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Abstract

Unmeasured confounding and selection into treatment are key threats to reli-

able causal inference in Difference-in-Differences (DiD) designs. In practice, re-

searchers often use instrumental variables to address endogeneity concerns, for

example through shift-share instruments. However, in many settings instruments

may be correlated with unobserved confounders, exhibiting pre-trends. In this

paper we explore the use of synthetic controls to address unmeasured confound-

ing in IV-DiD settings. We propose a synthetic IV estimator that partials out

the unmeasured confounding and derive conditions under which it is consistent

and asymptotically normal, when the standard two-stage least squares is not.

Motivated by the finite sample properties of our estimator we then propose an

ensemble estimator that might address different sources of bias simultaneously.

We illustrate our method through a simulation exercise and two shift-share em-

pirical applications: the Syrian refugee crisis effect on Turkish labor markets and

the impact of Chinese imports on US manufacturing employment.

1. Introduction

In many applied settings researchers are interested in evaluating the impact of a treatment or

an intervention that affects a set of units of interest over time. In these settings, researchers

may be worried about endogeneity concerns such as the treatment affecting units selectively

or differential trends amongst units that received different doses of the treatment. To address

these concerns researchers may turn to differences in differences (DiD) designs (Card and

Krueger, 2000) or synthetic control (Abadie and Gardeazabal, 2003) designs (SC) in which

control units are used to evaluate the counterfactual in absence of the intervention. While

these approaches may address part of the endogeneity problems, often valid control units
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may not exist, as all units may be treated, or control units and treated units may not follow

similar paths, violating the parallel trends assumption. Faced with this reality, researchers

may consider an instrumental variable (IV) approach in combination with the DiD design

(for example using a shift-share instrument, e.g. Jaeger et al. (2018a)). Unfortunately,

in practice the endogeneity problems may persist as the instrument may be correlated with

unobserved heterogeneity in the outcome of interest, exhibiting ‘pre-trends’. In this paper we

propose a synthetic IV (SIV) estimator that combines the instrument and synthetic controls

to account for the bias due to unobserved heterogeneity.

Our proposed method can be applied in a variety of partially identified IV designs, but

it is useful to start with a shift-share example as motivation. Suppose we want to study the

effect of immigration on Turkish labor markets using the Syrian civil war as an exogenous

shock. An intuitive empirical strategy to address the endogeneity problem due to the location

choice of immigrants, is to use a shift-share design where the distance to the border is the

“share” and the aggregate inflow of refugees is the “shift”. The problem with such a design

is that the share exogeneity assumption may not hold in practice: regions close and away

from the border may be on different economic trajectories before the Syrian civil war starts.

These differential trends may bias our estimates of the effect of the refugees on local labor

outcomes. Our proposed method, the SIV, creates a synthetic control unit for each region

in the pre-intervention period and then debiases the outcomes of interest to account for the

differential trends and correct the bias in the two-stage least square estimator.

To motivate our method theoretically we derive consistency and asymptotic normality

results in triangular panel designs with unmeasured confounding. We assume that the un-

observed error term has two components: an idiosyncratic component that is orthogonal to

the instrument and an unobserved heterogeneity component that follows a factor structure.

If we could control for the unobserved factor structure the TSLS would be consistent, but we

cannot do so directly. Our solution, the SIV, proposes synthetic controls as a way to proxy

for the unobserved confounding through interpolation. Under signal-to-noise restrictions and

weak primitive assumptions we show that the synthetic IV is consistent and asymptotically

normal when the number of units and time periods is large. Through finite sample bounds

we highlight that the proposed estimator might be specially sensitive to the noise level and

the weakness of the instrument. To account for this we propose empirical checks researchers

might want to implement in practice, as well as a “doubly robust” ensemble estimator that

combines the synthetic IV with a projected synthetic IV that partials out the noise.

We show the applicability of our method in a simulation study, by studying the Syrian
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refugee crisis example, and by re-visiting the effect of Chinese imports on US manufacturing

employment (Autor et al. (2013), ADH henceforth). The simulation study shows that the

synthetic IV and ensemble estimators outperform the TSLS with two-way fixed effects in a

variety of settings. Furthermore, the SIV exhibits close to zero bias in settings with moderate

and small levels of noise and unobserved heterogeneity, and the ensemble estimator is shown

to be robust in settings with higher noise levels. In a study of the coverage of the synthetic IV

estimator we find that it is good in cases in which the estimator exhibits small bias. Following

the theoretical properties and the observed behavior under simulations we recommend that

researchers implement three checks (in the spirit of the best practices detailed in Abadie

and Vives-i-Bastida (2022)) when using the estimator: (1) ensuring that the instrument is

not weak after the debiasing, (2) making sure that the estimator achieves good fit in the

pre-treatment period and (3) implementing a back test to ensure the good fit is not due to

over-fitting to the idiosyncratic noise.

In our study of the Syrian refugee crisis we find that the while the TSLS with two-

way fixed effects exhibits pre-trends, the synthetic IV estimator does not. More so, using

the SIV estimator yields different results when evaluating some of the main outcomes of

interest: while the TSLS estimator cannot reject that there is no effect of immigration

on natives’ salaried employment, the synthetic IV estimator finds a statistically significant

negative effect. For example, using TSLS we find that a 1 pp increase in refugee/native

ratio is associated with a 0.01 pp increase in native salaried employment for low-skilled

men, whereas using SIV shows that it causes a 0.16 pp decrease. This implies that for

every 100 immigrants that arrived to Turkey, 16 low-skilled natives lost salaried jobs. These

economically and statistically significant differences in the IV and SIV estimates highlight

the role of unobserved confounders in the long-standing debate about the labor market effects

of immigrants (Borjas, 2017; Peri and Yasenov, 2019).

In our re-analysis of the effect of Chinese imports on US manufacturing, we follow the

identification strategy of ADH. We compare regions that were more exposed to Chinese im-

ports based on their pre-existing industrial composition with regions that were less exposed.

We first show that the “shares” in the ADH’s design exhibit pre-trends. Regions that were

more exposed to the China shock starting from 1990 grew less between 1980—1990 than

1970—1980. In fact, the difference in growth rates between 1980—1990 and 1970—1980 is

almost identical to the difference in growth rates after the China shock in 1990—2000 and

1980—1990. The SIV estimator corrects for this pre-trend, but provides similar estimates to

ADH of the China shock effect. This finding contributes to the growing literature estimating
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the China shock effect under different modelling assumptions (references), and highlights

that the original finding might be robust to the existence of pre-trends.

This paper contributes to several strands of the literature. First, it complements the

growing body of work on addressing unobserved confounding and ‘pre-trends’ in panel data

settings by providing a method for the IV DiD case. Research in this area is built upon syn-

thetic control based methods (Abadie et al., 2010, 2015; Ben-Michael et al., 2021), more gen-

eral weighting methods such as the synthetic differences in differences (SDID , Arkhangelsky

et al. (2021a)), as well as balancing methods (Hainmuller 2012), matrix completion meth-

ods (Agarwal et al., 2021; Athey et al., 2021) and factor model methods (Anatolyev and

Mikusheva, 2022; Bai, 2009). Similarly, our paper complements related work on addressing

and evaluating pre-trends in event-study designs, including Freyaldenhoven et al. (2019),

Borusyak et al. (2023), Roth (2022) and Ham and Miratrix (2022) among others. A more

closely related paper is Arkhangelsky and Korovkin (2023) which provide a novel weighting

algorithm, similar to SDID, to address unobserved confounding in settings in which the ex-

ogenous variation comes from aggregate time series shocks. The authors propose a robust

estimator that corrects the TSLS bias when the instrument has a product form and there are

unobserved aggregate shocks that may affect different units differently. We see our method

as complementary to Arkhangelsky and Korovkin (2023), and note that we consider a dif-

ferent setting in which the instrument need not have a product structure and the exogenous

variation may come from the time or unit components.

Second, this paper is related to a growing literature studying and relaxing the identifi-

cation assumptions embedded in shift-share designs. Goldsmith-Pinkham et al. (2020) show

that the identification assumptions in SSIV designs are often based on the exogeneity of

shares. Borusyak et al. (2022) relax this assumption and provide a framework in which

identification can also come from the exogeneity of shifts, allowing shares to be endogenous.

Adao et al. (2019) highlight an inference problem that arises from cross-regional correlation

in the regression residuals due to similarity of sectoral shares in the US. In the immigration

context, Jaeger et al. (2018b) show that past-settlement instruments in practice conflate

both short-term and long-term adjustments to immigration shocks, which invalidates the

exogeneity assumption. Our method provides an additional tool applied researchers can rely

on to address unobserved confounders in the SSIV designs.

Lastly, our empirical example is related to a large literature studying the effects of immi-

gration using refugee shocks (Card, 1990; Hunt, 1992; Friedberg, 2001; Angrist and Kugler,

2003; Lebow, 2022). More specifically, our focus on the effects of Syrian refugees on Turkish
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natives and the presence of unobserved confounders in Turkey follows Gulek (2023) closely.

Whereas he focuses on the effects on the formal and informal labor markets, we focus on the

overall impact on salaried employment and consider heterogeneity across men and women.

The paper proceeds as follows. Section 2 describes the setting and an empirical example.

Section 3 presents the synthetic IV estimator and two additional estimators. Section 4

discusses the theoretical results. Section 5 regards the simulation study. Section 6 re-visits

the Syrian refugee shock application and section 7 the China shock example. Finally, section

8 concludes.

2. Setting and the Syrian refugee shock

We are interested in a panel data setting in which some units of interest are exposed to a

(potentially continuous) treatment and there are endogeneity concerns. The researcher may

be worried about using a differences-in-differences design as the parallel trends assumption

might not hold, but has access to an instrument that partially addresses the endogeneity

concerns. More precisely, we consider J units indexed by i = 1, . . . , J that are observed for T

periods of time with outcomes of interest Yit and potential outcomes denoted by Yit(Rit) for

a random variable Rit ∈ R. Throughout the paper we assume that the potential outcomes

follow a linear triangular system as described by Assumption 1.

Assumption 1 [Design] Potential outcomes follow a linear factor model

Yit(Rit) = θRit + µ′
iFt + ϵit

where µi is a vector of k unobserved factor loadings, Ft denotes the common factors and ϵit

are unobserved error terms.

A1.1: The treatment Rit follows

Rit = γZit + ηit,

where λi are unobserved factor loadings, Zit is the instrumental variable and ηit is the unob-

served error term.

A1.2: (Shock design) The treatment Rit instead follows

Rit = 1{t > T0}(γZit + ηit).

Assumption 1 defines the triangular design we are interested in. A1.2 states that the in-
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tervention of interest affecting the units happens at time T0 with the outcome of interest

(Rit) being zero for t < T0, as in shift-share designs with time series shocks. We make this

simplification because we are interested in event study designs in our empirical application

in which there are no refugees before T0, however our theory holds more generally and one

could equivalently re-write the design model as in A1.1. In the case in which there is no

times series shock at T0 one can think of choosing T0 as a sample splitting procedure. More

importantly, Assumption 1 imposes structure on the unobserved terms by assuming they

follow a linear factor model. Linear factor model assumptions are common in the synthetic

control literature (see Abadie et al. (2010), or Abadie and Vives-i-Bastida (2022) for a simu-

lation review) and in the matrix completion literature (see Athey et al. (2021) for a review).

This functional form assumption allows us to separate the unobserved term into an omit-

ted variable (the factor structure) and an unobserved error term. With this in mind, the

parameter of interest is the expected marginal effect of Rit

θ = E
[
∂Yit(Rit)

∂Rit

]
=

∂Yit(Rit)

∂Rit

for which the OLS estimator is unbiased under the independence assumption Rit ⊥ ϵit, µ
′
iFt.

In many settings, however, Rit is likely correlated with the unobserved factor term µ′
iFt or

the unobserved error term ϵit. For example, in immigration settings refugees might take into

account local labor market conditions when choosing where to re-locate or alternatively may

relocate based on geographical distance. We distinguish between the two types of correlation

by assuming we have an instrument Zit that is valid for the unobserved endogeneity concern

due to ϵit, but not for the omitted factor structure µ′
iFt.

Assumption 2 [Partial instrument exogeneity] The following independence conditions hold

ϵit, ηit ⊥ Zit.

Assumption 2 states that the instrument is able to address the unobserved error part of

the unmeasured confounding that is due to the correlation between η and ϵ. For example,

common instruments in the immigration literature to address location choice endogeneity

include past-settlement indicators or travel distance (Card, 2001; Angrist and Kugler, 2003).

This set up can be expressed in a simple DAG as shown in panel (a) of Figure 1. As-

sumption 1 and 2 are encoded in the DAG, and in principle there could also be an arrow

between Uit = µ′
iFt and Rit. Panel (c) shows a case in which the OLS would be valid and

panel (b) shows the case in which instrumental variable approach would be valid.
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Figure 1: Triangular designs

(a) General design (b) IV design

(c) OLS design (d) Proxy design

We are interested in the general case in which neither OLS nor the IV provide unbiased

estimates of the true effect θ. For example, this is likely in the immigration setting in cases

in which regions that received immigrants in the past or were closer to the immigrants’

origin are following different trends than the other regions. Our proposed approach can

be thought of as a proxy control approach: if we could control for the omitted variable Uit

(the differential trends in the immigration example) then the instrumental variable approach

would be valid. This is represented in panel (d) of Figure 1. The statistical problem then

becomes finding valid proxy controls for Uit, depending on whether we have additional data,

or not, different strategies have been proposed in the proxy control literature (see Miao

et al. (2018) or Deaner (2021)). Instead of relying on additional data, applied researchers

often rely on controlling for linear trends (Wolfers, 2006), allowing year fixed effects to vary

across groups of regions (Stephens Jr and Yang, 2014), or opting for a different design (for

example synthetic control design if a valid donor pool exists, as in (Cengiz and Tekgüç,

2022)). An alternative approach based on synthetic differences in differences (Arkhangelsky

et al., 2021b) has been proposed by Arkhangelsky and Korovkin (2023) in the case in which

identification relies on aggregrate time series shocks. In this paper, we propose a strategy
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based on interpolation amongst units to control for Uit utilizing the popular synthetic control

method.

To motivate why the setting described under Assumptions 1-2 and in Figure 1 is relevant

to applied work, we consider an empirical example: the effect of the Syrian civil war on

Turkey’s local labor markets. The Syrian civil war started in March 2011 and by 2017,

6 million Syrians had sought shelter outside of Syria with 3.5 million locating in Turkey.1

Figure 2 panel (a) shows the growth in the number of Syrian refugees in Turkey over time and

panel (b) shows the geographic dispersion of the refugees. Given the structure of the Syrian

refugee shock a natural approach to estimating the impact of refugees on local labor outcomes

would be that of a shift-share instrumental variable design that exploits the exogenous time

shock of the civil war and the differential impact across units.

To relate the Syrian example to our setting let Rjt denote the refugee/native ratio at

province-year level and consider a travel distance shift-share instrument, as is common in

the mass-immigration literature (Angrist and Kugler, 2003; Aksu et al., 2022).

Zjt = H̄t︸︷︷︸
shift

× Zj︸︷︷︸
share

,

Zj =
13∑
s=1

λs
1

dj,s

where H̄t is the number of refugees in Turkey in year t, dj,s is the travel distance between

Turkish region p and Syrian governorate s, λs is the weight given to Syrian governorate s

which we set it be proportional to the population share of s.2 In panel (c) of Figure 2 we

plot the first stage coefficients interacted with time dummies from the TWFE specification

Rjt =
∑

j ̸=2010

θj(1{t = j} × Zj) + fj + ft + ηjt.

The first stage regression tests whether the instrument predicts refugees’ location choice in

every year. As expected, the distance is a strong predictor of the refugee treatment intensity.

The F-stat of the shift-share first-stage (where we regress Rjt on Zjt while controlling for

region and time f.e.) is 125. The problem arises when one considers the reduced form of

local wage-employment (salaried employment) of the natives that did not finish high-school

1Turkey hosts the largest number of refugees in the world (UNHCR, 2021).
2The idea is that all else equal, more Syrians would be expected to come from the more populous regions.
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Figure 2: The Syrian refugee shock.
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Notes: In event-study designs the 95% confidence intervals are plotted. The F-stat of the main first-stage
regression is 154. In Panels C and D, x axis shows the 2000s in 2 digit: e.g., 04 means 2004.
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(low-skill)3 on the instrument

Yjt =
∑

j ̸=2010

βj(1{t = j} × Zj) + fj + ft + ϵjt,

which is displayed in panel (d) of Figure 2. Between 2004–2010 (before the refugee crisis

began), the provinces closer to the border observed employment gains compared to other

regions. Being one standard deviation closer to the border predicts a wage-employment

growth of 1 pp between 2004 and 2009. Put differently, there are “pre-trends” in the data.

Given that the regions that are predicted by the instrument to receive immigrants were

following different trends before the shock, it is likely that the IVDID design does not satisfy

the parallel trend assumption. This is despite the fact that we have included region and year

fixed effects in the regression specification. The appearance of pre-trends in similar designs is

a common problem in practice (Wolfers, 2006; Stephens Jr and Yang, 2014; Gulek, 2023) and

has been discussed extensively in the literature (Roth, 2022; Freyaldenhoven et al., 2019).

3. The synthetic estimator

The synthetic estimator consists of two steps. In the first step we find synthetic controls

for each unit in a pre period (t < T0) and generate counterfactual estimates for Yit, Rit and

Zit for a post period. In the second step, as in the standard IV estimator, we use these

counterfactual estimates to compute the first stage and reduced form estimates. To describe

the procedure, consider J units indexed by j = 1, . . . , J observed for T periods of time.

We are interested in an outcome of interest Yit with potential outcomes Yit(Rit) indexed by

random variable Rit.

Step 1: for each j ∈ {1, . . . , J} we find the synthetic control weights w∗
j by solving the

standard SC program for t ∈ {1, . . . , T0}. For each j,

ŵSC
j ∈ argminw∈∆J−1∥Y T0

j − Y T0
−j

′w∥2,

where Y T0 is the J × T0 design matrix that includes pre-treatment outcomes Yjt for t < T0,

with Y T0
j denoting the predictors for unit j and Y T0

−j the J − 1× T0 matrix of predictors for

the other units. In the case in which A1.1 holds instead of A1.2, we include Rit in the design

3This is the key outcome of interest because Syrian refugees were substantially less educated compared to
the Turkish population, and hence constitute largely a low-skill immigration shock. We provide more details
about the setting in the Appendix.
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matrix to compute the synthetic control weights as well as Yit.

Then, we define the following quantities for any t:

Ŷ SC
it =

∑
j ̸=i

ŵSC
ij Yjt,

R̂SC
it =

∑
j ̸=i

ŵSC
ij Rjt,

ẐSC
it =

∑
j ̸=i

ŵSC
ij Zjt,

which we label the synthetic outcome, treatment level and instrument respectively. Similarly,

we compute the debiased values for t > T0:

Ỹit = Yit − Ŷ SC
it ,

R̃it = Rit − R̂SC
it ,

Z̃it = Zit − ẐSC
it .

Step 2: Given {Ỹit, R̃it, Z̃it}Tt=T0+1, we estimate the first stage and reduced form by OLS:

π̃ ∈ argmin
β

(Ỹ − Z̃β)′(Ỹ − Z̃β),

β̃1 ∈ argmin
π

(R̃− Z̃π)′(R̃− Z̃π).

where we may also includes observed covariates X in the regression. Then, the estimated

average marginal effect is given by:

θ̃SIV =
π̃

β̃1

,

which we label the synthetic IV estimator.

Observe that this estimator is equivalent to the synthetic TSLS estimator given by

θ̃TSLS =

(∑
it

Z̃itR̃it

)−1∑
it

Z̃itỸit.

Alternatively, an estimator that identifies the same parameter would be one using the
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instrument Zit instead of the de-biased instrument Z̃it

θ̃TSLS
Z =

(∑
it

ZitR̃it

)−1∑
it

ZitỸit.

which is equivalent to the IV estimator using the reduced form and first stage with the

instrument Zit instead of Z̃it. In the theory and simulation sections we show that while

this estimator is similar to the proposed synthetic IV estimator, it may have worse finite

sample properties, in particular in the case in which the instrument is not strong. For a

discussion of identification in terms of potential outcomes of similar parameters in related

IV difference-in-difference settings see Borusyak and Hull (2020).

3.1. Two additional estimators

The set up described under A1-A2 highlights a trade off between using the instrument

variation to address the endogeneity bias due to the correlation between ϵ and η and incurring

an omitted variable bias due to the instrument’s correlation with µ′
iFt. Our synthetic IV

estimator can address these biases asymptotically in regimes in which σϵ is small as we

highlight in sections 4 and 5. However, when σϵ is large the endogeneity concern becomes

more important than the omitted variable bias and, therefore, we might be able to design

an estimator that addresses this bias directly. With this in mind, we provide two additional

estimators that address this bias directly and propose an ensemble estimator as a ‘doubly

robust’ alternative to the synthetic IV.

In cases in which the instrument also follows a factor structure, Zit = Z ′
iGt, a natural

estimator is to compute the synthetic control weights after projecting the outcome variable

in the instrument space. The intuition for this estimator is that the outcome Yit is noisy due

to the unobserved error ϵ, but given our partial instrument validity assumption A2, after

projecting the outcome in the instrument space we partial out the noise.

The projected synthetic estimator can be computed in the following steps

1. ”de-noise” by projecting: Yzt = Z(Z ′Z)−1Z ′Yt, where Z = (Z1, . . . , ZJ)
′ and Yt =

(Y1t, . . . , YJt)
′ are J × 1 vectors.

2. Use the de-noised outcomes to compute the SC weights in the pre-period

wP
j ∈ argminw∈∆J−1∥Y T0

j − Y T0
z,−j

′w∥2.
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3. Define the de-biased quantities Ỹ P
it , Z̃

P
it , R̃

P
it .

4. Estimate the synthetic TSLS projected estimator

θ̃Proj =

(∑
it

Z̃P
it R̃

P
it

)−1∑
it

Z̃P
it Ỹ

P
it .

Alternatively, in cases in which we believe the time series structure is not very impor-

tant aggregating the outcome variables in the pre-period can reduce the dependence of the

synthetic control match on the error terms ϵ. The intuition follows from a common rule of

thumb for synthetic controls: aggregation can help reduce idiosyncratic noise.

The aggregated synthetic estimator can be computed as follows

1. Let Qi =
∑

t<T0
ZitYit.

2. Compute the SC weights in the pre-period using the aggregated quantities

wAgg
j ∈ argminw∈∆J−1∥Qi −Q′

−iw∥2.

3. Define the de-biased quantities Ỹ A
it , Z̃

A
it , R̃

A
it .

4. Estimate the synthetic TSLS aggregated estimator

θ̃Agg =

(∑
it

Z̃A
it R̃

A
it

)−1∑
it

Z̃A
it Ỹ

A
it .

The performance of each estimator will depend on the data generating process primitives.

In cases in which the noise error term ϵ is more important than the factor term µ′
iFt the

projected estimator will perform favorably. On the other hand, if the factor structure (the

signal) dominates, the projected estimator will perform worse than the synthetic IV as it

will fit the factor structure worse. To account for the different biases in each case, we can

construct an ensemble estimator that combines both estimators. For a hyper-parameter

α ∈ [0, 1] let the ensemble estimator be defined as

θ̃E(α) = αθ̃TSLS + (1− α)θ̃P ,

with an analogous definition for the aggregated synthetic IV. The α hyper-parameter can

be chosen through cross-validation in the pre-period to optimize the mean squared error of
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the synthetic control estimator. The following steps detail how to compute the ensemble

estimator

1. Split the pre-period into a training period 1, . . . , Tv and a validation period Tv +

1, . . . , T0.

2. In the training period compute the synthetic control weights for each estimator, ŵP

and ŵ, and the debiased outcomes Ỹ P
it and Ỹit.

3. In the validation period choose α∗ to minimize the mean squared error in the validation

1

J(T0 − Tv)
∥αỸ P,Tv + (1− α)Ỹ Tv∥22,

where Ỹ Tv denotes the debiased outcomes for the validation period.

4. Compute the ensemble estimator in the post period as α∗θ̃TSLS + (1− α∗)θ̃P .

In the following two sections we discuss the theoretical properties of the synthetic IV es-

timator and finite sample properties through simulations. We highlight that in well behaved

settings with low noise but significant correlation between the instrument and the unobserved

factor structure, the aggregated, projected, and ensemble estimators will perform worse than

the synthetic IV. However, in nosier settings the ensemble estimator appears ‘doubly robust’

and has lower finite sample bias than the synthetic IV estimator.

4. Theoretical Results

We start our theoretical discussion by noting that the standard TSLS estimator suffers from

omitted variable bias under A1-A2. As expected, given the presence of the unobserved factor

structure µ′
iFt, the estimator will be asymptotically biased. More precisely, let T1 = T − T0

and suppose for exposition that as JT1 → ∞

1

JT1

∑
it

Zitµ
′
itFt

p→ ξ,

1

JT1

∑
it

Z2
it

p→ Q > 0.
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Then, as is standard,

θ̂TSLS = θ +

(∑
it

Z2
it

)−1∑
it

Zitµ
′
itFt + op(1)

= θ +Q−1ξ + op(1).

The size of the bias will depend on the correlation between the instrument Zit and the

unobserved factors µ′
iFt, in the case, as in Figure 2, in which clear pre-trends are present

the bias could be large. In a simulation study in Section 5 we investigate the size of the bias

under different regimes and show that in many settings TSLS can be as biased as OLS.

To analyze our proposed synthetic IV estimator, we proceed similarly. In Section 3 we

defined the debiased variables Ỹit and R̃it, and under A1 it can be shown that

Ỹit = Yit − Ŷ SC
it

= θRit + µ′
iFt + ϵit −

∑
j ̸=i

ŵSC
ij Yjt

= θR̃it + (µi −
∑
j ̸=i

ŵSC
ij µj)

′Ft + ϵit −
∑
j ̸=i

ŵSCϵjt.

It follows that the synthetic IV estimator for the regression of Ỹ on R̃ instrumented by Z̃

for t > T0 recuperates θ up to two potential bias terms

θ̃TSLS =

(∑
it

Z̃itR̃it

)−1∑
it

Z̃itỸit

= θ +

(∑
it

Z̃itR̃it

)−1∑
it

Z̃it

(
µi −

∑
j ̸=i

ŵSC
ij µj

)′

Ft

+

(∑
it

Z̃itR̃it

)−1∑
it

Z̃it

(
ϵit −

∑
j ̸=i

ŵSC
ij ϵjt

)
.

The second term depends on the instrument and the unobserved error term ϵ and given

our partial instrument validity assumption A2 can be shown to be zero in expectation when

the error terms are i.i.d. In the appendix, we derive a finite sample bound in the case

in which the errors are sub-gaussian. On the other hand, the first term depends on the

unobserved factor structure µ′
iFt and will not in general be zero in expectation or op(1).

Hence, in general the synthetic IV estimator will be biased in finite samples. Under weak
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conditions on the time series (β-mixing, or covariance stationarity), it may be possible to

directly correct this bias using a cross-fitting procedure in the spirit of the method proposed

in Chernozhukov et al. (2022) for the synthetic control framework. In this paper we take a

different approach and provide general conditions on the data generating process such that

the synthetic IV estimator is consistent when large pre and post periods are available. The

following assumption imposes more structure on the design primitives.

Assumption 3 [Model primitives] Assumptions on the factor structure, the error compo-

nents and the instruments are as follows.

– The common factors are bounded such that for all t, |Flt| ≤ F̄ for l = 1, . . . , k. Fur-

thermore, the matrix F
′
T0
FT0 has minimum eigenvalue ξ such that ξ/T0 > 0. The

factor loadings have bounded diameter such that µi ∈ M with diam(M) = sup{∥t −
s∥ : for t, s ∈ M} ≤ cµ.

– The instruments have bounded diameter: Zit ∈ Z such that diam(Z) = sup{∥t −
s∥ : for t, s ∈ Z} ≤ cz.

– The instrument Zit and the unobserved factor structure satisfy

1

JT

∑
it

Z2
it

p→ Q > 0,

as JT → ∞ and corr(Zit, µ
′
iFt) < 1 for all i, t.

– ϵit and ηit are i.i.d mean zero subGaussian random variables with variance proxies σ2
ϵ

and σ2
η respectively, finite covariance σϵη = E[ϵitηit] and bounded fourth moments.

Assumption 3 has three parts. First, we assume that the model primitives are bounded. This

is a common assumption in papers analyzing the behavior of synthetic control estimators.

Second, we assume that the instrument is strong and not perfectly correlated with the

unobserved factor structure. This requirement avoids weak instrument problems and in the

simulation discussion we highlight the importance of this assumption for the finite sample

performance of the synthetic IV estimator. Finally, we assume that the unobserved error

terms η and ϵ are i.i.d, but potentially correlated. This assumption can be weakened to

allow for time series correlation, however in our main results the time series dependence is

only present through the unobserved factor structure µ′
iFt. Under A1.2-A3 we can derive a

bound on the unobserved factor term in the synthetic IV estimator.
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Theorem 1 [MAD bound] Under A1.2-A3, for t > T0 the following bound holds for all J, T1

and T0

1

JT1

∣∣∣∣∣E
[∑

it

Z̃itµ̃
′
iFt

]∣∣∣∣∣ ≤
(
F̄ 2k

ξ

)
cz

(
2

√
J

T0

σϵ + E

[
1

JT0

∑
i,t≤T0

|Ỹjt|

])

where all the terms are defined in A1-A3. Furthermore, under A1 − A3, as JT1 → ∞,

EMAD(Ỹ T0) → 0 and
√

J
T0

→ 0,

1

JT1

∑
it

Z̃itµ̃
′
iFt

p→ 0.

Theorem 1 states that the bias term that depends on the unobserved factor structure can

be bounded above by the expected mean absolute deviation of the outcome variable in the

pre-treatment period and a term that depends on the likelihood of pre-treatment ”over-

fitting”. In the case in which A1.1 holds, the bound is similar and includes a mean absolute

deviation term for R̃it. This is a standard bound in papers evaluating the properties of

synthetic control estimators (see Abadie et al. (2010) for the first example in the literature

and Vives-i-Bastida (2022) for a example with covariates). It highlights the dependence of

the estimator on good pre-treatment fit (see Ferman and Pinto (2021) for a discussion of

synthetic controls with imperfect pre-treatment fit). In particular, the bound depends on

the error noise level σϵ and the ratio
√

J/T0. In settings, in which the we have a small

amount of pre-treatment periods, a large number of units, or in which the noise level is

high, perfect interpolation of the noise is more likely, biasing the estimator. A discussion in

Abadie and Vives-i-Bastida (2022) highlights the importance of pre-treatment fit and over-

fitting for performance of synthetic control estimators through a simulation study. Similarly,

we evaluate the performance of the synthetic IV estimator in simulations in section 5 and

find that the estimator performs well even in settings with moderate σϵ

√
J/T0.

To provide conditions under which EMAD(Ỹ T0) → 0, we consider a relaxation of rank

proposed by Rudelson and Vershynin (2007) that allows for small perturbations in the ma-

trix.

Assumption 4 [Numerical rank assumption]

For all J and T0 the design matrix has bounded numerical rank,
∥Y T0 ′∥2F
∥Y T0 ′∥22

≤ r̄, and its largest

singular value is bounded above such that σ1(Y
T0) ≤ σ̄1, where r̄ and σ̄1 may depend on J

and T0.

17



The intuition behind Assumption 4 is better seen by considering the rank of the J × T0

design matrix Y T0 . If the matrix had fixed rank r < min{T0, J} all points would lie in a low

dimensional manifold of the space and the pre-treatment fit error would grow proportional

to r. Given that in our setting the error terms are i.i.d shocks, this is not a reasonable

assumption. Instead, we consider a bound on the numerical rank; the ratio between the

Frobenius and 2-norm of a matrix. This notion of rank allows for points to lie ”close” to a

low dimensional manifold. Furthermore, for a matrix A it follows that

∥A∥2F
∥A∥22

≤ rank(A),

therefore the bounded numerical rank assumption is implied by a bounded rank assumption.

Whether A4 is satisfied will depend on the model primitives. In particular, it will be satisfied

when the signal to noise ratio is high. That is, when the factor structure µ′
iFt dominates the

noise term ϵ. In cases in which σϵ is large relative to the factor term the numerical rank is

likely to be large and the pre-treatment fit bad. Note that a bound on the fit of the outcome

will also imply a bound on the fit of Rit under A1, therefore our bounds and results follow

from A1.2 to A1.1 under A3 (with a worse rate). In section 5 we explore the performance

of our estimator in a variety of settings and propose checks researchers can implement to

evaluate whether their empirical setting is likely to satisfy this assumption.

Theorem 2 [Factor term consistency] Under A1-A4, for t > T0 the following bound holds

for all J, T1 and T0

1

JT1

∣∣∣∣∣E
[∑

it

Z̃itµ̃
′
iFt

]∣∣∣∣∣ ≤
(
F̄ 2k

ξ

)
cz

(
2

√
J

T0

σϵ + r̄σ̄1

[
1√
T0J

+

√
J

T0

])

where all the terms are defined in A1-A4. Furthermore, as JT1 → ∞ and r̄σ̄1

√
J
T0

→ 0,

1

JT1

∑
it

Z̃itµ̃
′
iFt

p→ 0.

Theorem 2 shows that the bias due to the factor term is op(1) as long as r̄σ̄1

√
J
T0

→ 0. For

fixed J , this implies that we need T0, T1 → ∞. The restrictions on r̄ and σ̄1 are not uncommon

in the matrix completion literature. Combining the consistency result with the additional

assumptions on the instrument behavior we can show that the synthetic IV estimator is a
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consistent estimator of θ.

Theorem 3 [Consistency] Under A1-A4 and a regularity condition, as JT1 → ∞ and

r̄σ̄1

√
J
T0

→ 0,

θ̃TSLS − θ
p→ 0,

θ̃TSLS
Z − θ

p→ 0,

θ̂TSLS − θ ̸= op(1).

Theorem 3 states that both the synthetic TSLS estimator θ̃TSLS and the synthetic TSLS

estimator for which we do not debias the instrument θ̃TSLS
Z are consistent under our assump-

tions and the rate conditions of Theorem 2, while the standard TSLS estimator is not. As

discussed, however, these estimators are biased in finite samples and the finite sample bias

will depend on the signal to noise ratio, the length of the pre and post treatment periods in

relation to the number of units J and, through the first stage, the correlation between Zit

and µ′
iFt. It is important to note that while debiasing the instrument does not affect the

consistency of the estimator it may improve the finite sample properties of the estimator.

In the appendix, we show under additional assumptions, that debiasing the instrument can

lead to a stronger first stage and, therefore, better finite sample properties. We confirm this

intuition in the simulation study by comparing θ̃TSLS and θ̃TSLS
Z .

Under A1-A3 it is also possible to show that the synthetic IV estimator is asymptotically

normal.

Theorem 4 [Asymptotic normality] Under A1-A4, for t > T0, if
√

T1

T0
(1 + J)r̄σ̄1 → 0 as√

J
T1

→ 0, then

√
JT1(θ̃

SW − θ)

vJT1

d→ N(0, 1).

where vJT1 = (EZ̃ ′R̃)−2
(
E
[∑

it var(Z̃itϵ̃it | Z,w)
])

and

∑
it

var(Z̃itϵ̃it | Z,w) = σ2
∑
it

(1 + ∥wi∥2)(Z2
it +

∑
j ̸=i

Zjtwij −
∑
i ̸=j

ZjtZitwij).

The asymptotic variance in Theorem 4, vJT1 , has an additional term with respect to

the TSLS variance, which accounts for the influence of the weights on the estimator dis-
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tribution. The asymptotic normality result relies on the martingale characterization of

matching estimators by Abadie and Imbens (2012) and can be used to provide confidence

intervals using its sample counterpart v̂JT1 where σ̂2 can be estimated from the regres-

sion residuals and plugged in var(Z̃itϵ̃it | Z,w). In the heteroskedastic case, the quantity∑
it σit(1 + ∥wi∥2)(Z2

it +
∑

j ̸=i Zjtwij −
∑

i ̸=j ZjtZitwij) would need to be estimated. In the

simulation section we study the coverage of the synthetic IV estimator in the homoskedastic

case.

5. Simulation study

We consider a simulation design setting that resembles our empirical application. In partic-

ular, we impose the following design primitives:

Yit = βRit + µ′
ift + ϵit,

Rit = (γZit + ηit) ∗ 1(t ≥ T0),

Zit = Z ′
igt ∗ 1(t ≥ T0),

with time series structure

ft = κfft−1 + uft,

gt = κggt−1 + ugt,

and error structure (
uft

gft

)
∼ N

(
0,

[
σ2
f ρgσfσg

ρgσfσg σ2
g

])
,(

Zi

µi

)
∼ N

(
0,

[
σ2
z ρzσzσµ

ρzσzσµ σ2
µ

])
,(

ϵit

ηit

)
∼ N

(
0,

[
σ2
ϵ ρσϵσλ

ρσϵσλ σ2
λ

])
.

The simulation design is rich and allows for a variety of empirical settings. The key param-

eters are ρ, that controls the degree of the endogeneity problem that can be addressed using

the instrument, and ρz and ρg that control the omitted variable bias through the correlation

between the instrument and the unobserved factors. In the case in which ρ = ρz = ρg = 0,
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there is no endogeneity nor omitted variable bias and the OLS and TSLS estimators are

unbiased. As the ρs increase the OLS and TSLS estimators become biased and we can

compare them to the proposed synthetic estimators. Figure 3 shows that the synthetic IV

estimator is able to correct the bias present in the OLS and TSLS (with TWFE) estimators

when there is moderate endogeneity and omitted variable bias. Panel (a) shows the case in

which both estimators are consistent (the true parameter is 1) and the synthetic IV estima-

tor performs similar to the OLS estimator. In panel (b) we increase the correlation between

ϵ and η, creating an endogeneity problem that can be addressed using the instrument. As

expected, the OLS estimator is now biased, while the TSLS and synthetic IV estimators

remain consistent. In panel (c) we introduce correlation between the instrument and the un-

observed factor structure, by setting ρ = ρz = ρg = 0.5, and the instrument becomes invalid

leading to biased TSLS estimates despite adding TWFE in the specification. The synthetic

IV on the other hand is approximately unbiased. To relate this simulation results to the

‘pre-trends’ discussion in Figure 2, panel (d) shows the event study coefficients (over 1000

simulations). Before the treatment starts at T0 = 20, the coefficients should be close to zero,

as the instrument is not active. As can be seen the TSLS estimator exhibits large deviations

in the pre-period, while the synthetic IV exhibits substantially closer to zero ”pre-trends”.

As suggested by the theoretical properties in section 4, the performance of the synthetic

IV estimator depends on the data generating process primitives, in particular σϵ for the

pre-treatment goodness of fit and the corr(Zit, µ
′
ift) for the strength of the first stage. Table

1 explores the sensitivity of the proposed estimators to varying ρ, ρz and ρg from 0.5 to 0.9

and σϵ from 0.5 to 8, for the same simulation design as in Figure 3. The main takeaway from

Table 1 is that the synthetic IV and the ensemble estimator which combines the synthetic IV

and the projected estimator (shaded in gray in the figure) outperform the TWFE OLS and

TSLS estimator in all settings in terms of both bias and mean squared error. Furthermore,

both estimators exhibit close to zero bias in settings with small or moderate noise and

correlation. In fact, the ensemble estimator appears to have low bias even in cases in which

the noise level is 8 times the level of the signal (σϵ = 8 vs σµ = ση = 1).

More concerning is the effect of a high corr(Zit, µ
′
ift). As can be seen in Table 1, for

ρ = ρz = ρg = 0.9 while the synthetic IV exhibits significantly less bias than the TSLS;

it remains biased with the bias increasing towards the TSLS as the noise level rises. This

behavior mirrors the weak instrument problem: as the corr(Zit, µ
′
ift) increases to 1, the

first stage of the debiased estimator becomes weaker as there is no variation left in the

instrument that explains the outcome. This bias is not corrected by using Z instead the
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Figure 3: Model comparison in simulations
Note: Panels (a)-(c) display kernel density plots for TWFE OLS, TWFE TSLS and the
synthetic TSLS. Panel (d) shows simulated event study estimates as in Figure 2 panel (d)
with 95% confidence bands for ρ = ρz = ρg = 0.5. Simulations are done over 1000 iterations
with the following parameters: β = γ = 1, k = 1, T = 30, T0 = 20, J = 20, σϵ = 0.5,
κ = 0.5, ση = σz = σg = 1.
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debiased instrument Z̃, in fact it becomes worse as can be seen in the performance of the

SIV Z estimator in Table 1. In the appendix, we provide a theoretical justification as for

why debiasing the instrument might improve the first stage.

Another aspect highlighted by the theory and by reviews of best practices for synthetic

control estimators (Abadie and Vives-i-Bastida 2021), is how the relative sizes of T0, T1

and J influence the behavior of the estimator. The consistency result requires requires that

both JT1 is large and
√
J/T0 is small. In our baseline simulation we considered a setting

with JT1 = 200 and
√

J/T0 = 1. In the appendix, we replicate Table 1 in a setting with

a short pre-treatment period T0 = 10, J = 20. We find that while the performance of

the estimators deteriorates (specially in settings with high noise and/or correlation) it is

comparable to the results reported in Table 1 and the gains relative to OLS and TWFE

are larger. Another consideration, given our asymptotic normality result, is the requirement

that
√

T1

T0
(1 + J)r̄σ̄1 → 0 as

√
J
T1

→ 0. To see the effect of T1 on the sample distribution

of the estimator, in Table 2 we evaluate the coverage of the 95% confidence intervals for the

synthetic IV using v̂JT1 for different correlation settings and T1s. We find that in settings in

which the OLS and TSLS are unbiased the synthetic IV exhibits a slight over-coverage, in

the well behaved settings with moderate noise and correlation the coverage is good, and in

high correlation settings, as expected, we report under-coverage.
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Table 1: Simulations for ρ = ρz = ρg = r and different σϵ.

r=0.5 r=0.7 r=0.9
Mean Var Bias MSE Mean Var Bias MSE Mean Var Bias MSE

σϵ = 0.5
OLS (TWFE) 1.31 0.02 0.31 0.11 1.50 0.02 0.50 0.27 1.73 0.01 0.73 0.55
TSLS (TWFE) 1.26 0.07 0.26 0.13 1.51 0.08 0.51 0.34 1.83 0.06 0.83 0.74
SIV 1.02 0.01 0.02 0.01 1.05 0.02 0.05 0.02 1.19 0.04 0.19 0.07
projected SIV 0.92 0.03 -0.08 0.04 0.95 0.04 -0.05 0.05 1.11 0.07 0.11 0.08
Agg. SIV 1.23 0.08 0.23 0.13 1.46 0.08 0.46 0.29 1.80 0.04 0.80 0.68
SIV + projected 1.01 0.01 0.01 0.01 1.03 0.02 0.03 0.02 1.15 0.04 0.15 0.06
SIV + Agg. 1.03 0.01 0.03 0.01 1.07 0.02 0.07 0.02 1.21 0.04 0.21 0.08
SIZ Z 1.07 0.02 0.07 0.02 1.15 0.03 0.15 0.05 1.43 0.03 0.43 0.21

σϵ = 1
OLS (TWFE) 1.38 0.02 0.38 0.16 1.60 0.02 0.60 0.38 1.86 0.02 0.86 0.76
TSLS (TWFE) 1.26 0.07 0.26 0.14 1.50 0.08 0.50 0.34 1.82 0.06 0.82 0.74
SIV 1.03 0.01 0.03 0.01 1.07 0.03 0.07 0.03 1.26 0.05 0.26 0.12
projected SIV 0.90 0.05 -0.10 0.06 0.94 0.06 -0.06 0.07 1.14 0.08 0.14 0.10
Agg. SIV 1.22 0.07 0.22 0.12 1.47 0.08 0.47 0.30 1.80 0.04 0.80 0.69
SIV + projected 1.01 0.01 0.01 0.01 1.03 0.03 0.03 0.03 1.21 0.05 0.21 0.10
SIV + Agg. 1.04 0.01 0.04 0.02 1.10 0.03 0.10 0.04 1.30 0.05 0.30 0.14
SIZ Z 1.08 0.02 0.08 0.03 1.19 0.03 0.19 0.07 1.50 0.03 0.50 0.28

σϵ = 2
OLS (TWFE) 1.48 0.02 0.48 0.26 1.74 0.03 0.74 0.58 2.05 0.02 1.05 1.12
TSLS (TWFE) 1.26 0.08 0.26 0.14 1.50 0.09 0.50 0.34 1.82 0.07 0.82 0.74
SIV 1.05 0.03 0.05 0.03 1.12 0.04 0.12 0.06 1.37 0.07 0.37 0.21
projected SIV 0.87 0.08 -0.13 0.09 0.93 0.10 -0.07 0.10 1.21 0.10 0.21 0.15
Agg. SIV 1.22 0.08 0.22 0.12 1.46 0.09 0.46 0.30 1.80 0.05 0.80 0.68
SIV + projected 1.01 0.03 0.01 0.03 1.06 0.05 0.06 0.05 1.29 0.08 0.29 0.16
SIV + Agg. 1.07 0.03 0.07 0.03 1.16 0.05 0.16 0.07 1.43 0.07 0.43 0.26
SIZ Z 1.10 0.03 0.10 0.04 1.24 0.05 0.24 0.10 1.58 0.04 0.58 0.38

σϵ = 4
OLS (TWFE) 1.63 0.04 0.63 0.43 1.95 0.04 0.95 0.94 2.31 0.04 1.31 1.75
TSLS (TWFE) 1.25 0.09 0.25 0.15 1.49 0.11 0.49 0.35 1.81 0.08 0.81 0.74
SIV 1.08 0.05 0.08 0.05 1.19 0.07 0.19 0.11 1.49 0.10 0.49 0.34
projected SIV 0.85 0.13 -0.15 0.15 0.95 0.15 -0.05 0.15 1.30 0.15 0.30 0.24
Agg. SIV 1.20 0.10 0.20 0.14 1.45 0.11 0.45 0.31 1.79 0.07 0.79 0.69
SIV + projected 1.01 0.05 0.01 0.05 1.10 0.08 0.10 0.09 1.41 0.11 0.41 0.28
SIV + Agg. 1.11 0.05 0.11 0.06 1.24 0.07 0.24 0.13 1.56 0.09 0.56 0.40
SIZ Z 1.13 0.06 0.13 0.07 1.30 0.07 0.30 0.16 1.65 0.06 0.65 0.48

σϵ = 8
OLS (TWFE) 1.83 0.06 0.83 0.75 2.24 0.08 1.24 1.61 2.68 0.09 1.68 2.91
TSLS (TWFE) 1.24 0.11 0.24 0.17 1.49 0.13 0.49 0.37 1.80 0.11 0.80 0.76
SIV 1.12 0.09 0.12 0.11 1.27 0.12 0.27 0.19 1.61 0.13 0.61 0.50
projected SIV 0.88 0.22 -0.12 0.24 1.01 0.24 0.01 0.24 1.42 0.25 0.42 0.42
Agg. SIV 1.19 0.15 0.19 0.19 1.43 0.15 0.43 0.34 1.78 0.11 0.78 0.72
SIV + projected 1.05 0.10 0.05 0.10 1.18 0.13 0.18 0.17 1.53 0.16 0.53 0.44
SIV + Agg. 1.15 0.10 0.15 0.12 1.32 0.12 0.32 0.23 1.66 0.11 0.66 0.55
SIZ Z 1.16 0.09 0.16 0.12 1.36 0.11 0.36 0.24 1.71 0.09 0.71 0.59
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Table 2: T0 = 20, J = 20, σϵ = 0.5, σz = 1, σother = 0.5, κ = 0.5.

Coverage α = 0.05
T=30 T=40 T=50

ρ = ρg = ρz = 0.0 0.981 0.962 0.952
ρ = ρg = ρz = 0.3 0.976 0.944 0.96
ρ = ρg = ρz = 0.5 0.960 0.945 0.923
ρ = ρg = ρz = 0.7 0.904 0.808 0.792

With the simulation results in mind we highlight three robustness checks that practition-

ers should implement when using synthetic IV or similar estimators:

1. Check your first stage: given that the debiasing procedure can lead to a weaker first

stage, in cases with strong omitted variable bias if the synthetic IV estimator exhibits

a weak first stage researchers may be worried using the synthetic estimator.

2. Check your pre-treatment fit: if the debiased outcomes exhibits large deviations

in the pre-treatment period or an event study design reveals pre-trends, it is likely that

the synthetic estimator will be biased. This bias however, may still be smaller than

the TSLS bias.

3. Back test: given that the finite sample bias depends on the expected pre-treatment fit,

back testing can reveal whether good pre-treatment fit was due to over-fitting (biasing

the estimator) or not.

In the following section we implement these robustness checks when re-evaluating the

effect of the Syrian refugee crisis using the synthetic IV.

6. Revisiting the Syrian refugee shock

With the SIV tool at hand, we now re-visit our analysis of the impact of Syrian refugees on

the salaried employment of low-skill natives. We first solve the Synthetic Control problem

using demeaned data between 2004–2010.4 Following step 1 of our algorithm, we create

synthetic regions with outcome Y SC , treatment RSC , and instrument ZSC . We then debias

the data by subtracting the raw data with the synthetic data, generating Ỹit, R̃it and Z̃it.

4Demeaning the individual regions is an important detail in the Turkish setting due to the large hetero-
geneity in development rates across regions. For example, Istanbul is the most developed region with the
highest employment rate in Turkey. No convex combination of other regions can match Istanbul on levels,
but matching on trends is feasible.
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Before estimating the treatment effect via TSLS on the debiased data following step 2

of the algorithm, we first check the matching quality in the pre-period. As discussed in

the theory section, goodness of fit is necessary to get consistent estimates using SIV. One

way to check for goodness of fit is to plot the debiased data. During the training period,

the debiased data should fluctuate little (if any) around zero. We plot the debiased wage-

employment data in Figure 4a, where black dashed lines belong to the less intensely treated

regions that received less than 2% of refugees compared to their native population by 2016,

and the green straight lines belong to the more intensely treated regions. During the training

period 2004–2010, the debiased data fluctuate in small amounts around zero, which implies

that we were able to match well on the trends.

The second check we perform is to look at the first-stage using the debiased data. The

matching algorithm does not enforce maintaining a first-stage. For intuition, consider the

case when the instrument is a binary indicator, and imagine that regions with Zi = 1 follow

one trend, and regions with Zi = 0 follow another. Even if there is a first-stage in the raw

data, Z̃ would be zero for the debiased data. This is why we strongly recommend checking

whether the debiasing maintains the first-stage. We plot the first-stage estimates in Figure

4b. In our case, the debiased data maintains a strong first-stage. In a regression of R̃ on Z̃

while controlling for two-way fixed effects, the F-stat is 218.

The third check we perform is to look at the reduced-form using the debiased data. If

the matching was successful, i.e., the donor pool had regions with similar trends for all the

regions in the sample, then the event-study design on the debiased data should find estimates

around zero in the pre-period. In particular, we estimate the following equations:

Yjt =
∑

j ̸=2010

βj(1{t = j} × Zj) + fj + ft + ϵjt

Ỹjt =
∑

j ̸=2010

β̃j(1{t = j} × Z̃j) + gj + gt + ξjt
(1)

where the first line is the reduced-form of the IV, and the second line is the reduced-form of

the SIV. We plot the estimates of β and β̃ in Figure 4c. The results are striking. First, SIV

trained using data between 2004–2010 completely eliminated the pre-trends. This means

that for all regions the algorithm was able to find a convex combination of regions that had

similar trends. Second, adjusting for pre-rends, SIV finds slightly stronger disemployment

effects in the post-period.

One could argue that the non-existence of pre-trend in the reduced-form of SIV is me-
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Figure 4: Quality Checks

(a) Debiased Data (b) Debiased First-Stage

(c) Debiased Reduced-Form

Notes: Panel A uses the debiased data. The green solid lines belong to the intensely treated regions, the
black dashed lines belong to the rest, and the cutoff is 2% refugee/native ratio. The first-stage using both
raw and debiased data is plotted in Panel B. The F-stat in the main first-stage is 154 with the raw data and
218 with the debiased data. In Panel C, the reduced-form estimates come from the event-study design shown
in equation 1. The outcome variable is the wage-employment rate of low-skill natives. Standard errors are
clustered at the region level. The 95% confidence interval is plotted.
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Figure 5: SIV Estimates

chanical. When the training is done over the entire pre-period, the reduced-form can give

no pre-trends even when there is little signal in the data. To test for over-fitting bias, we

perform back-testing. In particular, instead of using the entire pre-period in the matching,

we solve for the SC weights using data between 2004-2007 and follow the rest of the algo-

rithm as specified before. We plot the estimates in Figure 4c in blue. Despite the reduced

amount of data that we match on, the reduced form does not find any placebo effect in the

pre-period. All the estimates between 2004–2010 are both quantitatively close to zero and

statistically insignificant, meaning synthetic distance is uncorrelated with the trends in the

data in the pre-period. Notice that the largest change in the IV estimates in the pre-period

occurs between 2008–2009. Despite being trained between 2004–2007, SIV is able to capture

this change. This provides more evidence that the algorithm captures the signal in the data.

We conclude that over-fitting is not a first-order concern in our setting.

It is worth discussing why IV and SIV estimates differ less in the post-period than in

the pre-period. It is unlikely to know for certain the nature of the unobserved confounder

in the pre-period. If we knew it, we would add it as a control variable in the first place.

However, some likely candidates can explain the nature of the pre-trend. As explained in

Gulek (2023), the regions close to the border are less-developed than the rest. Between

2004–2010, Turkey’s GDP per capita grew by 75%. The data seems to suggest that the less

developed southeast regions were “catching up” to the rest of Turkey with higher salaried

employment growth rates. This aggregate growth period did not last as Turkey entered a
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recession in 2013. If economic growth in the pre-period was the main reason behind the

pre-trends, it is likely that these pre-trends would not last fully in the post-period. SIV is

capturing this change in the unobserved confounder(s) by not changing the post estimates

by a considerable margin.

Having seen how SIV addresses the pre-trend problem in the event-study design, we con-

tinue by implementing the second step of the algorithm: we apply 2SLS on the debiased data.

We estimate the effect of Syrian refugees on natives’ wage employment. For heterogeneity,

we also estimate the effects on men and women separately. We plot the estimates in Figure 5.

As a benchmark, we first show the IV estimates. A researcher using IV would find no effect

on men and negative effects on women. However, using SIV, we find that Syrian refugees

had disemployment effects on both men and women. If anything, the effects on men were

stronger. A 1 pp increase in the refugee/native ratio decreases low-skill natives’ salaried

employment rate by 0.16 pp for men and 0.10 pp for women. As a robustness check, we

also show the results that rely on estimated weights using the 2004–2007 data. The results

remain quantitatively and qualitatively very similar. This is not surprising given that the

event-study design showed no concern for over-fitting bias in Figure 4c.

It is worth highlighting how much our method impacts the economic conclusions in our

setting. Turkey hosts the largest number of refugees in the world. Turkey’s three most

treated regions (at NUTS-2 level, which is the unit of analysis) observed an increase in labor

supply of more than 10% in practically five years. Refugees, especially men, have a high

propensity to work: 87% of prime-age men are “employed” in Turkey (Turkish Red Crescent

and WFP, 2019). Despite this large labor supply shock, in a short enough time period where

spatial markets are unlikely to equilibrate (which would violate stable unit value treatment

assumption embedded under the Spatial IV-DiD framework) and despite male refugees’

having higher employment rates than male natives, IV finds no disemployment effects for

native men. Theoretically justifying this result would require either completely flat labor

demand curves (Borjas, 2003) or refugees to provide a substantial positive product demand

shock (Borjas, 2014). There is very little empirical evidence for both, especially considering

that Syrian refugees left most of their wealth behind while escaping a civil war. SIV reveals

that this significant labor supply shock has caused native disemployment in the short run

for both men and women, which is consistent with economic theory.
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7. Revisiting the China Shock: ADH 2013

SIV can be applied to any exposure and shift-share designs where the identification as-

sumption is the exogeneity of shares. As an additional empirical example, we estimate the

effect of Chinese imports on manufacturing employment in the United States following the

identification strategy of Autor et al. (2013) (ADH).

7.1. Specification

ADH is interested in the following regression (where we omit covariates for simplicity):

yjt = βXjt + ϵjt

Xjt = γZjt + ηjt
(2)

where yjt is the percentage point change in manufacturing employment rate,Xjt =
∑

k sjktg
US
kt

is import exposure, where sjkt is the industry-location share at the beginning of period, and

gkt is a normalized measure of the growth of imports from China to the US in industry

k. The import exposure to China is instrumented by the increase in Chinese imports by

high-income countries: Zjt =
∑

k sjkt−1g
high-income
kt , where sjkt−1 is the share of industry k in

the previous period, ghigh-income
kt is a normalized measure of the growth of Chinese imports

to selected high-income countries. We focus on the TSLS estimates from Tables 2 and 3 of

ADH.5

7.2. Concern for pre-trends

ADH have 4 periods of data: 1970–1980, 1980–1990, 1990–2000, 2000-2007. We denote

these periods by their starting year throughout the exercise (e.g., 1990 refers to the period

between 1990–2000). The Chinese import shock takes place in 1990–2000 and 2000–2007.

The growth in Chinese imports from high-income countries in 1990–2000, ghigh-income
k,1990 , predicts

an exposure across US commuting zones via their pre-existing industry structure. We denote

this exposure as Zi,1990 and define Zi,2000 similarly, as the exposure predicted by the growth in

Chinese imports from high-income countries between 2000–2007. Together, Zi,1990 and Zi,2000

constitute the shift-share instrument used in ADH as Zit = Zi,19901(t = 1990) +Zi,20001(t =

2000). These two exposure measures have a correlation of 0.67 across 722 commuting zones,

which implies that regions that have a high exposure in 1990 were also likely to have an

5In Table 2, the IV estimates without covariates and some placebo checks are shown. Table 3 shows the
regressions with additional covariates.
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high exposure in 2000. This suggests that the trade shocks in 1990 and 2000 were unlikely

to be i.i.d., and hence we follow the exogeneity of shares assumption in this shift-share

design (Goldsmith-Pinkham et al., 2020) as opposed to the exogeneity of shifts assumption

in Borusyak et al. (2022).

Dissecting the shift share instrument Zit into its two “exposure” components Zi,1990 and

Zi,2000 lends itself to an event-study design, where we interact the exposure components

separately with time to see whether they predict any changes in the outcome before the

shock occurs. In particular, we estimate the following regression equations separately:

yit =
∑
t′

(Zi,1990 × 1{t = t′})βt′,1990 + ft + ϵit

yit =
∑
t′

(Zi,2000 × 1{t = t′})βt′,2000 + gt + ηit
(3)

where ft and gt are time fixed effects, ϵit and ηit are error terms, and βt,1990 and βt,2000

are the event-study estimates of interest. We do not include region fixed effects following

ADH, but in principle we could at the cost of having to normalize one of the pre-period

estimates to zero. In our design, we do not need to make this normalization to prevent

perfect multicollinearity. Consequently, in our design βt,1990 (βt,2000) can be interpreted as

the change in manufacturing employment in time t predicted by the Chinese import exposure

in 1990–2000 (2000–2007).

We first check how much the exposure shares predict the manufacturing employment

growth in 1970 and 1980 (pre-period), and 1990 and 2000 (post-period). We show these

results in Figure 6a. First of all, the exposure shares predict decreases in manufacturing

employment in both 1990 and 2000, which is one of the core results in ADH. However,

this figure also reveals that the correlation between the exposure shares and manufacturing

growth was positive in 1970, two decades before the Chinese shock, and has been decreasing

since then. For example, the coefficient estimate of Zi,1990 goes from 0.39 in 1970 to -0.28

in 1980. This pre-trend raises a concern regarding the validity of the exogeneity of shares

assumption in this shift-share design because if this trend was to continue absent the China

shock, we would have estimated the same “negative” employment effects in 1990 and 2000.

7.3. Applying SIV to ADH

To apply the SIV to the China shock example we follow the algorithm described in Section 2.

We first solve the Synthetic Control problem for all of the 722 CZs, where we match on the
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Figure 6: Reduced-form estimates using the 1990 and 2000 shares

(a) ADH-2013 IV (b) ADH-2013 SIV

growth rate between 1970 and 1980 for simplicity. Then, we obtain the synthetic variables,

ySC , xSC , ZSC , using the weights obtained in the previous step and compute the debiased

values ỹ, x̃, Z̃. Due to the small number of pre-periods and large number of donor units,

the pre-treatment fit is almost perfect as can be seen in Figure 6 panel (b). As discussed in

Abadie and Vives-i-Bastida (2022) in these settings it is likely that the SC is fitting noise,

leading to over-fitting bias. To address this in the appendix we re-do the analysis limiting

the donor pool to the closest 100, 50, 30, and 20 donor regions according to the Euclidean

distance.

We investigate the effects of the China shock on US manufacturing by comparing the

TSLS and the SIV estimates. We find that the SIV results are slightly smaller in magnitude,

but overall similar to the TSLS findings. Looking at 1990 in Figure 6 panel (b), we see

that the SIV finds a statistically significant decrease in manufacturing employment due

to Chinese imports, but the coefficient estimates are slightly smaller in magnitude than the

TSLS estimates. In 2000, on the other hand, we find quantitatively the same results as ADH:

adjusting for the pre-trends in 1970 and 1980 does not meaningfully change the estimates in

2000-2007.

Table 3 replicates the main findings in ADH 2013. For the 1990–2000 period, the TSLS

estimates suggest that a $1,000 increase in import exposure per worker leads to a decline

in manufacturing employment of 0.89 pp. The SIV estimate for the same period is slightly

smaller, but not statistically different, at 0.59 pp. This confirms the intuition from Figure

6 that adjusting for the pre-trend reduces slightly the China shock effect in 1990-2000. The
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Table 3: China shock effect

1990–2000 2000-2007 1990–2007
(1) (2) (3)

2SLS -0.888 -0.718 -0.746
(0.181) (0.064) (0.068)

SIV (training in 70)-0.955 -0.725 -0.764
(0.202) (0.075) (0.078)

SIV (training in 70 and 80)-0.588 -0.726 -0.703
(0.198) (0.070) (0.067)

1990–2000 2000-2007 1990–2007
(1) (2) (3)

2SLS -0.888 -0.718 -0.746
(0.181) (0.064) (0.068)

SIV -0.588 -0.726 -0.703
(0.198) (0.070) (0.067)

Notes: The first row replicates columns 1--3 
of Table 2 in ADH 2013. In rows 2 and 3, we 
apply SIV. The SC weights are estimated 
using the manufacturing growth rates in 
1970 in row 2, and in 1970 and 1980 in row 
3. 

Notes: The first row replicates columns 1--3 
of Table 2 in ADH 2013. In row 2 we apply 
SIV. The SC weights are estimated using the 
manufacturing growth rates in 1970 and 

Notes: The first row replicates columns 1–3 of Table 2
in ADH 2013. The second row presents the estimates
using the SIV. The SC weights are estimated using the
manufacturing growth rates in 1970 and 1980.

results for the 2000-2007 period and the two periods combined (1990-2007) imply a decrease

between 0.7 and 0.75 pp with little differences between TSLS and SIV.

ADH also report TSLS estimates with additional covariates. We replicate their results

and show our estimates using SIV in Table 4.6 Throughout, we find very comparable results

to ADH. For example, controlling for the percentages of (i) employment in manufacturing, (ii)

college educated population, (iii) foreign-born population, (iv) employment among women,

(v) employment in routine occupations, and average offshorability index of occupations and

census division dummies, ADH estimate a coefficient of -0.60pp. Using SIV, we estimate -

0.63pp. Overall, our replication implies that despite the strong pre-trend between 1970–1990,

the IV estimates in 1990–2007 may not suffer from large biases. A potential explanation for

this is that the decline in manufacturing employment growth suggested by the pre-trends

flattens over time and disappears in the 2000s, leading to the small adjustment in the 1990-

2000 period and no adjustment in the 2000-2007 period as reported by our SIV estimates.

To summarize, our application of SIV on ADH builds on the work of Goldsmith-Pinkham

et al. (2020) and Borusyak et al. (2022), who rely on the exogeneity of shares and the

exogeneity of shocks for identification, respectively. They both start from a setting where

the instrument is valid, but they rely on different parts of the shift-share instrument to build

6ADH’s replication folder does not include the covariates for the 1970–1980 and 1980–1990 periods, hence
we include the covariates only in the second step of the algorithm: where we employ TSLS on the debiased
data. We explain the alternative ways by which researchers can control for covariates while applying SIV in
the Appendix. In short, one could (1) match on the covariates while estimating the weights, or (2) apply
the Frisch-Waugh-Lowell theorem: by first residualizing the outcome Y, treatment X, instrument Z w.r.t.
the covariate(s) W; and then starting the algorithm with the residualized variables.
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Table 4: Replication of table 3 in ADH

(1) (2) (3) (4) (5) (6)

IV -0.75 -0.61 -0.54 -0.51 -0.56 -0.60
(0.07) (0.09) (0.09) (0.08) (0.10) (0.10)

SIV -0.70 -0.59 -0.51 -0.50 -0.61 -0.63
(0.07) (0.10) (0.10) (0.09) (0.11) (0.10)

Controls
Percentage of employment in 
manufacturing t-1 No Yes Yes Yes Yes Yes

Percentage of college-educated 
population t-1 No No No Yes No Yes

Percentage of foreign-born 
population t-1 No No No Yes No Yes

Percentage of employment 
among women t-1 No No No Yes No Yes

Percentage of employment in 
routine occupations t-1 No No No No Yes Yes

Average offshorability index of 
occupations t-1 No No No No Yes Yes

Census division dummies No No Yes Yes Yes Yes

1990–2007 stacked first differences

Notes:  The first row replicates columns 1--6 of Table 3 in ADH 2013. Row 2 shows SIV estimates. 
The SC weights are estimated using the manufacturing growth rates in 1970 and 1980. Dependent 
variable: 10 × annual change in manufacturing emp/working-age pop (in % pts). N = 1,444 (722 
commuting zones × 2 time periods). All regressions include a constant and a dummy for the 
2000–2007 period. Routine occupations are defined such that they account for 1/3 of US 
employment in 1980. The offshorability index variable is standardized to mean of 0 and standard 
deviation of 10 in 1980. Robust standard errors in parentheses are clustered on state. Models are 
weighted by start of period CZ share of national population. 
PS: We add the controls in the second step of the algorithm, where we employ 2SLS on the 
debiased outcome, treatment and the instrument. We do not debias the control variables nor use 
them in estimating the weights as ADH's data do not include them in the pre-peiod. 

Notes: The first row replicates columns 1–6 of Table 3 in ADH 2013. Row 2 shows SIV estimates. The SC
weights are estimated using the manufacturing growth rates in 1970 and 1980. Dependent variable: 10 ×
annual change in manufacturing emp/working-age pop (in % pts). N = 1,444 (722 commuting zones × 2 time
periods). All regressions include a constant and a dummy for the 2000–2007 period. Routine occupations
are defined such that they account for 1/3 of US employment in 1980. The offshorability index variable is
standardized to mean of 0 and standard deviation of 10 in 1980. Robust standard errors in parentheses are
clustered on state. Models are weighted by start of period CZ share of national population.

their identification strategy. We follow the exogeneity of the shares approach suggested by

Goldsmith-Pinkham et al. (2020) but relax the parallel trend assumption by allowing the

instrument to be correlated with the pre-trends. We show that adjusting for pre-trends

lowers the IV estimate by one-third during the 1990-2000 period and does not affect the IV

estimate using the 2000–2007 period. The latter is consistent with the instrument shares

being exogenous to the error term during the 2000–2007 period despite being correlated with

unobserved confounders between 1970–1990.
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8. Conclusion

In this paper we provide a new method, the Synthetic IV, to deal with unmeasured con-

founding in panel data settings in which researchers have access to an instrumental variable

that is only partially valid. By assuming a factor structure on the unobserved confounding

term we derive conditions under which a synthetic IV estimator that combines Synthetic

Controls and two-stage least squares is consistent and asymptotically normal. Through a

simulation study, we show that the estimator performs well in a variety of empirical settings

and removes the bias in cases in which TSLS and OLS with two-way fixed effects do not. We

further showcase the applicability of SIV in two empirical examples: (1) studying the effect

of immigrants on labor markets using the Syrian refugee crisis in Turkey, and (2) studying

the effect of Chinese imports on US manufacturing employment.
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A.1. Theory

Throughout the appendix we introduce the following notation to refer to the debiased quantities:

ϵ̃it ≡ ϵit −
∑

j ̸=i ŵ
SC
ij ϵjt, as well as dropping the ’SC’ weight subscript for notational convenience.

Furthermore, we use T to mean T1. The appendix consists of the following sections:

1. Bound on
∑

it Z̃itϵ̃it.

2. Proof of Theorem 1.

3. Proof of Theorem 2.

4. Proof of Theorem 3.

5. First stage debiasing discussion.

6. Proof of Theorem 4.

7. Additional simulation table.

1.1. Bound on
∑

it Z̃itϵ̃it

Lemma A.1 [Bound on Z̃itϵ̃it] Under A1-A3, for any δ > 0,

P

(∣∣∣∣∣∑
it

Z̃itϵ̃it

∣∣∣∣∣ ≥ δ

)
≲ 2 exp

(
− δ2

2c2zJTσ
2
ϵ

)
.

Hence, as JT → ∞, 1
JT

∑
it Z̃itϵ̃it

p→ 0.

Proof. First we show that the term has zero expectation given Assumption 3 and independence of

the error terms ϵit. The argument follows by noting that the SC weights depend only on ϵit for

t ≤ T0,

wSC
j ∈ argminw∈∆J−1∥Y T0

j − Y T0
−j

′w∥2,

as only data from the pre-treatment period is used, here denoted as the J + 1 × T0 matrix Y T0 .

Therefore, wSC
j ⊥ ϵit for t > T0. Recall that by the law of iterated expectations if random variables

b is independent of z and a such that E[b|c] = 0 a.e., then E[ab|z] = 0. Using this fact, under A2

it follows that E[ϵitwSC
ij |Zit] = 0 for t > T0. Similarly, for any injective function h : Supp(w) → R

it follows that h
(
wSC
j

)
⊥ ϵit for t > T0 and, consequently, E[ϵith

(
wSC
ij

)
|Zit] = 0. To apply these
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facts, we re-write the second term, dropping the ’SC’ subscript for convenience

E

Z̃it

ϵit −
∑
j ̸=i

ŵSC
ij ϵjt

 = E
[
(Zit − Z ′

−itwi)(ϵit − ϵ′−itwi)
]

= E
[
ZitE[ϵit − ϵ′−itwi|Zit]− Z ′

−itE[wi(ϵit − ϵ′−itwi)|Zit]
]
,

where the −i subscripts denote J × 1 vectors not including unit i and wi denote the J × 1 vector of

weights for unit i. Given that E[ϵitwij |Zit] = 0 and E[ϵitw2
ij |Zit] = 0, it follows that both conditional

expectation terms are zero. Next, consider the following upper bound for the term of interest given

by Zit − Z ′
−itw ≤ cz for all Zit ∈ Z when w ∈ ∆J−1,∣∣∣∣∣∑

it

Z̃itϵ̃it

∣∣∣∣∣ ≤ cz

∣∣∣∣∣∑
it

ϵ̃it

∣∣∣∣∣ .
Given that ϵit are subgaussian and for t > T0 independent of wi, it follows that ϵit−

∑
j ̸=i ŵ

SC
ij ϵjt is

a linear combination of subgaussian random variables. The first term has variance proxy σ2 and the

second term has variance proxy σ2∥wi∥2 ≤ σ2 as for weights in the simplex ∥wi∥2 ≤ 1. Therefore, ϵ̃it

is subgaussian with variance proxy 2σ2. The result then follows directly by Hoeffding’s inequality

for subgaussian random variables (Theorem 2.6.2 Vershynin 2018)

P

(∣∣∣∣∣∑
it

Z̃itϵ̃it

∣∣∣∣∣ ≥ δ

)
≤ P

(∣∣∣∣∣∑
it

ϵ̃it

∣∣∣∣∣ ≥ δ/cz

)

≲ 2 exp

(
− δ2

2c2zJTσ
2
ϵ

)
.

1.2. Proof of Theorem 1

Proof. We start by re-writing the factor structure in terms of the outcome variable and in the

pre-treatment period

µ̃′
iFt = Ỹit(0)− ϵ̃it.

Using the projection trick, we can rewrite µ̃i in terms of pre-treatment quantities:

µ̃i = (FT0F
′
T0
)−1FT0(Ỹ

T0
i + ϵ̃it).
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With this in mind, consider the object of interest∣∣∣∣∣∑
it

Z̃itµ̃
′
iFt

∣∣∣∣∣ =
∣∣∣∣∣∑

it

Z̃itF
′
t(FT0F

′
T0
)−1FT0(Ỹ

T0
i + ϵ̃it)

∣∣∣∣∣
≤
∑
it

|Z̃itF
′
t(FT0F

′
T0
)−1FT0 ϵ̃it|+

∑
it

|Z̃itF
′
t(FT0F

′
T0
)−1FT0 Ỹ

T0
i |

≤ cz

(∑
it

|F ′
t(FT0F

′
T0
)−1FT0 ϵ̃it|+

∑
it

|F ′
t(FT0F

′
T0
)−1FT0 Ỹ

T0
i |

)
.

Where the inequalities follow from the triangle inequality and the bound for Z̃it. For the first term

bound we proceed as in Abadie and Zhao (2022) and apply the Cauchy-Schwarz inequality and the

eigenvalue bound on the Rayleigh quotient to bound the factor terms for any t, s

(F ′
t(FT0F

′
T0
)−1Fs)

2 ≤
(
F̄ 2k

T0ξ

)2

,

To bound these terms in expectation observe that ϵ̄it ≡ F ′
t(FT0F

′
T0
)−1FT0ϵiT0 is a linear combination

of subgaussian random variables and therefore it is itself a subgaussian random variable with

variance proxy
(
F̄ 2k
T0ξ

)2
σ2
ϵ

T0
. Therefore,

|E[(ϵ̄iT0 − ϵ̄′−iT0
wi)]| ≤ E[|(ϵ̄iT0 − ϵ̄′−iT0

wi)|]

≤ E

∑
j

|ϵ̄iT0 |


≤

E

∑
j

|ϵ̄iT0 |2
2

=

∑
j

E
[
|ϵ̄iT0 |2

]2

≤ 2

(
F̄ 2k

ξ

)√
J

T0
σϵ.

The first inequality follows from Jensen’s inequality. The second inequality follows by the triangle

inequality and the absolute value and expectation operator inequality. The third follows from

Holder’s inequality with q = 2 and Jensen’s inequality. Finally, the last inequality follows from

Rigollet and Hutter 2019 (Lemma 1.4) which bounds absolute moments of sub-gaussian random

variables. It follows that
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E[|µ̃′
iFt|] = E[|F ′

t(FT0F
′
T0
)−1FT0(ϵiT0 − ϵ′−iT0

wi)|]

= E[|(ϵ̄iT0 − ϵ̄′−iT0
wi)|]

≤ 2

(
F̄ 2k

ξ

)√
J

T0
σϵ.

For the second term observe that∑
it

|F ′
t(FT0F

′
T0
)−1FT0 Ỹ

T0
i | ≤

(
F̄ 2k

ηT0

)∑
it

|
∑
t<T0

Ỹit|

=
T

T0

(
F̄ 2k

η

) ∑
i,t<T0

|Ỹit|

Dividing by TJ it follows that the term is bounded by(
F̄ 2k

η

)
1

JT0

∑
i,t<T0

|Ỹit| =
(
F̄ 2k

η

)
MAD(Ỹ T0).

The bound then follows from the proof of Theorem 1 and by Jensen’s inequality applied to the

absolute value. Consistency follows by an application of Markov’s inequality.

1.3. Proof of Theorem 2

Proof. The proof follows the proof of Theorem 1 by bounding E
[

1
JT0

∑
i,t≤T0

|Ỹjt|
]
. It is useful to

re-write the SC problem in matrix form. Let W be the J × J matrix of weights where each row

sums to 1 and diag(W ) = 0. Then the J × T0 matrix Ỹ T0 can be re-written as Y T0 − ŴY T0 . It

follows that the Frobenius norm of the matrix ∥Ỹ T0∥2F =
∑

it<T0
Ỹ 2
it is bounded.

∥Ỹ T0∥2F = ∥Y T0 − ŴY T0∥2F ≤ ∥Y T0∥2F + ∥ŴY T0∥2F
≤ ∥Y T0∥2F + ∥Ŵ∥2F ∥Y T0∥2F
≤ ∥Y T0∥2F (1 + J)

≤ r̄σ̄1(1 + J).

where the first inequality follows by the triangle inequality. The second by the bound on the

frobenius norm of a matrix product. The third by noting that each row of W sums to 1 and

Wij ∈ [0, 1] and so ∥wi∥2 ≤ 1 which implies ∥Ŵ∥2F ≤ J . Finally, the last inequality follows from A4

as ∥Y T0∥2F ≤ ∥Y T0∥22r̄. Next, observe that
∑

it<T0
|Yit| = ∥vec(Y T0)∥21 and ∥vec(Y T0)∥22 = ∥Y T0∥2F .
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So by the inequality between l1 and l2 norms,∑
it<T0

|Yit| = ∥vec(Y T0)∥21 ≤
√
JT0∥vec(Y T0)∥22 =

√
JT0∥Y T0∥2F .

Given the previous derivations we get the following bound

1

JT0

∑
i,t≤T0

|Ỹjt| ≤
√
JT0

JT0
r̄σ̄1(1 + J) = r̄σ̄1

(
1√
JT0

+

√
J

T0

)
.

The result follows by noting that for a bounded random variable |X| ≤ c, E|X| ≤ c.

1.4. Proof of Theorem 3

Proof. Under A1-A3 Lemma A.1 and Theorem 3 show that both 1
JT

∑
it Z̃itϵ̃it and

1
JT

∑
it Z̃itµ̃

′
iFt

are op(1). It remains to be shown that the first stage term
∑

it R̃itZ̃it is Op(1). Then the consistency

results follows given that Op(1)op(1) = op(1). Observe that

∑
it

R̃itZ̃it =
∑
it

(γZ̃it + η̃it)Z̃it

= γ
∑
it

Z̃2
it +

∑
it

Z̃itη̃it

= γ
∑
it

Z̃2
it + op(1)

= γ
∑
it

Z̃2
it.

Furthermore, since the diameter of Zit is bounded we can show that

1

TJ
E|
∑
it

Z̃2
it| ≤

1

TJ
E|
∑
it

c2z| = c2z.

It follows that the first stage term is Op(1). Indeed, for any δ > 0 there exists an M = c2z/δ such

that

P (
1

TJ
|
∑
it

Z̃2
it| > δ) ≤

1
TJE|

∑
it Z̃

2
it|

δ
≤ c2z/δ = M.

where the inequality follows by Markov’s inequality and if cz depends on JT then the statement

holds for large enough JT . The inconsistency of the TSLS estimator follows from the simple

example in the main text, by noting that 1
JT

∑
it Zitµ

′
iFt is not op(1) under our assumptions.
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1.5. First stage debiasing?

As noted in the main text debiasing the first stage is not a necessary condition for the identification

of θ. In this section we note that it may have implications for the first stage strength.

Note that under A1-A3, corr(Zit, µ
′
iFt) < 1, then cov(Z, µ′F ) ≤ var(Z)var(µ′Ft). In the proof of

Theorem 3 we consider the case in which we debias the instrument; in the case in which we do not

debias the instrument we get a similar derivation.∑
it

R̃itZit =
∑
it

(γZ̃it + η̃it)Zit

= γ
∑
it

Z̃itZit +
∑
it

Zitη̃it

= γ
∑
it

Z̃itZit + op(1).

Suppose that our instrument follows a particular structure: Zit = Ait + µ′
iFt such that Ait is mean

zero i.i.d and Ait ⊥ µ′
iFt and E[A2

it] = σ2
A. Then, it can be shown that if µ̃′

iFt is op(1) then

1

JT

∑
it

R̃itZ̃it
p→ γξ̃,

1

JT

∑
it

R̃itZit
p→ γσ2

A,

where σ2
A ≤ ξ̃ ≤ 2σ2

A. To see this observe that

1

JT

∑
it

R̃itZ̃it = γ
1

JT

∑
it

Ã2
it + op(1),

1

JT

∑
it

R̃itZit = γ
1

JT

∑
it

ÃitAit + op(1),

and,

E

[
1

JT

∑
it

ÃitAit

]
=

1

JT

∑
it

E[A2
it] = σ2

A,

E

[
1

JT

∑
it

Ã2
it

]
=

1

JT

∑
it

E[A2
it](1 + ∥wi∥22) = σ2

A

1

JT

∑
it

(1 + ∥wi∥22).

So the result follows under an appropriate LLN and noting that 1/(J − 1) ≤ ∥wi∥22 ≤ 1, given that

the weights are in the simplex. It follows that under this simple instrument structure, debiasing

the instrument will lead to a weakly larger first stage than not debiasing it. The intuition for this
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result is that in high correlation cases debiasing only one side (Y but not Z) leads to Ỹ being

mostly uncorrelated with Z in the case in which the debiasing is successful in removing most of the

correlation. This intuition is confirmed in the simulation exercise.

1.6. Proof of Theorem 4

Proof. The additional regularity condition we consider is zmin(zmin+1)−z2max > 0, where zmin, zmax

denote the supremum and infimum of the instrument set. We are interested in the following quantity

for a given set of weights w:

√
JT (θ̃SW − θ)

vwJT
=

(
1

JT

∑
it

Z̃itR̃it

)−1
1

vwJT
√
JT

∑
it

Z̃it

µi −
∑
j ̸=i

ŵSC
ij µj

′

Ft

+

(
1

JT

∑
it

Z̃itR̃it

)−1
1

vwJT
√
JT

∑
it

Z̃it

ϵit −
∑
j ̸=i

ŵSC
ij ϵjt

 ,

where the conditional variance is given by vwJT =
∑

it var(Z̃itϵ̃it | Z,w).

First, we show that the bias term is op(1). Note that from the proof of the consistency theorem

that under A1-A3 we have that

∑
it

|F ′
t(FT0F

′
T0
)−1FT0 Ỹ

T0
i | ≤

(
F̄ 2k

ηT0

)∑
it

|
∑
t<T0

Ỹit|

=
T

T0

(
F̄ 2k

η

) ∑
i,t<T0

|Ỹit|

So, dividing by
√
JT and using the bound on the pre-treatment mean absolute deviation

1√
JT

∑
it

|F ′
t(FT0F

′
T0
)−1FT0 Ỹ

T0
i | ≤

√
T

T0

√
J

(
F̄ 2k

η

) ∑
i,t<T0

|Ỹit|

≤
√
T

T0

√
J

(
F̄ 2k

η

)√
JT0r̄σ̄1(1 + J)

=

√
T

T0
(1 + J)r̄σ̄1.

Therefore, the first term is op(1) when
√

T
T0
(1 + J)r̄σ̄1 → 0.
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To show the second term is bounded in probability observe that conditional on Z and w

var

(∑
it

Z̃itϵ̃it

)
= E

(∑
it

Z̃itϵ̃it

)2

≤ c2zE

(∑
it

ϵ̃it

)2

= c2zσ
2T (J +

∑
i

∥wi∥2 + 2
∑
i<j

W̄ij),

where W̄i =
∑

k ̸=iwjkwik − wij − wji. Similarly, we can derive that

∑
it

var(Z̃itϵ̃it | Z,w) = σ2
∑
it

(1 + ∥wi∥2)(Z2
it +

∑
j ̸=i

Zjtwij −
∑
i ̸=j

ZjtZitwij).

We consider a martingale representation as Abadie and Imbens (2012) do for matching estimators.

Define the partial sums for a given time t as

StJk =
k∑

l=1

Z̃ltϵ̃lt,

under our assumptions it follows that

E[StJk+1 | StJ1, . . . , StJk] = E[Z̃ltϵ̃lt | StJ1, . . . , StJk] + StJk = StJk,

where the condition expectation is zero given that conditional on the weights w under our error

independence and partial instrument validity assumptions the instrument and the error term are

uncorrelated when t > T0 as shown in Lemma 1. Furthermore, define the martingale difference as

XtJk = StJk − StJk−1 = Z̃ktϵ̃kt,

and the information set is given by the generated σ-algebra FtJk = σ({Y T0
1 , . . . , Y T0

k−1, Z1t, . . . , Zk−1t})
as the weights depend only on the outcome values in the pre-treatment period.

We want to apply the martingale CLT (Theorem 3.2, p. 59 from Hall and Heyde (1980)):

Theorem A.1 [Martingale CLT] Let {Sni,Fni, 1 ≤ i ≤ kn, n ≥ 1} be a zero-mean, square-integrable

martingale array with differences Xni and let η2 be an a.s. finite random variable. Suppose (1) a
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Lindeberg condition, for all ε > 0:∑
i

E
(
X2

ni1 {|Xni| > ε} |Fn,i−1

) p−→ 0,

(2):

V 2
nkn =

∑
i

E
(
X2

ni|Fn,i−1

) p−→ η2,

and (3) the σ-fields are nested Fn,i ⊂ Fn+1,i for 1 ≤ i ≤ kn, n ≥ 1. Then:

Snkn =
∑
i

Xni
d−→ Z,

where the random variable Z has characteristic function E exp
(
−1

2η
2t2
)
.

Condition (3) is easy to check given our definition of FtJk. We start with condition (1) and consider
1√
JT

XtJk. We will show point-wise convergence. Note that conditional on FtJk by applying Holders

inequality,

E
[
X2

tJk

JT
1 {|XtJk| > ε}

]
≤ 1

JT
E
[
X4

tJk

]1/2
P
({

|XtJk| >
√
JTε

})1/2
.

The second term can be further bounded by applying Chebyshev’s inequality and under A1-A3

P
({

|XtJk| >
√
JTε

})
≤ var(ϵ̃kt|w)c2z

JTε2

≤ σ2c2z
Tε2

,

where the conditional variance is bounded above by the sum of the J variances. The first expectation

term can be bounded by noting that the instruments are bounded and under the assumption of

bounded fourth moments of the error term

E
[
X4

tJk

]
≤ c4zE

[
ϵ̃4kt
]

≤ c4zE

[∑
i

ϵ4it

]
= c4zJE

[
ϵ4it
]
.
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Combining the two bounds we get that for XtJk/
√
JT ,

∑
kt

E
(
(XtJk/

√
JT )21

{
|XtJk/

√
JT | > ε

}
|FtJk−1

)
≤ JT

σ
√
m4c

3
z

√
J

JT
√
Tε

≲

√
J

T
,

where E
[
ϵ4it
]
≤ m4. Hence, as

√
J
T → 0 Lindeberg’s condition (1) is satisfied point-wise. Next, we

show that the variance term in condition (2) is bounded in probability and not op(1). We start by

noting that under our assumptions

E
(
X2

tJi|FtJi−1

)
= σ2∆it,

where ∆it = (1 + ∥wi∥2)(Z2
it +

∑
j ̸=i Zjtwij −

∑
i ̸=j ZjtZitwij). We proceed by bounding the ∆it,

recall that the instruments are bounded and 1/(J − 1) ≤ ∥wi∥2 ≤ 1, therefore

(1 + 1/(J − 1))(zmin(zmin + 1)− z2max) ≤ ∆it ≤ 2(zmax(zmax + 1)),

where we assume that zmin(zmin + 1)− z2max > 0. It follows that

∑
it

E
(
(XtJi/

√
JT )2|Fn,i−1

)
=

σ2

JT

∑
it

∆it = O(1),

and as limJT→∞
σ2

JT

∑
it∆it = c > 0.

Hence, all conditions for the martingale Lindeberg CLT are satisfied and as noted under our strong

instrument conditions the first stage term is op(1) therefore the normality result follows.

1.7. Additional simulation table
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Table A.1: Simulations for T0 = 10

r=0.5 r=0.7 r=0.9
Mean Var Bias MSE Mean Var Bias MSE Mean Var Bias MSE

σ = 0.5
OLS (TWFE) 1.29 0.02 0.29 0.10 1.48 0.02 0.48 0.25 1.71 0.01 0.71 0.52
TSLS (TWFE) 1.23 0.05 0.23 0.11 1.46 0.07 0.46 0.29 1.78 0.06 0.78 0.68
SIV 1.01 0.01 0.01 0.01 1.07 0.02 0.07 0.02 1.25 0.04 0.25 0.10
projected SIV 0.93 0.04 -0.07 0.04 0.99 0.05 -0.01 0.05 1.24 0.36 0.24 0.41
Agg. SIV 1.23 0.06 0.23 0.12 1.47 0.07 0.47 0.30 1.79 0.05 0.79 0.68
SIV + projected 0.94 0.04 -0.06 0.04 0.99 0.05 -0.01 0.05 1.24 0.35 0.24 0.41
SIV + Agg. 1.23 0.06 0.23 0.12 1.47 0.07 0.47 0.29 1.79 0.05 0.79 0.67
SIZ Z 1.05 0.02 0.05 0.02 1.16 0.03 0.16 0.05 1.49 0.03 0.49 0.27

σ = 1
OLS (TWFE) 1.36 0.02 0.36 0.15 1.59 0.02 0.59 0.36 1.84 0.01 0.84 0.73
TSLS (TWFE) 1.22 0.06 0.22 0.11 1.46 0.07 0.46 0.29 1.78 0.06 0.78 0.67
SIV 1.02 0.02 0.02 0.02 1.11 0.03 0.11 0.04 1.35 0.05 0.35 0.17
projected SIV 0.93 0.05 -0.07 0.06 1.00 0.07 0.00 0.07 0.66 44.22 -0.34 44.29
Agg. SIV 1.24 0.06 0.24 0.12 1.47 0.07 0.47 0.29 1.80 0.05 0.80 0.69
SIV + projected 0.93 0.05 -0.07 0.06 1.00 0.07 0.00 0.07 0.67 43.34 -0.33 43.40
SIV + Agg. 1.24 0.06 0.24 0.12 1.47 0.07 0.47 0.29 1.79 0.05 0.79 0.68
SIZ Z 1.06 0.02 0.06 0.03 1.21 0.03 0.21 0.07 1.56 0.03 0.56 0.34

σ = 2
OLS (TWFE) 1.47 0.02 0.47 0.24 1.73 0.02 0.73 0.56 2.03 0.02 1.03 1.08
TSLS (TWFE) 1.22 0.06 0.22 0.11 1.46 0.08 0.46 0.29 1.78 0.06 0.78 0.67
SIV 1.04 0.03 0.04 0.03 1.17 0.05 0.17 0.07 1.47 0.06 0.47 0.28
projected SIV 0.93 0.08 -0.07 0.08 1.03 0.10 0.03 0.10 1.34 0.13 0.34 0.25
Agg. SIV 1.25 0.08 0.25 0.14 1.47 0.09 0.47 0.31 1.80 0.05 0.80 0.70
SIV + projected 0.93 0.08 -0.07 0.08 1.04 0.09 0.04 0.10 1.34 0.13 0.34 0.25
SIV + Agg. 1.24 0.07 0.24 0.13 1.47 0.09 0.47 0.31 1.80 0.05 0.80 0.69
SIZ Z 1.08 0.03 0.08 0.04 1.26 0.04 0.26 0.11 1.62 0.04 0.62 0.43

σ = 4
OLS (TWFE) 1.62 0.04 0.62 0.42 1.94 0.04 0.94 0.92 2.30 0.03 1.30 1.72
TSLS (TWFE) 1.21 0.08 0.21 0.12 1.45 0.09 0.45 0.29 1.77 0.07 0.77 0.67
SIV 1.06 0.05 0.06 0.06 1.23 0.07 0.23 0.12 1.58 0.08 0.58 0.42
projected SIV 0.94 0.13 -0.06 0.14 1.08 0.15 0.08 0.15 1.46 0.15 0.46 0.35
Agg. SIV 1.24 0.09 0.24 0.15 1.46 0.12 0.46 0.34 1.80 0.06 0.80 0.70
SIV + projected 0.95 0.13 -0.05 0.13 1.08 0.15 0.08 0.15 1.46 0.15 0.46 0.35
SIV + Agg. 1.24 0.09 0.24 0.15 1.46 0.12 0.46 0.33 1.80 0.06 0.80 0.70
SIZ Z 1.11 0.05 0.11 0.06 1.32 0.05 0.32 0.16 1.68 0.05 0.68 0.51

σ = 8
OLS (TWFE) 1.82 0.06 0.82 0.74 2.23 0.07 1.23 1.58 2.67 0.07 1.67 2.87
TSLS (TWFE) 1.20 0.11 0.20 0.15 1.44 0.12 0.44 0.31 1.77 0.09 0.77 0.68
SIV 1.08 0.09 0.08 0.10 1.29 0.11 0.29 0.19 1.66 0.11 0.66 0.55
projected SIV 0.96 0.20 -0.04 0.20 1.15 0.22 0.15 0.24 1.55 0.23 0.55 0.52
Agg. SIV 1.22 0.13 0.22 0.18 1.46 0.16 0.46 0.37 1.79 0.09 0.79 0.72
SIV + projected 0.97 0.19 -0.03 0.19 1.15 0.22 0.15 0.24 1.55 0.22 0.55 0.52
SIV + Agg. 1.22 0.13 0.22 0.17 1.46 0.16 0.46 0.37 1.79 0.09 0.79 0.72
SIZ Z 1.13 0.07 0.13 0.09 1.36 0.08 0.36 0.21 1.73 0.06 0.73 0.60
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A.2. Data

Turkish Statistical Institute (Turkstat) defines employment under four categories: wage-employment

(60.7%), self-employment (20.3%), unpaid family worker (13.2%) and employer (5.6%). Wage-

employment, or salaried employment, refers to the type of jobs that are done as an exchange for

monetary or non-monetary payment. Both fixed and hourly pay are considered wage-employment

under this category. The reason why we focus on salaried employment as opposed to overall

employment for the empirical section of the paper is that, as suggested by Gulek (2023), wage

employment and non-wage employment (self-employment, employer, or unpaid family work) are

driven by different economic forces. Whereas there has to be an employer willing to hire a worker

for a particular wage for that worker to have a salaried job (i.e, we can think about a labor demand

curve), self-employment is an individual labor-supply decision. Natives who lose their salaried jobs

due to the labor supply shock may choose to search for a salaried job while remaining unemployed,

or if self-employment is a feasible alternative, may choose to remain employed. Gulek (2023) shows

that transition from salaried to non-salaried jobs is an important adjustment mechanism for Turk-

ish men but not so for Turkish women. Whereas he finds similar effects for men and women in

salaried employment, he finds opposing results for non-salaried employment. He further argues

that the canonical labor demand framework is more appropriate to think about wage employment

(as opposed to non-wage employment) in settings where self-employment is a feasible alternative.

Table B.2: Educational Attainment of Syrian refugees and Natives

Educational Attainment Syrian migrants (age 18+) Natives (Age: 18-64)

No degree 0.21 0.12
Primary school 0.42 0.33
Secondary school 0.20 0.16
High school 0.10 0.20
Some college and above 0.08 0.19

Source: Author’s calculation using 2019 Household Labor Force Survey for natives, and
Turkish Red Crescent and WFP (2019) for the Syrian refugees.

In the main text, we write that Syrian refugees are less educated than the Turkish natives. We show

evidence for this on table B.2. We use Turkish Household Labor force Surveys to determine the

educational attainment of natives, and use livelihood surveys that are conducted on Syrian refugees

to determine their educational attainment. According to these surveys, 21% of Syrian refugees in

Turkey do not have any degree, 63% have at most a primary school degree, and 83% do not have

a high school diploma, whereas these numbers are 12%, 45%, and 61%, respectively for natives.
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A.3. Replication of ADH

Figure A.3.1: Reduced-form estimates using the 1990 and 2000 shares
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Table C.3: Replication of table 2 in ADH

1990–2000 2000-2007 1990–2007
(1) (2) (3)

2SLS -0.888 -0.718 -0.746
(0.181) (0.064) (0.068)

SIV -0.588 -0.726 -0.703
(0.198) (0.070) (0.067)

SIV-trim20 -0.752 -0.763 -0.761
(0.178) (0.104) (0.096)

SIV-trim30 -0.784 -0.769 -0.772
(0.177) (0.102) (0.089)

SIV-trim50 -0.874 -0.807 -0.819
(0.172) (0.081) (0.078)

SIV-trim100 -0.937 -0.769 -0.801
(0.170) (0.067) (0.069)

1990–2000 2000-2007 1990–2007
(1) (2) (3)

2SLS -0.888 -0.718 -0.746
(0.181) (0.064) (0.068)

SIV (training in 70) -0.955 -0.725 -0.764
(0.202) (0.075) (0.078)

SIV-trim20 (training in 70)-1.177 -0.771 -0.840

Notes: The first row replicates columns 1--3 of Table 2 
in ADH 2013. In rows 2--6, we apply SIV. The SC 
weights are estimated using the manufacturing growth 
rates in 1970 and 1980. Rows 3, 4, 5, and 6 show the 
SIV with the donor pool trimmed to the 20, 30, 50, an 
100 closest closest units to the treated unit according 
to the Euclidean distance, respectively.

Notes: The first row replicates columns 1–3 of Table
2 in ADH 2013. In rows 2–6, we apply SIV. The SC
weights are estimated using the manufacturing growth
rates in 1970 and 1980. Rows 3, 4, 5, and 6 show the
SIV with the donor pool trimmed to the 20, 30, 50, an
100 closest closest units to the treated unit according
to the Euclidean distance, respectively.
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Table C.4: Replication of table 3 in ADH

(1) (2) (3) (4) (5) (6)

IV -0.75 -0.61 -0.54 -0.51 -0.56 -0.60
(0.07) (0.09) (0.09) (0.08) (0.10) (0.10)

SIV -0.70 -0.59 -0.51 -0.50 -0.61 -0.63
(0.07) (0.10) (0.10) (0.09) (0.11) (0.10)

SIV-trim20 -0.76 -0.67 -0.58 -0.57 -0.65 -0.65
(0.10) (0.10) (0.07) (0.08) (0.08) (0.07)

SIV-trim30 -0.77 -0.66 -0.54 -0.53 -0.59 -0.61
(0.09) (0.09) (0.07) (0.07) (0.07) (0.07)

SIV-trim50 -0.82 -0.74 -0.63 -0.62 -0.68 -0.70
(0.08) (0.09) (0.08) (0.08) (0.09) (0.09)

SIV-trim100 -0.80 -0.73 -0.63 -0.62 -0.67 -0.69
(0.07) (0.09) (0.08) (0.08) (0.08) (0.08)

Controls
Percentage of employment in 
manufacturing t-1 No Yes Yes Yes Yes Yes

Percentage of college-educated 
population t-1 No No No Yes No Yes

Percentage of foreign-born 
population t-1 No No No Yes No Yes

Percentage of employment 
among women t-1 No No No Yes No Yes

Percentage of employment in 
routine occupations t-1 No No No No Yes Yes

Average offshorability index of 
occupations t-1 No No No No Yes Yes

Census division dummies No No Yes Yes Yes Yes

1990–2007 stacked first differences

Notes:  The first row replicates columns 1--6 of Table 3 in ADH 2013. Row 2 shows SIV estimates. The 
SC weights are estimated using the manufacturing growth rates in 1970 and 1980. Dependent 
variable: 10 × annual change in manufacturing emp/working-age pop (in % pts). N = 1,444 (722 
commuting zones × 2 time periods). All regressions include a constant and a dummy for the 
2000–2007 period. Routine occupations are defined such that they account for 1/3 of US 
employment in 1980. The offshorability index variable is standardized to mean of 0 and standard 
deviation of 10 in 1980. Robust standard errors in parentheses are clustered on state. Models are 
weighted by start of period CZ share of national population. 
Rows 3, 4, 5, and 6 show the SIV with the donor pool trimmed to the 20, 30, 50, an 100 closest 
closest units to the treated unit according to the Euclidean distance, respectively.
PS: We add the controls in the second step of the algorithm, where we employ 2SLS on the debiased 
outcome, treatment and the instrument. We do not debias the control variables nor use them in 

Notes: The first row replicates columns 1–6 of Table 3 in ADH 2013. Row 2 shows SIV estimates. The SC
weights are estimated using the manufacturing growth rates in 1970 and 1980. Dependent variable: 10 ×
annual change in manufacturing emp/working-age pop (in % pts). N = 1,444 (722 commuting zones × 2 time
periods). All regressions include a constant and a dummy for the 2000–2007 period. Routine occupations
are defined such that they account for 1/3 of US employment in 1980. The offshorability index variable is
standardized to mean of 0 and standard deviation of 10 in 1980. Robust standard errors in parentheses are
clustered on state. Models are weighted by start of period CZ share of national population. Rows 3, 4, 5,
and 6 show the SIV with the donor pool trimmed to the 20, 30, 50, an 100 closest closest units to the treated
unit according to the Euclidean distance, respectively.A15


