The Effects of Generative Al on High-Skilled Work:
Evidence from Three Field Experiments with
Software Developers®

Kevin Zheyuan Cui, Mert Demirer, Sonia Jaffe,
Leon Musolff, Sida Peng, and Tobias Salz

February 2025

Abstract

This study evaluates the impact of generative Al on software developer produc-
tivity via randomized controlled trials at Microsoft, Accenture, and an anonymous
Fortune 100 company. These field experiments, run by the companies as part of their
ordinary course of business, provided a random subset of developers with access to
an Al-based coding assistant suggesting intelligent code completions. Though each
experiment is noisy, when data is combined across three experiments and 4,867 de-
velopers, our analysis reveals a 26.08% increase (SE: 10.3%) in completed tasks among
developers using the Al tool. Notably, less experienced developers had higher adop-
tion rates and greater productivity gains.

*Cui: Princeton. Demirer: MIT. Jaffe: Microsoft. Musolff: The Wharton School of the University of
Pennsylvania. Peng: Microsoft. Salz: MIT. This RCT was post-registered as AEARCTR-0014530 (Peng
2024). We are grateful to Avi Goldfarb, Shane Greenstein, Anton Korinek, Ethan Mollick, Daniel Rock as
well as the participants of the IIOC2024 conference and the Al, Cognition, and the Economy Workshop.
Thanks also for data help from employees at Microsoft, GitHub, and Accenture: Phillip Coppney, Wen
Du, Ya Gao, Lizzie Redford, Ryan]J. Salva, Daniel A. Schocke, Amanda Silver, An-Jen Tai, Dan Tetrick, Jeff
Wilcox. Mert Demirer and Tobias Salz thank the MIT GenAl initiative for funding.

1 Introduction

Many economists expect generative Al to profoundly affect the organization of economic
activity (Agrawal, Gans, and Goldfarb 2019; Frank et al. 2019; Furman and Seamans
2019; Greenstein et al. 2024). Eloundou et al. (2023) estimate that generative Al can
perform tasks associated with over 80% of U.S. jobs and that Al task coverage is notably
higher for occupations that require advanced degrees. The ability of generative Al to
perform tasks required in such high-skilled occupations — allowing it to assist doctors in
diagnosing diseases, lawyers in drafting legal documents, and software engineers with
code development — has led to predictions of substantial productivity gains from the
adoption of such technologies (Baily, Brynjolfsson, and Korinek 2023). Others, however,
are less optimistic about such productivity gains (Acemoglu [2024).

Uncertainty around firms” willingness to adopt these technologies and their capacity
to make necessary complementary investments (Bresnahan 2024; Brynjolfsson, Rock, and
Syverson 2021) makes it currently difficult to empirically assess whether or not optimism
about productivity gains is justified Nevertheless, some applications of generative Al
have already matured and are integrated into existing workflows. An example is software
development, where commercial coding assistants based on generative Al have gained
widespread adoptionﬂ

In this project, we ask how generative Al affects the productivity of knowledge work-
ers, using software developers as an example. We analyze three large-scale randomized
controlled trials in a real-world environment. These experiments randomly assigned
access to Copilot, a coding assistant developed by GitHub in collaboration with Ope-
nAl, to just under five thousand software developers at Microsoft, Accenture, and an
anonymous Fortune 100 electronics manufacturing company (henceforth Anonymous
Company). These experiments were run as part of the ordinary course of business at
these companies to decide whether or how extensively to adopt these technologies, and
the companies kindly shared the resulting data with usE| These experiments lasted 2 to
8 months after which all groups were granted access to Copilot.

Our preferred estimates from an instrumental variable regression suggest that usage
of the coding assistant causes a 26.08% (SE: 10.3%) increase in the weekly number of
completed tasks for those using the toolﬂ When we look at outcomes of secondary in-
terest, our results support this interpretation, with a 13.55% (SE: 10.0%) increase in the
number of code updates (commits) and a 38.38% (SE: 12.55%) increase in the number
of times code was compiled. For Microsoft we observe both the developers’ tenure and

In addition, it is hard to predict further breakthroughs in the architecture of these models, which may
lead to further improvements in quality or decrease the cost of inference and training.

2Prior academic work has shown that generative Al can pass mock interviews for coding jobs at Amazon
in the top decile of human performance, performs at human level in a database of coding challenges that
measure programming logic and proficiency, and can write entire programs for simple video games from
several lines of instructions (Bubeck et al. 2023). Copilot is used by 1.3 million subscribers and more than
50,000 businesses.

3The exact implementation of these experiments was rather ad-hoc as they were driven by business
considerations at these companies rather than research goals.

“Because of imperfect compliance, our preferred estimates use treatment status as an instrument for
usage, so this is an estimate of the treatment on the treated.

2

their seniority as measured by job title. We find that Copilot significantly raises task
completion for more recent hires and those in more junior positions but not for develop-
ers with longer tenure and in more senior positions. An important question is whether
AI will be more beneficial to low-productivity or high-productivity workers. Prior work
has shown that when workers are conducting the same tasks, generative Al helps lower-
ability or lower-experience workers more (e.g., Brynjolfsson, Li, and Raymond 2023; Noy
and Zhang 2023) but others find that both generative Al (Otis et al. 2024) and an Al
tool designed to assist material science research (Toner-Rodgers 2024) benefit productive
workers the most. Like the first set of papers, we find that generative Al increases the
productivity of lower-ability workers more, even when workers are performing tasks
according to their tenure or seniority.

Our preferred estimate pools estimates across all three experiments and places more
weight on periods with larger differences in treatment status. We make these choices
because our analysis must confront challenges related to statistical power despite the
large number of software developers in the experiments. These challenges arise due to
large variation in measured outcomes and factors that reduce the take-up and duration
of the three experimentsﬁ The experiment at Microsoft started before Copilot was widely
known (and before the release of ChatGPT), and initial uptake was low. Shortly after a
larger fraction of developers in the treatment group started using it, the control group
was also allowed access. At Accenture, only a few hundred developers participated in
the experiment. Lastly, at Anonymous Company, the treatment consisted of a staggered
rollout with differences in treatment status lasting only a short time.

Most studies of the impact of generative Al tools on worker productivity have been
conducted in controlled lab-like experiments (Campero et al. 2022; Noy and Zhang 2023;
Peng et al. 2023; Vaithilingam, Zhang, and Glassman 2022). In a lab-in-the-field exper-
iment on consultants employed by Boston Consulting Group, Dell’Acqua et al. (2023)
tind that productivity on 18 tasks designed to mimic the day-to-day work at a consulting
company increased by 12%-25%. Evidence from these experiments generally suggests
significant productivity effects of generative Al. The exception is Vaithilingam, Zhang,
and Glassman (2022), which did not find a statistically significant difference in comple-
tion time.

While lab experiments offer a valuable opportunity to examine the short-term impli-
cations of generative Al, challenges and complex interactions arise when these tools are
deployed in real-world environments (Jaffe et al. [2024). There are some observational
studies of the effects of generative Al in an actual workplace setting (Hoffmann et al.
2024; Yeverechyahu, Mayya, and Oestreicher-Singer 2024). For instance, Brynjolfsson, Li,
and Raymond (2023) find that an Al-based conversational assistant increases the produc-
tivity of customer chat support agents by 14%. The drawback of these studies is that they
do not have the benefit of random experimental assignment of these technologies.

Our work complements both the literature on lab experiments as well as these obser-
vational studies by studying the impact of generative Al using a field experiment in an
actual workplace setting. To date, there is still a dearth of experimental studies exam-

>We observe large variation in the output of software developers due to significant heterogeneity in
their seniority, with more senior managers being less likely to engage in coding activities.

ining the effect of generative Al in a field setting. We fill this gap in the literature by
examining a field experiment with high-skilled and highly paid knowledge workers, a
group that is particularly relevant given the prediction that high-skilled jobs will be most
affected by this technology. Although we examine a different part of the skill distribution
and use experimental variation rather than a staggered introduction, we find similar pro-
ductivity increases as Brynjolfsson, Li, and Raymond (2023). Furthermore, like them, we
also find suggestive evidence that these gains are primarily driven by improved output
from recent hires and employees in more junior roles.

More generally, we contribute to the literature studying the productivity and on-the-
job performance of software developers (Cowgill et al. 2020; Emanuel, Harrington, and
Pallais 2023; Murciano-Goroff 2022).

2 Setting and Experiments

2.1 What Is Al-Assisted Software Development?

Al Assistants for software development offer intelligent code suggestions and auto-
completion within integrated development environments. Prominent examples include
GitHub Copilot, Cursor, and Replit Ghostwriter. In our study, we examine the effects of
one of these tools, GitHub Copilot. GitHub Copilot was developed by GitHub in part-
nership with OpenAl. It was available for "technical preview" in June 2021 and publicl
available in June 2022, just a few months before the first of the experiments we analyzeé
The development of Copilot involved combining advanced machine learning techniques
and natural language processing. A substantial amount of code from public GitHub
repositories was used to train Copilot. This extensive dataset allowed the Al model to
learn from real-world coding practices, patterns, and styles across various programming
languages and frameworks. See Nagle et al. (2023) for an in-depth overview of the origins
and evolution of GitHub Copilot.

Copilot integrates with the software that developers use for coding. As developers
write software code or plain text comments, Copilot analyzes the context and generates
relevant code snippets, comments, and documentation. It can autocomplete code that
developers might manually type or suggest snippets they would otherwise need to search
for online. This capability can save developers time and potentially improve code quality
by offering suggestions the developer might not be aware of. However, like all tools
based on Large Language Models (LLMs), Copilot can make mistakes. If developers rely
on it without review, it could potentially introduce errors or decrease code quality. While
general-purpose LLMs like ChatGPT can also help with software development, they are
less specialized and don’t integrate with standard coding tools.

®ChatGPT, the first general-purpose public tool of this class of Al models was released on November
30, 2022.

2.2 Experiments

We analyze three randomized experiments conducted with software developers at Mi-
crosoft, Accenture, and Anonymous Company. In the Microsoft and Accenture experi-
ments, one group of developers (the treated group) was randomly assigned to be able to
access GitHub Copilot, whereas the other group (the control group) did not have access
to the tool for a period of eight (Microsoft) or four (Accenture) months. In the Anony-
mous Company experiment, all users gained access to the tool over a period of two
months, but access dates were randomized, with some teams gaining access six weeks
before others.

Microsoft The experiment at Microsoft started in the first week of September 2022, in-
volving a sample size of 1,746 developers primarily located in the United States. Of these
developers, 50.4% were randomly selected to receive access to Github Copilot. Random-
ization was implemented at both the individual and the team levelsﬂ In particular, 616
developers were individually randomized and 1,130 developers were randomized at the
team level, with an average team size of 6.2. The developers work on building a wide
range of software within Microsoft, with tasks that include engineering, designing, and
testing software products and services. They occupy various positions in the company,
ranging from entry-level developers to team managers. They may work in a team or
individually, depending on their task and team structure.

Participants in the treated group were informed via email about the opportunity to
sign up for GitHub Copilot. The email also included information introducing GitHub
Copilot as a productivity-enhancing tool and outlining its potential impact on their cod-
ing tasks (see Figure 9] in Appendix). Beyond this email, treated participants did not
receive any specific instructions regarding their workload or workflow to ensure they
use GitHub Copilot in their natural work environment. Control group participants did
not receive any communication as part of the study, even when they were eventually
allowed access The experiment ended on May 3rd, 2023, as growing awareness of
Al-assisted coding tools led the control group participants to seek access to Copilot.

Accenture The Accenture experiment started in the last week of July 2023 and included
a number of Accenture offices located in Southeast Asia. Randomization occurred at the
developer level, with 61.3% of the 320 developers assigned to the treatment group. Treat-
ment group participants were informed over email that they were eligible to sign up
for GitHub Copilot. They also participated in a training session, which explained what
GitHub Copilot is, how to use it, and the potential benefits. Finally, the participating
managers were asked to encourage their reports” adoption of GitHub Copilot. The con-
trol group was granted access to Copilot in December 2023, though uptake was lower
than in the treatment group.

Anonymous Company The Anonymous Company experiment started in October 2023.
It involved 3,054 developers who were all eventually invited to use Copilot. The invita-

7We account for this randomization structure in calculating our standard errors below.
8 A small number of developers in the control group nevertheless got access to Copilot because they
were working on related tools.

tion dates were randomized, with new invites being sent out weekly between September
2023 and October 2023.

2.3 Variables and Outcome Measures

Measuring the productivity of modern knowledge work is notoriously difficult. Our
setting has the advantage that almost all professional software development follows a
highly structured workflow, where specific tasks are defined and tracked through version
control software. This makes internally defined goals quantifiable. All three participating
organizations use the version control software GitHub. By observing the developers’
GitHub activity, we can observe many of the variables that are part of their workflow.

A main outcome of interest is “pull requests”, which can be thought of as a unit of
work for software developers. Within an organization, the scope of a pull request is likely
to remain relatively stable over time, shaped by organizational norms and conventions,
even though different organizations may define this scope differently. For instance, a
pull request may be asking for a feature to be added to a larger software project. A
pull request will lead to a code review, often by a more senior software developer. If this
review is passed, the code will be merged and thereby become part of the larger software
project.

We use three additional outcome variables related to the developers” workflow. Before
submitting a pull request, a developer will work separately on her code, tracking smaller
changes through “commits.” Periodically, the developer will “build” the code they are
working on, and we can observe whether it compiled successfully. While commits and
builds do not directly correspond to a deliverable, we expect them to be nevertheless
monotone in the amount of accomplished work. Lastly, we use the build success rate as
a measure of code quality.

In addition to these output measures, we observe how developers use Copilot. For
each developer who uses Copilot, we observe both the number of suggestions by Copilot
and the number of accepted suggestions.

For the Microsoft experiment only, we also see the hire date of developers and their
level at the company, allowing us to separate the analysis by tenure and seniority.

Table 1| shows summaries of the treatment and control groups across all three ex-
periments, as well as balance tests for the outcome variables. With the exception of
commits in the Accenture experiment, randomization successfully balanced the average
pre-treatment outcomes across the control and treatment groups. However, the table also
shows that for all outcomes (with the exception of the Build Success Rate), the standard
deviation exceeds the pre-treatment mean, and sometimes by a lot. This high standard
deviation is driven by a large fraction of developer-weeks where the outcome variables
are zero. Figure 1| shows the distribution of pull requests conditioning on weeks with at
least one pull request. The high fraction of zeros, however, limits our power to detect
effects in the experimental regressions below (and will be reflected in a larger standard
error.)

Control Treatment
Mean SD Mean SD Difference p-value

Panel A: Microsoft

Pull Requests 0.86 1.49 0.87 1.50 0.01 0.88
Commits 9.43 14.86 9.36 14.80 -0.07 0.94
Builds 7.76 12.99 7.67 12.73 -0.09 0.91
Build Success Rate 0.72 0.30 0.75 0.29 0.02 0.33
Short Tenure 0.48 0.50 0.52 0.50 0.04 0.23
Junior Level 0.55 0.50 0.61 0.49 0.06 0.03**
Panel B: Accenture

Pull Requests 0.13 0.47 0.14 0.47 0.00 0.85
Commits 2.56 6.00 3.64 7.25 1.08 0.01**
Builds 0.96 2.54 1.10 2.68 0.14 0.38
Build Success Rate 0.51 0.37 0.54 0.38 0.03 0.40

Panel C: Anonymous
Pull Requests 0.73 1.23 0.73 1.19 -0.00 0.99

Table 1: Balance Table

Notes: This table presents a comparison of pre-experimental outcomes in control and treatment
groups across experiments. For each measure, we present its mean and standard deviation in the
control group and in the treatment group. We also show the mean difference across these groups
and the p-value associated with an underlying test of a difference in means. We do not present
other outcome measures in Panel C because we do not have access to these data. The differences in
p-values are calculated using standard errors clustered at the level of treatment assignment, which
varies across experiments (Microsoft: mixed team-level and individual assignment; Accenture:
individual assignment; Anonymous Company: team-level assignment.)

3 Adoption of Copilot

This section reports the adoption of Copilot in the experiments. Understanding adoption
patterns is important for assessing the effectiveness of the experiments in generating
random variation in Copilot usage. Furthermore, these patterns offer insights into the
adoption of Al tools in the workplace. We define the adoption period as the first time a
software engineer uses GitHub Copilot and consider an engineer as having adopted the
tool even if they later stop using it. This approach captures the initial willingness to try
and use the technology.

Figure [2| presents the cumulative adoption rates for the three experiments. In Panel
(a), we observe that during the first two weeks of the Microsoft experiment, only 8.5
percent of the treated group signed up for GitHub Copilot. This low adoption rate
might have been due to inattentiveness to the initial email notification. Consequently,
Microsoft sent two additional email reminders on Feb 15th, 2023, and Feb 28th, 2023.
These additional emails increased the take-up rate to 42.5% within two weeks of being
sent. The initial compliance in the control group was not perfect, with 0.5 percent of

7

40 50 40

40

30 I 30
30

20 20
20

10 10 _ 10

0 0 0

0 1 2 3

0 2 4 6

Percent(%)
Percent(%)
Percent(%)

0 1 2 3 4

(a) Microsoft (37.09% > 0) (b) Accenture (12.90% > 0) (c) Anonymous (34.01% > 0)

Figure 1: Distribution of Pull-Requests (Conditional on Above Zero)
Notes: This figure provides, for each experiment, a bar chart depicting the distribution of our
primary outcome variable, the number of completed pull requests. The unit of observation is a
developer-week. We plot this number after winsorizing at the 95-th percentile; its unwinsorized
maximum is 892 for Microsoft, 70 for Accenture and 876 for Anonymous. Furthermore, we con-
dition on observations with non-zero completed pull requests.

individuals in the control group adopting Copilot. At the conclusion of the experiment
in April 2023, the control group was given access to Copilot, and we observed a rapid
adoption rate in the control group. However, in Jan 2024, adoption in the control group
(64.0%) remained below the adoption in the treated group (75.6%), providing limited
long-run variation in adoption generated by the emails encouraging adoption sent as
part of the experiment (which were only ever sent to the treatment group.)

Panel (b) reports the adoption rate of Copilot in the Accenture experiment. Unlike in
the Microsoft Experiment, in the Accenture Experiment, the nudge to adopt Copilot was
paired with training on how to use the software, and hence, the treated group’s adoption
rate was more rapid at the start of the experiment, but after 1-2 months, it plateaus at
around 60%. When the control group is allowed to adopt in December 2023, we see
a slower but steady increase in adoption rate amongst control users. By April 2024, the
adoption rate for the treated group is 69.4%, while the adoption rate for the control group
is 24.4%.

Panel (c) shows the staggered invitation to access Copilot (represented by the solid
line) and the cumulative adoption rate among all participants (dashed line). As evident
from the plot, all developers gained access to Copilot after six weeks. During the invi-
tation rollout in September and October, we observed a steady increase in adoption as
developers got access to Copilot. Following the initial increase in adoption, the adoption
rate plateaued, showing only small, steady increases for the remainder of the experiment.

It is worth noting that adopting Copilot is relatively easier and less costly compared to
other Al tools in the workplace. It does not require any complementary investment, can
be adopted individually, and integrates directly into the existing development environ-
ment. Despite this, the adoption rate is significantly below 100% in all three experiments,
with around 30-40% of the engineers not even trying the product. Moreover, we observe
that the adoption rates are remarkably similar across the experiments. This suggests that
factors other than access, such as individual preferences and perceived quality of the
tool, play important roles in engineers’ decisions to use this tool (Dietvorst, Simmons,
and Massey 2015, 2018).

— Treated
—-- Control

| — Treated
--- Control

Cumulative Rate

Cumulative Rate
— N W A NN 0 O —

T L ! 1 ! L 1 ! | !

Oct 22 Apr 23 Oct 23 Apr 24 ul 23 Sep 23 Nov 23 Jan 24 Mar 24
Date Date
(a) Microsoft Experiment (b) Accenture Experiment

1 —— mvite i

77 ==+ Adopt -

\
\
—J

I
i
-
I
J_a-

4 ==

Oct23 Nov23 Dec23 Jan24 Feb24 Mar24
Date

Cumulative Rate
S = N W kAR N 0 O =
|

(c) Anonymous Company Experiment

Figure 2: Cumulative Adoption Rates
Notes: The first two graphs show the cumulative rate of adoption over time for software devel-
opers in both the treatment and control groups across various experiments. In the Anonymous
Company experiment (Panel c), unlike the other experiments, all developers were granted ac-
cess to Copilot in a staggered fashion, with the order of access randomized among participants.
Hence, we show the cumulative fraction of users invited to participate and who adopted Copilot.

4 Empirical Strategy & Main Results

4.1 Empirical Strategy

Our empirical strategy exploits the experimental variation while accommodating imper-
fect compliance by utilizing the experimental assignment as an instrument for the adop-
tion of GitHub Copilot. For each experiment, we observe data at the developer-week
level. To gain precision, we control for both developer and week-fixed effects (to account
for, e.g., differences in developer skills and holidays). This leaves us with the following
regression as our main specification:

Vit = BDjt + pi + vt + €ir. (1)

Here, B is the coefficient of interest, D;; is an adoption dummy that turns on after a
developer first uses GitHub Copilot, y; is a developer fixed effect, and -; is a week fixed
effectEr We estimate Equation by two-stage least squares (25LS), instrumenting D;; with
a dummy Z; that turns on for all developers randomized into the treatment group after
the start of the experiment.

Before we move on to the results, we have to discuss a key complication: our data
comes from experiments where the control group was eventually also allowed to access
GitHub Copilot. This is not a challenge for identification, but it reduces the power of
our instrument if we employ the naive strategy detailed above. In particular, consider a
hypothetical experiment that lasts just one month: at t = 0, developers are randomized
into treatment and control groups, where control is not allowed access to Copilot until
t = 4. Suppose further that, starting at t = 4, the differences in uptake between the two
groups start declining over time, asymptoting a zero uptake difference. If we naively
estimate (1)) by 25LS in this setting, the power of our instrument (and hence the precision
of our estimates) will be strictly declining in the number of periods we observe — in
the limit, with infinite periods, our instrument violates the relevance condition because
initial treatment assignment eventually fails to predict uptake. One potential solution to
this dilemma involves cutting out some data and using only € {1,...,4} to estimate the
model. During this period, the instrument has maximal relevance. However, to the extent
that there is still an adoption difference between treatment and control groups at t = 5,
this strategy is wasteful in that it does not exploit all possible identifying variations.

To avoid ad-hoc decisions about how many periods after the experiment ends should
be included in the analyzed data, we weight the 2SLS estimates by the (period-by-period)
difference in adoption across treatment and control groups. The resulting weighted IV
regression gracefully handles the issue of declining instrument relevance, and it has been
previously proposed and analyzed in the context of uptake differences across individ-
uals by (Coussens and Spiess 2021; Huntington-Klein 2020); in the context of uptake
differences over time, a similar strategy was employed by Bloom et al. (2012) to improve
precision.

The impact of our weighting on the interpretation of our results is straightforward:
the weighted regression weights periods based on the difference in Copilot adoption
between control and treatment groups. As we can see in Appendix Figure |8} the weighted
IV estimates place greater emphasis on treatment effects during periods like March 2023
in the Microsoft experiment, where there was a significant difference in adoption between
the treatment and control groups. Thus, to the extent that one would expect treatment
effects that are heterogeneous over calendar time (e.g., because Copilot improved over
time), the weighting will affect which estimand our estimator is targeting. If, on the other
hand, treatment effects are unchanged over the course of the experiment, the weighting
will purely improve the precision of our estimates without affecting their interpretation.

9For the initial phase of the Microsoft experiment, we do not observe intensive usage data. Hence, we
say a developer at Microsoft has adopted Copilot after they either register to use it (relevant in the initial
phase) or we see any usage of Copilot (relevant in the later phase.)

10

4.2 Results

We present our results in Table 2, split by experiment. We divide each coefficient by
the mean in the control group for that variable and multiply by 100 so that coefficients
in this table can be interpreted as percentage effectsm To enable easy comparison to
observational studies such as Brynjolfsson, Li, and Raymond (2023), we present both
difference-in-difference (DiD) estimates that do not exploit experimental variation and
our main (weighted) results (W-1V), which doﬂ Interestingly, we find that our difference-
in-difference estimates are sometimes larger and sometimes smaller than the experimen-
tal estimates, emphasizing that the reasons for the divergence between experimental and
observational estimates may differ across companies.

At Microsoft, we find positive effects of Copilot on the number of completed pull re-
quests, the number of commits made, and the number of times that code was built (i.e.,
compiled.) Focusing on the more credible experimental estimates, however, only the ef-
fect on the number of pull requests is statistically significant at conventional significance
levels. We find no negative effect on the build success rate, which would be negatively
affected if Copilot was writing code that does not compile and these mistakes are not
caught by developers. Although not always statistically significant, we find directionally
similar effect sizes at Accenture and Anonymous Company, with the exception of the
build success rate, which is negative at Accenture.

In the final column, we combine estimates across experiments (taking the precision-
weighted average across our three experiment-by-experiment estimates) to get the most
precise estimate of the effect of the coding assistance tool While standard errors are
consistently large and the effect sizes differ across the three different companies, we find
evidence of productivity-enhancing effects of GitHub Copilot: on average, the number
of weekly pull requests made by developers increases by 26.08% (SE: 10.3%), the number
of weekly commits increases by 13.55% (SE: 10.0%), and the number of weekly builds
increases by 38.38% (SE: 12.55%).

A less optimistic interpretation of the increase in builds is that developers may engage
in more trial-and-error coding, accepting Copilot’s suggestions and then compiling the
project to check for errors. Such a change in coding style could lead to lower-quality
code in the long run and undermine efficiency gains in the quantity of code. However,
our results on build success rate only (weakly) support such an interpretation for the
Accenture experiment.

Before moving on, we discuss an additional experiment run at Accenture (not ex-
hibited in the above table) that was abandoned due to a large layoff affecting 42% of
participants, resulting in a lack of data on Copilot usage (and hence adoption status).
Because of these data quality issues, we relegate this experiment to Appendix [D] How-

19We do not take logs because of a large number of person-weeks that are zero for each variable. How-
ever, we report results from a Poisson difference-in-differences regression in Appendix

HWe relegate unweighted results (which are less precise) to Appendix

12Thus, Bpeoted = (Lecr 1/02) - Yck Be/0? where E = {Microsoft, Accenture, Anon. Comp}, f, refers
to the estimate in experiment e, and 0, refers to the standard error. We combine the estimates in this
way instead of running a pooled regression because of the different experimental designs across the three
companies — the staggered rollout at Anonymous Company cannot be easily combined with the treat-
ment/control split at the other two.

11

Outcome Microsoft Accenture Anon. Comp. Pooled

DiD W-IV DiD W-Iv. DiD W-IV DiD W-IV

Pull Requests 7.63*** 27.38** 52.65** 17.94 170 5403 624*** 26.08*
(249) (12.88) (946) (18.72) (247) (42.63) (1.72) (10.3)
Commits 7.03** 1832 12.85 -4.48 - - 7.25%* 1355
(232) (1125) (11.62) (21.88) 2.28) (10.0)
Builds 711 2319 39.66™* 92.40*** 8.23** 38.38%*
(2.65) (1420) (14.03) (26.78) 2.6) (12.55)
Build Success -0.65 -1.34 -20.72%* -17.40%** - 113 553
Rate (0.79) (423) (5.06) (7.12) 0.78) (3.64)

Table 2: Experiment-by-Experiment Results

Notes: This table provides difference-in-difference estimates (DiD) and weighted IV (W-IV) esti-
mates of the effect of GitHub Copilot adoption on various productivity measures. Each entry
corresponds to an estimate of B in (1)) expressed as a percentage of the control mean. DiD es-
timates instrument adoption D;; with itself. W-IV estimates instrument D; with experimental
assignment Z;; and weight by differences in adoption status across treatment and control (see
main text.) Standard errors are clustered at the level of treatment assignment, which varies across
experiments (Microsoft: mixed team-level and individual assignment; Accenture: individual as-
signment; Anonymous Company: team-level assignment.) “Pooled” is the precision-weighted
average of the other three estimates. We combine the estimates in this way instead of running a
pooled regression because of the different experiment designs — the staggered rollout at Anony-
mous Company cannot be easily combanied with the treatment/control split at the other two.)

12

ever, if we conservatively impute Copilot adoption status, we find a negative, statistically
insignificant, point estimate of -39.18% (SE: 36.78%) on the number of completed pull
requests. The estimates on the number of commits 43.04% (SE: 38.8%) and builds 12.33%
(SE: 53.6%) are both positive, though also not statistically significant. The combined
results do not change much when we include this second Accenture experiment: the
number of pull requests made by developers increases by 21.34% (SE: 9.92%), the num-
ber of commits increases by 15.39% (SE: 9.69%), and the number of builds increases by
37.03% (SE: 12.22%).

5 Heterogeneity

Previous literature has noted that productivity enhancements driven by large language
models are heterogeneous across skill level and education. In particular, in the context of
customer service and professional writing tasks, large language models have been found
to help the least educated, least skilled workers the most (Brynjolfsson, Li, and Raymond
2023; Noy and Zhang [2023). In scientific and entrepreneurial contexts, however, the most
productive workers have been found to benefit more (Otis et al. 2024; Toner-Rodgers
2024). Because we have access to developer characteristics for the Microsoft experiment,
we can contribute to this open question in the literature.

In particular, we now break out results by (i) the tenure, (ii) the level, and (iii) the
pre-experiment productivity of employees at Microsoftﬁ We split developers into short
and long tenure based on the median observed tenure in our data@ Any developers
that have been with Microsoft for less than the median time at the start of the experiment
are considered “short tenure,” and all other developers “long tenure.” Similarly, we split
developers into “junior” and "senior" based on the level at which they are employed at
the company. Finally, we split developers into “low pre-productivity” and “high pre-
productivity” based on the number of pre-experiment pull requests we observe from
them (using the median as the cutoff.)

We begin our analysis by considering the heterogeneity in adoption patterns in Figure
We see that short-tenure developers are 9.4 percentage points (SE: 2.2pp) more likely
to adopt Copilot by the end of our sample period (81.6% vs 72.1%), consistent with prior
research suggesting that younger workers (who naturally have lower tenure on average)
are more likely to adopt new technologies (Meyer 2011). The same effect is at play for
the junior developers, who are 4.7 percentage points (SE: 2.2pp) more likely to adopt
(79.2% vs. 74.4%), though the adoption difference is slightly smaller in this dimension.
Intriguingly, low pre-productivity developers are initially more likely to adopt, but this
changes soon after the Control group is allowed to adopt, and by the end of our sample,
high pre-productivity are slightly more likely to adopt.

The next figure, Figure |4 reveals that employees of shorter tenure are more likely to
continue using Copilot more than one month after initial adoption, suggesting that they

I3We measure level as of March 1st, 2023, which is the earliest date available in our data.
14 As it is considered sensitive information, we cannot reveal the exact median tenure, but it is between
2 and 4 years.

13

! 95% CI for Short Tenure N 95% CI for Junior Level
97 95% CI for Long Tenure 91 95% CI for Senior Level
.89 —— Short Tenure .89 —— Junior Level
——- Senior Level

© .74 ——— Long Tenure o 74
ETTT == oY =
£ 59 5
s ERrS
3 3 3 3

24 24

RE 1

07 0,

Oct 22 Apr 23 Oct 23 Apr 24 Oct 22 Apr 23 Oct 23 Apr 24
Date Date
(a) Adoption by Tenure (b) Adoption by Level

95% CI for Low Pre-Productivity

97 95% CI for High Pre-Productivity

.81 — Low Pre-Productivity Lo
--- High Pre-Productivity ~ _ ---"777

Cumulative Rate
i
f

Oct 22 Apr 23 Oct 23 Apr 24
Date

(c) Adoption by Pre-Productivity

Figure 3: Heterogeneity of Adoption of Copilot
Notes: This figure explores heterogeneous adoption patterns of Copilot across developer tenure,
level, and pre-period productivity. Panel (a) provides the adoption of Copilot over time broken
out by whether a developer’s tenure with Microsoft at the beginning of the experiment was below
or above the median; panel (b) does the same for each level. Panel (c) splits out developers with
the above- vs. below-median number of pull requests before the start of the experiment.

14

Fraction of Individuals using Copilot

suggestions.

0.80 2 0.80]
ou
o
@]
0.601 2 0.601
. 3
o . @
0.40+ o« oo S 0.40-
> . ° >
5
=
0.20+ % 0.204
i=l
2
0.00—-%-2- e 8 0.001--L-ec
; 7 T ; ; = ;
-10 -5 0 5 10 10
Months After Adpotion
Short Tenure * Long Tenure 95% CI

(a) Usage (Since Adoption) by Tenure

Fraction of Individuals using Copilot

0.80+

0.60

0.40

0.20+

0.00+F--t -2 e e

Months After Adpotion

Junior Level * Senior Level 95% CI

(b) Usage (Since Adoption) by Level

Low Pre-Productivity

Months After Adpotion
* High Pre-Productivity

95% CI

(c) Usage (Since Adoption) by Pre-Productivity

Figure 4: Heterogeneity of Usage of Copilot
Notes: This figure explores heterogeneous usage patterns of Copilot across developer tenure, level
and pre-period productivity. We show event studies that detail the extensive margin, i.e., how
likely a developer is to have used Copilot at all a given number of months after adopting Copilot;
short-tenure developers are more likely to stick with Copilot.

% of Copilot Suggestions Accepted

Below Median ¢ Above Median

28.04

p=0.14 p=0.51 p=0.01
27.0
26.0 25.9

254
2501 252
24.7
243

24.01 242

Tenure Level Pre—Proauctivity

Figure 5: Heterogeneity of Fraction of Suggestions Accepted

Notes: This figure shows the fraction of Copilot suggestions that are accepted by developers;
short-tenure developers are slightly and less productive developers are much more likely to accept

15

perhaps expect larger benefits from the technology than their more experienced counter-
parts. Judging by Figure [f(b), this effect does not seem present when comparing junior
to senior developers. Figure [d{c) shows that, if anything, low-productivity developers
are less likely to continue using Copilot, though the difference is (just) not statistically
significant (p=.085). Finally, Figure 5 reveals that higher-tenure developers are approxi-
mately 4.3% (or 1.0 percentage points) less likely to accept code suggested by Copilot.
When comparing junior to senior developers, this difference in acceptance rates is much
smaller at 1.8% (or 0.5 percentage points), though it goes in the same direction of senior
developers being less likely to accept Al suggestions. Intriguingly, there is a much larger
difference across pre-productivity levels: developers who were less productive before the
experiment are significantly more likely to accept any given suggestion.

Moving on towards output measures in Figure 6| we see that the productivity-enhancing
effects of Copilot are stronger for lower tenure and more junior developers. While our
estimates are noisy and not statistically significant at conventional levels, the pattern is
the same across all three main outcome measures: short-tenure developers increase their
output by 27% to 39% while long-tenure developers have smaller gains of 8% to 13%.
However, we note that because of our emphasis on the average effect of initially adopting
Copilot and the patterns in Figure [d(a), the estimates for longer-tenure developers may
be attenuated by a larger extent of developers abandoning the technology after an initial
trial phase. Still, there is no difference in usage conditional on adoption between junior
and senior developers in Figure f{(b), and still we see in [p[b) that junior developers in-
crease their output by 21% to 40% while senior developers have more marginal gains of
7% to 16%. The estimates for above and below-median productivity developers are even
noisier but directionally consistent.

6 Conclusion

To summarize, we find that usage of a generative Al code suggestion tool increases
software developer productivity by 26.08% (SE: 10.3%). We note that this estimate is sub-
stantially smaller than the 58% decrease Peng et al. (2023) find for the time to complete a
software engineering task in the lab (which would correspond to almost twice as many
tasks done in a given amount of time). It is perhaps unsurprising that the effect of the
tool in real-world contexts is smaller than in the lab, since some types of coding tasks
may be less readily assisted by Copilot. Additionally, coding is only part of a software
developer’s job, so only some of the time saved on coding tasks may be spent on addi-
tional coding. Our estimate is based on observing, partly over the years, the output of
almost five thousand software developers at three different companies as part of their
regular job, which strongly supports its external validity.

16

Short Tenure ¢ Long Tenure Junior Level e Senior Level
1004 p=0.21 p=0.28 p=0.26 p=0.69 1004 p=0.13 p=0.77 p=0.47 p=0.63

—_— —_— —_— —_— —_— —_— —_— —_—

501 501

40

% Increase in Outcome
(5]
Nl
W
wn
% Increase in Outcome

(=]
T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
!
I
I
I
I
I
I
I
I
I
I
|
|
]
I
I
I
I
I
I
I
|

|

D>

I
I
I

-504 =501
Pull Requests Commits Builds Build Success Rate Pull Requests Commits Builds Build Success Rate

(a) Treatment Effects by Tenure (b) Treatment Effects by Level

Low Pre-Productivity * High Pre-Productivity
100+ p=0.65 p=0.38 p=0.55 p=0.64

50+

% Increase in Outcome

i
i
|
i
i
|
i
i
|
i
|
i
|
i
|
i
|
i
|
&
ol
b
|

-50+

Pull Réquests Commits Builds Build Success Rate
(c) Treatment Effects by Pre-Productivity

Figure 6: Heterogeneity of Copilot Effect (Weighted IV)

Notes: This figure provides weighted IV estimates of the effect of adopting Copilot on the total
number of pull requests, commits, builds, and build success rate broken out by (a) whether a
developer’s tenure with Microsoft at the beginning of the experiment was below median (short
tenure) or above median (long tenure), (b) which level a developer was employed at and (c) the
productivity of the developer before the start of the experiment. The dots in each panel are esti-
mates derived from a single regression for each outcome where the treatment effect is allowed to
differ by (a) tenure, (b) level or (c) the developer’s productivity in the pre-period as measured by
his total number of completed pull requests. The bars provide 95% confidence intervals based on
standard errors clustered at the level of treatment assignment. For all three outcome measures, the
effects on productivity are stronger for short-tenure/junior/less productive developers, though
the difference is typically not statistically significant.

17

References

Acemoglu, Daron (Apr. 2024). The Simple Macroeconomics of Al. Tech. rep. Prepared for
Economic Policy. Massachusetts Institute of Technology.

Agrawal, Ajay, Joshua Gans, and Avi Goldfarb (2019). “Economic policy for artificial
intelligence”. In: Innovation policy and the economy 19.1, pp. 139-159.

Baily, Martin, Erik Brynjolfsson, and Anton Korinek (2023). “Machines of mind: The case
for an Al-powered productivity boom”. In.

Bloom, Nicholas, Benn Eifert, Aprajit Mahajan, David McKenzie, and John Roberts (Nov.
2012). “ Does Management Matter? Evidence from India *”. In: The Quarterly Journal
of Economics 128.1, pp. 1-51. eprint: https : //academic . oup . com/qje/article -
pdf/128/1/1/30624754/qjs044 . pdf.

Bresnahan, Timothy (2024). “What innovation paths for Al to become a GPT?” In: Journal
of Economics & Management Strategy 33.2, pp. 305-316. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1111/jems. 12524,

Brynjolfsson, Erik, Danielle Li, and Lindsey Raymond (2023). “Generative Al at Work”.
In: NBER Working Paper w31161.

Brynjolfsson, Erik, Daniel Rock, and Chad Syverson (2021). “The productivity J-curve:
How intangibles complement general purpose technologies”. In: American Economic
Journal: Macroeconomics 13.1, pp. 333-372.

Bubeck, Sébastien, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz,
Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. (2023). “Sparks
of artificial general intelligence: Early experiments with gpt-4”. In: arXiv preprint
arXiv:2303.12712.

Campero, Andres, Michelle Vaccaro, Jaeyoon Song, Haoran Wen, Abdullah Almaatoug,
and Thomas W. Malone (2022). A Test for Evaluating Performance in Human-Computer
Systems. arXiv: 2206.12390 [cs.HC].

Coussens, Stephen and Jann Spiess (2021). Improving Inference from Simple Instruments
through Compliance Estimation. arXiv: 2108.03726 [econ.EM].

Cowgill, Bo, Fabrizio Dell’Acqua, Sam Deng, Daniel Hsu, Nakul Verma, and Augustin
Chaintreau (2020). “Biased Programmers? Or Biased Data? A Field Experiment in Op-
erationalizing Al Ethics”. In: Proceedings of the 21st ACM Conference on Economics and
Computation. Columbia Business School Research Paper Forthcoming. ACM, pp. 679-
681.

Dell’Acqua, Fabrizio, Edward McFowland, Ethan R Mollick, Hila Lifshitz-Assaf, Kather-
ine Kellogg, Saran Rajendran, Lisa Krayer, Francois Candelon, and Karim R Lakhani
(2023). “Navigating the jagged technological frontier: Field experimental evidence of
the effects of Al on knowledge worker productivity and quality”. In: Harvard Business
School Technology & Operations Mgt. Unit Working Paper 24-013.

Dietvorst, Berkeley], Joseph P Simmons, and Cade Massey (2015). “Algorithm aversion:
people erroneously avoid algorithms after seeing them err.” In: Journal of experimental
psychology: General 144.1, p. 114.

— (2018). “Overcoming algorithm aversion: People will use imperfect algorithms if they
can (even slightly) modify them”. In: Management science 64.3, pp. 1155-1170.

18

https://academic.oup.com/qje/article-pdf/128/1/1/30624754/qjs044.pdf
https://academic.oup.com/qje/article-pdf/128/1/1/30624754/qjs044.pdf
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jems.12524
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jems.12524
https://arxiv.org/abs/2206.12390
https://arxiv.org/abs/2108.03726

Eloundou, Tyna, Sam Manning, Pamela Mishkin, and Daniel Rock (2023). GPTs are GP1s:
An Early Look at the Labor Market Impact Potential of Large Language Models. arXiv: 2303.
10130 [econ.GN].

Emanuel, Natalia, Emma Harrington, and Amanda Pallais (2023). The Power of Proximity
to Coworkers: Training for Tomorrow or Productivity Today?

Frank, Morgan R, David Autor, James E Bessen, Erik Brynjolfsson, Manuel Cebrian,
David] Deming, Maryann Feldman, Matthew Groh, José Lobo, Esteban Moro, et
al. (2019). “Toward understanding the impact of artificial intelligence on labor”. In:
Proceedings of the National Academy of Sciences 116.14, pp. 6531-6539.

Furman, Jason and Robert Seamans (2019). “Al and the Economy”. In: Innovation policy
and the economy 19.1, pp. 161-191.

Greenstein, Shane, Nathaniel Lovin, Scott Wallsten, Kerry Herman, and Susan Pinckney
(Dec. 2024). A Guide to the Vocabulary, Evolution, and Impact of Artificial Intelligence (Al).
Technical Note 625-039. Harvard Business School.

Hoffmann, Manuel, Sam Boysel, Frank Nagle, Sida Peng, and Kevin Xu (July 2024). “Gen-
erative Al and Distributed Work: Evidence from Open Source Software”. In: Unpub-
lished. Version: July 8, 2024.

Huntington-Klein, Nick (2020). In: Journal of Causal Inference 8.1, pp. 182-208.

Jaffe, Sonia, Neha Parikh Shah, Jenna Butler, Alex Farach, Alexia Cambon, Brent Hecht,
Michael Schwarz, and Jaime Teevan (July 2024). Generative Al in Real-World Workplaces.
Tech. rep. MSR-TR-2024-29. Microsoft.

Meyer, Jeremy (2011). “Workforce age and technology adoption in small and medium-
sized service firms”. In: Small Business Economics 37.3, pp. 305-324.

Murciano-Goroff, Raviv (2022). “Missing women in tech: The labor market for highly
skilled software engineers”. In: Management Science 68.5, pp. 3262-3281.

Nagle, F, S Greenstein, M Roche, NL Wright, and S Mehta (2023). “CoPilots (s): Genera-
tive Al at Microsoft and GitHub”. In: Harvard Business School Case 9, pp. 624-010.
Noy, Shakked and Whitney Zhang (2023). “Experimental evidence on the productivity

effects of generative artificial intelligence”. In: Science 381.6654, pp. 187-192.

Otis, Nicholas, Rowan Clarke, Solene Delecourt, David Holtz, and Rembrand Koning
(Feb. 2024). “The Uneven Impact of Generative Al on Entrepreneurial Performance”.
In: SSRN Electronic Journal.

Peng, Sida (Oct. 2024). The Effects of Generative Al on High Skilled Work: Evidence from Three
Field Experiments with Software Developers. AEA RCT Registry.

Peng, Sida, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer (2023). “The impact
of ai on developer productivity: Evidence from github copilot”. In: arXiv preprint
arXiv:2302.06590.

Toner-Rodgers, Aidan (2024). “Artificial intelligence, scientific discovery, and product
innovation”. In: arXiv preprint arXiv:2412.17866.

Vaithilingam, Priyan, Tianyi Zhang, and Elena L Glassman (2022). “Expectation vs. expe-
rience: Evaluating the usability of code generation tools powered by large language
models”. In: Chi conference on human factors in computing systems extended abstracts,
pp. 1-7.

Yeverechyahu, Doron, Raveesh Mayya, and Gal Oestreicher-Singer (July 2024). “The Im-
pact of Large Language Models on Open-source Innovation: Evidence from GitHub

19

https://arxiv.org/abs/2303.10130
https://arxiv.org/abs/2303.10130

Copilot”. In: Unpublished. Available at SSRN: https://ssrn.com/abstract=4684662
or http://dx.doi.org/10.2139/ssrn.4684662.

20

https://ssrn.com/abstract=4684662
http://dx.doi.org/10.2139/ssrn.4684662

Supplemental Appendix

A Alternative Specifications & Robustness

This appendix provides a version of Table 2| that includes additional, alternative speci-
fications, including unweighted IV. We also provide a version of Figure 3| that does not
use weights when estimating (Il The resulting results have wider confidence intervals
but point in the same direction as our main estimates. We also exhibit the weights that
underlie Table [2l and Figure

21

[44

Outcome Microsoft Accenture Anon. Comp. Pooled
DiD DiD-P v W-IV DiD DiD-P v W-IV DiD DiD-P v WIV DiD DiD-P v W-1vV

Pull Requests 7.63** 6.81** 1053 27.38* 52.65** 2254 1597 1794 170 277 5403 5403 6.24** 523** 1873 26.08*
(249) (2.52) (24.82) (12.88) (9.46) (9.35) (21.26) (18.72) (247) (2.35) (42.63) (42.63) (1.72) (1.69) (15.1) (10.3)

Commits 7.03*% A42** 554 1832 12.85 867 360 -448 - - - 725" 58 097 1355
(2.32) (246) (2220) (1125) (11.62) (12.08) (22.19) (21.88) - - - - (228) (241) (15.69) (10.0)
Builds 7A1% 725%% 587 2319 39.66*** 1370 96.05** 9240 - - - - 823" 756™* 49.66% 38.38%
(.65 (274) (2725) (1420) (14.03) (12.10) (28.05) (26.78) - - - - (.6) (267) (1955) (12.55)
Build Success -0.65 -0.66 392 -1.34 -20.72%* -1959** -1810* -17.40% - - - - -113 105 539 -553
Rate 0.79) (0.78) (817) (4.23) (5.06) (5.36) (9.55) (7.12) - - - - 0.78) (0.77) (621) (3.64)

Table 3: Alternative Specifications for Experimental Results

Notes: This table builds on Table 2|by reporting the results of additional specifications. Each entry can be interpreted as an estimate
of the percentage effect of adoption of GitHub Copilot. DiD is like in Table 2} DiD-P is like DiD but runs a Poisson model and then

reports 100 * (exp(B) — 1)), IV is like W-IV in Table 2]but without weighting the regression by adoption differences, W-IV is like in
Table

Short Tenure ¢ Long Tenure Junior Level e Senior Level
10041 p=0.00 p=0.00 p=0.00 p=0.69 1004 p=0.00 p=0.03 p=0.08 p=0.70
o o
£ £
8 8
g 50 g 50
:E) 31 . 2 E 26
2 & 14 10
g e 3 e3___ g) 1 S R S e K el 3 e3___
= 2 -12
g -15 =
o 18 19 < 20
-504 -504
Pull Réquests Commits Builds Build Success Rate Pull Réquests Commits Builds Build Success Rate
(a) Treatment Effects by Tenure (b) Treatment Effects by Level
Low Pre-Productivity —* High Pre-Productivity
1001 p=0.00 p=0.00 p=0.01 p=0.39

I}

15

3

8 50+

g 29

§) A A S 2 4 43 S

= 14 13

- -19

=501
Pull Réquests Commits Builds Build Success Rate

(c) Treatment Effects by Pre-Productivity

Figure 7: Heterogeneity of Effect of Copilot (Unweighted IV)
Notes: This figure provides unweighted IV estimates of the effect of adopting Copilot on total
number of pull requests, commits, builds, and build success rate broken out by (a) whether a
developer’s tenure with Microsoft at the beginning of the experiment was below median (short
tenure) or above median (long tenure), (b) which level a developer was employed at and (c) the
developer’s pre-experiment productivity. The dots in each panel are estimates derived from a
single regression for each outcome where the treatment effect is allowed to differ by (a) tenure,
(b) level, or (c) the developer’s productivity in the pre-period as measured by his total number
of completed pull requests. The bars provide 95% confidence intervals based on standard errors
clustered at the level of treatment assignment. For all three outcome measures, the effects on
productivity are stronger for short-tenure/more junior/less productive developers. The p-values
for differences between individual coefficient estimates are often very small despite substantial
overlap in the confidence intervals due to high correlations (exceeding 0.9) between the estimates.

23

Weight
Weight

14

0+ 01
Jan 22 Jul 22 Jan 23 Jul 23 Jan 24 Jul 24 Jan 23 Apr23 Jul 23 Oct 23 Jan 24 Apr 24
Date Date

(a) Microsoft Experiment (b) Accenture Experiment

Weight

0,
Jul22 Oct22 Jan23 Apr23 Jul23 Oct23 Jan24 Apr24
Date

(c) Accenture Experiment

Figure 8: Regression Weight

Notes: This figure provides the weights used in the W-IV estimates underlying Table |2 Recall
that we are weighting the IV estimates to exploit information from periods where the instruments
predict uptake. Hence, we use the difference in adoption across the control and treatment groups
by a given date as our weight. This matters most for the Microsoft experiment, in which the
control group adopted at an elevated rate when its access was granted in March 2023. For this
experiment, we put extra weight on the period just before the control group was allowed to adopt
Copilot.

24

B Data Cleaning

We provide details on which individuals we had to exclude from each raw dataset and
the reasons for their exclusion.

B.1 Microsoft

In the original sample of the dataset, we have 1,746 individuals. We kept only software
engineers, which leaves us 1,538, and we dropped people who switched organizations,
leaving us 1,522. Finally, we dropped one individual who adopted before the experiment
started, with a final sample of 1,521.

We also drop the data for the last week of the dataset since the dataset does not record
the full week of activity for the last week.

Finally, note that while the restriction for the control group was lifted in April 2023,
ten individuals in the control group adopted before that date. We include these individ-
uals in our regressions, and they naturally weaken the strength of the instrument.

B.2 Accenture

We drop individuals who have no record of data and people who left the company. We
start with the original dataset with 369 individuals, and after dropping individuals with
no outcome measure found we are left with 320, and after dropping individuals who left
the company we are left with a final sample of 316.

Finally, we note that while individuals in the control group were allowed to adopt
starting December 2023, there was one individual in the control group who adopted in
October 2023. We include this individual in our regressions.

B.3 Anonymous Company

The original sample has 3,054 individuals. We drop individuals who have shown/adopted
before they were given access and are left with a final sample of 3,030 individuals.

25

C Experiment Details

TO TREATED GROUP

Intended recipients: Engineers and PM under ||| N
Proposed subject line: Copilot dogfood experiment

Hi there,

We would like to invite you to use Github Copilot for your day to day work as part of our Copilot research project
with Office of Chief Economist. Dogfooding is an important step to ensure we are using our own product and
providing feedback to the Copilot team. This is a key step for us to make Copilot better for all developers.

Please visit: <link to onboarding experience> to learn more. If you agree to take part in this study you must first
consent to participation, fill out the onboarding form and review the usage guideline. After submitting your
onboard form, your account will be manually activated within 3 days and you will get a welcome email with
installation instructions.

If you have any question regarding this project, please contact ||| NG

If you'd rather not be contacted regarding this in the future or have any questions about this project, please let us
know.

Contact:
Il | Microsoft Data Privacy Notice

CONTROL GROUP: Separate message for the control group who would want access to Copilot

Hello,

Thanks for your interest in Copilot. Your division is participating in an internal controlled research study. Your team
was randomly selected to not yet receive Copilot access. As the study concludes, you will be notified that Copilot is

now available for your use.

If you have any questions about this study, please reach out to]Il from the Chief Economist's office.

If you'd rather not be contacted regarding this in the future or have any questions about this project, please let us
know.

Contact:
-| Microsoft Data Privacy Notice

Figure 9: E-mail Sent To Participants in the Microsoft Experiment
Notes: This figure exhibits the copy that was sent to participants in the Microsoft experiment.

26

Control Treatment
Mean Std. Dev. Mean Std. Dev Difference p-value

Pull Requests 0.08 0.26 0.09 0.29 0.02 0.38
Commits 6.28 11.24 5.28 10.09 -1.00 0.30
Builds 5.32 10.32 523 10.52 -0.09 0.93
Build Success Rate 0.49 0.33 0.50 0.33 0.01 0.60

Table 4: Balance Table for First Accenture Experiment
Notes: This table presents a comparison of pre-experimental outcomes in control and treatment
groups across experiments. For each measure, we present its mean and standard deviation in the
control group and in the treatment group. We also show the mean difference across these groups
and the p-value associated with an underlying test of differences in means. The differences in
p-values are calculated using standard errors clustered at the level of treatment assignment.

D The First Accenture Experiment

We do not discuss at length in the main text another experiment that was run by Accen-
ture in April 2023 and included a number of Accenture offices located in Southeast Asia.
This experiment was abandoned by the company after Accenture laid off 19,000 employ-
ees that some month (cnn.com), including 42% of the developers participating in this
experiment. Still, this attrition was balanced across treatment and control, and we can
thus subset to the 204 developers who were not let go for our analysis; indeed, Table
confirms that after this subsetting, treatment and control are still balanced. The problem
emerges because Microsoft did not log all Copilot usage data for this experiment, as the
company considered it abandoned. In particular, we lack adoption data for the control
group until October "23. Without this adoption data, any analysis is potentially biased.

Still, because our initial analysis revealed that this experiment was the only exper-
iment across the three in which we have a negative (though statistically insignificant)
point estimate for Copilot’s effect on productivity, we proceed to analyze this experiment
in this appendix by imputing that nobody in the Control group adopts Copilot until Oc-
tober "23, yielding the adoption path in Figure Thus, in the worst-case scenario, it
could be that all the adoptions that we attribute to October 2023 already happened right
at the beginning of the experiment. This data quality concern means our treatment effect
estimates will be conservative (as we may mistakenly count up to 10% of the control
group as non-adopters during half of the sampling period.)

Keeping in mind this caveat that our treatment effect estimates are potentially conser-
vative, we report the results from this first Accenture experiment in Table 5| We find a
negative point estimate of -39.18% (SE: 36.78%) on the number of tasks completed. Still,
this estimate has a high degree of statistical uncertainty, and we note that the estimates
on the number of commits 43.04% (SE: 38.8%) and builds 12.33% (SE: 53.6%) are both
positive, though also not statistically significant.

27

—— Treated
—-- Control

Cumulative Rate

pr23 Jul 23 Oct 23 Jan 24 Apr 24

Figure 10: Cumulative Adoption Rates for First Accenture Experiment
Notes: This graph shows the cumulative rate of adoption over time for software developers in both
the treatment and control groups in the first Accenture experiment. Note that we are imputing
that nobody in the Control group adopts Copilot until October "23.

Outcome Accenture #1
Pull Requests -39.18
(36.78)
Commits 43.04
(38.80)
Builds 12.33
(53.60)
Build Success Rate -0.99
(16.51)
N Developers 204
N Clusters 204

Table 5: Weighted IV Results for First Accenture Experiment

Notes: This table provides estimates of the effect of GitHub Copilot adoption on the number of
Pull Requests, Commits, and in the first Accenture experiment. Standard errors are clustered at
the developer level. The estimates presented in this table are potentially conservative because
they require imputing that nobody in the Control group adopts Copilot until October "23.)

28

	Introduction
	Setting and Experiments
	What Is AI-Assisted Software Development?
	Experiments
	Variables and Outcome Measures

	Adoption of Copilot
	Empirical Strategy & Main Results
	Empirical Strategy
	Results

	Heterogeneity
	Conclusion
	Alternative Specifications & Robustness
	Data Cleaning
	Microsoft
	Accenture
	Anonymous Company

	Experiment Details
	The First Accenture Experiment

