
Collusion with Optimal Information Disclosure∗

Takuo Sugaya

Stanford GSB

Alexander Wolitzky

MIT

January 28, 2026

Abstract

Motivated by recent concerns surrounding the use of third-party pricing algorithms

by competing firms, we study repeated Bertrand competition where market demand

or the cost of serving the market is observed by an intermediary (or “algorithm”) that

selectively discloses demand or cost information to maximize firms’collusive profit. We

show that an upper censorship disclosure policy is optimal, which leads to price rigidity

and supra-monopoly prices at some states. Improving the algorithm’s accuracy reduces

expected consumer surplus whenever it does so under monopoly pricing. When the

state is positively correlated over time, the algorithm discloses more information when

recent demand was lower or costs were higher. The analysis extends to a generalized

model that accommodates product differentiation and capacity constraints. We relate

our findings to recent antitrust cases.
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1 Introduction

Firms increasingly use automated algorithms to set prices and other competitive variables,

a development that has raised a range of regulatory and antitrust concerns (Mehra, 2015;

Ezrachi and Stucke, 2017; Calvano et al., 2020a). A particular focus of some prominent

recent cases is third-party algorithms that facilitate information-sharing among competing

firms while recommending prices. For example, RealPage, Inc. is a company that markets

revenue management software to commercial landlords. RealPage’s software gathers detailed,

near real-time information on apartment prices and occupancy rates from its users and other

non-public sources and uses this data– including data on market conditions gleaned from

competitors– to recommend prices. Following a history of private litigation against Re-

alPage, in August 2024 the US Department of Justice and eight state attorneys general

sued RealPage, asserting that, “At bottom, RealPage is an algorithmic intermediary that

collects, combines, and exploits landlords’competitively sensitive information,”which con-

stitutes an “unlawful scheme to decrease competition among landlords,”(USDOJ 2024a,b;

see also Calder-Wang and Kim, 2024). Similar algorithmic intermediaries have emerged in a

number of other industries, including retail gasoline pricing (A2i Systems and Kalibrate; see

Assad et al., 2024) and hotel room pricing (IDeaS and Rainmaker; see Harrington, 2025).

In addition, related concerns have also been raised regarding offl ine cartel facilitators, such

as the Swiss consulting firm AC-Treuhand, which was prosecuted by the European Commis-

sion for facilitating several European industrial cartels by disclosing competitively sensitive

information and recommending prices and market allocations (Harrington, 2006; Marshall

and Marx, 2012).

Motivated by this type of setting, this paper develops a simple model of how an interme-

diary that possesses more detailed aggregate demand or cost information than its client firms

can selectively disclose this information to maximize its clients’collusive profit.1 We work in

the canonical setting of repeated Bertrand competition with stochastic demand, introduced

1The model is intended as a benchmark and does not attempt to fully capture the complex industries
mentioned above. For example, in practice the objective of an intermediary like RealPage may or may not be
maximizing collusive profit, and the intermediary’s information may or may not be a superset of the firms’.
We connect our analysis to the RealPage case in detail in Section 5.
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by Rotemberg and Saloner (1986).2 Following Rotemberg and Saloner, our baseline setting

assumes homogeneous products and iid demand, although we subsequently relax both of

these assumptions. To get a stark and tractable model, we assume that the current demand

state is observed only by the intermediary (henceforth, the algorithm), which then discloses

information about the state according to a known policy. We also make a key technical

assumption that profit is affi ne in the unknown state, so that, for any fixed price and any

distribution over states, expected profit is determined by the expected state. Under these

assumptions, we characterize the disclosure policy and the (pure strategy, subgame perfect)

equilibrium that maximizes the firms’profits.

The main result in our baseline model is that the (firm-)optimal policy is upper censorship

together with conditional monopoly pricing: there is a cutoff demand state ŝ such that,

if the current demand state s is below ŝ, the algorithm discloses s and recommends the

corresponding monopoly price pm (s) to all firms; and if the current demand state s is

above ŝ, the algorithm discloses only the event {s > ŝ} and recommends the monopoly price

conditional on this information, pm (E [s|s > ŝ]). The optimal equilibrium thus features rigid

prices: prices are constant unless demand falls below ŝ. It also involves supra-monopoly

prices for a range of demand states: for demand states s in the interval (ŝ,E [s̃|s̃ > ŝ]), the

equilibrium price is pm (E [s̃|s̃ > ŝ]), which is greater than the monopoly price in state s,

pm (s), whenever the monopoly price pm (·) is an increasing function of demand. Finally,

as compared to the observable demand case studied by Rotemberg and Saloner, optimal

collusive prices are higher– and consumer surplus is lower– for every demand state.

The logic of these results is as follows. As in Rotemberg and Saloner, firms are most

tempted to undercut the collusive price when demand is high, as this is when the static

monopoly profit Πm (s) is largest relative to the equilibrium continuation payoff. In Rotem-

berg and Saloner– which is identical to the special case of our model where the algorithm

fully discloses the demand state– the cartel responds by reducing prices when demand is

high, which reduces current-period profit and hence reduces the current-period deviation

gain. (This is the logic of Rotemberg and Saloner’s “price wars during booms.”) However,

2Stochastic demand and stochastic cost are equivalent up to a sign change in our model. For concreteness,
we mostly discuss the stochastic demand case.

2



when an algorithm controls the firms’information, it is more profitable to reduce profit at

high demand states by pooling these states with lower demand states and recommending

the monopoly price conditional on the disclosed information, rather than cutting prices. In

other words, the cartel reduces firms’ temptation to deviate in high demand states only

by reducing their information, not by reducing the recommend price conditional on their

information. Technically, the key observation is that the firms’“capped monopoly profit,”

min {Πm (s) ,Πmax}– where Πmax is the maximum industry profit that the firms can obtain

in a single period without violating incentive constraints, which is independent of s with

homogeneous products and iid demand– is a “convex-then-concave”function of s, and up-

per censorship is the optimal disclosure policy for a convex-then-concave objective function

(Kolotilin, 2018; Dworczak and Martini, 2019; Kolotilin et al., 2022).

The optimal collusive equilibrium displays clean comparative statics. Reducing the num-

ber of firms, increasing the discount factor, or improving the algorithm’s accuracy makes

collusive prices more flexible and increases collusive profit. In addition, if improving the

information of a monopoly seller reduces expected consumer surplus, then so does making

collusive prices more flexible in our model. This result speaks directly to antitrust concerns

regarding algorithmic information-sharing. Specifically, while prior studies have found an

ambiguous effect of improved algorithmic demand prediction on consumer surplus (Sugaya

and Wolitzky, 2018; Miklós-Thal and Tucker, 2019), our conclusion is more unambiguously

negative. The reason is that prior studies assumed that the algorithm fully discloses its infor-

mation to firms, while we assume that it selectively discloses its information to maximize firm

profits, and therefore conceals information that would lead to price cuts if it were disclosed.

Thus, while Miklós-Thal and Tucker (2019, p. 1553) find “somewhat reassuring results for

antitrust authorities who are worried about the implications for anticompetitive and collu-

sive behavior of the digital environment,”we can unfortunately offer no such reassurances

for algorithms that selectively disclose information to maximize collusive profit.

We relate our baseline model and results to some recent antitrust cases, focusing on the

RealPage case. While the available evidence is limited, it seems consistent with our key

mechanism wherein an intermediary with superior demand information selectively discloses

this information to maximize its clients’ joint profits, resulting in a stylized pricing pat-
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tern over the business cycle where prices respond flexibly to demand conditions in industry

downturns but are more rigid in upturns.

While our baseline model tractably generalizes Rotemberg and Saloner and delivers sharp

and empirically plausible results, it does assume a rather special market structure. We there-

fore extend the model in three directions. First, we let the state persist over time, following a

Markov process. Here the main results from the iid case go through, and there are also some

new results. For example, we show that when demand is positively correlated over time, the

algorithm discloses more information when recent demand was lower. (The opposite result

holds with negative serial correlation.) The intuition is that with positive serial correlation,

firms are more pessimistic about demand– and thus less tempted to deviate– when recent

demand was lower, so the algorithm can disclose more information without prompting a

deviation. We also show that the optimal collusive price is no longer always equal to the

monopoly price for the disclosed mean demand, and that, while price is always monotone

in current demand (as in the iid case and in contrast to Rotemberg and Saloner), it can

be non-monotone in the previous period’s demand, so that the expected price conditional

on the last-period demand can display countercyclicality similar to that in Rotemberg and

Saloner.

Second, we consider a generalized model that accommodates product differentiation and

capacity constraints.3 The insight that optimal information disclosure involves regions of

censorship, price rigidity, and supra-monopoly pricing extends to the generalized model.

However, the form of the optimal disclosure policy depends on details of the demand system

and can differ from that in the baseline, homogeneous goods case. For example, with a

symmetric, linear demand system, the optimal policy generally discloses the highest demand

states as well as the lowest ones, while pooling a region of intermediate states. The intuition

is that, with differentiated goods, the attainable profits at the highest demand states are

high enough that it is optimal to disclose these states, even though the resulting prices must

fall below the monopoly level to deter undercutting. Mathematically, the capped monopoly

profit is now piecewise-convex rather than convex-then-concave, so in general an optimal

3These features are likely important in the RealPage case, although our discussion of this case in Section
5 focuses on our baseline model for simplicity.
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disclosure policy censors an intermediate interval of states, rather than the highest states.

Third, we briefly consider the problem of designing a disclosure policy to maximize a

weighted average of producer and consumer surplus, assuming that firms play their optimal

equilibrium under the chosen policy. Here, we find that the consumer-optimal disclosure

policy under linear demand with an unknown intercept is a binary signal that reveals only

whether demand is below or above a cutoff, where the low signal induces the corresponding

monopoly price, and the high signal sparks a “price war” (price below the corresponding

monopoly price).

The remainder of the paper is organized as follows. Following a discussion of the lit-

erature, Section 2 presents the baseline model, Section 3 solves the model, and Section 4

discusses implications and comparative statics. Section 5 connects the analysis to recent

antitrust cases, focusing on the RealPage case. Section 6 contains the extension to a per-

sistent state and to a symmetric, linear demand system. Section 7 concludes and discusses

further extensions. A generalized model that allows a range of demand systems as well as

capacity constraints is presented in Appendix A. Finally, Appendix B considers more general

objectives, such as maximizing consumer surplus.

Related literature. We contribute to the literatures on pricing algorithms, information-

sharing among colluding firms, information design, and repeated games.

Much of the recent literature on pricing algorithms studies how independent algorithms

can learn to set supra-competitive prices (Waltman and Kaymak, 2008; Calvano et al.,

2020b; Klein, 2021; Asker, Fershtman, and Pakes, 2024; Banchio and Mantegazza, 2024),

as well as the commitment value of adopting such algorithms (Cooper et al., 2015; Salcedo,

2015; Hansen, Misra, and Pai, 2021; Brown and MacKay, 2023; Lamba and Zhuk, 2024).

We instead ask how a shared algorithm with demand information superior to the firms’

optimally discloses information to facilitate collusion. Sugaya and Wolitzky (2018, Example

3) and Miklós-Thal and Tucker (2019) show that the effect of disclosing demand information

on collusive profit and consumer surplus is generally non-monotone, as it facilitates more

accurate deviations as well as more accurate on-path pricing (a logic similar to Rotemberg

and Saloner’s). O’Connor andWilson (2019), Martin and Rasch (2022), and Bonatti, Fiocco,
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and Piccolo (2024) document similar effects under imperfect monitoring.4 However, none of

these papers characterizes optimal disclosure.

Harrington (2022) notes a reason why our model might not be a good fit for a third-party

company like RealPage that designs and sells a pricing algorithm to competing firms: if firms

independently decide whether to purchase and adopt the algorithm, a profit-maximizing al-

gorithm designer’s objective may be to maximize the difference in profit between adopters

and non-adopters, rather than adopters’profits.5 This alternative objective could be con-

sidered in future research. Harrington (2025) considers a problem closer to ours, where the

algorithm maximizes adopter’s profit subject to the constraint that adoption is profitable.

However, in his model, adopters commit to following the algorithm’s price recommendations.

Finally, a very recent paper by Harrington and Ortner (2025) considers a similar problem

where adopters do not commit to following the recommendations. The key difference from

our model is that Harrington and Ortner consider idiosyncratic demand uncertainty that

washes out in aggregate. In that case (and assuming a linear demand system), they show

that full information disclosure is optimal.

The broader literature on information-sharing among colluding firms considers a range

of mechanisms, including the impact of improved monitoring (Abreu, Milgrom, and Pearce,

1991; Kandori, 1992; Harrington and Skrzypacz, 2011; Awaya and Krishna, 2016), the bene-

fits of maintaining strategy uncertainty (Bernheim and Madsen, 2017; Sugaya and Wolitzky,

2018; Ortner, Sugaya, and Wolitzky, 2024; Kawai, Nakabayashi, and Ortner, 2024), and

the allocative role of communication under incomplete information.6 These papers find that

concealing various types of information can be advantageous for cartels. However, we are not

aware of any prior work that studies optimal information disclosure for facilitating collusion.7

Optimal information disclosure has been studied extensively in static environments (Rayo

4Bonatti, Fiocco, and Piccolo (2024) focus on a comparison between revealing demand information before
and after firms set prices.

5Bordoli (2025) and Wu (2025) consider a similar designer objective in a static setting.
6The latter literature contains papers on communicating private cost information (McAfee and McMillan,

1992; Athey and Bagwell, 2001; Athey, Bagwell, and Sanchirico, 2004; Skrzypacz and Hopenhayn, 2004), as
well as private signals of stochastic market demand (Hanazono and Yang, 2007; Gerlach, 2009; Buehler and
Gärtner, 2013; Sahueget and Walckiers, 2017).

7Hickok (2024) studies optimal information disclosure by a platform that takes a share of firms’revenue,
finding that full disclosure is optimal.
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and Segal, 2010; Kamenica and Gentzkow, 2011), especially in the affi ne case we focus

on (Gentzkow and Kamenica, 2016; Kolotilin et al., 2017; Kolotilin, 2018; Dworczak and

Martini, 2019), as well as in some specific dynamic settings (e.g., Ely, 2017; Renault, Solan,

and Vieille, 2017). From a technical perspective, the closest paper is Kolotilin and Li (2021),

who study a repeated cheap talk game with voluntary transfers. Like us, they reduce the

problem of characterizing the optimal equilibrium to a static information design problem.8

However, this reduction works for different reasons in the two papers: in Kolotilin and

Li, the key is the availability of transfers; for us, the key is the fact that static deviation

gains are proportional to on-path payoffs under Bertrand competition.9 Kolotilin and Li’s

reduction also imposes a monotonicity constraint, which is absent in our setting. Kolotilin

and Li (Proposition 4) derive conditions under which upper censorship is optimal, which

include shape restrictions on utilities beyond affi neness. For us, no conditions are required

beyond affi neness, due to the structure of Bertrand competition. Once the reduction to static

information design (Lemma 1) is in place, our proof is essentially the same as Kolotilin and

Li’s (as well as Kolotilin, 2018; Dworczak and Martini, 2019; and others). However, the

structure of Bertrand competition also lets us handle the Markov case in Section 6.1, and we

also characterize more general optimal disclosure policies in Section 6.2 and Appendix A.

From the viewpoint of repeated game theory, we combine the recursive approach pio-

neered by Abreu (1986, 1988) with optimal public information disclosure. The approach is

to consider static information design in the stage game augmented with continuation payoffs.

This is especially tractable in symmetric games where symmetric equilibria can be shown

to be without loss. The text of the paper illustrates this approach in two special settings

(collusion with homogeneous goods or with differentiated goods with linear demand), while

the model in Appendix A is a relatively general one where this methodology applies.

8Kuvalekar, Lipnowski, and Ramos (2022) also reduce a repeated communication game to a static one.
9In the generalized version of our model, the reduction works due to a more general one-to-one corre-

spondence between static deviation gains and on-path payoffs.
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2 A Model of Collusion with Information Disclosure

Prices and profits. We consider homogeneous-goods Bertrand competition among n firms

with stochastic demand or a stochastic common production cost. In each period, a non-

negative demand or cost state s ∈ [s, s̄] is drawn independently from an atomless distribution

F , and each firm i sets a non-negative price pi, which is publicly observed. The firms’

information about s is described below. The lowest-price firm i serves the entire market and

makes profit Π (pi, s). The market is shared equally in case of a tie.

We focus on the case where s measures market demand. In this case, we assume that

Π (0, s) = 0 for all s (normalizing costs to 0); that Π (p, s) is continuous in p with a well-

defined monopoly profit Πm (s) = maxp Π (p, s) for each s; and that Π (p, s) is affi nely in-

creasing in s for each p: that is, Π (p, s) ≤ Π (p, s̄) and

Π (p, s) =
s̄− s
s̄− sΠ (p, s) +

s− s
s̄− sΠ (p, s̄) for all p, s.

In the alternative case where s measures a common production cost, the assumptions are

slightly different. Here, we assume that Π (p, s) ≤ 0 for all p < s with equality at p = s; that

Π (p, s) is continuous in p with a well-defined monopoly profit Πm (s) for each s; and that

Π (p, s) is affi nely decreasing in s for each p. An interpretation of this case is that the firms

are bidders in a procurement auction, where the cost of fulfilling the contract is privately

observed by an intermediary who coordinates bid-rigging among the firms.10

Affi neness in s is our key assumption. It has two important implications. First, expected

profit is measurable with respect to mean demand: for any price p and any distribution

of demand states µ ∈ ∆ ([s, s̄]), the expected profit from serving the market at price p is

Eµ [Π (p, s)] = Π (p,Eµ [s]). Second, monopoly profit Πm (s) = maxp Π (p, s) is increasing

and convex in s as the maximum of increasing affi ne functions.11

Affi neness in s is a strong assumption, but it is satisfied in some important cases, which

we return to throughout the paper. First, it holds if there is a binary underlying de-

mand or cost state s ∈{s, s̄}, where s is a continuous signal of s satisfying Pr (s = s̄|s) =

10An example that fits this interpretation is the Kumatori Contractors Cooperative studied by Kawai,
Nakabayashi, and Ortner (2024), which we discuss in Section 5.
11In the stochastic cost case, Πm (s) is decreasing and convex in s.
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(s− s) / (s̄− s). Second, it holds for linear demand with an unknown intercept, where de-

mand equals D (p, s) = s − p, and hence Π (p, s) = p (s− p).12 Third, it holds for linear

demand with an unknown constant marginal cost, where demand equals 1− p and marginal

cost equals s, so that Π (p, s) = (p− s) (1− p).

Information. We assume that the firms do not directly observe the state s. Instead,

s is observed by an intermediary– which we refer to as the algorithm– which maps s to a

(possibly random) signal according to a known rule. We assume that the signal is publicly

observed by all firms. Importantly, this assumption restricts the scope of our analysis to

public information disclosure and rules out more general private communication.13 Since

expected profit is measurable with respect to mean demand, it is without loss to view the

algorithm as choosing a distribution G of the firms’posterior expectations of s, which we

denote by x. By Blackwell (1953) (see also Strassen, 1965; Kolotilin, 2018), such a distrib-

ution is consistent with Bayesian updating of the prior F if and only if G ∈ MPC (F ), the

set of mean-preserving contractions of F . We refer to such a distribution G as a disclosure

policy.

Repeated game equilibrium. The above game is repeated in discrete time with a

common discount factor δ. In principle, the algorithm can choose a different disclosure

policy G each period, but we will see that there is no benefit from doing so in the current

model with an iid state.14

Our solution concept is pure strategy, subgame perfect equilibrium (henceforth, “equi-

12These two cases both nest Example 3 of Sugaya and Wolitzky (2018), which assumes a binary demand
state and linear demand. The first case also nests the model of Miklós-Thal and Tucker (2019), which
assumes a binary demand state and unit demand. Our analysis also applies for linear demand subject to
a non-negativity constraint, D (p, s) = max {s− p, 0}, so long as s ≥ s̄/2, so that demand D (pm (s) , s′) is
non-negative for any monopoly price pm (s) and demand state s′.
13With private signals, in each period the problem would become one of characterizing the optimal Bayes

correlated equilibrium in a game with a continuum of states and actions and discontinuous payoffs. This
problem is generally intractable. For example, see Smolin and Yamashita (2025) for results with concave
payoffs, as well as a recent literature review. Private signals do improve on public ones– for example,
Ortner, Sugaya, and Wolitzky (2024) find the optimal equilibrium with private signals in a similar model
without demand uncertainty. Besides tractability, public communication and pure strategies ensure that the
equilibrium will be robust to firms’investigating their competitors’prices before setting their own.
14In Section 6.1, the state follows a Markov process, and the optimal disclosure policy depends on the

previous period’s state. In Section 6.2 and Appendix A, the optimal disclosure policy is time-invariant along
the equilibrium path but discloses no information off path.
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librium”). Here, pure strategies mean that, in each period, each firm i sets a deterministic

price pi (x) as a function of the disclosed mean demand state x and the history of past mean

demand states and all firms’past prices.15

3 Optimal Information Disclosure and Pricing

We characterize the joint information disclosure and pricing policy that maximizes collusive

profits (the sum of the firms’payoffs). We reduce this problem to a static information design

problem in Section 3.1 and solve it in Section 3.2.

3.1 Reduction to Static Information Design

For any number V ≥ 0, define

Πmax (δ, n, V ) =
δV

(1− δ) (n− 1)
. (1)

Intuitively, this is the maximum profit Π such that a firm prefers to receive Π/n today

and V/n in every future period rather than Π today and zero in the future. Thus, if the

firms expect a future per-period collusive profit of V and the cartel tries to make profit

Π > Πmax (δ, n, V ) in any period, a firm will deviate.

Next, define V ∗ as the greatest fixed point of the equation

V = max
G∈MPC(F )

EG [min {Πm (x) ,Πmax (δ, n, V )}] . (2)

Intuitively, this is the maximum expected profit attainable by a joint information disclosure

and pricing policy that never makes profit greater than Πm (x) (the maximum feasible profit

at mean demand state x) or Πmax (δ, n, V ∗) (the maximum incentive compatible profit at

mean demand state x, when future per-period collusive profit equals V ∗). Note that the

right-hand side of (2) is bounded by EF [Πm (s)], so V ∗ is well-defined.

15Restricting to pure strategies is standard but may not be without loss of generality, as randomization
could deter deviations by making firms unsure of the winning price. This effect is studied in complete-
information models by Bernheim and Madsen (2017) and Kawai, Nakabayashi, and Ortner (2024). Combin-
ing randomization and incomplete information is a possible direction for future research.
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We show that optimal collusive profit equals V ∗ and that this profit level is attained by

an equilibrium that is symmetric (pi (x) is always identical across firms i), stationary (the

disclosure policy G is the same in every period and, on path, pi (x) is independent of the

history of past demand realizations), and of a grim trigger form (play permanently reverts

to the static Nash equilibrium following any deviation).

Lemma 1 Optimal collusive profit equals V ∗ and is attained by a symmetric, stationary,

grim trigger equilibrium. Moreover, a disclosure policy G is optimal if and only if it solves

the maximization problem in (2) with V = V ∗.

Lemma 1 reduces the problem of finding an optimal equilibrium to the static information

design problem on the right-hand side of equation (2), with V = V ∗.

Proof. We first show that there exists a symmetric, stationary, grim trigger equilibrium

that attains collusive profit V ∗. For each x, let pm (x) ∈ argmaxp Π (p, x) be a monopoly

price in state x, and let

p (x) =

 pm (x) if Πm (x) ≤ Πmax (δ, n, V ∗) ,

min {p : Π (p, x) = Πmax (δ, n, V ∗)} if Πm (x) > Πmax (δ, n, V ∗) .

Note that p (x) is well-defined by the intermediate value theorem, as Π (0, x) = 0 and Π (p, x)

is continuous in p.16 Let G∗ ∈ argmaxG∈MPC(F ) EG [min {Πm (x) ,Πmax (δ, n, V ∗)}]. Consider

disclosure policy G∗, together with the strategy profile where all firms price at p (x) whenever

mean demand x realizes on path, and all firms price at zero off path. This is a symmetric,

stationary, grim trigger strategy profile, which yields collusive profit V ∗ by construction. To

see that it is an equilibrium, note that a firm’s best deviation when realized mean demand

is x is to price just below p (x): this is immediate if p (x) = pm (x) and otherwise follows

because p (x) is the smallest price p satisfying Π (p, x) = Πmax (δ, n, V ∗), so that Π (p′, x) <

Πmax (δ, n, V ∗) for all p′ < p (x). This deviation wins the entire market in the current period,

but forfeits an expected profit of V ∗/n in every future period. Thus, the strategy profile is

16Here and throughout, we write proofs for the case where s is a demand state. The proofs for the case
where s is a cost state are nearly identical.
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an equilibrium if and only if, for all x, we have

(1− δ) Π (p (x) , x) + δ (0) ≤ 1

n
((1− δ) Π (p (x) , x) + δV ∗) ⇐⇒

Π (p (x) , x) ≤ δV ∗

(1− δ) (n− 1)
= Πmax (δ, n, V ∗) .

Since this inequality holds by construction, the strategy profile is an equilibrium.

We now show that no equilibrium yields higher profit. Fix any equilibrium, and let V̄ be

the supremum over periods t and histories of play up to and including period t of the expected

per-period collusive profit from period t + 1 onward. Now fix an arbitrary period t and a

history of play up to period t, and suppose that when the realized mean demand in period t

at this history is x, the prescribed winning price is p (x), and each firm i wins with probability

αi and obtains equilibrium continuation value vi. (So, αi = 1/ |j : pj (x) = p (x)| if pi (x) =

p (x), and αi = 0 otherwise. Note that each pi (x)– and thus the winning price p (x)– is

deterministic by our restriction to pure strategy equilibria.) Since a possible deviation for

firm i is to price just below p (x) and a firm’s minimax payoff is zero, firm i’s incentive

constraint implies

(1− δ) Π (p (x) , x) + δ (0) ≤ αi (1− δ) Π (p (x) , x) + δvi.

Averaging this inequality over the n firms, we have

(1− δ) Π (p (x) , x) ≤ 1

n

(
(1− δ) Π (p (x) , x) + δ

∑
i

vi

)
≤ 1

n

(
(1− δ) Π (p (x) , x) + δV̄

)
,

where the second inequality is by definition of V̄ . This inequality is equivalent toΠ (p (x) , x) ≤

Πmax
(
δ, n, V̄

)
. Since we also have Π (p (x) , x) ≤ Πm (x) by definition, and these inequalities

hold for any x, expected collusive profit in period t is at most

maxG∈MPC(F ) EG
[
min

{
Πm (x) ,Πmax

(
δ, n, V̄

)}]
. Since this holds for any period t, we have

V̄ ≤ maxG∈MPC(F ) EG
[
min

{
Πm (x) ,Πmax

(
δ, n, V̄

)}]
. But this implies that equation (2)

has a fixed point weakly above V̄ , and hence V̄ ≤ V ∗, by definition of V ∗.

A direct implication of Lemma 1 is that collusion is impossible if δ < (n− 1) /n. (The
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same condition implies that collusion is impossible under full information disclosure, as in

Rotemberg and Saloner.) Conversely, if δ ≥ (n− 1) /n then monopoly profit under no

information disclosure, Πm
(
EF [s]

)
, is attainable.

Lemma 2 If δ < (n− 1) /n then V ∗ = 0. Conversely, if δ ≥ (n− 1) /n then V ∗ ≥

Πm
(
EF [s]

)
.

Proof. If δ < (n− 1) /n then Πmax (δ, n, V ) < V for all V > 0, so the only solution to (2) is

V = 0. Conversely, if δ ≥ (n− 1) /n then no information disclosure together with a constant

on-path price of pm
(
EF [s]

)
and zero prices off path is an equilibrium, with expected profit

Πm
(
EF [s]

)
.

Given Lemma 2, we henceforth assume that δ ≥ (n− 1) /n.

3.2 Optimality of Upper Censorship

The information design problem in (2) is easily solved using recent results from the static

information design literature.

First, let s∗ ∈ [s, s̄] solve

Πm (s∗) = Πmax (δ, n, V ∗) (3)

if such a demand state exists, and let s∗ = s̄ otherwise. Note that, by Lemma 2 and our

assumption that δ ≥ (n− 1) /n, we have V ∗ ≥ Πm
(
EF [s]

)
, and hence s∗ ≥ EF [s].17 Thus,

since F is atomless, there exists ŝ ∈ [s, s∗] such that

EF [s|s ≥ ŝ] = s∗.

We can now characterize the optimal information disclosure and pricing policy. Figure 1

illustrates the optimal disclosure policy, as well as the construction of s∗ and ŝ.

Theorem 1 With stochastic demand, the unique optimal disclosure policy is the upper cen-

sorship policy that discloses demand states below ŝ and conceals demand states above ŝ. The

17This follows because if s∗ < EF [s] then Πm
(
EF [s]

)
> Πmax (δ, n, V ∗) by (3) and monotonicity of Πm (s),

but then we would have V ∗ > Πmax (δ, n, V ∗) by Lemma 2, contradicting the definition of V ∗.
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Figure 1: The optimal disclosure policy with undifferentiated products. First, s∗ is determined as
the solution to Πm (s∗) = Πmax (δ, n, V ∗). Then, ŝ is determined as the solution to EF [s|s ≥ ŝ] =
s∗. The optimal policy discloses demand states s < ŝ and recommends the corresponding monopoly
price, pm (s); and conceals demand states s ≥ ŝ and recommends the monopoly price conditional
on this information, pm (s∗). The function Π̃ (s) is defined in the proof of Theorem 1.

unique optimal collusive price p (s) in state s is given by

p (s) =

 pm (s) if s < ŝ,

pm (s∗) if s ≥ ŝ.
(4)

With stochastic costs, the unique optimal disclosure policy is the analogous lower censor-

ship policy that discloses cost states above ŝ satisfying EF [s|s ≤ ŝ] = s∗ and conceals cost

states below ŝ.18 The unique optimal collusive price p (s) in state s is given by (4) with the

reversed inequalities.

With stochastic demand, note that ŝ = s– so no disclosure is optimal– iff s∗ = EF [s],

which holds iff δ = (n− 1) /n. Conversely, ŝ = s̄– so full disclosure is optimal– iff s∗ = s̄,

which holds iffΠm (s̄) ≤ Πmax (δ, n, V ∗). Otherwise, we have Πm
(
EF [s]

)
< Πmax (δ, n, V ∗) <

Πm (s̄), and partial disclosure is optimal.

To understand Theorem 1, note that disclosing demand information increases expected

18The definitions of Πmax and s∗ remain as in (1) and (3).
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monopoly profits– as Πm (s) is convex– but revealing that expected demand is too high

requires cutting price to deter a deviation (as in Rotemberg and Saloner). The theorem

says that it is optimal to disclose low demand states and conceal high ones, such that the

mean concealed state s∗ is the highest state s that does not require a price cut from the

corresponding monopoly price pm (s) to deter a deviation.

The intuition is that it cannot be optimal to disclose a mean demand state s > s∗,

as pooling s with lower demand states would increase expected profit. In particular, full

disclosure together with price cuts during booms– Rotemberg and Saloner’s equilibrium– is

suboptimal in our model. In addition, it cannot be optimal to pool two demand states below

s∗, as separating these states increases expected profit since Πm (s) is convex. Finally, it is

more profitable to pool demand states above s∗ with intermediate states s ∈ [ŝ, s∗] rather

than low states s < ŝ, as this spreads out the distribution of disclosed mean demand states

s on the interval [s, s∗], where Πm (s) is convex.

A more technical explanation is that the objective function min {Πm (s) ,Πmax (δ, n, V ∗)}

is increasing and convex in s for s ≤ s∗ and is constant in s for s > s∗. Thus, (2) describes a

mean-measurable information design problem with an objective function that is “S-shaped”:

first convex, then concave. It is well-known that the solution to such a problem is upper cen-

sorship (e.g., Kolotilin, 2018; Dworczak and Martini, 2019; Kolotilin and Li, 2021; Kolotilin

et al., 2022). Moreover, adapting the standard proofs to the current setting where the ob-

jective function is not only convex-then-concave but convex-then-constant implies that the

solution must take the prescribed form, where the mean censored state s∗ lies at the kink of

the objective function.19 In particular, the disclosed mean demand state s always satisfies

Πm (s) ≤ Πmax (δ, n, V ∗), which implies that conditional monopoly pricing is optimal.

Proof. Define an auxiliary objective function

Π̃ (s) =

 Πm (s) if s < ŝ,

s∗−s
s∗−ŝΠ

m (ŝ) + s−ŝ
s∗−ŝΠ

m (s∗) if s ≥ ŝ.

Note that Π̃ (s) is convex and Π̃ (s) ≥ min {Πm (s) ,Πmax (δ, n, V ∗)} for all s. (See Figure 1.)
19Specifically, we adapt the proofs of Proposition 3 of Dworczak and Martini (2019) and Proposition 4 of

Kolotilin and Li (2021). Theorem 1 is also a special case of Theorem 4 in Appendix A.
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Consider the auxiliary problem, maxG∈MPC(F ) EG
[
Π̃ (s)

]
. Since Π̃ (s) is convex, the solution

is full disclosure (G = F ), and the resulting value is

EF
[
Π̃ (s)

]
= F (ŝ)EF [Πm (s) |s < ŝ]

+ (1− F (ŝ))EF
[
s∗ − s
s∗ − ŝΠm (ŝ) +

s− ŝ
s∗ − ŝΠm (s∗) |s ≥ ŝ

]
= F (ŝ)EF [Πm (s) |s < ŝ] + (1− F (ŝ)) Πm (s∗) .

Since Π̃ (s) ≥ min {Πm (s) ,Πmax (δ, n, V ∗)} for all s, this value is an upper bound for

maxG∈MPC(F ) EG [min {Πm (s) ,Πmax (δ, n, V ∗)}]. But it is attained by upper censorship with

cutoff ŝ, so this policy is optimal. Moreover, this policy is the unique one that induces only

posteriors s where Π̃ (s) = min {Πm (s) ,Πmax (δ, n, V ∗)}, so it is the unique optimal policy.

Finally, this disclosure policy is optimal only in conjunction with the prescribed prices.

4 Implications and Comparative Statics

We now discuss the baseline model’s predictions, comparative statics, and consumer welfare

implications.

4.1 Model Predictions and Impact of Selective Disclosure

The optimal disclosure and pricing policy characterized in Theorem 1 has the following

features. In the subsequent discussion, we assume that the monopoly price pm (s) is unique

and increasing in s.

Conditional monopoly pricing. Along the equilibrium path of play, the cartel prevents

deviations solely by reducing its members’ information, not by reducing collusive prices

below the monopoly price conditional on their information. Consequently, collusive prices

for a cartel aided by an algorithm that observes a state with distribution F is identical to

monopoly pricing for a single firm that observes a state with a less informative distribution

G∗. This observation will be useful for the comparative statics and consumer welfare results

in Section 4.2, as it implies that comparative statics for collusive prices are equivalent to
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comparative statics for monopoly prices with respect to the monopoly’s information.

Price rigidity– not price wars– during booms. The collusive price p (s) is increasing for

s < ŝ and is constant (at a higher level) for s ≥ ŝ. In particular, collusive prices exhibit

rigidity for demand states s ≥ ŝ, rather than “price wars”as in Rotemberg and Saloner. This

result gives a novel rationale for oligopoly price rigidity in intermediated collusion settings:

prices are rigid because colluding firms optimally limit their own information about market

conditions to deter deviations.20

In addition, this result shows that algorithmic pricing does not unambiguously increase

price flexibility under collusion. This result somewhat goes against the received view fol-

lowing Chen, Mislove, and Wilson’s (2016) study of retailer pricing on Amazon, which finds

that very flexible prices are a hallmark of algorithmic pricing under competition.

Supra-monopoly pricing. Collusive prices are above monopoly at intermediate demand

states: for s ∈ (ŝ, s∗), the optimal collusive price is p (s) = pm (s∗) > pm (s). Moreover,

these demand states satisfy Πm (s) < Πmax (δ, n, V ∗), so monopoly profit can be attained

at any one of these states s by disclosing s and recommending price pm (s) (holding the

rest of the equilibrium fixed). Thus, for a range of demand states where monopoly profit

is attainable, the algorithm instead implements supra-monopoly prices that deliver lower

profits. The reason why is that recommending the supra-monopoly price pm (s∗) > pm (s)

in states s ∈ (ŝ, s∗) lets the algorithm recommend the same price in states s > s∗, where

this price would be too high to be incentive compatible if the state were disclosed. In

other words, price rigidity for demand states above ŝ results in an ineffi ciently high price

for demand states in (ŝ, s∗), but thereby supports a higher price for demand states above s∗

than would be attainable under full information.21

Impact of selective information disclosure. The algorithm’s ability to conceal information

20While not focused on intermediated cartels per se, Carlton (1986) and others find that prices are more
rigid in concentrated industries, and Harrington (2008) and others suggest price rigidity as a collusive marker.
Existing theories of rigid collusive prices include Athey, Bagwell, and Sanchirico (2004) and Hanazono and
Yang (2007) (based on incentive costs of inducing firms to reveal private cost or demand information) and
Maskin and Tirole (2001) (who model “kinked demand curves”as a result of Markov perfect equilibria with
staggered price setting).
21Supra-monopoly pricing at intermediate demand states is analogous to “over-pooling”– where first-best

actions are not taken even in some states where they are implementable– in Kolotilin and Li (2021).
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leads to higher prices and lower consumer surplus in every demand state and thus unambigu-

ously harms consumers. To see this, let V FD be optimal collusive profit under full disclosure,

which is given by the greatest fixed point of the equation

V FD = EF
[
min

{
Πm (s) ,Πmax

(
δ, n, V FD

)}]
,

and let sFD solve

Πm
(
sFD

)
= Πmax

(
δ, n, V FD

)
.

As in Rotemberg and Saloner, optimal collusive prices under full disclosure are given by

pFD (s) =

 pm (s) if s ≤ sFD,

min
{
p : Π (p, s) = Πmax

(
δ, n, V FD

)}
if s > sFD.

Since pm (s) is increasing and Π (p, s) is increasing in s, it follows that pFD (s) is increasing

for s < sFD and decreasing for s ≥ sFD. The latter “price wars during booms” result is

Rotemberg and Saloner’s key message.

Proposition 1 As compared to collusive prices under full disclosure, collusive prices un-

der the optimal disclosure policy are higher at each demand state. Consequently, selective

information disclosure reduces consumer surplus.

Proof. Note that V FD ≤ V ∗, and hence sFD ≤ s∗. Therefore, letting p (s) be the optimal

collusive price in (4), for s < s∗ we have p (s) ≥ pm (s) ≥ pFD (s), and for s > s∗ we have

p (s) = pm (s∗) ≥ pm
(
sFD

)
≥ pFD (s), where the first inequality holds because sFD ≤ s∗ and

pm is increasing, and the second holds because sFD ≤ s and pFD is decreasing for s ≥ sFD.

Empirical predictions, collusive markers, and the interpretation of price wars. The base-

line model has three main empirical predictions:

1. The support of the distribution of equilibrium prices consists of an interval [pm (s) , pm (ŝ)]

and a single higher price pm (s∗).
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2. Prices are rigidly fixed at pm (s∗) for all demand states except the lowest ones. For low

demand states, prices are discretely lower than pm (s∗) but vary flexibly in the interval

[pm (s) , pm (ŝ)]. Overall, prices are pro-cyclical: p (s) is non-decreasing.

3. While prices are pro-cyclical, the gap between monopoly and collusive prices, pm (s)−

p (s), is non-monotone: first zero, then negative, then positive.

The predicted form of price rigidity– a rigid, high price together with an interval of

flexible lower prices– is distinctive to our model and is thus a possible collusive marker.

The pro-cyclical relationship between prices and demand in our model gives an alternative

interpretation of the “price wars”predicted by Green and Porter (1984) and other models

of collusion under imperfect monitoring. In Green and Porter, prices are pro-cyclical: prices

drop following demand shortfalls as part of an optimal repeated game equilibrium under

imperfect monitoring. In contrast, in Rotemberg and Saloner, prices are counter-cyclical

in high demand states. Interestingly, while our model is much closer to Rotemberg and

Saloner’s, our prediction of pro-cyclical prices coincides with Green and Porter’s, albeit by

a different mechanism: perfect monitoring and selectively disclosed demand information,

rather than imperfect monitoring. This observation is relevant for a line of papers that

have tested the competing predictions of Green and Porter and Rotemberg and Saloner

(e.g., Porter, 1983; Ellison, 1994) and have typically found results more favorable to Green

and Porter’s prediction of pro-cyclical prices. Relative to this literature, our analysis shows

that perfect monitoring and selective information disclosure is an alternative explanation for

pro-cyclical prices.

One way to distinguish our theory from Green and Porter’s would be to estimate the gap

between monopoly and collusive prices, pm (s)− p (s), over the cycle. In Green and Porter,

the gap is larger following low demand states: collusion is “more successful”when recent

demand was high. In our model, the gap is larger in high demand states (and can even be

negative): collusion is more successful when demand is low.22 It would be interesting to test

22With the exception of the distinctive prediction of supra-monopoly prices at intermediate demand states,
our prediction that the gap pm (s) − p (s) is pro-cyclical is as in Rotemberg and Saloner. Thus, our model
and Rotemberg and Saloner’s make different predictions about prices, p (s) (non-decreasing in our model;
single-peaked in theirs), but similar predictions about the difference pm (s) − p (s) (non-decreasing in both
models, with the exception of an intermediate region of supra-monopoly pricing in ours).
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these predictions.

4.2 Comparative Statics and Consumer Welfare

We now turn to comparative statics. In what follows, we say that collusive prices are

more flexible if the optimal disclosure policy G∗ spreads out in the mean-preserving spread

sense. By Blackwell (1953), this is equivalent to the algorithm’s output becoming more

informative. Holding fixed the algorithm’s information F , this is also equivalent to increasing

the censorship cutoff ŝ, so a wider range of demand states are disclosed.23 We also continue

to assume that δ ≥ (n− 1) /n, as otherwise collusion is impossible by Lemma 2.

Proposition 2 Collusive profit V ∗ is higher and collusive prices are more flexible when

1. there are fewer firms (n decreases),

2. the firms are more patient (δ increases), or

3. the algorithm is more accurate (F increases in the mean-preserving spread sense).

The intuition for the first two results is that decreasing n or increasing δ relaxes the

firms’incentive constraints, which lets the algorithm disclose a wider range of states without

prompting a deviation. In addition, a more accurate algorithm generates greater collusive

profits, which again relaxes incentive constraints and allows greater disclosure.24

Proof. For the first two results, note that n and δ affect V ∗ and p only through the function

Πmax, which is decreasing in n and increasing in δ. Thus, decreasing n or increasing δ shifts

up the right-hand side of (2) as a function of V , which increases the greatest fixed point V ∗.

In turn, an increase in V ∗ increases s∗ and ŝ, which makes prices more flexible.

For the third result, we prove in the appendix that a more informative prior implies a more

informative optimal disclosure policy in static information design problems with a convex-

constant objective: for any distributions (F1, F2, G1, G2) where F2 is a mean-preserving

23If F changes (as in Proposition 2.3, the comparative static with respect to the algorithm’s information),
then G∗ can spread out even as ŝ decreases.
24A similar effect is documented in Theorem 5 of Harrington (2025). Improving the algorithm’s information

corresponds to taking a mean-preserving spread of F by Blackwell (1953)– the interpretation is that there
is a distribution H of an underlying state s, and the distribution of the algorithm’s expectation of the
underlying state is F , a mean-preserving contraction of H.
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spread of F1, G1 is the distribution of x under an optimal disclosure policy for prior F1,

and G2 is the distribution of x under an optimal disclosure policy for prior F2, we have

that G2 is a mean-preserving spread of G1. Given this result, spreading out F implies that

the optimal disclosure policy on the right-hand side of (2) is more informative for any fixed

value for V . In addition, since MPC (F1) ⊆ MPC (F2), spreading out F clearly shifts up

the right-hand side of (2) as a function of V , which increases the greatest fixed point V ∗.

Since increasing V also implies a more informative optimal disclosure policy for any fixed

prior (as is obvious from Theorem 1), the result follows.

Proposition 2 gives suffi cient conditions for collusive prices to become more flexible. In

general, the effect of price flexibility on expected consumer surplus is ambiguous. However,

since collusive prices equal monopoly prices for a monopoly facing state distribution G∗,

price flexibility benefits consumers if and only if improving the information of a monopoly

does the same.

To state this result, we must assume that expected consumer surplus is measurable with

respect to the distribution of posterior mean states x. To this end, let CS (p, s) denote

consumer surplus at price p and state s. We say that consumer surplus is quasi-linear in s

if there exist functions f , g, and h such that

CS (p, s) = f (s) + g (p) s+ h (p) for all p, s.

For example, under linear demand with an unknown intercept, we haveCS (p, s) = (s− p)2 /2 =

f (s) + g (p) s + h (p), where f (s) = s2/2, g (p) = −p, and h (p) = p2/2; and under lin-

ear demand with an unknown constant marginal cost, we have CS (p, s) = (1− p)2 /2 =

f (s) + g (p) s+ h (p), where f (s) = 0, g (p) = 0, and h (p) = (1− p)2 /2.

Quasi-linearity implies that expected consumer surplus is measurable with respect to the

distribution of posterior mean states x, whenever prices p (x) are measurable with respect

to x. To see this, take any distribution τ ∈ ∆ (∆ ([s, s̄])) of distributions µ ∈ ∆ ([s, s̄]) of

the state s̃ such that Eτ [µ] = F . Letting xµ = Eµ [s] be the mean state under distribution
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µ and letting G be the distribution of mean state x, we have

Eτ [Eµ [CS (p (xµ) , s)]] = Eτ [Eµ [f (s) + g (p (xµ)) s+ h (p (xµ))]]

= EF [f (s)] + Eτ [g (p (xµ))xµ + h (p (xµ))]

= EF [f (s)] + EG [g (p (x))x+ h (p (x))] ,

where the second line uses the law of iterated expectation. Thus, the expected consumer sur-

plus under any disclosure policy and (mean-measurable) pricing policy equals EG [g (p (x))x+ h (p (x))],

where G is the distribution of the disclosed mean state x, plus a constant EF [f (s)].

In particular, if g (pm (x))x + h (pm (x)) is concave (resp., convex) in x, then expected

consumer surplus under monopoly pricing is higher when the monopoly has less (resp.,

more) information. Thus, since collusive prices when the algorithm observes a state with

distribution F equal monopoly prices when the monopoly observes a state with distribution

G∗, the concavity or convexity of g (pm (x))x+h (pm (x)) determines the implications of the

comparative statics in Proposition 2 for expected consumer surplus (with the caveat that

increasing n or decreasing δ always benefits consumers if it causes δ to fall below (n− 1) /n,

rendering collusion impossible).

Proposition 3 Assume that consumer surplus is quasi-linear in x. If g (pm (x))x+h (pm (x))

is concave (resp., convex) in x, then expected consumer surplus is lower (resp., higher) when

there are fewer firms, the firms are more patient, or the algorithm is more accurate (resp.,

so long as δ ≥ (n− 1) /n).

Proof. Immediate from Proposition 2 and Jensen’s inequality.

As a corollary, we obtain the corresponding consumer surplus implications under linear

demand with an unknown intercept or unknown constant marginal cost.

Corollary 1 Under linear demand with an unknown intercept, expected consumer surplus

is lower when there are fewer firms, the firms are more patient, or the algorithm is more

accurate.

Under linear demand with an unknown constant marginal cost, expected consumer surplus

is higher when there are fewer firms, the firms are more patient, or the algorithm is more
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accurate (so long as δ ≥ (n− 1) /n).

Proof. Under linear demand with an unknown intercept, we have pm (x) = x/2 and

CS (p, s) = f (s) + g (p) s+ h (p), where f (s) = s2/2, g (p) = −p, and h (p) = p2/2. Hence,

g (pm (x))x+ h (pm (x)) = −x
2

2
+
x2

8
= −3x2

8
,

a concave function of x.

Under linear demand with an unknown constant marginal cost, we have pm (x) = (1 + x) /2

and CS (p, s) = f (s) + g (p) s + h (p), where f (s) = 0, g (p) = 0, and h (p) = (1− p)2 /2.

Hence,

g (pm (x))x+ h (pm (x)) =
(1− x)2

8
,

a convex function of x.

Proposition 3 shows that improving the algorithm’s accuracy reduces consumer surplus

whenever improving a monopoly’s information does so, which Corollary 1 shows holds under

linear demand with an unknown intercept.25 This finding contrasts with results of Sugaya

and Wolitzky (2018, Example 3) and Miklós-Thal and Tucker (2019), who find that a more

accurate demand prediction algorithm increases consumer surplus when the firms’discount

factor δ lies in an intermediate range. The reason for the difference is that those papers

assume that the algorithm fully discloses its information, which sparks price wars during

booms. In contrast, with optimal information disclosure, a more accurate algorithm makes

prices more flexible without triggering price wars, which reduces expected consumer surplus

whenever improving a monopoly’s information does so. Our assessment of the likely impact

of improved algorithmic demand prediction on consumer surplus is thus considerably more

pessimistic.

However, improving the algorithm’s accuracy also increases consumer surplus whenever

improving a monopoly’s information does so, which Corollary 1 shows holds under linear

25Versions of the result that improving a monopoly’s information about the intercept of a linear demand
curve decreases expected consumer surplus were shown by Pigou (1920), Vives (2001), and Farboodi, Hagh-
panah, and Shourideh (2025).
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demand with an unknown constant marginal cost.26 In this case, expected consumer surplus

also increases when there are fewer or more patient firms– so long as δ ≥ (n− 1) /n, so that

collusion on the no-disclosure monopoly price pm
(
EF [s]

)
is an equilibrium. The explanation

is that, once δ ≥ (n− 1) /n, collusive prices equal monopoly prices for some information

structure, so when consumers benefit from improving a monopoly’s information, they also

benefit from the more flexible collusive prices that result from reducing n or increasing δ.

5 Connections to Recent Algorithmic Pricing Cases

Our model and results can be connected to recent algorithmic pricing cases. The cases are of

course more complicated than any model, but we argue that the mechanisms at the core of

our model appear appropriate to these settings and our predictions seem broadly consistent

with the market outcomes.

Our model is motivated by and most directly relates to third-party algorithms that

facilitate information-sharing among competitors and recommend prices, like RealPage in

apartment rentals, IDeaS and Rainmaker in hotel rooms, and A2i Systems and Kalibrate in

retail gasoline. Of these cases, the most information is available for RealPage. We therefore

focus on this case, discussing some others briefly at the end of this section.

We focus on three aspects of the RealPage case. First, we argue that this case fits most

key assumptions of our model setup. (The most important exception in our view is that

algorithmic pricing adoption is far from universal among apartment management companies,

and our model abstracts from competition with non-adopters as well as firms’decision to

adopt algorithmic pricing.27) Second, we argue that RealPage intentionally withholds some

information from its clients, and that this is plausibly done to make it easier to control its

clients’pricing (and specifically to prevent them from undercutting RealPage’s recommended

prices). Third, we argue that the resulting price dynamics over the business cycle appear

consistent with our prediction of price cuts during downturns and price rigidity during booms.

26A version of the result that improving a monopoly’s information about its constant marginal cost in-
creases expected consumer surplus was shown by Vives (2001).
27These features are a key focus of the complementary work of Harrington (2025) and Harrington and

Ortner (2025). In turn, these papers abstract from firms’incentives to set their recommended prices and
from aggregate demand uncertainty, respectively, which are key aspects of our model.
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To make these points, we draw primarily on the 2024 US DOJ complaint and the subsequent

2025 proposed settlement (USDOJ 2025), and on Calder-Wang and Kim’s (2024) empirical

study of RealPage.28

First, RealPage has a near-monopoly in providing algorithmic pricing for multifamily

apartment buildings. Following RealPage’s acquisition of a competing product in 2017, it

is estimated that RealPage has over 95% of the algorithmic pricing market in this industry

(Calder-Wang and Kim, p. 2). In addition, while the apartment rental industry is relatively

fragmented and algorithmic pricing penetration is nowhere near 100%, it is reasonable to

view RealPage clients as large players with market power. Calder-Wang and Kim report that

the 20 largest US apartment management companies– each of which manages over 32,000

units– all use RealPage; and the DOJ complaint reports that five or fewer landlords manage

a majority of all multifamily apartment units in 445 US ZIP codes. While RealPage clients

account for only 10.4% of the overall US apartment rental market, they account for 21%

of multifamily rentals, over 30% of buildings with over 20 units, and 34% of total units.

In some markets, RealPage clients’market share is considerably higher. Calder-Wang and

Kim’s Table 3 reports that in 18% of market segments (consisting of a geographical submarket

and a building class), a majority of multifamily apartment buildings use algorithmic pricing.

In addition, their Table 5 reports that penetration exceeds 66% in many submarkets (e.g.,

68% in Arapahoe County, Denver; 74% in Far Northwest, Austin; 92% in Irvine, Orange

County). The DOJ complaint also contains anecdotal evidence that RealPage clients perceive

themselves to have market power and the ability to impact competitors’ behavior. For

example, one landlord wrote, “Our very first goal we came out with immediately out of

the gate is that we will not be the reason any particular sub-market takes a rate dive.

So for us the strategy was to hold steady and to keep an eye on the communities around

us and our competitors,” (pp. 4-5). Finally, both the DOJ complaint and Calder-Wang

and Kim contain extensive evidence that RealPage’s price recommendations are oriented

more toward joint profit-maximization than individual profit-maximization. For example,

28These are the main publicly available information sources on RealPage. In turn, to our knowledge, the
RealPage case is the algorithmic collusion facilitation case where the most information is currently available.
Information on such cases is relatively scarce because algorithmic collusion facilitation is a new issue and
because several cases are currently in litigation.
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the complaint reports that “RealPage frequently tells prospective and current clients that

a ‘rising tide raises all ships.’ A RealPage revenue management vice president explained

that this phrase means that ‘there is greater good in everybody succeeding versus essentially

trying to compete against one another in a way that actually keeps the industry down’,”

(p. 12). Consistent with this anecdotal evidence, Calder-Wang and Kim estimate that

RealPage adopters’pricing fits a model of joint profit-maximization better than individual

profit-maximization.29 So, with the important caveat that we do not model competition

with non-adopters or firms’decision to adopt algorithmic pricing, our model seems to fit this

market reasonably well.

Second, RealPage has better demand information than its clients; it does not make this

information available to them; and a plausible reason why is to make it easier to control their

pricing decisions. RealPage’s business is based on its superior, non-public data: e.g., it claims

that it “does not have any true competitors, mainly because our data is based on real lease

transaction data,”and that “we have [the] most data and the best data”(USDOJ 2024a, p. 5,

14). It obtains this data by collecting and combining data from its many clients (the conduct

at the heart of its business model and the many antitrust complaints it has attracted), but

also by direct private market research. As the DOJ reports (p. 11), “RealPage has an

additional, complementary product called Market Analytics. Market Analytics compiles

data from over 50,000 monthly phone calls that RealPage makes to landlords across the

country. On these calls RealPage collects nonpublic, competitively sensitive information

by floor plan on occupancy rates, effective rents, and concessions. . . These market surveys

cover over 11 million units and approximately 52,000 properties. Landlords, including but

not limited to those that use AIRM, YieldStar, or other RealPage products knowingly share

this nonpublic information with RealPage.”One indication of the potential importance of

this data is that DOJ’s proposed settlement bans RealPage from using competitors’prices

in the last 12 months as well as these non-public market surveys to determine recommended

prices.

RealPage uses its data to recommend prices to its clients (indeed, this is the core busi-

29We take no position on whether the evidence that RealPage maximizes joint rather than individual profit
is fully compelling from an economic standpoint, let alone a legal one. We only claim that conceptualizing
RealPage as maximizing joint profit is well-motivated.
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ness that drew regulatory scrutiny), but it does not make the data itself available to its

clients. Furthermore, RealPage does not provide more detailed data even if clients explicitly

request it. The stated reason for this practice appears to be to reduce antitrust risk, rather

than preventing price deviations as in our model. As the DOJ reports (p. 48), “When a

property owner asked for information on specific competitors, Landlord 3’s director of rev-

enue management replied that the requested tool, RealPage’s Performance Analytics with

Benchmarking, did not provide information on specific competitors. The reason? Perfor-

mance Analytics with Benchmarking ‘tracks transactional information therefore due [to] the

potential pricing collusion, it’s anonymize[d] by RealPage,’.”

However, RealPage takes a number of steps to prevent price deviations by its clients,

and it is very plausible that withholding detailed demand information is helpful in this

regard. RealPage’s efforts to control its clients’ pricing are well-documented and are a

centerpiece of the DOJ complaint and subsequent settlement. As the complaint puts it,

“[RealPage]’s recommendations are more than just ‘recommendations’,” (p. 3), because

“RealPage uses multiple mechanisms to increase compliance with price recommendations,”

(p. 23). These include several mechanisms that make accepting recommendations easier

than declining them, including encouraging the use of an “Auto Accept” feature; allowing

managers to accept recommendations in bulk but requiring them to decline recommendations

one by one; and elevating attempted price overrides to a RealPage “pricing advisor,”who may

further escalate the disagreement to a regional manager. According to one RealPage client,

RealPage’s design is “trying to persuade [clients] to take the recommendations (almost like

we made it hard to do anything but),”(p. 24).30 Moreover, it is unsurprising that RealPage

has to take such steps to control its clients’ pricing, because there is also evidence that

RealPage’s recommended prices are not individually optimal for its clients. An example here

is RealPage’s price “guardrails,”which asymmetrically favors high prices: as the complaint

puts it (p. 52), “AIRM and YieldStar recommend price increases generated by the model.

But the guardrails reduce or eliminate certain proposed price decreases even though the

model had determined such deviations may contravene the landlord’s individual economic

30It would be straightforward to incorporate these mechanisms in our model by assuming that a firm must
pay an “override cost”to set a price other than the recommended one. This would just relax firm’s incentive
constraints by an amount equal to the override cost, leaving our qualitative results unchanged.
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interest.”31 In addition, Calder-Wang and Kim’s finding that RealPage adopters’pricing fits

a model of joint profit-maximization better than individual profit-maximization implies that

RealPage clients have individual incentives to override RealPage’s recommendations.

Withholding information from its clients is another means through which RealPage can

prevent them from overriding its recommendations. The logic of the revelation principle

(Myerson, 1982) implies that communicating any information to its clients beyond their

recommended prices can only tempt the clients to override RealPage’s recommendations.

We lack direct evidence that RealPage consciously withholds information from its clients in

order to reduce their temptation to override. However, such evidence is available in other

settings where a cartel facilitator manages firms’information to support collusion.32 Overall,

it is clear that RealPage takes multiple measures to prevent its clients from overriding its

recommendations; that RealPage has detailed demand information that it withholds from

its clients; and that withholding this information reduces its clients’potential gains from

overriding its recommendations and thus facilitates their acceptance.

Finally, we can ask whether the resulting pricing patterns over the business cycle fit the

predictions of our model. We focus on our central prediction that algorithmic intermediaries

disclose more precise information in economic downturns– leading to lower and more flexible

prices– and coarser information in booms– leading to higher and more rigid prices. The

evidence in the DOJ complaint and Calder-Wang and Kim on the role of algorithmic pricing

over the business cycle is broadly consistent with this pattern. First, one of Calder-Wang

and Kim’s main findings is that the calendar-year treatment effect of RealPage adoption

on price is strongly negative during the financial crisis and modestly positive in other years

(see their Figure 7). This is consistent with viewing RealPage as providing information

in accordance with our theory, where, relative to non-adopters, adopters receive precise bad

news about demand in down markets (leading to sharply lower prices) and receive coarse good

31The above features that encourage RealPage clients to accept its recommendations and that asymmet-
rically favor price increases were all banned as part of the proposed DOJ settlement.
32For example, Harrington (2006) reports that at meetings of the European isostatic graphic cartel, the

firms’representatives passed around a calculator where each representative secretly entered their own sales
volume, so that ultimately only the sum of the reported sales was observable, which let each firm calculate
their own market share but not their competitors’. For more on this and other related examples, see Sugaya
and Wolitzky (2018).
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news about demand in normal and strong markets (leading to modestly higher prices).33 In

addition, Calder-Wang and Kim’s structural estimation suggests that, relative to individual

optimization, non-adopters price too high in downturns and too low in booms, which is

consistent with non-adopters being less informed about demand than adopters.34

In addition, the DOJ complaint provides evidence that RealPage’s data and analytics

play an especially important role in price-setting during downturns. The complaint asserts

that, “in down markets. . . [RealPage] instills pricing discipline in landlords, curbing normal

fully independent competitive reactions by substituting them with interdependent decision-

making,”(p. 47). Indeed, RealPage itself advertised that the “AI and the robust data in the

RealPage ecosystem”helps its clients “avoid the race to the bottom in downmarkets,”(p. 46)

and “curbs [clients’] instincts to respond to down-market conditions by either dramatically

lowering price or by holding price when they are losing velocity and/or occupancy,” (p.

47)– moreover, given that Calder-Wang and Kim find a strong negative treatment effect

of RealPage adoption on price in down markets, these quotations should be interpreted as

emphasizing RealPage clients’high prices in down markets relative to competitive pricing,

not relative to collusion without RealPage’s demand information. RealPage also emphasizes

the particular value of its price recommendations in down markets, arguing that, without its

recommendations, “you’ll be pricing your renewals in the dark without insight into actual

lease transaction data that [YieldStar] uses to help you make pricing decision. This is

critical to price renewals right[,] especially in a downturn,”(p. 14). These quotations are all

consistent with RealPage providing more precise information in down markets. In sum, while

the available evidence is admittedly limited, both the quantitative evidence in Calder-Wang

and Kim and the qualitative evidence in the DOJ complaint are broadly consistent with our

prediction that RealPage provides more precise demand information and recommends more

flexible prices in downturns than in booms.

While this section has focused on RealPage, our theory can also potentially speak to a

33This comparison assumes that both RealPage adopters and non-adopters sustain markups relative to the
static Nash benchmark, differing primarily in how markups respond to demand conditions. This viewpoint
is suggested by Calder-Wang and Kim’s reduced-form results, which find strongly time-varying RealPage
adoption effects but little to no time-averaged adoption effect.
34Calder-Wang and Kim capture this effect with a time-varying “sophistication” parameter, which can

alternatively be interpreted as reflecting firms’information.
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number of other cases. Cases concerning algorithmic pricing of hotel rooms (e.g., IDeaS and

Rainmaker) raise very similar issues to RealPage. Algorithmic pricing of retail gasoline also

raises similar issues, although the empirical literature on this topic to date (e.g., Assad et

al., 2024) has not emphasized business cycle fluctuations. There are also some recent cases

concerning algorithmic cartel facilitation where the central issue appears to be facilitating

monitoring of competitors’actions rather than demand conditions, including cases involving

the data analytics companies AgriStats and Circana, which provide detailed production and

price information for the poultry and pork markets (AgriStats) and the frozen potato market

(Circana). Finally, another setting that raises similar issues is information-sharing in bidding

rings in procurement auctions. A specific example comes from the bidding ring organized by

the Kumatori Contractors Cooperative, studied by Kawai, Nakabayashi, and Ortner (2024).

This ring took drastic steps to limit bidders’information about the cost of completing (only)

the largest construction project they bid on: “[The director of the Cooperative] told the

members that he would be collecting, from each of the invited bidders, the detailed project

plan that the town distributes at the on-site briefing. This was understood by the members

of the Cooperative as a preventative measure to make defection more diffi cult by making it

harder for other firms to estimate costs,”(ibid.). This matches our result that cartels censor

information in those states of the world where deviating is most tempting.35

6 Extensions

We consider two extensions of our baseline model. Section 6.1 lets the state follow a Markov

process rather than being iid across time. Section 6.2 assumes a linear demand system rather

than homogeneous goods.

35A subtlety in mapping this example to our model is that the “tempting state” is a large procurement
project, which has both a higher (observed) reserve price and a higher (unobserved) completion cost than a
typical project. To capture this example, one can extend the model to allow both an observable stochastic
component (the reserve price) and an unobserved one (the cost).
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6.1 Persistent Demand or Cost

We now consider the case where the state follows a Markov process: we assume that the

current state s′ is drawn from a distribution Fs, where s is the previous period’s state. This

realistic extension of the baseline iid model illustrates how our results generalize and also

yields some new insights. The analysis of this section is inspired by Haltiwanger and Har-

rington (1991), Kandori (1992), and Bagwell and Staiger (1997), who extended Rotemberg

and Saloner’s (1986) iid model to various Markov processes.

To accommodate the Markov case, we need to preserve the property that expected current

and future profit is measurable with respect to current mean demand (or cost, but we

continue to focus on the demand case). This require two assumptions. First, we assume that

the current demand state is revealed at the end of each period, so the algorithm does not

carry private information across periods. This is realistic if firms observe their sales at the

end of the each period. Second, we assume that the Markov transition rule Fs is affi ne in s,

so the distribution over tomorrow’s state depends only on today’s mean state:

Fs (s′) =
s̄− s
s̄− sFs (s′) +

s− s
s̄− sFs̄ (s′) for all s, s′.

For example, Fs is affi ne in s when there is a binary underlying demand state s and s is a

continuous signal of s satisfying Pr (s = s̄|s) = (s− s) / (s̄− s). We also assume that the

distribution of s in period 1 equals Fs0 for some s0 ∈ [s, s̄].

Affi neness allows both positive persistence– where Fs̄ first-order stochastically dominates

Fs– and negative persistence– where Fs first-order stochastically dominates Fs̄. Both cases

are of interest: positive persistence is arguably more natural, while negative persistence has

been used to capture cyclical demand movements (Haltiwanger and Harrington, 1991).

The characterization of the optimal disclosure policy and collusive prices are the same

as in the iid case, except that now the expected value of collusive profit V (s) depends

on the previous period’s state s. The optimal collusive profit for each last-period demand

state s must now be calculated simultaneously as the component-wise greatest fixed point
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(V ∗ (s))s∈[s,s̄] of the following system of equations in s:

V (s) = (1− δ) max
G∈MPC(Fs)

Ex∼G
[
min

{
Πm (x) ,Πmax

(
δ, n,EFx [V (s′)]

)}]
+δEFs [V (s′)] . (5)

The right-hand side of (5) is bounded and increasing in V (s′) for all s, s′, so the greatest

fixed point is well-defined by Tarski’s theorem. We also define W ∗ (s) = EFs [V ∗ (s′)], so we

have

V ∗ (s) = (1− δ) max
G∈MPC(Fs)

EG [min {Πm (x) ,Πmax (δ, n,W ∗ (x))}] + δW ∗ (s) for all s. (6)

Note that, since Fs is affi ne in s, so is W ∗ (s).

With persistent demand, the appropriate notion of a (symmetric) stationary strategy is

that the disclosure policy G depends only the previous period’s demand state, while the

on-path price p (s) at realized mean demand state s remains independent of the history of

past demand realizations (and, in particular, is independent of the current-period disclosure

policy). With this definition, Lemma 1 generalizes as follows.

Lemma 3 The expected present value of optimal collusive profit in each state s equals V ∗ (s)

and is attained by a symmetric, stationary, grim trigger equilibrium. Moreover, a collection

of disclosure policies (Gs)s∈[s,s̄], one for each last-period demand state s, is optimal if and

only if, for each s, Gs solves the maximization problem in (5) with V (·) = V ∗ (·).

Lemma 3 reduces the problem of finding an optimal equilibrium to the family of static

information design problems on the right-hand side of (5), where the function V ∗ (·) satisfies

the fixed point condition.36

As in the iid case, collusion is impossible if δ < (n− 1) /n. Conversely, if δ ≥ (n− 1) /n

then monopoly profit under no disclosure given the least-favorable previous period de-

mand state (e.g., s in the positively persistent case; s̄ in the negatively persistent case),

Πm
(
min

{
EFs [s] ,EFs̄ [s]

})
, is attainable for any initial state.

36The proof is a straightforward generalization of the proof of Lemma 1: the only difference is that the
present value of equilibrium profits, the probability distribution over next-period demand states, and the
values V̄ and vi defined in the second part of the proof are all now functions of the current expected state s.
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Lemma 4 If δ < (n− 1) /n then V ∗ (s) = 0 for all s. Conversely, if δ ≥ (n− 1) /n then

V ∗ (s) ≥ Πm
(
min

{
EFs [s] ,EFs̄ [s]

})
for all s.

Proof. If δ < (n− 1) /n then Πmax (δ, n, V ) < V for all V > 0. Let s0 = argmaxs V
∗ (s),

which is well-defined because Πm (s) is continuous and W ∗ (s) is affi ne. Suppose for contra-

diction that V ∗ (s0) > 0. Then, since W ∗ (s) ≤ V ∗ (s0) for all s (as W ∗ (s) = EFs [V ∗ (s′)]),

the right-hand side of (6) at s = s0 is strictly less than V ∗ (s0), a contradiction. Hence,

V ∗ (s0) = 0, and therefore V ∗ (s) = 0 for all s.

Conversely, if δ ≥ (n− 1) /n then under no information disclosure it is an equilibrium

to set on-path price min
{
p : Π

(
p,EFs [s̃]

)
= Πm

(
min

{
EFs [s̃] ,EFs̄ [s̃]

})}
when the previous

period demand state is s (noting that this price is well-defined by the intermediate value

theorem, as Π
(
p,EFs [s̃]

)
is continuous in p, Π

(
0,EFs [s̃]

)
= 0, and Π

(
pm
(
EFs [s̃]

)
,EFs [s̃]

)
=

Πm
(
EFs [s̃]

)
≥ Πm

(
min

{
EFs [s̃] ,EFs̄ [s̃]

})
) and off-path price zero.

We now characterize the optimal disclosure policy as a function of the last-period state

s in the non-trivial case where δ ≥ (n− 1) /n. First, let s∗ solve

Πm (s∗) = Πmax (δ, n,W ∗ (s∗)) (7)

if such a demand state exists, and let s∗ = s̄ otherwise.37 Next, for each last-period state s,

let ŝ (s) satisfy

EFs [s̃|s̃ ≥ ŝ (s)] = s∗ (8)

if such a state exists, and let ŝ (s) = s otherwise. Note that, by Lemma 4 and our as-

sumption that δ ≥ (n− 1) /n, we have V ∗ (s) ≥ Πm
(
min

{
EFs [s] ,EFs̄ [s]

})
, and hence

s∗ ≥ min
{
EFs [s] ,EFs̄ [s]

}
, so (8) admits a solution ŝ (s) ∈ [s, s̄] for s = argmins∈{s,s̄} EFs [s′].

However, in contrast to the iid case, (8) does not always admit a solution ŝ (s) for all last-

period demand states s: in this case, the distribution Fs is so high that EFs [s′] > s∗, in

which case no disclosure of the current demand state is optimal, and the optimal price

is min
{
p : Π

(
p,EFs [s′]

)
= Πmax

(
δ, n,W ∗ (EFs [s′]

))}
, which is less than the corresponding

37There is at most one solution to (7). If W ∗ (s) is decreasing, this is immediate, as the left-hand side
of (7) is increasing and the right-hand side is decreasing. If W ∗ (s) is increasing, this follows because,
since δ ≥ (n− 1) /n, we have Πm (s) ≤ Πmax (δ, n,Πm (s)) < Πmax

(
δ, n,Πm(min

{
EFs [s] ,EFs̄ [s]

}
)
)
≤

Πmax (δ, n,W ∗ (s)), and the left-hand side of (7) is convex while the right-hand side is linear.
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monopoly price pm
(
EFs [s′]

)
. Thus, in the Markov case, following last-period states that

make firms suffi ciently optimistic about the current state, the optimal collusive policy can

entail no information disclosure and a price below the corresponding monopoly price.

We can now characterize the optimal disclosure and pricing policy in the Markov case.

Theorem 2 With stochastic demand, the unique optimal disclosure policy as a function of

the last-period demand state s is the upper censorship policy that discloses demand states

below ŝ (s) and conceals demand states above ŝ (s). The optimal collusive price p (s̃; s) (which

is unique except when ŝ (s) = s) when the current realized mean demand state is s̃ and the

last-period demand state is s is given by

p (s̃; s) =


pm (s̃) if s̃ < ŝ (s) ,

pm (s∗) if s̃ ≥ ŝ (s) > s,

min
{
p : Π

(
p,EFs [s′]

)
= Πmax

(
δ, n,W ∗ (EFs [s′]

))}
if ŝ (s) = s.

(9)

Moreover, under positive persistence, ŝ (s) is decreasing, so the optimal policy discloses less

information when last-period demand is higher; conversely, under negative persistence, ŝ (s)

is increasing, so the optimal policy discloses more information when last-period demand is

higher.

With stochastic costs, the unique optimal disclosure policy is the analogous lower censor-

ship policy that discloses cost states above ŝ (s) satisfying EFs [s̃|s̃ ≤ ŝ (s)] = s∗ and conceals

cost states below ŝ (s). The unique optimal collusive price p (s) in state s is given by (9) with

the reversed inequalities and s̄ in place of s. Moreover, under positive persistence, ŝ (s) is

decreasing, so the optimal policy discloses more information when last-period cost is higher;

conversely, under negative persistence, ŝ (s) is increasing, so the optimal policy discloses less

information when last-period cost is higher.

Proof. The proof is a straightforward generalization of the proof of Theorem 1. The main

difference is that, sinceW ∗ (s) is affi ne, the function min {Πm (s) ,Πmax (δ, n,W ∗ (s))} is now

“convex-then-linear”in s, rather than “convex-then-constant”as in the iid case. The same

argument as in the proof of Theorem 1 implies that, when ŝ (s) > s, upper censorship is

optimal, with mean demand among concealed states equal to the point s∗ where Πm (s∗) =
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Πmax (δ, n,W ∗ (s∗)). A similar argument shows that, when ŝ (s) = s, no disclosure is optimal,

with a price p being the smallest price to satisfy Π
(
p,EFs [s′]

)
= Πmax

(
δ, n,W ∗ (EFs [s′]

))
.

Finally, it is immediate from (8) that ŝ (s) is decreasing under positive persistence and

increasing under negative persistence.

The new insights of Theorem 2 concern how optimal disclosure depends on last-period

demand. When the optimal disclosure policy is non-trivial (i.e., ŝ (s) ∈ (s, s̄), so some states

are disclosed and others are censored), the mean censored state is fixed at s∗, regardless of

the last-period demand state s. With positive persistence, this requires greater censoring

(lower ŝ) when the last-period demand state is higher: intuitively, the algorithm discloses

less information following good periods, when firms are optimistic about current demand

and are thus more tempted to deviate. Conversely, with negative persistence, the algorithm

discloses more information following good periods, when firms are pessimistic and are thus

less tempted to deviate.

In contrast to the iid case, for certain last-period states it can be optimal for the algorithm

to disclose no information and recommend prices below the corresponding monopoly price.38

For example, with positive persistence, it can be optimal to fully reveal current demand

when last-period demand was low (so ŝ (s) = s̄), partially reveal current demand when last-

period demand was intermediate (so ŝ (s) ∈ (s, s̄)), and reveal nothing about current demand

when last-period demand was high (so ŝ (s) = s)– moreover, in the last case, the optimal

price p
(
EFs [s′] ; s

)
satisfies Π

(
p,EFs [s′]

)
= Πmax

(
δ, n,W ∗ (EFs [s′]

))
, and so is less than the

monopoly price pm
(
EFs [s′]

)
and can even be decreasing in s. Thus, while collusive prices are

always monotone in current demand (as in the iid case and in contrast to Rotemberg Saloner),

they may be non-monotone in last-period demand. Notably, the expected price conditional

on last-period demand can be single-peaked, a result that recovers some of Rotemberg and

Saloner’s intuition.39

In addition to these novel points, Theorem 2 shows that the main results from the iid case

generalize to the Markov case. In particular, for any last-period demand state s, optimal

collusion entails price rigidity at high current demand states, supra-monopoly prices over an

38Recall that in the iid case, no disclosure is only optimal in the knife-edge case where δ = (n− 1) /n.
39Whether prices actually display this pattern depends on whether Π (p, s̃) or Πmax (δ, n,W ∗ (s̃)) increases

faster in s̃ = EFs [s′] over the range {s : ŝ (s) = s}.
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intermediate range of states, and more flexible prices when n is lower, δ is higher, or Fs is

more informative.

Finally, in Appendix D, we provide a numerical example showing that the effect of greater

demand persistence on collusive profit, consumer surplus, and the amount of information

disclosure can all be non-monotone.

6.2 Differentiated Products

We now extend the baseline iid model from the homogeneous-goods setting of Rotemberg

and Saloner to a symmetric, linear demand system. This is a workhorse demand system for

studying oligopoly pricing under uncertainty (e.g., Vives, 2001, Chapter 8) and has recently

been used by Harrington (2022, 2025) to study oligopoly pricing with a third-party pricing

algorithm. In Appendix A, we further extend the analysis of this section to more general

demand systems, which include as a special case the baseline, homogeneous goods model,

with or without capacity constraints.

In this section, we assume that there exists a constant b ∈ [0, 1/ (n− 1)) such that firm

i’s payoff at price vector p = (p1, . . . , pn) and state s equals

πi (p, s) = pi

(
s+ b

∑
j 6=i

pj − pi

)

for the stochastic demand case, or

πi (p, s) = (pi − s)
(

1 + b
∑
j 6=i

pj − pi

)

for the stochastic cost case.40 Note that πi (p, s) remains affi ne in s. For concreteness, we

focus on the stochastic demand case.

To analyze this model, we first define the monopoly price and the per-firm monopoly

40The condition b ≥ 0 implies that the firms’products are substitutes. The condition b ≤ 1/ (n− 1) implies
that profits are bounded and is satisfied whenever the demand system results from utility maximization by
a representative consumer (Amir, Erickson, and Jin, 2017).
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profit at a public mean belief s as

pm (s) =
s

2 (1− (n− 1) b)
and πm (s) =

s2

4 (1− (n− 1) b)
,

and we define the static Nash equilibrium price and the per-firm static Nash profit at a

public mean belief s as

pN (s) =
s

2− (n− 1) b
and πN (s) =

(
s

2− (n− 1) b

)2

.

Notice that πN (s) is convex in s, which implies that the expected static Nash profit EG [π (s)]

is minimized over G ∈ MPC (F ) by taking G = δEF [s]: that is, by entirely concealing the

state. Thus, the no-information Nash outcome, where the algorithm discloses no information

and expect profit equals

π = πN
(
EF [s]

)
,

minimizes the firms’static Nash profit.

We characterize the pure-strategy, subgame perfect equilibrium that maximizes collusive

profit among all equilibria where off-path expected profit equals π. Note that, in contrast

to the homogeneous goods case where the static Nash profit equals the minimax payoff of 0,

the off-path payoff π is strictly greater than the minimax payoff of EF [s]2 /4. We are thus

focusing on equilibria sustained by the threat of Nash reversion. As is well-known, this entails

a loss of optimality in the class of all pure-strategy, subgame perfect equilibria. To find the

optimal equilibrium in this larger class, one would simultaneously find the worst equilibrium

for each firm as a fixed point, following Abreu (1988). However, except for giving a different

value for the off-path payoff π, this procedure would yield the same characterization of

optimal equilibrium prices and information disclosure on path. Our qualitative results are

thus insensitive to the specification of off-path payoffs.

To find the optimal equilibrium (in the Nash reversion class), denote per-firm profit when

all firms set price p in demand state s by

π (p, s) = p (s+ (n− 1) bp)− p2,
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and denote a firm’s maximum payoff from a deviation when all firms set price p in demand

state s by

πd (p, s) =

(
s+ (n− 1) bp

2

)2

.

Next, for any v ≥ 0, let pmax (s, v) be the larger solution to the quadratic equation

πd (p, s)− π (p, s) =
δ

1− δ (v − π) ,

which is given by

pmax (s, v) =
s+ 2

√
δ

1−δ (v − π)

2− (n− 1) b
,

and let

πmax (s, v) = π (s, pmax (s, v)) =
s2 + 2 (n− 1) bs

√
δ

1−δ (v − π)− 4 (1− (n− 1) b) δ
1−δ (v − π)

(2− (n− 1) b)2 .

Thus, pmax (s, v) is the greatest incentive compatible price in state s in a symmetric equi-

librium with on-path per-firm continuation payoff v and off-path per-firm profit π, and

πmax (s, v) is the corresponding per-firm profit in state s. While the details of these formulas

will not matter, it is important to note that pmax (s, v) is increasing in s and πmax (s, v) is

increasing and convex in s (in addition to depending implicitly on the parameters δ, n, and

b). This contrasts with the homogeneous goods case, where pmax (s, v) is decreasing in s and

πmax (s, v) is constant in s for s > s∗.41

Now, following the homogeneous goods case, define v∗ as the greatest fixed point of the

equation

v = max
G∈MPC(F )

EG [min {πm (x) , πmax (x, v)}] . (10)

(Here, we use lower-case letters for per-firm payoffs, whereas in the baseline model we used

capital letters for the corresponding industry payoffs.) Lemma 1 extends to the current

41Intuitively, with undifferentiated goods, πd (p, s) = nπ (p, s), so πd (p, s)− π (p, s) is a constant multiple
of π (p, s), and hence an upper bound for πd (p, s) − π (p, s) (independent of s) implies an upper bound for
π (p, s) (independent of s). In contrast, with differentiated goods, πd (p, s)−π (p, s) is not a constant multiple
of π (p, s), so an upper bound for πd (p, s) − π (p, s) (independent of s) implies an upper bound for π (p, s)
that depends on s.
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setting: in particular, optimal collusive profit per-firm equals v∗. Formally, this follows from

the more general Lemma 5 in Appendix A. The key step in the proof is that symmetric

pricing remains optimal in each demand state. This holds because, for any price vector

p = (p1, . . . , pn), we have

π

(
1

n

∑
i

pi, s

)
≥ 1

n

∑
i

πi (p, s) and πd

(
1

n

∑
i

pi, s

)
≤ 1

n

∑
i

πdi (p−i, s)

(by straightforward calculation), so replacing any asymmetric price vector p with the sym-

metric vector (
∑

i pi/n, . . . ,
∑

i pi/n) increases profits without violating incentive constraints.

It remains to solve the static information design problem, (10). Let s∗ satisfy pm (s∗) =

pmax (s∗, v∗) (or, equivalently, πm (s∗) = πmax (s∗, v∗)), so that

s∗ =
4 (1− (n− 1) b)

√
δ

1−δ (v∗ − π)

(n− 1) b
.

Note that dπm (s) /ds is greater than the right-derivative of πmax (s, v∗) with respect to s at

s = s∗, because πmax (s, v∗) incorporates an additional constraint at s = s∗. Therefore, the

kink in the objective function min {πm (s) , πmax (s, v)} at s = s∗ is concave, so the function

min {πm (s) , πmax (s, v)} is piecewise-convex but not globally convex.

We now define a pair of states (ŝL, ŝH) as follows. First, if s∗ < s, define ŝL = ŝH = s.

Second, if s∗ ∈
[
s,EF [s]

]
, define (ŝL, ŝH) so that

ŝL < ŝH ,

EF [s|s ∈ [ŝL, ŝH ]] = s∗, and
ŝH − s∗
ŝH − ŝL

πm (ŝL) +
s∗ − ŝL
ŝH − ŝL

πmax (ŝH , v
∗) = πm (s∗) , (11)

if such a pair exists, and otherwise define ŝL = s and define ŝH so that s∗ = EF [s|s ≤ ŝH ].

Third, if s∗ ∈
[
EF [s] , s̄

]
, define (ŝL, ŝH) so that (11) holds if such a pair exists, and otherwise

define ŝL so that s∗ = EF [s|s ≥ ŝL] and define ŝH = s̄. Finally, if s∗ > s̄, define ŝL = ŝH = s̄.

Note that (ŝL, ŝH) is well-defined, because at most one pair (ŝL, ŝH) satisfies (11). This

can be seen geometrically in Figure 2: since πm (s) and πmax (s, v∗) are convex in s, if (ŝL, ŝH)
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Figure 2: The optimal disclosure policy with a symmetric, linear demand system. The cutoffs
(ŝL, ŝH) are defined in the text. The optimal information policy discloses demand states s < ŝL and
recommends the corresponding monopoly price, pm (s); conceals demand states s ∈ [ŝL, ŝH ] and
recommends the monopoly price conditional on this information, pm (s∗); and reveals demand states
s > ŝH and recommends the maximum incentive compatible price, pmax (s, v∗). The auxiliary
objective function π̃ (s) is defined in the proof of Theorem 4 in Appendix A.

satisfies (11) and EF [s|s ∈ [sL, sH ]] = s∗ for sL > ŝL and sH < ŝH , then sH−s∗
sH−sLπ

m (sL) +

s∗−sL
sH−sLπ

max (sH , v
∗) < πm (s∗); while if EF [s|s ∈ [sL, sH ]] = s∗ for sL < ŝL and sH > ŝH , then

sH−s∗
sH−sLπ

m (sL) + s∗−sL
sH−sLπ

max (sH , v
∗) > πm (s∗).

The following is the main result of this section. It is an implication of the more general

Theorem 4 in Appendix A.

Theorem 3 With stochastic demand and differentiated products, the unique optimal disclo-

sure policy discloses demand states below ŝL and above ŝH and conceals demand states in the

interval [ŝL, ŝH ]. The unique optimal collusive price p (s) in state s is given by

p (s) =


pm (s) if s < ŝL,

pm (s∗) if s ∈ [ŝL, ŝH ] ,

pmax (s, v∗) if s > ŝH .

Theorem 3 is illustrated in Figure 2. Mathematically, since the objective function

min {πm (s) , πmax (s, v∗)} is piecewise-convex with a concave kink at s∗, it is optimal to
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disclose the lowest and highest demand states while concealing intermediate states. (In gen-

eral, any of these three intervals can be empty, so that full disclosure, no disclosure, upper

censorship, or lower censorship can also be optimal.) The intuition is that with differentiated

goods, incentive constraints continue to bind in high demand states (i.e., at s > s∗), but

there is no longer an upper bound for the maximum on-path equilibrium profit (in contrast

to the homogeneous goods case), and indeed maximum profit is convex in s on the region

s > s∗. Consequently, it is optimal to disclose the highest demand states while cutting price

to satisfy incentive constraints.

The optimal equilibrium with differentiated goods described in Theorem 3 shares several

key features with the homogeneous goods case. In particular, it is optimal to censor a region

of demand states while recommending a rigid price that is above the monopoly price for an

interval of states. However, it is no longer always optimal to censor the highest demand

states: depending on parameters, it could be optimal to censor an intermediate interval of

states, or only the lowest states. In addition, if the highest demand states are disclosed,

collusive prices in these states are below the corresponding monopoly prices.

7 Conclusion

This paper has developed a tractable model of an intermediary that possesses information

on market demand or the cost of serving the market that is superior to that of the firms

competing for the market and that selectively discloses this information to maximize the

firms’profit in the best collusive equilibrium. Our main motivation is the rise of third-party

pricing algorithm providers such as RealPage in apartment rentals, A2i Systems and Kali-

brate in retail gasoline, and IDeaS and Rainmaker in hotel rooms, but the theory applies

equally to any cartel facilitator that controls the participating firms’information. We adapt

the canonical Rotemberg Saloner (1986) model of repeated Bertrand competition with sto-

chastic demand by letting an intermediary selectively disclose demand or cost information.

Assuming that expected profit is determined by the expected state, we show that with ho-

mogeneous goods, optimal information disclosure takes an upper censorship form: demand

states s below a cutoff ŝ are disclosed and result in the corresponding monopoly price pm (s),
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while demand states above ŝ are concealed and result in the monopoly price for the mean

concealed state, pm (E [s|s > ŝ]). The resulting pricing policy entails price rigidity, as well as

supra-monopoly prices for a range of intermediate demand states. Prices are more flexible

when the market is more concentrated, the firms are more patient, or the algorithm is more

accurate. In turn, price flexibility reduces expected consumer surplus whenever improving

a monopoly’s information does so. This result suggests that improved algorithmic demand

prediction is likely to reduce expected consumer surplus, in contrast to prior studies that

find more optimistic results when the algorithm always discloses its predictions (Sugaya and

Wolitzky, 2018; Miklós-Thal and Tucker, 2019). Finally, most results survive in more gen-

eral specifications with demand persistence, product differentiation, or capacity constraints,

although the specific form of the optimal censorship policy depends on the demand system,

and collusive prices can sometimes fall short of the corresponding monopoly prices.

Many of our assumptions can be further relaxed at the cost of a more intricate analysis.

First, if expected profit depended on the entire distribution of the unknown state rather than

only its mean, we would have a non-linear information design problem, where disclosure poli-

cies that pool intervals of states together (like upper censorship) are typically sub-optimal

(Kolotilin, Corrao, andWolitzky, 2024). However, upper censorship is approximately optimal

if the information design problem is close to linear.42 Second, if the intermediary’s objective

differs from maximizing industry profit or if some firms do not use the intermediary, as in

Harrington (2022), the model must be extended to incorporate the intermediary’s incentives

and firms’ incentives to use the intermediary. Third, if the colluding firms are asymmet-

ric, there is no longer a unique cartel-optimal equilibrium, and one must instead analyze

the Pareto frontier of the equilibrium payoff set and consider non-stationary equilibria as

in Abreu (1986). Fourth, in practice, algorithmic intermediaries can also facilitate collusion

by systematizing monitoring of firms’ prices. This could be incorporated by considering

an imperfect monitoring version of our model. Finally, allowing asymmetric, private infor-

mation disclosure by the algorithm– or exogenous asymmetric, private information for the

firms, which could possibly be elicited by the algorithm– appears challenging but potentially

42It is also likely that, if the problem is close to linear, every optimal disclosure policy approximates upper
censorship. A result along these lines in a related class of information design problems is Theorem 3 of
Kolotilin and Wolitzky (2025).
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realistic and insightful.43 These are all interesting directions for future research.

A General Payoffs and Capacity Constraints

In this appendix, we derive a version of our main result for a general class of payoff functions

that includes both the undifferentiated and differentiated goods models analyzed in the text,

as well as a model of undifferentiated goods with capacity constraints.

As in Section 6.2, let πi (p, s) denote firm i’s profit at price vector p = (p1, . . . , pn) and

demand state s.44 We also define firm i’s maximum deviation profit at price vector p by

πdi (p, s) = max
pi

πi (p1, . . . , pi−1, pi, pi+1, . . . pn, s) .

We impose four assumptions on payoffs. First, we assume that payoffs are symmetric,

continuous, and quasi-concave in a firm’s own price.45

Assumption 1 For any price vector (p1, . . . , pn), state s, firm i, and permutation φ on

{1, . . . , n}, we have πi
(
pφ(1), . . . , pφ(n), s

)
= πφ(i) (p1, . . . , pn, s). In addition, πi (p, s) is

continuous in p and quasi-concave in pi for all p−i.

Second, we assume that πi (p, s) is affi nely increasing in s.

Assumption 2 For any price vector p and firm i, we have πi (p, s) ≤ πi (p, s̄) and

πi (p, s) =
s̄− s
s̄− sπi (p, s) +

s− s
s̄− sπi (p, s̄) for all s.

Assumptions 1 and 2 imply that, for any mean public belief s, there exists a symmetric,

pure-strategy, static Nash equilibrium p. Let π denote the lowest payoff from such a Nash

43The former question would combine the forces in the present paper with those in Ortner, Sugaya, and
Wolitzky (2024). The latter would concern optimal Bayes correlated equilibria (as in, e.g., Smolin and
Yamashita, 2025) or communication equilibria (as in, e.g., Goltsman and Pavlov, 2014).
44This appendix focuses on stochastic demand. The stochastic cost case is analogous.
45The symmetry notion in Assumption 1 is known as total symmetry. The results in this appendix also

hold under the weaker notion of weak symmetry : for any pair of firms i and j, there exists a permutation
φ on {1, . . . , n} such that π (i) = j and, for any price vector (p1, . . . , pn), state s, and firm k, we have
πi
(
pφ(1), . . . , pφ(n), s

)
= πφ(k) (p1, . . . , pn, s). The examples in the current paper are all totally symmetric,

but some oligopoly models (e.g., Salop’s circle model) are only weakly symmetric. See Plan (2023).
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equilibrium at mean public belief EF [s]. As in Section 6.2, for concreteness we restrict

attention to pure-strategy equilibria where off-path payoffs are given by π.

Next, we define a firm’s profit when all firms set price p in demand state s as π (p, s) =

πi (p, . . . , p, s), and we define the corresponding maximum deviation profit as πd (p, s) =

πdi (p, . . . , p, s). Our third assumption is that for any price vector, there exists a constant

price vector that weakly increases industry profit without increasing the average of the firms’

deviation gains.

Assumption 3 For any price vector p and state s, there exists a price p ≥ 0 such that

π (p, s) ≥ 1

n

∑
i

πi (p, s) and πd (p, s)− π (p, s) ≤ 1

n

∑
i

(
πdi (p, s)− πi (p, s)

)
.

Finally, we assume that the profit function π (p, s) is quasi-concave in p.

Assumption 4 π (p, s) is quasi-concave in p with a well-defined monopoly profit πm (s) =

π (pm (s) , s) = maxp π (p, s) for each s.

Assumptions 1—4 are all satisfied in both the baseline undifferentiated goods model and

the linear differentiated goods model of Section 6.2. Another important example is undiffer-

entiated goods with capacity constraints, where

πi (p, s) = 1

{
pi = min

j
pj

}
× pi min

{
D (minj pj, s)

|{k : pk = minj pj}|
, C

}
,

where D (p, s) is the industry demand and C is a per-firm capacity constraint. This specifi-

cation satisfies Assumptions 1, 3, and 4, and it also satisfies Assumption 2 if s is binary.46

We now characterize the optimal collusive profit level, information disclosure policy, and

equilibrium in this general model. First, for any v ≥ 0, let pmax (s, v) be the greatest solution

p in [0, pm (s)] to the equation

πd (p, s)− π (p, s) =
δ

1− δ (v − π)

46If s is continuous and D (p, s) = max{s − p, 0}, then πi (p, s) is linear up to a choke price. As in
footnote 12, our analysis applies for this specification, so long as s ≥ s̄/2, so that demand D (pm (s) , s′) is
non-negative for any monopoly price pm (s) and demand state s′.
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if such a solution exists, and let pmax (s, v) = pm (s) otherwise. Next, let

πmax (s, v) = π (pmax (s, v) , s) .

Note that pmax (s, v) is non-decreasing in v, and hence– by Assumption 4 and the fact that

pmax (s, v) ≤ pm (s) by construction– so is πmax (s, v). Finally, let v∗ be the greatest fixed

point of the equation

v = max
G∈MPC(F )

EG [min {πm (x) , πmax (x, v)}] , (12)

which is well-defined by Tarski’s theorem, as πmax (x, v) is non-decreasing in v and bounded.

Lemma 1 extends as follows.

Lemma 5 Optimal per-firm collusive profit equals v∗ and is attained by a symmetric, sta-

tionary, grim trigger equilibrium. Moreover, a disclosure policy G is optimal if and only if

it solves the maximization problem in (12) with v = v∗.

Proof. The construction of a symmetric, stationary, grim trigger equilibrium that attains

per-firm collusive profit v∗ is the same as in the proof of Lemma 1.

We now show that no equilibrium can attain higher profit. Fix any equilibrium, and

let v̄ be the supremum over periods t and histories of play up to and including period t of

expected per-firm collusive profits from period t + 1 onward. Now fix an arbitrary period

t and a history of play up to period t, and suppose that when the realized mean demand

in period t at this history is s, the equilibrium price vector is p (s) and firm i’s equilibrium

continuation payoff is vi. The resulting incentive constraint for firm i is

(1− δ) πdi (p (s) , s) + δπ ≤ (1− δ) πi (p (s) , s) + δvi.

Averaging this inequality over the n firms, we have

(1− δ) 1

n

∑
i

πdi (p (s) , s) ≤ (1− δ) 1

n

∑
i

πi (p (s) , s) + δ
1

n

∑
i

(vi − π)

≤ (1− δ) 1

n

∑
i

π (p (s) , s) + δ (v̄ − π) ,
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where the second inequality is by definition of v̄, and therefore

1

n

∑
i

(
πdi (p (s) , s)− πi (p (s) , s)

)
≤ δ

1− δ (v̄ − π) .

Now, by Assumption 3, there exists p (s) ≥ 0 such that

π (p (s) , s) ≥ 1

n

∑
i

πi (p (s) , s) and

πd (p (s) , s)− π (p (s) , s) ≤ δ

1− δ (v̄ − π) .

Moreover, by Assumption 4, pmax (s, v̄) maximizes π (p, s) subject to πd (p, s) − π (p, s) ≤

(δ/ (1− δ)) (v̄ − π). Therefore, expected collusive profit in period t is at most

maxG∈MPC(F ) EG [min {πm (s) , πmax (s, v̄)}]. Since this holds for every period t, we have

v̄ ≤ maxG∈MPC(F ) EG [min {πm (s) , πmax (s, v̄)}]. Hence, v̄ ≤ v∗, by definition of v∗.

It remains to solve the information design problem in (12). In general, this problem

can be solved using techniques from the static information design literature (e.g., Dworczak

and Martini, 2019), and the solution depends on the shape of πmax (s, v) as a function of s.

However, an explicit solution is available under the following condition, which holds in our

leading examples.47

Condition 1 πmax (s, v) is convex in s for all v.

Under Condition 1, we can define (ŝL, ŝH) exactly as in Section 6.2. (For example, with

undifferentiated goods, we have ŝL = ŝ as defined in Section 3 and ŝH = s̄.) The next

theorem is the general version of our main result (for the stochastic demand case), which

generalizes both Theorem 1 and Theorem 3.

Theorem 4 Assume that Assumptions 1—4 and Condition 1 hold. Then the unique optimal

disclosure policy discloses demand states below ŝL and above ŝH and conceals demand states

47It suffi ces that πmax (s, v∗) is convex in s, but this weaker condition depends on the endogenous object
v∗.
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in the interval [ŝL, ŝH ]. The unique optimal collusive price p (s) in state s is given by

p (s) =


pm (s) if s < ŝL,

pm (s∗) if s ∈ [ŝL, ŝH ] ,

pmax (s, v∗) if s > ŝH .

Proof. Analogous to the proof of Theorem 1. Define an auxiliary objective function

π̃ (s) =


πm (s) if s < ŝL,

ŝH−s
ŝH−ŝLπ

m (ŝL) + s−ŝL
ŝH−ŝLπ

max (ŝH , v
∗) if s ∈ [ŝL, ŝH ] ,

πmax (s, v∗) if s > ŝH .

Note that π̃ (s) is convex and π̃ (s) ≥ min {πm (s) , πmax (s, v∗)} for all s. (See Figure 2. In

particular, any kink in the objective function min {πm (s) , πmax (s, v∗)} must be a concave

kink, as the functions πm (s) and πmax (s, v∗) differ only in that the latter involves an addi-

tional constraint for s ≥ s∗.) Consider the auxiliary problem, maxG∈MPC(F ) EG [π̃ (s)]. Since

π̃ (s) is convex, the solution is full disclosure (G = F ), and the resulting value is

EF [π̃ (s)]

= F (ŝL)E [πm (s) |s < ŝL]

+ (F (ŝH)− F (ŝL))E
[
ŝH − s
ŝH − ŝL

πm (ŝL) +
s− ŝL
ŝH − ŝL

πmax (ŝH , v
∗) |s ∈ [ŝL, ŝH ]

]
+ (1− F (ŝH))E [πmax (s, v∗) |s > ŝH ]

= F (ŝ)E [πm (s) |s ≤ ŝL] + (F (ŝH)− F (ŝL))πm (s∗) + (1− F (ŝH))E [πmax (s, v∗) |s > ŝH ] .

Since π̃ (s) ≥ min {πm (s) , πmax (s, v∗)} for all s, this is an upper bound for

maxG∈MPC(F ) EG [min {πm (s) , πmax (s, v∗)}]. But it is attained by disclosing demand states

below ŝL and above ŝH and concealing demand states in the interval [ŝL, ŝH ], so this policy

is optimal. Moreover, this policy is the unique one that induces only posteriors s where

π̃ (s) = min {πm (s) , πmax (s, v∗)}, so it is the unique optimal policy. Finally, this disclosure

policy is optimal only in conjunction with the prescribed prices.

We illustrate Theorem 4 by applying it to the setting of undifferentiated goods with
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capacity constraints, in the case where D (p, s) = s−p. Assume that the capacity constraint

is slack on path but binds offpath: C is greater than s̄/(2n), the per-firm monopoly quantity

at the highest demand state, but smaller than s/2, the industry quantity at the lowest

demand state with monopoly pricing. Then pmax (s, v) is the larger solution to

pC − p (s− p)
n

=
δ

1− δ v,

which, after solving the quadratic, gives

πmax (s, v) =
1

2

(
C

√
(nC − s)2 + 4n

δ

1− δ v − C (nC − s)
)
− δ

1− δ v.

This expression is convex in s, so Condition 1 holds. Hence, in general, a disclose-conceal-

disclose disclosure policy is optimal, similarly to the differentiated goods setting in Section

6.2. The logic is again that the objective function min {πm (s) , πmax (s, v∗)} is piecewise-

convex with a concave kink, so it is optimal to disclose the lowest and highest demand states

while concealing an intermediate interval of states. We also note that pmax (s, v) and πmax

are decreasing in C when pmax (s, v) < pm (s). Intuitively, reducing capacity decreases firms’

deviation payoffs, which facilitates collusion.

B Consumer or Total Surplus Objective

In this appendix, we find the optimal disclosure policy for maximizing a weighted average

of producer and consumer surplus. We assume as in Section 4.2 that consumer surplus is

quasi-linear in s, so that CS(p, s) = f(s) + g(p)s+ h(p) for functions f, g, h. Since E [f (s)]

is independent of the disclosure policy, we consider the problem of maximizing a weighted

average of E [g (p) s+ h (p)] and E [Π (p, s)], with weights 1 − α and α, for α ∈ [0, 1) (the

α = 1 case already having been considered in the text). We assume that, for any disclosure

policy G, the firm-optimal subgame perfect equilibrium is played, resulting in an expected

profit V given by the greatest solution to

V = EG [min {Πm (x) ,Πmax (n, δ, V )}] ,
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and a price p (x, V ) at disclosed mean demand state x given by p (x, V ) = pm (x) if pm (x) ≤

Πmax (n, δ, V ), and p (x, V ) = min {p : Π (x, s) = Πmax (n, δ, V )} otherwise. Given this func-

tion p (x, V ), the designer’s problem is to first solve the “inner problem,”

max
G∈MPC(F )

EG [(1− α) (g (p (x, V ))x+ h (p (x, V ))) + αmin {Πm (x) ,Πmax (n, δ, V )}]

s.t. V is the greatest solution to V = EG [min {Πm (x) ,Πmax (n, δ, V )}] ,

for each V that is the greatest solution to V = EG [min {Πm (x) ,Πmax (n, δ, V )}] for some

G ∈MPC (F ), and then to maximize over V .

The inner problem can be rewritten as an unconstrained information design problem

by letting β be the multiplier on the constraint (which exists by Slater’s condition for any

V < V ∗, the solution when α = 1), normalizing the objective by 1/ (1− α), and letting

λ = (α + β)/ (1− α), to obtain

max
G∈MPC(F )

EG [(g (p (x, V ))x+ h (p (x, V ))) + λmin {Πm (x) ,Πmax (n, δ, V )}] . (13)

In general, (13) can be solved by standard techniques (e.g., Dworczak and Martini, 2019),

given the functions p, g, h, and Πm and the multiplier λ. Here, we consider the leading case

of linear demand with an unknown intercept or an unknown constant marginal cost.

Unknown demand. As shown in Section 4.2, Π (p, x) = p (x− p), g (p) = −p, and

h (p) = p2/2. We thus have

Πm (x) =
x2

4
and g (pm (x))x+ h (pm (x)) = −3x2

8
.

Suppressing the argument of Πmax (n, δ, V ) and letting pmax (x, V ) solve Π (pmax (x, V ) , x) =

Πmax (for x ≥ s∗ ≡ 2
√

Πmax), we calculate

pmax (x, V ) =
x−
√
x2 − 4Πmax

2
and

g (pmax (x, V ))x+ h (pmax (x, V )) =
−x2 − 2Πmax + x

√
x2 − 4Πmax

4
.
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The designer’s (inner) problem is thus

max
G∈MPC(F )

EG
 1 {x < s∗} (−3 + 2λ) x2

8

+1 {x ≥ s∗}
(
−x2+x

√
x2−4Πmax

4
+
(
−1

2
+ λ
)

Πmax
)
 .

Note that if λ < 3/2 then the objective is decreasing and concave in x for x < s∗ and is

increasing and concave in x for x ≥ s∗ (as the function −x2 + x
√
x2 − 4Πmax is increasing

and concave for x ≥ 2
√

Πmax), with a convex kink at s∗. Thus, if the optimal multiplier

λ (i.e., the multiplier in the inner problem with the optimal value for V ) is less than 3/2,

the optimal policy is a binary signal that discloses only whether demand is above or below

a cutoff s∗∗, by an argument similar to the proof of Proposition 4 of Dworczak and Martini

(2019). Intuitively, when λ < 3/2 the objective has the same shape as consumer surplus

g (p (x))x + h (p (x)); and when x < s∗, (monopoly) price is linearly increasing in x, so

consumer surplus is decreasing and concave in x; whereas when x ≥ s∗, price is decreasing

and convex in x (by Rotemberg and Saloner’s logic), so consumer surplus is increasing and

concave in x. The optimal policy is thus a binary signal that discloses only whether demand

is “low” (in which case firms set the corresponding monopoly price) or “high” (causing a

“price war”).

If instead the optimal multiplier λ is greater than 3/2, the objective is increasing and

convex for x < s∗, so the objective is S-shaped overall. In this case, the solution is upper

censorship with a cutoff ŝ < s∗, as in the problem considered in the text.

The next result summarizes this discussion and also shows that a binary signal maximizes

consumer surplus. (Equivalently, the optimal multiplier is less than 3/2 when α = 0.) This

follows because the optimal signal for any weight α is either a binary signal or is upper

censorship with a cutoff ŝ ∈ (s, s∗), but given upper censorship with a cutoff ŝ, pooling

all states below ŝ in a single signal realization increases expected consumer surplus, so the

optimal signal when α = 0 must be binary.

Proposition 4 Under linear demand with an unknown intercept, the optimal disclosure

policy is either a binary signal that reveals only whether demand is below or above a cutoff;

or it is upper censorship. The former policy is optimal if the weight on consumer surplus is
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suffi ciently high; the latter policy is optimal if the weight on producer surplus is suffi ciently

high.

Proof. Given the above discussion, it suffi ces to show that the optimal multiplier λ∗ is at

most 3/2 when α = 0. To see this, suppose toward a contradiction that λ∗ > 3/2. Then,

as shown above, the optimal disclosure policy is an upper censorship policy G with a cutoff

ŝ < s∗. We can also assume that ŝ > s, as otherwise this policy is no disclosure, which is

also a binary signal.

To obtain a contradiction, we show that the binary signal Ĝ that discloses only whether

demand is above or below ŝ yields strictly higher expected consumer surplus than G. To

see this, let V and V̂ denote expected profit under G and Ĝ, respectively. Recall that

p (x, V ) = pm (x) for all x < ŝ (as ŝ < s∗) and that g (pm (x))x+h (pm (x)) is strictly concave

in x, so Ĝ yields strictly higher expected consumer surplus than G if p
(
EF [s|s < ŝ] , V̂

)
≤

p
(
EF [s|s < ŝ] , V

)
and p

(
EF [s|s ≥ ŝ] , V̂

)
≤ p

(
EF [s|s ≥ ŝ] , V

)
. In turn, since p

(
x, Ṽ

)
is increasing in Ṽ , it suffi ces to show that V ≥ V̂ . But this holds because V and V̂ are,

respectively, the greatest fixed points of the equations

Ṽ = EG
[
min

{
Πm (x) ,Πmax

(
δ, n, Ṽ

)}]
and Ṽ = EĜ

[
min

{
Πm (x) ,Πmax

(
δ, n, Ṽ

)}]
;

but, for any Ṽ , we have

EG
[
min

{
Πm (x) ,Πmax

(
δ, n, Ṽ

)}]
=

∫ ŝ

s

Πm (s) dF (s) + (1− F (ŝ)) Πmax
(
δ, n, Ṽ

)
≥ F (ŝ) Πm

(
EF [s|s < ŝ]

)
+ (1− F (ŝ)) Πmax

(
δ, n, Ṽ

)
≥ F (ŝ) min

{
Πm
(
EF [s|s < ŝ]

)
,Πmax

(
δ, n, Ṽ

)}
+ (1− F (ŝ)) min

{
Πm
(
EF [s|s ≥ ŝ]

)
,Πmax

(
δ, n, Ṽ

)}
= EĜ

[
min

{
Πm (x) ,Πmax

(
δ, n, Ṽ

)}]
,

where the first inequality is by convexity of Πm (s), so the greatest fixed point of the first

equation is not lower than that of the second.

A natural conjecture is that there exists a weight on producer surplus α∗ ∈ (0, 1) such
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that if α < α∗ then the optimal multiplier λ is less than 3/2, so a binary signal is optimal;

and if α ≥ α∗ then λ ≥ 3/2, so upper censorship is optimal. This holds whenever the optimal

multiplier β on the constraint EG [Πm (x) ,Πmax (n, δ, V )] = V is monotone in α, as then λ is

monotone in α, so that λ ≥ 3/2 iff α exceeds a cutoff α∗. However, we do not have a proof

that β is monotone in α.

Unknown cost. Since Π (p, x) = (p− x) (1− p) and CS (p, x) = h(p) for h (p) =

(1/2) (1− p)2, we have

pm (x) =
1 + x

2
, Πm (x) =

(1− x)2

4
, and h (pm (x)) =

(1− x)2

8
.

Suppressing the argument of Πmax (n, δ, V ) and letting pmax (x, V ) solve Π (pmax (x, V ) , x) =

Πmax (for x ≤ s∗ ≡ 1− 2
√

Πmax), we calculate

pmax (x, V ) =
1 + x−

√
(1− x)2 − 4Πmax

2
and

h (pmax (x, V )) =
(1− x)2 − 2Πmax + (1− x)

√
(1− x)2 − 4Πmax

4
.

The designer’s (inner) problem is thus

max
G∈MPC(F )

EG

 1 {x ≤ s∗}
(

(1−x)2+(1−x)
√

(1−x)2−4Πmax

4
+
(
−1

2
+ λ
)

Πmax

)
+1 {x > s∗} (1 + 2λ) (1−x)2

8

 .
Note that the objective is decreasing and convex for x ≤ s∗ (as the function (1− x)2 +

(1− x)
√

(1− x)2 − 4Πmax is decreasing and convex for x ≤ s∗); whereas for x > s∗, the

objective is increasing and concave if λ ≤ −1/2 and is decreasing and convex if λ > −1/2.

In the former case, the objective consists of a decreasing and convex piece followed by an

increasing and concave piece, and it is straightforward to show that the optimal disclosure

policy is upper censorship. In the latter case, the objective consists of two decreasing and

convex pieces that meet at a kink, and in general the optimal disclosure policy censors an

intermediate range of states around the kink and discloses the lowest and highest states.
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However, unlike in the unknown demand case, we have not been able to determine which of

these cases applies for the problem of maximizing consumer surplus (α = 0).48

C Proof of Proposition 2.3

Fix any convex function Πm (s) and any constant Πmax. Let (F1, F2, G1, G2) be such that

F1 ∈ MPC (F2) ,

G1 ∈ argmax
G∈MPC(F1)

EG [min {Πm (x) ,Πmax}] , and

G2 ∈ argmax
G∈MPC(F2)

EG [min {Πm (x) ,Πmax}] .

We show that G1 ∈MPC (G2), or equivalently
∫ s
s
G1 (s) ds ≤

∫ s
s
G2 (s) ds for all x (since G1

and G2 have the same mean). As shown in the text, this completes the proof of Proposition

2.3.

By Theorem 1, we have

G1 (s) =


F1 (s) if s ≤ ŝ1,

F1 (ŝ1) if ŝ1 < s < s∗,

1 if s ≥ s∗,

where s∗ = EF1 [s|s > ŝ1] satisfies Πm (s∗) = Πmax, and similarly for G2. Note that, for any

s ≤ ŝ2, we have∫ s

s

(G1 (s)−G2 (s)) ds =

∫ s

s

(G1 (s)− F2 (s)) ds ≤
∫ s

s

(F1 (s)− F2 (s)) ds ≤ 0,

where the equality is by G2 (s) = F2 (s) for all s ≤ ŝ2, the first inequality is by G1 (s) ≤ F1 (s)

for all s < s∗, and the second inequality is because F1 ∈ MPC (F2). Next, G1 (s) −

G2 (s) is non-decreasing on the interval [ŝ2, s
∗), as on this interval G1 (s) is non-decreasing

and G2 (s) = F2 (ŝ2) is constant. In addition, G1 (s) − G2 (s) = 0 for s ≥ s∗. Thus,

48Conversely, as λ→∞ (approaching the α = 1 case considered in the text), the objective flattens out for
s ≤ s∗, implying that lower censorship is optimal for suffi ciently high λ.
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∫ s
s

(G1 (s)−G2 (s)) ds is convex on [ŝ2, s
∗] and constant on (s∗, s̄]. Therefore, since∫ s

s
(G1 (s)−G2 (s)) ds ≤ 0 for all s ≤ ŝ2, if

∫ s
s

(G1 (s)−G2 (s)) ds is ever strictly posi-

tive then for some s ∈ (s∗, s̄], then it must be strictly positive at s = s∗ (since, as a convex

function on [ŝ2, s
∗], it is bounded above by its linear interpolation over this interval). But,

by integration by parts,

EG1 [s] = s̄−
∫ s̄

s

G1 (s) ds = s∗ −
∫ s∗

s

G1 (s) ds, and

EG2 [s] = s̄−
∫ s̄

s

G2 (s) ds = s∗ −
∫ s∗

s

G2 (s) ds,

so since EG1 [s] = EG2 [s] we have
∫ s∗
s

(G1 (s)−G2 (s)) ds = 0. Thus,
∫ s
s

(G1 (s)−G2 (s)) ds ≤

0 for all s, completing the proof.

D Example with Persistent Demand

Assume a binary demand state (s ∈ {s, s̄}) and linear demand (Π (p, s) = p (s− p)),

and consider the parameters s = 1, s̄ = 2, δ = .55, n = 2, and Pr (st+1 = s̄|st = s̄) =

Pr (st+1 = s|st = s) = ρ ∈ (1/2, 1). Binary demand violates our assumption that the distrib-

ution of states is atomless; however, that assumption is easily relaxed. With a binary state,

an upper censorship policy now corresponds to disclosing state s with some probability q

(conditional on s = s) and pooling state s together with state s̄ otherwise. Upper censorship

is optimal by essentially the same proof as in the atomless case, so we can parameterize

an optimal disclosure policy by q ∈ [0, 1], with q = 0 being no disclosure, q ∈ (0, 1) being

non-trivial upper censorship, and q = 1 being full disclosure.

Figures 3—5 display the optimal disclosure policy, firm profit, and consumer surplus as ρ

ranges from 1/2 to 1. In Figure 3, the blue curve plots the optimal disclosure policy q at

last-period demand state s, while the orange line plots q at last-period demand state s̄. Note

that the blue curve is always above the orange curve, as under positive persistence (ρ > 1/2)

more information is disclosed when the last-period state is lower, as shown in Theorem 2.

In addition, Figure 3 displays three distinct equilibrium regimes. In Regime 1, non-trivial

upper censorship is optimal for both last-period demand states. For ρ ∈ (1/2, 0.727), Regime
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Figure 3: Optimal disclosure policy. The blue curve is the probability of disclosing s when the
current state is s and the last-period state was s; the orange curve is the probability of disclosing
s when the current state is s and the last-period state was s̄.

1 prevails, and increasing ρ leads to more disclosure at last-period state s and less disclosure

at last-period state s̄. Intuitively, increasing ρ makes firms more pessimistic at last-period

state s and more optimistic at last-period state s̄, which increases disclosure at last-period

state s and decreases disclosure at last-period state s̄. Once ρ reaches 0.727, firms are so

optimistic at last-period state s̄ that no disclosure becomes optimal, while further increases

in ρ continue to increase disclosure at last-period state s. This second regime persists until ρ

reaches 0.863. At this point, demand is so persistent that future profits are much higher at

last-period state s̄ than at last-period state s, which makes partial disclosure optimal again

at last-period state s̄, so the equilibrium is again in Regime 1. Further increases in ρ then

rapidly increase disclosure for both last-period states, until ρ reaches 0.902, at which point

full disclosure becomes optimal for both last-period states.

Figures 4 and 5 trace the implications of these effects for firm profit and consumer surplus.

In Figure 4, the blue curve plots a firm’s continuation value (discounted sum of profits) at

last-period demand state s; the orange curve plots this value at last-period demand state s̄;

and the green curve is the average of the two, which equals a firm’s ex ante expected profit.

In Regime 1, increasing ρ decreases the continuation value at last-period state s and increases

it at last-period state s̄. The net effect is to (slightly) increase expected profits, as increasing
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Figure 4: Optimal continuation values. The blue curve is a firm’s continuation value at last-period
state s. The orange curve is the corresponding value at last-period state s̄. The green curve is the
ex ante expected profit.

Figure 5: Consumer surplus. The blue curve is the current-period consumer surplus at last-period
state s. The orange line is the corresponding value at last-period state s̄. The green curve is ex
ante expected consumer surplus.

56



the continuation value at last-period state s̄ relaxes the binding incentive constraint. In

contrast, the effect of increasing ρ on profits is non-monotone in Regime 2 and is zero

in Regime 3 (where optimal profits are first-best). In Figure 5, the blue curve plots the

current-period consumer surplus at last-period demand state s; the orange curve plots it at

last-period demand state s̄; and the green curve is the average of the two, which equals ex

ante expected consumer surplus. Expected consumer surplus is decreasing in ρ in Regime 1

(albeit only slightly when ρ ∈ (1/2, 0.727)), non-monotone in ρ in Regime 2, and constant

in ρ in Regime 3.
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