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Abstract

Motivated by recent concerns surrounding the use of third-party pricing algorithms
by competing firms, we study repeated Bertrand competition where market demand
or the cost of serving the market is observed by an intermediary (or “algorithm”) that
selectively discloses demand or cost information to maximize firms’ collusive profit. We
show that an upper censorship disclosure policy is optimal, which leads to price rigidity
and supra-monopoly prices at some states. Improving the algorithm’s accuracy reduces
expected consumer surplus whenever it does so under monopoly pricing. When the
state is positively correlated over time, the algorithm discloses more information when
recent demand was lower or costs were higher. The analysis extends to a generalized
model that accommodates product differentiation and capacity constraints. We relate

our findings to recent antitrust cases.
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1 Introduction

Firms increasingly use automated algorithms to set prices and other competitive variables,
a development that has raised a range of regulatory and antitrust concerns (Mehra, 2015;
Ezrachi and Stucke, 2017; Calvano et al., 2020a). A particular focus of some prominent
recent cases is third-party algorithms that facilitate information-sharing among competing
firms while recommending prices. For example, RealPage, Inc. is a company that markets
revenue management software to commercial landlords. RealPage’s software gathers detailed,
near real-time information on apartment prices and occupancy rates from its users and other
non-public sources and uses this data—including data on market conditions gleaned from
competitors—to recommend prices. Following a history of private litigation against Re-
alPage, in August 2024 the US Department of Justice and eight state attorneys general
sued RealPage, asserting that, “At bottom, RealPage is an algorithmic intermediary that
collects, combines, and exploits landlords’ competitively sensitive information,” which con-
stitutes an “unlawful scheme to decrease competition among landlords,” (USDOJ 2024a,b;
see also Calder-Wang and Kim, 2024). Similar algorithmic intermediaries have emerged in a
number of other industries, including retail gasoline pricing (A2i Systems and Kalibrate; see
Assad et al., 2024) and hotel room pricing (IDeaS and Rainmaker; see Harrington, 2025).
In addition, related concerns have also been raised regarding offline cartel facilitators, such
as the Swiss consulting firm AC-Treuhand, which was prosecuted by the European Commis-
sion for facilitating several European industrial cartels by disclosing competitively sensitive
information and recommending prices and market allocations (Harrington, 2006; Marshall
and Marx, 2012).

Motivated by this type of setting, this paper develops a simple model of how an interme-
diary that possesses more detailed aggregate demand or cost information than its client firms
can selectively disclose this information to maximize its clients’ collusive profit.! We work in

the canonical setting of repeated Bertrand competition with stochastic demand, introduced

!The model is intended as a benchmark and does not attempt to fully capture the complex industries
mentioned above. For example, in practice the objective of an intermediary like RealPage may or may not be
maximizing collusive profit, and the intermediary’s information may or may not be a superset of the firms’.
We connect our analysis to the RealPage case in detail in Section 5.



by Rotemberg and Saloner (1986).2 Following Rotemberg and Saloner, our baseline setting
assumes homogeneous products and iid demand, although we subsequently relax both of
these assumptions. To get a stark and tractable model, we assume that the current demand
state is observed only by the intermediary (henceforth, the algorithm), which then discloses
information about the state according to a known policy. We also make a key technical
assumption that profit is affine in the unknown state, so that, for any fixed price and any
distribution over states, expected profit is determined by the expected state. Under these
assumptions, we characterize the disclosure policy and the (pure strategy, subgame perfect)
equilibrium that maximizes the firms’ profits.

The main result in our baseline model is that the (firm-)optimal policy is upper censorship
together with conditional monopoly pricing: there is a cutoff demand state $ such that,
if the current demand state s is below s, the algorithm discloses s and recommends the
corresponding monopoly price p™ (s) to all firms; and if the current demand state s is
above §, the algorithm discloses only the event {s > §} and recommends the monopoly price
conditional on this information, p™ (E [s|s > §]). The optimal equilibrium thus features rigid
prices: prices are constant unless demand falls below 5. It also involves supra-monopoly
prices for a range of demand states: for demand states s in the interval (8, E[5|5 > §]), the
equilibrium price is p™ (E[$|5 > §]), which is greater than the monopoly price in state s,
p™ (s), whenever the monopoly price p™ (-) is an increasing function of demand. Finally,
as compared to the observable demand case studied by Rotemberg and Saloner, optimal
collusive prices are higher—and consumer surplus is lower—for every demand state.

The logic of these results is as follows. As in Rotemberg and Saloner, firms are most
tempted to undercut the collusive price when demand is high, as this is when the static
monopoly profit II" (s) is largest relative to the equilibrium continuation payoff. In Rotem-
berg and Saloner—which is identical to the special case of our model where the algorithm
fully discloses the demand state—the cartel responds by reducing prices when demand is
high, which reduces current-period profit and hence reduces the current-period deviation

gain. (This is the logic of Rotemberg and Saloner’s “price wars during booms.”) However,

2Stochastic demand and stochastic cost are equivalent up to a sign change in our model. For concreteness,
we mostly discuss the stochastic demand case.



when an algorithm controls the firms’ information, it is more profitable to reduce profit at
high demand states by pooling these states with lower demand states and recommending
the monopoly price conditional on the disclosed information, rather than cutting prices. In
other words, the cartel reduces firms’ temptation to deviate in high demand states only
by reducing their information, not by reducing the recommend price conditional on their
information. Technically, the key observation is that the firms’ “capped monopoly profit,”
min {II" (s) , [I™®*}—where II™** is the maximum industry profit that the firms can obtain
in a single period without violating incentive constraints, which is independent of s with
homogeneous products and iid demand—is a “convex-then-concave” function of s, and up-
per censorship is the optimal disclosure policy for a convex-then-concave objective function
(Kolotilin, 2018; Dworczak and Martini, 2019; Kolotilin et al., 2022).

The optimal collusive equilibrium displays clean comparative statics. Reducing the num-
ber of firms, increasing the discount factor, or improving the algorithm’s accuracy makes
collusive prices more flexible and increases collusive profit. In addition, if improving the
information of a monopoly seller reduces expected consumer surplus, then so does making
collusive prices more flexible in our model. This result speaks directly to antitrust concerns
regarding algorithmic information-sharing. Specifically, while prior studies have found an
ambiguous effect of improved algorithmic demand prediction on consumer surplus (Sugaya
and Wolitzky, 2018; Mikl6s-Thal and Tucker, 2019), our conclusion is more unambiguously
negative. The reason is that prior studies assumed that the algorithm fully discloses its infor-
mation to firms, while we assume that it selectively discloses its information to maximize firm
profits, and therefore conceals information that would lead to price cuts if it were disclosed.
Thus, while Miklés-Thal and Tucker (2019, p. 1553) find “somewhat reassuring results for
antitrust authorities who are worried about the implications for anticompetitive and collu-
sive behavior of the digital environment,” we can unfortunately offer no such reassurances
for algorithms that selectively disclose information to maximize collusive profit.

We relate our baseline model and results to some recent antitrust cases, focusing on the
RealPage case. While the available evidence is limited, it seems consistent with our key
mechanism wherein an intermediary with superior demand information selectively discloses

this information to maximize its clients’ joint profits, resulting in a stylized pricing pat-



tern over the business cycle where prices respond flexibly to demand conditions in industry
downturns but are more rigid in upturns.

While our baseline model tractably generalizes Rotemberg and Saloner and delivers sharp
and empirically plausible results, it does assume a rather special market structure. We there-
fore extend the model in three directions. First, we let the state persist over time, following a
Markov process. Here the main results from the iid case go through, and there are also some
new results. For example, we show that when demand is positively correlated over time, the
algorithm discloses more information when recent demand was lower. (The opposite result
holds with negative serial correlation.) The intuition is that with positive serial correlation,
firms are more pessimistic about demand—and thus less tempted to deviate—when recent
demand was lower, so the algorithm can disclose more information without prompting a
deviation. We also show that the optimal collusive price is no longer always equal to the
monopoly price for the disclosed mean demand, and that, while price is always monotone
in current demand (as in the iid case and in contrast to Rotemberg and Saloner), it can
be non-monotone in the previous period’s demand, so that the expected price conditional
on the last-period demand can display countercyclicality similar to that in Rotemberg and
Saloner.

Second, we consider a generalized model that accommodates product differentiation and
capacity constraints.> The insight that optimal information disclosure involves regions of
censorship, price rigidity, and supra-monopoly pricing extends to the generalized model.
However, the form of the optimal disclosure policy depends on details of the demand system
and can differ from that in the baseline, homogeneous goods case. For example, with a
symmetric, linear demand system, the optimal policy generally discloses the highest demand
states as well as the lowest ones, while pooling a region of intermediate states. The intuition
is that, with differentiated goods, the attainable profits at the highest demand states are
high enough that it is optimal to disclose these states, even though the resulting prices must
fall below the monopoly level to deter undercutting. Mathematically, the capped monopoly

profit is now piecewise-convex rather than convex-then-concave, so in general an optimal

3These features are likely important in the RealPage case, although our discussion of this case in Section
5 focuses on our baseline model for simplicity.



disclosure policy censors an intermediate interval of states, rather than the highest states.

Third, we briefly consider the problem of designing a disclosure policy to maximize a
weighted average of producer and consumer surplus, assuming that firms play their optimal
equilibrium under the chosen policy. Here, we find that the consumer-optimal disclosure
policy under linear demand with an unknown intercept is a binary signal that reveals only
whether demand is below or above a cutoff, where the low signal induces the corresponding
monopoly price, and the high signal sparks a “price war” (price below the corresponding
monopoly price).

The remainder of the paper is organized as follows. Following a discussion of the lit-
erature, Section 2 presents the baseline model, Section 3 solves the model, and Section 4
discusses implications and comparative statics. Section 5 connects the analysis to recent
antitrust cases, focusing on the RealPage case. Section 6 contains the extension to a per-
sistent state and to a symmetric, linear demand system. Section 7 concludes and discusses
further extensions. A generalized model that allows a range of demand systems as well as
capacity constraints is presented in Appendix A. Finally, Appendix B considers more general

objectives, such as maximizing consumer surplus.

Related literature. We contribute to the literatures on pricing algorithms, information-
sharing among colluding firms, information design, and repeated games.

Much of the recent literature on pricing algorithms studies how independent algorithms
can learn to set supra-competitive prices (Waltman and Kaymak, 2008; Calvano et al.,
2020b; Klein, 2021; Asker, Fershtman, and Pakes, 2024; Banchio and Mantegazza, 2024),
as well as the commitment value of adopting such algorithms (Cooper et al., 2015; Salcedo,
2015; Hansen, Misra, and Pai, 2021; Brown and MacKay, 2023; Lamba and Zhuk, 2024).
We instead ask how a shared algorithm with demand information superior to the firms’
optimally discloses information to facilitate collusion. Sugaya and Wolitzky (2018, Example
3) and Mikl6s-Thal and Tucker (2019) show that the effect of disclosing demand information
on collusive profit and consumer surplus is generally non-monotone, as it facilitates more
accurate deviations as well as more accurate on-path pricing (a logic similar to Rotemberg

and Saloner’s). O’Connor and Wilson (2019), Martin and Rasch (2022), and Bonatti, Fiocco,



and Piccolo (2024) document similar effects under imperfect monitoring.! However, none of
these papers characterizes optimal disclosure.

Harrington (2022) notes a reason why our model might not be a good fit for a third-party
company like RealPage that designs and sells a pricing algorithm to competing firms: if firms
independently decide whether to purchase and adopt the algorithm, a profit-maximizing al-
gorithm designer’s objective may be to maximize the difference in profit between adopters
and non-adopters, rather than adopters’ profits.” This alternative objective could be con-
sidered in future research. Harrington (2025) considers a problem closer to ours, where the
algorithm maximizes adopter’s profit subject to the constraint that adoption is profitable.
However, in his model, adopters commit to following the algorithm’s price recommendations.
Finally, a very recent paper by Harrington and Ortner (2025) considers a similar problem
where adopters do not commit to following the recommendations. The key difference from
our model is that Harrington and Ortner consider idiosyncratic demand uncertainty that
washes out in aggregate. In that case (and assuming a linear demand system), they show
that full information disclosure is optimal.

The broader literature on information-sharing among colluding firms considers a range
of mechanisms, including the impact of improved monitoring (Abreu, Milgrom, and Pearce,
1991; Kandori, 1992; Harrington and Skrzypacz, 2011; Awaya and Krishna, 2016), the bene-
fits of maintaining strategy uncertainty (Bernheim and Madsen, 2017; Sugaya and Wolitzky,
2018; Ortner, Sugaya, and Wolitzky, 2024; Kawai, Nakabayashi, and Ortner, 2024), and
the allocative role of communication under incomplete information.® These papers find that
concealing various types of information can be advantageous for cartels. However, we are not
aware of any prior work that studies optimal information disclosure for facilitating collusion.”

Optimal information disclosure has been studied extensively in static environments (Rayo

4Bonatti, Fiocco, and Piccolo (2024) focus on a comparison between revealing demand information before
and after firms set prices.

Bordoli (2025) and Wu (2025) consider a similar designer objective in a static setting.

SThe latter literature contains papers on communicating private cost information (McAfee and McMillan,
1992; Athey and Bagwell, 2001; Athey, Bagwell, and Sanchirico, 2004; Skrzypacz and Hopenhayn, 2004), as
well as private signals of stochastic market demand (Hanazono and Yang, 2007; Gerlach, 2009; Buehler and
Gartner, 2013; Sahueget and Walckiers, 2017).

"Hickok (2024) studies optimal information disclosure by a platform that takes a share of firms’ revenue,
finding that full disclosure is optimal.



and Segal, 2010; Kamenica and Gentzkow, 2011), especially in the affine case we focus
on (Gentzkow and Kamenica, 2016; Kolotilin et al., 2017; Kolotilin, 2018; Dworczak and
Martini, 2019), as well as in some specific dynamic settings (e.g., Ely, 2017; Renault, Solan,
and Vieille, 2017). From a technical perspective, the closest paper is Kolotilin and Li (2021),
who study a repeated cheap talk game with voluntary transfers. Like us, they reduce the
problem of characterizing the optimal equilibrium to a static information design problem.®
However, this reduction works for different reasons in the two papers: in Kolotilin and
Li, the key is the availability of transfers; for us, the key is the fact that static deviation
gains are proportional to on-path payoffs under Bertrand competition.” Kolotilin and Li’s
reduction also imposes a monotonicity constraint, which is absent in our setting. Kolotilin
and Li (Proposition 4) derive conditions under which upper censorship is optimal, which
include shape restrictions on utilities beyond affineness. For us, no conditions are required
beyond affineness, due to the structure of Bertrand competition. Once the reduction to static
information design (Lemma 1) is in place, our proof is essentially the same as Kolotilin and
Li’s (as well as Kolotilin, 2018; Dworczak and Martini, 2019; and others). However, the
structure of Bertrand competition also lets us handle the Markov case in Section 6.1, and we
also characterize more general optimal disclosure policies in Section 6.2 and Appendix A.
From the viewpoint of repeated game theory, we combine the recursive approach pio-
neered by Abreu (1986, 1988) with optimal public information disclosure. The approach is
to consider static information design in the stage game augmented with continuation payoffs.
This is especially tractable in symmetric games where symmetric equilibria can be shown
to be without loss. The text of the paper illustrates this approach in two special settings
(collusion with homogeneous goods or with differentiated goods with linear demand), while

the model in Appendix A is a relatively general one where this methodology applies.

8Kuvalekar, Lipnowski, and Ramos (2022) also reduce a repeated communication game to a static one.
9In the generalized version of our model, the reduction works due to a more general one-to-one corre-
spondence between static deviation gains and on-path payoffs.



2 A Model of Collusion with Information Disclosure

Prices and profits. We consider homogeneous-goods Bertrand competition among n firms
with stochastic demand or a stochastic common production cost. In each period, a non-
negative demand or cost state s € [s, §] is drawn independently from an atomless distribution
F, and each firm 7 sets a non-negative price p;, which is publicly observed. The firms’
information about s is described below. The lowest-price firm i serves the entire market and
makes profit II (p;, s). The market is shared equally in case of a tie.

We focus on the case where s measures market demand. In this case, we assume that
I1(0,s) = 0 for all s (normalizing costs to 0); that II(p, s) is continuous in p with a well-
defined monopoly profit II" (s) = max, Il (p, s) for each s; and that II(p, s) is affinely in-
creasing in s for each p: that is, I1 (p,s) < II(p, §) and

S—s s—S

L(p.s) = =M (p.s) + ~—1L(p,5) forall p.s.

In the alternative case where s measures a common production cost, the assumptions are
slightly different. Here, we assume that I (p, s) < 0 for all p < s with equality at p = s; that
IT(p, s) is continuous in p with a well-defined monopoly profit II"™ (s) for each s; and that
II (p, s) is affinely decreasing in s for each p. An interpretation of this case is that the firms
are bidders in a procurement auction, where the cost of fulfilling the contract is privately
observed by an intermediary who coordinates bid-rigging among the firms.!°

Affineness in s is our key assumption. It has two important implications. First, expected
profit is measurable with respect to mean demand: for any price p and any distribution
of demand states p € A([s, s]), the expected profit from serving the market at price p is
E* [II(p, s)] = II(p,E*[s]). Second, monopoly profit II"™ (s) = max,II(p,s) is increasing
and convex in s as the maximum of increasing affine functions.!!

Affineness in s is a strong assumption, but it is satisfied in some important cases, which

we return to throughout the paper. First, it holds if there is a binary underlying de-

mand or cost state s € {s, 5}, where s is a continuous signal of s satisfying Pr (s = 5|s) =

10An example that fits this interpretation is the Kumatori Contractors Cooperative studied by Kawai,
Nakabayashi, and Ortner (2024), which we discuss in Section 5.
"Tn the stochastic cost case, II" (s) is decreasing and convex in s.

8



(s —s)/(5—s). Second, it holds for linear demand with an unknown intercept, where de-
mand equals D (p,s) = s — p, and hence II (p,s) = p(s — p).'> Third, it holds for linear
demand with an unknown constant marginal cost, where demand equals 1 — p and marginal

cost equals s, so that I (p, s) = (p — s) (1 — p).

Information. We assume that the firms do not directly observe the state s. Instead,
s is observed by an intermediary—which we refer to as the algorithm—which maps s to a
(possibly random) signal according to a known rule. We assume that the signal is publicly
observed by all firms. Importantly, this assumption restricts the scope of our analysis to

3 Since

public information disclosure and rules out more general private communication.®
expected profit is measurable with respect to mean demand, it is without loss to view the
algorithm as choosing a distribution G of the firms’ posterior expectations of s, which we
denote by x. By Blackwell (1953) (see also Strassen, 1965; Kolotilin, 2018), such a distrib-
ution is consistent with Bayesian updating of the prior F' if and only if G € M PC (F'), the

set of mean-preserving contractions of F'. We refer to such a distribution G as a disclosure

policy.

Repeated game equilibrium. The above game is repeated in discrete time with a
common discount factor d. In principle, the algorithm can choose a different disclosure
policy G each period, but we will see that there is no benefit from doing so in the current
model with an iid state.!*

Our solution concept is pure strategy, subgame perfect equilibrium (henceforth, “equi-

12These two cases both nest Example 3 of Sugaya and Wolitzky (2018), which assumes a binary demand
state and linear demand. The first case also nests the model of Miklés-Thal and Tucker (2019), which
assumes a binary demand state and unit demand. Our analysis also applies for linear demand subject to
a non-negativity constraint, D (p,s) = max {s — p,0}, so long as s > 5/2, so that demand D (p™ (s),s’) is
non-negative for any monopoly price p™ (s) and demand state s'.

13With private signals, in each period the problem would become one of characterizing the optimal Bayes
correlated equilibrium in a game with a continuum of states and actions and discontinuous payoffs. This
problem is generally intractable. For example, see Smolin and Yamashita (2025) for results with concave
payoffs, as well as a recent literature review. Private signals do improve on public ones—for example,
Ortner, Sugaya, and Wolitzky (2024) find the optimal equilibrium with private signals in a similar model
without demand uncertainty. Besides tractability, public communication and pure strategies ensure that the
equilibrium will be robust to firms’ investigating their competitors’ prices before setting their own.

In Section 6.1, the state follows a Markov process, and the optimal disclosure policy depends on the
previous period’s state. In Section 6.2 and Appendix A, the optimal disclosure policy is time-invariant along
the equilibrium path but discloses no information off path.



librium”). Here, pure strategies mean that, in each period, each firm i sets a deterministic
price p; (x) as a function of the disclosed mean demand state = and the history of past mean

demand states and all firms’ past prices.!

3 Optimal Information Disclosure and Pricing

We characterize the joint information disclosure and pricing policy that maximizes collusive
profits (the sum of the firms’ payoffs). We reduce this problem to a static information design

problem in Section 3.1 and solve it in Section 3.2.

3.1 Reduction to Static Information Design

For any number V' > 0, define

oV

™6, V) = =5 =T (1)

Intuitively, this is the maximum profit IT such that a firm prefers to receive I1/n today
and V/n in every future period rather than Il today and zero in the future. Thus, if the
firms expect a future per-period collusive profit of V' and the cartel tries to make profit
IT > II™** (4, n, V) in any period, a firm will deviate.

Next, define VV* as the greatest fixed point of the equation

N G 3 m max
V= max B min {II” (@) 17 6,m,V))]. (2)

Intuitively, this is the maximum expected profit attainable by a joint information disclosure
and pricing policy that never makes profit greater than II" (z) (the maximum feasible profit
at mean demand state ) or II™* (d,n,V*) (the maximum incentive compatible profit at

mean demand state x, when future per-period collusive profit equals V*). Note that the

right-hand side of (2) is bounded by Ef [II™ (s)], so V* is well-defined.

15Restricting to pure strategies is standard but may not be without loss of generality, as randomization
could deter deviations by making firms unsure of the winning price. This effect is studied in complete-
information models by Bernheim and Madsen (2017) and Kawai, Nakabayashi, and Ortner (2024). Combin-
ing randomization and incomplete information is a possible direction for future research.

10



We show that optimal collusive profit equals V* and that this profit level is attained by
an equilibrium that is symmetric (p; (v) is always identical across firms @), stationary (the
disclosure policy G is the same in every period and, on path, p; (z) is independent of the
history of past demand realizations), and of a grim trigger form (play permanently reverts

to the static Nash equilibrium following any deviation).

Lemma 1 Optimal collusive profit equals V* and is attained by a symmetric, stationary,
grim trigger equilibrium. Moreover, a disclosure policy G is optimal if and only if it solves

the mazimization problem in (2) with V = V*.

Lemma 1 reduces the problem of finding an optimal equilibrium to the static information
design problem on the right-hand side of equation (2), with V' = V*.
Proof. We first show that there exists a symmetric, stationary, grim trigger equilibrium
that attains collusive profit V*. For each z, let p™ (z) € argmax,II(p,r) be a monopoly

price in state x, and let

™ () if IT™ (z) < II™** (0, n, V*),
min {p : II (p, x) = II™** (§,n, V*)} I (x) > [I™>(5,n, V*).

p(x) =

Note that p (z) is well-defined by the intermediate value theorem, as IT (0, z) = 0 and II (p, z)
is continuous in p.'® Let G* € argmaxgcyrpo(r) B [min {II™ () , 1T (6, n, V*)}]. Consider
disclosure policy G*, together with the strategy profile where all firms price at p () whenever
mean demand x realizes on path, and all firms price at zero off path. This is a symmetric,
stationary, grim trigger strategy profile, which yields collusive profit V* by construction. To
see that it is an equilibrium, note that a firm’s best deviation when realized mean demand
is = is to price just below p(x): this is immediate if p (z) = p™ (z) and otherwise follows
because p (x) is the smallest price p satisfying II (p, z) = II™** (§,n, V*), so that II (p/, z) <
[1™ax (§,n, V*) for all p’ < p(x). This deviation wins the entire market in the current period,

but forfeits an expected profit of V*/n in every future period. Thus, the strategy profile is

16Here and throughout, we write proofs for the case where s is a demand state. The proofs for the case
where s is a cost state are nearly identical.

11



an equilibrium if and only if, for all x, we have

1

(1=0)(p(z),2) +6(0) < —((1=d)I(p(z),z)+6V") —
5‘/* max *
I(p(x),z) < (1—5)(n—1):H (6,n, V).

Since this inequality holds by construction, the strategy profile is an equilibrium.

We now show that no equilibrium yields higher profit. Fix any equilibrium, and let V' be
the supremum over periods ¢ and histories of play up to and including period t of the expected
per-period collusive profit from period ¢ + 1 onward. Now fix an arbitrary period ¢ and a
history of play up to period ¢, and suppose that when the realized mean demand in period ¢
at this history is z, the prescribed winning price is p (z), and each firm i wins with probability
a; and obtains equilibrium continuation value v;. (So, a; =1/ |5 : p; () =p(x)| if p; (z) =
p(x), and o; = 0 otherwise. Note that each p; (r)—and thus the winning price p (x)—is
deterministic by our restriction to pure strategy equilibria.) Since a possible deviation for
firm 7 is to price just below p(z) and a firm’s minimax payoff is zero, firm i’s incentive

constraint implies
(1= 6)TL(p () .2) +6(0) < o (1— 6 TL(p (), 2) + v,

Averaging this inequality over the n firms, we have

n

(=T (p(a),0) < ((1—6>H<p<x>,x>+azw> < (1= (@), 2) +07),

where the second inequality is by definition of V. This inequality is equivalent to II (p () , z)

IN

1™ (§,n, V). Since we also have II (p (z) , z) < II"™ () by definition, and these inequalities
hold for any =z, expected collusive profit in period ¢ is at most
maxgen po(ry B [min {Hm (x), TImax (5 M, V) }] Since this holds for any period ¢, we have
V< maXge M PO(F) E“ [min {Hm (z), IImax (5,n, I_/) H But this implies that equation (2)
has a fixed point weakly above V, and hence V' < V*, by definition of V*. m

A direct implication of Lemma 1 is that collusion is impossible if § < (n — 1) /n. (The

12



same condition implies that collusion is impossible under full information disclosure, as in
Rotemberg and Saloner.) Conversely, if 6 > (n — 1) /n then monopoly profit under no

information disclosure, II"™ (E" [s]), is attainable.

Lemma 2 If § < (n—1)/n then V* = 0. Conversely, if 6 > (n—1)/n then V* >
I (EX [s]).

Proof. If § < (n — 1) /n then II™ (§,n, V) < V for all V' > 0, so the only solution to (2) is
V' = 0. Conversely, if § > (n — 1) /n then no information disclosure together with a constant
on-path price of p™ (EF [SD and zero prices off path is an equilibrium, with expected profit
I (B [s]). m

Given Lemma 2, we henceforth assume that § > (n — 1) /n.

3.2 Optimality of Upper Censorship

The information design problem in (2) is easily solved using recent results from the static
information design literature.
First, let s* € [s, 5] solve

™ (s*) = ™ (§,n, V*) (3)

if such a demand state exists, and let s* = 5 otherwise. Note that, by Lemma 2 and our
assumption that § > (n — 1) /n, we have V* > II"™ (E"' [s]), and hence s* > E” [s]."" Thus,

since F' is atomless, there exists § € [s, s*] such that
EY [s]s > §] = s*.

We can now characterize the optimal information disclosure and pricing policy. Figure 1

illustrates the optimal disclosure policy, as well as the construction of s* and 3.

Theorem 1 With stochastic demand, the unique optimal disclosure policy is the upper cen-

sorship policy that discloses demand states below § and conceals demand states above §. The

" This follows because if s* < B [s] then II" (EX [s]) > II™** (§,n, V*) by (3) and monotonicity of II"™ (s),
but then we would have V* > II™** (§, n, V*) by Lemma 2, contradicting the definition of V*.
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Figure 1: The optimal disclosure policy with undifferentiated products. First, s* is determined as
the solution to [T (s*) = II™# (§, n, V*). Then, § is determined as the solution to E* [s|s > §] =
s*. The optimal policy discloses demand states s < § and recommends the corresponding monopoly
price, p™ (s); and conceals demand states s > § and recommends the monopoly price conditional
on this information, p (s*). The function I (s) is defined in the proof of Theorem 1.

unique optimal collusive price p(s) in state s is given by

m(s)  if s <8,

p
P (s*) if s > 8.

p(s) = (4)

With stochastic costs, the unique optimal disclosure policy is the analogous lower censor-
ship policy that discloses cost states above § satisfying B [s|s < 8] = s* and conceals cost
states below 3.'% The unique optimal collusive price p(s) in state s is given by (4) with the

reversed inequalities.

With stochastic demand, note that § = s—so no disclosure is optimal—iff s* = B [s],
which holds iff § = (n — 1) /n. Conversely, § = 5—so full disclosure is optimal—iff s* = 5,
which holds iff IT"™ (5) < IT™® (§,n, V*). Otherwise, we have II"™" (E” [s]) < II™® (§,n, V*) <
IT™ (5), and partial disclosure is optimal.

To understand Theorem 1, note that disclosing demand information increases expected

18The definitions of II™3* and s* remain as in (1) and (3).
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monopoly profits—as II"™ (s) is convex—but revealing that expected demand is too high
requires cutting price to deter a deviation (as in Rotemberg and Saloner). The theorem
says that it is optimal to disclose low demand states and conceal high ones, such that the
mean concealed state s* is the highest state s that does not require a price cut from the
corresponding monopoly price p™ (s) to deter a deviation.

The intuition is that it cannot be optimal to disclose a mean demand state s > s*,
as pooling s with lower demand states would increase expected profit. In particular, full
disclosure together with price cuts during booms—Rotemberg and Saloner’s equilibrium—is
suboptimal in our model. In addition, it cannot be optimal to pool two demand states below
s*, as separating these states increases expected profit since I1"™ (s) is convex. Finally, it is
more profitable to pool demand states above s* with intermediate states s € [, s*] rather
than low states s < §, as this spreads out the distribution of disclosed mean demand states
s on the interval [s, s*], where II" (s) is convex.

A more technical explanation is that the objective function min {II" (s) , II™** (6, n, V*)}
is increasing and convex in s for s < s* and is constant in s for s > s*. Thus, (2) describes a
mean-measurable information design problem with an objective function that is “S-shaped”:
first convex, then concave. It is well-known that the solution to such a problem is upper cen-
sorship (e.g., Kolotilin, 2018; Dworczak and Martini, 2019; Kolotilin and Li, 2021; Kolotilin
et al., 2022). Moreover, adapting the standard proofs to the current setting where the ob-
jective function is not only convex-then-concave but convex-then-constant implies that the
solution must take the prescribed form, where the mean censored state s* lies at the kink of
the objective function.!” In particular, the disclosed mean demand state s always satisfies
1™ (s) < II™** (§,n, V*), which implies that conditional monopoly pricing is optimal.

Proof. Define an auxiliary objective function

- I (s) if s < 3,

M(s) =1 A
SSTIM (5) 4 2SI (s7) if s > 4.

s*—§

Note that II (s) is convex and II (s) > min {II" (s) , II™* (5, n, V*)} for all s. (See Figure 1.)

198pecifically, we adapt the proofs of Proposition 3 of Dworczak and Martini (2019) and Proposition 4 of
Kolotilin and Li (2021). Theorem 1 is also a special case of Theorem 4 in Appendix A.
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Consider the auxiliary problem, maxge s pc(r) B¢ [1:[ (3)} . Since IT (s) is convex, the solution

is full disclosure (G = F'), and the resulting value is

BF [ﬁ (s)] = F(3)E [ (s)]s < §]

s*— s s— S
1—F$)E | ——IT™ (8 1™ (s*) |s > §
- FE)E [T )+ 2 ) s 2

= FQE)E [ (s)]s< & +(1—F(8)I(s*).

Since II(s) > min {II” (s),II™> (§,n,V*)} for all s, this value is an upper bound for
maxgey po(r) BC [min {II™ (s) , 1™ (§,n, V*)}]. But it is attained by upper censorship with
cutoff §, so this policy is optimal. Moreover, this policy is the unique one that induces only
posteriors s where II (s) = min {II"* (s) , II"™® (§,n, V*)}, so it is the unique optimal policy.

Finally, this disclosure policy is optimal only in conjunction with the prescribed prices. m

4 Implications and Comparative Statics

We now discuss the baseline model’s predictions, comparative statics, and consumer welfare

implications.

4.1 Model Predictions and Impact of Selective Disclosure

The optimal disclosure and pricing policy characterized in Theorem 1 has the following
features. In the subsequent discussion, we assume that the monopoly price p™ (s) is unique

and increasing in s.

Conditional monopoly pricing. Along the equilibrium path of play, the cartel prevents
deviations solely by reducing its members’ information, not by reducing collusive prices
below the monopoly price conditional on their information. Consequently, collusive prices
for a cartel aided by an algorithm that observes a state with distribution F' is identical to
monopoly pricing for a single firm that observes a state with a less informative distribution
G*. This observation will be useful for the comparative statics and consumer welfare results

in Section 4.2, as it implies that comparative statics for collusive prices are equivalent to
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comparative statics for monopoly prices with respect to the monopoly’s information.

Price rigidity—not price wars—during booms. The collusive price p (s) is increasing for
s < § and is constant (at a higher level) for s > §. In particular, collusive prices exhibit
rigidity for demand states s > §, rather than “price wars” as in Rotemberg and Saloner. This
result gives a novel rationale for oligopoly price rigidity in intermediated collusion settings:
prices are rigid because colluding firms optimally limit their own information about market
conditions to deter deviations.?’

In addition, this result shows that algorithmic pricing does not unambiguously increase
price flexibility under collusion. This result somewhat goes against the received view fol-

lowing Chen, Mislove, and Wilson’s (2016) study of retailer pricing on Amazon, which finds

that very flexible prices are a hallmark of algorithmic pricing under competition.

Supra-monopoly pricing. Collusive prices are above monopoly at intermediate demand
states: for s € (8,s*), the optimal collusive price is p(s) = p™(s*) > p™ (s). Moreover,
these demand states satisfy I (s) < II™** (§,n, V™), so monopoly profit can be attained
at any one of these states s by disclosing s and recommending price p™ (s) (holding the
rest of the equilibrium fixed). Thus, for a range of demand states where monopoly profit
is attainable, the algorithm instead implements supra-monopoly prices that deliver lower
profits. The reason why is that recommending the supra-monopoly price p™ (s*) > p™ (s)
in states s € (8, s*) lets the algorithm recommend the same price in states s > s*, where
this price would be too high to be incentive compatible if the state were disclosed. In
other words, price rigidity for demand states above § results in an inefficiently high price
for demand states in (8, s*), but thereby supports a higher price for demand states above s*

than would be attainable under full information.?!

Impact of selective information disclosure. The algorithm’s ability to conceal information

20While not focused on intermediated cartels per se, Carlton (1986) and others find that prices are more
rigid in concentrated industries, and Harrington (2008) and others suggest price rigidity as a collusive marker.
Existing theories of rigid collusive prices include Athey, Bagwell, and Sanchirico (2004) and Hanazono and
Yang (2007) (based on incentive costs of inducing firms to reveal private cost or demand information) and
Maskin and Tirole (2001) (who model “kinked demand curves” as a result of Markov perfect equilibria with
staggered price setting).

21Supra-monopoly pricing at intermediate demand states is analogous to “over-pooling”—where first-best
actions are not taken even in some states where they are implementable—in Kolotilin and Li (2021).
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leads to higher prices and lower consumer surplus in every demand state and thus unambigu-
ously harms consumers. To see this, let VP be optimal collusive profit under full disclosure,

which is given by the greatest fixed point of the equation
VIP =B [min {II" (s) , 11" (§,n, V') }] |

and let s™P solve

™ (SFD) — [rmex ((57 n, VFD) )
As in Rotemberg and Saloner, optimal collusive prices under full disclosure are given by

p" (s) if s < 5P,

PP (s) =
min {p : I (p,s) = II"*> (6,n, VIP)} if s > s"P.

Since p™ (s) is increasing and II (p, s) is increasing in s, it follows that pf? (s) is increasing

FD

for s < sP and decreasing for s > sP. The latter “price wars during booms” result is

Rotemberg and Saloner’s key message.

Proposition 1 As compared to collusive prices under full disclosure, collusive prices un-
der the optimal disclosure policy are higher at each demand state. Consequently, selective

information disclosure reduces consumer surplus.

Proof. Note that VP < V* and hence s/'P < s*. Therefore, letting p (s) be the optimal
collusive price in (4), for s < s* we have p(s) > p™(s) > p''P (s), and for s > s* we have
p(s) =p™(s*) = p™ (s"P) > p™P (s), where the first inequality holds because s™” < s* and
p™ is increasing, and the second holds because s/ < s and p'? is decreasing for s > s'P.

Empirical predictions, collusive markers, and the interpretation of price wars. The base-

line model has three main empirical predictions:

1. The support of the distribution of equilibrium prices consists of an interval [p™ (s) , p™ ()]

and a single higher price p™ (s*).
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2. Prices are rigidly fixed at p™ (s*) for all demand states except the lowest ones. For low
demand states, prices are discretely lower than p™ (s*) but vary flexibly in the interval

[p™ (s),p™ (8)]. Overall, prices are pro-cyclical: p(s) is non-decreasing.

3. While prices are pro-cyclical, the gap between monopoly and collusive prices, p™ (s) —

p($), is non-monotone: first zero, then negative, then positive.

The predicted form of price rigidity—a rigid, high price together with an interval of
flexible lower prices—is distinctive to our model and is thus a possible collusive marker.

The pro-cyclical relationship between prices and demand in our model gives an alternative
interpretation of the “price wars” predicted by Green and Porter (1984) and other models
of collusion under imperfect monitoring. In Green and Porter, prices are pro-cyclical: prices
drop following demand shortfalls as part of an optimal repeated game equilibrium under
imperfect monitoring. In contrast, in Rotemberg and Saloner, prices are counter-cyclical
in high demand states. Interestingly, while our model is much closer to Rotemberg and
Saloner’s, our prediction of pro-cyclical prices coincides with Green and Porter’s, albeit by
a different mechanism: perfect monitoring and selectively disclosed demand information,
rather than imperfect monitoring. This observation is relevant for a line of papers that
have tested the competing predictions of Green and Porter and Rotemberg and Saloner
(e.g., Porter, 1983; Ellison, 1994) and have typically found results more favorable to Green
and Porter’s prediction of pro-cyclical prices. Relative to this literature, our analysis shows
that perfect monitoring and selective information disclosure is an alternative explanation for
pro-cyclical prices.

One way to distinguish our theory from Green and Porter’s would be to estimate the gap
between monopoly and collusive prices, p™ (s) — p(s), over the cycle. In Green and Porter,
the gap is larger following low demand states: collusion is “more successful” when recent
demand was high. In our model, the gap is larger in high demand states (and can even be

negative): collusion is more successful when demand is low.?* Tt would be interesting to test

22With the exception of the distinctive prediction of supra-monopoly prices at intermediate demand states,
our prediction that the gap p™ (s) — p(s) is pro-cyclical is as in Rotemberg and Saloner. Thus, our model
and Rotemberg and Saloner’s make different predictions about prices, p (s) (non-decreasing in our model;
single-peaked in theirs), but similar predictions about the difference p™ (s) — p(s) (non-decreasing in both
models, with the exception of an intermediate region of supra-monopoly pricing in ours).
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these predictions.

4.2 Comparative Statics and Consumer Welfare

We now turn to comparative statics. In what follows, we say that collusive prices are
more flexible if the optimal disclosure policy G* spreads out in the mean-preserving spread
sense. By Blackwell (1953), this is equivalent to the algorithm’s output becoming more
informative. Holding fixed the algorithm’s information F', this is also equivalent to increasing
the censorship cutoff 3, so a wider range of demand states are disclosed.?® We also continue

to assume that 6 > (n — 1) /n, as otherwise collusion is impossible by Lemma 2.
Proposition 2 Collusive profit V* is higher and collusive prices are more flexible when
1. there are fewer firms (n decreases),
2. the firms are more patient (0 increases), or
3. the algorithm is more accurate (F increases in the mean-preserving spread sense).

The intuition for the first two results is that decreasing n or increasing ¢ relaxes the
firms’ incentive constraints, which lets the algorithm disclose a wider range of states without
prompting a deviation. In addition, a more accurate algorithm generates greater collusive
profits, which again relaxes incentive constraints and allows greater disclosure.?*
Proof. For the first two results, note that n and ¢ affect V* and p only through the function
[1™2* which is decreasing in n and increasing in . Thus, decreasing n or increasing ¢ shifts
up the right-hand side of (2) as a function of V', which increases the greatest fixed point V*.
In turn, an increase in V* increases s* and $, which makes prices more flexible.

For the third result, we prove in the appendix that a more informative prior implies a more

informative optimal disclosure policy in static information design problems with a convex-

constant objective: for any distributions (F}, Fy, G1,Gs) where Fy is a mean-preserving

2If F changes (as in Proposition 2.3, the comparative static with respect to the algorithm’s information),
then G* can spread out even as § decreases.

24 A similar effect is documented in Theorem 5 of Harrington (2025). Improving the algorithm’s information
corresponds to taking a mean-preserving spread of F' by Blackwell (1953)—the interpretation is that there
is a distribution H of an underlying state s, and the distribution of the algorithm’s expectation of the
underlying state is F', a mean-preserving contraction of H.
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spread of Fj, (; is the distribution of x under an optimal disclosure policy for prior Fi,
and G is the distribution of z under an optimal disclosure policy for prior F5, we have
that G5 is a mean-preserving spread of GG;. Given this result, spreading out F' implies that
the optimal disclosure policy on the right-hand side of (2) is more informative for any fixed
value for V. In addition, since M PC (Fy) C M PC (Fy), spreading out F' clearly shifts up
the right-hand side of (2) as a function of V', which increases the greatest fixed point V*.
Since increasing V' also implies a more informative optimal disclosure policy for any fixed
prior (as is obvious from Theorem 1), the result follows. ®

Proposition 2 gives sufficient conditions for collusive prices to become more flexible. In
general, the effect of price flexibility on expected consumer surplus is ambiguous. However,
since collusive prices equal monopoly prices for a monopoly facing state distribution G*,
price flexibility benefits consumers if and only if improving the information of a monopoly
does the same.

To state this result, we must assume that expected consumer surplus is measurable with
respect to the distribution of posterior mean states z. To this end, let C'S (p,s) denote
consumer surplus at price p and state s. We say that consumer surplus is quasi-linear in s

if there exist functions f, g, and h such that

CS(p,s)=f(s)+g(p)s+h(p) for all p, s.

For example, under linear demand with an unknown intercept, we have C'S (p, s) = (s — p)* /2
f(s)+g(p)s+ h(p), where f(s) = s%/2, g(p) = —p, and h(p) = p*/2; and under lin-
ear demand with an unknown constant marginal cost, we have C'S (p,s) = (1 —p)* /2 =
f(s)+g(p)s+h(p), where f(s) =0, g(p) =0, and h (p) = (1 —p)* /2,

Quasi-linearity implies that expected consumer surplus is measurable with respect to the
distribution of posterior mean states x, whenever prices p (x) are measurable with respect
to x. To see this, take any distribution 7 € A (A ([s, 5])) of distributions u € A ([s, 5]) of
the state § such that E™ [u] = F. Letting =, = E* [s] be the mean state under distribution
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1 and letting G be the distribution of mean state x, we have

B[ [CS (p(zu),9)l] = ETE[f(s)+g(p(xu)s+hp(e))l]
= E'[f ()] +E (g (p (@) 2 + D (p (2))]
= E[f ()] +E[g(p(x))z + D (p(2))],

where the second line uses the law of iterated expectation. Thus, the expected consumer sur-
plus under any disclosure policy and (mean-measurable) pricing policy equals B [g (p (z)) = + h (p (z))],
where G is the distribution of the disclosed mean state z, plus a constant B [f (s)].

In particular, if g (p” (z))x + h (p™ (x)) is concave (resp., convex) in z, then expected
consumer surplus under monopoly pricing is higher when the monopoly has less (resp.,
more) information. Thus, since collusive prices when the algorithm observes a state with
distribution I’ equal monopoly prices when the monopoly observes a state with distribution
G*, the concavity or convexity of g (p™ (z)) z + h (p™ (x)) determines the implications of the
comparative statics in Proposition 2 for expected consumer surplus (with the caveat that
increasing n or decreasing ¢ always benefits consumers if it causes 0 to fall below (n — 1) /n,

rendering collusion impossible).

Proposition 3 Assume that consumer surplus is quasi-linear in x. If g (p™ (x)) x+h (p™ (x))
is concave (resp., convex) in x, then expected consumer surplus is lower (resp., higher) when
there are fewer firms, the firms are more patient, or the algorithm is more accurate (resp.,

so long as 0 > (n—1) /n).

Proof. Immediate from Proposition 2 and Jensen’s inequality. m
As a corollary, we obtain the corresponding consumer surplus implications under linear

demand with an unknown intercept or unknown constant marginal cost.

Corollary 1 Under linear demand with an unknown intercept, expected consumer surplus
1 lower when there are fewer firms, the firms are more patient, or the algorithm is more
accurate.

Under linear demand with an unknown constant marginal cost, expected consumer surplus

18 higher when there are fewer firms, the firms are more patient, or the algorithm is more
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accurate (so long as § > (n—1) /n).

Proof. Under linear demand with an unknown intercept, we have p™(x) = z/2 and

CS(p,s) = f(s) +g(p)s+h(p), where f (s) = s*/2, g (p) = —p, and h (p) = p*/2. Hence,

m m 2 2P 322
g™ (@) e +h(p™ (@) = -5+ o = ——
a concave function of x.
Under linear demand with an unknown constant marginal cost, we have p™ (x) = (1 + ) /2
and CS (p,s) = [ (s) + g (p) s + h (p), where f(s) = 0, g(p) = 0, and h(p) = (1 —p)* /2.

Hence,
(1-2)°
g™ @)z +h(E" (@) = 5
a convex function of . m
Proposition 3 shows that improving the algorithm’s accuracy reduces consumer surplus
whenever improving a monopoly’s information does so, which Corollary 1 shows holds under
linear demand with an unknown intercept.?® This finding contrasts with results of Sugaya
and Wolitzky (2018, Example 3) and Mikl6s-Thal and Tucker (2019), who find that a more
accurate demand prediction algorithm increases consumer surplus when the firms’ discount
factor 0 lies in an intermediate range. The reason for the difference is that those papers
assume that the algorithm fully discloses its information, which sparks price wars during
booms. In contrast, with optimal information disclosure, a more accurate algorithm makes
prices more flexible without triggering price wars, which reduces expected consumer surplus
whenever improving a monopoly’s information does so. Our assessment of the likely impact
of improved algorithmic demand prediction on consumer surplus is thus considerably more
pessimistic.
However, improving the algorithm’s accuracy also increases consumer surplus whenever

improving a monopoly’s information does so, which Corollary 1 shows holds under linear

25 Versions of the result that improving a monopoly’s information about the intercept of a linear demand
curve decreases expected consumer surplus were shown by Pigou (1920), Vives (2001), and Farboodi, Hagh-
panah, and Shourideh (2025).
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demand with an unknown constant marginal cost.?® In this case, expected consumer surplus
also increases when there are fewer or more patient firms—so long as 6 > (n — 1) /n, so that
collusion on the no-disclosure monopoly price p™ (EF [s]) is an equilibrium. The explanation
is that, once § > (n — 1) /n, collusive prices equal monopoly prices for some information
structure, so when consumers benefit from improving a monopoly’s information, they also

benefit from the more flexible collusive prices that result from reducing n or increasing 9.

5 Connections to Recent Algorithmic Pricing Cases

Our model and results can be connected to recent algorithmic pricing cases. The cases are of
course more complicated than any model, but we argue that the mechanisms at the core of
our model appear appropriate to these settings and our predictions seem broadly consistent
with the market outcomes.

Our model is motivated by and most directly relates to third-party algorithms that
facilitate information-sharing among competitors and recommend prices, like RealPage in
apartment rentals, IDeaS and Rainmaker in hotel rooms, and A2i Systems and Kalibrate in
retail gasoline. Of these cases, the most information is available for RealPage. We therefore
focus on this case, discussing some others briefly at the end of this section.

We focus on three aspects of the RealPage case. First, we argue that this case fits most
key assumptions of our model setup. (The most important exception in our view is that
algorithmic pricing adoption is far from universal among apartment management companies,
and our model abstracts from competition with non-adopters as well as firms’ decision to
adopt algorithmic pricing.?”) Second, we argue that RealPage intentionally withholds some
information from its clients, and that this is plausibly done to make it easier to control its
clients’ pricing (and specifically to prevent them from undercutting RealPage’s recommended
prices). Third, we argue that the resulting price dynamics over the business cycle appear

consistent with our prediction of price cuts during downturns and price rigidity during booms.

26 A version of the result that improving a monopoly’s information about its constant marginal cost in-
creases expected consumer surplus was shown by Vives (2001).

2TThese features are a key focus of the complementary work of Harrington (2025) and Harrington and
Ortner (2025). In turn, these papers abstract from firms’ incentives to set their recommended prices and
from aggregate demand uncertainty, respectively, which are key aspects of our model.
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To make these points, we draw primarily on the 2024 US DOJ complaint and the subsequent
2025 proposed settlement (USDOJ 2025), and on Calder-Wang and Kim’s (2024) empirical
study of RealPage.”®

First, RealPage has a near-monopoly in providing algorithmic pricing for multifamily
apartment buildings. Following RealPage’s acquisition of a competing product in 2017, it
is estimated that RealPage has over 95% of the algorithmic pricing market in this industry
(Calder-Wang and Kim, p. 2). In addition, while the apartment rental industry is relatively
fragmented and algorithmic pricing penetration is nowhere near 100%, it is reasonable to
view RealPage clients as large players with market power. Calder-Wang and Kim report that
the 20 largest US apartment management companies—each of which manages over 32,000
units—all use RealPage; and the DOJ complaint reports that five or fewer landlords manage
a majority of all multifamily apartment units in 445 US ZIP codes. While RealPage clients
account for only 10.4% of the overall US apartment rental market, they account for 21%
of multifamily rentals, over 30% of buildings with over 20 units, and 34% of total units.
In some markets, RealPage clients’ market share is considerably higher. Calder-Wang and
Kim’s Table 3 reports that in 18% of market segments (consisting of a geographical submarket
and a building class), a majority of multifamily apartment buildings use algorithmic pricing,.
In addition, their Table 5 reports that penetration exceeds 66% in many submarkets (e.g.,
68% in Arapahoe County, Denver; 74% in Far Northwest, Austin; 92% in Irvine, Orange
County). The DOJ complaint also contains anecdotal evidence that RealPage clients perceive
themselves to have market power and the ability to impact competitors’ behavior. For
example, one landlord wrote, “Our very first goal we came out with immediately out of
the gate is that we will not be the reason any particular sub-market takes a rate dive.
So for us the strategy was to hold steady and to keep an eye on the communities around
us and our competitors,” (pp. 4-5). Finally, both the DOJ complaint and Calder-Wang
and Kim contain extensive evidence that RealPage’s price recommendations are oriented

more toward joint profit-maximization than individual profit-maximization. For example,

28These are the main publicly available information sources on RealPage. In turn, to our knowledge, the
RealPage case is the algorithmic collusion facilitation case where the most information is currently available.
Information on such cases is relatively scarce because algorithmic collusion facilitation is a new issue and
because several cases are currently in litigation.
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the complaint reports that “RealPage frequently tells prospective and current clients that

’ A RealPage revenue management vice president explained

a ‘rising tide raises all ships.
that this phrase means that ‘there is greater good in everybody succeeding versus essentially
trying to compete against one another in a way that actually keeps the industry down’,”
(p. 12). Consistent with this anecdotal evidence, Calder-Wang and Kim estimate that
RealPage adopters’ pricing fits a model of joint profit-maximization better than individual
profit-maximization.?? So, with the important caveat that we do not model competition
with non-adopters or firms’ decision to adopt algorithmic pricing, our model seems to fit this
market reasonably well.

Second, RealPage has better demand information than its clients; it does not make this
information available to them; and a plausible reason why is to make it easier to control their
pricing decisions. RealPage’s business is based on its superior, non-public data: e.g., it claims
that it “does not have any true competitors, mainly because our data is based on real lease
transaction data,” and that “we have [the] most data and the best data” (USDOJ 2024a, p. 5,
14). It obtains this data by collecting and combining data from its many clients (the conduct
at the heart of its business model and the many antitrust complaints it has attracted), but
also by direct private market research. As the DOJ reports (p. 11), “RealPage has an
additional, complementary product called Market Analytics. Market Analytics compiles
data from over 50,000 monthly phone calls that RealPage makes to landlords across the
country. On these calls RealPage collects nonpublic, competitively sensitive information
by floor plan on occupancy rates, effective rents, and concessions... These market surveys
cover over 11 million units and approximately 52,000 properties. Landlords, including but
not limited to those that use AIRM, YieldStar, or other RealPage products knowingly share
this nonpublic information with RealPage.” One indication of the potential importance of
this data is that DOJ’s proposed settlement bans RealPage from using competitors’ prices
in the last 12 months as well as these non-public market surveys to determine recommended
prices.

RealPage uses its data to recommend prices to its clients (indeed, this is the core busi-

29We take no position on whether the evidence that RealPage maximizes joint rather than individual profit
is fully compelling from an economic standpoint, let alone a legal one. We only claim that conceptualizing
RealPage as maximizing joint profit is well-motivated.
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ness that drew regulatory scrutiny), but it does not make the data itself available to its
clients. Furthermore, RealPage does not provide more detailed data even if clients explicitly
request it. The stated reason for this practice appears to be to reduce antitrust risk, rather
than preventing price deviations as in our model. As the DOJ reports (p. 48), “When a
property owner asked for information on specific competitors, Landlord 3’s director of rev-
enue management replied that the requested tool, RealPage’s Performance Analytics with
Benchmarking, did not provide information on specific competitors. The reason? Perfor-
mance Analytics with Benchmarking ‘tracks transactional information therefore due [to] the
potential pricing collusion, it’s anonymize[d] by RealPage,’.”

However, RealPage takes a number of steps to prevent price deviations by its clients,
and it is very plausible that withholding detailed demand information is helpful in this
regard. RealPage’s efforts to control its clients’ pricing are well-documented and are a
centerpiece of the DOJ complaint and subsequent settlement. As the complaint puts it,
“[RealPage]’s recommendations are more than just ‘recommendations’,” (p. 3), because
“RealPage uses multiple mechanisms to increase compliance with price recommendations,”
(p. 23). These include several mechanisms that make accepting recommendations easier
than declining them, including encouraging the use of an “Auto Accept” feature; allowing
managers to accept recommendations in bulk but requiring them to decline recommendations
one by one; and elevating attempted price overrides to a RealPage “pricing advisor,” who may
further escalate the disagreement to a regional manager. According to one RealPage client,
RealPage’s design is “trying to persuade [clients] to take the recommendations (almost like
we made it hard to do anything but),” (p. 24).3° Moreover, it is unsurprising that RealPage
has to take such steps to control its clients’ pricing, because there is also evidence that
RealPage’s recommended prices are not individually optimal for its clients. An example here
is RealPage’s price “guardrails,” which asymmetrically favors high prices: as the complaint
puts it (p. 52), “AIRM and YieldStar recommend price increases generated by the model.
But the guardrails reduce or eliminate certain proposed price decreases even though the

model had determined such deviations may contravene the landlord’s individual economic

30Tt would be straightforward to incorporate these mechanisms in our model by assuming that a firm must
pay an “override cost” to set a price other than the recommended one. This would just relax firm’s incentive
constraints by an amount equal to the override cost, leaving our qualitative results unchanged.
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interest.”®! In addition, Calder-Wang and Kim'’s finding that RealPage adopters’ pricing fits
a model of joint profit-maximization better than individual profit-maximization implies that
RealPage clients have individual incentives to override RealPage’s recommendations.

Withholding information from its clients is another means through which RealPage can
prevent them from overriding its recommendations. The logic of the revelation principle
(Myerson, 1982) implies that communicating any information to its clients beyond their
recommended prices can only tempt the clients to override RealPage’s recommendations.
We lack direct evidence that RealPage consciously withholds information from its clients in
order to reduce their temptation to override. However, such evidence is available in other
settings where a cartel facilitator manages firms’ information to support collusion.*? Overall,
it is clear that RealPage takes multiple measures to prevent its clients from overriding its
recommendations; that RealPage has detailed demand information that it withholds from
its clients; and that withholding this information reduces its clients’ potential gains from
overriding its recommendations and thus facilitates their acceptance.

Finally, we can ask whether the resulting pricing patterns over the business cycle fit the
predictions of our model. We focus on our central prediction that algorithmic intermediaries
disclose more precise information in economic downturns—leading to lower and more flexible
prices—and coarser information in booms—Ileading to higher and more rigid prices. The
evidence in the DOJ complaint and Calder-Wang and Kim on the role of algorithmic pricing
over the business cycle is broadly consistent with this pattern. First, one of Calder-Wang
and Kim’s main findings is that the calendar-year treatment effect of RealPage adoption
on price is strongly negative during the financial crisis and modestly positive in other years
(see their Figure 7). This is consistent with viewing RealPage as providing information
in accordance with our theory, where, relative to non-adopters, adopters receive precise bad

news about demand in down markets (leading to sharply lower prices) and receive coarse good

31The above features that encourage RealPage clients to accept its recommendations and that asymmet-
rically favor price increases were all banned as part of the proposed DOJ settlement.

32For example, Harrington (2006) reports that at meetings of the European isostatic graphic cartel, the
firms’ representatives passed around a calculator where each representative secretly entered their own sales
volume, so that ultimately only the sum of the reported sales was observable, which let each firm calculate
their own market share but not their competitors’. For more on this and other related examples, see Sugaya
and Wolitzky (2018).
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news about demand in normal and strong markets (leading to modestly higher prices).*® In
addition, Calder-Wang and Kim’s structural estimation suggests that, relative to individual
optimization, non-adopters price too high in downturns and too low in booms, which is
consistent with non-adopters being less informed about demand than adopters.®*

In addition, the DOJ complaint provides evidence that RealPage’s data and analytics
play an especially important role in price-setting during downturns. The complaint asserts
that, “in down markets. .. [RealPage] instills pricing discipline in landlords, curbing normal
fully independent competitive reactions by substituting them with interdependent decision-
making,” (p. 47). Indeed, RealPage itself advertised that the “Al and the robust data in the
RealPage ecosystem” helps its clients “avoid the race to the bottom in down markets,” (p. 46)
and “curbs [clients’] instincts to respond to down-market conditions by either dramatically
lowering price or by holding price when they are losing velocity and/or occupancy,” (p.
47)—moreover, given that Calder-Wang and Kim find a strong negative treatment effect
of RealPage adoption on price in down markets, these quotations should be interpreted as
emphasizing RealPage clients’ high prices in down markets relative to competitive pricing,
not relative to collusion without RealPage’s demand information. RealPage also emphasizes
the particular value of its price recommendations in down markets, arguing that, without its
recommendations, “you’ll be pricing your renewals in the dark without insight into actual
lease transaction data that [YieldStar| uses to help you make pricing decision. This is
critical to price renewals right[,] especially in a downturn,” (p. 14). These quotations are all
consistent with RealPage providing more precise information in down markets. In sum, while
the available evidence is admittedly limited, both the quantitative evidence in Calder-Wang
and Kim and the qualitative evidence in the DOJ complaint are broadly consistent with our
prediction that RealPage provides more precise demand information and recommends more

flexible prices in downturns than in booms.

While this section has focused on RealPage, our theory can also potentially speak to a

33This comparison assumes that both RealPage adopters and non-adopters sustain markups relative to the
static Nash benchmark, differing primarily in how markups respond to demand conditions. This viewpoint
is suggested by Calder-Wang and Kim’s reduced-form results, which find strongly time-varying RealPage
adoption effects but little to no time-averaged adoption effect.

34Calder-Wang and Kim capture this effect with a time-varying “sophistication” parameter, which can
alternatively be interpreted as reflecting firms’ information.
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number of other cases. Cases concerning algorithmic pricing of hotel rooms (e.g., IDeaS and
Rainmaker) raise very similar issues to RealPage. Algorithmic pricing of retail gasoline also
raises similar issues, although the empirical literature on this topic to date (e.g., Assad et
al., 2024) has not emphasized business cycle fluctuations. There are also some recent cases
concerning algorithmic cartel facilitation where the central issue appears to be facilitating
monitoring of competitors’ actions rather than demand conditions, including cases involving
the data analytics companies AgriStats and Circana, which provide detailed production and
price information for the poultry and pork markets (AgriStats) and the frozen potato market
(Circana). Finally, another setting that raises similar issues is information-sharing in bidding
rings in procurement auctions. A specific example comes from the bidding ring organized by
the Kumatori Contractors Cooperative, studied by Kawai, Nakabayashi, and Ortner (2024).
This ring took drastic steps to limit bidders’ information about the cost of completing (only)
the largest construction project they bid on: “[The director of the Cooperative] told the
members that he would be collecting, from each of the invited bidders, the detailed project
plan that the town distributes at the on-site briefing. This was understood by the members
of the Cooperative as a preventative measure to make defection more difficult by making it
harder for other firms to estimate costs,” (ibid.). This matches our result that cartels censor

information in those states of the world where deviating is most tempting.?

6 Extensions

We consider two extensions of our baseline model. Section 6.1 lets the state follow a Markov
process rather than being iid across time. Section 6.2 assumes a linear demand system rather

than homogeneous goods.

35 A subtlety in mapping this example to our model is that the “tempting state” is a large procurement
project, which has both a higher (observed) reserve price and a higher (unobserved) completion cost than a
typical project. To capture this example, one can extend the model to allow both an observable stochastic
component (the reserve price) and an unobserved one (the cost).
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6.1 Persistent Demand or Cost

We now consider the case where the state follows a Markov process: we assume that the
current state s’ is drawn from a distribution Fj, where s is the previous period’s state. This
realistic extension of the baseline iid model illustrates how our results generalize and also
yields some new insights. The analysis of this section is inspired by Haltiwanger and Har-
rington (1991), Kandori (1992), and Bagwell and Staiger (1997), who extended Rotemberg
and Saloner’s (1986) iid model to various Markov processes.

To accommodate the Markov case, we need to preserve the property that expected current
and future profit is measurable with respect to current mean demand (or cost, but we
continue to focus on the demand case). This require two assumptions. First, we assume that
the current demand state is revealed at the end of each period, so the algorithm does not
carry private information across periods. This is realistic if firms observe their sales at the
end of the each period. Second, we assume that the Markov transition rule F, is affine in s,

so the distribution over tomorrow’s state depends only on today’s mean state:

F,(s") = S_SFS (s') + S_§F§ (s") for all s, s’

5—5

For example, F§ is affine in s when there is a binary underlying demand state s and s is a
continuous signal of s satisfying Pr(s = 5|s) = (s —s) /(5 — s). We also assume that the
distribution of s in period 1 equals Fj, for some s¢ € [s, 5].

Affineness allows both positive persistence—where F; first-order stochastically dominates
Fy—and negative persistence—where Fy first-order stochastically dominates F;. Both cases
are of interest: positive persistence is arguably more natural, while negative persistence has
been used to capture cyclical demand movements (Haltiwanger and Harrington, 1991).

The characterization of the optimal disclosure policy and collusive prices are the same
as in the iid case, except that now the expected value of collusive profit V' (s) depends
on the previous period’s state s. The optimal collusive profit for each last-period demand

state s must now be calculated simultaneously as the component-wise greatest fixed point
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(V" (8))se|s,q Of the following system of equations in s:

Vis)=(1=0)  max B [min{II" (@) I (8,n, B [V (s)]) }] +0B" [V (/)] (5)

The right-hand side of (5) is bounded and increasing in V (s) for all s, s, so the greatest
fixed point is well-defined by Tarski’s theorem. We also define W* (s) = B [V* (s')], so we

have

V*(s)=(1-9) Gej\r}llgg(Fs)EG [min {II"™ (z) , II™* (0, n, W™ (x))}] + 6W™* (s) for all s. (6)

Note that, since Fj is affine in s, so is W* (s).

With persistent demand, the appropriate notion of a (symmetric) stationary strategy is
that the disclosure policy G depends only the previous period’s demand state, while the
on-path price p (s) at realized mean demand state s remains independent of the history of
past demand realizations (and, in particular, is independent of the current-period disclosure

policy). With this definition, Lemma 1 generalizes as follows.

Lemma 3 The ezpected present value of optimal collusive profit in each state s equals V* (s)
and 1s attained by a symmetric, stationary, grim trigger equilibrium. Moreover, a collection

of disclosure policies (G) one for each last-period demand state s, is optimal if and

s€[s,3]”

only if, for each s, G solves the mazimization problem in (5) with V (-) = V* (-).

Lemma 3 reduces the problem of finding an optimal equilibrium to the family of static
information design problems on the right-hand side of (5), where the function V* (-) satisfies
the fixed point condition.?¢

As in the iid case, collusion is impossible if § < (n — 1) /n. Conversely, if 6 > (n — 1) /n
then monopoly profit under no disclosure given the least-favorable previous period de-
mand state (e.g., s in the positively persistent case; § in the negatively persistent case),

II"™ (min {E*= [s] , B [s]}), is attainable for any initial state.

36The proof is a straightforward generalization of the proof of Lemma 1: the only difference is that the
present value of equilibrium profits, the probability distribution over next-period demand states, and the
values V and v; defined in the second part of the proof are all now functions of the current expected state s.
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Lemma 4 If§ < (n—1) /n then V*(s) = 0 for all s. Conversely, if 6 > (n— 1) /n then
V* (s) > II™ (min {E"> [s] ,E"* [s]}) for all s.

Proof. If § < (n— 1) /n then II™* (§,n,V) < V for all V' > 0. Let sy = argmax, V*(s),
which is well-defined because II™ (s) is continuous and W* (s) is affine. Suppose for contra-
diction that V* (sg) > 0. Then, since W* (s) < V*(s¢) for all s (as W* (s) = Ef* [V* (s)]),
the right-hand side of (6) at s = s¢ is strictly less than V* (sg), a contradiction. Hence,
V*(s9) = 0, and therefore V* (s) = 0 for all s.

Conversely, if 6 > (n — 1) /n then under no information disclosure it is an equilibrium
to set on-path price min {p : II (p, E"* [3]) = II" (min {E’ [3] ,E* [3]} )} when the previous
period demand state is s (noting that this price is well-defined by the intermediate value
theorem, as I (p, B> [3]) is continuous in p, II (0, E** [3]) = 0, and IT (p™ (E** [3]) ,B"* [3]) =
II™ (B [5]) > II'™ (min {E*= [3] ,E** [3]})) and off-path price zero. m

We now characterize the optimal disclosure policy as a function of the last-period state

s in the non-trivial case where 6 > (n — 1) /n. First, let s* solve
™ (s*) = ™ (6, n, W* (s¥)) (7)

if such a demand state exists, and let s* = 5 otherwise.?” Next, for each last-period state s,
let §(s) satisfy
E™ (35 > 3(s)] = 57 (8)

if such a state exists, and let §(s) = s otherwise. Note that, by Lemma 4 and our as-
sumption that § > (n—1)/n, we have V*(s) > II" (min {E= [s] ,E* [s]}), and hence
s* > min {E" [s] , B [s]}, so (8) admits a solution & (s) € [s, 5] for s = argmin,(, 5, B [s].
However, in contrast to the iid case, (8) does not always admit a solution § (s) for all last-
period demand states s: in this case, the distribution Fj is so high that B* [s/] > s*, in
which case no disclosure of the current demand state is optimal, and the optimal price

is min {p : I (p, B [¢/]) = II™* (5, n, W* (E** ['])) }, which is less than the corresponding

37There is at most one solution to (7). If W* (s) is decreasing, this is immediate, as the left-hand side
of (7) is increasing and the right-hand side is decreasing. If W* (s) is increasing, this follows because,
since § > (n—1)/n, we have II" (s) < II™* (§,n, 1™ (s)) < II™** (§,n, II™(min {Ef> [s] ,B'* [s]})) <
™2 (§,n, W* (s)), and the left-hand side of (7) is convex while the right-hand side is hnear
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monopoly price p™ (EF s [s’]). Thus, in the Markov case, following last-period states that
make firms sufficiently optimistic about the current state, the optimal collusive policy can
entail no information disclosure and a price below the corresponding monopoly price.

We can now characterize the optimal disclosure and pricing policy in the Markov case.

Theorem 2 With stochastic demand, the unique optimal disclosure policy as a function of
the last-period demand state s is the upper censorship policy that discloses demand states
below § (s) and conceals demand states above §(s). The optimal collusive price p (S;s) (which
is unique except when §(s) = s) when the current realized mean demand state is § and the

last-period demand state is s is given by

p" (8) if 5 <
p(S;s) =19 p™(s%) if5>5

min {p : II (p, B [¢']) = 1™ (6, n, W* (BF* ['])) } if §(s) = s.

Moreover, under positive persistence, §(s) is decreasing, so the optimal policy discloses less
information when last-period demand is higher; conversely, under negative persistence, § (s)
is increasing, so the optimal policy discloses more information when last-period demand is
higher.

With stochastic costs, the unique optimal disclosure policy is the analogous lower censor-
ship policy that discloses cost states above 3 (s) satisfying BF* 5|5 < 8 (s)] = s* and conceals
cost states below § (s). The unique optimal collusive price p (s) in state s is given by (9) with
the reversed inequalities and § in place of s. Moreover, under positive persistence, §(s) is
decreasing, so the optimal policy discloses more information when last-period cost is higher;
conversely, under negative persistence, s (s) is increasing, so the optimal policy discloses less

information when last-period cost is higher.

Proof. The proof is a straightforward generalization of the proof of Theorem 1. The main
difference is that, since W* () is affine, the function min {II" (s) , II™®* (§, n, W* (s))} is now
“convex-then-linear” in s, rather than “convex-then-constant” as in the iid case. The same
argument as in the proof of Theorem 1 implies that, when §(s) > s, upper censorship is

optimal, with mean demand among concealed states equal to the point s* where I1™ (s*) =
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™ (5, n, W* (s*)). A similar argument shows that, when § (s) = s, no disclosure is optimal,
with a price p being the smallest price to satisfy IT (p,]EFS [s’]) = JImex ((5, n, W* (EF [s’]))
Finally, it is immediate from (8) that §(s) is decreasing under positive persistence and
increasing under negative persistence. m

The new insights of Theorem 2 concern how optimal disclosure depends on last-period
demand. When the optimal disclosure policy is non-trivial (i.e., § (s) € (s, §), so some states
are disclosed and others are censored), the mean censored state is fixed at s*, regardless of
the last-period demand state s. With positive persistence, this requires greater censoring
(lower §) when the last-period demand state is higher: intuitively, the algorithm discloses
less information following good periods, when firms are optimistic about current demand
and are thus more tempted to deviate. Conversely, with negative persistence, the algorithm
discloses more information following good periods, when firms are pessimistic and are thus
less tempted to deviate.

In contrast to the iid case, for certain last-period states it can be optimal for the algorithm
to disclose no information and recommend prices below the corresponding monopoly price.?®
For example, with positive persistence, it can be optimal to fully reveal current demand
when last-period demand was low (so § (s) = 5), partially reveal current demand when last-
period demand was intermediate (so § (s) € (s, §)), and reveal nothing about current demand
when last-period demand was high (so §(s) = s)—moreover, in the last case, the optimal
price p (B [¢/] ; s) satisfies IT (p, B> [¢]) = II™™ (8, n, W* (E** [¢])), and so is less than the
monopoly price p™ (EF s s ]) and can even be decreasing in s. Thus, while collusive prices are
always monotone in current demand (as in the iid case and in contrast to Rotemberg Saloner),
they may be non-monotone in last-period demand. Notably, the expected price conditional
on last-period demand can be single-peaked, a result that recovers some of Rotemberg and
Saloner’s intuition.3’

In addition to these novel points, Theorem 2 shows that the main results from the iid case

generalize to the Markov case. In particular, for any last-period demand state s, optimal

collusion entails price rigidity at high current demand states, supra-monopoly prices over an

3 Recall that in the iid case, no disclosure is only optimal in the knife-edge case where § = (n — 1) /n.
39Whether prices actually display this pattern depends on whether II (p, 3) or II™®* (§, n, W* (5)) increases
faster in § = B [s'] over the range {s: 5 (s) = s}.
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intermediate range of states, and more flexible prices when n is lower, 0 is higher, or Fj is
more informative.

Finally, in Appendix D, we provide a numerical example showing that the effect of greater
demand persistence on collusive profit, consumer surplus, and the amount of information

disclosure can all be non-monotone.

6.2 Differentiated Products

We now extend the baseline iid model from the homogeneous-goods setting of Rotemberg
and Saloner to a symmetric, linear demand system. This is a workhorse demand system for
studying oligopoly pricing under uncertainty (e.g., Vives, 2001, Chapter 8) and has recently
been used by Harrington (2022, 2025) to study oligopoly pricing with a third-party pricing
algorithm. In Appendix A, we further extend the analysis of this section to more general
demand systems, which include as a special case the baseline, homogeneous goods model,
with or without capacity constraints.

In this section, we assume that there exists a constant b € [0,1/ (n — 1)) such that firm

i’s payoff at price vector p = (p1,...,p,) and state s equals
™ (P, $) = pi (s +b> ps —pi)
J#1
for the stochastic demand case, or
i (p,s) = (pi — s) (1 + bzpj —pz‘>
J#i

for the stochastic cost case.’’ Note that ; (p, s) remains affine in s. For concreteness, we
focus on the stochastic demand case.

To analyze this model, we first define the monopoly price and the per-firm monopoly

40The condition b > 0 implies that the firms’ products are substitutes. The condition b < 1/ (n — 1) implies
that profits are bounded and is satisfied whenever the demand system results from utility maximization by
a representative consumer (Amir, Erickson, and Jin, 2017).
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profit at a public mean belief s as

s 52

pm@)ZQG—{n—IM) and ) = T T D)

and we define the static Nash equilibrium price and the per-firm static Nash profit at a

public mean belief s as

2
N S N S
=TTy wd ) <2—(n—1)b)
Notice that 7 () is convex in s, which implies that the expected static Nash profit E¢ [r (s)]
is minimized over G € M PC (F) by taking G = dgr[,: that is, by entirely concealing the
state. Thus, the no-information Nash outcome, where the algorithm discloses no information

and expect profit equals

z=n" (B [s]),

minimizes the firms’ static Nash profit.

We characterize the pure-strategy, subgame perfect equilibrium that maximizes collusive
profit among all equilibria where off-path expected profit equals w. Note that, in contrast
to the homogeneous goods case where the static Nash profit equals the minimax payoff of 0,
the off-path payoff  is strictly greater than the minimax payoff of E [s]* /4. We are thus
focusing on equilibria sustained by the threat of Nash reversion. Asis well-known, this entails
a loss of optimality in the class of all pure-strategy, subgame perfect equilibria. To find the
optimal equilibrium in this larger class, one would simultaneously find the worst equilibrium
for each firm as a fixed point, following Abreu (1988). However, except for giving a different
value for the off-path payoff 7, this procedure would yield the same characterization of
optimal equilibrium prices and information disclosure on path. Our qualitative results are
thus insensitive to the specification of off-path payofts.

To find the optimal equilibrium (in the Nash reversion class), denote per-firm profit when

all firms set price p in demand state s by
m(p,s) =p(s+(n—1)bp) - p,
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and denote a firm’s maximum payoff from a deviation when all firms set price p in demand

7 (p.s) = <S+<”——1)bp)2

state s by

2

Next, for any v > 0, let p™** (s,v) be the larger solution to the quadratic equation

which is given by

max (

p

and let

1-6
(2—(n—-1)b)°

24+2(n—1)bs /15 (v—m) —4(1—(n—1)b) < (v —7)

T (s, 0) = 7 (5, P (5,0)) =

Thus, p™** (s,v) is the greatest incentive compatible price in state s in a symmetric equi-

librium with on-path per-firm continuation payoff v and off-path per-firm profit =, and

max (

T s,v) is the corresponding per-firm profit in state s. While the details of these formulas

max

will not matter, it is important to note that p™®* (s,v) is increasing in s and 7™ (s, v) is

increasing and convex in s (in addition to depending implicitly on the parameters ¢, n, and

max (

b). This contrasts with the homogeneous goods case, where p s,v) is decreasing in s and

T (5, 0) is constant in s for s > s*.4
Now, following the homogeneous goods case, define v* as the greatest fixed point of the
equation

— EG : m max ) 1
U= max [min {7 (z) , 7™ (z,v)}] (10)

(Here, we use lower-case letters for per-firm payoffs, whereas in the baseline model we used

capital letters for the corresponding industry payoffs.) Lemma 1 extends to the current

! Intuitively, with undifferentiated goods, 7 (p, s) = nr (p, s), so 7 (p, s) — 7 (p, s) is a constant multiple
of 7 (p, s), and hence an upper bound for 7¢ (p, s) — 7 (p, s) (independent of s) implies an upper bound for
7 (p, s) (independent of s). In contrast, with differentiated goods, 7% (p, s) — (p, s) is not a constant multiple
of 7 (p, s), so an upper bound for 7¢ (p,s) — 7 (p,s) (independent of s) implies an upper bound for 7 (p, s)
that depends on s.
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setting: in particular, optimal collusive profit per-firm equals v*. Formally, this follows from
the more general Lemma 5 in Appendix A. The key step in the proof is that symmetric

pricing remains optimal in each demand state. This holds because, for any price vector

pP= (pla cee 7pn), we have

" (%D’) > npe ad A (%Zp) < )

(by straightforward calculation), so replacing any asymmetric price vector p with the sym-
metric vector (). p;/n, ..., >, pi/n) increases profits without violating incentive constraints.

It remains to solve the static information design problem, (10). Let s* satisfy p™ (s*) =

max

P (s*,v*) (or, equivalently, 7™ (s*) = 7™ (s*,v*)), so that

41— (m-1)8) @ )
(n—1)b

s* =

Note that dn™ (s) /ds is greater than the right-derivative of 7™ (s, v*) with respect to s at
s = s*, because ™™ (s, v*) incorporates an additional constraint at s = s*. Therefore, the
kink in the objective function min {7™ (s), 7™ (s,v)} at s = s* is concave, so the function

max

min {7™ (s),7™** (s,v)} is piecewise-convex but not globally convex.
We now define a pair of states (81, 5y) as follows. First, if s* < s, define §;, = §5 = s.

Second, if s* € [s, B [s]], define (31, 3x) so that

A A

sp < SgH,
E [s|s € [51,8u]] = s, and
& ok * 4
SH TS pm(gp) 4 Shmax g ) = (57 (11)
SH — SL SH — SL

if such a pair exists, and otherwise define §; = s and define 85 so that s* = Ef [s|s < §p].
Third, if s* € [E” [s], 5], define (3., §57) so that (11) holds if such a pair exists, and otherwise
define 5, so that s* = B [s|s > §;] and define §; = 5. Finally, if s* > 5, define §;, = 3y = 3.

Note that (S1, $g) is well-defined, because at most one pair (Sg, $g) satisfies (11). This

max (

can be seen geometrically in Figure 2: since 7™ (s) and 7™ (s, v*) are convex in s, if (51, $p)
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Figure 2: The optimal disclosure policy with a symmetric, linear demand system. The cutoffs
(51, S ) are defined in the text. The optimal information policy discloses demand states s < §7, and
recommends the corresponding monopoly price, p™ (s); conceals demand states s € [$, $y] and
recommends the monopoly price conditional on this information, p™ (s*); and reveals demand states
s > Sy and recommends the maximum incentive compatible price, p™** (s,v*). The auxiliary
objective function 7 (s) is defined in the proof of Theorem 4 in Appendix A.

satisfies (11) and B [s|s € [sy,sy]] = s* for s, > 8 and sy < §p, then jg:;ﬂm (sp) +
%ﬂmax (sm,v*) < 7™ (s*); while if B [s|s € sy, sy]] = s* for s;, < §1, and sy > §p, then
—jg:jz " (sp) + —j;:SSLL T (spr,0%) > ™ (s%).

The following is the main result of this section. It is an implication of the more general

Theorem 4 in Appendix A.

Theorem 3 With stochastic demand and differentiated products, the unique optimal disclo-
sure policy discloses demand states below 1, and above $g and conceals demand states in the

interval [Sp, Sg]. The unique optimal collusive price p (s) in state s is given by

™ (s) if s < &,
p(s)=9q p™(s") if s € [51,3m],

P (s,v%) if s > Sy.

Theorem 3 is illustrated in Figure 2. Mathematically, since the objective function

min {7™ (s) , 7™ (s,v*)} is piecewise-convex with a concave kink at s*, it is optimal to
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disclose the lowest and highest demand states while concealing intermediate states. (In gen-
eral, any of these three intervals can be empty, so that full disclosure, no disclosure, upper
censorship, or lower censorship can also be optimal.) The intuition is that with differentiated
goods, incentive constraints continue to bind in high demand states (i.e., at s > s*), but
there is no longer an upper bound for the maximum on-path equilibrium profit (in contrast
to the homogeneous goods case), and indeed maximum profit is convex in s on the region
s > s*. Consequently, it is optimal to disclose the highest demand states while cutting price
to satisfy incentive constraints.

The optimal equilibrium with differentiated goods described in Theorem 3 shares several
key features with the homogeneous goods case. In particular, it is optimal to censor a region
of demand states while recommending a rigid price that is above the monopoly price for an
interval of states. However, it is no longer always optimal to censor the highest demand
states: depending on parameters, it could be optimal to censor an intermediate interval of
states, or only the lowest states. In addition, if the highest demand states are disclosed,

collusive prices in these states are below the corresponding monopoly prices.

7 Conclusion

This paper has developed a tractable model of an intermediary that possesses information
on market demand or the cost of serving the market that is superior to that of the firms
competing for the market and that selectively discloses this information to maximize the
firms’ profit in the best collusive equilibrium. Our main motivation is the rise of third-party
pricing algorithm providers such as RealPage in apartment rentals, A2i Systems and Kali-
brate in retail gasoline, and IDeaS and Rainmaker in hotel rooms, but the theory applies
equally to any cartel facilitator that controls the participating firms’ information. We adapt
the canonical Rotemberg Saloner (1986) model of repeated Bertrand competition with sto-
chastic demand by letting an intermediary selectively disclose demand or cost information.
Assuming that expected profit is determined by the expected state, we show that with ho-
mogeneous goods, optimal information disclosure takes an upper censorship form: demand

states s below a cutoff § are disclosed and result in the corresponding monopoly price p™ (s),
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while demand states above § are concealed and result in the monopoly price for the mean
concealed state, p™ (E [s|s > §]). The resulting pricing policy entails price rigidity, as well as
supra-monopoly prices for a range of intermediate demand states. Prices are more flexible
when the market is more concentrated, the firms are more patient, or the algorithm is more
accurate. In turn, price flexibility reduces expected consumer surplus whenever improving
a monopoly’s information does so. This result suggests that improved algorithmic demand
prediction is likely to reduce expected consumer surplus, in contrast to prior studies that
find more optimistic results when the algorithm always discloses its predictions (Sugaya and
Wolitzky, 2018; Miklés-Thal and Tucker, 2019). Finally, most results survive in more gen-
eral specifications with demand persistence, product differentiation, or capacity constraints,
although the specific form of the optimal censorship policy depends on the demand system,
and collusive prices can sometimes fall short of the corresponding monopoly prices.

Many of our assumptions can be further relaxed at the cost of a more intricate analysis.
First, if expected profit depended on the entire distribution of the unknown state rather than
only its mean, we would have a non-linear information design problem, where disclosure poli-
cies that pool intervals of states together (like upper censorship) are typically sub-optimal
(Kolotilin, Corrao, and Wolitzky, 2024). However, upper censorship is approximately optimal
if the information design problem is close to linear.*> Second, if the intermediary’s objective
differs from maximizing industry profit or if some firms do not use the intermediary, as in
Harrington (2022), the model must be extended to incorporate the intermediary’s incentives
and firms’ incentives to use the intermediary. Third, if the colluding firms are asymmet-
ric, there is no longer a unique cartel-optimal equilibrium, and one must instead analyze
the Pareto frontier of the equilibrium payoff set and consider non-stationary equilibria as
in Abreu (1986). Fourth, in practice, algorithmic intermediaries can also facilitate collusion
by systematizing monitoring of firms’ prices. This could be incorporated by considering
an imperfect monitoring version of our model. Finally, allowing asymmetric, private infor-
mation disclosure by the algorithm—or exogenous asymmetric, private information for the

firms, which could possibly be elicited by the algorithm—appears challenging but potentially

421t is also likely that, if the problem is close to linear, every optimal disclosure policy approximates upper
censorship. A result along these lines in a related class of information design problems is Theorem 3 of
Kolotilin and Wolitzky (2025).
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1.43

realistic and insightful.*> These are all interesting directions for future research.

A General Payoffs and Capacity Constraints

In this appendix, we derive a version of our main result for a general class of payoff functions
that includes both the undifferentiated and differentiated goods models analyzed in the text,
as well as a model of undifferentiated goods with capacity constraints.

As in Section 6.2, let 7; (p, s) denote firm 4’s profit at price vector p = (p,...,p,) and

demand state s.** We also define firm 4’s maximum deviation profit at price vector p by

¢ (p,s) = WAX T (P13 Pi s Pis it -+ Py S) -

We impose four assumptions on payoffs. First, we assume that payoffs are symmetric,

continuous, and quasi-concave in a firm’s own price.*’

Assumption 1 For any price vector (pi,...,p,), state s, firm i, and permutation ¢ on

{1,...,n}, we have m; (p(1)s - - -, Po(n), S) = To(i) (P1, - - - Pn, ). In addition, m; (p, s) is

continuous in p and quasi-concave in p; for all p_;.
Second, we assume that 7; (p, s) is affinely increasing in s.

Assumption 2 For any price vector p and firm i, we have 7; (p,s) < m; (p, s) and

§— s S— 8
i (p,s) = T S7Tz' (p,s) + g_;m (p,5) for all s.

Assumptions 1 and 2 imply that, for any mean public belief s, there exists a symmetric,

pure-strategy, static Nash equilibrium p. Let w denote the lowest payoff from such a Nash

43The former question would combine the forces in the present paper with those in Ortner, Sugaya, and
Wolitzky (2024). The latter would concern optimal Bayes correlated equilibria (as in, e.g., Smolin and
Yamashita, 2025) or communication equilibria (as in, e.g., Goltsman and Pavlov, 2014).

44 This appendix focuses on stochastic demand. The stochastic cost case is analogous.

45The symmetry notion in Assumption 1 is known as total symmetry. The results in this appendix also
hold under the weaker notion of weak symmetry: for any pair of firms ¢ and j, there exists a permutation
¢ on {1,...,n} such that = (i) = j and, for any price vector (p1,...,pn), state s, and firm k, we have
T (p¢(1), 5 Dé(n)s s) = (k) (P1s- -+, Pn,5). The examples in the current paper are all totally symmetric,
but some oligopoly models (e.g., Salop’s circle model) are only weakly symmetric. See Plan (2023).
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equilibrium at mean public belief E [s]. As in Section 6.2, for concreteness we restrict
attention to pure-strategy equilibria where off-path payoffs are given by 7.

Next, we define a firm’s profit when all firms set price p in demand state s as 7 (p, s) =
7 (p,...,p,s), and we define the corresponding maximum deviation profit as 7¢(p,s) =
7¢(p,...,p,s). Our third assumption is that for any price vector, there exists a constant
price vector that weakly increases industry profit without increasing the average of the firms’

deviation gains.

Assumption 3 For any price vector p and state s, there exists a price p > 0 such that

7o) 22 mps) and 7 ()~ 7 (p,) < -3 (78 (ps) — 7, 5)

i
Finally, we assume that the profit function 7 (p, s) is quasi-concave in p.

Assumption 4 7 (p, s) is quasi-concave in p with a well-defined monopoly profit 7™ (s) =

m(p™(s),s) = max,w (p,s) for each s.

Assumptions 1-4 are all satisfied in both the baseline undifferentiated goods model and
the linear differentiated goods model of Section 6.2. Another important example is undiffer-

entiated goods with capacity constraints, where

. ' D (min; p;, s)
i =14p; = i ¢ X Di g O
i (P, ) {p mjlnp]} p mm{|{k:pk=minjpj}| }

where D (p, s) is the industry demand and C' is a per-firm capacity constraint. This specifi-
cation satisfies Assumptions 1, 3, and 4, and it also satisfies Assumption 2 if s is binary.*6

We now characterize the optimal collusive profit level, information disclosure policy, and
equilibrium in this general model. First, for any v > 0, let p™®* (s, v) be the greatest solution
pin [0,p™ (s)] to the equation

J

7Td<p,3)—71'(p,3): 1_5(U_E)

40Tf s is continuous and D (p,s) = max{s — p,0}, then 7; (p,s) is linear up to a choke price. As in
footnote 12, our analysis applies for this specification, so long as s > §/2, so that demand D (p™ (s),s’) is
non-negative for any monopoly price p™ (s) and demand state s'.
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if such a solution exists, and let p™** (s,v) = p™ (s) otherwise. Next, let

71_IIIaX (

max (

s,v) =m(p $,V),8).

Note that p™®* (s, v) is non-decreasing in v, and hence—by Assumption 4 and the fact that
P (s,v) < p™(s) by construction—so is 7" (s,v). Finally, let v* be the greatest fixed

point of the equation

— EG : m max 12
o= B fin {7 (2), 5 (0,0, (12)

which is well-defined by Tarski’s theorem, as 7™ (z, v) is non-decreasing in v and bounded.

Lemma 1 extends as follows.

Lemma 5 Optimal per-firm collusive profit equals v* and is attained by a symmetric, sta-
tionary, grim trigger equilibrium. Moreover, a disclosure policy G is optimal if and only if

it solves the mazimization problem in (12) with v = v*.

Proof. The construction of a symmetric, stationary, grim trigger equilibrium that attains
per-firm collusive profit v* is the same as in the proof of Lemma 1.

We now show that no equilibrium can attain higher profit. Fix any equilibrium, and
let ¥ be the supremum over periods ¢ and histories of play up to and including period ¢ of
expected per-firm collusive profits from period t + 1 onward. Now fix an arbitrary period
t and a history of play up to period ¢, and suppose that when the realized mean demand
in period ¢ at this history is s, the equilibrium price vector is p (s) and firm i’s equilibrium

continuation payoff is v;. The resulting incentive constraint for firm ¢ is
(1—=8)7¢(p(s),s)+ox < (1 —0)m(p(s),s)+ dv;.

Averaging this inequality over the n firms, we have

(1-5) 23w B < 1-0)2 b))+ > (n-x)

1= =S n(p(s),)+0(@—1),

n

IN

i
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where the second inequality is by definition of v, and therefore

%Z(W?(p(s%s)—m(p(S)js)) S Gl N

Now, by Assumption 3, there exists p (s) > 0 such that

3
<
&
=

\Y

% Z i (p(s),s) and

J

P (p(s),5) — 7 (0(s).8) £ o (G-,

max (g 3) maximizes 7 (p,s) subject to 7 (p,s) — 7 (p,s) <

Moreover, by Assumption 4, p
(0/(1—=10)) (v —m).  Therefore, expected collusive profit in period ¢ is at most
maxgenpo(ry B [min {7™ (s), 7™ (s,v)}]. Since this holds for every period ¢, we have
v < maxgen por) BC [min {7 (s) , 7% (s,7)}]. Hence, v < v*, by definition of v*. m

It remains to solve the information design problem in (12). In general, this problem
can be solved using techniques from the static information design literature (e.g., Dworczak

max (

and Martini, 2019), and the solution depends on the shape of ™ s,v) as a function of s.
However, an explicit solution is available under the following condition, which holds in our

leading examples.*”
Condition 1 7™ (s,v) is convex in s for all v.

Under Condition 1, we can define (§;, $y) exactly as in Section 6.2. (For example, with
undifferentiated goods, we have §; = § as defined in Section 3 and sy = 5.) The next
theorem is the general version of our main result (for the stochastic demand case), which

generalizes both Theorem 1 and Theorem 3.

Theorem 4 Assume that Assumptions 1-4 and Condition 1 hold. Then the unique optimal

disclosure policy discloses demand states below 5;, and above Sy and conceals demand states

47Tt suffices that 7™ (s, v*) is convex in s, but this weaker condition depends on the endogenous object

*

v,
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in the interval [y, $g]. The unique optimal collusive price p (s) in state s is given by

™ (s) if s < 5,
p(s) =4 p"(s%) if 5 €[S, 8u],

P (s,v%) if s > Sy.

Proof. Analogous to the proof of Theorem 1. Define an auxiliary objective function

T (5) if s < <§L7
Ts)=q 2™ (5) + S=2km™™ (5p,07) if s € [31,84]
T (5, v*) if s > sp.

Note that 7 (s) is convex and 7 (s) > min {7 (s), 7™ (s,v*)} for all s. (See Figure 2. In

max

particular, any kink in the objective function min {7 (s), 7™ (s,v*)} must be a concave

max (

kink, as the functions 7™ (s) and 7™ (s, v*) differ only in that the latter involves an addi-
tional constraint for s > s*.) Consider the auxiliary problem, maxgerpo(r) EC [7 (s)]. Since

7 (s) is convex, the solution is full disclosure (G = F'), and the resulting value is

E" [7 (s)]
= FSL)E[r™(s)]s < 8]
A A Sg—s m (3 s — 8 max [ 4 * A A
+(F(8g) = F(5.)B | -———7" (81) + ——— 7" (8m,v") |s € [5L, 5n]
Sy — S, SH — SL

Since 7(s) > min{x™(s), 7™ (s,v*)} for all s, this is an upper bound for
maxgey po(r) BC [min {7 (s) , 7% (s,v*)}]. But it is attained by disclosing demand states
below §;, and above §y and concealing demand states in the interval [y, §4], so this policy
is optimal. Moreover, this policy is the unique one that induces only posteriors s where

max

7 (s) = min {7 (s) , 7™ (s,v*)}, so it is the unique optimal policy. Finally, this disclosure
policy is optimal only in conjunction with the prescribed prices. m

We illustrate Theorem 4 by applying it to the setting of undifferentiated goods with
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capacity constraints, in the case where D (p, s) = s —p. Assume that the capacity constraint
is slack on path but binds off path: C'is greater than 5/(2n), the per-firm monopoly quantity
at the highest demand state, but smaller than s/2, the industry quantity at the lowest

demand state with monopoly pricing. Then p™®* (s, v) is the larger solution to

which, after solving the quadratic, gives

max _1 2 0 _ _ .
T (s, 0) = i (C\/(TLC s) +4n1_5v C (nC s)) i

This expression is convex in s, so Condition 1 holds. Hence, in general, a disclose-conceal-
disclose disclosure policy is optimal, similarly to the differentiated goods setting in Section
6.2. The logic is again that the objective function min {7 (s), 7™ (s,v*)} is piecewise-
convex with a concave kink, so it is optimal to disclose the lowest and highest demand states
while concealing an intermediate interval of states. We also note that p™** (s,v) and 7™
are decreasing in C' when p™** (s,v) < p™ (). Intuitively, reducing capacity decreases firms’

deviation payoffs, which facilitates collusion.

B Consumer or Total Surplus Objective

In this appendix, we find the optimal disclosure policy for maximizing a weighted average
of producer and consumer surplus. We assume as in Section 4.2 that consumer surplus is
quasi-linear in s, so that C'S(p,s) = f(s) + g(p)s + h(p) for functions f, g, h. Since E[f (s)]
is independent of the disclosure policy, we consider the problem of maximizing a weighted
average of E[g (p) s+ h(p)] and E[II(p, s)|, with weights 1 — a and «, for a € [0,1) (the
a =1 case already having been considered in the text). We assume that, for any disclosure
policy G, the firm-optimal subgame perfect equilibrium is played, resulting in an expected

profit V' given by the greatest solution to

V = E° [min {II"™ (z) , [T (n,§,V)}],
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and a price p (z,V) at disclosed mean demand state = given by p (z, V) = p™ (z) if p™ (x) <
™ (n,§,V), and p (z,V) = min{p : II (z,s) = [I™* (n,d,V)} otherwise. Given this func-

tion p (z, V), the designer’s problem is to first solve the “inner problem,”

GelaX EC[(1—a)(g(p (2, V)z+h(p(z, V) +amin{II" (z) , T (n,5,V)}]

s.t. V is the greatest solution to V = E® [min {II" (z) , IT™* (n,§,V)}],

for each V that is the greatest solution to V = E€ [min {II"™ (x), 1™ (n,§,V)}] for some
G € MPC (F), and then to maximize over V.

The inner problem can be rewritten as an unconstrained information design problem
by letting 3 be the multiplier on the constraint (which exists by Slater’s condition for any
V' < V*, the solution when o = 1), normalizing the objective by 1/(1 — «), and letting
A= (a+B)/(1—a), to obtain

max B [(g(p(z,V))z+h(p(z,V))) + Amin {II"™ (z) , TI™* (n,,V)}] . (13)

GeMPC(F)

In general, (13) can be solved by standard techniques (e.g., Dworczak and Martini, 2019),
given the functions p, g, h, and II"™ and the multiplier \. Here, we consider the leading case

of linear demand with an unknown intercept or an unknown constant marginal cost.

Unknown demand. As shown in Section 4.2, Il (p,z) = p(x —p), g(p) = —p, and
h(p) = p?/2. We thus have

@) =T and g7 (@) e (" () =

Suppressing the argument of II™** (n, 4, V') and letting p™** (z, V') solve II (p™** (z, V) ,x) =
[ (for x > s* = 2v/II™ax), we calculate

T — a2 — 4[]max

P (x, V) = 5 and
—x? — 2™ 4 /22 — 4[]max

g (@™ (2, V)2 + b (p" (2, V) =

4
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The designer’s (inner) problem is thus

2

e 1{r <s*}(=3+2)\) %
max
GeMPC(F) +1{z > s*} <—m2+m2—4nma" +(—1+ ) Hma")

4

Note that if A < 3/2 then the objective is decreasing and concave in z for x < s* and is
increasing and concave in z for z > s* (as the function —z? + x/x2 — 4IImax is increasing
and concave for z > QW), with a convex kink at s*. Thus, if the optimal multiplier
A (i.e., the multiplier in the inner problem with the optimal value for V') is less than 3/2,
the optimal policy is a binary signal that discloses only whether demand is above or below
a cutoff s, by an argument similar to the proof of Proposition 4 of Dworczak and Martini
(2019). Intuitively, when A\ < 3/2 the objective has the same shape as consumer surplus
g(p(z))xz + h(p(x)); and when x < s*, (monopoly) price is linearly increasing in x, so
consumer surplus is decreasing and concave in x; whereas when x > s*, price is decreasing
and convex in = (by Rotemberg and Saloner’s logic), so consumer surplus is increasing and
concave in x. The optimal policy is thus a binary signal that discloses only whether demand
is “low” (in which case firms set the corresponding monopoly price) or “high” (causing a
“price war”).

If instead the optimal multiplier A is greater than 3/2, the objective is increasing and
convex for x < s*, so the objective is S-shaped overall. In this case, the solution is upper
censorship with a cutoff § < s*, as in the problem considered in the text.

The next result summarizes this discussion and also shows that a binary signal maximizes
consumer surplus. (Equivalently, the optimal multiplier is less than 3/2 when « = 0.) This
follows because the optimal signal for any weight « is either a binary signal or is upper
censorship with a cutoff § € (s, s*), but given upper censorship with a cutoff §, pooling
all states below s in a single signal realization increases expected consumer surplus, so the

optimal signal when o = 0 must be binary.

Proposition 4 Under linear demand with an unknown intercept, the optimal disclosure
policy is either a binary signal that reveals only whether demand is below or above a cutoff;

or it 1s upper censorship. The former policy is optimal if the weight on consumer surplus is
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sufficiently high; the latter policy is optimal if the weight on producer surplus is sufficiently
high.

Proof. Given the above discussion, it suffices to show that the optimal multiplier A* is at
most 3/2 when o = 0. To see this, suppose toward a contradiction that A\* > 3/2. Then,
as shown above, the optimal disclosure policy is an upper censorship policy G with a cutoff
5 < s*. We can also assume that § > s, as otherwise this policy is no disclosure, which is
also a binary signal.

To obtain a contradiction, we show that the binary signal G that discloses only whether
demand is above or below § yields strictly higher expected consumer surplus than G. To
see this, let V' and V denote expected profit under G and G’, respectively. Recall that
p(x,V)=p™"(z)forallz < § (as § < s*) and that g (p™ (x)) x+h (p™ (x)) is strictly concave
in x, so G yields strictly higher expected consumer surplus than G if p (EF [s|s < §] ,V) <
p (B [s|s < §],V) and p (EF [s|s > §],V> < p (B [s|]s > §],V). In turn, since p (x, V)
is increasing in V, it suffices to show that V > V. But this holds because V and V are,

respectively, the greatest fixed points of the equations

V =E¢ [min {Hm (x), ITme <5, n, ‘7) H and vV =EC [min {Hm (x), ITme (5, n, \7) H ;
but, for any V', we have

E¢ [min{ﬂm () , ITmax (5,n, f/) H - /gnm (s)dF (s)+ (1 — F (8)) HmaX(

s

v
F(3) 1™ (BF [s]s < §]) + (1 — F (3) HmaX( f/)

v

> (5 min {17 (87 [sls < 8, 10 (5,0, 7)
+ (1= F () min {1I™ (B [s)s > 5] , 117 (
EG [min {Hm (z) , TI™ (5’ ", ‘7) H |

where the first inequality is by convexity of II™ (s), so the greatest fixed point of the first
equation is not lower than that of the second. m

A natural conjecture is that there exists a weight on producer surplus a* € (0,1) such
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that if @ < o* then the optimal multiplier \ is less than 3/2, so a binary signal is optimal;
and if & > o* then A > 3/2, so upper censorship is optimal. This holds whenever the optimal
multiplier 3 on the constraint EY [II™ (z) , [I™* (n,§, V)] = V is monotone in a, as then \ is
monotone in «, so that A > 3/2 iff « exceeds a cutoff a*. However, we do not have a proof

that § is monotone in a.

Unknown cost. Since [I(p,z) = (p—x)(1 —p) and CS (p,x) = h(p) for h(p) =
(1/2) (1 — p)?, we have
(1— )"

0" (o) = = and b (2) =

14z

(1-a)’
5 .

p" (x) 5

Suppressing the argument of II™** (n, d, V') and letting p™** (x, V) solve II (p™** (z, V) ,z) =
[ (for x < s* =1 — 2y/I1Imax) | we calculate

1+ — \/(1 — )% — 4[Jmax
P (z, V) = 5 and

(1—a)? = 201 4 (1 - 2) /(1 - 2)* — 4TImx
- .

h (™ (2, V) =

The designer’s (inner) problem is thus

1 {z < 5} ((1 AU W/ L R Hmax)

max [
GEMPC(F)

+1{z > s*} (14 2)) 820

Note that the objective is decreasing and convex for z < s* (as the function (1 —z)* +

(1—2) \/(1 — )? — 4IIm is decreasing and convex for z < s*); whereas for z > s*, the
objective is increasing and concave if A < —1/2 and is decreasing and convex if A > —1/2.
In the former case, the objective consists of a decreasing and convex piece followed by an
increasing and concave piece, and it is straightforward to show that the optimal disclosure
policy is upper censorship. In the latter case, the objective consists of two decreasing and
convex pieces that meet at a kink, and in general the optimal disclosure policy censors an

intermediate range of states around the kink and discloses the lowest and highest states.
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However, unlike in the unknown demand case, we have not been able to determine which of

these cases applies for the problem of maximizing consumer surplus (a = 0).*®

C Proof of Proposition 2.3

Fix any convex function II" (s) and any constant II™**. Let (F}, Fy, G1,G3) be such that

F, € MPC(F),

G, € argmax EC [min {II™ (z), 1™}, and
GeMPC(Fy)

Gy € argmax EC [min {II™ (z), [T™*}].
GeMPC(Fs)

We show that Gy € MPC (Gs), or equivalently [ Gy (s)ds < [T G5 (s)ds for all x (since Gy
and G5 have the same mean). As shown in the text, this completes the proof of Proposition
2.3.

By Theorem 1, we have

Fl (S) if s S §1,
Gi(s) =19 Fi(3,) ifé <s<s*,

1 if s > s*,

where s* = E1 [s|s > §] satisfies [I™ (s*) = [I™® and similarly for G5. Note that, for any

s < §9, we have

/ (G (s) — G (s)) ds = / (G (s) — Fy(s)) ds < / (Fy(s) = By (s)) ds <0,

where the equality is by Gs (s) = F» (s) for all s < §9, the first inequality is by G (s) < Fi (s)
for all s < s*, and the second inequality is because F; € MPC (F,). Next, Gp(s) —
G (s) is non-decreasing on the interval [y, s*), as on this interval Gy (s) is non-decreasing

and Gs(s) = Fy(S2) is constant. In addition, G; (s) — Ga(s) = 0 for s > s*. Thus,

48 Conversely, as A — oo (approaching the a = 1 case considered in the text), the objective flattens out for
s < s*, implying that lower censorship is optimal for sufficiently high A.
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*

[(G1(s) — G2 (s))ds is convex on [3,s*] and constant on (s*,5]. Therefore, since

J7(Gi(s) = Ga(s))ds < 0 for all s < &, if [7 (G (s) — G2(s))ds is ever strictly posi-
tive then for some s € (s*, 5], then it must be strictly positive at s = s* (since, as a convex
function on [$,, s*], it is bounded above by its linear interpolation over this interval). But,

by integration by parts,

EC [s] = 5— / Gy (s)ds =s" — / G (s) ds, and

B = 5— [ Glds=s— [ Galo)ds

so since B¢ [s] = EC2 [s] we have f; (G1(s) = G2 (s))ds = 0. Thus, [ (G1(s) = G2 (s))ds <

S
S

0 for all s, completing the proof.

D Example with Persistent Demand

Assume a binary demand state (s € {s,5}) and linear demand (II(p,s) = p(s—p)),
and consider the parameters s = 1, s = 2, § = .55, n = 2, and Pr(s;1; =35|s;, =3§) =
Pr(siy1 = s|sy = s) = p € (1/2,1). Binary demand violates our assumption that the distrib-
ution of states is atomless; however, that assumption is easily relaxed. With a binary state,
an upper censorship policy now corresponds to disclosing state s with some probability ¢
(conditional on s = s) and pooling state s together with state § otherwise. Upper censorship
is optimal by essentially the same proof as in the atomless case, so we can parameterize
an optimal disclosure policy by ¢ € [0, 1], with ¢ = 0 being no disclosure, ¢ € (0, 1) being
non-trivial upper censorship, and ¢ = 1 being full disclosure.

Figures 3-5 display the optimal disclosure policy, firm profit, and consumer surplus as p
ranges from 1/2 to 1. In Figure 3, the blue curve plots the optimal disclosure policy ¢ at
last-period demand state s, while the orange line plots ¢ at last-period demand state 5. Note
that the blue curve is always above the orange curve, as under positive persistence (p > 1/2)
more information is disclosed when the last-period state is lower, as shown in Theorem 2.
In addition, Figure 3 displays three distinct equilibrium regimes. In Regime 1, non-trivial

upper censorship is optimal for both last-period demand states. For p € (1/2,0.727), Regime
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Figure 3: Optimal disclosure policy. The blue curve is the probability of disclosing s when the
current state is s and the last-period state was s; the orange curve is the probability of disclosing
5 when the current state is s and the last-period state was S.

1 prevails, and increasing p leads to more disclosure at last-period state s and less disclosure
at last-period state 5. Intuitively, increasing p makes firms more pessimistic at last-period
state s and more optimistic at last-period state §, which increases disclosure at last-period
state s and decreases disclosure at last-period state 5. Once p reaches 0.727, firms are so
optimistic at last-period state § that no disclosure becomes optimal, while further increases
in p continue to increase disclosure at last-period state s. This second regime persists until p
reaches 0.863. At this point, demand is so persistent that future profits are much higher at
last-period state § than at last-period state s, which makes partial disclosure optimal again
at last-period state 5, so the equilibrium is again in Regime 1. Further increases in p then
rapidly increase disclosure for both last-period states, until p reaches 0.902, at which point
full disclosure becomes optimal for both last-period states.

Figures 4 and 5 trace the implications of these effects for firm profit and consumer surplus.
In Figure 4, the blue curve plots a firm’s continuation value (discounted sum of profits) at
last-period demand state s; the orange curve plots this value at last-period demand state §;
and the green curve is the average of the two, which equals a firm’s ex ante expected profit.
In Regime 1, increasing p decreases the continuation value at last-period state s and increases

it at last-period state 5. The net effect is to (slightly) increase expected profits, as increasing
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Figure 4: Optimal continuation values. The blue curve is a firm’s continuation value at last-period
state 5. The orange curve is the corresponding value at last-period state 5. The green curve is the
ex ante expected profit.
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Figure 5: Consumer surplus. The blue curve is the current-period consumer surplus at last-period
state s. The orange line is the corresponding value at last-period state 5. The green curve is ex
ante expected consumer surplus.
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the continuation value at last-period state s relaxes the binding incentive constraint. In

contrast, the effect of increasing p on profits is non-monotone in Regime 2 and is zero

in Regime 3 (where optimal profits are first-best). In Figure 5, the blue curve plots the

current-period consumer surplus at last-period demand state s; the orange curve plots it at

last-period demand state s; and the green curve is the average of the two, which equals ex

ante expected consumer surplus. Expected consumer surplus is decreasing in p in Regime 1

(albeit only slightly when p € (1/2,0.727)), non-monotone in p in Regime 2, and constant

in p in Regime 3.
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