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Abstract

Motivated by recent concerns surrounding the use of shared pricing algorithms by

competing firms, we study repeated Bertrand competition when market demand or

the cost of serving the market is observed by an intermediary (or “algorithm”) that

optimally discloses demand or cost information to maximize firms’collusive profit. We

assume that profit is affi ne in the unknown state, so expected profit is determined by the

expected state. We show that an upper censorship disclosure policy is optimal, which

leads to price rigidity and supra-monopoly prices at some states. Under a general

concavity condition, improving the algorithm’s accuracy reduces expected consumer

surplus. When the state is positively correlated over time, the algorithm discloses

more information when recent demand was lower or costs were higher.
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1 Introduction

Firms increasingly use automated algorithms to set prices and other competitive variables,

a development that has raised a range of regulatory and antitrust concerns (Mehra, 2015;

Ezrachi and Stucke, 2017; Calvano et al., 2020a). A particular focus of some prominent

recent cases is algorithms that facilitate information-sharing among competing firms while

recommending prices. For example, RealPage, Inc. is a company that markets revenue

management software to commercial landlords. RealPage’s software gathers detailed, near

real-time information on apartment prices and occupancy rates from its users and uses this

data– including data on market conditions gleaned from competitors– to recommend prices.

Following a history of private litigation against RealPage, in August 2024 the US Depart-

ment of Justice and eight state attorneys general sued RealPage, asserting that, “At bottom,

RealPage is an algorithmic intermediary that collects, combines, and exploits landlords’com-

petitively sensitive information,”which constitutes an “unlawful scheme to decrease compe-

tition among landlords,”(USDOJ 2024a,b; see also Calder-Wang and Kim, 2024). Similar

algorithmic intermediaries have recently arisen in a number of other industries, including

retail gasoline pricing (A2i Systems and Kalibrate; see Assad et al., 2024) and hotel room

pricing (Rainmaker; see Harrington, 2024). In addition, closely related concerns have also

been raised regarding some offl ine cartel facilitators, such as the Swiss consulting firm AC-

Treuhand, which was prosecuted by the European Commission for facilitating several Euro-

pean industrial cartels by disclosing competitively sensitive information and recommending

prices and market allocations (Harrington, 2006; Marshall and Marx, 2012).

Motivated by this type of setting, this paper develops a simple model of how an inter-

mediary that possesses more detailed demand or cost information than individual firms can

selectively disclose this information to maximize the firms’ collusive profit.1 We work in

the canonical setting of repeated Bertrand competition with stochastic demand, introduced

by Rotemberg and Saloner (1986).2 To get a stark and tractable model, we assume that

1The model is intended as a benchmark, and it does not attempt to completely capture the complex
industries mentioned above. For example, in practice the objective of an intermediary like RealPage may or
may not be maximizing collusive profit, and the intermediary’s information may or may not a superset of
the firms’. We discuss these issues later on.

2Stochastic demand and stochastic cost are equivalent up to a sign change in our model. For concreteness,
we mostly discuss the stochastic demand case.
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the current demand state is observed only by the intermediary (henceforth, the algorithm),

which then discloses information about the state according to a known policy. We also make

the key technical assumption that profit is affi ne in the unknown state, so that, for any

distribution over states, expected profit is determined by the expected state. Under these

assumptions, we characterize the disclosure policy and the (pure strategy, subgame perfect)

equilibrium that maximizes the firms’profits.

Our main result is that optimal information disclosure takes a simple upper censorship

form: there is a cutoffdemand state ŝ such that, if the current demand state s is below ŝ, the

algorithm discloses s and recommends the corresponding monopoly price pm (s) to all firms;

and if the current demand state s is above ŝ, the algorithm discloses only the event {s > ŝ}

and recommends the monopoly price conditional on this information, pm (E [s|s > ŝ]). The

optimal equilibrium thus features rigid prices: prices are constant unless the demand state

falls below ŝ. It also involves supra-monopoly prices for a range of demand states: for

demand states s in the interval (ŝ,E [s̃|s̃ > ŝ]), the equilibrium price is pm (E [s̃|s̃ > ŝ]), which

is greater than the monopoly price in state s, pm (s), whenever the monopoly price pm (·) is

an increasing function of demand.

The logic of these results is fairly straightforward. As in Rotemberg and Saloner’s model,

firms are most tempted to undercut the collusive price when demand is high, as this is when

the static monopoly profit Πm (s) is largest relative to the equilibrium continuation payoff.

In Rotemberg and Saloner’s analysis– which is identical to the special case of our model

where the algorithm fully discloses the demand state– the cartel responds by reducing prices

when demand is high, which reduces current-period profit and hence reduces the current-

period deviation gain. (This is the logic of Rotemberg and Saloner’s “price wars during

booms.”) However, when an algorithm controls the firms’information, it is more profitable

to reduce profit at high demand states by pooling these states with lower demand states

and recommending the monopoly price conditional on the disclosed information, rather than

cutting prices. The technical reason why this is so is that the firms’“capped monopoly

profit,”min {Πm (s) ,Πmax}– where Πmax is the maximum profit that the firms can attain

in equilibrium in a single period without violating incentive constraints– is a “convex-then-

concave”function of s, and it is well-known that the optimal disclosure policy with a convex-
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then-concave objective function is upper censorship (Kolotilin, 2018; Dworczak and Martini,

2019; Kolotilin et al., 2022).

The optimal collusive equilibrium displays clean comparative statics. A decrease in the

number of firms or an increase in the discount factor increases collusive profit and– more

interestingly– makes collusive prices more flexible. The logic is that higher profits and more

flexible prices go hand-in-hand, because the purpose of rigid prices is to deter deviations,

which is less necessary when equilibrium continuation payoffs are higher. We also show

that prices are higher (and hence consumer surplus is lower) at each demand state under

the optimal information disclosure policy as compared to the full disclosure case studied by

Rotemberg and Saloner. Finally, we provide a simple condition– concavity of consumer sur-

plus in s under monopoly pricing– under which improving the algorithm’s accuracy reduces

expected consumer surplus. The latter two results speak directly to antitrust concerns sur-

rounding algorithmic information-sharing. In particular, while prior studies have found an

ambiguous affect of improved algorithmic demand prediction on consumer surplus (Sugaya

and Wolitzky, 2018; Miklos-Thal and Tucker, 2019), our conclusion is more unambiguously

negative. The reason is that prior studies assumed that the algorithm fully discloses its infor-

mation to firms, while we assume that it selectively discloses its information to maximize firm

profits, and therefore conceals information that would lead to price cuts if it were disclosed.

Thus, while Miklos-Thal and Tucker (2019, p. 1553) find “somewhat reassuring results for

antitrust authorities who are worried about the implications for anticompetitive and collu-

sive behavior of the digital environment,”we can unfortunately offer no such reassurances

for algorithms that selective disclose their information to maximize collusive profit.

Finally, we generalize the model by letting demand persist over time, following a Markov

process. Here the main results from the iid case go through, and there are also some new

results. For example, we show that when demand is positively correlated over time, the algo-

rithm discloses more information when recent demand was lower. (The opposite result holds

in the case of negatively serial correlation.) The intuition is that with positive serial corre-

lation, firms are more pessimistic about demand– and thus less tempted to deviate– when

recent demand was lower, so the algorithm can disclose more information without prompting

a deviation. We also show that the optimal collusive price is no longer necessarily equal to
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the monopoly price for the disclosed mean demand, and that, while price is always monotone

in current demand (as in the iid case and in contrast to Rotemberg and Saloner), it can be

non-monotone in the previous period’s demand, so that the expected price conditional on the

last-period demand can display a form of countercyclicality similar to that in Rotemberg and

Saloner. Finally, we show by example that the effect of demand persistence on the amount

of information disclosure, collusive profit, and consumer surplus can all be non-monotone.

The remainder of the paper is organized as follows. Following a discussion of the litera-

ture, Section 2 presents the main model with iid demand or cost states. Section 3 solves the

model and discusses its implication. Section 4 contains the extension to a persistent state.

Section 5 concludes.

Related literature. We contribute to the literatures on pricing algorithms, information-

sharing among colluding firms, and optimal information disclosure.

Much of the recent literature on pricing algorithms studies how independent algorithms

can learn to set supra-competitive prices (Calvano et al., 2020b; Klein, 2021; Asker, Fersht-

man, and Pakes, 2024; Banchio and Mantegazza, 2024), as well as the commitment value

of adopting such algorithms (Cooper et al., 2015; Salcedo, 2015; Brown and MacKay, 2023;

Hansen, Misra, and Pai, 2021; Lamba and Zhuk, 2024). This paper instead studies how

a shared algorithm with demand information superior to the firms’optimally discloses in-

formation to facilitate collusion. Sugaya and Wolitzky (2018, Example 3) and Miklos-Thal

and Tucker (2019) show that the effect of disclosing demand information on collusive profit

and consumer surplus is generally non-monotone, as it facilitates more accurate deviations

as well as more accurate on-path pricing. O’Connor and Wilson (2019), Martin and Rasch

(2022), and Bonatti, Fiocco, and Piccolo (2024) document similar effects under imperfect

monitoring. However, none of these papers characterize optimal disclosure.3

Harrington (2022) notes a reason why our model might not be a good fit for a third-party

company like RealPage that designs and sells a pricing algorithm to competing firms: if firms

independently decide whether to purchase and adopt the algorithm, a profit-maximizing

algorithm designer’s objective may be to maximize the difference in profit between a firm

3Bonatti, Fiocco, and Piccolo (2024) focus on a comparison between revealing demand information before
and after firms set prices.
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that adopts and one that does not, rather than just the profit of adopters. Incorporating

this consideration could be an interesting direction for future research. At the same time,

Harrington (2024) also considers the case of coordinated adoption, which leads to a similar

designer objective to ours.

The broader literature on information-sharing among colluding firms considers a range

of mechanisms, including the impact of improved monitoring (Abreu, Milgrom, and Pearce,

1991; Kandori, 1992; Harrington and Skrzypacz, 2011; Awaya and Krishna, 2016), the bene-

fits of maintaining strategy uncertainty (Bernheim and Madsen, 2017; Sugaya and Wolitzky,

2018; Ortner, Sugaya, and Wolitzky, 2024; Kawai, Nakabayashi, and Ortner, 2024), and the

allocative benefits of communication under incomplete information (McAfee and McMillan,

1992; Athey and Bagwell, 2001; Athey, Bagwell, and Sanchirico, 2004; Skrzypacz and Hopen-

hayn, 2004; Hanazono and Yang, 2007). These papers find that concealing various types of

information can be advantageous for cartels. However, we are not aware of any prior work

that studies optimal information disclosure for facilitating collusion.4

Optimal information disclosure has been studied extensively in static environments (Rayo

and Segal, 2010; Kamenica and Gentzkow, 2011), especially in the affi ne case we focus

on (Gentzkow and Kamenica, 2106; Kolotilin et al., 2017; Kolotilin, 2018; Dworczak and

Martini, 2019), as well as in some specific dynamic settings (e.g., Ely, 2017; Renault, Solan,

and Vieille, 2017). From a technical perspective, the closest paper is Kolotilin and Li (2021).

Kolotilin and Li study a repeated cheap talk game with voluntary transfers. They show that

the problem of characterizing the optimal equilibrium in this game can be reduced to a static

information design problem, much as we do here.5 However, this reduction works for different

reasons in the two papers: in Kolotilin and Li, the key is the availability of transfers; for

us, the key is the fact that static deviation gains are proportional to on-path payoffs under

Bertrand competition. Kolotilin and Li’s reduction also imposes a monotonicity constraint,

which is absent in our setting. Kolotilin and Li (Proposition 4) derive conditions under which

upper censorship is optimal, which include shape restrictions on utilities beyond affi neness.

For us, no conditions are required beyond affi neness, due again to the special structure of

4Hickok (2024) studies optimal information disclosure by a platform that takes a share of firms’revenue,
finding that full disclosure is optimal.

5Kuvalekar, Lipnowski, and Ramos (2022) also reduce a repeated communication game to a static one.
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Bertrand competition. Once the reduction to static information design (Lemma 1) is in

place, our proof is essentially the same as Kolotilin and Li’s (as well as Kolotilin, 2018;

Dworczak and Martini, 2019; and others). However, the structure of Bertrand competition

also lets us handle the Markov case.

2 A Model of Collusion with Information Disclosure

Prices and profits. We consider Bertrand competition among n firms with stochastic

demand or a stochastic common cost of serving the market. In each period, a demand or

cost state s ∈ [s, s̄] is drawn independently from an atomless distribution F , and each firm i

sets a non-negative price pi. A firm’s information about s when setting its price is described

below. The lowest-price firm i serves the entire market and makes profit Π (pi, s). The

market is shared equally in case of a tie.

We focus on the case where s measures market demand. In this case, we assume that

Π (0, s) = 0 for all s (normalizing costs to 0); that Π (p, s) is continuous in p with a well-

defined monopoly profit Πm (s) = maxp Π (p, s) for each s; and that Π (p, s) is affi nely in-

creasing in s for each p: that is, Π (p, s) ≤ Π (p, s̄) and

Π (p, s) =
s̄− s
s̄− sΠ (p, s) +

s− s
s̄− sΠ (p, s̄) for all p, s.

In the alternative case where s measures a common cost of serving the market, the

corresponding assumptions are slightly different. Here, we assume that s ≥ 0 and Π (p, s) ≤ 0

for all p < s with equality at p = s; that Π (p, s) is continuous in p with a well-defined

monopoly profit Πm (s) for each s; and that Π (p, s) is affi nely decreasing in s for each p.6

Affi neness in s is our key assumption. It has two important implications. First, expected

profit is measurable with respect to mean demand: for any price p and any distribution

of demand states µ ∈ ∆ (S), the expected profit from serving the market at price p is

6Another interpretation of the model is that the firms are bidders in a procurement auction, and the reserve
price or the cost of fulfilling the contract is privately observed by an intermediary who coordinates bid-rigging
among the firms. An example that fits this interpretation is the Kumatori Contractors Cooperative studied
by Kawai, Nakabayashi, and Ortner (2024). Interestingly, this organization took dramatic steps to limit
bidders’information about the cost of completing the construction projects at auction (Kawai, Nakabayashi,
and Ortner, pp. 24—25).
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Eµ [Π (p, s)] = Π (p,Eµ [s]). Second, monopoly profit Πm (s) = maxp Π (p, s) is increasing

and convex in s as the maximum of increasing affi ne functions.7

Affi neness in s is a strong assumption, but it is satisfied in some important cases. First,

affi neness holds if there is a binary underlying demand or cost state s ∈{s, s̄} that is re-

alized after prices are set, where s is a continuous signal of s satisfying Pr (s = s̄|s) =

(s− s) / (s̄− s). Second, affi neness holds in the canonical case of linear demand with an

unknown intercept, where demand equals D (p, s) = s − p, and hence Π (p, s) = p (s− p).8

Third, affi neness holds for linear demand with a known intercept normalized to 1 but an

unknown cost s, so that Π (p, s) = (p− s) (1− p).

Information. We assume that the firms do not directly observe the state s. Instead,

s is observed by an intermediary– which we refer to as the algorithm– which maps s to a

signal according to a known rule. We assume that the signal is publicly observed by all

firms. Importantly, this assumption restricts the scope of our analysis to public information

disclosure and rules out more general private communication.9 Since expected profit is

measurable with respect to mean demand, it is without loss to view the intermediary as

choosing a distribution G of the firms’posterior expectations of s. By Blackwell (1953) (see

also Strassen, 1965; Kolotilin, 2018), such a distribution is consistent with Bayesian updating

of the prior F if and only if G ∈ MPC (F ), the set of mean-preserving contractions of F .

We refer to such a distribution G as a disclosure policy.

Repeated game equilibrium. The above game is repeated in discrete time with a

common discount factor δ. In principle, the algorithm can choose a different disclosure

policy G each period, but we will see that there is no benefit from doing so in the current

model with an iid state.10

7In the stochastic cost case, Πm (s) is decreasing and convex in s.
8These two cases both nest Example 3 of Sugaya and Wolitzky (2018), which assumes a binary demand

state and linear demand. The first case also nests the model of Miklos-Thal and Tucker (2019), which
assumes a binary demand state and unit demand. Our analysis also applies for linear demand subject to
a non-negativity constraint, D (p, s) = max {s− p, 0}, so long as s ≥ s̄/2, so that demand D (pm (s) , s′) is
non-negative for any monopoly price pm (s) and demand state s′.

9With private signals, in each period the problem would become one of characterizing the optimal Bayes
correlated equilibrium in a game with a continuum of states and actions and discontinuous payoffs. This
problem is generally intractable. For example, see Smolin and Yamashita (2023) for results with concave
payoffs, as well as a recent literature review.
10In Section 4, the state follows a Markov process, and we will see that the optimal disclosure policy
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Our solution concept is pure strategy, subgame perfect equilibrium (henceforth, “equi-

librium”). Here, pure strategies mean that, in each period, each firm i sets a deterministic

price pi (s) as a function of the realized mean demand state s and the history of past mean

demand states and all firms’past prices.11

3 Optimal Information Disclosure

This section characterizes the disclosure policy and equilibrium that maximize collusive

profits (the sum of the firms’payoffs). We reduce this problem to a static information design

problem in Section 3.1 and then solve it in Section 3.2. We then discuss the model’s empirical

predictions, consumer welfare implications, and comparative statics in Section 3.3.

3.1 Reduction to Static Information Design

For any V ≥ 0, define

Πmax (δ, n, V ) =
δV

(1− δ) (n− 1)
.

Next, define V ∗ as the greatest fixed point of the equation

V = max
G∈MPC(F )

EG [min {Πm (s) ,Πmax (δ, n, V )}] . (1)

Note that the right-hand side of (1) is bounded and continuous in V , so V ∗ is well-defined

by the intermediate value theorem.

We show that optimal collusive profit equals V ∗ and that this profit level is attained by

an equilibrium that is symmetric (in that pi (s) is always the same for each firm i), stationary

(in that the disclosure policy G is the same in every period and, on path, pi (s) is independent

of the history of demand realizations), and of a grim trigger form (in that all firms obtain

zero profits following any deviation).

depends on the previous period’s state.
11Restricting to pure strategies is standard but is not without loss of generality, as randomization can

deter deviations by making firms unsure of the winning price. See, e.g., Bernheim and Madsen (2017) and
Kawai, Nakabayashi, and Ortner (2024).
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Lemma 1 Optimal collusive profit equals V ∗ and is attained by a symmetric, stationary,

grim trigger equilibrium. Moreover, a disclosure policy G is optimal if and only if it solves

the maximization problem in (1) for V = V ∗

Lemma 1 reduces the problem of finding an optimal equilibrium to the static information

design problem on the right-hand side of equation (1), where V = V ∗ satisfies the fixed point

condition.

Proof. We first show that there exists a symmetric, stationary, grim trigger equilibrium

that attains collusive profit V ∗. For each s, let pm (s) ∈ argmaxp Π (p, s) be a monopoly

price in state s, and let

p (s) =

 pm (s) if Πm (s) ≤ Πmax (δ, n, V ∗) ,

min {p : Π (p, s) = Πmax (δ, n, V ∗)} if Πm (s) > Πmax (δ, n, V ∗) .

Note that p (s) is well-defined by the intermediate value theorem, as Π (0, s) = 0 and Π (p, s)

is continuous in p.12 Let G∗ ∈ argmaxG∈MPC(F ) EG [min {Πm (s) ,Πmax (δ, n, V ∗)}]. Consider

disclosure policy G∗, together with the strategy profile where all firms price at p (s) whenever

mean demand s realizes on path, and all firms price at zero off path. This is a symmetric,

stationary, grim trigger strategy profile, which yields collusive profit V ∗ by construction. To

see that it is an equilibrium, note that a firm’s best deviation when realized mean demand

is s is to price just below p (s): this is immediate if p (s) = pm (s) and otherwise follows

because p (s) is the smallest price p satisfying Π (p, s) = Πmax (δ, n, v), so that Π (p′, s) <

Πmax (δ, n, V ∗) for all p′ < p (s). This deviation wins the entire market in the current period,

but forfeits an expected profit of V ∗/n in every future period. Thus, the strategy profile is

an equilibrium if and only if, for all s, we have

(1− δ) Π (p (s) , s) ≤ 1

n
((1− δ) Π (p (s) , s) + δV ∗) ⇐⇒

Π (p (s) , s) ≤ δV ∗

(1− δ) (n− 1)
= Πmax (δ, n, V ∗) .

Since this inequality holds by construction, the strategy profile is an equilibrium.

12Here and throughout, we write proofs for the case where s is a demand state. The proofs for the case
where s is a cost state are nearly identical.
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We now show that no equilibrium can attain higher profits. Fix any equilibrium, and

let V̄ be the supremum over periods t and histories of play up to and including period t of

expected collusive profits from period t + 1 onward. Now fix an arbitrary period t and a

history of play up to period t, and suppose that when the realized mean demand in period t at

this history is s, the winning price is p (s) and each firm i wins with probability αi and obtains

an equilibrium continuation value of vi. (So, αi = 1/ |j : pj (s) = p (s)| if pi (s) = p (s), and

αi = 0 otherwise. Note that each pi (s)– and thus the winning price p (s)– is deterministic

by our restriction to pure strategy equilibria.) Since firm i’s best deviation at this history is

to price just below p (s), her incentive constraint is

(1− δ) Π (p (s) , s) ≤ αi (1− δ) Π (p (s) , s) + δvi.

Averaging this inequality over the n firms, we have

(1− δ) Π (p (s) , s) ≤ 1

n

(
(1− δ) Π (p (s) , s) + δ

∑
i

vi

)
≤ 1

n

(
(1− δ) p (s) (s− p (s)) + δV̄

)
,

where the second inequality is by definition of V̄ . Therefore, Π (p (s) , s) ≤ Πmax
(
δ, n, V̄

)
,

and hence expected collusive profits in period t are at most

maxG∈MPC(F ) EG
[
min

{
Πm (s) ,Πmax

(
δ, n, V̄

)}]
. Since this holds for every period t, we have

V̄ ≤ maxG∈MPC(F ) EG
[
min

{
Πm (s) ,Πmax

(
δ, n, V̄

)}]
. But this implies that V̄ ≤ V ∗, by de-

finition of V ∗.

We observe that collusion is impossible if δ < (n− 1) /n. The same condition implies

that collusion is impossible under full information disclosure, as in Rotemberg and Saloner

(1986). Conversely, if δ ≥ (n− 1) /n then monopoly profit under no information disclosure,

Πm
(
EF [s]

)
, is attainable.

Lemma 2 If δ < (n− 1) /n then V ∗ = 0. Conversely, if δ ≥ (n− 1) /n then V ∗ ≥

Πm
(
EF [s]

)
.

Proof. If δ < (n− 1) /n then Πmax (δ, n, V ) < V for all V > 0, so the only solution to (1)
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is V = 0. Conversely, if δ ≥ (n− 1) /n then no disclosure together with a constant on path

price of pm
(
EF [s]

)
and zero prices off path is an equilibrium.

Given Lemma 2, we henceforth assume that δ ≥ (n− 1) /n.

3.2 Solving the Information Design Problem

The information design problem in (1) is easily solved using recent results from the static

information design literature.

Let s∗ solve

Πm (s∗) = Πmax (δ, n, V ∗) (2)

if such a demand state exists, and let s∗ = s̄ otherwise. Note that, by Lemma 2 and our

assumption that δ ≥ (n− 1) /n, we have V ∗ ≥ Πm
(
EF [s]

)
, and hence s∗ ≥ EF [s].13 Thus,

there exists ŝ ∈ [s, s̄] such that

EF [s|s ≥ ŝ] = s∗. (3)

We can now characterize the optimal disclosure policy and optimal collusive prices. Figure

1 illustrates the optimal policy, as well as the construction of s∗ and ŝ.

Theorem 1 With stochastic demand, the unique optimal disclosure policy is the upper cen-

sorship policy that discloses demand states below ŝ and conceals demand states above ŝ. The

unique optimal collusive price p (s) in state s is given by

p (s) =

 pm (s) if s < ŝ,

pm (s∗) if s ≥ ŝ.
(4)

With stochastic costs, the unique optimal disclosure policy is the analogous lower censor-

ship policy that discloses cost states above ŝ satisfying EF [s|s ≤ ŝ] = s∗ and and conceals

cost states below ŝ. The unique optimal collusive price p (s) in state s is given by (4) with

the reversed inequalities.

13This follows because if s∗ < EF [s] then Πm
(
EF [s]

)
> Πmax (δ, n, V ∗) by (2) and monotonicity of Πm (s),

but then we would have V ∗ > Πmax (δ, n, V ∗) by Lemma 2, contradicting the definition of V ∗.
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Figure 1: The optimal disclosure policy. First, s∗ is determined as the solution to
Πm (s∗) = Πmax (δ, n, V ∗). Then, ŝ is determined as the solution to EF [s|s ≥ ŝ] = s∗.
The optimal information policy discloses demand states s < ŝ and recommends the corre-
sponding monopoly price, pm (s); and conceals demand states s ≥ ŝ and recommends the
monopoly price conditional on this information, pm (s∗). The auxiliary objective function
Π̃ (s) is defined in the proof of Theorem 1.
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With stochastic demand, note that ŝ = s– so it is optimal to reveal nothing about

demand– iff s∗ = EF [s], which holds iff δ = (n− 1) /n. Conversely, ŝ = s̄– so it optimal to

fully disclose demand– iff s∗ = s̄, which holds iff Πm (s̄) ≥ Πmax (δ, n, V ∗). Otherwise, we

have Πm
(
EF [s]

)
< Πmax (δ, n, V ∗) < Πm (s̄), and partial disclosure is optimal.

The intuition for Theorem 1 is that disclosing demand information increases expected

monopoly profits– as Πm (s) is convex– but revealing that the expected state is too high

would require cutting price to deter a deviation (as in Rotemberg and Saloner, 1986). The

theorem says that it is optimal to disclose low demand states and conceal high ones, such

that the mean concealed state s∗ is the highest state s that does not require a price cut from

the corresponding monopoly price pm (s) to deter a deviation.

Proof. Recall that Πm (s) is convex in s, while Πmax (δ, n, V ∗) is independent of s. Thus,

min {Πm (s) ,Πmax (δ, n, V ∗)} is increasing and convex in s for s ≤ s∗ and is constant in s

for s > s∗. In particular, min {Πm (s) ,Πmax (δ, n, V ∗)} is “S-shaped”in s: first convex, then

concave. So, (1) describes a mean-measurable information design problem with an S-shaped

objective function. It is well-known that the solution to such a problem is upper censorship

(e.g., Kolotilin, 2018; Dworczak and Martini, 2019; Kolotilin and Li, 2021; Kolotilin et al.,

2022). Moreover, adapting the standard proofs to the current setting where the objective

function is not just convex-then-concave but convex-then-constant implies that the solution

must take the prescribed form, where the mean censored state s∗ lies at the kink of the

objective function.

We sketch the proof for completeness.14 Define an auxiliary objective function

Π̃ (s) =

 Πm (s) if s < ŝ,

s∗−s
s∗−ŝΠ

m (ŝ) + s−ŝ
s∗−ŝΠ

m (s∗) if s ≥ ŝ.

Note that Π̃ (s) is convex and Π̃ (s) ≥ min {Πm (s) ,Πmax (δ, n, V ∗)} for all s. (See Figure 1.)

Consider the auxiliary problem, maxG∈MPC(F ) EG
[
Π̃ (s)

]
. Since Π̃ (s) is convex, the solution

14Our proof follows the proofs of Proposition 3 of Dworczak and Martini (2019) and Proposition 4 of
Kolotilin and Li (2021).
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is full disclosure (G = F ), and the resulting value is

EF
[
Π̃ (s)

]
= F (ŝ)E [Πm (s) |s ≤ ŝ] + (1− F (ŝ))E

[
s∗ − s
s∗ − ŝΠm (ŝ) +

s− ŝ
s∗ − ŝΠm (s∗) |s > ŝ

]
= F (ŝ)E [Πm (s) |s ≤ ŝ] + (1− F (ŝ)) Πm (s∗) .

Since Π̃ (s) ≥ min {Πm (s) ,Πmax (δ, n, V ∗)} for all s, this is an upper bound for

maxG∈MPC(F ) EG [min {Πm (s) ,Πmax (δ, n, V ∗)}]. But it is attained by upper censorship with

cutoff ŝ, so this policy is optimal. Moreover, this policy is the unique one that induces only

posteriors s where Π̃ (s) = min {Πm (s) ,Πmax (δ, n, V ∗)}, so it is the unique optimal policy.

Finally, this disclosure policy is optimal only in conjunction with the prescribed prices.

3.3 Implications and Comparative Statics

We now discuss the implications of Theorem 1 for firm profits, prices, and consumer surplus.

In discussing the price implications, we make the standard assumption that the monopoly

price pm (s) is unique and increasing in s. For example, this holds if Π (p, s) is strictly quasi-

concave in p and supermodular in (p, s). While standard, we emphasize that this assumption

is only used in the following discussion, not in the above results.

Price rigidity– not price wars– during booms. We first compare collusive prices under

optimal disclosure and full disclosure (i.e., in Rotemberg and Saloner). Optimal disclosure

leads to price rigidity during booms, rather than price wars as in Rotemberg and Saloner.

To see this, let V FD be optimal collusive profit under full disclosure, which is given by the

greatest fixed point of the equation

V FD = EF
[
min

{
Πm (s) ,Πmax

(
δ, n, V FD

)}]
,

and let sFD solve

Πm
(
sFD

)
= Πmax

(
δ, n, V FD

)
.
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As in Rotemberg and Saloner, optimal collusive prices under full disclosure are given by

pFD (s) =

 pm (s) if s < sFD,

min
{
p : Π (p, s) = Πmax

(
δ, n, V FD

)}
if s ≥ sFD.

Since pm (s) is increasing and Π (p, s) is continuous in p and increasing in s, it follows that

pFD (s) is increasing for s < sFD and decreasing for s ≥ sFD. The latter “price wars during

booms”result is Rotemberg and Saloner’s key message.

In contrast, for the optimal collusive prices under the optimal disclosure policy, (4), we

see that p (s) is increasing for s < s∗ and constant (at a higher level) for s ≥ s∗. Thus,

optimal disclosure entails a policy of price rigidity at demand states s ≥ s∗, rather than

“price wars”as in Rotemberg and Saloner’s model. This result gives a novel rationale for

oligopoly price rigidity: prices are rigid because colluding firms optimally limit their own

information about market demand to deter deviations.15

Supra-monopoly pricing. A notable implication of Theorem 1 is that optimal collu-

sive prices are above monopoly at intermediate demand states: for s ∈ (ŝ, s∗), the op-

timal collusive price is p (s) = pm (s∗) > pm (s). Moreover, these demand states satisfy

Πm (s) < Πmax (δ, n, V ∗), so monopoly profit could be attained at any one of these states by

disclosing them and recommending price pm (s) (holding the rest of the equilibrium fixed).

Thus, for a range of demand states where monopoly profit is attainable, the algorithm in-

stead implements supra-monopoly prices that deliver lower profits. The reason why is that

recommending the supra-monopoly price pm (s∗) > pm (s) at states s ∈ (ŝ, s∗) lets the al-

gorithm recommend the same price at states s > s∗, where this price would be too high

to be incentive compatible if the state were disclosed. In other words, price rigidity for all

demand states above ŝ results in an ineffi ciently high price for demand states in s ∈ (ŝ, s∗),

but thereby supports a higher price for demand states s > s∗ than would be attainable under

15Carlton (1986) and others find that prices are more rigid in concentrated industries, and Harrington
(2008) and others suggest price rigidity as a possible collusive marker. Existing theories of rigid collusive
prices include Athey, Bagwell, and Sanchirico (2004) (based on incentive costs of inducing privately informed
firms to reveal their costs), Hanazono and Yang (2007) (based on incentive costs of inducing privately
informed firms to reveal their demand signals), and Maskin and Tirole (2001) (who model “kinked demand
curves”as a result of Markov perfect equilibria with staggered price setting).
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full information.16

Higher prices at all demand states; lower consumer surplus. We next show that prices

are higher for every demand state s under optimal disclosure as compared to full disclosure.

Proposition 1 As compared to collusive prices under full disclosure, collusive prices under

the optimal disclosure policy are higher at each demand state.

Proof. Note that V FD ≤ V ∗, and hence sFD ≤ s∗. Therefore, letting p (s) be the optimal

collusive price in (4), for s < s∗ we have

p (s) ≥ pm (s) ≥ pFD (s) ,

and for s > s∗ we have

p (s) = pm (s∗) ≥ pm
(
sFD

)
≥ pFD (s) ,

where the first inequality follows because sFD ≤ s∗ and pm is increasing, and the second

follows because sFD ≤ s and pFD is decreasing to the right of sFD.

In particular, Proposition 1 implies that consumer surplus is lower under optimal disclo-

sure as compared to full disclosure. That is, the firms’ability to limit their own information

via an algorithm unambiguously harms consumers.

Comparative statics. We now turn to comparative statics, starting with comparative

statics for the number of firms n and the discount factor δ. In what follows, we say that

prices are more flexible if ŝ is higher, so that a wider range of demand states are disclosed

and p (s) = pm (s) for a wider range of states.17

Proposition 2 A decrease in the number of firms n or an increase in the discount factor δ

increases collusive profit V ∗ and makes collusive prices more flexible.

16Supra-monopoly pricing at intermediate demand states is analogous to “over-pooling”– where first-best
actions are not taken even in some states where they are implementable– in Kolotilin and Li (2021).
17Within the class of optimal censorship disclosure policies, increasing ŝ is equivalent to making the

algorithm more informative in the Blackwell order.
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Proof. Note that n and δ affect V ∗ and p only through the functionΠmax, which is decreasing

in n and increasing in δ. Thus, decreasing n or increasing δ shifts the right-hand side of (1)

up as a function of V , which increases the greatest fixed point V ∗. In turn, an increase in

V ∗ increases s∗ and ŝ, which makes prices more flexible.

Among the results in Proposition 2, we believe that the prediction that increasing n

makes prices more rigid is the most distinctive to our model. The logic is that increasing

n makes incentive constraints bind for a wider range of demand state realizations, which

necessitates pooling a wider range of states to deter deviations.

Another interesting comparative statics question concerns the impact of improving the

algorithm’s information (or “accuracy”). By Blackwell (1953), this corresponds to taking a

mean-preserving spread of F , which expands the set MPC (F ) of implementable distribu-

tions of posterior mean demands. It is immediate that improving the algorithm’s accuracy

increases optimal collusive profit.

A more subtle question concerns the effect of improving the algorithm’s accuracy on con-

sumer surplus. To address this, let CS (s) denote consumer surplus in demand state s at the

monopoly price pm (s). Under full disclosure and monopoly pricing (which is implementable

if δ is high enough), improving the algorithm’s accuracy increases expected consumer sur-

plus if CS (s) is convex and decreases expected consumer surplus if CS (s) is concave. The

latter case is the standard one: for example, CS (s) is concave under linear demand with

either an unknown demand intercept (i.e., Π (p, s) = p (s− p)) or an unknown cost (i.e.,

Π (p, s) = (p− s) (1− p)).18 We now show that in this case, improving the algorithm’s ac-

curacy also decreases expected consumer surplus under the optimal information disclosure

policy. The logic is that a more accurate algorithm optimally discloses more information

to firms while recommending the corresponding monopoly price at each disclosed mean de-

mand state, so the effect of improving the algorithm’s accuracy is the same as the effect of

improving a monopoly firm’s information.

Proposition 3 Assume that consumer surplus under monopoly pricing, CS (s), is concave

in s. Then improving the algorithm’s accuracy reduces expected consumer surplus.

18This holds because in the former case pm (s) = s/2 and hence CS (s) = s2/8, and in the latter case
pm (s) = (1 + s) /2 and hence CS (s) = (1− s)2 /8.
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Proof. By Theorem 1, the collusive equilibrium price at any disclosed mean demand state

s is the corresponding monopoly price pm (s). To prove the proposition, it thus suffi ces

to show that for any distributions (F1, F2, G1, G2) where F2 is a mean-preserving spread of

F1, G1 is the distribution of s under an optimal disclosure policy for prior F1, and G2 is

the distribution of s under an optimal disclosure policy for prior F2, we have that G2 is a

mean-preserving spread of G1. We defer the proof of this fact to the appendix.

Proposition 3 shows that improving the algorithm’s accuracy reduces consumer surplus

whenever consumer surplus is concave in demand under monopoly pricing. This finding

contrasts with results of Sugaya and Wolitzky (2018, Example 3) and Miklos-Thal and

Tucker (2019), who find that a more accurate demand prediction algorithm reduces consumer

surplus when the firms’discount factor δ lies in an intermediate range. The reason for this

difference is that these papers assume that the algorithm fully discloses its information to the

firms, which tightens incentive constraints and thus necessitates a reduction in equilibrium

prices when δ is not too high. In contrast, with optimal information disclosure, a more

accurate algorithm always increases average prices, and Proposition 3 shows that it also

reduces consumer surplus whenever consumer surplus is concave under monopoly pricing.

Our assessment of the likely impact of improved algorithmic demand prediction on consumer

surplus is thus considerably more pessimistic than that in prior work.

Empirical implications, collusive markers, and the interpretation of “price wars.”We

close this section with a brief discussion of the model’s empirical implications. There are

four main empirical predictions.

1. The support of the distribution of equilibrium prices consists of an interval [pm (s) , pm (ŝ)]

and a single higher price pm (s∗).

2. Prices are rigidly fixed at pm (s∗) for all demand states excepting the lowest ones

(s < ŝ). For low demand states, prices are discretely lower than pm (s∗) but vary

flexibly in the interval [pm (s) , pm (ŝ)]. Overall, prices are “pro-cyclical”: p (s) is non-

decreasing.

3. While prices are pro-cyclical, the gap between price and monopoly price, p (s)−pm (s),
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is non-monotone: first zero, then positive (when price is supra-monopolistic), then

negative.

4. Prices are more flexible (and higher on average) when firms are more patient or fewer

in number.

We offer two remarks on these empirical implications.

First, the predicted form of price rigidity– a single, “rigid,”high price together with an

interval of flexible lower prices– is distinctive to our model and is thus a possible collusive

marker.

Second, the pro-cyclical relationship between prices and demand in our model gives an

alternative interpretation of the “price wars” predicted by Green and Porter (1984) and

other models of collusion under imperfect monitoring. In Green and Porter, prices are

pro-cyclical: price wars occur in low demand states as part of an optimal repeated game

equilibrium under imperfect monitoring of competitors’prices. In contrast, in Rotemberg

and Saloner (1986), prices are counter-cyclical in higher demand states: price wars occur

in high demand states due to perfect monitoring and demand information. Interestingly,

while our model is much closer to Rotemberg and Saloner’s than to Green and Porter’s,

our prediction of pro-cyclical prices coincides with Green and Porter’s (albeit by a different

mechanism: perfect monitoring and selectively disclosed demand information, rather than

imperfect monitoring). This observation is relevant for a line of papers that have tested

the competing predictions of Green and Porter and Rotemberg and Saloner (e.g., Porter,

1983; Ellison, 1994) and have typically found results more favorable to Green and Porter’s

prediction of pro-cyclical prices. Relative to this literature, our analysis shows that perfect

monitoring and selectively disclosed demand information is an alternative explanation for

pro-cyclical prices.

One way to distinguish our theory from Green and Porter’s would be to estimate the

gap between price and monopoly price, p (s)− pm (s), over the cycle. In Green and Porter’s

theory, the gap is larger (more negative) in low demand states: collusion is “more successful”

when demand is high. In our theory, the gap is larger in high demand states (and can even
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be positive): collusion is more successful when demand is low.19 It would be interesting

to test these competing predictions. A preliminary observation is that our prediction of

more successful collusion in low demand states appears consistent with the RealPage case

discussed in the Introduction, where RealPage seems to have taken particular pride in its

performance in down markets (USDOJ 2024a, pp. 46—48).

4 Persistent Demand or Cost

We now consider the case where the state follows a Markov process: we assume that the

current state s′ is drawn from a distribution Fs, where s is the previous period’s state. This

extension of the baseline iid model illustrates how our results generalize and also yields some

new insights. The analysis of this section is inspired by Haltiwanger and Harrington (1991),

Kandori (1992), and Bagwell and Staiger (1997), who extended Rotemberg and Saloner’s

(1986) iid model to various Markov processes.

To accommodate the Markov case, we need to preserve the property that expected profit

is measurable with respect to mean demand (or cost, but we continue to focus on the demand

case). To do so, we require two assumptions. First, we assume that the current demand state

is revealed at the end of each period, so the algorithm does not carry private information

across periods. This assumption is realistic if firms observe their sales at the end of the

each period. Second, we assume that the Markov transition rule Fs is affi ne in s, so the

distribution over tomorrow’s state depends only on today’s mean state:

Fs (s′) =
s̄− s
s̄− sFs (s′) +

s− s
s̄− sFs̄ (s′) for all s, s′.

For example, Fs is affi ne in s when there is a binary underlying demand state s and s is a

continuous signal of s satisfying Pr (s = s̄|s) = (s− s) / (s̄− s). We also assume that the

distribution of s in period 1 is Fs0 for some s0 ∈ [s, s̄].

19With the exception of the distinctive prediction of supra-monopoly prices at intermediate demand states,
our prediction that the gap p (s)−pm (s) is counter-cyclical is as in Rotemberg and Saloner. Thus, our model
and Rotemberg and Saloner’s make very different predictions about prices, p (s) (non-decreasing in our model;
single-peaked in theirs), but more similar predictions about the difference p (s) − pm (s) (non-increasing in
both models, with the exception of an intermediate region of supra-monopoly pricing in ours).
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Note that affi neness allows both positive persistence– where Fs̄ first-order stochastically

dominates Fs– and negative persistence– where Fs first-order stochastically dominates Fs̄.

Both of these cases are of interest: positive persistence is arguably more natural, but negative

persistence has been used to capture cyclical demand movements, for example by Haltiwanger

and Harrington (1991).

The characterization of the optimal disclosure policy and optimal collusive prices are the

same as in the iid case, except that now the expected present value of collusive profits V (s)

depends on the previous period’s state s. The optimal collusive profit for each last-period

demand state s must now be calculated simultaneously as the component-wise greatest fixed

point (V ∗ (s))s∈[s,s̄] of the following system of equations in s:

V (s) = (1− δ) max
G∈MPC(Fs)

Es̃∼G
[
min

{
Πm (s̃) ,Πmax

(
δ, n,EFs̃ [V (s′)]

)}]
+ δEFs [V (s′)] . (5)

Note that the right-hand side of (5) is bounded and increasing in V (s′) for all s, s′, so the

greatest fixed point is well-defined by Tarski’s theorem. We also defineW ∗ (s) = EFs [V ∗ (s′)],

so we have

V ∗ (s) = (1− δ) max
G∈MPC(Fs)

EG [min {Πm (s̃) ,Πmax (δ, n,W ∗ (s̃))}] + δW ∗ (s) for all s. (6)

Note that, since Fs is affi ne in s, so is W ∗ (s).

With persistent demand, the appropriate notion of a (symmetric) stationary strategy is

that the disclosure policy G depends only the previous period’s demand state, while the

on-path price p (s) at realized mean demand state s remains independent of the history

of demand realizations (and, in particular, is independent of the current-period disclosure

policy). With this definition, Lemma 1 generalizes as follows.

Lemma 3 The expected present value of optimal collusive profit in state s equals V ∗ (s) and

is attained by a symmetric, stationary, grim trigger equilibrium. Moreover, a collection of

disclosure policies (Gs)s∈[s,s̄], one for each last-period demand state s, is optimal if and only

if, for each s, Gs solves the maximization problem in (1) for V (·) = V ∗ (·).

Lemma 3 reduces the problem of finding an optimal equilibrium to the family of static
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information design problems on the right-hand side of (5), where the function V ∗ (·) satisfies

the fixed point condition. The proof is a straightforward generalization of the proof of

Lemma 1: the only difference is that the present value of equilibrium profits, the probability

distribution over next-period demand states, and the values V̄ and vi defined in the second

part of the proof are all now functions of s.

As in the iid case, collusion is impossible if δ < (n− 1) /n. Conversely, if δ ≥ (n− 1) /n

then monopoly profit under no disclosure given the least-favorable previous period de-

mand state (e.g., s in the positively persistent case; s̄ in the negatively persistent case),

Πm
(
min

{
EFs [s] ,EFs̄ [s]

})
, is attainable for any initial state.

Lemma 4 If δ < (n− 1) /n then V ∗ (s) = 0 for all s. Conversely, if δ ≥ (n− 1) /n then

V ∗ (s) ≥ Πm
(
min

{
EFs [s] ,EFs̄ [s]

})
for all s.

Proof. If δ < (n− 1) /n then Πmax (δ, n, V ) < V for all V > 0. Let s0 = argmaxs V
∗ (s),

which is well-defined because Πm (s) is continuous and W ∗ (s) is affi ne. Suppose for contra-

diction that V ∗ (s0) > 0. Then, since W ∗ (s) ≤ V ∗ (s0) for all s (as W ∗ (s) = EFs [V ∗ (s′)]),

the right-hand side of (6) at s = s0 is strictly less than V ∗ (s0), a contradiction. Hence,

V ∗ (s0) = 0, and therefore V ∗ (s) = 0 for all s.

Conversely, if δ ≥ (n− 1) /n then no disclosure together with an on path price when the

previous period demand state is s of p (s) = min
{
p : Π

(
p,EFs [s̃]

)
= Πm

(
min

{
EFs [s̃] ,EFs̄ [s̃]

})}
(which is well-defined by the intermediate value theorem, as Π

(
p,EFs [s̃]

)
is continuous in p

and monotone in s) and zero prices off path is an equilibrium.

We now characterize the optimal disclosure policy as a function of the last-period state

s in the non-trivial case where δ ≥ (n− 1) /n. Let s∗ solve

Πm (s∗) = Πmax (δ, n,W ∗ (s∗)) (7)

if such a demand state exists, and let s∗ = s̄ otherwise.20 Next, for each last-period state s,

20There is at most one solution to (7). If W ∗ (s) is decreasing, this is immediate, as the left-hand side
of (7) is increasing and the right-hand side is decreasing. If W ∗ (s) is increasing, this follows because,
since δ ≥ (n− 1) /n, we have Πm (s) ≤ Πmax (δ, n,Πm (s)) ≤ Πmax

(
δ, n,Πm(min

{
EFs [s] ,EFs̄ [s]

}
)
)
≤

Πmax (δ, n,W ∗ (s)), and the left-hand side of (7) is convex while the right-hand side is linear. Moreover, if
δ > (n− 1) /n then the first inequality is strict, and if δ = (n− 1) /n then s∗ = s is the only solution.
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let ŝ (s) satisfy

EFs [s̃|s̃ ≥ ŝ (s)] = s∗ (8)

if such a state exists, and ŝ (s) = s otherwise. Note that, by Lemma 4 and our as-

sumption that δ ≥ (n− 1) /n, we have V ∗ (s) ≥ Πm
(
min

{
EFs [s] ,EFs̄ [s]

})
, and hence

s∗ ≥ min
{
EFs [s] ,EFs̄ [s]

}
, so (8) admits a solution ŝ (s) ∈ [s, s̄] for s = argmins∈{s,s̄} EFs [s′].

However, in contrast to the iid case, (8) does not always admit a solution ŝ (s) for all last-

period demand states s: in this case, the distribution Fs is so high that EFs [s′] > s∗, in

which case no disclosure of the current demand state is optimal, and the optimal price

is min
{
p : Π

(
p,EFs [s′]

)
= Πmax

(
δ, n,W ∗ (EFs [s′]

))}
, which is less than the corresponding

monopoly price pm
(
EFs [s′]

)
.

We are now prepared to characterize the optimal disclosure policy and optimal collusive

prices in the Markov case.

Theorem 2 With stochastic demand, the unique optimal disclosure policy as a function of

the last-period demand state s is the upper censorship policy that discloses demand states

below ŝ (s) and conceals demand states above ŝ (s). The optimal collusive price p (s̃; s) (which

is unique except when ŝ (s) = s) when the current realized mean demand state is s̃ and the

last-period demand state is s is given by

p (s̃; s) =


pm (s̃) if s̃ < ŝ (s) ,

pm (s∗) if s̃ ≥ ŝ (s) > s,

min
{
p : Π

(
p,EFs [s′]

)
= Πmax

(
δ, n,W ∗ (EFs [s′]

))}
if ŝ (s) = s.

(9)

Moreover, under positive persistence, ŝ (s) is decreasing, so the optimal policy discloses less

information when last-period demand is higher; conversely, under negative persistence, ŝ (s)

is increasing, so the optimal policy discloses more information when last-period demand is

higher.

With stochastic costs, the unique optimal disclosure policy is the analogous lower censor-

ship policy that discloses cost states above ŝ (s) satisfying EFs [s̃|s̃ ≤ ŝ (s)] = s∗ and conceals

cost states below ŝ (s). The unique optimal collusive price p (s) in state s is given by (9) with

the reversed inequalities and ŝ (s) = s̄ in the third line. Moreover, under positive persistence,
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ŝ (s) is decreasing, so the optimal policy discloses more information when last-period cost

is higher; conversely, under negative persistence, ŝ (s) is increasing, so the optimal policy

discloses less information when last-period cost is higher.

Proof. The proof is a straightforward generalization of the proof of Theorem 1. The

main difference is that, since W ∗ (s) is affi ne, the function min {Πm (s) ,Πmax (δ, n,W ∗ (s))}

is now “convex-then-linear” in s, rather than “convex-then-constant” as in the iid case.

The same argument as in the proof of Theorem 1 implies that, when ŝ (s) > s, upper

censorship is optimal, with mean demand among concealed states equal to the point s∗ where

Πm (s∗) = Πmax (δ, n,W ∗ (s∗)). A similar argument shows that, when ŝ (s) = s, no disclosure

is optimal, with a price p satisfying Π
(
p,EFs [s′]

)
= Πmax

(
δ, n,W ∗ (EFs [s′]

))
. Finally, it is

immediate from (8) that ŝ (s) is decreasing under positive persistence and increasing under

negative persistence.

The new insights of Theorem 2 concern how optimal disclosure depends on last-period

demand. The key point is that, whenever the optimal censorship policy is non-trivial (i.e.,

ŝ (s) ∈ (s, s̄), so that some states are disclosed and others are concealed), the mean demand

among the concealed states must equal s∗, regardless of the last-period demand state s. Thus,

with positive persistence, ŝ (s) is decreasing, as Fs is higher when s is higher, so more low

states must be pooled in with higher states to induce the constant mean demand s∗ among

concealed states. So, with positive persistence, the algorithm discloses less information in

good times, when firms are optimistic about demand and are thus more inclined to deviate.

Conversely, with negative persistence, the algorithm discloses more information in good

times, when firms are pessimistic and thus less inclined to deviate.

(The results for the stochastic cost case are analogous. Now, with positive persistence,

the algorithm discloses less information when the last-period cost was low; and with negative

persistence, the algorithm discloses more information when the last-period cost was low.)

We also note that, in contrast to the iid case, it can now be generically optimal to

reveal nothing about the current-period demand state.21 For example, with positive per-

sistence, it can be optimal to fully reveal current demand when last-period demand was

low (so ŝ (s) = s̄), partially reveal current demand when last-period demand was intermedi-

21Recall that in the iid case, no disclosure is only optimal in the knife-edge case where δ = (n− 1) /n.
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ate (so ŝ (s) ∈ (s, s̄)), and reveal nothing about current demand when last-period demand

was high (so ŝ (s) = s). Moreover, in the latter case where ŝ (s) = s, the optimal price

p
(
EFs [s′] ; s

)
satisfies Π

(
p,EFs [s′]

)
= Πmax

(
δ, n,W ∗ (EFs [s′]

))
, which is less than the cor-

responding monopoly price pm
(
EFs [s′]

)
and can even be decreasing in s over some range.

Thus, while optimal prices are always monotone in current demand (as in the iid case and

in contrast to Rotemberg Saloner), they are not necessarily monotone in the last-period

demand. In particular, the expected price conditional on last-period demand can be single-

peaked, a result that recovers some of Rotemberg and Saloner’s intuition.22

In addition to these more novel points, Theorem 2 shows that the results of the iid model

generalize to the Markov case. For example, for any last-period demand state s, optimal

collusion entails price rigidity at high current demand states, supra-monopoly prices over an

intermediate range of states, and more rigid prices when δ is lower or n is higher. Proposition

3 also extends to the Markov case, noting that improving the algorithm’s accuracy now

corresponds to taking a mean-preserving spread of each distribution Fs.

A final question concerns the comparative statics of optimal disclosure, firm profit, and

consumer surplus as demand becomes more persistent. This is a complex question, so we just

provide a numerical example that illustrates some interesting possibilities. In particular, the

example shows that the effect of greater persistence of demand on the amount of information

disclosure, collusive profit, and consumer surplus can all be non-monotone.

We assume a binary demand state– so s ∈ {s, s̄}– and linear demand– so Π (p, s) =

p (s− p)– and we consider the parameters s = 1, s̄ = 2, δ = .55, n = 2, and Pr (st+1 = s̄|st = s̄) =

Pr (st+1 = s|st = s) = ρ ∈ (1/2, 1). Binary demand violates our assumption that the distri-

bution of states is atomless; however, that assumption was just made for convenience and

is easily relaxed. In particular, with a binary state, an upper censorship policy now corre-

sponds to disclosing state s with some probability q (conditional on s = s) and pooling state

s together with state s̄ otherwise. Upper censorship is optimal by essentially the same proof

as in the atomless case, so we can parameterize an optimal disclosure policy by q ∈ [0, 1],

with q = 0 being no disclosure, q ∈ (0, 1) being non-trivial upper censorship, and q = 1

22Whether prices actually display this pattern depends on whether Π (p, s̃) or Πmax (δ, n,W ∗ (s̃)) increases
faster in s̃ = EFs [s′] over the range {s : ŝ (s) = s}.

25



being full disclosure.

Figures 2—4 display the optimal disclosure policy, firm profit, and consumer surplus as ρ

ranges from 1/2 to 1. In Figure 2, the blue curve plots the optimal disclosure policy q at

last-period demand state s, while the orange line plots q at last-period demand state s̄. Note

that the blue curve is always above the orange curve, as under positive persistence (ρ > 1/2)

more information is disclosed when the last-period state is lower, as shown in Theorem 2.

In addition, Figure 2 displays three distinct equilibrium regimes. In Regime 1, non-trivial

upper censorship is optimal for both last-period demand states. For ρ ∈ (1/2, 0.727), Regime

1 prevails, and increasing ρ leads to more disclosure at last-period state s and less disclosure

at last-period state s̄. Intuitively, increasing ρ makes firms more pessimistic at last-period

state s and more optimistic at last-period state s̄, which increases disclosure at last-period

state s and decreases disclosure at last-period state s̄. Once ρ reaches 0.727, firms are so

optimistic at last-period state s̄ that no disclosure becomes optimal, while further increases

in ρ continue to increase disclosure at last-period state s. This second regime persists until ρ

reaches 0.863. At this point, demand is so persistent that future profits are much higher at

last-period state s̄ than at last-period state s, which makes partial disclosure optimal again

at last-period state s̄, so the equilibrium is again in Regime 1. Further increases in ρ then

rapidly increase disclosure for both last-period states, until ρ reaches 0.902, at which point

full disclosure becomes optimal for both last-period states.

Figures 3 and 4 trace the implications of these effects for firm profit and consumer surplus.

In Figure 3, the blue curve plots a firm’s continuation value (discounted sum of profits) at

last-period demand state s; the orange curve plots this value at last-period demand state s̄;

and the green curve is the average of the two, which equals a firm’s ex ante expected profit.

In Regime 1, increasing ρ decreases the continuation value at last-period state s and increases

it at last-period state s̄. The net effect is to (slightly) increase expected profits, as increasing

the continuation value at last-period state s̄ relaxes the binding incentive constraint. In

contrast, the effect of increasing ρ on profits in non-monotone in Regime 2 and is zero in

Regime 3 (where optimal profits are first-best).

In Figure 4, the blue curve plots the current-period consumer surplus at last-period

demand state s; the orange curve plots it at last-period demand state s̄; and the green
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Figure 2: Optimal disclosure policy. The blue curve is the probability of disclosing s when
the current state is s and the last-period state was s; the orange curve is the probability of
disclosing s when the current state is s and the last-period state was s̄.

Figure 3: Optimal continuation values. The blue curve is a firm’s continuation value at
last-period state s. The orange curve is the value at last-period state s̄. The green curve is
the ex ante expected profit.
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Figure 4: Consumer surplus. The blue curve is the current-period consumer surplus at last-
period state s. The orange line is the corresponding value at last-period state s̄. The green
curve is ex ante expected consumer surplus.

curve is the average of the two, which equals ex ante expected consumer surplus. Expected

consumer surplus is decreasing in ρ in Regime 1 (albeit only slightly when ρ ∈ (1/2, 0.727)),

non-monotone in ρ in Regime 2, and constant in ρ in Regime 3.

5 Conclusion

This paper has developed a simple model of an intermediary that possesses information

on market demand or the cost of serving the market that is superior to that of the firms

competing for the market and that selectively discloses this information to maximize the

firms’profit in the best collusive equilibrium. Our main motivation is the rise of third-party

pricing algorithm providers such as RealPage in apartment rentals, A2i Systems and Kali-

brate in retail gasoline, and Rainmaker in hotel rooms, but the theory applies equally to any

cartel facilitator that controls the participating firms’information. We adapt the canonical

Rotemberg Saloner (1986) model of repeated Bertrand competition with stochastic demand

by letting an intermediary (or “algorithm”) selectively disclose demand or cost information.

Under the assumption that expected profits are determined by the expected demand state,
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we show that optimal information disclosure is upper censorship: demand states s below a

cutoff ŝ are disclosed and result in the corresponding monopoly price pm (s), while demand

states above ŝ are concealed and result in the monopoly price for the mean concealed state,

pm (E [s|s > ŝ]). The resulting pricing policy entails considerable price rigidity, as well as

supra-monopoly prices for a range of intermediate demand states. We also establish several

comparative statics results: prices are more flexible (and higher on average) when firms are

more patient or fewer in number; a more accurate algorithm reduces expected consumer sur-

plus under a natural concavity condition; and more demand information is disclosed when

recent demand was lower if demand is positively serially correlated. The second of these

results gives reason for pessimism regarding the likely effect of improved algorithmic de-

mand prediction on consumer surplus, in contrast to prior studies that find more optimistic

results under the hypothesis that the algorithm always discloses its predictions (Sugaya and

Wolitzky, 2018; Miklos-Thal and Tucker, 2019).

Many of our assumptions could be relaxed at the cost of a more intricate analysis. If

expected profit depends on the entire distribution of the unknown demand state rather than

only its mean, we would have a non-linear information design problem, where disclosure poli-

cies that pool intervals of states together (like upper censorship) are typically sub-optimal

(Kolotilin, Corrao, and Wolitzky, 2024). However, upper censorship will be approximately

optimal if the information design problem is close to linear. If the firms’products are differ-

entiated or the firms face capacity constraints, the on-path profit Π (p, s) will no longer be

a suffi cient statistic for a firm’s deviation gain, and additional conditions will be required to

characterize the optimal disclosure policy. Similar complications also arise if the intermedi-

ary’s objective differs from maximizing firm profit, as in Harrington (2022). Finally, allowing

asymmetric, private information disclosure by the algorithm (or exogenous asymmetric, pri-

vate information for the firms) appears challenging but potentially rewarding. These are all

interesting directions for future research.
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A Appendix: Proof of Proposition 3

Since F2 is a mean-preserving spread of F1, we have EF1 [s] = EF2 [s] and
∫ s
s
F1 (s) ds ≤∫ s

s
F2 (s) ds for all s. By Theorem 1, we have

G1 (s) =


F1 (s) if s ≤ ŝ1,

F1 (ŝ1) if ŝ1 < s < s∗1,

1 if s ≥ s∗1,

where s∗1 = EF1 [s|s > ŝ1], and similarly for G2. In addition, collusive profit is higher under

G2 than G1 (as improving the algorithm’s information increases collusive profit), which

implies that s∗1 ≤ s∗2, by (2).

We show that these conditions imply that
∫ s
s
G1 (s) ds ≤

∫ s
s
G2 (s) ds for all s, showing

that G2 is a mean-preserving spread of G1. It suffi ces to consider the case where there exists

s∗ such that s∗1 = s∗2 = s∗, as increasing s∗2 corresponds to taking another mean-preserving

spread of G2. Note that, for any s ≤ ŝ2, we have∫ s

s

(G1 (s)−G2 (s)) ds =

∫ s

s

(G1 (s)− F2 (s)) ds ≤
∫ s

s

(F1 (s)− F2 (s)) ds ≤ 0,

where the equality is by G2 (s) = F2 (s) for all s ≤ ŝ2, the first inequality is by G1 (s) ≤ F1 (s)

for all s < s∗1, and the second inequality is because F2 is a mean-preserving spread of F1.

Next, G1 (s) − G2 (s) is non-decreasing on the interval [ŝ2, s
∗), as on this interval G1 (s) is

non-decreasing and G2 (s) = F2 (ŝ2) is constant. In addition, G1 (s)−G2 (s) = 0 for s ≥ s∗.

Thus,
∫ s
s

(G1 (s)−G2 (s)) ds is convex on [ŝ2, s
∗] and constant on (s∗, s̄]. Therefore, since∫ s

s
(G1 (s)−G2 (s)) ds ≤ 0 for all s ≤ ŝ2, if

∫ s
s

(G1 (s)−G2 (s)) ds is ever strictly positive

then it must be strictly positive at s = s∗ (since, as a convex function on [ŝ2, s
∗], it is bounded

above by its linear interpolation over this interval). But, by integration by parts

EG1 [s] = s̄−
∫ s̄

s

G1 (s) ds = s∗ −
∫ s∗

s

G1 (s) ds, and

EG2 [s] = s̄−
∫ s̄

s

G2 (s) ds = s∗ −
∫ s∗

s

G2 (s) ds,
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so since EG1 [s] = EG2 [s] we have
∫ s∗
s

(G1 (s)−G2 (s)) ds = 0. Thus,
∫ s
s

(G1 (s)−G2 (s)) ds ≤

0 for all s, completing the proof.
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