Cost Based Nonlinear Pricing

Dirk Bergemann (Yale) Tibor Heumann (UPC) Stephen Morris (MIT)

LSE
June 2023

Introduction

- digital commerce lead to increase in product differentiation (personalization)

Introduction

- digital commerce lead to increase in product differentiation (personalization)
- differentiated products along either quality or quantity dimension ask for nonlinear pricing

Introduction

- digital commerce lead to increase in product differentiation (personalization)
- differentiated products along either quality or quantity dimension ask for nonlinear pricing
- second degree price discrimination

Introduction

- digital commerce lead to increase in product differentiation (personalization)
- differentiated products along either quality or quantity dimension ask for nonlinear pricing
- second degree price discrimination
- optimal nonlinear pricing,

Introduction

- digital commerce lead to increase in product differentiation (personalization)
- differentiated products along either quality or quantity dimension ask for nonlinear pricing
- second degree price discrimination
- optimal nonlinear pricing,
- Mussa and Rosen (1978), Maskin and Riley (1984)

Introduction

- digital commerce lead to increase in product differentiation (personalization)
- differentiated products along either quality or quantity dimension ask for nonlinear pricing
- second degree price discrimination
- optimal nonlinear pricing,
- Mussa and Rosen (1978), Maskin and Riley (1984)
- depends heavily on information about demand distribution

Introduction

- digital commerce lead to increase in product differentiation (personalization)
- differentiated products along either quality or quantity dimension ask for nonlinear pricing
- second degree price discrimination
- optimal nonlinear pricing,
- Mussa and Rosen (1978), Maskin and Riley (1984)
- depends heavily on information about demand distribution
- e.g., optimal mark-up is equal to reciprocal of demand elasticity

Prior Free Pricing

- digital commerce on large (global) platforms comes with heterogeneous consumers and much demand variation across time and space

Prior Free Pricing

- digital commerce on large (global) platforms comes with heterogeneous consumers and much demand variation across time and space
- sellers have weak information about demand distribution

Prior Free Pricing

- digital commerce on large (global) platforms comes with heterogeneous consumers and much demand variation across time and space
- sellers have weak information about demand distribution
- we will devise informationally minimal pricing policy that:

Prior Free Pricing

- digital commerce on large (global) platforms comes with heterogeneous consumers and much demand variation across time and space
- sellers have weak information about demand distribution
- we will devise informationally minimal pricing policy that:
(1) is independent of specific distribution of willingness-to-pay

Prior Free Pricing

- digital commerce on large (global) platforms comes with heterogeneous consumers and much demand variation across time and space
- sellers have weak information about demand distribution
- we will devise informationally minimal pricing policy that:
(1) is independent of specific distribution of willingness-to-pay
(2) exhibits profit guarantee across all distributions

Prior Free Pricing

- digital commerce on large (global) platforms comes with heterogeneous consumers and much demand variation across time and space
- sellers have weak information about demand distribution
- we will devise informationally minimal pricing policy that:
(1) is independent of specific distribution of willingness-to-pay
(2) exhibits profit guarantee across all distributions
- without any restrictions on demand, such as moment restrictions, support restrictions, etc., profit guarantee must be relative (or proportional) rather than absolute.

Profit Guarantee as Competitive Ratio

- a mechanism will be evaluated by the ratio of the realized profit to feasible surplus (=complete information / first-degree price discrimination profit)
- the profit guarantee / "competitive ratio" is the infinum of this ratio across all demand distributions
- term originated in analysis of online vs. offline algorithms to express related informational constraints

Two Classes of Pricing Problems

1. quality differentiated pricing problems

Mussa and Rosen (1978)

- linear willingness-to-pay for quality
- cost is increasing, convex function of quality

2. quantity differentiated pricing

Maskin and Riley (1984)

- concave willingness-to-pay for quantities
- constant marginal cost of producing additional units

Today's Talk

- quality differentiated pricing problems: Mussa and Rosen (1978)

Today's Talk

- quality differentiated pricing problems: Mussa and Rosen (1978)
(1) first pass: iso-elastic cost function

Today's Talk

- quality differentiated pricing problems: Mussa and Rosen (1978)
(1) first pass: iso-elastic cost function
(2) then, general cost functions

First Result: Positive Profit Guarantee

- profit guarantee / competitive ratio is strictly positive and bounded away from zero
- profit guarantee / competitive ratio is a simple monotone function of cost elasticity
- profit guarantee / competitive ratio is sharp:
- identify demand distribution under which robust policy coincides with Bayes optimal mechanism

Second Result: Constant Mark-Up

- derive indirect mechanism - quality tariff-that attains profit guarantee
- optimal tariff is a constant mark-up policy
- simple and transparent pricing policy that attains profit guarantee
- mark-up is determined by cost elasticity alone without reference to demand data, thus:
- cost based nonlinear pricing

One More Result: Consumer Surplus

- profit guarantee is solution of profit optimization problem
- solution is agnostic about consumer surplus
- yet, robust pricing rule generates large consumer surplus
- how large? for every cost elasticity, find the largest share of consumer surplus across all distributions (and Bayes optimal mechanisms)
- the maximum is attained by robust pricing rule for all demand distributions
- thus robust pricing policy succeeds by creating consumer surplus

Literature: Pricing and Competitive Ratio

- optimal monopoly pricing for single unit demand
- Neeman (2003), Maglaras (2009), Hartline and Roughgarden (2014), etc...
- with support $[1, h]$, competitive ratio: $1 /(1+\ln h)$
- competitive ratio vanishes as support restriction weakens
- single unit pricing requires randomized reserve price, i.e., many prices and assignment probabilities
- menu already arises for efficient allocation, now finds second use to hedge against demand uncertainty

Model

$$
4 \square>4 \text { 司 }>4 \equiv>4 \equiv>\text { 三 }
$$

Model

- buyer has value $v \in \mathbb{R}_{+}$(willingness-to-pay) for quality $q \in \mathbb{R}_{+}$

$$
u(v, q, t)=v \cdot q-t
$$

- value v is private information
- seller offers quality differentiated products q at cost

$$
c(q)=q^{\eta} / \eta, \quad \eta \in(1, \infty)
$$

- cost elasticity η :

$$
\frac{\frac{d c(q)}{c(q)}}{\frac{d q}{q}}=\frac{\frac{d c(q)}{d q}}{\frac{c(q)}{q}}=\frac{c^{\prime}(q) q}{c(q)}=\eta
$$

Payoffs and Menu

- seller chooses menu M (or direct mechanism) with qualities $Q(v)$ at prices $T(v)$:

$$
M \triangleq\{(Q(v), T(v))\}_{v \in \mathbb{R}_{+}}
$$

- incentive compatibility and participation constraints,

$$
\begin{aligned}
& v Q(v)-T(v) \geq v Q\left(v^{\prime}\right)-T\left(v^{\prime}\right) \\
& v Q(v)-T(v) \geq 0 ; \quad \forall v, v^{\prime} \in \mathbb{R}_{+}
\end{aligned}
$$

- profit and consumer surplus with menu M and value v :

$$
\Pi_{M}(v) \triangleq T(v)-c(Q(v))
$$

and

$$
U_{M}(v) \triangleq Q(v) v-T(v)
$$

First Degree Price Discrimination

- profit with complete information is profit with perfect or first-degree price discrimination

$$
\bar{\Pi}(v) \triangleq \max _{q}\{v q-c(q)\}=
$$

- supported by socially efficient allocation:

$$
\bar{Q}(v) \triangleq \arg \max _{q}\{v q-c(q)\}=v^{\frac{1}{\eta-1}}
$$

- first degree price discrimination captures social surplus

$$
\bar{\Pi}(v) \triangleq \max _{q}\{v q-c(q)\} \triangleq S(v)
$$

Second Degree Price Discrimination

- given distribution F :

$$
F \in \Delta([\underline{v}, \bar{v}]), \quad 0 \leq \underline{v}<\bar{v} \leq \infty
$$

- expected profit and surplus with M :

$$
\Pi_{F, M} \triangleq \mathbb{E}[T(v)-c(Q(v))]
$$

and

$$
U_{F, M} \triangleq \mathbb{E}[Q(v) v-T(v)]
$$

- Bayes optimal menu with distribution F :

$$
M_{F} \triangleq \underset{M}{\arg \max } \Pi_{F, M}
$$

- with some abuse of notation

$$
\Pi_{F}=\Pi_{F, M_{F}} \text { and } U_{F}=U_{F, M_{F}}
$$

Competitive Ratio

- we are interested in ratio of profit under unknown distribution to profit under known distribution
- competitive ratio of mechanism M :

$$
\inf _{F} \frac{\Pi_{F, M}}{\bar{\Pi}_{F}}
$$

- find optimal profit-guarantee menu M^{*} defined as:

$$
M^{*}=\underset{M}{\arg \max } \inf _{F} \frac{\Pi_{F, M}}{\bar{\Pi}_{F}}
$$

- as by-product find distribution of values that minimizes seller's normalized profit:

$$
\inf _{F} \max _{M} \frac{\Pi_{F, M}}{\bar{\Pi}_{F}}
$$

Analysis

$$
4 \square>4 \text { 可 }>4 \equiv>4 \equiv \gg \text { 三 }
$$

Profit Guarantee

- consider a given mechanism $M=\{Q(v), T(v)\}$
- how well is mechanism M performing across different demand distributions F ?
- how well is the mechanism M performing against a most challenging distribution F^{*} ?
- referred to as competitive ratio of M :

$$
\inf _{F} \frac{\Pi_{F, M}}{\bar{\Pi}_{F}}<1
$$

- profit-guarantee menu M^{*} maximizes competitive ratio

$$
M^{*}=\underset{M}{\arg \max } \inf _{F} \frac{\Pi_{F, M}}{\bar{\Pi}_{F}}
$$

Competitive Ratio and Adversarial Nature

- profit-guarantee menu M^{*} maximizes competitive ratio

$$
M^{*}=\arg \max \inf _{F} \frac{\Pi_{F, M}}{\bar{\Pi}_{F}}
$$

- minmax theorem suggest distribution F^{*} that minimizes

$$
\max _{M} \frac{\Pi_{F, M}}{\bar{\Pi}_{F}}
$$

- and thus

$$
F^{*}=\underset{F}{\arg \min } \max _{M} \frac{\Pi_{F, M}}{\bar{\Pi}_{F}}
$$

- and indeed there is a saddle-point:

$$
\max _{M} \inf _{F} \frac{\Pi_{F, M}}{\bar{\Pi}_{F}}=\min _{F} \sup _{M} \frac{\Pi_{F, M}}{\bar{\Pi}_{F}}
$$

First Step Toward Solution: Local

- competitive ratio is stated in terms of expectations:

$$
\inf _{F} \frac{\Pi_{F, M}}{\bar{\Pi}_{F}}=\inf \left\{\frac{\int(T(v)-c(Q(v))) d F(v)}{\int(\bar{T}(v)-c(\bar{Q}(v))) d F(v)}\right\}
$$

- given menu $M=\{T(v), Q(v)\}$, nature chooses demand F that lowers the profit guarantee
- nature puts weight on values v where guarantee is weak:

$$
\inf _{v}\left\{\frac{T(v)-c(Q(v))}{\bar{T}(v)-c(\bar{Q}(v))}\right\}
$$

- to defend against such attacks find menu M where pointwise (local) guarantee is as high as possible, uniformly across all v :

$$
\frac{T(v)-c(Q(v))}{\bar{T}(v)-c(\bar{Q}(v))}=k, \quad \forall v
$$

Second Step Toward Solution: Proportional

- social surplus is generated by efficient choice $\bar{Q}(v)$
- maintain profit guarantee by staying with a constant proportion s of $\bar{Q}(v)$:

$$
s \cdot \bar{Q}(v), \quad s \in(0,1)
$$

- gross revenue grows at rate s, cost increases at rate s^{η}
- find optimal trade-off

$$
\max _{s}\left\{s-s^{\eta}\right\} \Leftrightarrow s^{*}=\left(\frac{1}{\eta}\right)^{\frac{1}{\eta-1}}
$$

A Profit Guarantee Menu

- construct a menu with a profit guarantee

Theorem (Profit Guarantee Mechanism)

The menu M^{*} :

$$
Q^{*}(v)=s^{*} \cdot \bar{Q}(v)=\left(\frac{1}{\eta}\right)^{\frac{1}{\eta-1}} \cdot v^{\frac{1}{\eta-1}}
$$

generates a profit guarantee

$$
\frac{\Pi^{*}(v)}{\bar{\Pi}(v)}=\left(\frac{1}{\eta}\right)^{\frac{\eta}{\eta-1}}
$$

for every value v and a fortiori every distribution F.

- thus profit guarantee is share s^{*} powered by elasticity η

Return to Minmax

- profit-guarantee menu M^{*} must be Bayes-optimal
- given F, M^{*} solves

$$
\underset{M}{\arg \max } \frac{\Pi_{F, M}}{\bar{\Pi}_{F}} \Leftrightarrow \underset{M}{\arg \max } \Pi_{F, M}
$$

- candidate optimal quality Q^{*} is constant share s^{*} of socially efficient quality $\bar{Q}(v)$
- candidate optimal quality Q^{*} is obtained by virtual value proportional to value
- Pareto distribution uniquely generates virtual value that is linear in value

Pareto Distribution

- Pareto distribution with shape parameter $\alpha \in[1, \infty)$:

$$
F_{\alpha}(v) \triangleq \begin{cases}0, & \text { if } v<1 \\ 1-\frac{1}{v^{\alpha}}, & \text { if } v \geq 1\end{cases}
$$

- virtual value with Pareto distribution

$$
\phi(v) \triangleq v-\frac{1-F_{\alpha}(v)}{f_{\alpha}(v)}=v-\frac{v^{\alpha}}{\alpha v^{\alpha-1}}=\frac{\alpha-1}{\alpha} v
$$

- $\alpha=1$ is equal revenue distribution prominent in unit demand pricing analysis

Pareto Distribution and Virtual Values

- Pareto distribution and virtual values

Profit Guarantee Menu is Optimal

- profit guarantee gave us a specific lower bound, can we do better?

Theorem (Minmax Distribution)

Menu M^{*} is Bayes optimal for Pareto distribution α :

$$
\alpha=\frac{\eta}{\eta-1}
$$

and attains infimum:

$$
\inf _{F} \frac{\Pi_{F}}{\bar{\Pi}_{F}}=\left.\frac{\Pi_{F_{\alpha}}}{\bar{\Pi}_{F_{\alpha}}}\right|_{\alpha=\frac{\eta}{\eta-1}}=\left(\frac{1}{\eta}\right)^{\frac{\eta}{\eta-1}}
$$

- Pareto distribution $\alpha=\eta /(\eta-1)$: least normalized profit
- profit guarantee is a sharp bound

Consumer Surplus

- minmax solution generates particular pair of surplus sharing among seller and buyers

Corollary (Consumer Surplus with M^{*})

Menu M^{*} generates constant consumer surplus:

$$
\frac{U_{M^{*}}(v)}{\bar{\Pi}(v)}=\frac{U_{M^{*}}(v)}{S(v)}=\left(\frac{1}{\eta}\right)^{\frac{1}{\eta-1}}
$$

for every value v and a fortiori every distribution F.

- in profit-guarantee menu, each consumer receives the same share of the efficient social surplus.
- how does consumer surplus guarantee compare to consumer surplus attained across all Bayes optimal menus?

Maximum Consumer Surplus

- recall consumer surplus with known demand:

$$
U_{F}=U_{F, M_{F}}
$$

Corollary (Maximum Consumer Suplus)

The consumer surplus is bounded above as follows,

$$
\sup _{F} \frac{U_{F}}{S_{F}}=\left(\frac{1}{\eta}\right)^{\frac{1}{\eta-1}}
$$

and is attained by the Pareto distribution with shape parameter

$$
\alpha=\frac{\eta}{\eta-1}
$$

- profit guarantee concedes consumer surplus to stay near efficient allocation

Profit Share and Cost Elasticity

— Normalized Profits

- profit (share) guarantee

$$
(1 / \eta)^{\frac{\eta}{\eta-1}}
$$

- limit $\eta \rightarrow 1$ corresponds to nearly constant marginal cost
- limit $\eta \rightarrow \infty$ corresponds to selling an indivisible good.

Profit and Consumer Surplus

- profit and consumer surplus share move in opposite direction as cost elasticity increases

Social Surplus

- profit and cs move in opposite direction as η increases
- realized social surplus increases with cost elasticity η
- uniform lower bound $2 / e$

Indirect Mechanism

- indirect mechanism (tariff) asks price $P(q)$ for quality q
- marginal price for quality, the price-per-quality increment:

$$
P^{\prime}(q) \triangleq p(q)
$$

- for quality q the total payment is:

$$
P(q)=\int_{0}^{q} p(s) d s
$$

- incentive compatibility will imply that

$$
p(q(v))=Q^{-1}(q(v))=v
$$

Mark-Up Pricing

Corollary (Constant Mark-Up)

The menu M^{*} is implemented by offering quality increments $q \in \mathbb{R}$ at a price $p(q)$ satisfying:

$$
\frac{p(q)-c^{\prime}(q)}{c^{\prime}(q)}=\eta-1 \quad \Leftrightarrow p(q)=\eta c^{\prime}(q)
$$

- constant mark-up of cost:

$$
\eta>1
$$

- price depend on cost information only, demand information is entirely absent
- alternatively, expressing pricing in terms of Lerner's index:

$$
\frac{p(q)-c^{\prime}(q)}{p(q)}=\frac{\eta-1}{\eta}
$$

- again, a constant measure of market power

Contrast to Bayesian Optimal Menu

- for a given prior distribution F optimal quantity is:

$$
q(v) \in \arg \max _{q}\left\{\left(v-\frac{1-F(v)}{f(v)}\right) q-c(q)\right\}
$$

- first-order condition is given by:

$$
v-\frac{1-F(v)}{f(v)}-c^{\prime}(q(v))=0
$$

- incentive compatible transfers:

$$
T^{\prime}(v)=q^{\prime}(v) v
$$

- price per marginal unit of quality is given by:

$$
p(q(v))=\frac{T^{\prime}(v)}{q^{\prime}(v)}=v
$$

Demand Elasticity

- demand for quality q at incremental quality price $p(q(v))$:

$$
D(p(q(v)))=1-F(v)
$$

- resulting markup:

$$
\frac{p(q)-c^{\prime}(q)}{p(q)}=\frac{v-\left(v-\frac{1-F(v)}{f(v)}\right)}{v}=\frac{1-F(v)}{f(v) v}
$$

- rhs is negative of reciprocal of demand elasticity:

$$
\frac{1-F(v)}{f(v) v}=-\frac{\frac{D(p(v))}{p(v)}}{D^{\prime}(p(v))}
$$

- classic formula for Lerner's index

Lerner's Index

- classic formula for the Lerner's index:

$$
\frac{p(q)-c^{\prime}(q)}{p(q)}=\frac{1-F(v)}{f(v) v}=-\frac{\frac{D(p(v))}{p(v)}}{D^{\prime}(p(v))}
$$

- Bayes-optimal mechanism determined by demand elasticity- expressed in terms of product of value v and hazard rate $f(v) /(1-F(v))$
- profit-guarantee menu is determined only by cost elasticity

$$
\frac{p(q)-c^{\prime}(q)}{p(q)}=\frac{\eta-1}{\eta}
$$

- profit-guarantee is accomplished across all possible distribution of values, no reference to specific distribution

Constant Mark-Up and Mirrlees

- we did not impose any restrictions on distribution of willingness-to-pay
\longrightarrow no monotonicity or regularity restrictions on F
\longrightarrow no support restrictions on F
- critical demand is Pareto with unbounded support
- thus "no distortion at the top" fails to hold, instead constant mark-up
- related insights in optimal taxation literature

Beyond Constant Elasticity

Non-Constant Cost Elasticity

- pointwise cost elasticity:

$$
\eta(q)=\frac{d c(q)}{d q} \frac{q}{c(q)}
$$

- pointwise marginal cost elasticity

$$
\gamma(q)=\frac{d c^{\prime}(q)}{d q} \frac{q}{c^{\prime}(q)}
$$

- cost with constant elasticity has simple relation:

$$
\gamma(q)=\eta(q)-1
$$

Approximation

- use constant elasticity informed pricing
- obtain profit guarantees for non-constant elasticity
- weaker guarantees, transparent approximation

Proportional Mark Up Pricing

- tariff $P(q)$ and price $p(q)$ for quality increment:

$$
p(q)=P^{\prime}(q)
$$

- price per quality proportional to marginal cost elasticity

$$
\widehat{p}(q) \triangleq(1+\gamma(q)) c^{\prime}(q)
$$

- tariff in terms of markup:

$$
\frac{\widehat{p}(q)-c^{\prime}(q)}{c^{\prime}(q)}=\gamma(q)
$$

Lower Bound

- establish a relationship between profit and social surplus
- profit with v is equal surplus with w, where

$$
w(v)<v
$$

Lemma (Profit as Downward Shifted Social Surplus)
The tariff attains profit as downward shifted social surplus:

$$
w(v)=\frac{v}{1+\gamma(q(v))}
$$

and

$$
\Pi(v)=S(w(v))
$$

- monotone relationship between profit and social surplus

Bounded Cost Elasticity

- consider bounds on marginal cost elasticity:

$$
\gamma(q) \in[\underline{\gamma}, \bar{\gamma}], \quad \forall q
$$

Proposition
Suppose the elasticity is bounded $\gamma(q) \in[\underline{\gamma}, \bar{\gamma}], \forall q$, then:

$$
\frac{\Pi(v)}{S(v)} \geq\left(\frac{1}{\bar{\gamma}+1}\right)^{\underline{\underline{\gamma}+1}}
$$

- relative to constant elasticity, bound is weaker as base and exponent are formed by lower and upper bound of marginal cost elasticity
- coincides with constant elasticity result if $\underline{\gamma}=\bar{\gamma}$

Sharp Bound

- consider class of increasing cost elasiticity:

$$
\gamma^{\prime}(q) \geq 0 \text { and } \lim _{q \rightarrow \infty} \gamma(q)=\bar{\gamma}<\infty
$$

Proposition

If marginal cost elasticity $\gamma(q)$ is increasing with limit $\bar{\gamma}$, then proportional pricing generates decreasing ratio:

$$
\frac{\Pi(v)}{S(v)} \geq\left(\frac{1}{\bar{\gamma}+1}\right)^{\frac{\bar{\gamma}+1}{\bar{\gamma}}}
$$

and the bound is attained in the limit $v \rightarrow \infty$.

- a generalization of Pareto distribution with variable shape parameter delivers a Bayesian optimal mechanism

Additional Demand Information

Additional Demand Information

- we have worked without any information about demand
- with additional information about demand, we may increase the profit guarantee
- suppose we know lower and upper bounds on the support of the value distribution, thus

$$
0 \leq \underline{v}<\bar{v}<\infty
$$

New Results

- main insights of Theorem 1 and 2 remain in the presence of additional support information:
(1) there exists a minmax solution
(2) competitive ratio between realized profit and social surplus are constant at every point in support of demand
- some changes with finite support:
(1) optimal menu does not display constant mark-up anymore
(2) "no-distortion at the top" result re-emerges

Minmax Solution

- find allocation $q(v)$ and distribution $F(v)$ such that:

$$
\max _{\{q:[v, \bar{v}] \rightarrow \mathbb{R}\}} \inf _{F \in \Delta[v, \bar{v}]} \frac{\int \Pi_{q}(v) d F(v)}{\int S(v) d F(v)},
$$

- denote a solution by $\left(q^{*}, F^{*}\right)$.

Proposition (Existence)

There exists $\left(q^{*}, F^{*}\right)$ such that:
$\max _{\{q:[\underline{v}, \bar{v}] \rightarrow \mathbb{R}\}} \inf _{F \in \Delta[\underline{v}, \bar{v}]} \frac{\int \Pi_{q}(v) d F(v)}{\int S(v) d F(v)}=\min _{F \in \Delta[\underline{v}, \bar{v}]} \sup _{\{q:[v, \bar{v}] \rightarrow \mathbb{R}\}} \frac{\int \Pi_{q}(v) d F(v)}{\int S(v) d F(v)}$.
And q^{*} is the optimal Bayesian mechanism when the distribution is F^{*}.

Construction of Constant Competitive Ratio

- define a family of allocations, parameterized by $\beta \in[0,1]$, denoted by $q_{\beta}:\left[\underline{v}, v_{\beta}\right] \rightarrow \mathbb{R}$
- defined implicitly by:

$$
\frac{\Pi_{q_{\beta}}(v)}{S(v)}=\beta
$$

- upper bound of domain v_{β} is upper bound on which condition can be maintained

Proposition (Constant Profit-Surplus Ratio)

(1) The profit-guarantee mechanism q^{*}, is given by $q^{*}(v)=q_{\beta}(v)$, with β such that $v_{\beta}=\bar{v}$.
(2) The allocation rule q_{β} is increasing in β and v_{β} is decreasing in β.

Upper Bound

- with finite support there is no explicit solution for competitive ratio even with constant elasticity
- provide an upper bound by means of a Bayes optimal mechanism
- converges to exact solution as upper boud of support diverges to ∞.

Proposition (Bounded Support)

There exists a distribution F with support in $[\underline{v}, \bar{v}]$ such that the Bayesian optimal mechanism generates normalized profits:

$$
\frac{\Pi}{S}=\frac{1}{\eta^{\frac{\eta}{\eta-1}}}+\left(1-\frac{1}{\eta^{\frac{\eta}{\eta-1}}}\right) \frac{1}{1+\frac{\eta}{\eta-1} \log (\bar{v})}
$$

- constitutes an upper bound on profit guarantee

Approximation and Finite Support

- how does competitive ratio degrade with size of support?

- here $\eta=2, \underline{v}=1$; result are invariant for \bar{v} / \underline{v}

Boundaries of Surplus Sharing

Constrained Efficient Surplus Sharing

- profit guarantee is attained as Bayes optimal outcome for specific Pareto distribution
- upper frontier of the feasible consumer surplus and profit share across all distributions and Bayes optimal solutions:

$$
\sup _{F}\left\{\frac{U_{F}}{S_{F}}: \quad \frac{\Pi_{F}}{S_{F}}=\beta\right\}
$$

- identify maximum consumer surplus given profit is greater than or equal to some fraction $\beta \in[0,1]$ of the social surplus

Surplus Frontier

- consider all possible distributions F

Proposition (Surplus Frontier)

The surplus frontier is given by:

$$
\sup _{F}\left\{\frac{U_{F}}{S_{F}}: \quad \frac{\Pi_{F}}{S_{F}}=\beta\right\}=\frac{\eta}{\eta-1}\left(\beta^{\frac{1}{\eta}}-\beta\right) .
$$

The constraint is feasible if and only if $\beta \in\left[1 / \eta^{\frac{\eta}{\eta-1}}, 1\right]$.

- lower bound is given by profit guarantee

Surplus Frontier

- surplus frontier and elasticity η

- all equilibrium points on surplus frontier by Pareto distributions with different shape parameters
$\alpha \geq \eta /(\eta-1)$

Lower Bound on Social Surplus

- we note that:

$$
\left.\frac{U_{P_{\alpha}}}{S_{P_{\alpha}}}\right|_{\alpha=1}=0 \quad \text { and }\left.\quad \frac{\Pi_{P_{\alpha}}}{S_{P_{\alpha}}}\right|_{\alpha=1}=\frac{1}{\eta}
$$

- when distribution of values is the Pareto distribution with shape parameter $\alpha=1$ the consumer's surplus is 0

Proposition (Lower Bound on Social Surplus)
When $\eta \geq 2$, social surplus is bounded below by:

$$
\inf _{F} \frac{U_{F}+\Pi_{F}}{S_{F}}=\left.\frac{U_{P_{\alpha}}+\Pi_{P_{\alpha}}}{S_{P_{\alpha}}}\right|_{\alpha=1}=\frac{1}{\eta}
$$

Entire Surplus Set I

- Pareto Distributions with $\alpha \geq 2$
- Pareto Distributions with $1 \leq \alpha \leq 2$
- Truncated Pareto Distributions with Shape Parameter $\alpha=1$
- Feasible Distribution of Values

Figure: Equilibrium feasible normalized profits and consumer surplus for quadratic cost, $\eta=2$

Entire Surplus Set II

Figure: Illustration of Consumer Surplus and Profits for Different Distributions with Quadratic Costs

Conclusion

- cost-based rather than demand-based pricing can attain positive profit guarantee, and even higher social surplus guarantee
- menu in nonlinear pricing acts as a hedge against demand uncertainty
- menu provides stronger profit guarantee than could be anticipated from single-unit analysis
- robust menu attains guarantee through simple, transparent mark-up pricing

Variations

Quantity Discrimination

- provide a profit guarantee for the case of multiplicatively separable utility functions:

$$
u(v, q)=v \frac{\eta}{\eta+1} q^{\frac{\eta+1}{\eta}}
$$

for some

$$
\eta \in(-\infty,-1)
$$

- utility function is increasing and concave
- cost of production is linear $c(q)=c q$, wlog $c=1$
- demand is inverse of marginal utility:

$$
D(v, p) \triangleq u_{q}^{-1}(v, p)
$$

- demand elasticity is

$$
\frac{\partial D(v, p)}{\partial p} \frac{p}{D(v, p)} \triangleq \eta
$$

Profit Guarantee with Quantity Discrimination

- Pareto distribution with shape parameter $\alpha \in(1, \infty)$

Theorem (Profit Guarantee with Quantities)
The uniform-price menu $t=p^{*} q$ with

$$
p^{*}=\eta /(\eta+1)>1
$$

guarantees profits:

$$
\Pi^{*}(v)=(\eta /(\eta+1))^{\eta} S(v)
$$

for every v and every F.

- profit-guarantee menu is Bayes optimal with Pareto distribution and $\alpha=|\eta|$:

$$
\lim _{\alpha \rightarrow|\eta|} \frac{\Pi_{P_{\alpha}}}{S_{P_{\alpha}}}=\left(\frac{\eta}{\eta+1}\right)^{\eta}
$$

Nonlinear Utility

- nonlinearity in utility function:

$$
u(v, q, t)=h(v, q)-t
$$

where h is concave in q given v distributed with F

- cost of production remains linear $c(q)=c q$ wlog $c=1$
- demand function is inverse of marginal utility:

$$
D(v, p) \triangleq h_{q}^{-1}(v, p)
$$

- demand elasticity

$$
\eta(v, p) \triangleq \frac{\partial D(v, p)}{\partial p} \frac{p}{D(v, p)}, \quad \eta(v, p)<0, \forall v, p
$$

- all $p \in[1, \infty]$,

$$
\eta(v, p) \text { is non-increasing in } p \text { and } \eta(v, p) \in[\bar{\eta}-1, \bar{\eta}]
$$

for some $\bar{\eta} \in(-\infty,-1)$

Robust Profit Guarantee

- for given $D(v, p)$, optimal uniform price \hat{p} :

$$
\hat{p}=\arg \max _{p} D(v, p)(p-c)
$$

- first-order condition:

$$
\hat{p}=c \frac{\eta(v, \hat{p})}{\eta(v, \hat{p})+1}
$$

- and thus

$$
\hat{p} \leq c \frac{\bar{\eta}}{\bar{\eta}+1}
$$

Robust Profit Guarantee

Theorem (Robust Profit-Guarantee Mechanism)
The uniform-price menu $t=p^{*} q$, where

$$
p^{*}=\frac{\bar{\eta}}{\bar{\eta}+1}
$$

guarantees a profit share of the social surplus:

$$
\Pi^{*} \geq\left(\frac{\bar{\eta}}{\bar{\eta}+1}\right)^{\bar{\eta}} S
$$

Procurement

Procurement

- single buyer procures from sellers with private information about their cost
- robust procurement policies by competitive ratio
- seller has cost $\theta \cdot c(q)$ to provide a good of quality q
- θ is private information for seller with distribution F
- costs have constant elasticity

$$
\theta c(q)=\theta \frac{q^{\eta}}{\eta}, \quad \eta>1
$$

Socially Efficient Procurement

- efficient social surplus:

$$
S(\theta)=\max _{q}\{q-\theta c(q)\}
$$

- efficient quality is inversely related to cost parameter θ :

$$
q^{*}=\left(\frac{1}{\theta}\right)^{\frac{1}{\eta-1}}
$$

- generates a social surplus of:

$$
S(\theta)=\frac{\eta-1}{\eta}\left(\frac{1}{\theta}\right)^{\frac{1}{\eta-1}}
$$

Surplus Guarantee

- constant p for every marginal unit of quality:

$$
\theta c^{\prime}(q)=p \Longleftrightarrow q=\left(\frac{p}{\theta}\right)^{\frac{1}{\eta-1}}
$$

Corollary (Surplus Guarantee Mechanism)
The surplus guarantee menu has constant unit price

$$
p=1 / \eta
$$

for incremental quality and the buyer is guaranteed a share:

$$
\left(\frac{1}{\eta}\right)^{\frac{1}{\eta-1}}
$$

of the efficient social surplus.

Procurement with Concave Cost

- buyer has a utility function $u(q)$

$$
u(q)=\eta q^{(\eta+1) / \eta} /(\eta+1)
$$

with a demand elasticity:

$$
\eta \in(-\infty,-1)
$$

- seller has cost

$$
c(q)=\theta \cdot q
$$

- marginal cost θ is private information for the seller and given by a common prior distribution

Socially Efficient Procurement

- first-best surplus is:

$$
S(\theta)=\max _{q}\{u(q)-\theta q\}
$$

- efficient quantity is:

$$
q^{*}=\theta^{\eta}
$$

- social surplus is

$$
S(\theta)=-\frac{\theta^{\eta+1}}{\eta+1}
$$

Surplus Guarantee

Corollary (Surplus Guarantee Mechanism)

The surplus guarantee menu has constant mark-up

$$
p(q)=\frac{\eta+1}{\eta} q^{1 / \eta}
$$

for quantity and the buyer is guaranteed a share:

$$
\left(\frac{\eta}{\eta+1}\right)^{\eta+1}
$$

of the optimal social surplus.

