effect can be cancelled by a reward function of magnitude less than T .

D Reward Adjustment Lemmas

We now introduce two lemmas that will let us adjust the reward functions to correct for

unlikely errors in communication. Given a parameter T ∈ N, let M (T ) ⊂ N be a finite

set, let F : N → R+ be a function of T satisfying lim infT→∞ F (T ) > 0, let fT : M(T ) →

[−F (T ) , F (T )] be a function of mi ∈M (T ), and let m̃i ∈M(T )∪{0} be a random variable

such that, for eachmi ∈M (T ), Pr (m̃i = mi|mi) = pT (mi) and Pr (m̃i = 0|mi) = 1−pT (mi).

Applied to the remainder of the proof, T will index the length of an interval, M (T ) will

be a message set, fT will be a reward function bounded by F (T ), and pT (mi) will be the

probability that message mi is received when message mi is sent.

Lemma 12 Suppose that limT→∞minmi∈M(T ) pT (mi) = 1. For all ε > 0, there exists T̄ > 0

such that, for all T > T̄ , there exists a function gT : M(T )∪{0} → [− (1 + ε)F (T ), (1 + ε)F (T )]

such that maxmi∈M(T ) |fT (mi)− gT (mi)| ≤ εF (T ) and E [gT (m̃i)|mi] = fT (mi) for all

mi ∈M (T ).

Proof. Define gT (0) = 0 and gT (mi) = 1
pT (mi)

fT (mi) ∀mi ∈ M (T ). Then E [gT (m̃i)|mi] =

fT (mi) ∀T ∈ N,mi ∈ M (T ), and lim infT→∞ F (T ) > 0 and limT→∞minmi∈M(T ) pT (mi) = 1

imply that, for each ε > 0, for suffi ciently large T , gT (mi) ∈ [− (1 + ε)F (T ), (1 + ε)F (T )]

and |fT (mi)− gT (mi)| ≤ εF (T ) ∀mi ∈M (T ).

A similar result holds if we account for self-generation. For xi−1 ∈ {G,B}, define

sign(xi−1) :=

 −1 if xi−1 = G

1 if xi−1 = B
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For each T ∈ N and xi−1 ∈ {G,B}, let fxi−1

T : M(T ) → [−F (T ) , F (T )] be a function of

mi ∈M (T ) such that there exists c ≥ 0 satisfying

max
mi∈M(T ),xi−1∈{G,B}

sign (xi−1) f
xi−1

T (mi) ≥ −cT ∀T ∈ N. (43)

Lemma 13 Suppose that

lim
T→∞

min
mi∈M(T )

pT (mi) = 1 and lim
T→∞

max
mi∈M(T )

(1− pT (mi)) max{F (T ), cT} = 0. (44)

For all ε > 0, there exists T̄ > 0 such that, for all T > T̄ and xi−1 ∈ {G,B}, there exists a

function gxi−1

T : M(T ) ∪ {0} → [−(1 + ε)F (T ), (1 + ε)F (T )] such that

(i) maxxi−1∈{G,B},mi∈M(T ) |fxi−1

T (mi)− gxi−1

T (mi) | < εF (T ),

(ii) E [g
xi−1

T (m̃i)|mi] = f
xi−1

T (mi) for all mi ∈M(T ),

(iii) minmi∈M(T ) sign (xi−1) g
xi−1

T (mi) ≥ −(1 + ε)cT , and

(iv) minmi∈M(T ) g
xi−1

T (mi) ≥ g
xi−1

T (0).

Applied to the remainder of the proof, condition (iii) helps satisfy self-generation, and

condition (iv) helps satisfy the premises for the secure and verified modules.

Proof. Without loss, assume F (T ) ≥ cT ∀T (otherwise, for each T with F (T ) < cT ,

redefine F (T ) := cT ). Define

c
xi−1

T =

 (1 + ε) c if xi−1 = B

(1 + ε) F (T )
T
if xi−1 = G

.

By (43), fxi−1

T (mi) + c
xi−1

T T ≥ 0 ∀T ∈ N,mi ∈M (T ) , xi−1 ∈ {G,B}.

Now define gxi−1

T (0) = −cxi−1

T T and

g
xi−1

T (mi) =
1

pT (mi)
f
xi−1

T (mi) +
1− pT (mi)

pT (mi)
c
xi−1

T T ∀mi ∈Mi(T ).

Then E [g
xi−1

T (m̃i)|mi] = f
xi−1

T (mi) ∀T,mi, xi−1, and lim infT→∞ F (T ) > 0 and (44) imply

that, for suffi ciently large T , gxi−1

T (mi) ∈ [−(1 + ε)F (T ), (1 + ε)F (T )], |fxi−1

T (mi)− gxi−1

T (mi)| ≤
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εF (T ) ∀mi, and sign (xi−1) g
xi−1

T (m̃i) ≥ (1 + ε)cT ∀mi. Finally condition (iv) holds, as

g
xi−1

T (mi)− gxi−1

T (0) =
1

pT (mi)
(f

xi−1

T (mi) + c
xi−1

T T ) ≥ 0 ∀T,mi, xi−1.

E Equilibrium Conditions: Reduction Lemmas

This section uses the communication modules, the calendar time structure of a block, and

Lemmas 12 and 13 to simplify Conditions (10)—(13). It also describes play in Phases 5—7 of

the equilibrium strategies described in Section 3.3.3. Given the results of this section, for the

remainder of the proof it suffi ces to consider the simplified versions of Conditions (10)—(13)

derived below and ignore Phases 5—7 of the equilibrium strategies.

E.1 Reduction to an Undiscounted, Finitely Repeated Game

Naïvely taking the limit δ → 1 and ignoring Phase 7 of the equilibrium strategies suggests

that Conditions (10)—(13) are satisfied for suffi ciently high δ if there exists a block length T2

and reward functions
(
π∗i (xi−1, h

T2
i−1)
)
i∈I,xi−1∈{G,B},h

T2
i−1∈H

T2
i−1
such that

1. [Sequential Rationality] For all x ∈ {G,B}N and ht−1
i ∈ H t−1

i ,

σ∗i (xi) ∈ arg max
σi∈Σi

E((σi,σ∗−i(x−i)),β∗)

[
T2∑
τ=1

ûi (aτ ) + π∗i (xi−1, h
T2
i−1)|x−i, ht−1

i

]
. (45)

2. [Promise Keeping] For all x ∈ {G,B}N ,

vi(xi−1) + sign(xi−1)4ε∗ =
1

T2

Eσ∗(x)

[
T2∑
t=1

ûi (at) + π∗i (xi−1, h
T2
i−1)

]
. (46)

3. [Self-Generation] For all xi−1 ∈ {G,B} and hT2
i−1 ∈ HT2

i−1,

sign(xi−1)π∗i (xi−1, h
T2
i−1) ≥ −4ε∗T2. (47)
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Recall that vi(xi−1) is fixed by (14), so we omit (10). In addition, we have allowed 4ε∗T2

slack in (46) and (47), using the slack in (14).

We show that replacing (10)—(13) with (45)—(47) is indeed valid.

Lemma 14 Suppose that, for all T̄ > 0, there exist T0 > T̄ , T2 ≥ T ∗ (T0), strategies

(σ∗i (xi))i,xi and consistent ex post belief system β∗ in the T2-period finitely repeated game,

and reward functions
(
π∗i (xi−1, h

T2
i−1)
)
i,xi−1,h

T2
i−1
such that Conditions (45)—(47) are satisfied.

Then there exists δ̄ < 1 such that v ∈E (δ) for all δ > δ̄.

To prove Lemma 14, we show that players can “cancel the effects of discounting”by using

the communication phase at the very end of each block (Phase 7 of the equilibrium strategy

profile). During this communication phase, players use the basic communication protocol

to aggregate information regarding a random period in the block. A player then receives a

small reward if she took an action yielding a higher payoff later in the block, so as to leave

her indifferent to the timing of her actions within the block. In the construction, we use

Lemma 8 to show that truthful communication is sequentially rational, and we use Lemma

12 to adjust the reward functions to correct for errors in communication.

E.2 Allowing Dependence on Other Players’Non-Main Phase His-

tories

We now show that player i’s reward function can be made to depend on players −i’s histories

in the non-main phases, so long as the magnitude of this dependence is bounded by (T1)3/2.

In particular, the reward can depend on (i) players −i’s state profile x−i ∈ {G,B}N−1, and

(ii) players −i’s history during non-main phases hT′′−i , where

T′′ := {1, ..., T1} \
⋃L

l=1
T (main(l)) .

Recalling the calendar time structure in Section 3.3.3, note that, for suffi ciently large T0,

|T′′| < (T0)
3
2 < (T ∗)

1
4 . (48)
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The reward function thus takes the form π∗i
(
x−i, h

T ∗
i−1, h

T′′
−i
)
. We require that the range

of the reward function is bounded by (T1)3/2:

sup
x−i,hT

∗
i−1,h

T′′
−i

∣∣∣π∗i (x−i, hT ∗i−1, h
T′′
−i

)∣∣∣ < (T1)3

2
. (49)

We wish to replace π∗i (xi−1, h
T2
i−1) with π∗i

(
x−i, h

T ∗
i−1, h

T′′
−i
)
in (45)—(47), yielding the fol-

lowing conditions:

1. [Sequential Rationality] For all x ∈ {G,B}N and ht−1
i ∈ H t−1

i ,

σ∗i (xi) ∈ arg max
σi∈Σi

E((σi,σ∗−i(x−i)),β∗)

[
T1∑
τ=1

ûi (aτ ) + π∗i

(
x−i, h

T ∗

i−1, h
T′′
−i

)
|ht−1
i

]
. (50)

2. [Promise Keeping] For all x ∈ {G,B}N ,

vi(xi−1) + sign(xi−1)3ε∗ =
1

T1

Eσ∗(x)

[
T1∑
t=1

ûi (at) + π∗i

(
x−i, h

T ∗

i−1, h
T′′
−i

)]
. (51)

3. [Self-Generation] For all x−i, hT
∗

i−1, and h
T′′
−i ,

sign(xi−1)π∗i

(
x−i, h

T ∗

i−1, h
T′′
−i

)
≥ −3ε∗T1. (52)

Note that we have reduced the allowable slack in the promise keeping and self-generation

constraints to 3ε∗T1. This is because we “use up”ε∗T1 slack when replacing π∗i (xi−1, h
T2
i−1)

with π∗i
(
x−i, h

T ∗
i−1, h

T′′
−i
)
.

Lemma 15 Suppose that, for all T̄ > 0, there exist T0 > T̄ , T1 ≥ T ∗ (T0), strategies

(σ∗i (xi))i,xi and consistent ex post belief system β∗ in the T1-period repeated game, and re-

ward functions
(
π∗i
(
x−i, h

T ∗
i−1, h

T′′
−i
))
i,x−i,hT

∗
i−1,h

T′′
−i
such that (49)—(52) are satisfied. Then, for

all T̄ ≥ 0, there exist T0 ≥ T̄ , T2(T0) ≥ T1 (satisfying (17)), strategies (σ∗∗i (xi))i∈I and

consistent ex post belief system β∗∗ in the T2(T0)-period repeated game, and reward functions(
π∗∗i
(
xi−1, h

T2
i−1

))
i,xi−1,h

T2
i−1
such that (45)—(47) are satisfied with T2 = T2(T0).

61



To prove Lemma 15, we use the secure communication module with repetition T = (T1)
1
2

and magnitude (T1)3 for the sender. Intuitively, for each i ∈ I, players− (i− 1, i) sequentially

send their histories to player i− 1, who uses this information to construct player i’s reward.

This corresponds to Phase 6 of the equilibrium strategy profile. We then use Lemma 13 to

adjust for errors in communication. Note that the cardinality of
(
x−i, h

T′′
−i
)
∈ {G,B}N×HT′′

−i

is of order at most 2 |A|2(T1)
1
4 , so communicating

(
x−i, h

T′′
−i
)
with repetition (T1)

1
2 takes a

number of periods of order at most (T1)
3
4 � T1. Hence, payoffs are still determined only by

the main phase of each sub-block.

E.3 Allowing Dependence on Other Players’Main Phase Histories

We now define player i’s private randomization Li at the beginning of the block. In particular,

player i randomly selects a period ti (l) ∈ T (main(l)) in each main phase l = 1, ..., L,

according to

Pr
(
(ti (l))

L
l=1 = (tl)

L
l=1

)
= (T0)−6L

for all (tl)
L
l=1 such that tl ∈ T (main(l)) for each l = 1, ..., L. Let Li = (ti (l))

L
l=1.

We show that player i’s reward function in the T ∗-period repeated game can be made to

depend on players −i’s histories in periods in Li−1: that is, on

h
Li−1

−i :=
(
a−i,ti−1(l), ω−i,ti−1(l)

)
l=1,...,L

. (53)

Define

T′ := {1, ..., T ∗} \
⋃L

l=1
T (main(l)) .

The difference between T′ and T′′ is that T′ does not include Phase 5 of the equilibrium

strategies.

The reward function takes the form π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
.19 We require that the range of

19Relative to the previous subsection, the argument hL−i has been added to the reward function and the
argument hT

∗

i−1 has been removed, as h
L
−i contains enough information about player i−1’s main phase history

to provide incentives for player i.
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the reward function is bounded by (T ∗)3/2:

sup
x−i,hT

′
−i,h

Li−1
−i

∣∣∣π∗i (x−i, hT′−i, hLi−1

−i

)∣∣∣ < (T ∗)3

2
. (54)

We wish replace π∗i (xi−1, h
T ∗
i−1, h

T′′
−i) with π

∗
i

(
x−i, h

T′
−i, h

Li−1

−i

)
in (50)—(52). In the following

conditions, we also cancel the instantaneous utilities outside of the main phases (which can

be accomplished by using the reward function (28)).

1. [Sequential Rationality] For all x ∈ {G,B}N and ht−1
i ∈ H t−1

i ,

σ∗i (xi) ∈ arg max
σi∈Σi

E((σi,σ∗−i(x−i)),β∗)

 ∑
t∈
⋃L
l=1 T(main(l))

ûi (at) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
|ht−1
i

 .
(55)

2. [Promise Keeping] For all x ∈ {G,B}N ,

vi(xi−1) + sign(xi−1)2ε∗ =
1

T ∗
Eσ∗(x)

 ∑
t∈
⋃L
l=1 T(main(l))

ûi (at) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

) .
(56)

3. [Self-Generation] For all x−i, hT
′
−i, and h

Li−1

−i ,

sign(xi−1)π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
≥ −2ε∗T ∗. (57)

Lemma 16 Suppose that, for all T̄ > 0, there exist T0 > T̄ , strategies (σ∗i (xi))i,xi and

consistent ex post belief system β∗ in the T ∗ (T0)-period repeated game, and reward functions(
π∗i

(
x−i, h

T′
−i, h

Li−1

−i

))
i,x−i,hT

′
−i,h

Li−1
−i

such that (54)—(57) are satisfied. Then there exist T1(T0)

(satisfying (16)), strategies (σ∗∗i (xi))i,xi and consistent ex post belief system β∗∗ in the T1(T0)-

period repeated game, and reward functions
(
π∗∗i
(
x−i, h

T′
−i
))
i,x−i,hT

′
−i
such that (49)—(52) are

satisfied with T1 = T1(T0).

The proof of Lemma 16 is similar to that of Lemma 15, but using the verified communi-

cation module with repetition T = (T ∗)
1
2 and magnitude (T ∗)3. This corresponds to Phase 5
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of the equilibrium strategy profile. Note that the cardinality of (Li−1, h
Li−1

−i ) ∈ ((T0)6, A2)
L is

of order at most (T0)6L, so communicating (Li−1, h
Li−1

−i ) with repetition (T ∗)
1
2 takes a number

of periods of order at most (T ∗)
1
2

+ε � T ∗ (for any ε > 0). We can also adjust the reward

based on x−i by letting players −i communicate x.

E.4 “Ignoring”Other Players’Deviations

We further simplify Lemma 16. Consider the following conditions:

1. [ti (l) Not Revealed Until End of Main Phase l] For all xi ∈ {G,B}, l ∈ {1, ..., L},

t ∈ {1, ..., T ∗}, (Li, ht−1
i ), and (L̃i, h̃t−1

i ), if t ≤ τ for some τ ∈ T(main(l)), ti(l̂) = t̃i(l̂)

for each l̂ = 1, ..., l − 1, and ht−1
i = h̃t−1

i , then

σi(xi)|(Li,ht−1
i ) = σi(xi)|(L̃i,h̃t−1

i ). (58)

2. [Reward Bound]

sup
x−i,hT

′
−i,h

Li−1
−i

∣∣∣π∗i (x−i, hT′−i, hLi−1

−i

)∣∣∣ < (T ∗)2

2
. (59)

3. [Incentive Compatibility] LetHi(x−i) denote the set of histories that arise with positive

probability under some strategy profile (σi, σ−i(x−i)) with σi ∈ ΣT ∗
i . For all x ∈

{G,B}N and ht−1
i ∈ Hi(x−i),

σ∗i (xi) ∈ arg max
σi∈Σi

E(σi,σ∗−i(x−i))

 ∑
t∈
⋃L
l=1 T(main(l))

ûi (at) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
|ht−1
i

 .
(60)

Note that we do not need to define the trembling sequence to define E [·|·] for (60).

4. [Promise Keeping] For all x ∈ {G,B}N ,

vi(G)− 2ε∗ ≤

vi(B) + 2ε∗ ≥

 1

T ∗
Eσ∗(x)

 ∑
t∈
⋃L
l=1 T(main(l))

ûi (at) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

) . (61)

5. [Self-Generation] The same as (57).
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Lemma 17 Suppose that, for all T̄ > 0, there exist T0 > T̄ , strategies (σ∗i (xi))i,xi in

the T ∗ (T0) period repeated game, and reward functions
(
π∗i

(
x−i, h

T′
−i, h

Li−1

−i

))
i,x−i,hT

′
−i,h

Li−1
−i

such that (57)—(61) are satisfied. Then there exist T1(T0) ≥ T ∗ (satisfying (16)), strategies

(σ∗∗i (xi))i,x and consistent ex post belief system β∗∗ in the T1(T0)-period repeated game, and

reward functions
(
π∗∗i
(
x−i, h

T′
−i
))
i,x−i,hT

′
−i
such that (49)—(52) are satisfied with T1 = T1(T0).

As in Lemma 16, players −i communicate their history profile in Li−1. Since Li−1 is

random and is not revealed until main phase l is over, by giving a reward based on the

history profile in Li−1, player i can be made indifferent over actions after another player

“confesses”that she deviated in or before main phase l.

F Equilibrium Strategies

We now define the equilibrium strategies (σi (xi))i∈I . By Lemma 17, we focus on the first

four phases of the calendar time description in Section 3.3.3– a T ∗-period finitely repeated

game– since Phases 5—7 were addressed in Section E.

From now on, we abbreviate “the verified communication protocol with repetition T0”to

simply “the communication protocol.”

It will be useful to introduce the notion of a sub-phase– corresponding to one complete

play of the communication protocol within a phase– and to introduce notation that can

stand for a generic main phase or sub-phase. As detailed below, for i, n ∈ I, we denote

a sub-phase within the initial communication phase by (0, i); denote a sub-phase within

Communication Phase l, Part 1 by (l, i); denote a sub-phase within Communication Phase

l, Part 2 by (l, i, n); and denote a sub-phase within contagion phase l by (l, i,con). We thus

introduce notation

λ ∈ {0× ({jam} ∪ I ∪ (I × {con}))} ∪
{
{1, . . . L} × {main} ∪ I ∪ I2 ∪ (I × {con})

}
.

In this notation, the first coordinate of λ is 0 for the jamming coordination phase, the initial

communication phase, and contagion phase 0, and it is l throughout sub-block l ∈ {1, . . . , L}.

The second coordinate of λ is (i) jam for the jamming coordination phase (for l = 0), (ii)
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i ∈ I for sub-phase (l, i) (for l ≥ 0), (iii) (i,con) for sub-phase (l, i,con) (for l ≥ 0), (iv) main

for main phase l (for l ≥ 1), or (v) (i, n) for sub-phase (l, i, n) (for l ≥ 1).

For l ∈ {0, . . . , L} we write λ ≤ l (resp., λ < l) if the first coordinate of λ is ≤ l (resp.,

< l), and similarly for λ ≥ l and λ > l. Similarly, for two sub-phases λ and λ′, we say λ ≤ λ′

if and only if sub-phase λ precedes or equals sub-phase λ′.

Given λ, let h<λi and h≤λi be player i’s history at the beginning and the end of sub-phase

λ, respectively. Define h<λ, h≤λ, h<λ−i , and h
≤λ
−i similarly.

F.1 Jamming Coordination Phase

At the beginning of the block, player i randomly selects a period ti (l) ∈ T(main(l)) for each

l = 1, ..., L. This is encoded in Li as defined in Section E.3.

Then the jamming coordination protocol is played. We refer to the set of the two peri-

ods consisting of the jamming coordination phase as sub-phase (0, jam). Denote player i’s

protocol history by h(0,jam)
i = (ai,t, ωi,t)

2
t=1. Recall from Section B.3 that ζ i(h

(0,jam)
i ) = jam

if ωi,t = a1 for some t ∈ {1, 2}; otherwise, ζ i(h
(0,jam)
i ) = reg. In subsequent communication

protocols, let i ∈ Ijam if and only if ζ i(h
(0,jam)
i ) = jam. Since Lemma 1 implies that h(0,jam)

−i

uniquely identifies h(0,jam)
i , we can equally view (ζn)n∈I as a function of h

(0,jam)
−i , denoted by

ζ(h
(0,jam)
−j ). Let θi(h

(0,jam)
−j ) = R if ζ i(h

(0,jam)
−i ) = reg and θi(h

(0,jam)
−j ) = E if ζ i(h

(0,jam)
−i ) = jam.

By Lemma 16, player i’s reward function can be conditioned on ζ(h
(0,jam)
−j ) and θi(h

(0,jam)
−j ).

F.2 Initial Communication Phase

For each i ∈ I, player i sends xi by the communication protocol. We refer to the set of

N + 1 rounds consisting of the message round where player i sends xi and the subsequent

j-checking rounds for each j ∈ I as sub-phase (0, i).

For each j ∈ I, player j’s history h(0,i)
j in sub-phase (0, i) determines an inference xi (j)

and a realization susp(h
(0,i)
j ) ∈ {0, 1}. Collectively, the history profile h(0,i)

−j determines the

variables θj(h
(0,i)
−j , ζ(h

(0,jam)
−j )).

After sub-phase (0, i) has been concluded for all i ∈ I, the history of each player j ∈ I

determines an inferred state profile x (j) = (xi (j))i∈I ∈ {G,B, 0}N . In addition, for i ∈ I,
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given h≤(0,i), let

ID(h≤(0,i)) :=
{
j ∈ I : susp(hλj ) = 1 for some sub-phase λ ≤ (0, i)

}
be the set of players who reach suspicious histories by the end of the sub-phase (0, i).20 More-

over, let θj(h
≤(0,i)
−j ) = E if there exists a sub-phase λ ≤ (0, i) such that θj(hλ−j, ζ(h

(0,jam)
−j )) =

E.21 Otherwise, let θj(h
≤(0,i)
−j ) = R.

In general, for each sub-phase λ, we will define θj(hλ−j, ζ(h
(0,jam)
−j )) ∈ {E,R} as a function

of hλ. Given the history h≤λ at the end of sub-phase λ, we define θj(h
≤λ
−j ) = E if there exists

a sub-phase λ′ ≤ λ such that θj(hλ
′
−j, ζ(h

(0,jam)
−j )) = E. Otherwise, define θj(h

≤λ
−j ) = R.

F.3 Contagion Phase 0

For each i ∈ I, player i communicates whether her history is suspicious. We refer to the

N + 1 rounds where player i sends this message and checking occurs as sub-phase (0, i, con).

In particular, given ID(h<(0,1,con)) (which equals ID(h≤(0,N))), in sub-phase (0, i, con)

player i sends m(0,i,con)
i = 1 if i ∈ ID(h<(0,i,con)) and m(0,i,con)

i = 0 otherwise. For each j ∈ I,

player j’s history h(0,i,con)
j determines an inference m(0,i,con)

i (j) ∈ {0, 1} and a realization

susp(h
(0,i,con)
j ) ∈ {0, 1}. Collectively, the history profile h(0,i,con)

−j determines the variables

θj(h
(0,i,con)
−j , ζ(h

(0,jam)
−j )).

For the history h≤(0,i,con) at the end of sub-phase (0, i, con), let

ID(h≤(0,i,con)) := ID(h<(0,i,con)) ∪
{
j ∈ I : m

(0,i,con)
i (j) = 1 or susp

(
h

(0,i,con)
j

)
= 1
}
. (62)

F.4 Sub-Block l

For l = 1, . . . , L, strategies in sub-block l depend on the variables ID
(
h<(l,main)

)
⊂ I and

(θi(h
<(l,main)
−i ))i∈I ∈ {R,E}N . We have already defined ID

(
h<(l,main)

)
and

(
θi
(
h<(l,main)

))
i∈I .

As we will see, the outcome of sub-block l determines ID
(
h<(l+1,main)

)
and (θi(h

<(l+1,main)
−i ))i∈I .

20If λ = (0, jam), define susp
(
hλj
)

= 0
21If λ = (0, jam), define θj

(
hλ−j , ζ(hjam−j )

)
= θi(h

(0,jam)
−j ).
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F.4.1 Main Phase l

If i ∈ ID
(
h<(l,main)

)
, player i plays αmin in every period. If i /∈ ID

(
h<(l,main)

)
, then xj (i) ∈

{G,B} for all j ∈ I, and hence the action profile al (x (i)) is well-defined. In this case, in

every period player i plays ali (x (i)), the i-th component of action profile al (x (i)).

Given a history profile h≤(l,main) at the end of main phase l, let θj(h
≤(l,main)
−j ) = θj(h

<(l,main)
−j )

and ID
(
h≤(l,main)

)
= ID

(
h<(l,main)

)
. That is, θj and ID remain constant in main phase l.

F.4.2 Communication Phase l, Part 1

For each i ∈ I, player i − 1 sends the number ti−1 (l) by the communication protocol. We

refer to the rounds where player i− 1 sends ti−1 (l) and checking occurs as sub-phase (l, i).

For each j ∈ I, player j’s history h
(l,i)
j in sub-phase (l, i) determines ti−1 (l) (j) ∈

T(main(l)) ∪ {0} and susp(h
(l,i)
j ) ∈ {0, 1}. Collectively, the history profile h(l,i)

−j determines

θj(h
(l,i)
−j , ζ(h

(0,jam)
−j )).

F.4.3 Communication Phase l, Part 2

For each i ∈ I and n ∈ I, player i sends the message (ai,tn−1(l)(i), ωi,tn−1(l)(i)) by the com-

munication protocol. (If tn−1 (l) (i) = 0, she sends an arbitrary pair (a, ω) ∈ A2.) We refer

to the rounds where player i sends (ai,tn−1(l)(i), ωi,tn−1(l)(i)) and checking occurs as sub-phase

(l, i, n).

For each j ∈ I, player j’s history h(l,i,n)
j in sub-phase (l, i, n) determines an inference(

ai,tn−1(l) (j) , ωi,tn−1(l) (j)
)
∈ A2 ∪ {0} and a realization susp(h

(l,i,n)
j ) ∈ {0, 1}. Collectively,

the history profile h(l,i,n)
−j determines θj(h

(l,i,n)
−j , ζ(h

(0,jam)
−j )).

After sub-phase (l, i, n) has concluded for each i ∈ I and n ∈ I, the history of each

player j ∈ I determines an inferred vector of outcomes (ai,tn−1(l) (j) , ωi,tn−1(l) (j))i∈I ∈∏
n∈I (A2 ∪ {0}).

Players identify deviations as follows: Given n ∈ I, x ∈ {G,B}N , and (a,ω) ∈ A2N ,

let devln (x, a,ω) = 1 denote the event that either (an, ωn) 6= ϕ(a−n, ω−n) (Lemma 1 im-

plies (an, ωn) is infeasible given players −n’s history) or an 6= aln(x). In addition, let

devln
(
x (i) , atn−1(l) (i) ,ωtn−1(l) (i)

)
= 1 if x(i) 6∈ {G,B}N or

(
atn−1(l) (i) ,ωtn−1(l) (i)

)
6∈ A2N .
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Thus, devln
(
x (i) , atn−1(l) (i) ,ωtn−1(l) (i)

)
= 1 means that the outcome of the communica-

tion in sub-phases (l, j, n)j∈I implies that player n deviated in the main phase, some player

deviated in the communication phase, or the players failed to coordinate on some message.

Let h be a history at the end of sub-phase (l, i) or (l, i, n). Let ID (h) be the set of players

who infer susp = 1 or dev = 1 by the end of the sub-phase: that is, for sub-phase (l, i),

ID (h) := ID(h≤(l,main)) ∪
{
j ∈ I : max

λ≤(l,i)
susp

(
hλj
)

= 1

}
,

and for sub-phase (l, i, n), ID (h) is defined as

ID(h≤(l,main))∪

j ∈ I : max

 maxλ≤(l,i,n) susp(hλj ),

max(l,N,n′)≤(l,i,n) devln′
(
x (j) , atn′−1(l) (j) ,ωtn′−1(l) (j)

)
 = 1

 .

F.4.4 Contagion Phase l

For each i ∈ I, in sub-phase (l, i, con), player i sends whether i ∈ ID(h<(l,i,con)), as in

sub-phase (0, i, con). We define θj(h
(l,i,con)
−j , ζ(h

(0,jam)
−j )) and ID

(
h≤(l,i,con)

)
as in sub-phase

(0, i, con).

Finally, let ID−i (h−i) = ID (h) \ {i}. Note that ID−i is a function of players −i’s histories

only, since whether j ∈ ID (h) is determined by hj.

F.5 Observations

We close this section with some immediate implications of the construction. For each player

i ∈ I, regardless of her strategy, either all her opponents successfully infer the state x, or

they all become suspicious, or θi (h−i) = E. In addition, if some player became suspicious in

one sub-block, then either everyone becomes suspicious or θi (h−i) = E in the next sub-block.

Finally, a deviation by player i from ai(x(i)) in period ti−1(l) is detected for sure.

Lemma 18 For any i ∈ I, x ∈ {G,B}, σi ∈ Σi, l ∈ {1, . . . , L}, l ≤ λ < l + 1, and

(σi, σ−i (x−i))-consistent history h<λ at the beginning of (sub-) phase λ, the following claims

hold:

69



1. Either (i) x (n) = x(i−1) ∀n ∈ I with xj(n) = xj for each j 6= i, (ii) ID−i(h
<λ
−i ) = I\{i},

or (iii) θi
(
h<λ−i
)

= E.

2. If ID−i(h
<(l̃,main)
−i ) 6= ∅ for some l̃ ≤ l− 1, then either ID−i(h

<λ
−i ) = I\{i} or θi

(
h<λ−i
)

= E.

3. If ai,ti−1(l) 6= ai(x(i)), then either ID−i(h
<(l+1,main)
−i ) = I\{i} or θi(h<(l+1,main)

−i ) = E.

Proof. Claims 1 and 2: By Claims 1 and 2 of Lemma 6, either (i) x (n) = x̂ ∈ {G,B}N

∀n ∈ I with x̂j = xj for each j 6= i, (ii) suspn(h
(0,j)
n ) = 1 for some n 6= i and j ∈ I, or (iii)

θi(h
(0,j)
−i , ζ(h

(0,jam)
−i )) for some j ∈ I. By the same claim applied to the contagion phase, if

ID−i(h
<(l̃,main)
−i ) 6= ∅ for some l̃ ≤ l − 1, then ID−i(h−i) = I\{i} or θi (h−i) = E at the end of

contagion phase l̃.

Claim 3: Suppose ai,ti−1(l) 6= ai(x(i)). By Claim 1, ai,ti−1(l) 6= ai(x(i−1)), ID−i(h
<(l,main)
−i ) =

I\{i}, or θi(h<(l,main)
−i ) = E. If ai,ti−1(l) 6= ai(x(i − 1)), by Claim 1 of Lemma 6, either (i)

devli
(
x (i− 1) , ati−1(l) (i− 1) ,ωti−1(l) (i− 1)

)
= 1, (ii) suspn(hλ̃n) = 1 for some n 6= i and

λ̃ ∈ (l, i) ∪ {(l, n′, i)}n′∈I , or (iii) θi (h−i) = E at the beginning of contagion phase l. Since

the former two conditions imply ID−i (h−i) 6= {∅} at the beginning of contagion phase l, we

have ID−i(h
<(l+1,main)
−i ) = I\{i} or θi(h<(l+1,main)

−i ) = E as a result of contagion phase l by

Claim 1 of Lemma 6.

G Reward Function

This section constructs the reward function (ignoring for the moment the jamming coordina-

tion phase, which is addressed in Lemma 20). The reward function is the sum of rewards for

the main phases, πmain
i , and rewards for the communication and contagion phases, πnon-main

i .

Let uG = min(a,a′)∈A2 u (a, a′) and uB = max(a,a′)∈A2 u (a, a′). By (14), for all i ∈ I, we

have

max
{
vi(G), uB

}
−min

{
uG, vi(B)

}
≤ 2ū. (63)
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Recall that, by Lemma 1, (a−i, ω−i) perfectly identifies a. Hence, defining

πcancel
i (xi−1, a−i, ω−i) = uxi−1 − ûi (a) ,

πvii (xi−1, a−i, ω−i) = vi(xi−1)− ûi (a) ,

πvii (xi−1, a−i, ω−i|αmin) = vi(xi−1)− u(ai, α
min)

for each a ∈ AN , we have

E
[
ûi (a) + πcancel

i (xi−1, a−i, ω−i)|a
]

= uxi−1 ,

E [ûi (a) + πvii (xi−1, a−i, ω−i)|a] = vi(xi−1),

E
[
ûi (a) + πvii (xi−1, a−i, ω−i|αmin)|ai, αmin

−i
]

= vi(xi−1),

(64)

and

sign(xi−1)πcancel
i (xi−1, a−i, ω−i) ≥ 0,

maxxi−1,a−i,ω−i max
{∣∣πcancel

i (xi−1, a−i, ω−i)
∣∣ , |πvii (xi−1, a−i, ω−i)| ,

∣∣πvii (xi−1, a−i, ω−i|αmin)
∣∣} ≤ 2ū.

(65)

Moreover, letting ϕA(a−i, ω−i) be the unique action ai ∈ A such that ϕ(a−i, ω−i) = (ai, ωi)

for some ωi ∈ A, we have, by (14),

sign(xi−1) 1
Kv

∑Kv

k=1 π
vi
i (ak−i(x), ω−i,k) ≥ 9ε∗ if ϕA(ak−i(x), ω−i,k) = aki (x) ∀k ∈ {1, . . . , Kv} ,

2ū ≥ πvii (xi−1, a−i, ω−i|αmin) ≥ 9ε∗ for all (xi−1, a−i, ω−i).

(66)

We now define πnon-main
i and πmain

i . Define

πnon-main
i (hT

′

−i) = 1{
ζi(h

(0,jam)
−i )=reg

}∑
t∈T′

πi,t(h
T′
−i), (67)

where πi,t(hT
′
−i) corresponds to the reward for the verified communication module in (36).

Next, define

πmain
i (x−i, h

T′
−i, h

Li−1

−i ) =

L∑
l=1

πmain
i (l, x−i, h

T′
−i, h

Li−1

−i ),
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where, for each l, we define

πmain
i (l, x−i, h

T′
−i, h

Li−1

−i ) (68)

=
∑

t∈T(main(l))

1{ti−1(l)=t} (T0)6



1{
θi(h

<(l,main)
−i )=E

}πcancel
i (xi−1, a−i,t, ω−i,t)

+1{
θi(h

<(l,main)
−i )=R

}1{
ID−i(h

<(l,main)
−i )6=I\{i}

}πvii (xi−1, a−i,t, ω−i,t)

+1{
θi(h

<(l,main)
−i )=R

}1{
ID−i(h

<(l,main)
−i )=I\{i}

}πvii (xi−1, a−i,t, ω−i,t|αmin)

−1{
θi(h

<(l,main)
−i )=R

}1{
ID−i(h

<(l,main)
−i ) 6=∅

}1{xi−1=G}2ū


.

In total, the reward function following the jamming coordination phase is defined as

π≥3
i

(
x−i, h

T′
−i, h

Li−1

−i

)
= πmain

i (x−i, h
T′
−i, h

Li−1

−i ) + πnon-main
i (hT

′

−i).

H Equilibrium Conditions: Final Statement

The main remaining step in the proof is verifying the equilibrium conditions given each

history in the jamming coordination phase. It suffi ces to establish incentive compatibility

and promise keeping, as self-generation is addressed in the proof of Lemma 20.

Lemma 19 There exists T̄ > 0 such that, for all T0 > T̄ , all i ∈ I, all x ∈ {G,B}N , and

all jamming coordination phase histories h(0,jam)
i , we have

1. [Incentive Compatibility] For each t ≥ 3 and ht−1
i ∈ Hi(x−i),

σi (xi) ∈ arg max
σi∈Σi

E(σi,σ−i(x−i))

 ∑
t∈
⋃L
l=1 T(main(l))

ûi (at) + π≥3
i

(
x−i, h

T′
−i, h

Li−1

−i

)
|h(0,jam)
i , ht−1

i

 .
(69)

2. [Promise Keeping after ζ i(h
(0,jam)
−i ) = reg] If ζ i(h

(0,jam)
−i ) = reg and

vi (x−i, Ijam\ {i}) :=
1

T ∗
Eσ(x)

 ∑
t∈
⋃L
l=1 T(main(l))

ûi (at) + π≥3
i (x−i, h

T′
−i, h

Li−1

−i )|Ijam

 ,
(70)
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then, for all Ijam\{i}, ˜Ijam\{i} ⊂ I\{i}, we have

vi (x−i, Ijam\{i})

 ≥ vi(xi−1)− ε∗ if xi−1 = G

≤ vi(xi−1) + ε∗ if xi−1 = B
, and (71)

∣∣∣vi (x−i, Ijam\{i})− vi(x−i, ˜Ijam\{i})
∣∣∣ ≤ 1

T ∗
. (72)

The theorem now follows easily from Lemmas 11, 17, and 19.

Lemma 20 Suppose Lemma 19 holds. Then there exists δ̄ < 1 such that v ∈E (δ) for all

δ > δ̄.

Proof. By definition of the strategies σ(x) in Section F, (58) holds. Hence, putting together

Lemmas 14—17, it suffi ces to construct reward functions π∗i that, together with σ(x), satisfy

equations (57) and (59)—(61).

We first construct the reward for the jamming coordination phase, denoted πindiff
i (x−i, h

(0,jam)
−i ),

using Lemma 11. To this end, we verify the premise for jamming coordination.

Given (68), if ζ i(h
(0,jam)
−i ) = jam then player i is indifferent among all actions from period

3 on, since ζ i(h
(0,jam)
−i ) = jam implies θi(h

<(l,main)
−i ) = E for each l = 0, ..., L. Hence, if

ζ i(h
(0,jam)
−i ) = jam then

1

T ∗
Eσ(x)

 ∑
t∈
⋃L
l=1 T(main(l))

ûi (at) + π≥3
i (x−i, h

T′
−i, h

Li−1

−i )|Ijam

 = uxi−1 . (73)

In addition, (71) and (72) hold. Therefore, the premise for jamming coordination is satisfied.

By Lemma 11, there exists πindiff
i (x−i, h

(0,jam)
−i ) such that the jamming coordination protocol

is incentive compatible and

lim
T0→∞

max
x−i,h

(0,jam)
−i

∣∣∣πindiff
i (x−i, h

(0,jam)
−i )

∣∣∣
(T0)6 = 0. (74)

We now define the total reward function as

πi(x−i, h
T′
−i, h

Li−1

−i ) = πindiff
i (x−i, h

(0,jam)
−i ) + π≥3

i (x−i, h
T′
−i, h

Li−1

−i ).
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It remains to verify (57)—(61).

Note that, by the construction of πi,t(hT
′
−i) in (34), for all x ∈ {G,B}

N and hT
′
−i, we have

sign (xi−1) πnon-main
i (hT

′

−i) ≥ −4 |T′| ū. (75)

To derive a similar equation for πmain
i , if θi(h

<(l,main)
−i ) = E, then (65) implies that

πmain
i is non-positive if xi−1 = G and non-negative if xi−1 = B. If θi(h

<(l,main)
−i ) = R and

ID−i(h
<(l,main)
−i ) = I\ {i}, then the same conclusion holds by (66).

We now show that, in all other cases, sign (xi−1) πmain
i (l, x−i, h

T′
−i, h

Li−1

−i ) < 0 in at most

(1 +Kv) sub-blocks. To see this, note that if ID−i(h
<(l,main)
−i ) 6= ∅ then Lemma 18 implies that,

as a result of contagion phase l + 1, either ID−i(h
<(l+1,main)
−i ) = I\ {i} or θi(h<(l+1,main)

−i ) = E

(regardless of player i’s behavior). If θi(h
<(l,main)
−i ) = R and ID−i(h

<(l,main)
−i ) = ∅, then Lemma

18 implies that, for each n ∈ I, x(n) = x̂ for some x̂ ∈ {G,B}N with x̂i−1 = xi−1. Hence, by

(66),

sign(xi−1)
1

Kv

Kv∑
k=1

πvii (xi−1, a−i,ti−1(l), ω−i,ti−1(l)) ≥ 0

as long as ali(x(i− 1)) = ϕA(a−i,ti−1(l), ω−i,ti−1(l)) = ai,ti−1(l). Moreover, if ai,ti−1(l) 6= ali(x(i−

1)), then Lemma 18 implies that either ID−i(h
<(l+1,main)
−i ) = I\ {i} or θi(h<(l+1,main)

−i ) = E.

Combining these observations, there exists a subset L ⊂ {1, ..., L} with |L| ≥ L−(Kv+1)

such that ∑
l∈L

sign (xi−1) πmain
i (l, x−i, h

T′
−i, h

Li−1

−i ) ≥ 0.

Since πui and π
vi
i are bounded by (65), we have

sign (xi−1) πmain
i (x−i, h

T′
−i, h

Li−1

−i ) ≥ −2ū (1 +Kv) (T0)6 ≥by (15) −ε∗L (T0)6 ∀x−i, hT
′

−i, h
Li−1

−i .

(76)

Now, by (75) and (76), for all xi−1, h
T′
−i, h

Li−1

−i , we have

lim
T0→∞

sign(xi−1)π≥3
i (x−i, h

T′
−i, h

Li−1

−i )

L (T0)6 ≥ −ε∗.
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Together with (74), this implies (57) for suffi ciently large T0. Since the range of π
≥3
i is

O ((T0)6+ε) ∀ε > 0, (59) also holds for suffi ciently large T0.

Next, Lemma 19 implies that there is no profitable deviation from σi (xi) after the jam-

ming coordination phase. Given this, Lemma 11 implies that there is also no profitable

deviation from σi (xi) during the jamming coordination phase. Hence, (60) holds.

Finally, since Ijam 6= ∅ with probability no more than 2N (T0)−2, by (71), (73), and (74),

the total payoff satisfies

lim
T0→∞

1

T ∗
Eσ(x)

 ∑
t∈
⋃L
l=1 T(main(l))

ûi (at) + πi(x−i, h
T′
−i, h

Li−1

−i )

 = vi (x−i, ∅) .

Hence, (70) implies (61) for suffi ciently large T0.

I Proof of Lemma 19

I.1 Notation

In this section, when considering any strategy σi and history h, h is assumed to be (σi, σ−i (x−i))-

consistent.

For l ∈ {0, . . . , L} and l ≤ λ < l + 1, let L≤λ := (tn(l̃))n∈I,l̃≤l. Similarly, let L<λ :=

(tn(l̃))n∈I,l̃≤l if l < λ and L<λ := (tn(l̃))n∈I,l̃<l if λ = (l,main).

For each λ, at the end of (sub-) phase λ, if player i knew L≤λ and h≤λ, she could attain

a continuation payoff of

wi(x−i,L≤λ, h≤λ) (77)

: = max
σi∈Σi

E(σi,σ−i(x−i))

 ∑L
l̃=l+1

∑
t∈T(main(l̃)) ûi (at) +

∑L
l̃=l+1 π

main
i (l̃, x−i, h

T′
−i, h

Li−1

−i )

+1{
ζi(h

(0,jam)
−i )=reg

}∑
t∈T′:t%λ πi,t(h

T′
−i)

|L≤λ, h≤λ
 ,

where t % λ means period t follows or is within (sub-) phase λ. On the other hand, let

vi(x,L≤λ, h≤λ) denote player i’s continuation payoff from strategy σi(xi). We will show that,

for any (sub-) phase λ and history (L≤λ, h≤λ), wi(x−i,L≤λ, h≤λ) = vi(x,L≤λ, h≤λ).
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I.2 Equilibrium Properties

First, we show that there is no instantaneous deviation gain from σi(xi):

Lemma 21 There exists T̄ > 0 such that, for any T0 > T̄ , i ∈ I, x ∈ {G,B}N , σi ∈ Σi,

l ∈ {1, ..., L}, L<(l,main), and history h<(l,main) at the beginning of phase (l,main),

max
σi∈Σi

E(σi,σ−i(x−i))

 ∑
t∈T(main(l)) ûi (at) + πmain

i (l, x−i, h
T′
−i, h

Li−1

−i )

+1{
ζi(h

(0,jam)
−i )=reg

}∑
t∈Ta0

i :t in sub-block l π
a0

i (a−i,t, ω−i,t)
|L<(l,main), h<(l,main)


= Eσ(x)

 ∑
t∈T(main(l))

ûi (at) + πmain
i (l, x−i, h

T′
−i, h

Li−1

−i )|L<(l,main), h<(l,main)


=

 (T0)6

(
vi(xi−1)− 1{xi−1=G}1{ID−i(h<(l,main)

−i )6=∅
}2ū

)
if θi(h

<(l,main)
−i ) = R,

(T0)6 uxi−1 if θi(h
<(l,main)
−i ) = E.

Proof. Playing σi (xi) yields the highest value of πi,t(hT
′
−i): 0. Hence, we focus on

∑
t∈T(main(l)) ûi (at)

and πmain
i . If θi(h

<(l,main)
−i ) = R then, by (68), the reward function satisfies

πmain
i (l, x−i, h

T′
−i, h

Li−1

−i )

= (T0)6 ×

 vvii (xi−1, a−i,t, ω−i,t)− 1{xi−1=G}1{ID−i(h<(l,main)
−i )6=∅

}2ū if ID−i(h
<(l,main)
−i ) 6= I \ {i},

πvii (xi−1,t, a−i,t, ω−i,t|αmin)− 1{xi−1=G}2ū if ID−i(h
<(l,main)
−i ) = I \ {i}

for t = ti−1(l) (and 0 for other t’s). For each t ∈ T(main(l)) and ai,t, since ti−1(l) = t

with probability (T0)−6 (recall that L<(l,main) does not include ti−1(l) and (58) holds) and

since players−i play a−i(x(i−1)) when ID−i(h
<(l,main)
−i ) = ∅ (by Lemma 18) and play αmin when

ID−i(h
<(l,main)
−i ) = I\{i}, the per-period expected payoffis vi(xi−1)−1{xi−1=G}1{ID−i(h<(l,main)

−i )6=∅
}2ū,

by (64). If instead θi(h
<(l,main)
−i ) = E then the result follows from (68) and (64).

Second, for each sub-phase λ, if i ∈ ID(hλ) then ID−i(h
<λ
−i ) 6= ∅ or θi(h<λ−i ) = E.

Lemma 22 There exists T̄ > 0 such that, for any T0 > T̄ , i ∈ I, λ, and history h<λ at the

beginning of (sub-) phase λ, if i ∈ ID(h<λ) then ID−i(h
<λ
−i ) 6= ∅ or θi(h<λ−i ) = E.

Proof. By definition, i ∈ ID(h<λ) only if suspi(hi) = 1 or devln
(
x (i) , atn−1(l) (i) ,ωtn−1(l) (i)

)
=

1 for some n ∈ I as the result of communication sub-phases preceding λ. We will show that
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both of these two cases imply ID−i(h
<λ
−i ) 6= ∅ or θi(h<λ−i ) = E.

In each communication sub-phase, by Claims 1 and 2 of Lemma 6, suspi(hi) = 1 implies

θi(h
<λ
−i ) = E for each subsequent sub-phase.

In addition, by Claims 1 and 2 of Lemma 6, all players infer the same message, suspn(hn) =

1 for some n 6= i, or θi(h−i) = E. If devln
(
x (i) , atn−1(l) (i) ,ωtn−1(l) (i)

)
= 1 for some n ∈ I,

then each of these three cases implies either ID−i(h
<λ
−i ) 6= ∅ or θi(h<λ−i ) = E.

Third, the distribution of θi(h−i) is independent of the history in previous sub-phases,

and θi(h−i) = E is rare.

Lemma 23 There exists T̄ > 0 such that, for any T0 > T̄ , i ∈ I, λ, and l ≥ λ, there exists

p(Ijam\{i}, λ, θi(h≤λ−i ), l) such that, for any x ∈ {G,B}
N , L≤λ, and history h≤λ at the end of

(sub-) phase λ, we have

Prσ(x)
(
θi(h

<(l,main)
−i ) = E|L≤λ, h≤λ

)
= pi(Ijam\{i}, λ, θi(h≤λ−i ), l).

Moreover, for θi(h
≤λ
−i ) = R, we have pi(Ijam\{i}, λ, θi(h≤λ−i ), l) ≤ (4ūL)−1 (T0)−7.

Proof. By Claim 5 of Lemma 6, the distribution of θi in each communication sub-phase is

determined by Ijam\{i}, independent of the message sent. In addition, since θi(h≤λ−i ) = R

implies ζ i(h
(0,jam)
−i ) = reg, for suffi ciently large T0, in each communication sub-phase the

probability of θi(h−i, ζ i(h
(0,jam)
−i )) = E is at most (T0)−8 (by Claim 4 of Lemma 6). Hence

the lemma holds.

I.3 Verification of Promise Keeping and Incentive Compatibility

In equilibrium, by Lemma 21, for each λ with l ≤ λ < l + 1, L≤λ, and h≤λ, we have

vi(x,L≤λ, h≤λ) =
∑
l̃≥l+1

(T0)6


pi(Ijam\{i}, λ, θi(h≤λ−i ), l̃)uxi−1

+(1− pi(Ijam\{i}, λ, θi(h≤λ−i ), l̃))
(
vi(xi−1)− 1{xi−1=G}1{ID−i(h<(l̃,main)

−i )6=∅
}2ū

)  .

(78)

By Claim 3 of Lemma 6, ID−i(h
<λ
−i ) 6= ∅ implies θi(hλ−i) = E on the equilibrium path. Hence,

with λ = (0, jam), by Lemma 23 and the fact that T ∗ = O
(
(T0)6+ε) ∀ε > 0, we have

(70)—(72). It thus remains to verify (69).
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The proof of (69) involves verifying the premise for verified communication, which requires

the following simple lower bound on the probability of JAM:

Lemma 24 There exists T̄ > 0 such that, for any T0 > T̄ , i ∈ I, x−i ∈ {G,B}N−1, L,

σi ∈ Σi, hti, and history h
3:t from period 3 to period t, we have

Pr
(
ζj(h

(0,jam)
j ) = jam ∀j 6= i|L, h3:t, hti

)
≥ (T0)−4(N−1) . (79)

Proof. By iterated expectations, it suffi ces to prove the lemma for t = T ∗. For any jamming

coordination phase history h(0,jam)
i , let pi(h

(0,jam)
i ) denote the conditional probability that

each player j 6= i observes a1 during the jamming coordination phase. By (25), we have

pi(h
(0,jam)
i ) ≥ ε̄ (T0)−4(N−2). It remains to account for updating from h3:t between periods 3

and T ∗ (recall that the jamming coordination phase ends in period 2).

Suppose player i could perfectly observe whether her opponents play REG or JAM in

every half-interval. (Note that the other information in (L, h3:t) does not update the prob-

ability of ζj(h
(0,jam)
j )). Then Pr

(
ζj(h

(0,jam)
j ) = jam ∀j 6= i|hT ∗i

)
would be minimized when

REG is always played. As the probability that REG is always played is at least 1−NT 2
0 /T

9
0

(conditional on any realization of
(
ζj(h

(0,jam)
j )

)
j∈I
), we have

Pr
(
ζj(h

(0,jam)
j ) = jam ∀j 6= i|hT ∗i

)
≥

ε̄ (T0)−4(N−2)
(

1−N T 2
0

T 9
0

)
ε̄ (T0)−4(N−2)

(
1−N T 2

0

T 9
0

)
+ 1

= O
(

(T0)−4(N−2)
)
.

Hence, for suffi ciently large T0, (79) holds.

It will also be useful to simplify (78). By Lemma 23, there exists a payoffvi(x, Ijam\{i}, λ, θi(h≤λ−i ), D)

(where D stands for “Deviation is Detected”) such that, for each h<λ−i with I
D
−i(h

<λ
−i ) 6= ∅, we

have

vi(x,L≤λ, h≤λ) = vi(x, Ijam\{i}, λ, θi(h≤λ−i ), D);

and for each h<λ−i with I
D
−i(h

<λ
−i ) 6= ∅, we have (since vi(G) − 2ū ≤ uG and vi(B) ≤ uB by

(63))

vi(x,L≤λ, h≤λ) ≥ vi(x, Ijam\{i}, λ, θi(h≤λ−i ), D). (80)
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In addition, on the equilibrium path, either ID−i(h
<(l,main)
−i ) = ∅ or θi(h<(l,main)

−i ) = E.

Hence, for each λ with l ≤ λ < l + 1, L≤λ, and h≤λ, on-path payoffs are given by

vi(x,L≤λ, h≤λ) = vi(x, Ijam\{i}, λ, θi(h≤λ−i ), N)

: =
∑
l̃≥l+1

(T0)6

 pi(Ijam\{i}, λ, θi(h≤λ−i ), l̃)uxi−1

+(1− pi(Ijam\{i}, λ, θi(h≤λ−i ), l̃))vi(xi−1)

 .

I.3.1 Proof of (69)

The proof is by induction. For λ ≥ L, vi(x,L≤λ, h≤λ) = wi(x−i,L≤λ, h≤λ) = 0, since there is

no main phase following λ and playing σi (xi) yields πi,t(hT
′
−i) = 0. Given this observation,

it suffi ces to establish the following claim:

Inductive hypothesis For each x, λ, L<λ, and h<λ, if the equilibrium continuation pay-

off given (L≤λ, h≤λ) equals vi(x,L≤λ, h≤λ), then σi(xi) is sequentially rational given

(L≤λ, h≤λ).

If θi(h<λ−i ) = E, then the claim follows from Lemma 21 and the fact that θi(h<λ−i ) = E

implies θi(h
<(l,main)
−i ) = E for all l ≥ λ. So assume θi(h<λ−i ) = R.

For communication sub-phase λ, we use the notation vEi , (vmii )mi∈Mi
, and v0

i as in Section

C.3. Note that (80) implies, for each x,L≤λ, h≤λ,

vi(x,L≤λ, h≤λ) ≥ v0
i = vi(x, Ijam\{i}, λ, R,D).

Contagion Phase (l, i, con): For the equilibrium message mi (equal to 0 if i 6∈ ID(h<λ)

and 1 if i ∈ ID(h<λ)) and the alternative message m̂i ∈ {0, 1} \ {mi}, we have

vmii ≥ vm̂ii = v0
i if I

D
−i(h

<λ
−i ) = ∅ and i 6∈ ID(h<λ) (by (80)),

vmii = vm̂ii = v0
i if I

D
−i(h

<λ
−i ) 6= ∅ or i ∈ ID(h<λ),

since θi(h<λ−i ) = R and i ∈ ID(h<λ) imply ID−i(h
<λ
−i ) 6= ∅ by Lemma 22. Given vEi = uxi−1 , the

premise holds. Hence, σi(xi) is sequentially rational.
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Contagion Phase (l, j, con) with j 6= i: Since vmji ≥ v0
i for all mj ∈ Mj by (80), the

premise holds.

Communication Sub-Phase (l, i, n) with n 6= i: In sub-phases (l, n) and (l, j, n)

with j < i, Claim 1 of Lemma 6 implies that either players coordinate on tn(l − 1) and

(aj,tn(l−1), ωj,tn(l−1))j or ID−i(h
<λ
−i ) 6= ∅ (given θi(h

<λ
−i ) = R). By the inductive hypothesis,

players follow σ(x) in later sub-phases, so by Claim 4 of Lemma 6 either players coordinate

on (aj,tn(l−1), ωj,tn(l−1))j>i or θi(h
<(l+1,main)
−i ) = E. Hence, given θi(h

<(l+1,main)
−i ) = R, for

each message m̂i 6= (ai,tn(l−1)(i), ωi,tn(l−1)(i)), coordinating on m̂i induces devn = 1. Hence,

vmii ≥ vm̂ii = v0
i . Given v

E
i = uxi−1 , the premise holds.

Communication Sub-Phase (l, j, n) with j 6= i: The same as sub-phase (l, j, con).

Communication Sub-Phase (l, i): If ID−i(h
<λ
−i ) 6= ∅, then vmii = v0

i for each mi ∈ Mi,

so the premise holds. So assume ID−i(h
<λ
−i ) = ∅..

Suppose first that ai,ti−1(l) = ali(x(i)). Given ID−i(h
<λ
−i ) = ∅ and θi(h<λ−i ) = R, by Claim

1 of Lemma 6, players coordinated on tj(l − 1) with j − 1 < i. Since players follow σ(x)

in later sub-phases, Claim 4 of Lemma 6 implies that either players coordinate on the true

message or θi(h
<(l+1,main)
−i ) = E in later sub-phases. Hence, for any t ∈ T (main(l)), as long

as ti(l − 1)(n) = t for each n ∈ I, we have ID−i(h
<(l+1,main)
−i ) = ∅ or θi(h<(l+1,main)

−i ) = E.

Therefore, for each message mi, the continuation payoff is

vmii = vi(x, Ijam\{i}, λ+ 1, R,N) ≥ v0
i = vi(x, Ijam\{i}, λ+ 1, R,D),

so the premise holds.

Suppose instead ai,ti−1(l) 6= ali(x(i)). Then Lemma 18 implies that ID−i(h
<(l+1,main)
−i ) 6= ∅

or θi(h
<(l+1,main)
−i ) = E, regardless of player i’s behavior. Hence, for each message mi, the

continuation payoff is vmii = v0
i . Again, the premise holds.

Communication Sub-Phase (l, j) with j 6= i: The same as sub-phase (l, j, con).

Main Phase: If ID−i(h
<(l,main)
−i ) 6= ∅, then the continuation payoff is independent of player

i’s behavior in the main phase, so Lemma 21 implies the result. If ID−i(h
<λ
−i ) = ∅, then given

a history profile (L≤λ, h≤λ) at the end of main phase l, by Lemma 18, the probability that
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ID−i(h
<(l+1,main)
−i ) 6= ∅ is determined by and increasing in

∣∣{t ∈ T(main(l)) : ai,t 6= ali(x(i))}
∣∣

(T0)6 .

Since the distribution of θi(h
<(l+1,main)
−i ) is independent of player i’s behavior in main phase

l by Lemma 23, it is optimal to play ali(x(i)) at each history.

J Omitted Proofs of Lemmas for Theorem 1

J.1 Proof of Lemma 6

Claim 1: If susp (hn) = 1 for some n 6= j, then (ii) holds. If θj (h−j, ζ, j
′) = E for some

j′ ∈ I, then (iii) holds. So assume otherwise.

In light of the definition of FAIL, this implies that, for each j′ 6= j and n 6= j′, player n ob-

serves a1 in each half-interval in T (j′) where player j′ plays a1. Hence, (aj′,t(j), ωj′,t(j))t∈T(msg) =

(aj′,t, ωj′,t)t∈T(msg). Moreover, for each player n 6= j, j′, since susp (hn) = 0, she does not ob-

serve a0 in any other half-interval in T (j′). Hence, (aj′,t(n), ωj′,t(n))t∈T(msg) = (aj′,t, ωj′,t)t∈T(msg).

Combining these observations, we have (aj′,t(n), ωj′,t(n))t∈T(msg) = (aj′,t, ωj′,t)t∈T(msg) for each

j′, n ∈ I. Therefore, mi(n) = mi (n
′) for all n ∈ I. Finally, as player i follows the protocol,

this message must equal mi.

For the last part of the claim, consider each event that induces susp (hj) = 1: If

(an,t(j), ωn,t(j))t∈T(msg) = 0 for some n 6= j, then (an,t(j), ωn,t(j))t∈T(msg) 6= (an,t, ωn,t)t∈T(msg).

Hence, either some player j′ 6= n, j played JAM or player j did not match with player n

in a half-interval in T (n) where player n played a1. In either case, θj (h−j, ζ, n) = E. If

(aj,t(n), ωj,t(n))t∈T(msg),j∈I is not feasible, then again there exists n 6= j with (an,t(j), ωn,t(j))t∈T(msg) 6=

(an,t, ωn,t)t∈T(msg).

Claim 2: The same as Claim 1, except that the commonly inferred message m̂i may differ

from mi.

Claim 3: Follows from Claim 3 of Lemma 5.

Claim 4: Given Claim 3, it suffi ces to show Prσ
∗,mi (θj (h−j, ζ) = E) ≤ T−8. For each
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j′ ∈ I, if no one plays JAM in T (j′), then θj (h−j, ζ, j
′) = E only if some player n 6= j′ fails to

observe a1 in a half-interval in T (j′) where player j′ plays a1. By Lemma 2, this event occurs

with probability at most (N − 1)
⌈
log2 |A|

4dlog2|Mi|e
⌉

exp (−ε̄T ). In total, θj (h−j, ζ) = E

occurs with probability at most

2N (N − 1)
⌈
log2 |A|

4dlog2|Mi|e
⌉
T−9︸ ︷︷ ︸

∃j′∈I,n 6=j:n plays JAM in T(j′)

+N (N − 1)
⌈
log2 |A|

4dlog2|Mi|e
⌉

exp (−ε̄T )︸ ︷︷ ︸
∃j′∈I,n 6=i:n fails to observe a1 in T(j′)

. (81)

By (21), this sum is at most T−8.

Claim 5: Follows from Claim 1 of Lemma 5.

J.2 Proof of Lemma 8

Let a1 ∈ AN be the action profile where player i plays a1 and all other players play a0. Let

a0 ∈ AN be the action profile where all players play a0. Let

T1st :=
⋃dlog2|Mi|e
k=1 {2(k − 1)T + 1, ..., 2(k − 1)T + T}

denote the set of periods in the first half of each interval. For n 6= i, define

π̂n (hn−1) =
∑
t∈T

2K1{ωn−1,t=a0}

pn−1,n

+
∑
t∈T1st

1{ωn−1,t=a1}
(
1− δT

)
(ûn (a0)− ûn (a1))

pn−1,i

and πn (hn−1) = π̂n (hn−1)− cn, where cn is a constant to be determined. We will show that,

for n 6= i, Claims 1 and 3 of the lemma hold for any cn, and that E
[∑

t∈T δ
t−1ûn (at) + π̂n (hn−1)

]
is a constant independent of mi. Setting cn = E

[∑
t∈T δ

t−1ûn (at) + π̂n (hn−1)
]
then implies

that Claim 2 also holds.

For Claim 1, we require that playing a0 throughout the module is optimal with payoff

function (26). This follows immediately from the facts thatK ≥ 2ū
ε̄
andmaxh,h̃

∣∣∣wn (h)− wn(h̃)
∣∣∣ <

K, which imply that the first term of π̂n (hn−1) dominates any difference in
∑

t∈T δ
t−1ûn (at)

and wn (h). Claim 3 is also immediate.

To see that E
[∑

t∈T δ
t−1ûn (at) + π̂n (hn−1)

]
is independent of mi, note that player i
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plays a1 the same number of times regardless of mi. Therefore, E
[∑

t∈T

2K1{ωn−1,t=a
0}

pn−1,n

]
is

independent of mi. It remains to show that

∑
t∈T

δt−1ûn (at) +
∑
t∈T1st

E
[
1{ωn−1,t=a1}

] (
1− δT

)
(ûn (a0)− ûn (a1))

pn−1,i

(82)

is independent of mi.

We show that (82) is independent ofmi for each interval: that is, for each k ∈ {1, . . . , dlog2 |Mi|e},

when the sums in (82) are restricted to τ ∈ {2(k − 1)T + 1, . . . , 2kT}, they are the same

when player i plays a1 in the first half of the kth interval as when she plays a1 in the second

half. For, when player i plays a1 in the second half of the kth interval, (82) equals

2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn
(
a0
)

+
2kT∑

τ=2(k−1)T+T+1

δτ−1ûn
(
a1
)
,

while when player i plays a1 in the first half of the kth interval, (82) equals

2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn
(
a1
)

+
2kT∑

τ=2(k−1)T+T+1

δτ−1ûn
(
a0
)

+
(
1− δT

) 2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1
(
ûn
(
a0
)
− ûn

(
a1
))

=

2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn
(
a1
)

+ δT
2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn
(
a0
)

+
(
1− δT

) 2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1
(
ûn
(
a0
)
− ûn

(
a1
))

= δT
2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn
(
a1
)

+

2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn
(
a0
)

=

2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn
(
a0
)

+
2kT∑

τ=2(k−1)T+T+1

δτ−1ûn
(
a1
)
.

Hence, the sum is the same either way.

Finally, for player i, define

π̂i (hi−1) =
∑
t∈T

1

pi−1,i

(
δt−11{ωi−1,t=a1}

(
ûi
(
a1
)
− ûi

(
a0
))

+ 1{ωi−1,t∈{a0,a1}}2ū
)
.

The first term in the sum makes player i indifferent between playing a0 and a1, and the
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second term gives her an incentive not to play a 6∈ {a0, a1}. Since player i is indifferent

between a0 and a1, it follows that ci = E
[∑

t∈T δ
t−1ûi (at) + π̂i (hi−1)

]
is independent of mi.

Hence, letting πi,t (hi−1) = π̂i,t (hi−1)− ci, Claims 1-3 of the lemma hold for n = i.

J.3 Proof of Lemma 10

We prove the first part of the lemma by backward induction. We assume throughout that

ζj = reg; if instead ζj = jam, then (35) equals wj (h, ζ) and θj (h−j, ζ) = E, so player j is

indifferent over all protocol strategies by Condition 1 of the premise for communication.

Final Checking Round Let j′ be the index of the final checking round. Fix h ∈ H<j′.

The following lemma verifies the receivers’ incentives, since ûj(aτ ) + πa
0

j (a−j,τ , ω−j,τ ) for

τ 6∈ T (j′) is sunk.

Lemma 25 Assume j 6= j′ and ζj = reg. For every history h<j
′ ∈ H<j′ and ht−1

j with

t ∈ T (j′), and every action aj,t ∈ A, when player j follows her optimal continuation strategy

after taking action aj,t, we have

E

 ∑
τ∈T(j′)

πa
0

j (a−j,τ , ω−j,τ ) + wj (h, ζ) |h<j′ , ht−1
j , aj,t = a0


≥ E

 ∑
τ∈T(j′)

πa
0

j (a−j,τ , ω−j,τ ) + wj (h, ζ) |h<j′ , ht−1
j , aj,t 6= a0

+
1

2
. (83)

Proof. If θj (h−j, ζ, j
′′) = E for some j′′ 6= j′, the result follows immediately from (29),

(36), and ζj = reg. So suppose θj (h−j, ζ, j
′′) = R for all j′′ 6= j′. Since a deviation by any

player j′′ 6= j induces θj (h−j, ζ) = E, we also assume players −j follow σ∗−j in every checking

round. Hence, θj (h−j, ζ, j
′) = E if and only if (i) some player n 6= j′ does not observe a1 in

a half-interval where player j′ plays a1 or (ii) some player n 6= j, j′ plays JAM in T(j′). In

particular, letting Rj′,−j denote the event that each player n 6= j, j′ is matched with player

j′ in every half-interval where player j′ takes a1, Pr(θj (h−j, ζ, j
′) = E|Rj′,−j, h

<j′ , ht−1
j ) is

independent of σj.

84



With i replaced by j′, i∗ replaced with j, T replaced with T(j′), and Lemma 3 replaced

with Lemma 7, by the same argument as for Lemma 9, with probability at least

1−max
{
T 4(N−1)+10, N

⌈
log2 |A|

2dlog2|Mi|e
⌉}

exp
(
−ε̄4T

)
, (84)

conditional on (aj,τ , ωj,τ )τ∈T(j′), either θj (h−j, ζ, j
′) = E or [for each n 6= j, (aj′,t (n) , ωj′,t(n))t∈T(msg) ∈

{(aj′,t, ωj′,t)t∈T(msg), 0}, and (aj′,t (n) , ωj′,t(n))t∈T(msg) = (aj′,t, ωj′,t)t∈T(msg) if and only if aj,τ =

a0 for each τ ∈ T such that µτ (j) = n and τ is in a half-interval where player j′ plays a0].

The latter event implies Rj′,−j.

Since Pr(θj (h−j, ζ, j
′) = E|Rj′,−j, h

<j′ , ht−1
j ) independent of σj and (aj′,t (n) , ωj′,t(n))t∈T(msg) =

0 induces suspn(hn) = 1, playing aj,τ = a0 for each τ ≥ tmaximizes wj (h, ζ) with probability

at least (84). Given this, the reward term πa
0

j (a−j,τ , ω−j,τ ) outweighs any possible benefit to

player j from playing a 6= a0 in an attempt to manipulate (aj′,t (n) , ωj′,t(n))t∈T(msg),n 6=j.

We next verify the sender’s incentive:

Lemma 26 Assume ζj′ = reg. For every history h<j
′ ∈ H<j′ and ht−1

j′ with t ∈ T (j′), and

every action aj′,t ∈ A, when player j′ follows her optimal continuation strategy after taking

action aj′,t, we have

E

 ∑
τ∈T(j′)

πaτj′ (a−j′,τ , ω−j′,τ ) + wj′ (h, ζ) |h<j′ , ht−1
j′ , aj′,t = at


≥ E

 ∑
τ∈T(j′)

πaτj′ (a−j′,τ , ω−j′,τ ) + wj′ (h, ζ) |h<j′ , ht−1
j′ , aj′,t 6= at

+
1

2
, (85)

where at is the action determined by σ∗j′ given (aj′,t, ωj′,t)t∈T(msg).

Proof. Again, we assume θj′(h−j′ , ζ, j′′) = R for all j′′ 6= j′ and players −j′ follow σ∗−j′ in

all checking rounds. In addition, assume REGj′,−j′ , as otherwise θj′(h−j′ , ζ, j′) = E. Given

the reward π
āj′,t
j′ (h−j′), it suffi ces to show that following σ∗j′ maximizes wj′ (h, ζ).

By Claims 4 and 5 of Lemma 5, for each j′′ 6= j′, we have (aj′′,t (n) , ωj′′,t(n))t∈T(msg) ∈

{(aj′′,t, ωj′′,t)t∈T(msg), 0} for all n ∈ I.
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Fix t ∈ T (j′), h<j
′
, and ht−1

j′ . If (aj′′,t (n) , ωj′′,t(n))t∈T(msg) = 0 for some j′′ 6= j′ and n ∈ I,

then Claim 1 of Lemma 6 implies that suspn′(hn′) = 1 for some n′ 6= j. Hence, maximizing

wj′ (h, ζ) is equivalent to maximizing the probability that θj (h−j, ζ, j
′) = E. If player j′

followed σ∗j′ until period t− 1 within T (j′), then following σ∗j′ maximizes θj′(h−j′ , ζ, j
′) = E.

Otherwise, θj′(h−j′ , ζ, j′) = R given REGj′,−j′ and any strategy maximizes wj′ (h, ζ). In

total, it is optimal to follow σ∗j′ .

Now suppose (aj′′,t (n) , ωj′′,t(n))t∈T(msg) = (aj′′,t, ωj′′,t)t∈T(msg) for each j′′ 6= j′ and n ∈

I. Suppose player j′ followed σ∗j′ until period t − 1 within T (j′). On the one hand, if

player j′ deviates from σ∗j′ in period t, then θj′(h−j′ , ζ, j
′) = R given REGj′,−j′ . Since

(aj′,t(n), ωj′,t(n))t∈T(msg) 6= (aj′,t, ωj′,t)t∈T(msg) for some n 6= j′ induces susp (hn) = 1, player

j′’s payoff is

P (σj′ |h<j
′
,ht−1
j′ )TKvmij′ + (1− P (σj′|h<j

′
,ht−1
j′ ))TKv0

j′ ,

wheremi corresponds to (ai,t)t∈T(msg) and P (σj′|h<j
′
,ht−1
j′ ) is the probability that (aj′,t(n), ωj′,t(n))t∈T(msg) =

(aj′,t, ωj′,t)t∈T(msg) for all n 6= j′. On the other hand, if player j′ follows σ∗j′ in period t, then

her equilibrium payoff is

P (σ∗j′ |h<j
′
,ht−1
j′ )TKvmij′ + (1− P (σ∗j′ |h<j

′
,ht−1
j′ ))TKvEj′ ,

since (aj′,t(n), ωj′,t(n))t∈T(msg) 6= (aj′,t, ωj′,t)t∈T(msg) implies θj′(h−j′ , ζ, j′) = E. Asmin{vmij′ , vEj′} ≥

v0
j′ by premise and P (σ∗j′ |h<j

′
,ht−1
j′ ) ≥ P (σj′|h<j

′
,ht−1
j′ ) by definition, it is optimal to play σ∗j′ .

Suppose instead player j′ deviated from σ∗j within T (j′) before period t − 1 . Then

θj′(h−j′ , ζ, j
′) = R given REGj′,−j′ , so her payoff is

P (σj′ |h<j
′
,ht−1
j′ )TKvmij′ + (1− P (σj′|h<j

′
,ht−1
j′ ))TKv0

j′ .

Again, following σ∗j′ for the rest of the round maximizes P (σj′|h<j
′
,ht−1
j′ ).

Backward Induction Given that players follow σ∗ in subsequent rounds and Claim 1 of

Lemma 5, we can assume θj (h−j, ζ, j
′′) = R for each j′′ for which the j′′-checking round

follows the current round. Hence, the same proof as for Lemmas 25 and 26 establish each
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player’s incentive to follow σ∗ after any history.

Message Round Again, given that players follow σ∗ in the checking rounds and Claim 1 of

Lemma 5, we can assume θj (h−j, ζ, j
′) = R for each j′ ∈ I, and so assume (aj′,t(n), ωj′,t(n))t∈T(msg) =

(aj′,t, ωj′,t)t∈T(msg) and suspn(hn) = 0 for all n, j′ ∈ I. Given this, the strategy of each player

j 6= i does not affectwj(h, ζ), so incentives are satisfied. For player i, given (aj′,t(n), ωj′,t(n))t∈T(msg) =

(aj′,t, ωj′,t)t∈T(msg) for all n, j′ ∈ I, mi(n) will be equal to m̂i if player i plays (ai,t)t∈T(msg)

corresponding to the binary expansion of m̂i (with the interpretation that, if (ai,t)t∈T(msg)

does not correspond to the binary expansion of any m̂i ∈ Mi, then mi(n) = 1). Hence,

following σ∗,m
∗
i

i is optimal after any history.

i∗-QBFE The last part of the lemma is immediate: Since vEj = vmij = vpunish
j for each

mi ∈Mi and j 6= i∗, players −i∗’s incentives are satisfied. For player i∗, the proof of the first

part of the lemma applies.

J.4 Proof of Lemma 11

Definition of the Reward Function

We must define πindiff
i,t (h−i|T ). Given h−i, fix hi uniquely identified from h−i by Lemma

1. Let H0
i be the set of histories for player i with ωi,1 6= a1 and ωi,2 6= a1. Given the resulting

profile h = (hi, h−i), for t = 2, we define ∆vi,t (h−i|T ) as follows:

1. If ωi,t−1 = a1, then ∆vi,t (h−i|T ) := 0.

2. Otherwise, define Pr (Ijam \ {i}|ht−1, H0
i , ai) as the conditional probability that the

realized set of jamming players other than i at the end of the protocol equals Ijam \{i},

given that players −i follow the protocol, hi ∈ H0
i , and player i plays ai in period t.

Let

∆vi,t (h−i|T ) =
∑
Ijam\{i}

 Pr (Ijam \ {i}|ht−1, H0
i , a

1)

−Pr (Ijam \ {i}|ht−1, H0
i , a

0)

 vi (Ijam \ {i}|T ) .

Note that |∆vi,t (h−i|T )| ≤ T 5, by (40).
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Finally, for t = 2, we define

πindiff
i,t (h−i|T ) = −1{ai,t=a1}∆vi,t (h−i|T ) . (86)

For t = 1, define Pr (Ijam \ {i}|ht−1, H0
i , ai) as the conditional probability that the realized

set of jamming players other than i at the end of the protocol equals Ijam \ {i}, given that

players −i follow the protocol, hi ∈ H0
i , and player i plays ai in period t and a

0 in period

t+ 1. The resulting definitions of ∆vi,t (h−i|T ) and πindiff
i,t (h−i|T ) are the same as for t = 2.

Note that
∣∣πindiff
i,t (h−i|T )

∣∣ ≤ T 5 for t = 1, 2. Hence, (42) holds.

Incentive Compatibility

We show that, for every player i and period t = 1, 2, it is optimal for player i to follow

the protocol in period t given that she follows the protocol in every later period.

Recall that Pr (hi ∈ H0
i ) is independent of player i’s strategy, and

wi(h|T ) =

 w̄i(T ) if hi 6∈ H0
i

vi (Ijam \ {i}|T ) if hi ∈ H0
i

.

Hence, player i maximizes her payoff by maximizing

2∑
t=1

πindiff
i,t (h−i|T ) + vi (Ijam \ {i}|T )

conditional on hi ∈ H0
i .

For t = 2, ignoring sunk payoffs, player i maximizes

πindiff
i,t (h−i|T ) + vi (Ijam \ {i}|T ) (87)

conditional on hi ∈ H0
i . By (86), player i is indifferent between a

0 and a1. Moreover, she

is also indifferent between a0 and any a 6∈ {a0, a1}, since (i) the distribution of Ijam \ {i} is

the same whether she takes a0 or a 6∈ {a0, a1}, and (ii) by (86), πindiff
i (h−i|T ) is the same as

well. Hence, player i is indifferent over all actions.

For t = 1, noting that her period 1 action does not affect the distribution of anyone’s
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action in period 2, player i again maximizes (87) conditional on hi ∈ H0
i . Again, (86) implies

she is indifferent among all actions.

J.5 Proof of Lemma 14

Given the premise of the lemma, we construct a sequential equilibrium with value v. By

Lemma 4, it suffi ces to show that, for suffi ciently large T0 and δ < 1, there exist T ∗∗,

(σ∗∗i (xi))i,xi , β
∗∗, (v∗∗i (xi−1))i,xi−1

and
(
π∗∗i (xi−1, h

T ∗∗
i−1)

)
i,xi−1,hT

∗∗
i−1

such that (10)—(13) are sat-

isfied in the T ∗∗-period discounted repeated game. Let

T ∗∗ = T2 +N(T2)
1
2

(
dlog2 T2e+ (N − 2)

(
dlog2 (T2 + 1)e+

⌈
log2 |A|

2⌉)) .
Given T2 ≥ T ∗ (T0), (16), and (17), we have (18).

Construction of σ∗∗i (xi)

Play within each T2-period block is given by (σ∗i (xi))i∈I . After each T2-period block,

players communicate as follows for T ∗∗ − T2 periods:

• For i = 1, player i−1 (mod N) randomly chooses a period ti−1 ∈ {1, ..., T2} and sends

ti−1 using the basic communication protocol with repetition T = (T2)
1
2 .

• Sequentially, each player n 6= i, i− 1 sends her inferred message ti−1 (n) ∈ {1, ..., T2} ∪

{0} and (if ti−1 (n) 6= 0) hn,ti−1(n) =
(
an,ti−1(n), ωn,ti−1(n)

)
using the basic communication

protocol with repetition T = (T2)
1
2 . (If ti−1 (n) = 0, player n sends ti−1 (n) together

with an arbitrary pair (a, ω) ∈ A2.)

• For each n 6= i, i− 1, player i− 1 infers messages ti−1 (n) (i− 1) ∈ {1, ..., T2}∪ {0} and

hn,ti−1(n) (i− 1) ∈ A2 ∪ {0}. We say that communication succeeds if ti−1 (n) (i− 1) =

ti−1 and hn,ti−1(n) (i− 1) 6= 0 for all n 6= i, i− 1. Denote the event that communication

succeeds (resp., fails) by si−1 = 1 (resp., si−1 = 0).

• Repeat this procedure for i = 2, . . . , N .

Let T∗∗ denote the set of these final T ∗∗ − T2 periods, and let σT
∗∗

i |hT2
i
be the above

strategy for player i, given hT2
i . Finally, note that, if si−1 = 1 and players follow σT

∗∗
, then
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h−i,ti−1
(i− 1) = h−i,ti−1

.

Construction of β∗∗

As will be seen, for periods T2 + 1, ..., T ∗∗, the equilibrium is belief-free. Hence, any

consistent beliefs suffi ce. For periods 1, ..., T2, let β
∗∗ = β∗.

Construction of π∗∗i (xi−1, h
T ∗∗
i−1)

Since h−i,ti−1
uniquely identifies ai,ti−1

by Lemma 1, there exists π̃δi,t
(
ti−1, h−i,ti−1

)
such

that, for all at ∈ AN and t ∈ {1, ..., T2},

π̃δi,t
(
ti−1, h−i,ti−1

)
= 1{ti−1=t}T2

(
1− δt−1

)
ûi (at) . (88)

Note that

lim
δ→1

max
t,ti−1,h−i,ti−1

π̃δi,t
(
ti−1, h−i,ti−1

)
= 0. (89)

We use Lemma 12 to adjust π̃δi,t
(
ti−1, h−i,ti−1

)
to account for errors in communication.

Claim 1 There exist
(
πδi,t
(
ti−1, si−1, h−i,ti−1

(i− 1)
))
i,t,ti−1,si−1,h−i,ti−1

(i−1)
such that

1. For all i ∈ I, ti−1 ∈ {1, . . . , T2}, and hT2 ∈ HT2,

E
[
πδi,t
(
ti−1, si−1, h−i,ti−1

(i− 1)
)
|hT2 , ti−1

]
= π̃δi,t

(
ti−1, h−i,ti−1

)
.

2. limδ→1 maxi,t,ti−1,si−1,h−i,ti−1
(i−1) π

δ
i,t

(
ti−1, si−1, h−i,ti−1

(i− 1)
)

= 0.

Proof. Let h̃−i,ti−1
= h−i,ti−1

(i− 1) if si−1 = 1 and h̃−i,ti−1
= 0 otherwise. Since si−1 = 1

implies h−i,ti−1
(i− 1) = h−i,ti−1

, we have

Pr
(
h̃−i,ti−1

= h−i,ti−1
|ti−1

)
+ Pr

(
h̃−i,ti−1

= 0|ti−1

)
= 1.

Moreover, by Lemma 2,

Pr
(
h̃−i,ti−1

= h−i,ti−1
|ti−1

)
≥ 1−N

(
dlog2 (T2 + 1)e+

⌈
log2 |A|

2⌉) exp(−ε̄(T2)
1
2 ).

Hence, the claim follows from (88), (89), and Lemma 12.
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Let

πδi (xi−1, h
T ∗∗

i−1) :=

T2∑
t=1

πδi,t
(
ti−1, si−1, h−i,ti−1

(i− 1)
)
.

Note that, for all j 6= i, πδj(xj−1, h
T ∗∗
j−1) does not depend on the outcome of those periods in

T∗∗ used to construct h−i,ti−1
(i− 1). Hence, by Lemma 8, there exist

(
πt
(
hT
∗∗
i−1

))
i∈I such

that σT
∗∗
is a BFE in T∗∗ when payoffs are given by

E

[∑
t∈T∗∗

δt−1ûi (at) + πδi (xi−1, h
T∗∗
i−1) + πt

(
hT
∗∗

i−1

)
| hT2

i

]
. (90)

Finally, we define

π∗∗i (xi−1, h
T∗∗
i−1) := π∗i (xi−1, h

T2
i−1) + πδi (xi−1, h

T∗∗
i−1) + πt

(
hT
∗∗

i−1

)
+ sign(xi−1)5ε∗T2. (91)

We now verify conditions (10)—(13).

[Sequential Rationality]

Ignoring sunk payoffs and the constant term sign(xi−1)5ε∗T2, player i maximizes (90) in

T∗∗. By construction of
(
πt
(
hT
∗∗
i−1

))
i∈I , (11) holds for all t ∈ T

∗∗ for any consistent belief

system, since by Lemma 8 the basic protocol is a BFE.

Next, by Lemma 8, E
[∑

t∈T∗∗ δ
t−1ûi (at) + πt

(
hT
∗∗
i−1

)
|hT2

]
does not depend on hT2 . There-

fore, in period t ≤ T2, player i maximizes

E

[
T2∑
τ=t

δt−1ûi (aτ ) + π∗i (xi−1, h
T2
i−1) + πδi (xi−1, h

T∗∗
i−1)|ht−1

i

]

= E

[
T2∑
τ=t

δt−1ûi (aτ ) + π∗i (xi−1, h
T2
i−1) + E

[
πδi (xi−1, h

T∗∗
i−1)|hT2

]
|ht−1
i

]

= E

[
T2∑
τ=t

ûi (aτ ) + π∗i (xi−1, h
T2
i−1) + E

[
t−1∑
τ=1

πδi,τ
(
ti−1, si−1, h−i,ti−1

(i− 1)
)
|hT2

]
|ht−1
i

]
,

where the first equality follows by iterated expectation, and the second follows because

ti−1 = t with probability (T2)−1 for each t ∈ {1, ..., T2} and (88) holds.

Since E
[∑t−1

τ=1 π
δ
i,τ

(
ti−1, si−1, h−i,ti−1

(i− 1)
)
|hT2

]
does not depend on player i’s continuation
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strategy given ht−1
i , player i maximizes

E

[
T∑
τ=t

ûi (aτ ) + π∗i (xi−1, h
T2
i−1) | ht−1

i

]
, (92)

which equals the objective in (45) (ignoring sunk payoffs already incurred in ht−1
i ). Hence,

(45) implies (11).

[Promise Keeping]

Promise keeping (equation (12)) is satisfied with v∗∗i (xi−1) defined by

v∗∗i (xi−1) : =
1− δ

1− δT ∗∗
E

 ∑T ∗∗

t=1 δ
t−1ûi (at) + π∗i (xi−1, h

T2
i−1) + πδi (xi−1, h

T∗∗
i−1)

+πt
(
hT
∗∗
i−1

)
+ sign(xi−1)5ε∗T2


=

1− δ
1− δT ∗∗

E

[
T2∑
t=1

ûi (at) + π∗i (xi−1, h
T2
i−1) + sign(xi−1)5ε∗T2

]
(93)

for xi−1 ∈ {G,B}.

[Self-Generation]

Since |T
∗∗|
T2
→ 0, for suffi ciently large T2 and δ, we have

sign(xi−1)
(
π∗i (xi−1, h

T2
i−1) + πδi (xi−1, h

T∗∗
i−1) + πt

(
hT
∗∗

i−1

)
+ sign(xi−1)5ε∗T2

)
≥ sign(xi−1)π∗i (xi−1, h

T2
i−1) + 4ε∗T2 ≥ 0,

where the first inequality follows by Claim 1 and (27) and the second follows by (47). Hence,

(13) holds.

[Full Dimensionality]

By (14), we have vi (B)+9ε∗ < vi < vi (G)−9ε∗. Since 1−δ
1−δT∗∗ →

1
T ∗∗ as δ → 1 and |T

∗∗|
T2
→

0 as T0 →∞, for suffi ciently large T0 and δ, (46) and (93) imply that v∗∗i (xi−1) is suffi ciently

close to vi (xi−1)+sign(xi−1)9ε∗ compared to the slack between vi and vi (xi−1)+sign(xi−1)9ε∗:

|v∗∗i (xi−1)− (vi (xi−1) + sign(xi−1)9ε∗)| < 1

3
min

xi−1∈{G,B}
|vi (xi−1) + sign(xi−1)9ε∗ − vi| .

Hence, v∗∗i (B) < vi < v∗∗i (G).
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J.6 Proof of Lemma 15

Let T2 = T1 + T̃1 + T̃2, where

T̃1 = 2N (N − 2)
⌈
log2(2(2 |A|2)|T

′′| + 1)
⌉

(T1)
1
2 (94)

and

T̃2 = 2N (N − 2)
⌈
log2 |A|

2⌉ T̃1(T1)
1
12 .

As |T′′| < (T1)
1
4 (by (48) and T1 ≥ T ∗ (T0)) and (16) holds, we have (17) and

lim
T0→∞

T̃1

(T1)
5
6

= lim
T0→∞

T̃1 + T̃2

(T1)
11
12

= 0.

We construct strategies σ∗∗i (xi), beliefs β
∗∗, and reward functions π∗∗i

(
xi−1, h

T2
i−1

)
in the

T2-period game that satisfy the premise of Lemma 14.

Construction of σ∗∗i (xi)

Play within each T1-period block is given by (σ∗i (xi))i∈I . After each T1-period block,

players communicate as follows for T̃1 + T̃2 periods:

Communication for periods T1 + 1, . . . , T1 + T̃1:

• Let i = 1. Sequentially, each player n 6= i, i − 1 sends (xn, h
T′′
n ) =

(
xn, (an,t, ωn,t)t∈T′′

)
using the secure communication protocol with repetition T = (T1)

1
2 and Ijam = {i− 1}.

This takes 2 (N − 2)
⌈
log2(2 |A|2)|T

′′| + 1)
⌉

(T1)
1
2 periods.

• For each n 6= i, i−1, player i−1 infers a messagemi−1 (n) (i− 1). Ifmi−1 (n) (i− 1) = 0

for some n 6= i, i − 1, or if player i − 1 plays JAM during a round where she receives

a message via the secure protocol, let si−1 = 0 (“communication fails”). Otherwise,

si−1 = 1 (“communication succeeds”).

• Repeat this procedure for i = 2, . . . , N .

Communication for periods T1 + T̃1 + 1, . . . , T1 + T̃1 + T̃2:

• Let i = 1. Sequentially, each player n 6= i, i − 1 sends (an,t, ωn,t)t∈{T1+1,...,T1+T̃1}
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using the basic communication protocol with repetition T = (T1)
1
12 . This takes

2 (N − 2)
⌈
log2 |A|

2⌉ T̃1(T1)
1
12 periods.

• Repeat this procedure for i = 2, . . . , N .

Construction of β∗∗

For periods T1 + T̃1 + 1, . . . , T1 + T̃1 + T̃2, the equilibrium is belief-free, so any consistent

belief system suffi ces. For periods T1 + 1, . . . , T1 + T̃1, specify beliefs as in Lemma 9 given

player n’s equilibrium message. For periods 1, ..., T1, let β
∗∗ = β∗.

Construction of π∗∗i
(
xi−1, h

T2
i−1

)
If si−1 = 1, we denote player i− 1’s inference of player n’s message during periods T1 +

1, . . . , T1+T̃1 by
(
xn (i− 1) , hT

′′
n (i− 1)

)
. We first construct a function π̃∗i

(
x−i (i− 1) , hT

∗
i−1, h

T′′
−i (i− 1)

)
as follows: Define

(
x̃−i, h̃

T′′
−i

)
=
(
x−i (i− 1) , hT

′′
−i (i− 1)

)
if si−1 = 1 and

(
x̃−i, h̃

T′′
−i

)
= 0 oth-

erwise. Note that (i) for suffi ciently large T1, inequality (2) implies

min
x−i,hT

′′
−i

Pr
(
si−1 = 1|x−i, hT

′′

−i

)
≥ 1− (T1)−

8
2 , (95)

(ii) si−1 = 1 implies
(
x−i (i− 1) , hT

′′
−i (i− 1)

)
=
(
x−i, h

T′′
−i
)
, and (iii) π∗i satisfies (52). Hence,

in the notation of Lemma 13,

T = (T1)
1
2 ,

pT (mi) = 1− (T1)−4 = 1− T−8 ∀mi ∈M (T ) ,

F (T ) =
1

2
(T1)3 =

1

2
T 6,

c = 3ε∗.

Since limT→∞ (1− pT (mi)) max {F (T ) , cT} = 0, Lemma 13 implies that, for suffi ciently

large T0, there exists π̃∗i
(
x̃−i, h

T ∗
i−1, h̃

T′′
−i

)
such that

max
x̃−i,hT

∗
i−1,h̃

T′′
−i

∣∣∣π̃∗i (x̃−i, hT ∗i−1, h̃
T′′
−i

)∣∣∣ ≤ T 6, (96)

E
[
π̃∗i

(
x̃−i, h

T ∗

i−1, h̃
T′′
−i

)
|x−i, hT

∗

i−1, h
T′′
−i

]
= π∗i

(
x−i, h

T ∗

i−1, h
T′′
−i

)
, (97)
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sign (xi−1) π̃∗i

(
x̃−i, h

T ∗

i−1, h
T′′
−i

)
≥ −7

2
ε∗T1∀x̃−i, hT

∗

i−1, h̃
T′′
−i , and (98)

π̃∗i

(
x̃−i, h

T ∗

i−1, h̃
T′′
−i

)
is minimized when si−1 = 0. (99)

We next construct a function

T1+T̃1∑
t=T1+1

π̃cancel
i (a−i,t (i− 1) , ω−i,t (i− 1)) +

∑
t=T1+1,...,T1+T̃1:

players −i communicate

π̃a
0

i (a−i,t (i− 1) , ω−i,t (i− 1))

as follows. By Lemma 12, for suffi ciently large T1, there exists a function π̃cancel
i : A2 → R

such that

E
[
π̃cancel
i (a−i,t (i− 1) , ω−i,t (i− 1)) |a−i,t, ω−i,t

]
= πcancel

i (a−i,t, ω−i,t)

for all t = T1 + 1, ..., T1 + T̃1 and (a−i, ω−i) ∈ A2. Similarly, for suffi ciently large T1, there

exists a function π̃a
0

i : A2 → R such that

E
[
π̃a

0

i (a−i,t (i− 1) , ω−i,t (i− 1)) |a−i,t, ω−i,t
]

= πa
0

i (a−i,t, ω−i,t) .

Recall that πcancel
i and πa

0

i are defined in (28) and (29), respectively. Since πcancel
i and πa

0

i

are bounded, π̃cancel
i and π̃a

0

i are bounded by Lemma 12, uniformly over suffi ciently large T1.

Hence, by Lemma 8, there exist a function πi(h
T̃2
i−1), where hT̃2

i−1 = (ai−1,t, ωi−1,t)
T1+T̃1+T̃2

t=T1+T̃1+1
,

such that σ∗∗ (x) is a BFE in periods T1 + T̃1 + 1 to T1 + T̃1 + T̃2 with payoffs

T1+T̃1+T̃2∑
t=T1+T̃1+1

ûi (at) + πi(h
T̃2
i−1) +


∑T1+T̃1

t=T1+1 π̃
cancel
i (a−i,t (i− 1) , ω−i,t (i− 1))

+
∑

t=T1+1,...,T1+T̃1:
players −i communicate

π̃a
0

i (a−i,t (i− 1) , ω−i,t (i− 1))

 ,

(100)

and
∣∣∣πi(hT̃2

i−1)
∣∣∣ = O(T̃2).

Finally, we define the reward function π∗∗i
(
xi−1, h

T2
i−1

)
= π̃∗∗i

(
xi−1, h

T2
i−1

)
+ Cxi−1

(T1),
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where Cxi−1
(T1) is a constant to be determined and

π̃∗∗i
(
xi−1, h

T2
i−1

)
= π̃∗i

(
x̃−i, h

T ∗

i−1, h̃
T′′
−i

)
+

T1+T̃1∑
t=T1+1

π̃cancel
i (a−i,t (i− 1) , ω−i,t (i− 1))

+
∑

t=T1+1,...,T1+T̃1:
players −i communicate

π̃a
0

i (a−i,t (i− 1) , ω−i,t (i− 1)) + πi(h
T̃2
i−1).

It remains to verify the premise of Lemma 14.

[Sequential Rationality]

We verify (45) for all t = 1, . . . , T2 by backward induction. For t = T1 + T̃1 + 1, ...,

T1 + T̃1 + T̃2, all payoffs except for (100) are sunk, so (45) holds by Lemma 8, viewing the

last term in (100) as wi(hT̃2).

By Claim 2 of Lemma 8, a player’s payoff
∑T1+T̃1+T̃2

t=T1+T̃1+1
ûi (at)+πi(h

T̃2
i−1) is independent of x

and hT1+T̃1 . Hence, for t = T1 + 1, ..., T1 + T̃1, player i maximizes the conditional expectation

of

T1+T̃1∑
t=T1+1

ûi (at) + Cxi−1
(T1) + π̃∗i

(
x̃−i, h

T ∗

i−1, h̃
T′′
−i

)

+

T1+T̃1∑
t=T1+1

π̃cancel
i (a−i,t (i− 1) , ω−i,t (i− 1)) +

∑
t=T1+1,...,T1+T̃1:

players −i communicate

π̃a
0

i (a−i,t (i− 1) , ω−i,t (i− 1)) .

Given (99) and (96), for suffi ciently large T1, the premise for secure communication with

magnitude T 6 for player i is satisfied, for each x ∈ {G,B}N . Moreover, (32) holds for

suffi ciently large T0. Hence, Lemma 9 implies (45) for t = T1 + 1, ..., T1 + T̃1.

Finally, by construction, the expected value of

T1+T̃1∑
t=T1+1

ûi (at) +

T1+T̃1∑
t=T1+1

π̃cancel
i (a−i,t (i− 1) , ω−i,t (i− 1))

+
∑

t=T1+1,...,T1+T̃1:
players −i communicate

π̃a
0

i (a−i,t (i− 1) , ω−i,t (i− 1)) + πi(h
T̃2
i−1) (101)

does not depend on x or hT1 . Since (97) implies that π∗i and π̃
∗
i are equal in expectation

96



given x̃−i, hT
∗

i−1, h̃
T′′
−i (assuming players follow σ

∗∗ in the last T̃1 + T̃2 periods, as we have shown

to be optimal), (50) implies (45) for t = 1, ..., T1.

[Promise Keeping]

Let

v̂i (xi−1) :=
1

T2

Eσ∗(x)

[
T2∑
t=1

ûi (at) + π̃∗∗i
(
x−i, h

T2
i−1

)]
.

(As (101) is independent of x, (51) and (97) imply that this expectation does not depend on

x−(i−1).) Since πcancel
i , πa

0

i , and πi(h
T̃2
i−1) are bounded and (T̃1 + T̃2)/T1 → 0, equation (51)

implies

lim
T1→∞

v̂i (xi−1) = vi (xi−1) + sign(xi−1)3ε∗.

Hence, there exists Cxi−1
(T1) with

sign(xi−1)Cxi−1
(T1) ≥ 0 (102)

such that, for suffi ciently large T0, (46) holds:

vi (xi−1) + sign(xi−1)4ε∗ =
1

T2

Eσ∗∗(x)

[
T2∑
t=1

ûi (at) + π∗∗i
(
x−i, h

T2
i−1

)]
.

[Self-Generation]

Recall that (98) holds, and hence sign (xi−1) π̃∗i

(
x̃−i, h

T ∗
i−1, h̃

T′′
−i

)
≥ −7

2
ε∗T2 ∀x̃−i, hT

∗
i−1, h̃

T′′
−i

(since T2 ≥ T1). Moreover, the sum

T1+T̃1∑
t=T1+1

π̃cancel
i (a−i,t (i− 1) , ω−i,t (i− 1))+

∑
t=T1+1,...,T1+T̃1:

players −i communicate

π̃a
0

i (a−i,t (i− 1) , ω−i,t (i− 1))+πi(h
T̃2
i−1)

is O
((
T̃1 + T̃2

))
. Hence, (52) and (102) imply (47).
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J.7 Proof of Lemma 16

Let T1 = T ∗ + T̃1, where

T̃1 = 2NL
(
T ((T0)6 , (T ∗)

1
2 ) + (N − 2)

⌈
log2

(
|A|2 + 1

)⌉
(T ∗)

1
2

)
. (103)

By (6), (16) holds and

lim
T0→∞

T̃1

(T ∗)
1
2

+ε
= 0 for each ε > 0.

We construct strategies (σ∗i (xi))i,xi and reward functions
(
π∗∗i
(
x−i, h

T′
−i
))
i,x−i,hT

′
−i
in the

T1-period game that satisfy the premise of Lemma 15.

Construction of σ∗∗i (xi)

Play within each T ∗-period block is given by (σ∗i (xi))i. After each T ∗-period block,

players communicate as follows for T̃1 periods:

Communication for periods T ∗ + 1, . . . , T ∗ + T̃1:

• For i = 1, player i−1 (mod N) sends ti−1 (1) , ..., ti−1 (L) using the verified communica-

tion protocol with repetition T = (T ∗)
1
2 and Ijam = −i. This takes 2LT ((T0)6 , (T ∗)

1
2 )

periods. As a result, each player n ∈ I infers a message ti−1 (1) (n) , ..., ti−1 (L) (n).

• Sequentially, each player n 6= i, i− 1 sends hn,ti−1(l)(n) =
(
an,ti−1(l)(n), ωn,ti−1(l)(n)

)
l=1,...,L

using the secure communication protocol with repetition T = (T ∗)
1
2 and Ijam = {i− 1}.

This takes 2 (N − 2)L
⌈
log2

(
|A|2 + 1

)⌉
(T ∗)

1
2 periods. For each n 6= i, i−1, player i−1

infers a message hn,ti−1(l)(n) (i− 1).

• If (i)-(a) there exists a player n 6= i with susp (hn) or (i)-(b) θi (h−i) = E in the verified

protocol, or if (ii) player i− 1 plays JAM during a round where she receives a message

via the secure protocol, let si−1 = 0 (“communication fails”). Otherwise, si−1 = 1

(“communication succeeds”). Note that si−1 is a function of hT
′
−i. Here, ζn is assumed

to equal jam for each n 6= i and reg for i, and so is omitted from θi.

• Repeat this procedure for i = 2, . . . , N .

Construction of β∗∗
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In periods where player n sends a message via the secure protocol, specify trembles as in

Lemma 9. In periods where players use the verified protocol, any consistent belief system

suffi ces. For periods 1, ..., T ∗, let β∗∗ = β∗.

Construction of π∗∗i
(
x−i, h

T′
−i
)

If si−1 = 1, we denote player i − 1’s inference of player n’s message during periods

T ∗+1, . . . , T ∗+ T̃1 by h
Li−1
n (i− 1). As in the proof of Lemma 15, define h̃Li−1

−i = h
Li−1

−i (i− 1)

if si−1 = 1 and h̃Li−1

−i = 0 otherwise. Note that (i) inequality (2) for secure communication

and Claim 4 of Lemma 6 for verified communication imply, for suffi ciently large T0,

min
h
Li−1
−i

Pr
(
si−1 = 1|hLi−1

−i

)
≥ 1− (T ∗)−

8
2

+ 1
2 , (104)

(ii) si−1 = 1 implies hLi−1

−i (i− 1) = h
Li−1

−i , and (iii) π
∗
i satisfies (57). Hence, in the notation

of Lemma 13,

T = (T ∗)
1
2 ,

pT (mi) = 1− (T ∗)−
7
2 = 1− T−7 ∀mi ∈M (T ) ,

F (T ) =
1

2
(T ∗)3 =

1

2
T 6,

c = 2ε∗. (105)

Since limT→∞ (1− pT (mi)) max {F (T ) , cT} = 0, Lemma 13 implies that, for suffi ciently

large T0, there exists π̃∗i
(
x−i, h

T′
−i, h̃

Li−1

−i

)
such that

max
x−i,hT

′
−i,h̃

Li−1
−i

∣∣∣π̃∗i (x−i, hT′−i, h̃Li−1

−i

)∣∣∣ ≤ T 6, (106)

E
[
π̃∗i

(
x−i, h

T′
−i, h̃

Li−1

−i

)
|x−i, hT

′

−i, h
Li−1

−i

]
= π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
,

sign (xi−1) π̃∗i

(
x−i, h

T′
−i, h̃

Li−1

−i

)
≥ −5

2
ε∗T ∗ ∀x−i, hT

′

−i, h̃
Li−1

−i , and

π̃∗i

(
x−i, h

T′
−i, h̃

Li−1

−i

)
is minimized when si−1 = 0. (107)

We define the reward function π∗∗i
(
x−i, h

T′′
−i
)

= π̃∗∗i
(
x−i, h

T′′
−i
)
+Cxi−1

(T ∗), whereCxi−1
(T ∗)
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is a constant to be determined and

π̃∗∗i

(
x−i, h

T′′
−i

)
= π̃∗i

(
x−i, h

T′
−i, h̃

Li−1

−i

)
+

∑
t=1,...,T1

t6∈
⋃L
l=1 T(main(l))

π̃cancel
i (a−i,t, ω−i,t) +

∑
t=T ∗+1,...,T1:

players −i communicate

π̃a
0

i (a−i,t, ω−i,t)

+
∑

t=T ∗+1,...,T1:
t is in i-checking round in verified communication

π
āi,t
i

(
hT
′′

−i

)
,

where πāi,ti is defined as in (34).

We now verify that the premise of Lemma 15 is satisfied. Other than sequential rationality

(equation (50)), the verification is parallel to the proof of Lemma 15.

We verify (50) for t = 1, . . . , T1 by backward induction. For t′ = T ∗ + 1, ..., T1, player i

maximizes the conditional expectation of

T1∑
t=t′

ûi (at) + Cxi−1
+ π̃∗i

(
x−i, h

T′
−i, h̃

Li−1

−i

)
+

T1∑
t=t′

π̃cancel
i (a−i,t, ω−i,t) +

∑
t=t′,...,T ∗+T̃1:

players −i communicate

π̃a
0

i (a−i,t, ω−i,t)

+
∑

t=T ∗+1,...,T1:
t is in i-checking round in verified communication

π
āi,t
i

(
hT
′′

−i

)
.

Given (106) and the fact that π̃∗i
(
x−i, h

T′
−i, h̃

Li−1

−i

)
is minimized at si−1 = 0, for suffi ciently

large T ∗, the premise for secure communication with magnitude (T ∗)
7
2 for player i is satisfied

for all x ∈ {G,B}N . In addition, while players communicate to calculate π̃∗i , as vEi (T ∗)
6
2 =

v0
i (T

∗)
6
2 = [value of π̃∗i given si−1 = 0], for suffi ciently large T ∗, the premise for verified

communication with magnitude (T ∗)
6
2 for player i is satisfied for all x ∈ {G,B}N , and the

continuation payoff of players −i does not depend on the history during this communication.

Moreover, (32) holds for suffi ciently large T0. Finally, by (104) and (106), (38) holds for

suffi ciently large T0. Hence, Lemma 9 and the second part of Lemma 10 imply (50) for

t = T ∗+ 1, ..., T1. Finally, since π∗i and π̃
∗
i are equal in expectation given x−i, h

T′
−i, h

Li−1

−i , (55)

implies (50) for t = 1, . . . , T ∗.
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J.8 Proof of Lemma 17

As compared to Lemma 16, we have introduced (58) and replaced (54) with (59) (a more

restrictive condition), (55) with (60) (a less restrictive condition) and (56) with (61) (again,

a less restrictive condition). We first show that the third replacement is without loss of

generality, and then show the same for the second.

Given (60), let

v̂i (x−i) :=
1

T ∗
Eσ∗(x)

 ∑
t∈
⋃L
l=1 T(main(l))

ûi (at) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

) .
Define

π̃∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
= π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
− (v̂i (x−i)− (vi(xi−1) + 2sign(xi−1)ε∗))T ∗.

Note that changing the reward function from π∗i to π̃
∗
i only subtracts a constant and thus

does not affect sequential rationality. In addition, since

sign(xi−1) (v̂i (x−i)− (vi(xi−1) + sign(xi−1)2ε∗)) ≥ 0

by (61), (57) implies

sign(xi−1)π̃∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
≥ −2ε∗T ∗.

Hence, self-generation also holds with reward function π̃∗i .

Finally, since (v̂i (x−i)− (vi(xi−1) + 2sign(xi−1)ε∗))T ∗ is O (T ∗), (59) implies

sup
x−i,hT

′
−i,h

Li−1
−i

∣∣∣π̃∗i (x−i, hT′−i, hLi−1

−i

)∣∣∣ < (T ∗)3

2
.

Hence, (54) also holds with reward function π̃∗i . Therefore, the premise of Lemma 16 holds.

We now show that it is also without loss to replace (55) with (60). To this end, let

χn ∈ {0, 1} be a function of (xn, h
T ∗
n ), where χn = 1 if and only if there exists t = 1, ..., T ∗

such that an,t /∈ supp(σ∗n(xn)|ht−1
n

) (i.e., player n deviated from σ∗n(xn) in the first T ∗ periods).
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Since χn is binary, by the same proof as Lemma 16, we can assume that π̃
∗
i depends on

χ−i = (χn)n6=i– that is, players −i “confess”any deviations.

We also assume that, until main phase l is over, player i believes that ti−1(l) = t with

probability (T0)−6 for each t ∈ T(main(l)). (This belief results whenever trembles in periods

t = 1, ..., T ∗ are independent of (Li, ht−1
i ), and thus is clearly consistent.)

Define

πcancel
i (xi−1, a−i, ω−i) := πcancel

i (a−i, ω−i) + sign(xi−1) max
ã−i,ω̃−i

πcancel
i (ã−i, ω̃−i) .

Note that

E
[
ûi (a) + πcancel

i (xi−1, a−i, ω−i) |a
]

= sign(xi−1) max
ã−i,ω̃−i

πcancel
i (ã−i, ω̃−i) (108)

and

sign(xi−1)πcancel
i (xi−1, a−i, ω−i) ≥ 0.

Since T ∗ ∈ T′, we can define

π̃∗i

(
x−i, h

T′
−i, h

Li−1

−i , χ−i

)

: =


π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
if χn = 0 for all n 6= i,∑

t∈T′ π
cancel
i (xi−1, a−i, ω−i)

+ (T0)6∑L
l=1 π

cancel
i

(
xi−1, a−i,ti−1(l), ω−i,ti−1(l)

) if χn = 1 for some n 6= i.

Note that the (T0)6 term cancels the probability that ti−1 (l) = t for each t ∈ T(main(l)), so

with this reward function player i is indifferent over all action profiles when χn = 1 for some

n 6= i.

Given reward function π̃∗i , (55) and (57) hold. Moreover, given (59) for π
∗
i

(
x−i, h

T′
−i, h

Li−1

−i

)
,

sup
x−i,hT

′
−i,h

Li−1
−i

∣∣∣π̃∗i (x−i, hT′−i, hLi−1

−i

)∣∣∣ < (T ∗)3

2
.

Therefore, the premise of Lemma 16 holds.
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Supplementary Appendix 1:
Almost-Perfect Monitoring

This appendix proves Theorem 2, which extends the folk theorem to almost-perfect

within-match monitoring.

Theorem 2 Suppose public randomization is available. For all v ∈ int (F ∗), there exist

δ̄ < 1 and ε̄ > 0 such that v ∈ E (δ, q) for all δ > δ̄ and all ε-perfect within-match

monitoring structures q with ε ≤ ε̄.

The logic is similar to that for perfect monitoring. The main differences are as follows:

• There is a key difference in the communication protocols: The jamming players mix

over all actions. This guarantees that players attribute unexpected observations to

randomization by the jamming players rather than monitoring errors.

• We let the length of the block be random, which introduces a chance that the players

have extra time to communicate at the end of the block.

• Other than the possibility of this “long communication phase”at the end of the block,

the calendar time structure is the same as with perfect monitoring.

• The reward adjustment lemmas must be modified to account for possible monitoring

errors and to accommodate the long communication phase.

• Although players attribute unexpected observations to randomization with probability

converging to 1 as ε → 0, for any ε > 0 they still assign positive probability to

monitoring errors. We show how to use the long communication phase to preserve

incentive-compatibility despite this new source of uncertainty.
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A Communication Protocols and Modules

A.1 Modifying the Protocols

The basic communication protocol is the same as with perfect monitoring. As in (1), we

have

lim
ε→0

Pr (mi (j) = mi) ≥ 1− dlog2 |Mi|e exp (−ε̄T ) ∀j 6= i. (109)

The secure and verified protocols are the same as with perfect monitoring, except for

jamming players. Jamming players now use the following strategy in each half-interval:

1. With probability 1− 2T−9, play a0 in every period (i.e., play REG).

2. With probability T−9, play a1 in every period (i.e., play JAM).

3. With probability T−9, play αmix = 1
|A|
∑

a∈A a in every period, mixing independently

across periods (call this “playing MIX”).

As will be seen, a player who observes ω 6= a0, a1 attributes this observation to a jamming

player playing MIX. For suffi ciently small ε, (2) holds for the secure protocol, and Claim 4

of Lemma 6 holds for the verified protocol.

The jamming coordination protocol stays the same. Recall that in each period, each

player plays a1 with probability T−2 and plays 1
|A|−1

∑
a6=a1 a with probability 1−T−2. Given

a protocol history hi, we define ζ i(hi) = jam if there exists t ∈ {1, 2} with ωi,t = a1. Let

pi(hi) = Pr
(
ζj(hj) = jam ∀j 6= i|hi

)
.

For every protocol history hi, the probability that all players in I \ {i, µt(i)} play a1 for

t ∈ {1, 2} and µ1(i) 6= µ2(i) is at least ε̄T−4(N−2). Conditional on this event, if ωj,t = aµ(j),t

for all j 6= i, t ∈ {1, 2} then ζj(hj) = jam ∀j 6= i. Hence,

pi(hi) ≥ ε̄ (1− ε)2(N−1) T−4(N−2). (110)
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A.2 Modifying the Reward Functions

We extend Lemma 8 for almost perfect monitoring:

Lemma 27 For suffi ciently small ε > 0, for each i ∈ I, Mi, T , w, and K > 2ū/ε̄ satisfying

the premise for basic communication with magnitude K, there exists a family of functions(
πn : HT → R

)
n∈I such that the following hold:

1. With payoff functions (26), the basic communication protocol is a BFE for each δ.

2. For each n ∈ I and mi ∈Mi, E
[∑

t∈T δ
t−1ûn (at) + πn (hn−1)

]
= 0.

3. For each n ∈ I and t ∈ T, we have

max
hn−1,h̃n−1

∣∣∣πn (hn−1)− πn(h̃n−1)
∣∣∣ < ū+K

2ε̄
|T| .

Proof. Let

∆ai := q
(
ωi,t = a1|ai, aµ(i) = a1

)
− q

(
ωi,t = a1|ai, aµ(i) = a0

)
.

For n 6= i, define

π̂n (hn−1) =
∑
t∈T

2K1{ωn−1,t=a0}

(1− 2ε) pn−1,n

+
∑
t∈T1st

1{ωn−1,t=a1}
(
1− δT

)
(ûn (a0)− ûn (a1))

∆an−1,tpn−1,i

.

(Compared to the definition with perfect monitoring, the first term is inflated to account for

monitoring errors, and the denominator of the second term is the difference in the probability

of ωn−1,t = a1 between ai = a1 and ai = a0.) Similarly, define

π̂i (hi−1) :=
∑
t∈T

1

pi−1,i

(
δt−11{ωi−1,t=a1}

ûi (a
1)− ûi (a0)

∆ai−1,t

+ 1{ωi−1,t∈{a0,a1}}
2ū

1− 2ε

)
.

The rest of the proof is the same as with perfect monitoring.
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Since with almost-perfect monitoring (a−i, ω−i) statistically identifies (ai, ωi), we can also

generalize πcancel
i (a−i, ω−i) and πa

0

i (a−i, ω−i) such that, for each a ∈ AI , we have

E
[
ûi (a) + πcancel

i (a−i, ω−i) |a
]

= 0,

E
[
ûi (a) + πa

0

i (a−i, ω−i) |a
]

=

 0 ai = a0

−1 ai 6= a0
. (111)

Moreover, πcancel
i (a−i, ω−i) and πa

0

i (a−i, ω−i) converge to the corresponding rewards with

perfect monitoring as ε→ 0.

Given this modification, since a player who observes ω 6= a0, a1 believes a jamming player

played MIX, Lemma 9 holds as written. As we will see, it is not necessary to generalize

Lemma 10 or Lemma 11.

B Block Structure, Strategies, Equilibrium Conditions

The calendar time structure is unchanged up to what was the end of the block with perfect

monitoring (period T ∗∗ in the main proof). At that point, depending on public randomiza-

tion, either the block ends or a final, long communication phase is added.

Up to period T ∗∗, strategies are the same as with perfect monitoring, with two exceptions:

1. All protocol strategies are now the revised ones just defined.

2. In each main phase, if ζ i(hi) = jam then with probability 1 − (T0)−9 player i follows

her perfect monitoring strategy, and with probability (T0)−9 she plays 1
|A|
∑

a∈A a in

every period (mixing independently across periods). (If instead ζ i(hi) 6= jam, player i

follows her perfect monitoring strategy for sure.)

In particular, exactly as with perfect monitoring, a receiver j sets mi (j) = 0 (and

hence susp(hj) = 1) if she observes ω 6= a0, a1. However, with perfect monitoring such

an observation could only arise following a deviation, whereas now it can also arise as a

result of a monitoring error or randomization by a jamming player.

It remains to describe the long communication phase. At the end of the final commu-

nication phase to cancel discounting, a random variable z ∈ {0} ∪ I is drawn by public
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randomization, with Pr (z = 0) = 1− (T0)−9 and Pr (z = i) = (T0)−9 /N ∀i ∈ I. If z = 0, the

block is over, as with perfect monitoring. If z = i, the following long communication phase

for player i is played: each player n /∈ {i− 1, i} sequentially broadcasts
(
xn, h

T ∗
n

)
, her entire

history within the block up to the end of sub-block L (i.e., period T ∗), using the basic com-

munication protocol with repetition T0. Since the cardinality of the set of a player’s histories

up to period T ∗ is (2 |A|)2T ∗, the long communication phase takes 4 (N − 2)T ∗T0 dlog2 2 |A|e

periods.

Let T ∗∗∗ denote the length of the block, which is now a random variable due to the

possible addition of a long communication phase. Note that, since Pr (z 6= 0) = (T0)−9, we

have

lim
T0→∞

E [T ∗∗∗]

T ∗
= 0. (112)

Finally, suffi cient conditions for the existence of a block belief-free equilibrium with payoff

v ∈int (F ∗) are almost the same as with perfect monitoring (i.e., conditions (10)—(13)). The

only difference is that self-generation (condition (13)) must now hold for each history hT
∗∗∗

i−1

and each realization of T ∗∗∗.

C Reward Adjustment Lemma

We next generalize the reward adjustment lemmas to allow more general errors in commu-

nication. Given parameters T ∈ N and ε ∈ R+, let M (T ) be a finite set, let F (T ) ∈ R+ be

a constant, let fT : M(T ) → [−F (T ) , F (T )] be a function, let P (T, ε) be a non-negative,

row-stochastic |M (T )| × |M (T )| matrix, and, for any matrix Z, let ri(Z) =
∑

j 6=i |Zi,j| be

the sum of absolute values of the off-diagonal elements of the ith row of Z. (Applied to the

rest of the proof, T is the length of a half-interval, M (T ) is a message set, fT is a reward

function bounded by F (T ), and P (T, ε)i,j is the probability that message mj is received

when message mi is sent.)

Lemma 28 Suppose that

lim
T→∞

lim
ε→0

max
i∈{1,...,|M(T )|}

ri(P (T, ε)) = 0. (113)
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For all ε > 0, there exist T̄ ∈ N and a function ε̄ : N → R+ such that, for all T > T̄ and

ε < ε̄ (T ), there exists a function gT,ε : M(T ) → [− (1 + ε)F (T ), (1 + ε)F (T )] such that

maxm∈M(T ) |fT (m)− gT,ε (m)| < εF (T ) and P (T, ε)gT,ε = fT , where gT,ε = (gT,ε (m))m∈M(T )

and fT = (fT (m))m∈M(T ).

This lemma corresponds to Lemma 12. It can be straightforwardly extended to satisfy

the additional conditions of Lemma 13.

Proof. By (113), the matrix P (T, ε) is strictly diagonally dominant for suffi ciently large T

and small ε (choosing first T and then ε). Hence, it is invertible (e.g., Horn and Johnson

(2013), Theorem 6.1.10). Let gT,ε = P−1(T, ε)fT .

It remains to show maxm∈M(T ) |fT (m)− gT,ε (m)| < εF (T ). For this, it suffi ces to show

lim
T→∞

lim
ε→0

min
i∈{1,...,|M(T )|}

P−1(T, ε)i,i = 1 and lim
T→∞

lim
ε→0

max
i∈{1,...,|M(T )|}

ri
(
P−1(T, ε)

)
= 0. (114)

Note that

lim
T→∞

lim
ε→0

max
i

∑
j

∣∣P−1(T, ε)i,j
∣∣ ≤ lim

T→∞
lim
ε→0

1

mini (P (T, ε)i,i − ri(P (T, ε)))

= 1, (115)

where the first line is the Ahlberg—Nilson—Varah bound (Varah, 1975), and the second line

follows by (113). Since P (T, ε)P−1(T, ε) = I, we have
∑

j P (T, ε)i,jP
−1(T, ε)j,i = 1, and

therefore

P (T, ε)i,iP
−1(T, ε)i,i + ri (P (T, ε)) ri

(
P−1(T, ε)

)
≥ 1.

By (113) and (115), ri (P (T, ε)) ri (P
−1(T, ε)) ≤ 1 for suffi ciently large T and small ε. Hence,

P−1(T, ε)i,i ≥
1− ri (P (T, ε)) ri (P

−1(T, ε))

P (T, ε)i,i
≥ 1− ri (P (T, ε)) ri

(
P−1(T, ε)

)
. (116)
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Therefore,

ri
(
P−1(T, ε)

)
=

∑
j

∣∣P−1(T, ε)i,j
∣∣− P−1(T, ε)i,i

≤
∑
j

∣∣P−1(T, ε)i,j
∣∣− 1 + ri (P (T, ε)) ri

(
P−1(T, ε)

)
.

By (115), for every ε > 0, there exist T̄ ∈ N and a function ε̄ : N→ R+ such that, for all T >

T̄ , ε < ε̄ (T ), and i ∈ {1, . . . , |M (T )|}, we have ri (P−1(T, ε)) ≤ ri (P (T, ε)) ri (P
−1(T, ε))+ε.

By (113), this implies limT→∞ limε→0 maxi ri (P
−1(T, ε)) = 0. Given this, (116) implies

limT→∞ limε→0 mini P
−1(T, ε)i,i = 1.

D Reduction Lemma

As with perfect monitoring, we simplify conditions (10)—(13). Fix T0 (which determines T ∗).

Define hT
′
−i and h

Li−1

−i as with perfect monitoring. We show that the following four conditions

on strategies σ∗i (xi) and reward functions π∗i
(
x−i, h

T′
−i, h

Li−1

−i

)
, and π∗∗i

(
x−i, h

T ∗
−i |ε

)
imply

(10)—(13):22

1. [Reward Bound]

max
x−i,hT

′
−i,h

Li−1
−i

∣∣∣π∗i (x−i, hT′−i, hLi−1

−i

)∣∣∣ <
(T ∗)2

2
, (117)

lim
ε→0

max
x−i,hT

∗
−i

∣∣π∗∗i (x−i, hT ∗−i |ε)∣∣
Pr(z = i)

= 0 (118)

2. [Incentive Compatibility] There exists ε̄ > 0 such that, for all ε < ε̄ and all x ∈ {G,B}N ,

22To clarify the role of imperfect monitoring, we make explicit the dependence of π∗∗i
(
x−i, h

T∗+1
−i |ε

)
on ε.

As we will see, σ∗i (xi) and π∗i
(
x−i, h

T′
−i, h

L
−i

)
do not depend on ε.
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for each ht−1
i ∈ Hi(x−i),23

σ∗i (xi) ∈ arg max
σi∈Σi

E(σi,σ∗−i(x−i))

 ∑
t∈
⋃L
l=1 T(main(l))

ûi (at) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
+ π∗∗i

(
x−i, h

T ∗

−i |ε
)
|ht−1
i

 .
3. [Promise Keeping] There exists ε̄ > 0 such that, for all ε < ε̄ and all x ∈ {G,B}N ,

vi(G)− 2ε∗ ≤

vi(B) + 2ε∗ ≥

 1

T ∗
Eσ∗(x)

 ∑
t∈
⋃L
l=1 T(main(l))

ûi (at) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
+ π∗∗i

(
x−i, h

T ∗

−i |ε
)
|ht−1
i

 .
4. [Self-Generation] For all x−i, hT

′
−i, and h

Li−1

−i ,

sign(xi−1)π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
≥ −2ε∗T ∗.

Lemma 29 Suppose that, for all T̄ > 0, there exist T0 > T̄ , strategies (σ∗i (xi))i,xi in the

T ∗ (T0)-period repeated game and reward functions
(
π∗i

(
x−i, h

T′
−i, h

Li−1

−i

))
i,x−i,hT

′
−i,h

Li−1
−i

and(
π∗∗i
(
x−i, h

T ∗
−i |ε

))
i,x−i,hT

∗
−i
such that [Reward Bound]—[Self-Generation] are satisfied. Then

there exist δ̄ < 1 and ε̄ > 0 such that v ∈ E(δ, q) for all δ > δ̄ and all ε-perfect monitoring

structures q with ε < ε̄.

Proof. We describe how to modify the proofs of Lemmas 14—17 to prove Lemma 29. In

what follows, “for suffi ciently large T0 and small ε, . . . ”means “there exist T̄ ∈ N and a

function ε̄ : N→ R+ such that, for all T0 > T̄ and ε < ε̄ (T0), . . . ”.

Long Communication Phase for Player i

In the long communication phase for player i, each player j 6= i sends her history (xj, h
T ∗
j )

via basic communication. By (109),

lim
T0→∞

lim
ε→0

Pr
(
(xj, h

T ∗

j )(n) = (xj, h
T ∗

j ) for all j, n 6= i
)

= lim
T0→∞

1−N2 log2

⌈(
2 |A|2

)2T ∗
⌉

exp(−ε̄2T0) = 1. (119)

23Recall that we define Hi(x−i) as the set of histories that happen with a positive probability given
(σi, σ−i(x−i)) for some σi ∈ ΣTi . Note that the expectation is calculated based on the equilibrium strategy
and Bayes’rule.
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Hence, by Lemma 28 and (118), for suffi ciently large T0 and small ε, there exist reward

functions
(
π̃∗∗i (xi−1, h

T ∗∗∗
i−1 |ε)

)
xi−1,hT

∗∗∗
i−1

such that

E
[
1{z=i}π̃

∗∗
i (xi−1, h

T ∗∗∗

i−1 |ε)|hT
∗]

= π∗∗i
(
x−i, h

T ∗

−i |ε
)
,

max
i,xi−1,h

T2
i−1

∣∣π̃∗∗i (xi−1, h
T ∗∗∗
i−1 |ε)

∣∣
Pr(z = i)

< 1.

Fix any K > max{2ū
ε̄
, 1}. By Lemma 27, there exist reward functions (πn (hn−1))n,hn−1

such that, in the long communication phase, the sum of player n’s instantaneous utilities

and the reward πn (hn−1) is maximized by following the protocol and is independent of

the messages
(
(xj, h

T ∗
j )
)
j 6=i. Moreover, by (112), the addition of πn (hn−1) does not affect

equilibrium payoffs when T0 →∞.

Hence, by the same proof as for Lemma 14, for suffi ciently large T0 and small ε, it

suffi ces to consider the repeated game until the end of final communication phase to cancel

discounting, allowing reward functions of the form π∗∗i
(
x−i, h

T ∗
−i |ε

)
.

Final Communication Phase to Cancel Discounting

For suffi ciently large T0 and small ε, the conclusion of Lemma 14 holds. The proof is the

same, replacing Lemma 8 with Lemma 27 and replacing Lemma 12 with Lemma 28,

Final Communication Phase to Share Information from Non-Main Phases

For suffi ciently large T0 and small ε, the conclusion of Lemma 15 holds. The proof is

the same, replacing Lemma 8 with Lemma 27, recalling that Lemma 9 holds as written, and

replacing Lemma 12 with Lemma 28 (in addition, the variable si−1 constructed in the proof

must now be set to 0 when player i− 1 plays MIX, as well as when she plays JAM).

Final Communication Phase to Share Information from Main Phases

For suffi ciently large T0 and small ε, the conclusion of Lemma 16 holds. The proof is the

same, replacing Lemma 12 with Lemma 28 (again setting si−1 = 0 when player i − 1 plays

MIX). Note that, as is clear from the proof of Lemma 10, players other than the initial sender

have strict incentives to follow the equilibrium strategy with perfect monitoring, which will

be kept in almost perfect monitoring. In addition, the initial sender is indifferent between

any messages, when players −i communicate to construct π̃∗i .

Finally, given Lemma 16, the conclusion of Lemma 17 holds by the same argument.
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E Reward Functions and Equilibrium Verification

To complete the proof of Theorem 2, it remains to construct reward functions π∗i
(
x−i, h

T′
−i, h

Li−1

−i

)
and π∗∗i

(
x−i, h

T ∗
−i |ε

)
that satisfy [Reward Bound]—[Self-Generation].

E.1 Construction of π∗i
(
x−i, h

T′
−i, h

Li−1
−i

)
and π∗∗i

(
x−i, h

T ∗

−i|ε
)

With perfect monitoring, recall that π≥3
i

(
x−i, h

T′
−i, h

Li−1

−i

)
denotes the reward function follow-

ing the jamming coordination phase, and πi
(
x−i, h

T′
−i, h

Li−1

−i

)
= πindiff

i

(
x−i, h

jam
−i

)
+π≥3

i

(
x−i, h

T′
−i, h

Li−1

−i

)
denotes the total reward function. Define π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
by modifying π≥3

i

(
x−i, h

T′
−i, h

Li−1

−i

)
by setting θi(h

<(l,main)
−i ) = E if any player other than i plays MIX prior to main phase l (or if

any of the conditions for θi(h
<(l,main)
−i ) = E from the perfect monitoring proof are satisfied).

To construct π∗∗i
(
x−i, h

T ∗
−i |ε

)
, we first formalize the observation that players attribute

monitoring errors to randomization by jamming players. Fix i ∈ I. By (110), with positive

probability ζj = jam ∀j 6= i at the end of the jamming coordination phase. Conditional on

this event, every opposing action sequence for rest of the block arises with positive probability

(independent of ε and δ). Hence, for any history hT
∗

i , we have

lim
ε→0

Pr
({
ωj,t = aµ(j),t ∀j ∈ I, t ∈ T∗

}
|hT ∗i

)
= 1. (120)

Given (120), conditional on each x−i, if player i observes a history that would not be in

Hi(x−i) with perfect monitoring, she believes that a jamming player played MIX– and hence

θi(h
<(l,main)
−i ) = E, so any continuation strategy is optimal– with probability converging to 1

as ε→ 0. As the equilibrium strategy is optimal under perfect monitoring with reward func-

tion πi
(
x−i, h

T′
−i, h

Li−1

−i

)
, this implies the equilibrium strategy is almost-optimal under almost-

perfect monitoring with reward function π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
: for each x−i ∈ {G,B}N−1,
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history ht−1
i , and ai ∈ supp

(
σ∗i (xi) (Li, ht−1

i )
)
, there exists εx−ii (ht−1

i , ai) ≥ 0 such that24

max
σi
E(σi,σ∗−i(x−i))

[
T ∗∑
τ=1

ûi (aτ ) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
|ht−1
i , ai,t = ai

]

−max
ãi,σi

E(σi,σ∗−i(x−i))

[
T ∗∑
τ=1

ûi (aτ ) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
|ht−1
i , ai,t = ãi

]
≥ −εx−ii (ht−1

i , ai)

and

lim
ε→0

max
x−i,h

t−1
i ,ai∈supp(σ∗i (xi)(Li,ht−1

i ))
ε
x−i
i (ht−1

i , ai) = 0.

Since (a−i, ω−i) statistically identifies (ai, ωi) for suffi ciently small ε > 0, by a standard ap-

plication of the theorem of the alternative there exists a reward function
(
πmonitor
i,t

(
x−i, h

t
−i
))
x−i,ht−i

such that, for t = T ∗, for each x−i ∈ {G,B}N−1, history ht−1
i , and ai ∈ supp

(
σ∗i (xi) (Li, ht−1

i )
)
,

we have

max
σi
E(σi,σ∗−i(x−i))

[
T ∗∑
τ=1

ûi (aτ ) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
+ πmonitor

i,t

(
x−i, h

t
−i
)
|ht−1
i , ai,t = ai

]

−max
ãi,σi

E(σi,σ∗−i(x−i))

[
T ∗∑
τ=1

ûi (aτ ) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
+ πmonitor

i,t

(
x−i, h

t
−i
)
|ht−1
i , ai,t = ãi

]
≥ 0

and

lim
ε→0

max
x−i,h

t−1
−i

∣∣πmonitor
i,t

(
x−i, h

t
−i
)∣∣ = 0.

Similarly, by backward induction, there exist reward functions
(
πmonitor
i,t

(
x−i, h

t
−i
))
t∈{1,...,T ∗},x−i,ht−i

such that, for each t ∈ {1, . . . , T ∗}, x−i ∈ {G,B}N−1, history ht−1
i , and ai ∈ supp

(
σ∗i (xi) (Li, ht−1

i )
)
,

24Recall that player i’s belief about (L−i, h−i) does not depend on Li conditional on (x−i, h
t−1
i ).
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we have

max
σi
E(σi,σ∗−i(x−i))

[
T ∗∑
τ=1

ûi (aτ ) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
+
∑
τ≥t

πmonitor
i,τ

(
x−i, h

τ
−i
)
|ht−1
i , ai,t = ai

]

−max
ãi,σi

E(σi,σ∗−i(x−i))

[
T ∗∑
τ=1

ûi (aτ ) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
+
∑
τ≥t

πmonitor
i,τ

(
x−i, h

τ
−i
)
|ht−1
i , ai,t = ãi

]
≥ 0

and

lim
ε→0

max
x−i,ht−i

T ∗∑
t=1

∣∣πmonitor
i,t

(
x−i, h

t
−i
)∣∣ = 0. (121)

Now define

π∗∗i
(
x−i, h

T ∗

−i |ε
)

=
T ∗∑
t=1

πmonitor
i,t

(
x−i, h

t
−i
)
. (122)

Since adding πmonitor
i,τ

(
x−i, h

τ
−i
)
does not affect incentives after period τ + 1 (i.e., it is sunk),

[Incentive Compatibility] with reward function π∗i
(
x−i, h

T′
−i, h

Li−1

−i

)
+π∗∗i

(
x−i, h

T ∗
−i |ε

)
follows:

For each ht−1
i ∈ Hi(x−i),

σ∗i (xi) (Li, ht−1
i ) ∈ argmax

σi

E(σi,σ∗−i(x−i))

[
T ∗∑
τ=1

ûi (aτ ) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
+ π∗∗i

(
x−i, h

T ∗

−i |ε
)
|ht−1
i

]
.

(123)

E.2 Verification of [Reward Bound]—[Self-Generation]

We have already verified [Incentive Compatibility]. Equation (118) follows immediately from

(121) and (122).

For equation (117) and [Self-Generation], note that the perfect-monitoring reward func-

tion πi
(
x−i, h

T′
−i, h

Li−1

−i

)
satisfies these conditions for large enough T0, and πi

(
x−i, h

T′
−i, h

Li−1

−i

)
and π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
differ only if some player other than i played MIX, in which case

π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
equals the perfect-monitoring reward with θi(h

<(l,main)
−i ) = E. Hence,

π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
also satisfies (117) and [Self-Generation] for large enough T0.

For [Promise Keeping], note that, conditional on the event that no player plays JAM or

MIX, the ex ante distribution of play paths under almost-perfect monitoring converges to
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that under perfect monitoring as ε → 0. Since πi
(
x−i, h

T′
−i, h

Li−1

−i

)
and π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
coincide conditional on this event and π∗∗i

(
x−i, h

T ∗+1
−i |ε

)
→ 0 as ε → 0, equilibrium payoffs

conditional on this event also coincide as ε→ 0. Moreover, since each player plays JAM or

MIX with probability at most (T0)−9 in each sub-interval (or main phase), the probability

that no player plays JAM or MIX converges to 1 as ε → 0. Finally, given T0, payoffs

are continuous in ε, since all reward functions except π∗i
(
x−i, h

T ∗+1
−i |ε

)
are bounded and

independent of ε, and (118) holds. Hence, [Promise Keeping] holds for suffi ciently large T0

and small ε.
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Supplementary Appendix 2: Non-Pairwise Matching

This appendix proves Theorem 3, which extends the folk theorem to non-pairwise match-

ing. Recall the definitions of “symmetric stage games”and “random player-roles”from the

text.

Theorem 3 With non-pairwise matching and either symmetric stage games or random

player-roles, for all v ∈ int (F ∗), there exists δ̄ < 1 such that v ∈ E (δ) for all δ > δ̄.

F Identifiability

As with pairwise matching, if players −i successfully aggregate their information (including

the sizes of their groups and, if applicable, their roles), they can perfectly identify player i’s

action and observation.

Lemma 30 There exists a function ϕ : A−i × Ω−i → Ai × Ωi such that, if (ai, ωi)i∈I is

feasible, then ϕ (a−i, ω−i) = (ai, ωi).

Proof. Let ωi(a) = |{j ∈ µ (i) : aj = a}| be the number of player i’s opponents who take

action a. We must show how to identify four objects on the basis of (a−i, ω−i): (i) the size

of i’s group, n∗ (i), (ii) i’s action, ai, (iii) for symmetric games, the number of i’s opponents

taking each action, (ωi (a))a∈A[n∗(i)], and (iv) for asymmetric games (i.e., random player-

roles), i’s role, i∗ (i), and the actions taken by i’s opponents,
(
ai∗(j)

)
j∈µ(i)

.

The argument for (i) and (ii) is the same for symmetric and asymmetric games. For (i),

for each n∗ ∈ {2, ...,M}, let −i(n∗) denote the set of players j 6= i with n∗(j) = n∗. Note

that, if |−i(n∗)| /n∗ ∈ N for each n∗ ∈ {2, ...,M}, then n∗(i) = 1. Otherwise, there is a

unique number n∗ ∈ {2, ...,M} with |−i(n∗)| /n∗ 6∈ N. In this case, n∗(i) = n∗.

For the rest of the proof, let n∗ = n∗ (i).

For (ii), consider those players j ∈ I with n∗ (j) = n∗ who only observe only the same

action as they themselves play: that is, players j such that n∗ (j) = n∗ and ωj(aj) = n∗ − 1.

Clearly, the number of such players (including i herself) must be a multiple of n∗. Hence, if
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there exists ā ∈ A such that the number of players in −i(n∗) with aj = ā and ωj(ā) = n∗− 1

is not a multiple of n∗, then ai = ā.

Otherwise, there exists a 6= ai such that ωi (a) > 0. Hence, ωi (ai) < n∗ − 1. Since an

action of a player in a size-n∗ group is observed by n∗ − 1 players,

(n∗ − 1)× |{j ∈ I : n∗(j) = n∗ ∩ aj = a}| =
∑

j∈I,n∗(j)=n∗
ωj(a) ∀a ∈ A [n∗] .

Therefore, since ωi (ai) < n∗ − 1, for ā = ai we have

(n∗ − 1)× |{j ∈ I \ {i} : n∗(j) = n∗ ∩ aj = ā}| <
∑

j∈I\{i},n∗(j)=n∗
ωj(ā),

and for each ā 6= ai we have

(n∗ − 1)× |{j ∈ I \ {i} : n∗(j) = n∗ ∩ aj = ā}| ≥
∑

j∈I\{i},n∗(j)=n∗
ωj(ā).

Thus, ai is perfectly identified from (a−i, ω−i).

For (iii), given that ai (and hence the complete action profile a) is identified from

(a−i, ω−i), for each a ∈ A[n∗], we have

ωi (a) = (n∗ − 1)× |{j ∈ I : n∗(j) = n∗ ∩ aj = a}| −
∑

j∈I\{i},n∗(j)=n∗
ωj(a).

For (iv), identifying player i’s role on the basis of her opponents’roles is trivial: i∗ (i) is

the unique role i∗ such that |{j 6= i : i∗(j) = i∗}|/n∗ 6∈ N. Moreover, the observation of each

player j ∈ −i (n∗) defines a mapping gj : {1, ..., n∗} → A1[n∗]× · · · ×An∗ [n∗], where gj (n) is

the action of the player in role n in j’s match. Note that, for any such mapping g,

|{j ∈ I : n∗(j) = n∗ ∩ gj = g}|

is a multiple of n∗. Hence, gi is perfectly identified from (gj)j 6=i. In turn, ai∗ = gi (i
∗) for

each role i∗ in the match including i.
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G Communication Protocols

Recalling that |Ai∗ [n∗]| ≥ 2 for each i∗ and n∗, fix two distinct actions in each action set

Ai∗ [n
∗], and with slight abuse of notation label them a0 and a1. In the specification of each

communication protocol, we replace ωj,t = a0 with ωj,t(a0) = n∗(j) − 1, replace ωj,t = a1

with ωj,t(a1) ≥ 1, and replace ωj,t 6∈ {a0, a1} with ωj,t(a) > 1 for some a 6∈ {a0, a1}.

G.1 Basic, Secure, and Verified Protocols

Given this modification, the basic, secure, and verified protocols are the same as with pairwise

matching. Inequality (1) holds as written. We now prove the counterpart of Lemma 3:

Lemma 31 There exists ε̃ > 0 such that, for any player j 6= i with Ijam\ {j} 6= ∅ and any

sequence of observations (ωj,t)
2T dlog2|Mi|e
t=1 that arises with positive probability when players −j

follow the secure protocol, one of the following two conditions holds:

1. For all (aj,t)
2T dlog2|Mi|e
t=1 , we have

Pr
(
ALLREG| (aj,t, ωj,t)2T dlog2|Mi|e

t=1

)
≤ T 9 exp

(
−1

4
ε̃T

)
.

2. The following two conditions hold:

(a) For all (aj,t)
2T dlog2|Mi|e
t=1 , we have

Pr
(
mi (j

′) ∈ {mi, 0} ∀j′ /∈ {i, j} | (aj,t, ωj,t)2T dlog2|Mi|e
t=1 , ALLREG

)
≥ 1−N dlog2 |Mi|e exp

(
−ε̃4T

)
.

(b) If aj,t = a0 for all t ∈ {1, . . . , 2T dlog2 |Mi|e}, then

Pr
(
mi (j

′) = mi ∀j′ /∈ {i, j} | (aj,t, ωj,t)2T dlog2|Mi|e
t=1 , ALLREG

)
≥ 1−N dlog2 |Mi|e exp

(
−ε̃4T

)
.
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The only difference between this lemma and Lemma 3 is it may be necessary to take ε̃

smaller than ε̄, the lower bound for the matching probability. Given Lemma 31, Lemmas

5—6 hold as written with ε̃ in place of ε̄.

Proof. Given ε̄ > 0, take ε̃ > 0 suffi ciently small such that ε̃ (1− 4 log ε̄) ≤ ε̄ (1− ε̃) and

ε̃4 ≤ ε̄(ε̄3 − ε̃). (This also implies ε̃ ≤ ε̄.)

If ωj,t(a1) ≥ 2 for some t, or if ωj,t(a1) ≥ 1 in both half-intervals of some interval, then

ALLREG cannot have occurred, so Condition 1 holds. Assuming such observations do not

arise, we have two cases:

1. Suppose that there is some half-interval S where i plays a1 in which n∗t (j) ≥ 3 in at

most ε̃T periods and ωj,t(a1) = 1 in at least (1− ε̄3)T periods. Then

Pr
(

(aj,t, ωj,t)
2T dlog2|Mi|e
t=1 |S|j′JAMS

)
Pr
(

(aj,t, ωj,t)
2T dlog2|Mi|e
t=1 |S|ALLREG

) ≥ ε̄ε̃T
(
pi,j + pj′,j

pi,j

)γ (
1− pi,j − pj′,j

1− pi,j

)(1−ε̃)T−γ

,

where γ is the number of periods in which n∗t (j) = 2 and ωj,t(a1) = 1, and pi,j is

the conditional probability that players i and j match given n∗t (j) = 2. By the same

argument as in the proof of Lemma 3, we have

Pr
(

(aj,t, ωj,t)
2T dlog2|Mi|e
t=1 |S|j′JAMS

)
Pr
(

(aj,t, ωj,t)
2T dlog2|Mi|e
t=1 |S|ALLREG

) ≥ ε̄ε̃T exp

(
1

4
ε̄ (1− ε̃)T

)

= exp

(
ε̃T log (ε̄) +

1

4
ε̄ (1− ε̃)T

)
≥ exp

(
1

4
ε̃T

)
.

Arguing again as in the proof of Lemma 3, this implies Condition 1.

2. Suppose that, for every half-interval where i plays a1, either n∗t (j) ≥ 3 in at least ε̃T

periods or ωj,t(a1) = 1 in at most (1− ε̄3)T periods. Fix a half-interval.

If n∗t (j) ≥ 3 in at least ε̃T periods in the half-interval, consider two sub-cases:

(a) If ωj,t(a1) = 1 in at least ε̃2T periods then, given ALLREG, player j believes

that she matched with i and another player in at least ε̃2T periods. For any
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n ∈ I \ {i, j}, the probability that player n is not a part of the group including

i and j is exp
(
−ε̄ε̃2T

)
by the same calculation as Lemma 2. Since ε̃ ≤ ε̄, player

j therefore believes that each player in I \ {i, j} matched with player i at least

once with probability no less than 1−N exp
(
−ε̃3T

)
.

(b) If ωj,t(a1) = 1 in at most ε̃2T periods, player j believes that each other player

matched with player i in at least one of the remaining
(
ε̃− ε̃2

)
T periods with

probability no less than 1−N exp
(
−ε̄
(
ε̃− ε̃2

)
T
)
≥ 1−N exp

(
−ε̃4T

)
.

If instead n∗t (j) ≥ 3 in at most ε̃T periods and ωj,t(a
1) = 1 in at most (1− ε̄3)T

periods, then player j believes that each other player matched with player i at least

once in the remaining (ε̄3 − ε̃)T periods at least once with probability no less than

1−N exp (−ε̄ (ε̄3 − ε̃)T ) ≥ 1−N exp
(
−ε̃4T

)
.

Therefore, in every case, player j believes that each other player matched with player

i at least once with probability no less than 1 − N exp
(
−ε̃4T

)
. Since this holds for

every half-interval where i plays a1, Condition 2 holds as in the proof of Lemma 3.

G.2 Jamming Coordination Protocol

We must modify the jamming coordination protocol. We want it to be the case that, if

ζ i (hi) = reg, then with positive probability ζj(hj) = jam ∀j 6= i. Suppose we specified that,

as in the pairwise matching construction, ζj(hj) = jam if and only if player j observes a1

during the jamming coordination protocol. The problem is that, if player i is always matches

in groups of size N or N − 1, plays a 6= a1, and observes ωi(a1) = 0, then she realizes that

ζj(hj) = reg with probability 1. To address this issue, we repeat the jamming coordination

protocol T times, and if this problematic event occurs too often we set ζ i (hi) = jam even if

i has not observed a1.

Jamming Coordination Protocol with Parameter T :

• In each period t ∈ {1, ..., T}, each player i plays a1 with probability T−2 and play each

a 6= a1 with probability 1−T−2

|A|−1
.
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Given a protocol history hi, we define ζ i(hi) = jam if (i) ωi,t(a1) ≥ 1 for some t ∈

{1, . . . , T} or (ii) |{t : n∗t (i) ≥ N − 1}| ≥ T −N .

As with pairwise matching, let

Pi(hi) = Pr
(
ζj(hj) = jam ∀j 6= i|hi

)
.

For every protocol history hi, either ζ i(hi) = jam or (25) holds. To see why, note that

ζ i(hi) = reg implies |{t : n∗t (i) ≤ N − 2}| ≥ N . Hence, we may denote by Tjam
i a set of

N periods with |{t : n∗t (i) ≤ N − 2}|. Recalling that each partition of the population into

groups of size ≤M occurs with probability at least ε̄, the following event has probability at

least ε̄NT−4(N−2): (i) n∗t (j) ≥ 2 for all j ∈ I \{i, µt(i)} and t ∈ T
jam
i , (ii)

⋃
t∈Tjam

i
(I \ µt(i)) =

I\ {i}, and (iii) aj,t = a1 for all j ∈ I \ {i ∪ µt(i)} and t ∈ T
jam
i . Conditional on this event,

ζj(hj) = jam ∀j 6= i with probability 1. Hence, (25) holds.

H Communication Modules

For the basic communication module, Lemma 8 holds as written. The only required modifi-

cation to the proof is that the definitions of π̂n (hn−1) and π̂i (hi−1) must be changed to

π̂n (hn−1) =
∑
t∈T

2K1{n∗(n−1)=2∩ωn−1,t(a0)=1}

Pr (µ(n− 1) = {n})

+
∑
t∈T1st

1{n∗(n−1)=2∩ωn−1,t(a1)=1}
(
1− δ−T

)
(ûn (a0)− ûn (a1))

Pr (µ(n− 1) = {n}) ,

π̂i (hi−1) =
∑
t∈T

1

Pr (µ(i− 1) = {i})

 δt−11{n∗(i−1)=2∩ωi−1,t(a1)=1} (ûi (a
1)− ûi (a0))

+1{n∗(i−1)=2∩max{ωi−1,t(a0),ωi−1,t(a1)}=1}2ū

 ,

thus conditioning on the event that player n− 1 (or i− 1) matches in a 2-player group.

The analysis of the secure and verified modules is unchanged. In particular, Lemmas 9

and 10 hold as written.

For the jamming coordination module, Lemma 11 holds as written, except that now πindiff
i,t

must be defined for t ∈ {1, . . . , T} rather than {1, 2} (a similar change is required in (39)).
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The required modifications to the proof are (i) H0
i must be defined as the set of protocol

histories such that ωi,t(a1) = 0 for all t and |{t : n∗t (i) ≥ N − 1}| < T − N , and (ii) the

construction of πindiff
i,t by backwards induction must begin at period t = T rather than t = 2.

I Block Structure and Equilibrium Conditions

In the symmetric stage game case, replace the target actions a (x) with a target map-

ping from n∗ (i) to A [n∗ (i)]. In the asymmetric (random player-roles) case, replace a(x)

with a mapping from (n∗(i), i∗(i)) to Ai∗(i)[n∗(i)]. Given this modification, the definition of

(vi (xi−1))i∈I,xi−1∈{G,B} ∈ R
2N and the target mappings– which we denote (ā (x))x∈{G,B}N– is

unchanged. Note that, since F ∗ is defined with the same punishment strategy for all play-

ers, the punishment strategy ᾱmin is defined independently of the index of the player being

punished.

The calendar time structure of a block is also unchanged, except that the cardinality of

the set of signals Ω is larger. Since it is still finite (and independent of T0), (16)—(18) still

hold.

Both the reward adjustment lemmas (Lemmas 12 and 13) and the equilibrium conditions

and subsequent reduction lemmas (Lemmas 4 and 14—17) hold as written.

J Strategies, Reward Functions, and Verification

Equilibrium strategies are unchanged, except for the following modifications:

1. The jamming coordination protocol is modified as described above.

2. In main phases, if i /∈ ID
(
h<(l,main)

)
, player i follows the target mapping ā (x (i)); if

i ∈ ID
(
h<(l,main)

)
, player i follows the mapping ᾱmin

i in every period.

By Lemma 30,
(
hT
′
−i, h

Li−1

−i

)
perfectly identifies

(
hT
′
i , h

Li−1

i

)
. Hence, we may construct

reward functions exactly as in the pairwise matching case.

Finally, in verifying the equilibrium conditions (in particular, in the proof of Lemma 20),

we must check that Pr
(
I jam = ∅

)
still converges to 0 as T0 → ∞. This is straightforward:
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First, since the jamming coordination phase takes T0 periods, the probability that any player

plays a1 is at most NT0/ (T0)2 → 0. Second, recalling that each partition into groups of size

≤ M occurs with positive probability, the probability that |{t : n∗t (i) ≥ N − 1}| ≥ T0 − N

for any player i converges to 0 by the law of large numbers.
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Supplementary Appendix 3: Non-I.I.D. Matching

This appendix proves Theorem 4, which extends the folk theorem to non-i.i.d. matching.

Recall the definition of F ∗ and the required full-rank assumptions on the matrices P and Q.

Theorem 4 With non-i.i.d. matching, for all v ∈ int (F ∗), there exists δ̄ < 1 such that

v ∈ E (δ) for all δ > δ̄.

We actually use a stronger solution concept, which we call ex post sequential equilibrium

(XSE). In this appendix, an XSE is a sequential equilibrium in which sequential rationality

is satisfied conditional on each possible realization of the initial match µ1: that is, for each

player i, history ht−1
i , and initial match realization µ1, the continuation strategy σi|ht−1

i

maximizes E(σi,σ∗−i)[
∑∞

τ=t ûi(aτ )|µ1, h
t−1
i ]. Note that, while sequential rationality is imposed

ex post with respect to µ1, the requirement that an XSE is a sequential equilibrium implies

that players’ beliefs must be limits of conditional probabilities resulting from completely

mixed strategy profiles in which players condition only on their own information ht−1
i =

(ai,τ , ωi,τ )
t=1
τ=1 and not on µ1. Let E(µ1, δ) be the set of ex post sequential equilibrium payoffs

with initial match µ1. We prove the stronger result that Theorem 4 holds with E (δ) replaced

by E (µ1, δ), for any µ1.

We must also show that F := limδ→1 F (µ1, δ) is well-defined, independent of µ1, where

F (µ1, δ) is the feasible payoff set with initial match µ1 and discount factor δ. Recall also

that F κ (µ1, δ) is the set of payoffs attainable by the infinite repetition of a strategy in the

κ-period finitely repeated game with initial match µ1 and discount factor δ.

Proposition 1 For all matches µ1, µ
′
1, we have limδ→1 F (µ1, δ) = limκ→∞ limδ→1 F

κ (µ′1, δ).

In particular, F = limδ→1 F (µ1, δ) = limκ→∞ limδ→1 F
κ (µ1, δ) is well-defined, independent

of µ1.

We postpone the proof of this proposition until the end of the appendix.

The proof of Theorem 4 follows the same logic as the i.i.d. case. It is structured as follows:

Section K summarizes relevant properties of Markov chains and describes how players can

identify a match. Section L presents the communication protocols. All communication
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protocols need some modification. In particular, we add periods of communication to “cancel

out”the effect of the initial match. Section M contains the analysis of the communication

modules. Except for the basic communication module, this is very similar to the i.i.d.

case. Section N describes the block belief-free structure, where continuation payoffs are

independent of the initial match. In Sections O and P, we modify the reward adjustment

and reduction lemmas. Finally, we construct the reward function and verify the equilibrium

conditions in Section Q.

K Facts about Markov Chains

We start with two lemmas showing that the effect of the initial match vanishes exponentially

with t. Let a1:∞ ∈
(
AN
)N
denote an infinite sequence of action profiles, where at is played

in period t. Let Pr (µt|µ1, a1:t) denote the probability that the period t match is µt given

initial match µ1 and action sequence a1:t.

Lemma 32 For any a1:∞ ∈
(
AN
)N
and t ∈ N, we havemaxµ1,µ̃1

∑
µt
|Pr (µt|µ1, a1:t)− Pr (µt|µ̃1, a1:t)| ≤

(1− ε̄)t.

Proof. Fixing a1:∞, Prt
(
µt|µt−1

)
= Pr

(
µt|at−1, µt−1

)
is a (time-dependent) Markov process

with Prt
(
µt|µt−1

)
≥ ε̄ for each µt, µt−1. The result now follows from Theorem 4.9 of Seneta

(2006).

Similarly, let Prσ (µt|µ1) denote the probability that the period t match is µt given initial

match µ1 and strategy profile σ.

Lemma 33 Fix κ ∈ N and a strategy σκ in the κ-period finitely repeated game. Let σ denote

the strategy in the infinitely repeated game that results from repeating σκ. Then we have

max
µ1,µ̃1

∑
µt
|Prσ (µt|µ1)− Prσ (µt|µ̃1)| ≤ (1− ε̄)b

t
κc . (124)

In particular, there is a unique stationary distribution of µ under strategy σ.

Proof. The proof of (124) is the same as Lemma 32, viewing the repeated game as a

repetition of κ-period blocks. The existence of a stationary distribution follows from a fixed
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point theorem, and uniqueness follows from (124).

Lemma 1 holds as it stands, so identification of actions is the same as with i.i.d. matching.

We now consider identification of the initial match µ1. Consider the following finite sequence

of action profiles:

1. Each player takes a0 in every period t = 1, ..., T .

2. For the next N (N − 1) /2 periods, players play σ̄∗ to identify µT+1: in each period

t = T + 1, ..., T + N (N − 1) /2, players in the pair Ct−T (the (t− T )th element of C)

take a1 and others take a0.

Suppose players −i communicate the history profile h−i in each of these T +N (N − 1) /2

periods. By Lemma 1, h−i perfectly identifies hi (and thus yC). Since P has full row rank

and Q has full rank, by the Sylvester rank inequality, yC statistically identifies µ1: that is,

QTP is invertible. Since
(
QTP

)−1
= P−1 (Q−1)

T , there exists M̄ such that, for each T , we

have ∥∥∥(QTP
)−1
∥∥∥ ≤ M̄T . (125)

Note also that Lemma 2 holds as it stands.

L Communication Protocols

Given S ∈ N, let Pr
(
·|µ1, a

1:S
i , a0

−i
)
be the distribution of µS+1 when the initial match is

µ1, player i takes a
1:S
i ∈ AS from period 1 to S, and players −i always take a0

−i. Let

pi,j
(
µ1, a

1:S
i , a0

−i
)

=
∑

µ Pr
(
µ|µ1, a

1:S
i , a0

−i
)
pi,j(µ) be the probability that i and j match in

period S + 1 given µ1. Fix S0 ∈ N suffi ciently large such that S0 ≥ N (N − 1) /2,

(1− ε̄)S0N(N−1) <
1

2
, (126)

and for each i, j, j′, µ̄1, µ1, a
1:S0
i , a0

−i,

∣∣log pi,j
(
µ̄1, a

1:S0
i , a0

−i
)
− log pi,j

(
µ1, a

1:S0
i , a0

−i
)∣∣ ≤ 1

2
ε̄ (127)
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and
∣∣∣∣log

pi,j(µ̄1,a
1:S0
i ,a0

−i)+pi,j′(µ̄1,a
1:S0
i ,a0

−i)
pi,j(µ̄1,a

1:S0
i ,a0

−i)
− log

pi,j(µ1,a
1:S0
i ,a0

−i)+pi,j′(µ1,a
1:S0
i ,a0

−i)
pi,j(µ1,a

1:S0
i ,a0

−i)

∣∣∣∣ ≤ 1
16
ε̄∣∣∣∣log

1−pi,j(µ̄1,a
1:S0
i ,a0

−i)−pi,j′(µ̄1,a
1:S0
i ,a0

−i)
1−pi,j(µ̄1,a

1:S0
i ,a0

−i)
− log

1−pi,j(µ1,a
1:S0
i ,a0

−i)−pi,j′(µ1,a
1:S0
i ,a0

−i)
1−pi,j(µ1,a

1:S0
i ,a0

−i)

∣∣∣∣ ≤ 1
16
ε̄
.

(128)

The existence of such S0 follows from Lemma 32.

L.1 Basic Communication Protocol

Given S1 ≥ S0, we replace each period of the basic communication protocol with the following

set of T̃ = (S0 + 1 +N (N − 1) /2 + 2(S1 + 1)S1N
2(N − 1)) periods, which we refer to as a

unit of basic communication:25

For the first S0 periods, players take a0; and then in the (S0 + 1)th period, players take

actions as in the basic communication protocol with i.i.d. matching. Intuitively, players

take a0 for S0 periods so that, by Lemma 32, the effect of µ1 on the distribution of µS0+1 is

bounded by (1− ε̄)S0 (i.e., “the effect of the initial match is cancelled”).

In the next N(N − 1)/2 periods, players play σ̄∗ to statistically identify µS0+1. Let τ(t)

denote the (S0 + t+ 1)th period counting from the beginning of the unit (i.e., the tth period

within these N(N −1)/2 periods), with t = 1, ..., N(N −1)/2. In period τ(t), players in pair

Ct take a1 and others take a0. Let C denote this set of N(N − 1)/2 periods.

For each player to identify µS0+1, players communicate their histories for the set of periods

C. Specifically, we view the remaining 2(S1+1)S1N
2(N−1) periods asN(N−1)/2 repetitions

of 4N(S1 + 1)S1-period cycles. In the tth cycle, players in Ct communicate ωτ(t) as follows:

The tth cycle is viewed as 2N repetitions of 2(S1 + 1)S1-period “subunit.” Intuitively,

each player n ∈ I sends ωn,τ(t) twice, once in each subunit. (We explain why players send

messages twice when presenting the corresponding module.)

In particular, for each t = 1, ..., N(N − 1)/2, the tth cycle proceeds as follows:26

1. For each n = 1, ..., N , player n sends ωn,τ(t) as follows:

25As in the main text, “play action a in period t” is to read as unconditional on a player’s past actions
and observations.
26To make the following the strategy sequentially rational, we will subsequently slightly modify the off-path

behavior. See in Section M.1.
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(a) Repeat the following (S1 + 1)-period sequence S1 times: Players take a0 for S1

periods. In the (S1 + 1)th period, player n takes a1 if ωn,τ(t) = a1, and takes a0

otherwise. Other players take a0.

(b) Then, repeat the following (S1 + 1)-period sequence S1 times: Players take a0 for

S1 periods. In the (S1 + 1)th period, player n takes a0 if ωn,τ(t) = a1, and takes a0

otherwise. Other players take a0.

Call this set of 2(S1 + 1)S1 periods the “(t, n, 1)-subunit.”Let S1(t, n, 1) be the set of

(S1 + 1)th periods in which player n sends the message. Let S1(t, n, 1, 1) denote the

first S1 periods of S1(t, n, 1), and let S1(t, n, 1, 2) denote the second S1 periods.

2. For each n = 1, ..., N , repeat the (t, n, 1)-subunit. Call the set of 2(S1 + 1)S1 periods

in which the (t, n, 1) subunit is repeated the “(t, n, 2)-subunit.”Let S1(t, n, 2) be the

set of (S1 + 1)th periods in which player n sends the message. Define S1(t, n, 2, 1) and

S1(t, n, 2, 2) analogously.

(The reader may wonder why we need to both cancel the effect of the initial match

and identify the match. The former makes the effect of the initial match on player i’s

continuation payoff exponentially small. However, since we need to make player i exactly

indifferent between σi(G) and σi(B), we still need to identify the match.)

Inference of the message mi: Inferences of mi are as in the i.i.d. matching case, except

that players use only their observation in the (S0 + 1)th period of each unit. By (127) and

Lemma 2, we have

Pr (mi (j) = mi ∀j) ≥ 1−N dlog2 |Mi|e exp (−ε̄T ) . (129)

Moreover, if player i follows the basic communication protocol to send message mi, every

player j 6= i plays a0 in all the (S0 + 1)th periods of each unit, and some player j 6= i infers

a message mi (j) ∈Mi, then mi (j) = mi.

Inference of player n’s message ωn,τ(t): Inferences of ωn,τ(t) are determined by the second

subunit in each cycle: each player n′ 6= n infers ωn,τ(t)(n
′) = a1 (respectively, ωn,τ(t)(n

′) = a0)
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if she observes a1 at least once in S1(t, n, 2, 1) (resp., S1(t, n, 2, 2)) and observes only a0

in S1(t, n, 2, 2) (resp., S1(t, n, 2, 1)). Let ωn,τ(t)(n
′) = 0 if player n′ always observes a0 in

S1(t, n, 2). Let ωn,τ(t)(n) = ωn,τ(t).

Identification of µS0+1 in each unit : By S1 ≥ S0, (126), and Lemma 2, we have

Pr
(
ωn,τ(t)(n

′) = ωn,τ(t) ∀n, n′ ∈ I, t ∈ C|hC, µS0+1

)
≥ 1−N3(N − 1) exp (−ε̄S1) ,

where µS0+1 is the realized match in the (S0 + 1)th period of the unit. Let S1 be the set

of all (S1 + 1)th periods of a subunit, and let hS1
n be player n’s history in S1. Then, hS1

n

statistically identifies hC for each µS0+1 for suffi ciently large S1 and hC statistically identifies

µS0+1. Hence, the
N/2−1∏
k=0

(N − 2k − 1)×HS1
n (130)

matrix P S1
n with

(
µS0+1, h

S1
n

)
element Pr

(
hS1
n |µS0+1

)
has full row rank.

L.2 Secure Communication Protocol

We change the secure communication protocol as follows:

1. For the firstN (N − 1) /2 periods, players identify µ1: In each period t = 1, ..., N (N − 1) /2,

players play σ̄∗. Again, let C denote this set of N (N − 1) /2 periods.

2. In the next N2 (N − 1)S0/2 periods, players send messages to learn (at, ωt) in C.27

We view this set of N2 (N − 1)S0/2 periods as N(N − 1)/2 repetitions of NS0-period

cycles. The tth cycle consists of N repetitions of S0-period subunits. In the jth subunit

of the tth cycle (the “(t, j)-subunit”), player j takes aj = ωj,t and other players take

a0.

3. From period N (N − 1) (1+NS0)/2+1 on, players communicate via the (i.i.d. match-

ing) secure communication protocol, where each period of the protocol is replaced with

27This is similar to but simpler than the basic communication protocol since, as mentioned after (30), we
can rely on future information aggregation via the basic communication protocol after the secure communi-
cation protocol is played.
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the following set of (S0 + 1) periods, which we refer to as a unit of secure commu-

nication: for the first S0 periods, players (including the jamming players) take a0; in

the (S0 + 1)th period, players take actions as in the secure communication protocol.

The secure communication protocol with message setMi now takesN (N − 1) (1+NS0)/2

+2 (S0 + 1)T dlog2 |Mi|e periods. Note that, for suffi ciently large T , the length is approxi-

mately the same as in the i.i.d. case:28 for any ε > 0,

lim
T→∞

N (N − 1) (1 +NS0)/2 + 2 (S0 + 1)T dlog2 |Mi|e
dlog2 |Mi|eT 1+ε

= 0. (131)

The history from period N(N − 1)/2 + 1 to N(N − 1)/2 + N2(N − 1)S0/2 statistically

identifies the history in the first N(N − 1)/2 periods (the rank condition follows from (126)

and Horn and Johnson (2013), Theorem 6.1.10). Since the history in the first N(N − 1)/2

periods statistically identifies µ1, in total the history from period N(N − 1)/2 + 1 to N(N −

1)/2 +N2(N − 1)S0/2 statistically identifies µ1: the

N/2−1∏
k=0

(N − 2k − 1)× (Hn)N
2(N−1)S0/2 (132)

matrix with
(
µ1, (an,t, ωn,t)

N(N−1)/2+N2(N−1)S0/2
t=N(N−1)/2+1

)
element Pr

(
(an,t, ωn,t)

N(N−1)/2+N2(N−1)S0/2
t=N(N−1)/2+1 |µ1

)
has full row rank.

The inference of the messages is the same as in the i.i.d. case, except that players use

only their observation in the (S0 + 1)th period of each unit. Since the consecutive S0 periods

of a0 make the match in the (S0 + 1)th period of each unit almost i.i.d., we have:

Lemma 34 Let T ′ = N (N − 1) (1 + NS0)/2 + 2 (S0 + 1)T dlog2 |Mi|e be the length of the

protocol. For any player j 6= i with Ijam\ {j} 6= ∅ and any sequence of observations (ωj,t)
T ′

t=1

that arises with positive probability when players −j follow the secure protocol, one of the

following two conditions holds: For ε̂ := ε̄
2
,

28As will be seen, although |Mi| can depend on T , |Mi| is bounded by a polynominal function of T . Hence,
(131) holds.
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1. For all (aj,t)
T ′

t=1, we have

Pr
(
ALLREG| (aj,t, ωj,t)T

′

t=1

)
≤ T 9 exp

(
−1

4
ε̂T

)
.

2. The following two conditions hold:

(a) For all (aj,t)
T ′

t=1, we have

Pr
(
mi (j

′) ∈ {mi, 0} ∀j′ /∈ {i, j} | (aj,t, ωj,t)T
′

t=1 , ALLREG
)

≥ 1−N dlog2 |Mi|e exp
(
−ε̂4T

)
.

(b) If player j follows the protocol, then

Pr
(
mi (j

′) = mi ∀j′ /∈ {i, j} | (aj,t, ωj,t)T
′

t=1 , ALLREG
)

≥ 1−N dlog2 |Mi|e exp
(
−ε̂4T

)
.

Proof. For each unit of communication, each pair (n, n′) is matched in the (S0 + 1)th

period with probability pn′,n
(
µ1, a

1:S0
i , a0

−i
)
, where µ1 is the realized match in the first period

of the unit. For each µ1, µ̃1, the bounds (127) and (128) hold for the difference between

pn′,n
(
µ1, a

1:S0
i , a0

−i
)
and pn,n′

(
µ̃1, a

1:S0
i , a0

−i
)
. Hence, in the proof of Lemma 3, we can replace

log
pi,j+pj′,j

pi,j
and log

1−pi,j−pj′,j
1−pi,j with

min
µ1,a

1:S0
j

log
pi,j
(
µ1, a

1:S0
j , a0

−j
)

+ pj′,j
(
µ1, a

1:S0
j , a0

−j
)

pi,j
(
µ1, a

1:S0
j , a0

−j
) ≥ 1

4
ε̄ and

min
µ1,a

1:S0
j

log
1− pi,j

(
µ1, a

1:S0
j , a0

−j
)
− pj′,j

(
µ1, a

1:S0
j , a0

−j
)

1− pi,j
(
µ1, a

1:S0
j , a0

−j
) ≥ −

1− 1
2
ε̄

1
2
ε̄

The rest of the proof is unchanged.

L.3 Verified Communication Protocol

We change the verified communication protocol as follows: the message round stays the

same, and we replace each period of checking rounds with the following N (N − 1) /2 +
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⌈
log TK+2

⌉
+ 1-period unit. As will be seen in the module, we will take K such that the

premise of the verified communication module is satisfied with magnitude TK .

In the τ th unit of the checking round,

1. For the first N (N − 1) /2 periods, players identify µ by playing σ̄∗.

2. For the next
⌈
log TK+2

⌉
periods, players play a0 to cancel the effect of the initial match.

3. In the last period, players communicate as in the τ th period in the i.i.d. case.

In total, the verified communication protocol now takes

τ̃(|Mi| , K, T ) = 2 dlog2 |Mi|e+ 2N
⌈
log2A

4dlog2|Mi|e
⌉ (
N (N − 1) /2 +

⌈
log TK+2

⌉
+ 1
)
T

periods. For suffi ciently large T , the length is approximately the same as in the i.i.d. case:

for any ε > 0 and K ∈ N, we have

lim
T→∞

T̃ (|Mi| , K, T )

T (|Mi| , T )T ε
= 0. (133)

The inference of the messages is the same as with i.i.d. matching, except that players

use only their observations in the N (N − 1) /2 +
⌈
log TK+2

⌉
+ 1th period of each unit in the

checking round.

We modify the definition of suspj(hj) by letting suspj(hj) = 1 if (i) j ∈ I andmi (j) = 0 or

(ii) player j observes ωj,t 6= a0, where t is in the τ th period of a unit with τ ∈ {N (N − 1) /2+

1, ..., N (N − 1) /2 +
⌈
log TK+1

⌉
} where players take a0.

As will be seen, players conduct private mixture and their continuation play and rewards

depend on its realization. Hence, it will be useful to introduce notions of “extended protocol

history” in addition to the protocol history. Again let T be the set of periods comprising

a protocol. For an arbitrary collection of random variables
(
χj,t
)
t∈T with χj,t ∈ {0, 1}

N for

each t ∈ T, an extended protocol history for player j is a vector hj = (χj,t, aj,t, ωj,t)t∈T. The

random variables
(
χj,t
)
t∈T will encode different information in different periods, but in all
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cases χj,t will encode the result of a randomization performed by player j in period t, and

the cardinality is bounded by 2N . Since these randomizations are independent across players

conditional on protocol history profiles (hj)j∈I , we have

Pr(h−j|hj) = Pr(h−j|hj) ∀j, h−j, hj, hj.

That is, when calculating probabilities conditional on a player’s extended protocol history,

it suffi ces to condition on the protocol history only. Denote the sets of protocol extended

protocol histories by Hj, as opposed to the set of protocol histories Hj.

For θj (h−j, ζ) ∈ {R,E}, the following properties are needed to generalize the proof of

Lemmas 5—6:

1. If some player j 6= j′ fails to match with player j′ in a half-interval where player j′

takes a1, then θj (h−j, ζ, j
′) = E.

2. For each j′ 6= j, the distribution of θj (h−j, ζ, j
′) is independent of player j′’s message

given player j’s equilibrium strategy.

3. For j′ = j, the probability of θj(h−j′ , ζ, j′) = E is maximized when player j′ follows

σ∗j′ , and this maximized probability is independent of her history in the message round.

Note that Properties 2 and 3 would not be satisfied if we defined θj (h−j, ζ, j
′) in the

same way as in the i.i.d. case, since players can influence the distribution of future matches.

To satisfy Properties 2 and 3, we thus introduce a new variable ω̃j, which we use to cancel

out this effect.

Intuitively, for player j 6= j′ and unit τ , suppose player j − 1 knew µ at the beginning

of the unit. Even if player j observes ωj = a1 when player j′ sends a message in the τ th

unit, player j − 1 sometimes constructs θj (h−j, ζ, j
′) as if player j did not observe a1 (that

is, player j − 1 constructs ω̃j = a0 and calculates θj (h−j, ζ, j
′) as if player j observed ω̃j). If

player j observes ωj = a0, then ω̃j = a0 for sure. We specify the probability of ω̃j = a0 given

µ and aj′ = a1, so that, for each µ, the conditional probability of ω̃j = a0 is independent of

µ, given that aj′ = a1. This makes the distribution of θj (h−j, ζ, j
′) independent of µ, and
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if player j is not matched with the sender, we have θj (h−j, ζ, j
′) = E since ωj = a0 implies

ω̃j = a0. Since player j − 1 can identify µ from the first N(N − 1) periods, we can achieve

this statistical property even though player j − 1 does not directly observe µ.

Formally, for player j 6= j′ and τ = 1, ..., 2
⌈
log2A

4dlog2|Mi|e
⌉
, player j − 1 calculates

ω̃j,tτ ∈ {a0, a1} from h−j, ζ as follows:

• If j ∈ Ijam, there is a player in Ijam\{j} who takes JAM, or player j′ takes aj′,tτ+N(N−1)/2+dlog TK+2e+1 6=

a1 (that is, player j′ does not take a1 to send a message), then ω̃j,tτ = a0.

• Otherwise, the definition of ω̃j,tτ depends on player j’s signal ωj,tτ+N(N−1)/2+dlog TK+2e+1

(as identified from h−j):

— If ωj,tτ+N(N−1)/2+dlog TK+2e+1 = a0, then ω̃j,tτ = a0.

— If ωj,tτ+N(N−1)/2+dlog TK+2e+1 = a1, then player j−1 draws a private randomization

χ̃j−1,tτ ∈ [0, 1] from Uniform [0, 1]. Given the history profile htτ+1:tτ+N(N−1)/2
−j and

χ̃j−1,tτ , player j− 1 sets ω̃j,tτ = a0 if χ̃j−1,tτ ≤ X(h
tτ+1:tτ+N(N−1)/2
−j ) and ω̃j,tτ = a1

otherwise, where X(h
tτ+1:tτ+N(N−1)/2
−j ) is a function specified below.

For each j 6= j′ and τ , we encode the realized ω̃j,tτ ∈ {a0, a1} as χj−1,tτ+N(N−1)/2+dlog TK+2e+1.

We construct ω̃j,tτ to ensure that (i) given the equilibrium strategy in periods tτ + 1, ...,

tτ +N(N − 1)/2 +
⌈
log TK+2

⌉
, the distribution of ω̃j,tτ is independent of µtτ+1, (ii) player j

cannot manipulate the distribution of ω̃j,tτ by deviating in periods tτ +1, ..., tτ +N(N−1)/2,

and (iii) ωj,tτ+N(N−1)/2+dlog TK+2e+1 = a0 implies ω̃j,tτ = 0:

Lemma 35 There exists T̄ ∈ N such that, for each T > T̄ , K ∈ N, j′ ∈ I, and j 6= j′, there

exists X(h
tτ+1:tτ+N(N−1)/2
−j ) ∈ [0, 1] such that, if we define ω̃j,tτ given X(h

tτ+1:tτ+N(N−1)/2
−j ) as

above, then ω̃j,tτ satisfies the following properties: For each aj′ ∈ {a0, a1},

1. Pr(ω̃j,tτ = a0|µtτ+1, σ̄
∗, a0, aj′ , a

0
−j′) is independent of µtτ+1. Here, a0 means that play-

ers take a0 from period tτ + N(N − 1)/2 + 1 to tτ + N(N − 1)/2 +
⌈
log TK+2

⌉
, and

(aj′ , a
0
−j′) is the action profile in period tτ +N(N − 1)/2 +

⌈
log TK+2

⌉
+ 1.
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2. For each µtτ+1, h
t−1
j with t ∈ {tτ + 1, ..., tτ +N(N − 1)/2}, σj, and aj′ ∈ A, we have∣∣∣∣∣∣ Pr(ω̃j,tτ = a0|µtτ+1, σ̄

∗, a0, aj′ , a
0
−j′)

−Pr(ω̃j,tτ = a0|µtτ+1, h
t−1
j , σj, σ̄

∗
−j, a

0, aj′ , a
0
−j′)

∣∣∣∣∣∣ < 1

TK+1
. (134)

Here, we assume that player j follows σj until period tτ +N(N − 1)/2, takes a0 from

tτ +N(N − 1)/2 + 1 to tτ +N(N − 1)/2 +
⌈
log TK+2

⌉
+ 1.

3. If j 6∈ Ijam and REGj′,−j holds, then ωj,tτ+N(N−1)/2+dlog TK+2e+1 = a0 implies ω̃j,tτ = 0.

Proof. The third claim follows from the definition specified above. Moreover, given

aj′,tτ+N(N−1)/2+dlog TK+2e+1 6= a1, we have ω̃j,tτ = a0. Hence, we are left to specifyX(h
tτ+1:tτ+N(N−1)/2
−j )

to satisfy the first two claims given aj′,tτ+N(N−1)/2+dlog TK+2e+1 = a1.

Given µtτ+1, σ̄
∗, and a0, player j − 1 calculates the probability that player j observes a0

when player j′ sends the message:

p̃(µtτ+1) := Pr
(
µtτ+N(N−1)/2+dlog TK+2e+1(j) 6= j′|µtτ+1, σ̄

∗, a0
)
.

In addition, player j − 1 also calculates the largest probability with respect to µtτ+1: q :=

maxµtτ+1
p̃(µtτ+1). Fix q̂ ∈ (q, 1) arbitrarily.

Let hC be the history profile in periods tτ + 1, ..., tτ +N(N − 1)/2 identified from h−j. If

hC is an on-path history, then hC statistically identifies µtτ+1. Hence, there exist p(h
C) such

that

E
[
q̂ − p(hC)

1− p(hC)
|µtτ+1, σ̄

∗, a0

]
=
q̂ − p̃(µtτ+1)

1− p̃(µtτ+1)

for each on-path hC. For off-path hC, pick an on-path h̃C arbitrarily and define

q̂ − p(hC)

1− p(hC)
=
q̂ − p(h̃C)

1− p(h̃C)
.

We define X(h
tτ+1:tτ+N(N−1)/2
−j ) =

q̂ − p(hC)

1− p(hC)
, that is, player j − 1 draws a private ran-
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domization χ̃j,tτ ∈ [0, 1] from Uniform [0, 1], and if

χ̃j,tτ ≤
q̂ − p(hC)

1− p(hC)
(135)

then player j defines ω̃j,tτ = a0. Otherwise, ω̃j,tτ = a1.

We first verify that the right-hand side of (135) lies in [0, 1] for suffi ciently large T :

q̂ − p(hC)

1− p(hC)
∈ [0, 1] . (136)

Since players take a0 from period tτ +N(N − 1)/2 + 1 to tτ +N(N − 1)/2 +
⌈
log TK+2

⌉
, we

have

max
µtτ+1,µ

′
tτ+1

∑
µ
tτ+N(N−1)/2+dlog TK+2e+1

∣∣∣∣∣∣ Pr
(
µtτ+N(N−1)/2+dlog TK+2e+1|µtτ+1, σ̄

∗, a0
)

−Pr
(
µtτ+N(N−1)/2+dlog TK+2e+1|µ′tτ+1, σ̄

∗, a0
)
∣∣∣∣∣∣

≤ (1− ε̄)dlog TK+2e , (137)

as in Lemma 33. Since ε̄ ≤ p̃(µtτ+1) ≤ 1− ε̄ by the full-support assumption and

1 > q̂ > q := max
µtτ+1

p̃(µtτ+1) ≥ p̃(µtτ+1),

we have

max
µ̃tτ+1

∣∣∣∣ q̂ − p̃(µtτ+1)

1− p̃(µtτ+1)
−
q̂ − p̃(µtτ+1)

1− p̃(µtτ+1)

∣∣∣∣ ≤ (1− ε̄)dlog TK+2e

ε̄
; (138)

q̂ − p̃(µtτ+1)

1− p̃(µtτ+1)
∈
[
q̂ − q
1− q ,

q̂ − ε̄
1− ε̄

]
.

Given (125), we have (136), as desired.
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We now verify the claims of the lemma. Given j 6∈ Ijam and REGj′,−j, for each µtτ+1,

Pr
(
ω̃j,tτ = a0|µtτ+1, σ̄

∗, a0, a1
j , a

0
−j
)

= Pr
(
µtτ+N(N−1)/2+dlog TK+2e+1(j) 6= j′|µtτ+1, σ̄

∗, a0
)

+ Pr
(
µtτ+N(N−1)/2+dlog TK+2e+1(j) = j′|µtτ+1, σ̄

∗, a0
)

Pr

(
χ̃j,tτ ≤

q̂ − p(hC)

1− p(hC)
|µtτ+1, σ̄

∗, a0

)
= p̃(µtτ+1) +

(
1− p̃(µtτ+1)

) q̂ − p̃(µtτ+1)

1− p̃(µtτ+1)
= q̂.

Hence, Claim 1 holds.

For Claim 2, since players take a0 from period tτ +N(N − 1)/2 + 1 to tτ +N(N − 1)/2 +⌈
log TK+2

⌉
, it suffi ces to show that

max
hC,µtτ+N(N−1)/2+1,h̃

C,µ̃tτ+N(N−1)/2+1

∣∣∣∣∣∣ Pr(ω̃j,tτ = a0|hC, µtτ+N(N−1)/2+1, a
0, a1

j′ , a
0
−j′)

−Pr(ω̃j,tτ = a0|h̃C, µ̃tτ+N(N−1)/2+1, a
0, a1

j′ , a
0
−j′)

∣∣∣∣∣∣
<

1

TK+2
.

By definition, we have

Pr
(
ω̃j,tτ = a0|hC, µtτ+N(N−1)/2+1, a

0, a1
j′ , a

0
−j′
)

= Pr
(
µtτ+N(N−1)/2+dlog TK+2e+1(j) 6= j′|µtτ+N(N−1)/2+1, a

0
)

+ Pr
(
µtτ+N(N−1)/2+dlog TK+2e+1(j) = j′|µtτ+N(N−1)/2+1, a

0
) q̂ − p(hC)

1− p(hC)
. (139)

By Lemma 33, the effect of µtτ+N(N−1)/2 is canceled out exponentially:

max
µtτ+N(N−1)/2+1,µ̃tτ+N(N−1)/2+1

∣∣∣∣∣∣ Pr
(
µtτ+N(N−1)/2+dlog TK+2e+1(j) = j′|µtτ+N(N−1)/2+1, a

0
)

−Pr
(
µtτ+N(N−1)/2+dlog TK+2e+1(j) = j′|µ̃tτ+N(N−1)/2+1, a

0
)
∣∣∣∣∣∣

≤ (1− ε̄)log TK+2

.

Moreover, by (125) and (138), we have

∣∣∣∣ q̂ − p̃(µtτ+1)

1− p̃(µtτ+1)
− q̂ − p(hC)

1− p(hC)

∣∣∣∣ < 2M (1− ε̄)log TK+2

ε̄
.
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In total, the range of (139) with respect to µtτ+N(N−1)/2+1 and h
C is bounded by 2 (M + 1)

(1− ε̄)log TK+2

/ε̄, as desired.

Similarly, when player j′ sends a message, given aj′ ∈ {a0, a1}, player j′ − 1 calculates

ω̃j
′

j,tτ
∈ {a0, a1} for each j 6= j′ such that

1. Pr(ω̃j
′

j,tτ
= a0|µtτ+1, σ̄

∗, a0, aj′ , a
0
−j′) with aj′ ∈ {a0, a1} is independent of µtτ+1.

2. For each µtτ+1, h
t−1
j′ with t ∈ {tτ + 1, ..., tτ +N(N − 1)/2}, σj′ , and aj′ , we have∣∣∣∣∣∣ Pr(ω̃j

′

j,tτ
= a0|µtτ+1, σ̄

∗, a0, aj′ , a
0
−j′)

−Pr(ω̃j
′

j,tτ
= a0|µtτ+1, h

t−1
j′ , σj′ , σ̄

∗
−j′ , a

0, aj′ , a
0
−j′)

∣∣∣∣∣∣ < 1

TK+1
.

3. If j′ 6∈ Ijam and REGj′,−j′ holds, then ωj,tτ+N(N−1)/2+dlog TK+2e+1 = a0 implies ω̃j
′

j,tτ
= 0.

Again, for each τ , we encode the realized (ω̃j
′

j,tτ
)j 6=j′ as χj′−1,tτ+N(N−1)/2+dlog TK+2e+1.

For the j′-checking phase, for each unit, we construct ω̃j,tτ for j 6= j′ and (ω̃j
′

j,tτ
)j 6=j′.

Then, we define θj (h−j, ζ, j
′). First, a deviation from a0 will induce θj (h−j, ζ, j

′) = R:

For each j ∈ I, if player j takes aj,t 6= a0, where t is in the τ th period of a unit with

τ ∈ {N (N − 1) /2 + 1, ..., N (N − 1) /2 +
⌈
log TK+1

⌉
} where players take a0, we define

θj (h−j, ζ, j
′) = R for each j′ ∈ I.

Otherwise, we define θj (h−j, ζ, j
′) = E with ω̃j,t replacing ωj,t for player j and (ω̃j

′

j,t)j 6=j′

replacing (ωj,t)j 6=j′ for player j′: for j, j′ ∈ I, we define θj (h−j, ζ, j
′) = E if and only if one

or more of the following three conditions holds:

1. ζj = jam.

2. There exists n ∈ Ijam \ {j, j′} who plays JAM in some half-interval.

3. [Condition FAIL] j 6= j′, and there exists a half-interval in T (j′) such that, with S

being the set of (N(N−1)/2+
⌈
log TK+2

⌉
+1)th period of each unit of the half-interval,

there exists n 6= j′ such that player j′ plays a1 throughout S but ω̃n,t = a0 for all t ∈ S.

4. [Condition FAILj’] j = j′, player j′ followed σ∗j in T (j′), but there exist a half-interval

in T (j′) such that, with S being the set of (N(N − 1)/2 +
⌈
log TK+2

⌉
+ 1)th period of
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each unit of the half-interval, there exists n 6= j′ such that player j′ plays a1 throughout

S but ω̃j
′

n,t = a0 for all t ∈ S.

Lemma 35 guarantees Properties 1-3, given that players take (σ̄∗, a0) in the first N(N −

1)/2 +
⌈
log TK+2

⌉
periods of each unit.

Lemma 5 hold as it stands, except that in Claim 1 we require that player j follows (σ̄∗, a0)

in the first N(N − 1)/2 +
⌈
log TK+2

⌉
periods of each unit.

Lemma 6 holds as it stands for the following reasons: (i) By definition of suspn(hn)

and θj (h−j, ζ, j
′), if player j deviates from a0, then θj (h−j, ζ) = R and suspn(hn) = 1

for some n 6= j. Otherwise, (ii) Property 1 holds, and if there exists player j′ 6= j and

n 6= j′ such that player n is not matched with player j′ in some half-interval when player

j′ takes a1, then θj (h−j, ζ, j
′) = E, and otherwise either player n infers player j′’s message

correctly or suspn(hn) = 1. (iii) In addition, given that she takes a0, (134) implies that

Pr(ω̃j,tτ = a0|µtτ+1, σj, σ̄
∗
−i, a

0, a1
j′ , a

0
−j′) ∈ (0, 1) for each µtτ+1, σj. Hence, by the same

proof as Lemma 2, the probability of FAIL is of order exp(−T ). Hence, the probability of

θj (h−j, ζ) = E remains bounded by T−8.

Finally, Lemma 7 holds given that player j follows (σ̄∗, a0) in the first N(N − 1)/2 +⌈
log TK+2

⌉
periods of each unit, and ε̄ replaced with

ε̂min
n

Pr(ω̃n,tτ = a1|µtτ+1, σ̄
∗, a0, a1

j′ , a
0
−j′) > 0.

Note that we replace ε̄ with ε̂ as in Lemma 34, and then we multiply the probability of

ω̃n,tτ = a1 given a1
j′ since this is the lower bound of the probability that player n observes

ω̃n,tτ = a1 conditional on that players j′ and n match.

L.4 Jamming Coordination Protocol

We change the jamming coordination protocol as follows:

• For the first N (N − 1) /2 periods, players play σ̄∗ to identify µ1.

• For the next 2 periods, each player i plays a1 with probability
(

1
T

)2
and plays a 6= a1

with probability
1−( 1

T )
2

|A|−1
.
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Given a protocol history hi, we define ζ i(hi) = jam as in the i.i.d. case. Inequality (25)

holds as it stands.

M Communication Modules

M.1 Basic Communication Module

For each player n ∈ I, payoff functions in the module again take the form

∑
t∈T

δt−1ûn (at) + πn (hn−1) + wn
(
µT+1, h

)
. (140)

Note that the continuation payoff now depends on µT+1. We say w satisfies the premise with

magnitude K if maxµ,h,µ̃,h̃

∣∣∣w (µ, h)− w(µ̃, h̃)
∣∣∣ ≤ K.

Sets of periods: Recall that S1 is the set of all (S1 + 1)th periods of a subunit; for t ∈ C,

S1[t, n, l] with n ∈ I and l ∈ {1, 2} is the subset of S1 where player n sends ωn,τ(t) for the lth

time; and S1[t, n, l, k] with k ∈ {1, 2} is the first or second half of S1[t, n, l]. Let S[a0] be the

set of the first S0 periods of the unit and the first S1 periods of each (S1 + 1)-period cycle,

where all players take a0 regardless of the history or mi. For the rest of this subsection, we

use t only for t ∈ C.

We wish to construct off-path strategies and beliefs (and corresponding tremble se-

quences) and rewards πn (hn−1) so that players will follow the prescribed strategy for any

history, initial match µ1, message mi, and wn satisfying the premise. The most diffi cult part

is establishing incentives to truthfully communicate ωn,τ(t).

First, let player n− 1 punish player n if she observes ωn−1,s 6∈ {a0, a1} in any period, or

if ωn−1,s 6= a0 in any period in S[a0]. This incentivizes players to take a ∈ {a0, a1} in any

period and take a0 in S[a0]. Since players take a0 for S1 periods in between sending messages

in S1, for large S1 players ignore the effect of their actions in S1 on the match realization

in the next period in S1. Hence, different matches in S1 are almost independent. Moreover,

since players −n’s continuation play in S1 does not depend on their observations in S1, player

n ignores the effect of her action in S1 on others’continuation play. Second, for S1[t, n′, 1] or
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S1[t, n′, 2] with n′ 6= n (i.e., when player n is a receiver), let player n − 1 incentivize player

n to take a0 by rewarding her when ωn−1,s = a0.

We now describe how to incentivize players to truthfully communicate ωn,τ(t). The idea is

to use other players’reports ω−n,τ(t) to punish player n for inconsistent reports. However, if

players only reported ωn,τ(t) once, it would be diffi cult to specify off-path play after a player

deviates when she is a receiver. In particular, what player n should do depends on her belief

about other players’inference of ω−n,τ(t), and after she deviates this belief may depend on

her belief about the initial match µ1.

By having players report twice, we can make players report truthfully in S1[t, n, 1] even

after they deviate when receivers, by having them believe that everyone will report truthfully

in (S1[t, n′, 2])n′ 6=n. In turn, we construct πn′ so that reporting truthfully in S1[t, n′, 2] is

optimal for a sender who reported truthfully in S1[t, n′, 1]. Finally, we construct trembles

such that senders tremble much less than receivers in S1[t, n′, 1], so it is always consistent

for player n to believe that each player n′ reported truthfully in S1[t, n′, 1], and hence will

do so again in S1[t, n′, 2].

Off-path play: We modify σmin after off-path histories to construct strategy σ̄min . That

is, we recursively define player n’s strategy σ̄min as follows (where, if n 6= i, σ̄min = σ̄m̃in

∀mi, m̃i ∈Mi):

1. For S[a0] periods, player n takes a0.

2. In the (S0 + 1)th period, player n 6= i takes a0 and player i takes a ∈ {a0, a1} corre-

sponding to mi.

3. For period τ(t) with t ∈ C, player n follows σ̄∗n,t. Here, we define ω̊n,τ(t) ∈
{
ωn,τ(t), a

0
}

to be player n’s “interpretation”of ωn,τ(t), where ω̊n,τ(t) = ωn,τ(t) if ωn,τ(t) ∈ {a0, a1} and

ω̊n,τ(t) = a0 otherwise. Similarly, let ån,τ(t) = an,τ(t) if an,τ(t) ∈ {a0, a1} and an,τ(t) = a0

otherwise. As will be seen, after player n observes (or takes) an off-path play of a 6= a0,

she “ignores”this deviation and proceeds as if she observed (or took, respectively) a0.

4. For each t ∈ C and s ∈ S1[t, j, 1], players −j take a0 and player j takes aj,s =

σmij |ω̊j,τ(t)
(hj,t−1) (here, on equilibrium path, player j’s equilibrium action depends

141



only on ωj,τ(t). σ
mi
j |ω̊j,τ(t)

(hj,t−1) means that player j follows the equilibrium strategy

given the above signal re-interpretation ω̊j,τ(t) after each hj,t−1).

5. For each t ∈ C and s ∈ S1[t, j, 2], players −j take a0. Player j “repeats”her action from

the first subunit: For s ∈ S1[t, j, 2, 1], if player j took a1 at least once in S1[t, j, 1, 1],

she takes a1; otherwise, she takes a0. For s ∈ S1[t, j, 2, 2], if player j took a1 at least

once in S1[t, j, 1, 2], she takes a1; otherwise, she takes a0.

Trembles: Intuitively, we will construct a tremble sequence such that (i) trembles from

equilibrium action a1 to a 6∈ {a0, a1} are least likely and (ii) trembles from equilibrium action

a0 to a 6∈ {a0, a1} are second least likely. Given the definition of σ̄min , other players proceed

after trembling to {a0, a1} as if they took a0. Given (i), (ii), and the fact that ω = a0 is

observed with positive probability in every period, in turn, a player who observes ω 6∈ {a0, a1}

proceeds as if she observed ω = a0, as prescribed by σ̄min .

For trembles from a0 to a1 in S[a0], since other players proceed after they tremble in S[a0]

as if they took a0, a player who observes ω 6= a0 in S[a0] in turn proceeds as if she observed

a0.

Now, consider a history in which ωn,s = a0 for each s ∈ S[a0] and ωn,s ∈ {a0, a1} for

each s. For each t ∈ C, we specify that (iii) players tremble less in τ(t) than in S1[t, j, l],

for each j ∈ I and l ∈ {1, 2}; (iv) in S1[t, j, 1], players −j tremble more than player j, and

(v) trembles are history-independent. Given (iii), player n believes that players follow σ̄∗t in

period τ(t) with t ∈ C. Given (iv), in S1[t, j, 1], if player n observes an off-path play of a1 in

S1[t, j, 1], she believes her current opponent satisfy µs (n) 6= j and trembled from a0 to a1.

Given (v), she also believes that, in all other matches, players observe on-path actions.

Formally, we define the tremble sequence (σ̄mi,ki , σ̄k−i)
∞
k=1 as follows:

1. Given σ̄min |hn = a1, player n trembles to a 6∈ {a0, a1} with probability k−kk
k

.

2. Given σ̄min |hn = a0, player n trembles to a 6∈ {a0, a1} with probability k−kk .

3. In S[a0] (where σ̄min |hn = a0 for each hn), player n trembles to a1 with probability k−k
k

(given that type 2 trembles do not occur).
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4. In periods S1 + 1 and C, player n trembles uniformly over {a0, a1} with probability

k−k
k
(given that type 1 and 2 trembles do not occur).

5. In s ∈ S1[t, j, 1], player n 6= j (who takes a0 after any history) trembles to a1 with

probability k−k; and player j trembles uniformly over {a0, a1} with probability k−kk

(given that type 1 and 2 trembles do not occur).

6. In s ∈ S[t, j, 2], each player trembles uniformly over {a0, a1} with probability k−1 (given

that type 1 and 2 trembles do not occur).

Player n’s belief: Given the tremble sequence, let βn denote the corresponding limit

belief as k → ∞. For each history, βn satisfies the following properties: For any hn at the

end of the unit (hence, by the law of iterated expectation, the following holds after any

history within the unit),

1. Since there always exists a player who takes a0, given Trembles 1 and 2, player n after

observing ωn,s 6∈ {a0, a1} believes that σ̄miµs(n)|hµs(n)
= a0 but µs(n) took a = ωn,s.

2. For period τ(t) with t ∈ C, if ωn,τ(t) ∈ {a0, a1}, player n believes that players −n took

σ̄∗−n,t, since (i) any ωn,τ(t) ∈ {a0, a1} can arise given σ̄∗−n, (ii) trembles in S1 are much

more likely than trembles in C, and (iii) strategies and trembles in S[a0] are history-

independent. Again, if ωn,τ(t) 6∈ {a0, a1}, then player n believes that only µτ(t) (i)

trembled from a0 to ωn,τ(t).

3. For period s ∈ S1[t, j, 1], suppose player n knew (̊aτ(t), ω̊τ(t)). Since σ̄
mi
t (ht−1) depends

only on (̊aτ(t), ω̊τ(t)) and the matching has full support, player n can determine which

observations ωn,s are probability-0 event given σ̄
mi
t (ht−1).

If she observes on-path ωn,τ(t), then she believes all players follow σ̄mi , since (i) trembles

are history-independent, and (ii) players tremble more often in S1[t, j, 2] than S1[t, j, 1]

(hence, player n does not update her belief about period-s history from inconsistent

signals in S1[t, j, 2]). In addition, for player n = j, we have

β (µs(n) = n′|hn) ≥ 1/ε̄2 for each n′ ∈ I \ {j, n} (141)
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since, given µs−1 (n) and µs+1 (n), by the full-support assumption, any µs(n) arises

with probability at least 1/ε̄2.

If she observes off-path ωn,s, then since (i) trembles are history-independent, (ii) players

tremble more often in S1[t, j, 2] than S1[t, j, 1], and (iii) players −j tremble more than

player j, she believes that
β (µs(n) = n′|hn) ≥ 1/ε̄2 for each n′ ∈ I \ {j, n},

β (µs(n) = j|hn) = 0, and

player µs(n) is the only player who trembled.

Since trembles are more likely in S1[t, j, 1] and S1[t, j, 2] than in C, without knowing

(̊aτ(t), ω̊τ(t)), player j after each history believes (141); and players n 6= j believe

player j and players − (n, µs(n)) followed σ̄mi . (142)

Lemma 36 For each K, there exist δ̂ < 1, S1, and K̄ such that, for each i ∈ I, Mi, T ,

and w satisfying the premise for communication with magnitude K, there exists a family of

functions
(
πn : HT → R

)
n∈I such that the following holds:

1. For each δ ∈ [δ̂, 1], with payoff functions (140), the basic communication protocol is a

XSE.29

2. For each n ∈ I, E
[∑

s∈T δ
t−1ûn (as) + πn (hn−1) |µ1,mi

]
does not depend on µ1,mi.

3. For each n ∈ I, we have

max
hn−1,h̃n−1

∣∣∣πn (hn−1)− πn
(
h̃n−1

)∣∣∣ < K̄ |T| .

Note that we now need a large discount factor, since players spend many periods can-

celling the effect of the initial match.

29See the beginning of this supplemental appendix for the definition of XSE. Here, we require that the
equilibrium is sequentially rational conditional on µ1 and mi.
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Proof. We prove that there exists πunit
n which maps player n − 1’s history in one unit to

R such that, for each unit and each match realization µ1 at the beginning of the unit, the

following four conditions are satisfied: (In what follows, for a given unit, we say σ̄mii equals

σ̄0
i or σ̄

1
i if σ̄

mi
i specifies a0 or a1 in the (S0 + 1)th period, respectively. We say player i follows

the equilibrium strategy if she takes σ̄0
i or σ̄

1
i .)

1. For each n ∈ I,mi, and hs−1
n , player n’s deviation from the equilibrium strategy reduces

her payoff by at least K compared to her equilibrium payoff

E

[ ∑
s′:unit

δs
′−1ûn (as) + πunit

n (hn−1) |µ1,mi, h
s−1
n

]
. (143)

2. For each n 6= i, (143) does not depend on µ1, given h
s−1
n = ∅. Moreover, the difference

E

[∑
s:unit

δs−1ûn (as) + πunit
n (hn−1) |µ1, σ̄

0
i

]
− E

[∑
s:unit

δs−1ûn (as) + πunit
n (hn−1) |µ1, σ̄

1
i

]

does not depend on the calendar time at the beginning of the unit.

3. For i and each mi, (143) does not depend on mi or µ1 given h
s−1
n = ∅.

4. For each n ∈ I, we have

max
hn−1,h̃n−1

∣∣∣πunit
n (hn−1)− πunit

n

(
h̃n−1

)∣∣∣ < K̄.

Given Conditions 2 and 3, the continuation payoff from the next unit is independent of

µ1. Moreover, in the basic communication module, since the sender takes σ̄
0
i and σ̄

1
i with

the same frequency, player n ∈ I is indifferent between player i sending any message. Hence,

the existence of such πunit
n is suffi cient for the current lemma.

Let us now construct πunit
n . We first define the reward functions given constants

K1, K2, K3, K4, K5, K6 ≥ 2 {1,maxa,a′∈A2 |u(a, a′)|} and S1. Then we fix the constants to

satisfy the above conditions. For n = 1, ..., 6, let K1:n = K1 × · · · ×Kn.

For each period s, we add −S1K1:61{ωn−1,s 6=a0,a1}. For periods S[a0] where all players take

a0, we add −
∑

s∈S[a0] S1K1:61{ωn−1,s 6=a0} to incentivize a0. In addition to those rewards, we
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define the per-period reward as follows:

In period s ∈ S1[t, n′, l] with n′ 6= n, l ∈ {1, 2}, and t ∈ C, we define πn,s (hn−1) =

K1:51{ωn−1,s=a0} to incentivize a0.

We consider player n’s reward for S1[t, n, l]. Recall that, in the protocol, we defined

player n − 1’s inference of player n’s message in S1[t, n, 2] as follows: ωn,τ(t)(n − 1) = a1 if

player n− 1 observes a1 at least once in S1[t, n, 2, 1] and observes a0 in all S1[t, n, 2, 2]; and

ωn,τ(t)(n− 1) = a0 if player n− 1 observes a1 at least once in S1[t, n, 2, 2] and observes a0 in

all S1[t, n, 2, 1] periods. In all the other cases, ωn,τ(t)(n− 1) = 0.

If ωj′,τ(t)(n − 1) = 0 for some j′ ∈ I \ {n, j}, then let ω∗n,τ(t)(n − 1) = 0. In other cases,

let ω−n,τ(t)(n− 1) ∈ {a0, a1}N−1. Given the equilibrium strategy a−n,τ(t), let ω∗n,τ(t)(n− 1) ∈

{a0, a1} be the signal such that, given ω−n,τ(t)(n−1) and a−n,τ(t), we identify (an,τ(t), ωn,τ(t)),

and let ω∗n,τ(t)(n− 1) = ωn,τ(t).

In period s ∈ S1[t, n, 1, 1], let

πn,s (hn−1) =

 K1:31{ωn−1,s=a1} if ω∗n,τ(t)(n− 1) = a1,

K1:31{ωn−1,s=a0} if ω∗n,τ(t)(n− 1) = a0.
(144)

Unless players −n deviate or some pair does not match, player n observes ωn,τ(t) = a1 and

takes a1 in period s if and only if ω∗n,τ(t)(n− 1) = a1. Similarly, in period s ∈ S1[t, n, 1, 2], let

πn,s (hn−1) =

 K1:31{ωn−1,s=a0} if ω∗n,τ(t)(n− 1) = a1,

K1:31{ωn−1,s=a1} if ω∗n,τ(t)(n− 1) = a0.
(145)

In period s ∈ S1[t, n, 2, l] with l ∈ {1, 2}, let ωn−1[t, n, l] = a1 if player n− 1 observes at

least once in S1[t, n, 1, l]; and let ωn−1[t, n, l] = a0 otherwise.

Let Pr(·|a0) be the stationary distribution of µ given a0. Since players take a0 for S1

periods, the match distribution in S1 is close to Pr(·|a0). Let µS1
∼ Pr denote the event that

matches in S1 are always drawn from Pr(·|a0).
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Given this definition of µS1
∼ Pr, let

πn,s (hn−1) =

 K1:2

ε̄2

(
1{ωn−1,s=a1} − Pr

(
µs(n) = n− 1|µS1

∼ Pr
))

if ωn−1[t, n, l] = a1,

K1:2

(
1{ωn−1,s=a0} − 1

)
if ωn−1[t, n, l] = a0.

(146)

Note that if player n followed the equilibrium strategy in S1[t, n, 1] and matched with n− 1

at least once in S1[t, n, 1], then in S1[t, n, 2], player n’s expected payoff is 0 if she follows the

equilibrium strategy and at most −ε̄K1:2 otherwise.

For period s that is the (S0 +t+1)th period of the unit, if player n−1 knew (a−n,s, ω−n,s),

she could identify an,τ(t) and define

πn,s (a−n,s, ω−n,s) = −δsûn (as)−

 0 if an,τ(t) is the equilibrium action,

K1:4 otherwise.

Let hS1[t,−n,2]
n−1 be player n−1’s history in (S1[t, n′, 2])n′ 6=n, where players −n send the message

for the first time. Since

Pr(a−n,s(n− 1), ω−n,s(n− 1)|a−n,s, ω−n,s, {µS1
∼ Pr}) ≥ 1

2

given (126), there exists

πn,s

(
h
S1[t,−n,2]
n−1

)
∈ [−4K1:4, 4K1:4] (147)

such that

E
[
δsûn (as) + πn,s

(
h
S1[t,−n,2]
n−1

)
|
{
µS1
∼ Pr

}
, as

]
=

 0 if an,τ(t) is the equilibrium action,

−K1:4 otherwise.
(148)

(The rank condition again follows from Horn and Johnson (2013), Theorem 6.1.10). We add

πn,s

(
h
S1[t,−n,2]
n−1

)
as the reward in period s that is the (S0 + t+ 1)th period of the unit.

In the (S0 + 1)th period of the unit, let wn
(
µs+1,mi

)
be the continuation payoff from the

next period (within the unit). Since the equilibrium strategy in the continuation play is in-

dependent of mi or history up to (S0 + 1)th period, we can write wn
(
µs+1

)
:= wn

(
µs+1,mi

)
.
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Suppose player n − 1 knew µs and µs+1. Then, the following reward would make player n

indifferent between player i taking a0 and a1: Let

αδ = 1{the current unit is in the first half of an interval} × (1− δT̃ dlog2 MieT )

be the effect of discounting when player i takes a1 in the first half of the interval, rather than

the second half. Given

πn,s
(
µs, µs+1, ωs,n−1

)
= −wn(µs+1) +

K11{ωn−1,s=a0}

pn−1,n (µs)
+

1{ωn−1,s=a1}αδ (ûn (a0)− ûn (a1))

pn−1,i (µs)
∀n 6= i,

πi,s (µs, ωs,i−1) = −wi
(
µs+1

)
+

1{ωi−1,s=a1}αδ

pi−1,i (µs)
(ûi
(
a0
)
− ûi

(
a1
)
),

the same proof as Lemma 8 ensures that there exist π̄0
n and π̄

1
n such that, for each µs and

n ∈ I, we have

π̄0
n = E

[
δs−1ûn (as) + πs,n

(
µs, µs+1, ωs,n−1

)
+ wn

(
µs+1

)
|µs, a0

−i, a
0
i

]
;

π̄1
n = E

[
δs−1ûn (as) + πs,n

(
µs, µs+1, ωs,n−1

)
+ wn

(
µs+1

)
|µs, a0

−i, a
1
i

]
.

Moreover, π̄0
i = π̄1

i for sender i.

Recall that by (130), hS1[t,−n,2]
n−1 statistically identifies hC, hC statistically identifies µs and

µs+1 given as, and ωs,n−1 identifies ai,s given µs and a
0
−i. Hence, there exists πs,n

(
ωs,n−1, h

S1[t,−n,2]
n−1

)
such that, for each n, µs, µs+1, ai,s ∈ {a0, a1}, and ωs,n−1,

E
[
πs,n

(
ωs,n−1, h

S1[t,−n,2]
n−1

)
|µs, ai, a0

−i, ωs,n−1, µs+1

]
= πs,n

(
µs, µs+1, ωs,n−1

)
. (149)

We add πs,n
(
ωs,n−1, h

S1[t,−n,2]
n−1

)
as a reward for period s.

It will be useful to bound the variation of πs,n
(
ωs,n−1, h

S1[t,−n,2]
n−1

)
. SinceK1 ≥ 2 maxa,a′∈A2 |u(a, a′)|

and αδ ∈ [0, 1], there exists S̄ such that for each δ, Mi, S1 ≥ S̄, N , and T , given (125) and

given that ωn−1,s = ai,s with probability at least ε̄, we have

∣∣∣πs,n (ωs,n−1, h
S1[t,−n,2]
n−1

)
− πs,n

(
ω̃s,n−1, h̃

S1[t,−n,2]
n−1

)∣∣∣ ≤ 2
M̄

ε̄

(
max
µ,µ′
|wn (µ)− wn (µ′)|+ 2K1

ε̄

)
.
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Here, we need additional slack 2 since hS1[t,−n,2]
n−1 only statistically identifies hC. Since hS1[t,−n,2]

n−1

identifies hC with probability no less than 1−N3 exp (−ε̄S1), for suffi ciently large S1, mul-

tiplying by 2 is suffi cient.

We further bound the term maxµ,µ′ |wn (µ)− wn (µ′)| as follows. In the last period of

C– period s̄ = s + N (N − 1) /2 + 1– the continuation payoff after period s̄ can be written

as wn(µs̄, h
C), since the continuation strategy, (144), (145), and (146) are determined by hC.

For any hC, player n takes a0 and a1 with the same frequency in continuation play.

Moreover, given S1, the distribution of µs̃ for each s̃ ∈ S1 is close to the stationary distribution

given a0: by Lemma 32, for each µs̄, we have

∣∣Pr
(
µs̃|µs̄, a0

)
− Pr

(
µs̃|a0

)
)
∣∣ ≤ (1− ε̄)S1 . (150)

In total, we have

max
µ,hC,µ̃,h̃C

∣∣∣wn(µ, hC)− wn(µ̃, h̃C)
∣∣∣ ≤ (N (1− ε̄)S1 + 1− δT̃ )× T̃ × (ū+K1:5).

Here, discounting represents the effect of players taking a0 earlier rather than later in S1.

We now bound the expected reward during periods C. For each K1:4 and ε > 0, for

suffi ciently large S1 and δ, for each Mi, T , and s ∈ C, (148) and (150) imply

E
[
δsûn (as) + πn,s

(
ωs,n−1, h

S1[t,−n,2]
n−1

)
|mi, µτ(t)

]
∈ [−ε, ε] if n 6∈ Cs and an,s = a0,

∈ [−ε, ε] if n ∈ Cs and an,s = a1,

≤ − (1− ε)K1:4 otherwise.
(151)

In total, for each K1, K2, K3, K4, K4, K6, we have

lim
S1→∞,δ→1

sup
T∈N,δ∈[0,1],Mi

∣∣∣πs,n (ωs,n−1, h
S1[t,−n,2]
n−1

)
− πs,n

(
ω̃s,n−1, h̃

S1[t,−n,2]
n−1

)∣∣∣ ≤ 2
M̄

ε̄

K1

ε̄
. (152)

We now determine K1, K2, K3, K4, K5, K6, S1 while verifying incentive compatibility.

1. There exists K6 such that, for each δ, Mi, T , K1, K2, K3, K4, K5 and S1, each player

takes a ∈ {a0, a1} for any s and hs−1
n , and takes a = a0 for any s ∈ S[a0] and hs−1

n . In
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the last period, this is true. Given this incentive, for s being the last period, we have

−K1:61{ωn−1,s 6=a0,a1} = 0, and so δsûn
(
aτ(t)

)
+ πn,s (hn−1) = δsu (a0, a0) if s ∈ S[a0].

Hence, in the preceding periods, players ignore these payoffs. Since other per-period

rewards are bounded by K1:5, recursively, we establish the incentive compatibility.

Players ignore

∑
s

−K1:61{ωn−1,s 6=a0,a1} +
∑
s∈S[a0]

(
δsûn

(
aτ(t)

)
−K1:61{ωn−1,s 6=a0}

)
. (153)

In what follows, we sequentially fix K5, K2, K3, K4, and K1. When we say “there

exists Kn such that [statement]” it means that given Kn′’s that have been already

fixed, there exist S̄ and δ̄ < 1 such that, for each remaining Kn′’s, S1 ≥ S̄, δ ≥ δ̄, Mi,

and T , [statement] holds.

2. There exists K5 such that, for any period s ∈ S1[t, n′, l] with t ∈ C, n′ 6= n, and

l ∈ {1, 2}, for any history hs−1
n , taking a0 is optimal.

The other rewards are bounded by K1:4 for τ 6∈ (S1[t, n′, l])t∈C,n′ 6=n,l∈{1,2}. Since players

−n’s continuation play does not depend on their observations in period s, we are left

to bound the effect of changing the distribution of her match in period s + (S1 + 1).

Since the per-period payoff δsûn (as) + πn,s(hn−1) is bounded by ū+ K̄1:5, the value at

the beginning of period s + (S1 + 1) is bounded by T̃
(
ū+ K̄1:5

)
. Given ε̄ > 0, since

players will take a0 in S[a0] in continuation play regardless of the history, the variation

of the continuation payoff in period s + (S1 + 1) with respect to an,s is bounded by

(1− ε̄)S1T̃
(
ū+ K̄1:5

)
, by Lemma 33. For large S1, the per-period reward πn,s (hn−1) =

K1:51{ωn−1,s=a0} for the current period s is suffi ciently large to make a0 optimal after

any history hs−1
n .

3. There exists K2 such that, for each period s ∈ S1[t, n, 2, l] with l ∈ {1, 2}, player n

follows the equilibrium strategy.

Note that player n believes that, in each τ ∈ S1[t, n, 1, l], (141) holds after each history.

Hence, since (i) (144), (145), and hS1[t,−n,2]
n−1 do not depend on the history in S1[t, n, 2, l]

and (ii) the effect of changing the future match distribution is bounded as in Case 2,
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(146) implies that it is optimal to take a1 if and only if she took a1 at least once in the

same cycle in S1[t, n, 1, l].

4. There exists K3 such that, for each period s ∈ S1[t, n, 1], player n follows the equilib-

rium strategy.

Player n believes that (i) å−n,t, ω̊−n,t follows β(̊a−n,t, ω̊−n,t|µt, an,t, ωn,t) given µt, (ii)

players −n in each τ ∈ S1[t, n, 2] will tell the truth about ω̊−n,t, (iii) player n will

follow the equilibrium strategy in S1[t, n, 2], and (iv) each pair matches with each

other at least once, and so ω∗n,τ(t)(n− 1) = ω̊n,τ(t) with probability at least (1− ε̄)S1 in

S1[t, n, 2]. Hence, telling the truth about ω̊n,τ(t) maximizes (144) and (145).

Since (146) is bounded by K1:2, h
S1[t,−n,2]
n−1 do not depend on the history in S1[t, n, 1],

and the effect of changing the future match distribution is bounded as in Case 2, telling

the truth about ω̊n,τ(t) is optimal.

5. There exists K4 such that, for each period t ∈ C, player n follows the equilibrium

strategy.

Players will follow the equilibrium strategy in S1[t,−n, 2]. Hence, hS1[t,−n,2]
n−1 identifies

(̊a−n,t, ω̊−n,t) with probability at least N2 (1− ε̄)S1 . Therefore, the deviation costs

approximately −K1:4.

Since players −n follow σ̄∗−n,t and will tell the truth about ω−n,t and player n will

tell the truth about ω̊n,t, as long as each pair is matched at least once, the expected

payoff of (144), (145), and (146) are independent of ån,t. Since all pairs match with

probability at least 2N2 (1− ε̄)S1 , for suffi ciently large K4, (151) implies that σ̄min is

optimal for each hs−1
n .

6. For K1 ≥ 2ū, player n follows σ̄min in t = S0 + 1 by (149). Moreover, π̄0
n and π̄

1
n imply

that players’payoffs do not depend on the initial state.
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M.2 Secure Communication Module

Premise: We modify the premise as follows:

1. All players but player i∗ are indifferent about the result of the communication, and

sender i satisfies i 6= i∗.

2. If ALLREG does not occur, then wi∗ (h) = 0 for all h.

3. If ALLREG occurs, then player i∗’s continuation payoff depends only on mi(i
∗ −

1) and the first N (N − 1) (1 + NS0)/2-period history of player i∗ − 1, denoted by

h
≤N(N−1)(1+NS0)/2
i∗−1 . Denote this continuation payoffbywi∗(mi(i

∗−1), h
≤N(N−1)(1+NS0)/2
i∗−1 ).

(a) Ifmi(i
∗−1) = 0, then the continuation payoffdoes not depend on h≤N(N−1)(1+NS0)/2

i∗−1 :

wi∗(mi(i
∗ − 1), h

≤N(N−1)(1+NS0)/2
i∗−1 ) := wi∗(0).

(b) Otherwise, given the samemi(i
∗−1), the magnitude by which the reward depends

on h≤N(N−1)(1+NS0)/2
i∗−1 is small:

max
mi∈Mi,hi∗−1,h̃i∗−1

∣∣∣wi∗(mi, h
≤N(N−1)(1+NS0)/2
i∗−1 )− wi∗(mi, h̃

≤N(N−1)(1+NS0)/2
i∗−1 )

∣∣∣ ≤ 1.

(c) wi∗ (0) ≤ wi∗(mi (i
∗ − 1) , h

≤N(N−1)(1+NS0)/2
i∗−1 ) for allmi (i

∗ − 1) ∈Mi and h
≤N(N−1)(1+NS0)/2
i∗−1 .

Note that these premises imply that the continuation payoff is independent of the realized

match at the beginning of the protocol given h≤N(N−1)(1+NS0)/2
i∗−1 .

Reward Function: Since now player j’s reward can depend on (a−j,t, ω−j,t) and we can

identify (aj,t, ωj,t) perfectly, we can define the rewards πcancel
j (a−j, ω−j) and πaj (a−j, ω−j) for

each a ∈ A such that, conditional on any realized matching and a ∈ AI , we have

ûj (a) + πcancel
j (a−j, ω−j) = 0, (154)

and

πaj (a−j, ω−j) =

 0 aj = a

−1 aj 6= a
. (155)
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Given this definition, we add the following rewards: For the first N (N − 1) /2 peri-

ods, we add πcancel
j (a−j, ω−j) + π

āj,t
j (a−j,t, ω−j,t), where āj,t is player j’s equilibrium strategy

(recall that players’ strategies are pure and independent of mi for the first N (N − 1) /2

periods). Let hC be the history profile in periods C uniquely identified from hC−j. For the

next N2 (N − 1)S0/2 periods, we add πcancel
j (a−j, ω−j) + π

āj,t|hC
j (a−j,t, ω−j,t) where āj,t|hC is

player j’s equilibrium strategy given hC. For the remaining periods, we add πcancel
j (a−j, ω−j)

for players −i∗ and πcancel
i∗ (a−i∗ , ω−i∗) + πa

0

i∗ (a−i∗ , ω−i∗) for player i∗, as in the i.i.d. matching

case.

We will show that, given this definition of the reward function, the equilibrium strategy

is a j-quasi-ex-post belief-free equilibrium:

Definition 3 A strategy profile σ is a i∗-quasi-ex-post belief-free equilibrium (j-QXBFE) if

(i) for each player n 6= i∗, µ1, and extended history hn, the continuation strategy σn|hn is a

best response against σ−n|h−n for every µ1 and opposing history profile h−n, and (ii) for player

i∗, there exists a sequence of families of completely mixed strategy profiles
(

(σmi,ki , σk−i)mi∈Mi

)∞
k=1

and a corresponding family of belief systems β(h−i∗|µ1,mi, hi∗) (where β(h−i∗ |µ1,mi, hi∗) is

the limit of conditional probabilities derived from
((
σmi,ki , σk−i

))∞
k=1
) such that, for each µ1,

mi, and ht−1
i∗ , σi∗|ht−1

i∗
is sequentially rational given β.

Note that players’per-period payoff and reward are independent of the realized match:

for each j ∈ I, (āj,t, a−j,t), and µt,

ûj (at) + πcancel
j (a−j,t, ω−j,t) + π

āj,t
j (a−j,t, ω−j,t) =

 0 aj,t = āj,t,

−1 aj,t 6= āj,t.

In addition, given Lemma 34, the same proof as Lemma 9 implies that the secure commu-

nication protocol is an i∗-QXBFE from period N(N − 1)(1 +NS0)/2 on. Hence, given 3(a)

and 3(b) of the premise, the expected payoff loss from deviating of 1 (due to rewards πāj,tj

and π
āj,t|hC
j ) is suffi cient to show that the secure communication protocol is an i∗-QXBFE

for the first N(N − 1)(1 +NS0)/2 periods.
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M.3 Verified Communication Module

The premise is as in the i.i.d. case. In addition, assume that

max
j∈I,h,h′,ζ,ζ′

|wj (h, ζ)− wj (h′, ζ ′)| ≤ TK+ 1
2 . (156)

Suppose player j maximizes πj
(
h−j, ζj

)
+ wj (h, ζ), where

πj
(
h−j, ζj

)
= 1{ζj=reg}

∑
t∈Ta0

j

πa
0

j (a−j,t, ω−j,t) + 1{ζj=reg}
∑
t∈T

t+N(N−1)/2∑
τ=t+1

πσ̄
∗

j,τ (a−j,τ , ω−j,τ )

+1{ζj=reg}
∑
t∈T(j)

π
āj,t
j (h−j) . (157)

Here, Ta0

j is the set of periods in which player j takes a0 regardless of the history given

ζj = reg (that is, the N (N − 1) /2 + 1th to N (N − 1) /2 +
⌈
log TK+2

⌉th
period of each unit,

and the N (N − 1) /2+
⌈
log TK+2

⌉
+1th period in each round where player j is not a sender);

and T is the set of first periods of all the units. Moreover, define

πσ̄
∗

j,t (a−j,t, ω−j,t) =

 πa
1

j (a−j,t, ω−j,t) if player j is supposed to take a1 in σ̄∗,

πa
0

j (a−j,t, ω−j,t) otherwise.
(158)

Finally, T (j) is the set of N (N − 1) /2 +
⌈
log TK+2

⌉
+ 1th periods of j-checking round, and

π
āj,t
j (h−j) is defined as (34).

Definition 4 Given a prior Prj on (ζn)n∈I for each player j ∈ I, we say that the verified

communication protocol is an ex post sequential equilibrium if, for each j ∈ I and µ1, σj is

sequentially rational given belief Prj, realized match µ1, and strategy σ−j.

Note that the reward function does not depend on the realized match, since (34) and

(155) hold conditional on the realized match. Given this definition of πj
(
h−j, ζj

)
, Lemma

10 holds (with sequential equilibrium replaced with ex post sequential equilibrium). We

modify the proof in Section J.3 as follows:

Incentive from the N(N − 1)/2 + 1th to the N(N − 1)/2 +
⌈
log TK+2

⌉
period: Each

player j ∈ I has an incentive to take a0, since otherwise susp (hn) = 1 for some n 6= j and
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θj (h−j, ζ) = R, which leads to the worst continuation payoff.

Incentive from the 1st to N(N − 1)/2th periods: Given that players take a0 from the

N(N − 1)/2 + 1th to the N(N − 1)/2 +
⌈
log TK+2

⌉th
period, the effect of player i’s strat-

egy in N(N − 1)th period changes the distribution of µtτ+N(N−1)/2+dlog TK+2e+1 by only (1−

ε̄)dlog TK+2e, and changes the distribution of ω̃j,tτ and ω̃
j′

j,tτ
by 1

TK+1 . Sincemaxh,ζ,h′,ζ′ |wj (h, ζ)− wj (h′, ζ ′)| ≤

TK+ 1
2 , player j has an incentive to take σ̄∗ given πσ̄

∗
j,t .

Receiver’s incentives in the checking round: Given the above strategy, given that other

players have ω̃n,tτ = a1 at least once in each half-interval when player j′ takes a1, taking

a0 maximizes the equilibrium payoff since this strategy guarantees ω̃n,tτ = a0 outside of the

half-intervals in which player j′ takes a1. Hence, the proof in the i.i.d. case goes through

given the modification of Lemma 7.

Sender’s incentives in the checking round: Given the definition of
(
ω̃j
′

j,tτ

)
j 6=j′
, the prob-

ability of FAILj’is maximized when player j′ follows σ∗j′ (recall Property 3 of Section L.3).

Hence, the proof in the i.i.d. case goes through.

Initial Sender’s incentives in the message round: Given the definition of
(
ω̃j
′

j,tτ

)
j 6=j′
, the

probability of FAILj’is independent of her history in the message round (again follows from

Property 3). Hence, the proof in the i.i.d. case goes through.

M.4 Jamming Coordination Module

We now augment the jamming coordination protocol. The premise is as in the i.i.d. case (in

particular, the continuation payoff is independent of the realized match). As in Lemma 11,

given this premise, we construct πindiff
i,t (h−i|T ) such that

1. limT→∞maxh−i

∑N(N−1)/2+2
t=1 |πindiff

i,t (h−i|T )|
T 6 = 0.

2. If the premise for jamming coordination is satisfied, then the jamming coordination

protocol is a sequential equilibrium conditional on the realization of the initial match.

3. Moreover, we require that the value E[
∑N(N−1)/2+2

t=1 πindiff
i,t (h−i|T ) + wi(h|T )|µ1] is in-

dependent of µ1.
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Suppose player i− 1 knew µN(N−1)/2+1. Then, the same proof as in the i.i.d. case implies

that, given each µN(N−1)/2+1, there exists π̂
indiff
i,t

(
h−i|µN(N−1)/2+1, T

)
such that

∑
t≥N(N−1)/2+1

π̂indiff
i,t

(
h−i|µN(N−1)/2+1, T

)
+ wi(h|T )

makes player i indifferent among all actions for periods t ≥ N(N − 1)/2 + 1, and

lim
T→∞

max
µN(N−1)/2+1,h−i

∑
t≥N(N−1)/2+1

∣∣π̂indiff
i,t

(
h−i|µN(N−1)/2+1, T

)∣∣
T 6

= 0.

Given µN(N−1)/2+1, player i’s continuation payoff in period N(N − 1)/2 + 1,

vi(µN(N−1)/2+1) := E

 ∑
t≥N(N−1)/2+1

π̂indiff
i,t

(
h−i|µN(N−1)/2+1, T

)
+ wi(h|T )|µN(N−1)/2+1

 ,
can be calculated, assuming player i takes a0 for the rest of the protocol (given the definition

of π̂indiff
i,t , she is indifferent among all a ∈ A). The probability that player i becomes a

jamming player (i.e., observes a1 in period N(N − 1)/2 + 1 or N(N − 1)/2 + 2) does not

depend on µN(N−1)/2+1 since each player takes a symmetric and i.i.d. strategy in these two

periods. Since the range of wi(h|T ) given ζ i is of order T
5 given the premise, we have

lim
T→∞

maxµ vi(µ)− vi
T 6

= 0,

where vi := minµ vi(µ).

Since we assume that hN(N−1)/2
−i identifies µN(N−1)/2+1, by (125), for t ≥ N(N − 1)/2 + 1

there exists π∗,indiff
i,t (h−i|T ) such that (i) conditional on players’ following the equilibrium

strategy in periods 1, ..., N(N − 1)/2, we have

E

 ∑
t≥N(N−1)/2+1

π∗,indiff
i,t (h−i|T ) |µ1

 =
∑
t

π̂indiff
i,t

(
h−i|µN(N−1)/2+1, T

)
− vi(µN(N−1)/2+1) + vi,
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and

lim
T→∞

max
h−i

∑
t≥N(N−1)/2+1

∣∣∣π∗,indiff
i,t (h−i|T )

∣∣∣
T 6

= 0.

Therefore, if we define

πindiff
i,t (h−i|T ) =

 π∗,indiff
i,t (h−i|T ) for t ≥ N(N − 1)/2 + 1,

KTπ
σ̄∗
i,t (a−i,t, ω−i,t) for t ≤ N(N − 1)/2,

with

πσ̄
∗

i,t (a−i,t, ω−i,t) =

 πa
1

i (a−i,t, ω−i,t) if player i is supposed to take a1 in σ̄∗,

πa
0

i (a−i,t, ω−i,t) otherwise

and

KT = 2 max
h−i

∑
t≥N(N−1)/2+1

∣∣πindiff
i,t (h−i|T )

∣∣ , (159)

then we have

lim
T→∞

max
h−i

∑N(N−1)/2+2
t=1

∣∣πindiff
i,t (h−i|T )

∣∣
T 6

= 0.

Moreover, (159) ensures that the jamming coordination protocol is an ex post sequential

equilibrium for the first N(N − 1)/2 periods. Finally, player i’s payoff does not depend on

µ1: for each µ1, we have

E

N(N−1)/2+2∑
t=1

πindiff
i,t (h−i|T ) + wi(h|T )|µ1


= E

 ∑
t≥N(N−1)/2+1

π̂indiff
i,t

(
h−i|µN(N−1)/2+1, T

)
+ wi(h|T )− vi(µN(N−1)/2+1) + vi|µ1

 = vi.

N Block Belief-Free Structure

We impose the block belief-free equilibrium conditions ex post in µ1 (the match realization

in the first period), and require that vi (G), vi (B), and the reward function do not depend

on µ1. Hence, now ex post belief system β = (βi)i∈I consists of, for each player i ∈ I, initial
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match realization µ1, opposing state vector x−i ∈ {G,B}
N−1, period t ∈ {1, . . . , T ∗∗}, and

block history ht−1
i ∈ H t−1

i , a probability distribution βi
(
·|µ1, x−i, h

t−1
i

)
∈ ∆

(
H t−1
−i
)
, which

satisfies Kreps-Wilson consistency.30

In addition, we allow player i’s reward function to depend on the result of player i−1’s pri-

vate mixture. That is, we consider the following conditions: Let hT
∗∗

i−1 = {χi−1,t, ai−1,t, ωi−1,t}T
∗∗

t=1 ∈

HT
∗∗

i−1 be player i− 1’s extended histories with χi−1 ∈ {0, 1}N .

1. [Sequential Rationality] For all µ1, x ∈ {G,B}N and ht−1
i ∈ H t−1

i ,

σ∗i (xi) ∈ arg max
σi∈Σi

E(σi,σ∗−i(x−i))

[
T ∗∗∑
τ=1

δτ−1ûi (aτ ) + π∗i (xi−1, h
T ∗∗

i−1)|µ1, h
t−1
i

]
.

(Recall that χi,t is independent of h
t−1
−i conditional on h

t−1
i . Hence, we condition only

on player i’s non-extended history ht−1
i = (ai,τ , ωi,τ )

t−1
τ=1.)

2. [Promise Keeping] For all µ1 and x ∈ {G,B}N ,

v∗i (xi−1) = Eσ∗(x)

[
1− δ

1− δT ∗∗
T ∗∗∑
t=1

δt−1ûi (at) + π∗i (xi−1, h
T ∗∗

i−1)|µ1

]
.

3. [Self-Generation] For all xi−1 ∈ {G,B} and hT
∗∗

i−1 ,

1− δ
δT
∗∗ π

∗
i (G, h

T ∗∗

i−1) ≤ 0,
1− δ
δT
∗∗ π

∗
i (B, h

T ∗∗

i−1) ≥ 0,

∣∣∣∣1− δδT
∗∗ π

∗
i (xi−1, h

T ∗∗

i−1)

∣∣∣∣ ≤ v∗i (G)− v∗i (B);

v∗i (B) < vi < v∗i (G).

Lemma 37 (Hörner and Olszewski (2006)) For all v ∈ RN and δ ∈ [0, 1), if there exist

T ∗∗ ∈ N, (σ∗i (xi))i∈I,xi∈{G,B}, (v∗i (xi−1))i∈I,xi−1∈{G,B}, consistent ex post belief system β∗, and

30In particular, together with a block strategy profile (σi (xi))i∈I,xi∈{G,B}, an ex post belief system is

consistent if there exists a sequence of completely mixed block strategy profiles
((
σki (xi)

)
i∈I,xi∈{G,B}

)
k∈N

converging pointwise to (σi (xi))i∈I,xi∈{G,B} such that, for each i ∈ I, µ1, x−i ∈ {G,B}
N−1, t ∈ {1, ..., T ∗∗},

and ht−1 ∈ Ht−1, we have

β(ht−1−i |µ1, x−i, h
t−1
i ) = lim

k→∞
Pr

(σkj (xj))j 6=i
(
ht−1−i |µ1, x−i, h

t−1
i

)
.
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(
π∗i (xi−1, h

T ∗∗
i−1)

)
i∈I,xi−1∈{G,B},hT

∗∗
i−1 ∈HT

∗∗
i−1
such that [Sequential Rationality]—[Self-Generation] are

satisfied, then v ∈ E(δ, µ1) for each µ1.

As the equilibrium conditions are imposed ex post in µ1, the proof is the same as in the

i.i.d. case. Note that it is straightforward to allow the reward to depend on player i − 1’s

private mixture since player i− 1 can depend her state transition on her own mixture.

Since the feasible payoff set is now determined by finitely repeated game strategies. For

each x ∈ {G,B}N and finite κ0, let σκ0 (x) be a κ0-period finitely repeated game strategy.

Suppose players take σκ0 (x) repeatedly, and let uκ0 (x) be the average payoff profile from

σκ0 (x) under the resulting stationary distribution. As in the i.i.d. case, we can find κ0,

σκ0 (x), and ε∗ > 0 such that

vi (G) : = min
x:xi−1=G

uκ0
i (x) ,

vi (B) : = max
x:xi−1=B

max {uκ0
i (x) , u+ 10ε∗} , and

vi (B) + 10ε∗ < vi < vi (G)− 10ε∗. (160)

Compared to (160), we have taken ε∗ > 0 smaller so that we have 10ε∗ slack rather than

9ε∗. Given κ0 and ε∗, fix κ1 ∈ N such that

κ1 ≥
8N (N − 1)κ0ū

ε∗
max

{∥∥(P )−1
∥∥

ε̄
, 1

}
. (161)

By viewing the κ0κ1-period finitely repeated game as the repetition of κ0-period finitely

repeated games where players take σκ0 (x), by Lemma 33, for each µ1, we have∣∣∣∣ 1

κ0κ1

E [
∑κ0κ1

t=1 û(at)|µ1]− uκ0
i (x)

∣∣∣∣ ≤ 1

κ0κ1

κ0ū

ε̄
=

ū

κ1ε̄
. (162)

The calendar time structure is unchanged, except that

1. The phases to coordinate on the set of jamming players and x are expanded, according

to the modified protocols defined above.

2. We replace each period of the main payoffphase with the following N (N − 1) /2+κ0κ1

periods, which we call a unit of the main payoff phase:
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(a) For the first N (N − 1) /2 periods, players play σ̄∗ to identify µ.

(b) For next κ0 periods, player i plays σ
κ0
i (x (i)) if she has not identified a deviation

in the previous phases; and plays αmin otherwise. Repeat this κ0-period cycle κ1

times.

Let Tinitial(l) := {tl+1, tl+(N (N − 1) /2+κ0κ1)+1..., tl+(N (N − 1) /2+κ0κ1)((T0)6−

1) + 1} be the set of first periods of units given the first period tl + 1 of sub-block l.

Recall that, in i.i.d. case, players take a constant action in each sub-block, but different

actions for different sub-blocks. Here, players take a κ0-period strategy with κ0 > 0 in

each unit, but take the same strategy in all the sub-blocks. Both specifications ensure

that the average payoff from the entire block satisfies (14)/(160).

3. In communication phase l, part 1, player i−1 chooses and sends ti−1 (l) from Tinitial(l).

In part 2, players communicate the sequence of action-signal pairs (ati−1(l), ωti−1(l)), ...,

(ati−1(l)+N(N−1)/2+κ0κ1 , ωti−1(l)+N(N−1)/2+κ0κ1) in the chosen unit. These communication

phases are expanded, according to the modified protocols defined above.

4. Similarly, the contagion and final communication phases are expanded.

O Reward Adjustment Lemma

We now modify the reward adjustment lemma. Given a parameter T ∈ N, let M (T ) ⊂ N

be a finite set, let F (T ) ∈ R+ be a constant satisfying lim infT→∞ F (T ) > 0, let fT :

M(T )→ [−F (T ) , F (T )] be a function, and let m̃i ∈M(T )∪{0} be a random variable such

that, for each µ and mi ∈ M (T ), Pr (m̃i = mi|mi, µ) = pT (mi, µ) and Pr (m̃i = 0|mi, µ) =

1− pT (mi, µ). Moreover, suppose there exists a finite random variable y ∈ Y (independent

of T or M(T )) which statistically identifies µ: Pr (y|mi, µ) = Pr (y|µ) and the matrix PY :=

(Pr (y|µ))µ,y has full row rank.

Applied to the remainder of the proof, T will index the length of an interval, µ will be

the realized match at the beginning of the communication phase, y will be the history when

players are identifying µ, M (T ) will be a message set, fT will be a reward function bounded
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by F (T ), and pT (mi, µ) will be the probability that message mi is received when µ is the

realized initial match and message mi is sent.

Lemma 38 Suppose that limT→∞minµ,mi∈M(T ) pT (mi, µ) = 1. For all ε > 0, there ex-

ists T̄ > 0 such that, for all T > T̄ , there exists a function gT : Y × (M(T ) ∪ {0}) →

[− (1 + ε)F (T ), (1 + ε)F (T )] such that

1. maxmi∈M(T ),y∈Y |fT (mi)− gT (y,mi)| ≤ εF (T )

2. E[gT (y, m̃i)|µ,mi] = fT (mi) for all µ and mi ∈M (T ).

3. gT (y, 0) = gT (ỹ, 0) for all y, ỹ.

4. If pT (mi, µ) does not depend on µ, then gT does not depend on y.

Proof. Given µ, the same proof as for Lemma 12 implies that there exists g̃T (µ,mi) such

that Conditions 1 and 2 hold with y replaced by µ. Since PY has full row rank, we can solve

PY (gT (y,mi))y = (g̃T (µ,mi))µ

for gT (y,mi). By definition, Condition 4 holds. Since E [gT (y,mi)|µ,mi] = g̃T (µ,mi), the law

of iterated expectation implies Condition 2. Setting g̃T (µ, 0) = 0 for each µ, we have Con-

dition 3. Moreover, as in the proof of Lemma 12, limT→∞ |g̃T (µ,mi)− f(mi)| /F (T ) = 0 for

each µ1,mi. Since PY is independent ofMi(T ), we can take limT→∞ |gT (y,mi)− f(mi)| /F (T ) =

0 for each y,mi. Hence, Condition 1 holds.

P Reduction Lemma

Let T′ be the set of all non-main-phase periods, and let Li−1 be the set of periods comprising

one randomly chosen unit from each main payoff phase. Suppose there exist σi (xi) and

π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
from the jamming coordination phase to the end of the main sub-block

that satisfy the following condition: There exist L and T̄ such that, for each T0 ≥ T̄ , there

exist vi (x−i) and π∗i
(
x−i, h

T′
−i, h

Li−1

−i

)
satisfying
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1. [Reward Bound]

sup
x−i,hT

′
−i,h

Li−1
−i

∣∣∣π∗i (x−i, hT′−i, hLi−1

−i

)∣∣∣ < (T ∗)2

2
. (163)

2. [Incentive Compatibility] For all µ1, x ∈ {G,B}N , for each ht−1
i ∈ Hi(µ1, x−i),

31we

have

σ∗i (xi) ∈ arg max
σi∈Σi

E(σi,σ∗−i(x−i))
[∑

t∈
⋃L

l=1
T(main(l))

ûi (at) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
|µ1, h

t−1
i

]
.

(164)

3. [Promise Keeping] For all x ∈ {G,B}N and µ1, we have

vi (x−i) =
1

T ∗
Eσ∗(x)

[∑
t∈
⋃L

l=1
T(main(l))

ûi (at) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
|µ1

]
,

and

vi (x−i)

 ≥ vi (G)− ε∗ if xi−1 = G

≤ vi (B) + ε∗ if xi−1 = B
.

Recall that vi(G) and vi(B) are fixed in (160).

4. [Self-Generation] For all x−i, hT
′
−i, and h

Li−1

−i ,

sign(xi−1)π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
≥ −2ε∗T ∗.

Then the premise of Lemma 37 is satisfied (and so the theorem is proved). The proof

follows the same steps as the reduction lemmas in the i.i.d. matching case (Lemmas 14—17).

First, we use the basic communication protocol to cancel the effect of discounting. In

the protocol, in the (S0 + 1)th period of each unit, players take different actions for different

messages. By (130), for each unit, player (i− 1)’s history in S1, h
S1
i−1, statistically identifies

µ for the (S0 + 1)th period. Given mn and µ for the (S0 + 1)th period of the first unit, the

distribution of mn(i− 1) is determined. Therefore, we can use Lemma 38 (with y being hS1
i−1

31We define Hi(µ1, x−i) as the set of histories that arise with positive probability given µ1 and
(σi, σ−i(x−i)) for some σi ∈ ΣT

∗

i . The conditional expectation can be calculated from Bayes’ rule given
σ−i(x−i).
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for the first unit) to create a reward function based on the result of communication to cancel

out discounting as in Lemma 14, instead of Lemma 12.

Viewing this reward function as the continuation payoff w, Lemma 36 ensures that (i)

players’ incentives are satisfied and (ii) the payoff does not depend on m and µ. Hence,

the payoff from the basic communication module does not affect incentives before the com-

munication phase, and the equilibrium payoff from the initial period to the end of final

communication phase to share information from non-main phases given x is independent

of µ given the original promise keeping condition. Hence, we can cancel out the effect of

discounting, as in the i.i.d. case.

Note that, in the definition of XSE in Lemma 36, trembles are independent across units

and independent of µ, and players −i’s trembles are independent of mi. Hence, since Lemma

36 holds for each mi and µ, we can proceed by backward induction, just as we considered

BFE in the i.i.d. matching case. The same remark is applicable to the secure and verified

communication, since trembles are all independent of µ (and m except for the sender).

Second, we use the basic and secure communication protocols to communicate about

the history in non-main phases. In particular, in Lemma 15, we use the basic protocol to

construct a reward function for the preceding secure protocol. This part of the proof is the

same as Lemma 15, with Lemma 12 replaced with Lemma 38 as explained above. In the

secure communication protocol, by equation (132), h≤N(N−1)(1+NS0)/2
i−1 statistically identifies

the initial match realization µ. Given mn and µ, the distribution of mn(i− 1) is determined.

Hence, viewing h≤N(N−1)(1+NS0)/2
i−1 as y, Lemma 38 allows us to construct a reward function

based on the result of communication. We view this reward as the continuation payoff w of

the secure communication. Since Lemma 38 implies that the expected continuation payoff

depends only on mn(i − 1) and h≤N(N−1)(1+NS0)/2
i−1 , the premise of the module is satisfied.

Moreover, πcancel
i , πa

0

i , and π
a1

i ensure that player i’s payoff in the secure communication

module does not depend on µ or mi. Hence, the equilibrium payoff from the initial period

to the end of final communication phase to share information from main phases given x

is independent of µ, given the original promise keeping condition. Since the cardinality of

χj,t ∈ {0, 1}N is bounded independently of T0, the extra periods needed to communicate χj,t

does not affect promise keeping and self generation for a large T0.
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Third, we use the secure and verified protocols to communicate about the history in

main phases. For the secure communication protocol, the proof is the same as with i.i.d.

matching, with Lemma 12 replaced with Lemma 38. In the verified communication protocol,

since Lemmas 5—7 and 10 hold as they stand, the distribution of mn(i− 1) does not depend

on the initial match µ given mn. Hence, Claim 4 of Lemma 38 implies that we can construct

a reward function based on the result of the communication, which is independent of the

realized match µ at the beginning of the module. Viewing this reward as a continuation

payoff w of the verified communication, the premise of verified communication is satisfied.

Finally, given Li−1, since players communicate the history in the chosen unit, the commu-

nication about the history in Li−1 now takes T̃ ((N(N−1)/2+κ0κ1) |A|2 , 6, (T ∗) 1
2 ) periods.32

Together with (131) and (133), the length of the final communication phase divided by (T0)6

(the length of the main phase) converges to 0 as T0 → ∞. Hence, asymptotically, the final

communication phases do not affect promise keeping or self generation.

One may notice we have 2ε∗T ∗ instead of ε∗T ∗ for [Self-Generation]. Recall that we have

10ε∗ slack in (160) compared to 9ε∗ in (14). Hence, we can add or subtract a constant ε∗T

to satisfy the original promise keeping and self-generation constraints.

Q Reward Function and Payoffs

When players communicate via verified communication in the non-main phases, we define

the reward as (157), such that payoffs outside of main payoff phases are independent of the

current match realization.

We define the reward for the main payoff phase to ensure that equilibrium payoffs from

a unit do not depend on the match realization at the beginning of the unit. Let 1t be the

indicator function for the event that the tth unit is chosen as part of Li−1 by player i− 1.

We define πvii (xi−1, a−i, ω−i|αmin) and πvii (xi−1, a−i,τ , ω−i,τ ) as in i.i.d. match such that

player i obtains the per-period expected payoff of vi(xi−1) conditional on the match. In

addition, for each τ in the last κ0κ1 periods of the unit, given (a−i,τ , ω−i,τ ), let aτ (x) be the

32Recall that 6 stands for the fact that the magnitude of the communication result on the continuation
payoff is of order ((T ∗)

1
2 )6, which follows from the same calculation as (105).

164



equilibrium strategy, and ai,τ is player i’s action identified from (a−i,τ , ω−i,τ ). The reward

πvii (a−i,τ , ω−i,τ |x) = ûi(aτ (x))− ûi(ai, a−i,τ ) (165)

makes player i indifferent and obtain the average payoff of ûi(aτ (x)).

If θi(l) = E, the reward is

(T0)6
∑
t:unit

1t
∑

τ in tth unit

πcancel
i (xi−1, a−i,τ , ω−i,τ ) ,

as with i.i.d. matching. Player i obtains average payoff uxi−1

i for each unit, regardless of the

realized match.

If θi(l) = R and ID−i(l) = −i, the reward is

(T0)6
∑
t:unit

1t


∑

τ in the first N(N−1)/2 periods of tth unit

 vi(xi−1) + πcancel
i (a−i,τ , ω−i,τ )

+4κ0ū
ε̄

∥∥(P )−1
∥∥ πσ̄∗i,τ (a−i,τ , ω−i,τ )


+
∑

τ after the first N(N−1)/2 periods of tth unit π
vi
i (xi−1, a−i, ω−i|αmin)

−1{xi−1=G} (N (N − 1) /2 + κ0κ1) 2ū

 ,

where

πσ̄
∗

i,τ (a−i,τ , ω−i,τ ) =

 πa
1

i (a−i,τ , ω−i,τ ) if player i is supposed to take a1 in σ̄∗,

πa
0

i (a−i,τ , ω−i,τ ) otherwise

For the last κ0κ1 periods in each unit, since each player in I \{i} takes αmin, player i obtains

vi(xi−1) regardless of the match or her action, as with i.i.d. matching. For the first N(N −

1)/2 periods, players obtain vi(xi−1). Hence, the average payoff is vi(xi−1) − 1{xi−1=G}2ū,

independent of the realized match.
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If θi(l) = R but ID−i(l) 6= ∅,−i, the reward is

(T0)6
∑
t:unit

1t


∑

τ in the first N(N−1)/2 periods of tth unit

 vi(xi−1) + πcancel
i (a−i,τ , ω−i,τ )

+4κ0ū
ε̄

∥∥(P )−1
∥∥ πσ̄∗i,τ (a−i,τ , ω−i,τ )


+
∑

τ after the first N(N−1)/2 periods of tth unit π
vi
i (xi−1, a−i,τ , ω−i,τ )

−1{xi−1=G} (N (N − 1) /2 + κ0κ1) 2ū

 .

Again, the average payoff is vi(xi−1)− 1{xi−1=G}2ū, independent of the realized match.

If θi(l) = R and ID−i(l) = ∅, the reward is33

(T0)6
∑
t:unit

1t


∑

τ in the first N(N−1)/2 periods of tth unit

 vi(xi−1) + πcancel
i (a−i,τ , ω−i,τ )

+4κ0ū
ε̂

∥∥(P )−1
∥∥ πσ̄∗i,τ (a−i,τ , ω−i,τ )


+π

N(N−1)/2
i

(
x(i− 1), h

1:N(N−1)/2
−i,t

)
+πi(a−i,t, ω−i,t|x(i− 1))

 ,

(166)

where h1:N(N−1)/2
−i,t is players −i’s history in the first N (N − 1) /2 periods of the tth unit.

We define πN(N−1)/2
i

(
x, h

1:N(N−1)/2
−i,t

)
such that player i obtains per-period payoffof vi(xi−1)

regardless of the initial match realization in the unit. Let µN(N−1)/2+1 be the realized match

in the N (N − 1) /2 + 1th period of the unit. Since players take σκ0 (x) for every κ0 periods

after the N (N − 1) /2 + 1th period, player i’s average expected payoff from these κ1κ0 peri-

ods given µN(N−1)/2+1 can be written as u
κ0
i

(
x|µN(N−1)/2+1

)
. Given ε̄ > 0, since players take

cycles of σκ0(x) every κ0 periods, (162) implies

max
x,µ

∣∣uκ0
i

(
x|µN(N−1)/2+1

)
− uκ0

i (x)
∣∣ ≤ 2ū

κ1ε̄
. (167)

Since (a−i,τ , ω−i,τ )τ in the first N(N−1)/2 periods statistically identify µ1 in equilibrium, by (125),

33Here, we use πi(a−i,t, ω−i,t|x(i − 1)) instead of πvii (xi−1, a−i,τ , ω−i,τ ). The reason is, unlike i.i.d. case,
πvii (xi−1, a−i,τ , ω−i,τ ) may not satisfy self generation even if players follow σκ0(x(i− 1)), depending on the
realization of the match sequence.
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there exists π̃N(N−1)/2
i

(
x, h

1:N(N−1)/2
−i

)
such that the average payoff

Eσ(x)

[
uκ0
i

(
x|µN(N−1)/2+1

)
+

1

κ0κ1

π̃
N(N−1)/2
i

(
x, h

1:N(N−1)/2
−i

)
|x, µ1

]
= uκ0

i (x)

depends only on x, and

max
x,h

1:N(N−1)/2
−i ,h̃

1:N(N−1)/2
−i

∣∣∣π̃N(N−1)/2
i

(
x, h

1:N(N−1)/2
−i

)
− π̃N(N−1)/2

i

(
x, h̃

1:N(N−1)/2
−i

)∣∣∣ ≤ 2κ0ū

ε̄

∥∥(P )−1
∥∥ .

Finally, define

π
N(N−1)/2
i

(
x, h

1:N(N−1)/2
−i

)
= π̃

N(N−1)/2
i

(
x, h

1:N(N−1)/2
−i

)
+ κ0κ1 (vi(xi−1)− uκ0

i (x)) .

Given (160), we have sign(xi−1)(vi(xi−1)− uκ0
i (x)) ≥ 0 for each x. Hence, we have

Eσ(x)

[
uκ0
i

(
x|µN(N−1)/2+1

)
+

1

κ0κ1

π
N(N−1)/2
i

(
x, h

1:N(N−1)/2
−i

)
|x, µ1

]
= vi(xi−1), (168)

max
x,h

1:N(N−1)/2
−i ,h̃

1:N(N−1)/2
−i

∣∣∣πN(N−1)/2
i

(
x, h

1:N(N−1)/2
−i

)
− πN(N−1)/2

i

(
x, h̃

1:N(N−1)/2
−i

)∣∣∣ ≤ 2κ0ū

ε̄

∥∥(P )−1
∥∥ ,

(169)

and

sign(xi−1)π
N(N−1)/2
i

(
x, h̃

1:N(N−1)/2
−i

)
≥ −2κ0ū

ε̄

∥∥(P )−1
∥∥ . (170)

R Verification

Since we have extended Lemmas 6 and 11, Lemma 20 holds as it stands, except that (69)

and (70) hold conditional on the realization of the match µ3 after the jamming coordination

phase, for each µ3. The proof is the same, except that we modify the proof of self generation

as follows.

Given (165), πvii (a−i,t, ω−i,t|x(i− 1)) is equal to 0 unless player i’s deviation is identified.
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In addition, πcancel
i (xi−1, a−i,τ , ω−i,τ ) and

∑
τ after the first N(N−1)/2 periods of tth unit

πvii (xi−1, a−i, ω−i|αmin)−1{xi−1=G} (N (N − 1) /2 + κ0κ1) 2ū

is no less than 0 if xi−1 = B or no more than 0 if xi−1 = G, as in the i.i.d. case. Moreover,

the “additional”reward compared to the i.i.d. case satisfies

max
h

sign(xi−1) (T0)6
∑
t:unit

1t


∑

τ in the first N(N−1)/2 periods of tth unit

 vi(xi−1) + πcancel
i (a−i,τ , ω−i,τ )

+4κ0ū
ε̄

∥∥(P )−1
∥∥πσ̄∗i,τ (a−i,τ , ω−i,τ )


+π

N(N−1)/2
i

(
x(i− 1), h

1:N(N−1)/2
−i,t

)


≥ − (T0)6

(
N (N − 1) /2

(
2ū+

4κ0ū

ε̄

∥∥(P )−1
∥∥)+

2κ0ū

ε̄

∥∥(P )−1
∥∥) given (170)

≥ −ε∗ (N(N − 1)/2 + κ0κ1) (T0)6 by (161),

which is larger than the additional slack of ε∗T ∗ in [Self-Generation] (recall that T ∗ is ap-

proximately equal to L (N(N − 1)/2 + κ0κ1) (T0)6). Hence, the same proof as in Lemma 20

establishes self generation.

R.1 Verification of Promise Keeping and Incentive Compatibility

Since the lemmas for verified communication (Lemmas 5—7 and 10) and identification (Lemma

1) hold as they stand, incentives in non-main phases are verified in the same way as in the

i.i.d. case.

For the main phase, as mentioned, the per-period payoff from the main payoff phases

is equal to uxi−1

i if θi(l) = E and vi (xi−1) − 1{xi−1=G}1{ID−i 6=∅}2ū if θi(l) = R. This implies

that promise keeping is satisfied. So, we focus on incentive compatibility. In addition, given

the definition of the reward function, the payoff from the last κ0κ1 periods of the phase is

independent of the match realization unless θi(l) = R and ID−i(l) = ∅. Moreover, given the

equilibrium strategy and match realization, the payoff from the first N(N − 1)/2 periods

satisfies

ui(aτ ) + πcancel
i (a−i,τ , ω−i,τ ) +

4κ0ū

ε̄

∥∥(P )−1
∥∥πσ̄∗i,τ (a−i,τ , ω−i,τ ) = 0.
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Hence, incentives coming from the continuation payoffof future phases are the same as in

the i.i.d. case unless θi(l) = R and ID−i(l) = ∅. Therefore, the proof of incentive compatibility

is the same as in the i.i.d. case, except that the reward πσ̄
∗
i,τ strictly incentivizes σ̄

∗ for the

first N(N − 1)/2 periods.

We are left to verify incentives given θi(l) = R and ID−i(l) = ∅. It suffi ces to show that

(i) following the equilibrium strategy is optimal within the unit and (ii) the average payoff

from the unit does not depend on the realized match at the beginning of the unit, since (ii)

ensures that players do not have incentives to deviate in order to manipulate the realized

match in the next unit.

For the last κ0κ1 periods of each unit, the continuation payoff gives player i an incentive

to follow σκ0
i (x(i)), since (165) makes player i indifferent among all actions for the current

period, and a deviation in ti−1(l) will induce ID−i(l + 1) 6= 0 as in Lemma 18. Given this

incentive, player i’s non-average expected payoff from

∑
τ after the first N(N−1)/2 periods of tth unit

(
û(aτ ) + 1t (T0)6 πvii (a−i,t, ω−i,t|x(i− 1))

)
=

∑
τ after the first N(N−1)/2 periods of tth unit

û(aτ (x(i− 1)))

depends on the match in N(N − 1)/2th period by magnitude at most 2κ0ū
ε̄
by (167). More-

over, the potential gain from manipulating πN(N−1)/2
i

(
x(i− 1), h

1:N(N−1)/2
−i

)
is bounded by

2κ0ū
ε̄

∥∥(P )−1
∥∥, by (169). In total, the deviation gain in the first N (N − 1) /2 periods is

bounded by 4κ0ū
ε̄

∥∥(P )−1
∥∥.

Hence, in the N (N − 1) /2th period, player i has an incentive to follow the equilib-

rium strategy given the magnitude 4κ0ū
ε̄

∥∥(P )−1
∥∥ of the per-period reward πσ̄∗i,τ . Since this

per-period reward in the N (N − 1) /2th period does not depend on the realized match in

equilibrium, in the preceding period player i again has an incentive to follow the equilibrium

strategy. Recursively, player i follows the equilibrium strategy within the unit, as desired.

Finally, the per-unit payoff is independent of the initial match realization by (168).
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S Proof of Proposition 1

Clearly, limδ→1

⋃
δ̂≥δ F (µ, δ̂) exists as the limit of a monotonic sequence. We show that

lim
δ→1

⋃
δ̂≥δ F (µ, δ̂) = lim

δ→1
F (µ, δ) = lim

κ→∞
lim
δ→1

F κ (µ, δ) ,

and that these limits are independent of the initial match µ.

We first show that limδ→1

⋃
δ̂≥δ F (µ, δ̂) is independent of µ. Since F (µ, δ̂) is convex, we

can characterize limδ→1

⋃
δ̂≥δ F (µ, δ̂) by supporting hyperplanes. Fix a unit vector λ ∈RN

and consider the following two auxiliary games between nature and the players:

1. Nature chooses the worst distribution of the initial match µ, and then players choose

a dynamic game strategy profile σ to maximize λ · u:

vδ := min
p∈∆(M)

max
σ∈(∆(Σ))N

(1− δ)
∞∑
t=1

δt−1
∑
µ

p(µ)λ · Eσ [û(at)|µ] , (171)

where M is the set of possible matchings. Since ∆(M) and (∆ (Σ))N are compact

(in the product topology) and convex; λ · Eσ [û(at)|µ] is continuous in p and σ; and

discounted payoffs are continuous at infinity, Sion’s minimax theorem implies that a

minimizer and maximizer in (171) exist, and that

vδ = max
σ∈(∆(Σ))N

min
p∈∆(M)

(1− δ)
∞∑
t=1

δt−1
∑
µ

p(µ)λ · Eσ [û(at)|µ] .

Let σ∗,δ be a maximizer and let µ∗,δ be a minimizer. Without loss, assume µ∗,δ is

degenerate.

2. Nature chooses the best initial match µ and players choose σ to maximize λ · u:

v̄δ := max
σ∈(∆(Σ))N

max
µ∈∆(M)

(1− δ)
∞∑
t=1

δt−1
∑
µ

p(µ)λ · Eσ [û(at)|µ] .

Let σ̄∗,δ and µ̄∗,δ be maximizers.

Since vδ ≤ maxσ∈(∆(Σ))N (1− δ)
∑∞

t=1 δ
t−1λ ·Eσ [û(at)|µ] ≤ v̄δ for each δ and µ, it suffi ces
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to show that
∣∣v̄δ − vδ∣∣ ≤ (1− δ) 2ū/ε̄. (This implies that, for any µ, µ′, the difference in

score between F (µ, δ) and F (µ′, δ) in any direction is bounded by (1− δ) 2ū/ε̄. Hence, the

scores of limδ→1

⋃
δ̂≥δ F (µ, δ̂) and limδ→1

⋃
δ̂≥δ F (µ′, δ̂) in every direction coincide, so the sets

are equal.) Given σ̄∗,δ and µ̄∗,δ, let τ be the (random) earliest time at which µt = µ∗,δ. Note

that, at period τ , the continuation payoff from σ̄∗,δ is no more than vδ. Moreover, by the

full support assumption, for each t, Pr
(
τ = t|σ̄∗,δ, µ̄∗,δ, τ > t− 1

)
≥ ε̄. Hence, we have

v̄δ ≤ (1− δ) ū+
∞∑
t=2

(1− ε̄)t−2 ε̄
((
δ − δt−1

)
ū+ δt−1vδ

)
=

1− δ
1− δ (1− ε̄) ū+

δε̄

1− δ (1− ε̄)v
δ.

Therefore,

v̄δ − vδ ≤ 1− δ
1− δ (1− ε̄)

(
ū− vδ

)
≤ 1− δ

ε̄
2ū. (172)

Hence, limδ→1

⋃
δ̂≥δ F (µ, δ̂) is independent of µ.

We now show that limδ→1

⋃
δ̂≥δ F (µ, δ̂) = limδ→1 F (µ, δ) = limκ→∞ limδ→1 F

κ (µ, δ) for all

µ. Clearly, limδ→1

⋃
δ̂≥δ F (µ, δ̂) ⊇ limδ→1 F (µ, δ) ⊇ limκ→∞ limδ→1 F

κ (µ, δ). Conversely, we

show that, for each v ∈ limδ→1

⋃
δ̂≥δ F (µ, δ̂) and direction λ ∈Rn, λ ·v can be approximated

by the repetition of finite-period strategies. Specifically, suppose the players repeat the first

T periods of σ∗,δ ad infinitum. Regardless of the initial match, this strategy achieves payoff

at least

min
µ∈∆(M)

1− δ
1− δT

T∑
t=1

δt−1λ · Eσ∗,δ [û(at)|µ] . (173)

We show that, for each η > 0, there exist T and δ̄ < 1 such that, for each δ ≥ δ̄, (173) is no

less than vδ − η. Fix any µ ∈ ∆(M). By (172)

vδ ≤ (1− δ)
T∑
t=1

δt−1λ · Eσ∗,δ [û(at)|µ] + δT v̄δ

≤ (1− δ)
T∑
t=1

δt−1λ · Eσ∗,δ [û(at)|µ] + δTvδ + δT
1− δ
ε̄

2ū.
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Hence,

vδ − δT 1− δ
1− δT

2ū

ε̄
≤ 1− δ

1− δT
T∑
t=1

δt−1λ · Eσ∗,δ [û(at)|µ] .

Since limδ→1 δ
T 1−δ

1−δT = 1
T
, for suffi ciently large T we have

vδ − η ≤ 1− δ
1− δT

T∑
t=1

δt−1λ · Eσ∗,δ [û(at)|µ] .

Since this holds for all µ ∈ ∆(M), we see that (173) is no less than vδ− η. Hence, repeating

the first T periods of σ∗,δ approximates vδ.
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