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Abstract

In many settings, individuals imitate their peers’ public decisions for one or
both of two reasons: to adapt to a common fundamental state, and to conform
to their peers’ preferences. In this model, the fundamental state and peers’
preferences are unknown, and the players learn these random variables by ob-
serving others’ decisions. With each additional decision, the public beliefs about
these unknowns become more precise. This increased precision endogenously
increases the desire to conform and can result in decisions that are uninforma-
tive about a player’s preferences or perceptions of the fundamental state. When
this occurs, social learning about peers’ preferences and fundamentals ceases
prematurely, resulting in inefficient decisions. In line with findings from social
psychology, I identify settings where interventions aimed at correcting misper-
ceptions of the fundamental state have no effect but interventions aimed at
correcting misperceptions of peers’ preferences lead to more efficient decision-

making.
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1 Introduction

Alcohol abuse remains a major public-health challenge, accounting for a sub-
stantial share of worldwide mortality. Initially, prevention programs merely lectured
adolescents about the health dangers of drinking; such programs proved ineffective,
perhaps because they assumed that consumption decisions depend only on a com-
mon fundamental state determining alcohol’s health costs (Griffin and Botvin, 2010).
Once researchers recognized that choices also hinge on perceptions of peers’ prefer-
ences, interventions became far more successful: Schroeder and Prentice (1998) show
that undergraduates who learned their classmates’ true preferences drank roughly 40
percent less than those who received health-risk information alone. This result aligns
with evidence that individuals seek social conformity (cf. Bernheim, 1994, for a re-
view) but may systematically overestimate their peers’ alcohol preferences (Prentice
and Miller, 1993).

Environments where conformity, misperceptions of peers’ preferences, and mis-
perceptions of a fundamental state interact are pervasive: political endorsements
(Loury, 1994; Geiger and Swim, 2016), female labor force participation (Bursztyn et
al., 2020a), and corporate board decisions (Westphal and Bednar, 2005). This paper
provides a general framework that explains how these two misperceptions interact
with the desire to conform, why both misperceptions may persist, and why some
interventions may be more successful than others.

In the model, a community attempts to learn two initially unknown variables: a
fundamental state (e.g., the health costs of alcohol consumption) and their peers’
average preference type. Learning occurs both privately and socially. Privately,
each individual receives a signal about the fundamental state and observes his own
preference type, which is informative about his peers’ preference types because they
are drawn from the same population distribution. Socially, each player observe their
peers’ decisions, which may be informative about their signals or preference types. In
line with the social learning literature (cf. Banerjee, 1992; Bikhchandani et al., 1992),
I ask: Given an infinite sequence of decisions, can the public correctly infer these two
unknown variables (defined as social learning occurring)? In answering this question,
I explicitly model the desire to conform.

Formally, each individual seeks to maximize a utility function that combines their

private utility with a conformist utility component. Their private utility is determined



by how well their decision adapts to their private preference type and the fundamental
state. Their conformist utility, on the other hand, is determined by the conformity
concerns (an exogenous parameter common to all individuals) multiplied by the gap
between the community’s perception of the individual’s preference type and the true
average preference type of the community. I show that if social learning fails, then in
the limit the players face three inefficiencies. First, the players are unable to adapt to
their preference types. Further, the players’ decisions are based on imprecise beliefs
about both the fundamental state and the average preference type of their peers.

As I elaborate below, this paper provides a new rationale for why social learning
fails: conformity concerns. When conformity concerns are sufficiently small, social
learning occurs because the players have heterogeneous preference types (Goeree et al.,
2006) and utilities are continuous (Lee, 1993; Ali, 2018; Kartik et al., 2024). However,
for high (but, importantly, finite) conformity concerns, social learning fails. In such
settings, my model delivers predictions consistent with the empirical literature: social
learning fails and effective informational interventions are about peers’ preference
types. In contrast, the social learning literature would predict that social learning

occurs and optimal information interventions are about the fundamental state.

Main Results For most of the analysis, I assume Gaussian uncertainty and linear
decision rules; these assumptions are relaxed in Section 6.

In Section 3, I first analyze a benchmark static model where players have com-
mon knowledge about both the fundamental state and their peers’ average preference
type but differ in their own preference types, as described above. Here, conformity
concerns place a penalty on the degree to which players adapt to their preference
types (cf. Bernheim, 1994). I show that all players choose the same decision indepen-
dent of their preference types if and only if the conformity concerns exceed a given
threshold (Proposition 1).! This benchmark shows that when conformity concerns
are significant, an individual’s decision no longer reflects their private information.

In Section 4, I show that when the conformity concerns are sufficiently large, the
key mechanism preventing social learning is that an individual is unable to adapt to
his preference type because doing so would incur a large reputational penalty. Further,

because adaptation to a player’s private signal about the fundamental state would be

T discuss the difference between my benchmark and the environment in Bernheim (1994) in
Section 6.1. Reassuringly, in Bernheim (1994) when conformity concerns are sufficiently high, the
unique equilibrium is also fully pooling.



attributed to a player’s preference type, such adaptations are similarly discouraged.
Therefore, when the conformity concerns are large enough, each decision is uninfor-
mative of a player’s private information. These uninformative decisions imply that
if the conformity concerns are sufficiently large, all players pool based on inaccurate
perceptions of both the fundamental state and average preference type (Proposition
2). Further, when the average preference type is common knowledge, higher confor-
mity concerns result in greater asymptotic uncertainty about the fundamental state,
which in turn implies a lower asymptotic utility (Proposition 3).

Given these two inaccurate perceptions, Section 5 analyzes the different effects of
peer-oriented interventions, which inform players about their peers’ preference types
(e.g., how “cool” substance abuse is thought to be by others), versus individual-
oriented interventions, which inform players about the fundamental state (e.g., the
health costs of substance abuse).? If individuals have no desire for conformity, they
would disregard peer-oriented interventions entirely. Instead, my analysis shows that
(i) peer-oriented interventions can break pooling equilibria while individual-oriented
interventions can not (Proposition 4), and (ii) individual-oriented interventions may
have no effect on which decision the players pool on (Proposition 5).

These findings are consistent with Schroeder and Prentice (1998), Bursztyn et al.
(2020a), and Ferreira et al. (2024). Recall, Schroeder and Prentice (1998) showed
that peer-oriented interventions lead to 40 percent less alcohol consumption than
individual-oriented interventions. Additionally, Bursztyn et al. (2020a) showed that
Saudi Arabians misperceived their peers’ attitudes towards women working outside
the home (WWOH). When these misperceptions were corrected, WWOH increased
by 36 percent relative to a control group. Bursztyn et al. (2020a) also argues that
information about the economic benefits of WWOH (arguably, an individual-oriented
intervention) would have no effect, consistent with my model. Relatedly, Ferreira
et al. (2024) shows peer-oriented interventions decrease female genital cutting by 40
percent in Somalia, whereas traditional individual-oriented approaches have largely
been ineffective. Finally, misperceptions about a group’s average preference type is
referred to as “pluralistic ignorance” in social psychology, and I discuss this connection

more in Section 4.3.

2Throughout, I assume that the party conducting the interventions is benevolent, implying in-
terventions are credible. See Benabou and Tirole (2024) for an analysis where the party conducting
the intervention has differing preferences from the community, resulting in a commitment problem.



Related Literature This paper is related to two strands of theoretical literature:
social learning and decision-making with reputational concerns. I discuss the empir-
ical literature in Section 4.3.

This paper is closely related to the literature on social learning. Banerjee (1992)
and Bikhchandani et al. (1992) show social learning can fail: players inefficiently
aggregate information despite observing infinite decisions. However, Lee (1993); Ali
(2018); Kartik et al. (2024) show that continuous decisions combined with varying
technical conditions are sufficient for social learning to occur.® Further, with a simi-
lar condition, Goeree et al. (2006) show heterogeneous preference types imply social
learning occurs. I allow for both continuous decisions and heterogeneous preference
types, and yet find that social learning fails when players possess conformity concerns
about their preference types. The social learning literature has documented other
obstacles to social learning such as costs of acquiring information (cf. Burguet and
Vives, 2000; Chandrasekhar et al., 2018), misspecified priors (cf. Bohren, 2016; Frick
et al., 2020), non-bayesian updating (cf. Golub and Jackson, 2010), changing fun-
damentals (cf. Dasaratha et al., 2023), or differential observability assumptions (cf.
Banerjee and Fudenberg, 2004; Arieli and Mueller-Frank, 2019).

The literature on reputational concerns typically analyzes settings where an agent
makes an observable decision attempting to both (i) adapt his decision to a signal
and (ii) make the observer think the agent is a “good type.” Early work, such as
Scharfstein and Stein (1990) or Morris (2001), assumed the definition of a “good type”
was common knowledge.* In contrast, I focus on environments where the decision-
maker has multiple observers and the “good type” is different for each observer, such
as in: Bernheim (1994), Loury (1994), Manski and Mayshar (2003), Austen-Smith and
Fryer Jr (2005), Kuran and Sandholm (2008), Michaeli and Spiro (2015), and Tirole
(2023). Further, I explicitly utilize the definition of conformity developed in Bernheim
(1994). However, in these papers, the interaction is static and the lone decision-
maker maximizes over the distribution of observers. Instead, my dynamic analysis
has aggregate uncertainty over the distribution of observers and a key question is how
this uncertainty is resolved as the game unfolds.

Finally, within the intersection of these literatures, the impact of conformity con-

3For instance, the normal distribution satisfies the “DUB” condition in Kartik et al. (2024).

4There exist many related papers which analyze different settings, but continue to assume the
“good type” is common knowledge. See Canes-Wrone et al. (2001); Ely and Valiméki (2003);
Ottaviani and Sgrensen (2006).



cerns on information transmission is considered in Braghieri (2021) and its impact on
social learning is considered in Li and Van den Steen (2021) and Ferndndez-Duque
(2022).5 These models are different from my work because in those papers (i) there
is uncertainty about only the players’ preference types, not the fundamental state of
the world, and (ii) decisions and preference types are discrete. Distinction (i) allows
my work to discuss when an individual-oriented or a peer-oriented intervention is
preferred. Distinction (ii) allows my work to generate social learning failures where
prior models without conformity do not because the literature already predicts social

learning may fail with discrete decisions.

2 Model

I consider a community whereby, each period, a player makes a decision attempt-
ing to adapt to his private information and private preference type while possessing
conformity concerns as described in detail below.

Players: There is an infinite sequence of short-run players, ¢t € 1,2,.... Each
player, ¢, observes the public history, h;, (which will be specified after defining the
utility), and his private information, and then chooses a decision a; € R in period t.
The players possess uncertainty about two random variables, a common fundamental
state, # and the average preference type of the group, p. This uncertainty takes the

following parametrized form,

1
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where 19,7, > 0 and p € (—1,1).% Each player’s private information is his signal

SThere is a literature discussing social learning where players value coordination (cf. Angeletos
et al., 2007). Bernheim (1994) distinguishes between coordination (wanting to match the actions of
one’s peers) and conformity (wanting to be perceived as similar to one’s peers). Bernheim (1994)
shows coordination results in strictly monotone decision rules whereas conformity result in pooling.
Additionally, for coordination there should be little difference between private and public decisions,
whereas we see differences in Bursztyn et al. (2019, 2020b); Braghieri (2021).

6Section 6 discusses generalizations of this framework to other distributions. Further, (i) that
the prior means are equal to zero is without loss and (ii) as the beliefs will become correlated in
subsequent periods, it is without loss to allow p # 0 ex-ante (see Footnote 11). Finally, to rationalize
the empirical findings in Schroeder and Prentice (1998) discussed in the introduction, I allow for
uncertainty about 6 and p.



s; = 0 + ¢ and his preference type v; = p + 14. 1 assume ¢, v, are independent
within and across players, and that both are Gaussian random variables with means
normalized to zero and precisions normalized to one.

Utility: Fach player’s utility has two components. First, the player wants to adapt
his decision, a;, to a combination of the fundamental state and his preference type.
The weight of the fundamental state, 7, > 0, is publicly observable and discussed
further below. Second, while each player observes his own preference type, the player
prefers the public’s perception of his preference type to be close to the average within
the community, which represents the conformity concerns.” Define by ¢(b|hy, a;) the
probability distribution over preference types b that take decision a; given the public
history, h;. Further, for now, ¢(-) is unconstrained off-path. The total utility for
player ¢ is thus,

Ut(at; Ut, 5t|ht) = —Ee,u<(at — Yt — Ut>2 + “/(b - M)2¢(b|hta at)db Vg, St, ht)- (2)

The first term in the expectation states that the player wants to choose a decision
close to a linear combination of the fundamental state and his preference type. The
second term is the conformity term, scaled by x > 0. The term within the parenthe-
sis is a reduced-form representation of conformity: player ¢ wants the community’s
perception of his preference type, b, to be close to the true average preference type of
the community, . Given that the loss function is quadratic, one can show that from
the stand-point of which decisions are taken, this is equivalent to player t preferring
the inference of his preference type to be close to that of a randomly drawn preference
type in the community.

Information: 1 assume that the public history is h; := {v1,a1, ..., Ve—1, @1,V }-
This assumption states that there is full observability of the decisions and when they
were made. Given this assumption, one can interpret 7, as a commonly observed
time fixed-effect determining whether the fundamental state or one’s preference type is
comparatively more important. These time fixed effects are modeled as (i) v, < 1 V ¢,
and (ii) there being an m € N such that V4., = v and 441 # . These assumptions
are only necessary in the analysis with uncertainty about ¢ and p. Without these

assumptions there is only one “moment condition” for the players to separately infer

"In the Supplemental Appendix, I show that one would get qualitatively similar results if, through-
out the analysis, each player wanted his perceived preference type to be pu + ¢ with ¢ # 0.



6 and p, potentially resulting in incomplete learning. However, in the Supplemen-
tal Appendix, I show that such learning outcomes are not locally stable, and this
assumption removes their existence.®

I analyze Perfect Bayesian Equilibria satisfying the following requirements each

period, and I will discuss each requirement below.

1. Linearity: Decisions are a linear combination of the public’s beliefs about 8,

the public’s beliefs about pu, a player’s private signal, and a player’s preference

type.

2. Social Optimality: In all periods t, the players play the linear equilibrium that

maximizes player t’s expected utility.

Linearity: The restriction to linear equilibria is common when studying the normal
learning model, as it allows for greater tractability. In Section 6, I discuss how these
results extend beyond the Linear-Gaussian environment.

Social Optimality: 1 assume that for each period, ¢, the equilibrium decision rule
in period ¢t maximizes the expected utility out of all linear decision rules in period .
This refinement equivalently selects the equilibrium which maximizes the discounted
expected utility of the players from the class of equilibria that are linear in all periods.
Without this refinement, then for any sequence {z;};°,, there exists an equilibrium
where players pool on z; in period ¢. Such equilibria are removed by this requirement,
as total utility is higher under equilibria with non-constant decision rules.

These criterion prescribe a unique decision rule in all periods. Thus, I refer to the

Perfect Bayesian Equilibrium satisfying these conditions as the signaling equilibrium.

3 Common Knowledge Benchmark

This section analyzes the impact of conformity on decision-making and mutes
uncertainty about the fundamental state and the preferences of others. To do so, I

assume # and p are common knowledge, and, without loss of generality, are both equal

8These learning outcomes resemble the confounded learning outcomes in Smith and Sgrensen
(2000). Unlike Smith and Sgrensen (2000), these outcomes are not locally stable. Intuitively, this
assumption implies that players place different weights on the fundamental state at different times
(e.g., after finals with respect to drinking or during election cycles in political speech examples).



to zero.? Further, without uncertainty, there is no time dependence, thus it is without
loss of generality to consider the decision rule of a player with preference type v. As
the decision rule is linear in v, there are two cases: a constant and a strictly increasing
decision rule. If the decision rule is constant (respectively, strictly increasing), then
this decision rule is defined as “fully-pooling” (respectively, “revealing”).

A linear revealing equilibrium is determined by E(v|a) := v(a) = aa + 8. v(a)
constitutes an equilibrium if and only if given ©(a), the decision rule that maximizes
a players utility, a(v), results in a consistent conjecture of ¥(a). The first-order

condition for a(v) given a conjecture v(a) = aa + [ is:
a—v+rafaa+B) =0 < v=(1+kra?)a+ kap. (3)
Further, these beliefs result in consistent conjectures if and only if:
1+ ra? = a and = kaf. (4)

Clearly 8 = 0 is a solution to the latter equality, and, further, it is the unique solution
for any « that solves the former. While the former equality can be solved directly,
Figure 1 depicts the best response, 1+ ka?, as a function of the conjectured slope, a;,
for two different values of k. As seen in Figure 1, an equilibrium with revelation does
not exist for high values of k. This non-existence follows from two complementary
intuitions. (i) As k increases, the player conforms more: i.e., a(v) has a smaller slope.
(ii) In a revealing equilibrium the slope of a(v) cannot be too small. If this occurred,
then the slope of the conjectured beliefs, a, would be large. However, when « is too
large, the benefit of conformity is so high that each player will choose the same action,
implying the equilibrium is not revealing.

Further, Figure 1 provides intuition for why the fully-pooling decision rule is an
equilibrium. With full pooling, the slope of the decision rule is zero, implying that
the slope of the beliefs (i.e., the inverse of the decision rule) is infinite. Given these

beliefs, players choose the pooling decision, resulting in a consistent conjecture.

9As # is common knowledge, players disregard signals s;. This benchmark is similar to the
analysis in Bernheim (1994). Section 6.1 examines this benchmark without assuming linearity or
Gaussianity and offers a comprehensive comparison with Bernheim (1994).



Best-response to conjecture

o 1 2 3 4 5
Conjectured slope of v(a)

Figure 1: Existence of Linear Equilibria with Revelation

The x-axis represents a conjectured slope of the posterior beliefs of the player’s preference type
given their decision, ©(a). The y-axis depicts the beliefs that result from the best response to such
a conjecture as stated in Equation (4). In Blue is the best response when the conformity concerns
are high (k = .4) and in Red the best response when the conformity concerns are low (k = .2).

Finally, if the conformity concerns are low enough that a revealing equilibrium
exists, then three different linear equilibria exist. In selecting the equilibrium with the
highest expected utility, the Law of Iterated Exception implies the conformity loss is
fixed across the equilibria, thereby shifting focus to the equilibrium with the minimal
adaptation loss. Further, the equilibria with the highest slope of a(v) (equivalently,
smallest slope of ©(a)) minimizes the adaptation loss. Therefore, the social optimality

refinement selects this equilibrium. These intuitions are formalized below.

Proposition 1 (Commonly Known Environment)

c.k.

There exists a threshold value, k", such that the unique signaling equilibrium is

characterized by the following decision rule:
1+\/21—WU Zf/‘i S Kc.k.

a(U) = ) (5)

0 if k> K&

10



where Kk denotes the weight on conformity. Given this decision rule,

1—/1—4k, 2 . c.k.
——— ifk <K
u(v) = 2 fr< . (6)

—v? — K if k> k&

This proposition formalizes the intuitions from the figure. First, the degree to
which a player adapts to his preference type, the slope of a(v), is decreasing with re-
spect to the conformity concerns, x. Further, when the incentive to conform becomes
sufficiently high, i.e., k > k¥ the signaling equilibrium is fully pooling. Importantly,
such fully-pooling decision rules provide no information about a player’s private in-

formation, and this observation will be key in the main analysis.

4 Analysis

This section begins with an analysis of the complete model where the players
attempt to learn both the fundamental state and the average preference type of their
peers. The first subsection characterizes the impact of conformity concerns on social
learning. The second subsection presents comparative statics on the asymptotic utility
and the asymptotic precision of the beliefs about the fundamental state, as defined
below, showing that both decrease with «. In doing so, I assume away uncertainty
about the population’s average preference type and focus on how the players learn
the fundamental state.!® Incorporating both dimensions of uncertainty allows for
predictions that neither uni-dimensional learning model will produce; however, doing
so complicates the analysis by requiring a joint update in the posterior beliefs each
period. In the final subsection, I relate the predictions of my theoretical model to
empirical and qualitative findings.

I now define notation that appears throughout. Define 6(t) = E(0|h;) and u(t) =

E(u|hi).'* These random variables have the following joint distribution:

10Further, in Subsection 6.2, I conduct an analysis where the fundamental state is common knowl-
edge, but the average preference type, i, is uncertain and derive similar comparative statics.

UEven if #(1) and u(1) are independent, in subsequent periods, 6(¢) and u(t) are dependent as
both condition on h;. At any h;, 6(t), u(t) are sufficient statistics for the probability distribution
determining the players’ beliefs. Therefore, I refer to these random variables as “the beliefs.”

11
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As is common, it is convenient to work with the precision matrix, defined as the

inverse of the variance matrix in Equation (7). Below, I introduce definitions.

Definition 1 (Social Learning)

Social learning about fundamentals occurs (respectively, fails) if and only if 0(t) —, 0

(respectively, 0(t) +, 0). Social learning about preferences occurs (respectively, fails)

if and only if pu(t) —, p (respectively, p(t) #, ).

In the signaling equilibrium, the inference function, ¢(b|hy, a;), is Gaussian, the
mean of which I denote by 9(a;) := [ b-¢(b|ht, a;). Further, the variance of ¢(b|hs, ar)
and p are independent of a;. These observations allow for the following simplification

of the utility function up to some constant ¢; as stated below.

ug(ag; ve, 5¢|0(t), u(t), ve) == — Ee,u((at — Yt — Ut)Q‘e(t)a p(t), vy, 3t>

_ HEQ,M((M%) — E(w)’|0(t), u(t), vr, 5t> e (8)

The first term is the adaptation loss. The second term is the squared difference
from the expectation of player t’s preference type to the average preference type of
the population, and the final term corresponds to the variance of ¢(b|hs, a;) and p.

Finally, I define the following notions of efficiency.

Definition 2 (Asymptotic Utility and Adaptation Loss)
The asymptotic utility is tlim E(ut(&t; vy, S¢|0(1), u(t), ’yt)). The asymptotic adaptation
—00

loss

. . 2
18 tli)rglo (— (ag — 0 — vy) )

Throughout, I provide results for both notions of asymptotic efficiency. How-
ever, the results are qualitatively similar because the difference in these limits is the

expected conformity loss, which is pinned down by the Law of Iterated Expectation.

4.1 Determinants of Social Learning

This subsection analyzes the complete model where the players attempt to socially

learn 6 and p. To analyze this environment, I consider an arbitrary period, ¢ and

12



recall that 6(¢), u(t) are sufficient statistics for the past history.
As the signaling equilibrium is revealing if an equilibrium with revelation exists,
I proceed similarly to the benchmark and conjecture a revealing equilibrium with

O¢(ar) = apay + By. Given 04(+), player t’s first-order condition for his decision rule is:
ar(1+ kai) = wE(0 | 0(2), u(t), s, v0) + v + kowBy + kewE (| 0(), p(t), se,ve). (9)

Further, v(a;) constitutes an equilibrium if the posterior expectation of v, given
the decision rule in Equation (9), is consistent with the conjecture 0(a;). Given the

distributional assumptions, one can write this posterior expectation as follows,

E(vr | a1+ raf)) = a1+ ka?) - Slag, i, 0(8), u(8)) + e, 5. B, B(E), (). (10)

where §(-) will be thought of as determining the sensitivity of the decision rule to vy
and ¢(+) as determining the intercept. Thus a signaling equilibrium is revealing if and

only if there exist an «; and S; which satisfy,

(14 ka?)d(ay, K, 0(t), u(t)) = oy (11)
L(atv’%v ﬁhe(t)uﬂ(t)) = ﬁt' (12>

These equations resemble those in Equation (4) where, in that benchmark, 3(-) = 1
and ¢(-) = koyf;. Similar to that benchmark, whenever there exists a solution to
Equation (11), there exists a unique solution to Equation (12), thus shifting the focus
to Equation (11). Further, Equation (11) is independent of ;. Finally, the sensitivity,
5(+), is independent of the means of the beliefs, 6(t), u(t). This independence arises
because the sensitivity captures how variation in the decision corresponds to variation
in a player’s preference type, which is independent of the mean beliefs in a linear
equilibrium. The following lemma formalizes this intuition and provides additional

properties of the learning process.

Lemma 1

Fiz k, {w}, and initial beliefs about 6 and p. Social learning about fundamentals
occurs if and only if social learning about preferences occurs. Further, whether or not
social learning about fundamentals occurs (symmetrically, preferences) is independent

of the realizations of a;.

13



The intuition behind the first statement in the lemma is that if the players so-
cially learn 6, the players must have observed infinitely many periods of informative
decisions. Given the knowledge of what @ is, the players can use these infinitely many
periods to infer p and vise versa. Since the conditions for social learning about pref-
erences and fundamentals are identical, for brevity, I will refer to social learning as
when the players socially learn both the preferences and fundamentals.

The second statement formalizes the intuition that whether an equilibrium in-
volves revelation is determined only by the sensitivity, §(-) rather than the intercept,
t(+). Importantly, the effective conformity concerns, defined as the endogenous repu-
tational penalty of adaptation, change over time because the sensitivity is influenced
by the precision of the beliefs in a given period. Adaptation imposes a change in
one’s perceived preference type determined by the sensitivity, and the conformity loss
is equal to x multiplied by this sensitivity. To build intuition, if §(¢) is sufficiently
imprecise, player t puts comparatively more weight on his signal, s;. The sensitivity
is now lower because variation in a; is ascribed to s; as opposed to v;. In contrast,
if O(t), u(t) are sufficiently precise, then player ¢ effectively disregards s; and v; when
computing the posterior expectations of 6 and u. Therefore, the right-hand side of
Equation (9) is approximately equal to v;, which implies that the sensitivity is ap-
proximately equal to 1. One can use this intuition to prove the following lemma,

providing a sufficient condition for a failure in asymptotic learning.

Lemma 2 (Sufficient Condition for Failure of Social Learning)
If K > K%, social learning about fundamentals and preferences fails for any initial

beliefs about 6 and .

This lemma states that when the conformity concerns exceed the threshold for
revelation in the common knowledge benchmark, the players are unable to socially
learn 6 or . To gain intuition, note that by Lemma 1 an equilibrium with revelation
exists if and only if there exists an o which solves Equation (11). That k > % = 1/4
implies that if the sensitivity were close to one, then there would exist no solution, as
the left-hand side of Equation (11) would be strictly greater than the right-hand side
for any a. Hence, for the signaling equilibrium to be revealing, the sensitivity cannot
converge to one. Further, for social learning to occur, there must exist infinitely many
periods of revelation even as the beliefs converge to the truth. However, if the beliefs

converge to the truth, the right-hand side of Equation (9) converges to vy, implying

14



that the sensitivity converges to 1, yielding a contradiction. As aresult, when x > x¢&
the players face three inefficiencies in the limit. First, as the players use a pooling
decision rule in the limit, the players are unable to adapt to their preference types.
The subsequent two inefficiencies stem from the players utilizing a pooling decision
rule based on inaccurate perceptions of both 6 and pu.

Given Lemma 2, it suffices to analyze x < k%K. First note that for any £ < k¥,
there exist initial beliefs such that social learning occurs. As discussed above, for
sufficiently precise beliefs, the sensitivity is bounded above by 1 + €. By Equation
(11), an equilibrium with revelation exists if and only if 1 + xa? multiplied by the

sensitivity is equal to oy. Since kK < K&K

, one can increase the left-hand side by €
(corresponding to an increase in k) and there will still exist a solution. Hence, if
period one beliefs are sufficiently precise, then period one will be revealing. Further,
as period two beliefs are more precise, period two will be revealing, and so on by
induction. Finally, the assumed time fixed-effects, {;}, imply that the players can
separately identify # and p.'? This intuition implies that if x < &%, there exist

sufficiently precise beliefs for which social learning occurs, as formalized below.

Lemma 3 (Existence of Social Learning)
If k < K then there exists an open set of initial beliefs such that social learning

about preferences and fundamentals occurs.

The question now turns to whether k < k% is a sufficient condition for social
learning to occur for all initial beliefs. Intuitively, for social learning to fail, there
must exist a period in which no revealing equilibrium exists. That no such equilibrium
exists is equivalent to there being no solution to 1+ xa? multiplied by the sensitivity
in the decision rule to v;, 5(-) equals ay. This may occur despite kK < k°% when
§(-) > 1. Further, 5(-) > 1 may occur when, given a sequence of high decisions,
each player is unsure if the decisions were high due to a high 6 or a high u. If v,
is low, he updates that p is low and thus 6 is high, as u(t) and 6(¢) are negatively
correlated. Therefore, as players negatively weight v; in their posterior expectation
of 0, an € change in a; corresponds to a greater than e change in v, implying §(-) > 1.
The formal proof showing that that social learning may fail despite x < k¥ involves
additional complications, as the sensitivity is endogenous to the conjectured beliefs.

The following proposition formalizes this logic and unifies the previous lemmas.

12 Absent this assumption the asymptotic learning outcomes may be unstable (see Footnote 8).
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Proposition 2 (Characterization of Long-Run Learning)
There exists a threshold k € (0, k%*) such that:

1. If k < K, then for any initial beliefs, social learning about preferences and

fundamentals occurs.

2. If k € (k,k%*), then there is an open set of initial beliefs such that social
learning about preferences and fundamentals occurs. Further, there exists an
open set of parameter values for which social learning about preferences and

fundamentals fails despite k € (k, K°*).

3. If k > k% then for any initial beliefs, social learning about preferences and

fundamentals fails.

The first statement can be seen by analyzing the condition for the existence of
a signaling equilibrium with revelation. If x is sufficiently small, then for any prior
beliefs one can show that the conformity concerns are sufficiently small such that there
exists an equilibrium with revelation in every period. Further, the third result is a
direct consequence of Lemma 2. The second result states that when the conformity
concerns take an intermediate value, social learning may occur or fail. That social
learning may occur is a consequence of Lemma 3. That social learning may fail is due
to the effective conformity concerns being larger than the conformity concerns when
there is a sufficiently strong negative correlation between the beliefs about 6 and .

This section shows that the condition for social learning-about either fundamen-
tals or preferences-to occur depends on an intuitive fundamental: the magnitude of
conformity concerns.'® I discuss this finding in the context of the empirical literature

in Section 4.3.

4.2 Comparative Statics

This subsection shows the result that social learning about fundamentals occurs
if and only if conformity concerns are sufficiently small continues to hold absent

uncertainty about the average preference type, p, and presents additional comparative

13At this level of generality, the learning outcomes are not monotone in . For instance, a
marginally higher value of k alters whether the decision rule places marginally more weight on
s¢ or vg, which results in different beliefs in the subsequent period. In either analysis with only one
dimension of uncertainty, the learning outcomes are strictly monotone with respect to «.
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statics (Section 6.2 contains the parallel analysis). Therefore, I assume p is common
knowledge and without loss of generality equal to zero in the following proposition.
Further, as the learning is univariate, one can normalize v, = 1 without loss of insights
(see Footnote 8).

Proposition 3 (Social Learning when Average Preference Type is Known)
Fix any prior beliefs about 0 and let p = 0 be common knowledge. Social learning
about fundamentals occurs if and only if kK < k“*. Further, when rk > k“* the long-
run precision of the beliefs To(k) := lim1p4(k) < oo is decreasing in k. Finally, the

asymptotic adaptation loss and asymptotic utility of the players is decreasing in k.

This proposition shows that conformity concerns impacts not only the binary out-
come of social learning, but also the degree of asymptotic learning. The intuition is
that greater uncertainty about # implies that deviations in a, are increasingly ascribed
to s; as opposed to v;. As a result, the greater the uncertainty, the lesser the effec-
tive conformity concerns, making it easier to sustain an equilibrium with revelation.
Therefore, if the equilibrium is revealing in the common knowledge benchmark, then
the equilibrium is revealing in all periods with uncertainty about 6. This implies that
if K < k% then the players learn @ for any initial belief. However, if x > k%%, then
in the common knowledge environment the signaling equilibrium is pooling, implying
that for sufficiently precise beliefs the players pool, thus precluding social learning.

Further, when the conformity concerns are higher, the players switch to the pooling
equilibrium earlier. Given this earlier switch, an increase in k£ when x > k¥ results
in pooling on less accurate perceptions of #, ultimately resulting in both a worse
asymptotic adaptation loss and a worse asymptotic utility. In contrast, for k < k%,
the asymptotic utility of the players converges to that in the common knowledge
benchmark. The following figure showcases this intuition, by plotting the asymptotic
adaptation loss as a function of x in both the benchmark (blue) and the dynamic

/{c.k

model (red). Here, the discontinuity at x = occurs because the players can

adapt to their private type in the limit if and only if kK < r¥.
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Figure 2: Asymptotic Adaptation Loss

In Blue is the asymptotic adaptation loss in the benchmark. In Red is the asymptotic adaptation
loss when p, the average preference type, is common knowledge, but have prior § ~ N(0, 1) about
the fundamental state. Finally, the asymptotic errors equals 1/74(k), as defined in Proposition 3.

This simplified model showcases how conformity concerns impede efficient learn-
ing. Despite the players having access to continuous decisions and sufficiently infor-
mative signals, the players fail to learn the fundamental state when the conformity
concerns are sufficiently high. Further, the conformity concerns effect the intensive
margin of the precision of the beliefs: the greater the conformity concerns, the more

imprecise beliefs the players ultimately harbor.

4.3 Applied Relevance

In this subsection, I first argue that my model’s learning predictions are more
consistent with the empirical literature than the existing theoretical literature. Next,

I discuss connections with the literature on pluralistic ignorance.

Determinants of Efficient Decisions: In my analysis, the magnitude of con-
formity concerns is the main predictor for whether decisions will be asymptotically
efficient. In contrast, the social learning literature predicts that continuous decisions
or unboundedly informative signals are sufficient for asymptotic efficiency. I now

review the empirical literature in support of my predictions.
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Continuous Decisions: Lee (1993) argues that continuous decisions imply efficient
decisions asymptotically and uses financial markets as an exemplar where investment
decisions are continuous, and, indeed, typically firms learn whether a given asset
is valuable. In contrast, my model predicts that the conformity concerns must be
low for efficient decisions asymptotically. For financial markets, one might think the
conformity concerns are low relative to the financial stakes, implying my model also
predicts efficient asymptotic decisions. However, if decisions are continuous, but the
conformity concerns are high, such as alcohol consumption (cf. Prentice and Miller,
1993), drug use (cf. West and O’Neal, 2004), and many others, then in line with my
model, we see more inefficiencies and inaccurate beliefs amongst the community:.

Unboundedly Informative Signals: The social learning literature defines a signal as
unboundedly informative if with positive probability a player’s private signal renders
the player arbitrarily certain of the optimal decision. A common result is that if
these signals occur, social learning occurs: if the players are herding on a wrong
decision, eventually such a signal occurs, breaking the herd. This result is in contrast
to the famous conformity experiment in Asch (1953). Participants were grouped
and shown a series of lines, then asked to identify the one matching a reference line.
Unbeknownst to the participants, the experimenters planted an actor into the group to
deliberately provide incorrect answers. Without the actors, success exceeded ninety-
nine percent, but with the actors, over seventy-five percent of participants conformed.
The social learning literature predicts that individuals should not conform because
each individual can identify the correct answer. In contrast, my model predicts that
if conformity concerns are large, the individuals will conform. Finally, Franzen and
Mader (2023) replicated Asch (1953) and found that monetary incentives decrease
the probability of conformity by 13 percentage points. Consistent with my model,

these incentives increase the importance of adaptation, resulting in less conformity.

Pluralistic Ignorance: My model predicts that “pluralistic ignorance” can arise
in equilibrium. Miller and Prentice (1994) defines pluralistic ignorance as, “a sit-
uation in which group members systematically misestimate their peers’ attitudes.”
In a review article, Bursztyn and Yang (2022) document that such misperceptions
lead to inefficient social norms and occur in a wide range of environments: political
movements, macroeconomic expectations, vaccination status, and many others. Ad-

ditionally, Miller (2023) argues that pluralistic ignorance stems from two forces, “(1)
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social life depends on individuals having knowledge of their peers’ habitual feelings
and practices, and (2) individuals must infer this knowledge from limited and thus
potentially misleading information.” In my model, these two forces correspond to (1)
players having conformity concerns and (2) finitely many periods with informative
decisions.

The extent of pluralistic ignorance corresponds to the magnitude by which indi-
viduals misestimate the preference types of their peers for a given realization of their
peers’ true preference types.!® In the model, if u(t) — p, then (tautologically) every
player correctly predicts p. In contrast, if u(t) 4 u, then the uncertainty about u
implies that each player’s estimate of  combines both u(t) and his preference type,
v, which is predictive about u. Further, when the variance of u(t) is higher, then each
player’s expectation of y is closer to the prior mean of u as opposed to the realization
of p. Thus, one can view the variance of p(t) (the inverse of 7,,) as a measure of
pluralistic ignorance.

While there exist numerous behavioral explanations for pluralistic ignorance, the
model presented in this paper provides an additional explanation: the desire for
conformity necessitates self-censorship in public discourse (cf. Loury, 1994; Braghieri,

2021), resulting in insufficient information for others to gauge the views of the public.®

5 Policy Interventions

In this section, I extend the model to analyze informational interventions and show
that when conformity concerns are high, interventions addressing misperceptions of
the average preference type outperform interventions addressing misperceptions of

the fundamental state.

4Tn the model, u(t) is an unbiased estimator for . However, the object of interest is the gap
between pu(t) and p for a given realization of the preferences, p. One may object that, in practice,
w(t) is greater than p in every school in the context of alcohol (rather than being unbiased). However,
all these students observe similar sets of celebrities on social media or television drinking, implying
that the beliefs across schools should not be viewed as independent samples.

15Braghieri (2021) documents that participants skew their answers to politically sensitive questions
in the direction of public support, thereby decreasing information transmission. In contrast, I allow
for uncertainty about the direction of public support, resulting in a tighter connection with the
literature on pluralistic ignorance.
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5.1 Modeling Interventions

I consider four types of interventions composed of the intersection of whether the
information shared with individuals is made common knowledge and whether the
information is about the fundamental state or the average preference type.

Before analyzing “common-knowledge” interventions, I analyze “private interven-
tions.” One can think of a private intervention as giving player ¢ access to additional
information; however, such information is private and is not accounted for by the
community when inferring player t’s preference type given his decision. Without for-
mally stating the result, one can see that such an intervention has no ability to break
a pooling equilibrium nor influence which decision the players pool on.'® To see why,
suppose player ¢ is told the value of the fundamental state, 8. Given that each player
wants to match his decision to the fundamental state, player ¢ has an identical in-
centive to adapt to 6 as a hypothetical player who received a s; such that E(0|hy, s;)
equals 0. Further, since such an s; exists in the support of possible realizations,
and that hypothetical player cannot adapt to such information, neither can player t.
Thus, the equilibrium in period ¢ remains identical. Finally, as such information was
private information to player ¢, and no change in behavior occurs in period ¢, then
no change in behavior follows for any subsequent periods.

Given the stark irrelevance result for private interventions, I now focus on com-
mon knowledge interventions. In the standard framework absent interventions, the
public history at time ¢ is hy = {y1,a1,...,%—1, a1, %}, namely the sequence of past
decisions and the environments in which such decisions were chosen. I consider an
intervention where information is released before period ¢, but after a;_;. Such an
intervention leaves the prior histories unchanged (and further the prior sequence of
events remains unchanged as each player is short-lived). This information could be
about either 6 or u, which will be referred to as individual-oriented and peer-oriented

interventions, respectively.

5.2 The Effects of Interventions

I begin with a definition of fragility. I call a pooling decision rule “fragile” to

an individual-oriented intervention with n pieces of information if a hypothetical

16Tn support of this theory, Tevyaw et al. (2007) shows that the reduction in alcohol use for
common-knowledge interventions was 3 times larger than private interventions.

21



public disclosure of n independent signals that are distributed identically to s; cause
the equilibrium in period ¢ to be non-pooling when it would otherwise be pooling.
Similarly, it is fragile to a peer-oriented intervention with n pieces of information if
n independent signals distributed identically to v; cause the equilibrium to be non-
pooling when it would otherwise be pooling. This definition extends the definition of

fragility in Bikhchandani et al. (2021) to signals about .

Proposition 4 (Fragility)

The following are true:

1. If k < k%, for any pooling equilibrium there exists an N such that the pooling
equilibrium s fragile to both an individual-oriented intervention and to a peer-
oriented intervention with n > N pieces of information. Further, after either

intervention, social learning about fundamentals and preferences occurs.

2. If k > k%% for anyn € NUoo, an individual-oriented intervention (respectively,
peer-oriented intervention) with n pieces of information will never result in

social learning about p (respectively, 0).

3. If K > k% and the correlation between the beliefs about 0 and 1 is equal to
zero, the equilibrium is never fragile to an individual-oriented intervention with
n pieces of information but may be fragile to a peer-oriented intervention with

n pieces of information.

The intuition behind the first result is that if 5 < £“*, then when there is common
knowledge about 6 and pu the signaling equilibrium involves revelation. Further, that

the equilibrium is pooling despite a k < K&

is necessitated by a strong negative
correlation between the beliefs about 6 and p (Proposition 2). A sufficiently large
amount of information about either 6 or p will weaken the negative correlation in
these beliefs, allowing for a revealing equilibrium.

The second result says that if s is high, then giving information about only one
dimension of uncertainty will be unsuccessful in spurring social learning on the other.
This result follows directly from Proposition 2, which states that for any beliefs about
0 and p, if K > k%, the players’ beliefs about € and p cannot converge to the truth.
Therefore, even if a social planner designs a perfect individual-oriented intervention,

the players will necessarily continue to have misperceptions about pu.
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Finally, the intuition for the final result comes from the different effects of these
interventions on the effective conformity concerns. If there is no correlation between

the beliefs about § and p, then the player’s first-order condition in Equation (9) is
ar(1 4 ka?) = vE0|0(t), s¢) + vi + waB(u|u(t), vy). (13)

An individual-oriented intervention always decreases the weight players place on s,
thus making the decision rule more sensitive to v;. This increased sensitivity implies
that giving information about ¢ magnifies the effective conformity concerns and thus
cannot break a pooling equilibrium.

In contrast, a peer-oriented intervention has two effects. First, each player wants
to be perceived as pu. Consequently, when 7, is low, players with different preference
types have different perceptions of u. Therefore, each player has an additional reason
to adapt a; to vy a high v indicates a high p, implying player ¢ wants to be perceived
as a high type, resulting in an incentive to choose a higher a,. This logic implies that
when 7, is low, the players have an added incentive to adapt, resulting in revelation.

The countervailing effect is that when 7, is low, the uncertainty over a given
player’s preference type is also high. As is standard in signaling games, when the
uncertainty over a given player’s preference type is higher, the same player has a
greater incentive to signal, and thus a lower incentive to adapt.

Note that the relative value of 7y, has no affect on the first force but does effect
the latter. To see why 7y, impacts the latter force, note that when 7y, is high,
each decision is mostly determined by a player’s preference type, v;, and not their
signal, s;. As the decision is primarily a function of v;, a sufficiently precise signal
of v, is generated. This precise signal implies the community’s inference about v,
is less sensitive to changes in the prior, such as an increase in 7,;. As a result,
when 7y, is high, increasing 7, ; has a comparatively small effect on the community’s
inference about v; and a comparatively large effect on player ¢’s inference about pu.
This intuition is seen in Figure 3 below: when 7,, > 7, (respectively, 7, < 7o)
an increase in 7,; causes a change to a revealing equilibrium (respectively, pooling

equilibrium).
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Figure 3: When the Signaling Equilibrium Involves Revelation

In the figure, the x-axis corresponds to 7y, the public precision of the fundamental state, and the
y-axis corresponds to 7, ¢, the public precision of the average preference type. The shaded region
(respectively, non-shaded) corresponds to when the signaling equilibrium is revealing (respectively,
pooling). In the figure K = 7 = 1, which correspond to the weight of conformity and the relative
value players place on adapting to the fundamental state.

However, even if neither a peer-oriented intervention nor an individual-oriented
intervention break a pooling equilibrium, these interventions will influence which
decision the players pool on. To gain intuition into the forces behind the change, I
consider the following situation: suppose p(1),6(1) are uncorrelated, the equilibrium
in period 1 was revealing, and thereafter the equilibrium is pooling. Recall a; denotes
the decision chosen in period 1. This decision influences what the pooling decision

will be in period 2, a*(a;), where for simplicity I assume v, = 1 to derive:
a*(ar) = E(Blar) + Elar). (14

Further, recall that a; is a linear combination of both player one’s private signal about

0, s1, and player one’s preference type, vy, yielding:
a; = )\981 + )\U’Ul, (15)

where A denotes such weights. I now consider the following intervention where the
public history is adapted to be either hy(0) = {a1,v1,0} or ha(u) = {a1, 71, 1} and
analyze the change in the pooling decision rule that follows. Suppose that the players

utilize the decision-rule in Equation (15), resulting in a pooling decision rule denoted
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by a*(ay) as in Equation (14) for all subsequent periods.

Proposition 5 (Interventions)
Denote by A(0) (respectively, A(p)) as the difference between the new decision the

players pool on compared to a*(ay). Then,

Aoy
Alp)=pl 1— +aua 16
(1) ”( 114:’_2;9 )\3 + 1-17-97# )\g) peL (16)
Aoy
A(0) = (1 ~ T92r, 7 ) + agay, (17)
1+T,f )\12) _'_ 1+ng Ag

for some constants ay, au,.

To understand the expressions above, let us now consider the effect of an individual-
oriented intervention revealing @, where a symmetric analysis occurs for u. Tauto-
logically, E(6|hy(6)) = 6. Further, the players re-evaluate the perception of i as a
function of both 6 (the second term in the parentheses of Equation (17)) and a;. The
object of interest is how much the players decision changes with respect to . One can
see that given information that € is positive (respectively, negative) the players up-
date that p is negative (respectively, positive). Further, this update could be larger in
magnitude than the update about the value of 6. Specifically, these cases occur when
7, is small (i.e., the players are uncertain about their peers’ true preferences). Such a
counter-update provides one rationale why the individual-oriented interventions have

small (if not negative) effects on behavior.

5.3 Designing Effective Interventions

While both interventions have their merits in different circumstances, the model
predicts differential effectiveness. In the model, when conformity concerns are large
the players enter into a pooling equilibrium based on inaccurate perceptions of their
peers’ preference types and the fundamental state. Proposition 4 suggests that peer-
oriented interventions may be preferred due to their ability to break a pooling equi-
librium. Further, Proposition 5 suggests that even a perfect individual-oriented in-
tervention alone may fail to shift the pooling decision in the direction of efficiency.

These predictions are broadly consistent with the results in Schroeder and Pren-
tice (1998), Bursztyn et al. (2020a), and Ferreira et al. (2024) for two reasons. First,
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interventions addressing misperceptions of peers’ preference types are preferred. Sec-
ond, in these settings conformity concerns are arguably high. If instead conformity
concerns were low (or equal to zero), then similar to the theoretical literature, the op-
timal interventions are individual-oriented. In such cases, knowledge of the average
preference type is less decision-relevant and individual-oriented interventions allow

the players to reach an efficient decision faster.

6 Extensions

In this section I consider two extensions that serve as robustness checks for the
assumptions in the main analysis. First, I show that non-linear decision rules fail to
exist in the benchmark environment in Section 3 if off-path beliefs satisfy D1 from
Cho and Kreps (1987). Next, I discuss how the results of the model generalize to

alternative distributional assumptions with non-linear decision rules.

6.1 Non-Linear Equilibria

This subsection analyzes Perfect Bayesian Equilibrium when 6 and p are common
knowledge, as in Section 3. Similarly to Section 3, it suffices to consider a static

version of the game and drop any time-dependence reducing Equation (2) to:

w(v,a) = —(a—v)? —r / b2 6(bla)db. (18)

Furthermore, the linear equilibria derived in Section 3 continue to exist for any full-
support distribution of v that is atomless, which will be assumed throughout the
remainder of this subsection. Throughout, I impose D1, which implies that off-path
¢(+) is concentrated on the types who have the largest incentive to deviate to such
a decision. The following lemma defines a “central pooling equilibrium” and shows

that any equilibrium which satisfies D1 is a central pooling equilibrium.

Lemma 4 (Class of Equilibria)
Any equilibrium satisfying D1 is a central pooling equilibrium. A central pooling equi-
librium satisfies a(v) = ¢* Yv € [v,0] where v < 0 < 0. Further, if v ¢ [v,7], then
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a(v) is continuously differentiable with a derivative that satisfies:

d(v) = U_“—Z(U) > 0. (19)

For the proof, I refer the reader to Theorem 3 in Bernheim (1994). The intuition
behind his result is that D1 implies a(v) is monotone. Given monotonicity, one can
show that D1 further implies that a jump discontinuity cannot arise outside of the
central pool. Finally, outside the central pool one can show a(v) is strictly monotone,
implying a well-defined inverse of a(v). This inverse can be substituted in for ¢(b|a)
to generate the differential equation in Equation (19).

Inspecting Equation (4), one can see that there are two linear equilibria with rev-
elation. Therefore, one can construct a non-linear equilibrium as follows: if v > 0,
utilize the decision rule of one such equilibrium and if v < 0, utilize the decision rule
of the other equilibrium. This equilibrium exists whenever the linear equilibria exist
because the problem is symmetric about v = 0; however, this equilibrium provides
a lower utility than the signaling equilibrium for each v. The following proposition
shows these are the only non-linear equilibria satisfying D1. Therefore, up to sym-

metry about v = 0, equilibria satisfying D1 are linear.'”

Proposition 6 (Linear Equilibria)

An equilibrium with revelation satisfying D1 exists if and only if k < k. Any such
equilibrium has an empty central pool and, on either side of this central pool, the
deciston rule equals that of a linear equilibrium. However, for any k there exists a

fully-pooling, and hence linear, decision rule.

This result gives support for the restriction to linear equilibria in the main analysis.

6.2 General Distributions

Throughout the analysis I focused on the Gaussian distribution and linear equi-
libria. When the uncertainty is non-Gaussian, beliefs will be non-linear in a player’s

private information, resulting in non-linear equilibria. In this subsection, I discuss to

17"The primary difference to Bernheim (1994) is that I assume that the support of v equals the real
line as opposed to a bounded interval. Therefore, in Bernheim (1994) at the boundary of the support
a(v) = v, whereas in my setting a(v) # v outside the central pool. This difference generates the
non-linearity and equilibria with partial revelation in Bernheim (1994). Reassuredly, in Bernheim
(1994) when conformity concerns are sufficiently high, the unique equilibrium is also fully pooling.
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what extent my results generalize to different distributions. As the complete environ-
ment with general distributions and both dimensions of uncertainty is intractable, I
conduct two separate analyses, each focusing on a different dimension of uncertainty.
In this subsection, I assume € is common knowledge and the players are learning pu,
and the Supplemental Appendix contains the other analysis and a discussion of the
resulting challenges if both p and 6 are unknown.

Denote by g;(v¢|hi) := E(u|ve, hy), which, with an abuse of notation, will be de-
noted as g;(-). I make two assumptions (i) the distribution of v; is full support and
atomless and (ii) g;(v;) € (0,1) and is continuous. Given these assumptions, an im-
mediate generalization of Lemma 4 is that the only equilibria satisfying D1 are central
pooling with a derivative outside the central pool satisfying:

i) = "L 9 0), 20

vy — az(vy)
Equipped with this differential equation, one can show the following result.

Proposition 7 (General Distributions with # known)
Denote by 1, := inf, gj(x) < sup, g;(z) := &, where g,(x) = E(u|z, hy). There exists a

fully revealing equilibrium that satisfies D1 if the conformity concerns, K, satisfy

K,C'k'
< . 21
= 1-— Lt ( )
Further, no equilibrium with revelation satisfies D1 if
/{C'k‘
K> . 22
- (22)

This proposition gives a separate necessary and sufficient condition for the ex-
istence of an equilibrium with revelation. In the linear Gaussian analysis, g(v;) is
linear for all ¢ implying that & = «; and that these bounds are tight. Further, in
such an analysis & is deterministic and decreases if and only if the previous period
involved revelation. This determinism implies a monotone relation between s and
the asymptotic precision in the beliefs about pu.

Beyond the linear Gaussian framework, &, t; need not be equal nor monotone in
t, precluding such comparative statics. However, one can view &, ¢; as some measures

of asymptotic uncertainty, and Proposition 7 bounds these asymptotic measures.
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Further, a corollary to Proposition 7 is that x < x°% implies that a fully-revealing
equilibrium exists every period. Therefore, if such an equilibrium is selected, then
w(t) =, p by the Law of Large Numbers. Further, if & > £ then & 4, 0, implying
p(t) #, p. These results imply that even beyond the linear-gaussian environment,

the magnitude of conformity concerns continues to predict learning outcomes.

7 Conclusion

This paper studies how conformity concerns impact social learning and what in-
terventions are effective when social learning fails. To do so, I enrich a standard
model of social learning by adding: (i) a player’s desire to adapt to not only a funda-
mental state but also his private preference type, (ii) an assumption that players have
conformity concerns over how the community perceives their private preference type,
and (iii) an assumption that there is aggregate uncertainty about the distribution of
private preference types in the population. I show that as the players’ beliefs about
the fundamental state become more precise, the equilibrium penalty experienced by a
player who adapts to his private information or his private preference type increases,
creating endogenous self-censorship. Further, I show that if the initial conformity
concerns are sufficiently high, the endogenous self-censorship not only dampens but
eliminates the player’s adaptation, resulting in a switch from a revealing to a pooling
equilibrium in finite time. Such a switch to pooling implies that forever after the
players hold imprecise beliefs about both the fundamental state and the preference
types of their peers; the latter is a common finding in social psychology, defined as
pluralistic ignorance. Not only are the players pooling (and thus unable to adapt to
their private preference types), they pool on an inefficient decision based on imprecise
beliefs. Finally, information about the fundamental state has a lower ability to break
a pooling equilibrium than information about peers’ preferences. This result pro-
vides a framework to formalize intuitions extensively discussed empirically in social
psychology and economics.

This paper introduced a theoretical methodology that can be used to analyze
pluralistic ignorance and how decisions change upon dispelling pluralistic ignorance.
I hope this framework can be used to analyze related topics in the social sciences.
For instance, related to pluralistic ignorance, there is a large literature on “false

polarization” whereby individuals of two distinct subgroups will incorrectly perceive

29



the preferences of the two groups as further apart than reality. Further, there exist
numerous empirical studies on “risky and cautious shifts,” whereby upon learning
whether the members in their group have risky (respectively, cautious) opinions, the
opinions of the group will shift to be more polarized than the opinions of the group

members themselves (cf. Sunstein, 2009).
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8 Appendix A

Proof of Proposition 1. Solving Equation (4) proves the existence of ¥ and the
results when & > x“¥. Finally, the equilibrium with revelation is Pareto superior to

the pooling equilibrium, which completes the proof. O

Proof of Lemma 1. Fix t and a conjectured belief oya; + ;. The first-order condition
given this conjecture is Equation (9). The normality assumption implies that the
posterior expectations of both # and p are linear in both v, and s;. Therefore, for

some exogenous constants, ¢y, ..., Cey,

ai(1 4 ka}) = ko Py + c1p + Cogauk + sp(czy + kaycay) + v (1 + e + Kaucey). (23)

2
ar(1 + Kay) — koS — 1y — copauk . 4o 1+ c54 + koycey

=S+ v .
C3t + ROGCy ¢ C3t + ROGCy g

Given this sufficient statistic, the posterior belief about vy is,

ar(1 + kal) — KBy — 14 — Copuk

E<Ut|ht, at) =7y + cs oy, K) ) (24)

€3¢+ KQuCyy
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where cg (s, k) # 0 is determined by both the prior beliefs and the conjectured
slope ;. In equilibrium, the conjecture is consistent implying the right-hand side of

Equation (24) equals oya; + f;, as stated below:

cst(ag, k)(1+ na?) = ay(c3r + Koy ) (25)

cri(Cay + Koucay) + cg ey, k) (—koufBy — c1p — cogkay) = Bi(csy + koycay).  (26)

Note that for any solution to Equation (25), there exists a solution to the equation

for ;. This is because Equation (26) is linear in ; with a coefficient on S; of
1
Cat + KauCay + Kaycs t(ay, K) = cgp(on, H)(a— + 204K),
t

where the equality comes from Equation (25). Finally, as csi(ou, k) # 0 and in a
revealing equilibrium «; # 0, the coefficient on f; is non-zero implying a unique
solution for f;.

Thus, the necessary and sufficient condition for an equilibrium with revelation
is Equation (25). Further, Equation (25) is independent of the means of the prior
beliefs (c1; and co;) and only conditions on the precision matrix. With Gaussian
uncertainty, the realizations of a; only effect the mean, proving the second claim.

To show the first claim, I first show 6(t) —, 8 = pu(t) —, p. If 6(t) —, 0,
then there exists an infinite subsequence {t;}:2, such that: cs;, + Koy, cay, # 0, where
such terms are defined in Equation (23). However, as 0(t) —, 6, ¢51, —, 0 implying
1+cs 4, +ray,cep;, > 1in the limit. Therefore Equation (23) implies there are infinitely
many noisy signals about v;, implying p(t) — p.

I next proceed by contradiction and assume p(t) —, i, but 6(t) /4, 6. Therefore,
there exists an infinite subsequence {t;}°, such that 1 + c¢5;, + Koy, cer, 7# 0, but
Cap; +Ray,cay, = 0. As ey, +roy,cay; = 0, then §(+) = 1/(1+c¢54, + Koy, o4, ), implying
oy, must remain bounded to satisfy Equation (11). Finally, given the limit beliefs,

cat;, —+p 0 and csy, /#, 0, contradicting cs, + Koy, cay, = 0, as oy, is bounded. O

Proof of Lemma 2. 1 proceed by contradiction. Note that Lemma 1 implies 0(t) —,
0 <= p(t) —, p. Hence, suppose by contradiction that x > k%, 0(t) —, 6, and
p(t) —p . As 6(t) —, 0, u(t) =, p, then csy, cay, 54, and cgy converge to zero and
there exists a subsequence oy, of revealing decision rules.

Case 1 (supay, < co): Equation (23) implies limy, ,o0 3(-) = 1. As k > %%, no
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solution exists to Equation (11) asymptotically, implying a switch to a pooling in
equilibrium in finite time, contradicting belief convergence.
Case 2 (supay, = 00): As ¢ > ¢4t (v is more predictive of p than s;), then

asymptotically the sensitivity is bounded below by

OE(vy|sirouce s + vi(1 + koucey))

27
O(stkarce s + vi(1 + ko)) (27)

which is bounded away from zero. This derives a contradiction to Equation (11)

which cannot hold with sup ay; = 0o if the sensitivity is bounded away from zero. [
The following remark will be used in subsequent proofs.
Remark 1 Fiz 0(t), u(t), the LHS exceeds the RHS of Equation (11) as oy — 00.

Proof of Remark 1. A sufficient condition for the lemma is showing that the sensitiv-
ity is bounded as oy — 0o. Using Equation (23),
JE
lim s() = (vt]secar + UtCG,t)’ (28)

Qap—+00 a(StC4,t + UtC6,t)

which is bounded. O

Proof of Lemma 3. 1t suffices to show that the decision rule is revealing in every
period; i.e., that there exists a solution to Equation (25). Using Remark 1 and

continuity, a sufficient condition is that for all ¢, there exists an a; such that
sl k) (1 + kal) < ag(csy + Kagcyy).

Since k < k“*, then upon setting oy = 2 a sufficient condition is that for some € > 0,

cst(2, k)

———— <1+e
C3t + 2KCay

Further, for € > 0 this inequality holds for sufficiently precise beliefs about 8 and p,
because (i) the left-hand side is continuous with respect to the variance matrix of
0(t), u(t), (ii) the left-hand side is equal to one when the variance matrix is equal to
zero. Therefore, there exists sufficiently precise prior beliefs where such a condition

holds for ¢ = 1, and any ¢ > 1 as those subsequent beliefs are more precise. O
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Proof of Proposition 2. The proof of statement (3) is a direct consequence of Lemma
2 and the proof of statement (2) is a direct result of Lemma 3.

I prove statement (1) by assuming that an equilibrium with revelation does not
exist for some (), (), and then proving x must be large. Note that ¢z, > —1/2
(a bound achieved with perfect negative correlation between 6(t), u(t) and arbitrarily
diffuse priors). Using Remark 1 and that 5(-) < 1/(1 + ¢34 + kacg ) this implies

1+ ka?

1+ Cs.t + RQCg ¢

1
>aforalla >0 = 1+205¢—|—c§7t<4/f—4c6,t/<; == K> 16’
where the first implication is the quadratic formula and the second follows from
cst > —1/2 ¢4 > 0, completing the claim.
The final statement is proven using Mathematica to show if x = .9x%* and ~, is
sufficiently close to 1, then there exists an open set of precision matrices for which

Equation (25) has no solution for some ¢.'® O

Proof of Proposition 3. First, simplify Equation (9) when p is common knowledge:

9_(25)77“ + 84

+ v + Koy By 29
R (29)

a(1 + kaj) =

Lemma 1 implies it is without loss of generality to assume 6(t) = 0, E(s;) = 0 and

drop the constant kay;, for the purposes of calculating the sensitivity. Now,

8]E(vt\vt—|— 5t ) Pre( 5t )

- 1+T9t 1+7‘gt ~
S(ay, k,0(t)) = = ’ = T(T04), 30
(s 00) = g5 = Ty = A (0

where Pre(+) denotes the precision. Thus, a revealing equilibrium exists if and only if

there exists ay > 0 s.t. (14 k-0a?) Fi(mps) = oy = Kk < (31)
If kK < k%, then this equation holds for all ¢ as 7i(1p;) < 1. Further, in every
period with revelation 7541 = 19, + 1/(1 + 7o,)?, implying 79, — 0o when k < K&K

Therefore, the comparative statics results follow from the benchmark when x < k¥

18 As discussed in the text a sufficient condition is that the sensitivity is greater than one; however,
the sensitivity is endogenous. Therefore, the result is shown using Mathematica, and the code is
available upon request.
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When k& > k%%, as 7(7p+) is increasing in 7y, and given the update rule for 7,
when there is revelation, a higher x implies weakly less periods with revelation. This
statement proves 7y(r) := lim7p,(x) is decreasing. Further, 7y(k) < oo as Equation
(31) fails when 7p; = 0o, because k > k“*. Finally, when x > % the players pool
on f(t), therefore the comparative statics about 74(x) imply the comparative statics

about asymptotic utility and asymptotic adaptation loss. O

Proof of Proposition 4. The proof of the first statement is a direct consequence of the
proof of statement 2 of Proposition 2 and the proof of the second statement follows
from statement 1 of Proposition 2.

The proof of the third statement contains two parts. The proof that a pooling
equilibrium may be fragile to a peer-oriented intervention is provided in Figure 1
which shows that an increase in 7, may break a pool. The proof that an increase in
T+ never breaks a pooling equilibrium can be seen by noting that when 6(t) and pu(¢)

are independent, Equation (9) reduces to
a1+ r0®) = 4 E(0 | 6(t), 1) + v, + nf + naE (| p(t), v

Therefore, uncertainty about 6 decreases §(-). Further, decreasing 3(-) decreases the
LHS of Equation (11) and Remark 1 implies the condition for a revealing equilibrium
is to find oy where the LHS is smaller than the RHS of Equation (11). O

Proof of Proposition 5. The players pool on a*(a;) = E(f|a;) + E(ulay). Player 1
chooses a; as follows:

a; = NE(0]s1) + ME(ulvy) = Mg (0 + N(0,1+ 7'9)) + A\ (u + N(0,1+ TM)).
As a result, a* is linear in a;. Now consider an individual-oriented intervention where

0 is revealed. One must compute E(u|ag,#) by noting:

a; — )\99

A
S = 4+ NO,1+7,) 4+ 22N(0,1 4 79).

Av
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As a result,

—1
a1—MXgb 1 & 2 1
Mo T+ +(>\U) T+79 a; — Agb 1
» 1 9

-1 — :
A Ao 1 (M2 1
Tt <ﬁ T (f)zl—:ﬁ)) 1+T“<1+Tu ) ”Te)

E(p | ar) =

Simplifying this posterior expectation produces the result in the proposition. Further,

a symmetric calculation occurs for individual-oriented interventions. O]

Proof of Proposition 6. First note that Proposition 7 rules out non-linear equilibria
when x> k%% = 1/4 as & = 0 in this benchmark. Hence, let £ < k&*-.

As mentioned in the text, there always exists the fully pooling decision rule where
—v = v = 00. Hence, let us consider central pooling equilibria that involve revelation,
and I will show that outside the central pool the decision rule is linear. As the
problem is symmetric about v = 0, it is without loss to assume v < oco. First, if a(v)
were bounded then Equation (19) implies lim,_,», a/(v) = k contradicting a(v) being
bounded. Therefore, lim,_, a(v) = oo.

The first-order condition implies:
a—v+ ko(a)d'(a) = 0.
Substituting a = = and ay(z) = v(x) above yields,

1+ y(a) — ry(a)’
ray(@)

0= 2 — y(e) + kay(x) (y(x) + z9()) = §x) = (32)
This simplification is well defined because the denominator is non-zero for all x outside
the central pool. If y(zg) = 0, then y(zo) agrees with one of the linear decision
rules, [(+) (which exist as k < xk®¥). Therefore (i) A := {x : y(-) = I(-)} is non-
empty and closed. As we are assuming the decision rule is non-linear then, (ii)
A # [a(v),00]. Combining (i) and (ii), there exists a point in A on the boundary of
A. However, at such a point, the above differential equation satisfies the conditions for
Picard-Lindel6f theorem, implying a unique solution within an interval surrounding
that point, contradicting that such a point lies on the boundary.

Therefore any non-linear solution satisfies y(x) # 0V, and for any = > 0, one can
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derive the following from Equation (32):

L B .

—1+y(x) — ky(x)? x

1+2ky(x 1+2ky(x
—log(1 — y(x) + wy(@)?) | los(L+ T7) —log(l — )

2 2V1 -4k

where ¢ is the constant of integration. If k = 1/4, then Equation (33) is ill-defined,

+c=— log(‘r)v

precluding a non-linear solution. If x < 1/4, any non-linear solution satisfies:

1 1+2ky(z) 1

log (w — @)+ @ (Lo ) ﬁ) ~ log(e“a)

1+2ky(z)
L+ V1-4k
1— 1+2ky(z) 1
V1—4k 1-4x 2 ¢
1+ 1+2Hy(w)> =Te.
V1-4k

= (1= ylo) + ry(e)?)(

Recall that lim,_,, a(v) = oo and thus one can consider the limit of the above equa-
tion as x — oco. The RHS diverges as + — oo implying the LHS diverges. Fur-
ther, if lim, .. y(z) < oo, then both the first and second terms of the left-hand
side will remain bounded. Therefore, lim, , y(z) = lim, ,» v/a(v)oco. However, if
lim, ,o, v/a(v) = oo, then there must exist a player for which € less conformity is
preferred, deriving a contradiction.

Therefore, the only solutions to the differential equation outside the central pool
are linear. I will now show that the central pool is empty. Equation (4) shows that

the linear equilibria must satisfy:

1+v1—-4k

all—a)=k <= a= 5

Thus for a central pooling equilibrium to exist one must find a*, v, v such that the
player with preference type v is indifferent between a* and av. I consider the case
where a* < 0 and an identical argument holds if a* > 0.12 Note that the conformity

loss following a* is at best zero. Fixing the slope of the linear decision rule a(v) = aw,

190ne can use v analogously to ©. If v was negative infinity, then the equilibrium could not satisfy
D1 as no beliefs satisfying D1 following a* — € would prevent a player with an arbitrarily negative
preference type from deviating.
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then,
—(0—a*)? > —(1 — )*0* — kv,

where the LHS is an upper bound on the utility in the central pool and the RHS
is the utility in the linear equilibrium. Notice that ¥? cancels out and that for the
solutions to « such an inequality never holds. Therefore, the central pool must be

empty in any revealing equilibrium. O

Proof of Proposition 7. First note that there exists a unique vy such that v; = g:(v}),
where uniqueness follows from the assumption that g;(-) < 1 and existence follows
from the Law of Iterated expectations and continuity of g;(-). By an identical argu-
ment to Theorem 3 in Bernheim (1994) all equilibria must be central pooling, the
central pool must include vy, and Equation (20) characterizes the equilibrium outside
of the central pool.

I first show that if k exceeds the threshold in the proposition no solution to
Equation (20) exists for any initial condition, implying no equilibrium with revelation

exists. Differentiating Equation (20) implies,

—k (v — ge(v)) (1 — aj(vy)) n k(1= gi(vr))
(ve — @t(vt>)2 v arlvr)

= (o= g (w)af (1) = aiw) (1  gi(u) - = () )

K

a;’(vt) =

I will analyze values to the right of the central pool (and a symmetric argument
follows for the left side). As aj(v;)(1 — aj(v)) < 1/4, then for k > 1/4(1 — &) there

exists an €3 > 0 such that,

ay(vy)es

_ ” > / <:> /i > P S A
(/Ut gt(vt))at (’Ut) = at(vt)€3 at (/Ut) il v — gt(vz),

(34)
where the final inequality comes from the assumed monotonicity of g(-). Let ao(v;)
be the decision rule that binds differential inequality in Equation (34) and satisfies
ay(0y) = ao(v;), where v, denotes the supremum of the central pool.

One can use the Picard-Lindeléf Theorem to show ag(v:) has a unique solution up
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to this initial condition satisfying

ao(ve) = c1(ve — g (v)))' % + ¢,

where ¢; > 0. Therefore for v, > vy,

ar(vy) = a(vy) // (vy) > ao(o, //aovt

However, given the solution for ag(-), this inequality implies that a;(v;) > v; for a
positive value of vy, which is a contradiction because choosing a; = v, results in both
a better adaptation loss and a better conformity loss.

Now I show that if x is less than the condition provided in Proposition 7 an
equilibrium with full revelation exists. To do so, I show that if « satisfies the condition
in the proposition there exists an equilibrium with full revelation where a;(v}) = v;
by using Carathéodory’s existence theorem.

To be able to apply this theorem to Equation (20) the decision rule, a,(v;) must
never cross v; except for v} so that the implicit function in Equation (20) is contin-
uous on its domain. I will analyze the differential equation to the right of v; and a
symmetric analysis occurs to the left. A sufficient condition for a;(v;) < v; is that
aj(vy) < 1/2 for all v, > vy. Taking Equation (20), this condition can be stated as

v — ay (vt) vy — vF /@C.k.
2n(i - 00) < 4 oo <M s s
Ut — ’Ut

Applying the following bound to the denominator completes the proof:

ge(vy) — v} S 9e(vF) + (v — vf) —vf
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