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We prove the folk theorem for discounted repeated games with anonymous ran-
dom matching. We allow non-uniform matching, include asymmetric payoffs, and
place no restrictions on the stage game other than full dimensionality. No record-
keeping or communication devices—including cheap talk communication and public
randomization—are necessary.
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1. INTRODUCTION

IN A REPEATED GAME with anonymous random matching, a finite population of players
repeatedly breaks into pairs to play 2-player games. Each period, a player observes only
her partner’s action—not his identity, and not any other player’s action. We prove the folk
theorem in this environment. In particular, when the players are sufficiently patient, they
can attain the same payoffs as if everyone’s identity and actions were publicly observed at
the end of each period.

Because players receive so little information under anonymous random matching, this
environment has long been used as a benchmark against which to measure the value of
various record-keeping devices and institutions, such as fiat money, merchant coalitions
and guilds, credit bureaus, online rating systems, “standing” and “image scoring” in evolu-
tionary biology, and monitoring within ethnic groups.1 The main implication of our result
is that, even in this information-poor benchmark environment, patient players can obtain
any feasible and individually rational payoffs without any record-keeping devices or in-
stitutions beyond their individual memories and the ability to count periods. Thus, any
role for such institutions must result from impatience of the players, or from the possi-
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bility of constructing “simpler,” “more robust,” or “more realistic” equilibria when more
information is available.2

Our folk theorem thus admits both positive and negative interpretations. The positive
interpretation is that a wide range of cooperative behaviors are possible despite minimal
information. The negative interpretation is that, in a finite population of patient long-run
players, it is difficult to justify the value of information-sharing institutions on efficiency
grounds alone. In particular, in these environments, the assumptions that monitoring is
decentralized and players are anonymous—which might have been expected to restrict
the set of attainable payoffs in some games—turn out to be completely payoff-irrelevant.3

Our approach is to view the repeated random matching game as a single N-player re-
peated game with imperfect private monitoring and apply techniques from the literature
on the folk theorem with private monitoring. The main obstacle to this approach is that,
when viewed as a single repeated game, the random matching game fails standard sta-
tistical identifiability conditions (e.g., Fudenberg, Levine, and Maskin’s (1994) pairwise
identifiability) and full support conditions. To overcome this obstacle, we show that play-
ers can be given incentives to truthfully share information—despite communicating only
via payoff-relevant actions—and that the aggregated information of a player’s opponents
always identifies her action. Our paper thus connects three literatures: repeated games
with random matching, repeated games with private monitoring, and secure communica-
tion in repeated games.

Random Matching. Kandori (1992), Ellison (1994), and Harrington (1995) showed that
cooperation can be sustained in the repeated prisoner’s dilemma with anonymous ran-
dom matching via “contagion strategies,” where a single defection triggers the breakdown
of cooperation throughout the population. This approach does not generalize beyond
the prisoner’s dilemma, because spreading contagion may not be incentive compatible
when punishing is costly. Even within the prisoner’s dilemma, it cannot be used to sup-
port asymmetric equilibria, where, for example, a subset of players are allowed to defect
while others must cooperate. In contrast, our theorem covers all games (subject to a mild
full dimensionality condition) and all feasible and individually rational payoffs.

Deb (2020) proved the folk theorem for asymmetric games where players from dis-
tinct communities fill different player-roles, cheap talk communication between partners
is allowed, and all players from the same community receive the same payoff. We instead
consider random matching within a single population (though our approach generalizes
to multiple communities), allow asymmetric payoffs, and—most importantly—disallow
cheap talk.4  Deb and González-Díaz (2020) also disallowed cheap talk in the 2-community
model, but they imposed some conditions on the stage game, restricted attention to sym-
metric payoffs that Pareto dominate a Nash equilibrium (obtaining a “Nash threat” folk
theorem), and required the population to be sufficiently large. Their proof is completely

2Of course, our result first fixes the population size N and then takes δ → 1. If the population is very large,
the required discount factor is very close to 1. For example, if one extended our model by introducing fiat
money à la Kiyotaki and Wright (1989, 1993) or Wallace (2001), our theorem would immediately imply that,
for any fixed N , money is inessential for sufficiently high δ; however, for any fixed δ, for many stage games
money is essential for sufficiently high N . This observation generalizes the conclusion of Araujo (2004) in the
same way that our theorem generalizes the conclusions of Kandori (1992) and Ellison (1994).

3Another interpretation sometimes claimed by repeated games papers is that the constructed equilibrium
is a positive description of behavior. We do not make such a claim here, and indeed think our construction is
much too complicated to interpret this way. Our theorem is simply a benchmark possibility result.

4Ruling out cheap talk seems essential, as the point of our analysis is to see what outcomes are possible in
the absence of record-keeping and communication devices.
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FOLK THEOREM IN REPEATED GAMES 919

different, as they generalized the contagion approach, while we build on the block belief-
free approach introduced by Hörner and Olszewski (2006) to study repeated games with
almost-perfect monitoring. We compare these two approaches below. Deb, González-
Díaz, and Renault (2016) proved a general folk theorem for N-community games with-
out discounting. Another difference from these papers is that our approach extends to
non-uniform and even non-i.i.d. matching.

Other random matching models assume players directly observe some information
about their partners’ past play. Rosenthal (1979), Okuno-Fujiwara and Postlewaite
(1995), and Dal Bó (2007) considered finite population models; notably, the latter paper
allows asymmetric payoffs. Takahashi (2010), Dilmé (2016), Heller and Mohlin (2018),
Bhaskar and Thomas (2020), and Clark, Fudenberg, and Wolitzky (2019a, 2019b) consid-
ered continuum models.

Private Monitoring. The literature on repeated games with imperfect private monitoring
is too large to survey here. The folk theorem with public cheap talk communication was
proved by Compte (1998) and Kandori and Matsushima (1998). Piccione (2002), Ely and
Välimäki (2002), Matsushima (2004), Ely, Hörner, and Olszewski (2005), Hörner and Ol-
szewski (2006), and Yamamoto (2012) developed belief-free techniques that we build on.
Sugaya (2019) proved a general folk theorem under identifiability and full support condi-
tions. These conditions are violated with anonymous random matching, but we use some
ideas from Sugaya’s proof.5 We explain the connection to this literature in Section 3.5.

Secure Communication. The most challenging part of our proof is providing incentives
for secure communication with anonymous random matching, when communication can
be executed only through payoff-relevant actions. As far as we know, ours is the first pa-
per to address this problem. Incentives for secure communication have been studied in
the related setting of repeated games played on fixed networks (Ben-Porath and Kah-
neman (1996), Renault and Tomala (1998), Lippert and Spagnolo (2011), Laclau (2012,
2014), Nava and Piccione (2014), Wolitzky (2015)). While the technical overlap with this
literature is slight, our non-uniform matching model can approximate a fixed network, as
we allow the case where a player “almost always” interacts with the same partners.

2. MODEL AND FOLK THEOREM

There is a finite set of players I = {1� � � � �N}, with N ≥ 4 even. In every period t =
1�2� � � � , players match in pairs to play a finite, symmetric 2-player game with action set
A and payoff function u : A×A → R, with |A| ≥ 2. Let a0� a1 ∈ A denote two arbitrary,
distinct actions.

Pairs are formed as follows: (i) a matching μ is a partition of the population into pairs,
(ii) there is an exogenous distribution p over matchings, and (iii) the period-t matching μt

is drawn from p i.i.d. across periods.6 We assume p has full support and let ε̄ > 0 denote
the minimum of p(μ) over all matchings. Let μ(i) denote player i’s partner in matching μ.
Let pi�j =∑

μ:μ(i)=j p(μ) denote the probability that players i and j are matched.
Players are anonymous—each player observes only the actions she faces and not her

opponents’ identities. Formally, letting ai�t ∈ A denote player i’s period-t action, player
i’s observation in period t is the pair (ai�t�ωi�t), where ωi�t = aμt(i)�t . Say that a profile

5Fudenberg, Ishii, and Kominers (2014) also built on Hörner and Olszweski to prove a folk theorem in a
setting where Sugaya’s theorem does not apply, albeit a completely different one from ours.

6The extension to non-i.i.d. matching is discussed in Section 4.
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920 J. DEB, T. SUGAYA, AND A. WOLITZKY

of observations (ai�ωi)i∈I is feasible if there exists an action profile a = (a1� � � � � aN) ∈∏
i∈I A = AN and a matching μ such that ωi = aμ(i) for all i ∈ I. Player i’s history at

the beginning of period t is denoted ht−1
i = (ai�τ�ωi�τ)

t−1
τ=1, with h0

i = ∅. Players maximize
expected discounted payoffs with common discount factor δ < 1. Let E(δ) denote the
sequential equilibrium payoff set with discount factor δ.7

For any action profile a ∈ AN , player i’s expected payoff at action profile a is given by

ûi(a)=
∑
j �=i

pi�ju(ai� aj)�

Thus, the (convex hull of the) feasible payoff set in the N-player game is F =
co({û(a)}a∈AN ), where û(a) = (û1(a)� � � � � ûn(a)).8 Let ū = max(a�a′)∈A2 |u(a�a′)| be the
greatest magnitude of any feasible payoff, and let u = minα∈	(A) maxa∈A u(a�α) be the
minmax payoff. Let αmin ∈ argminα∈	(A) maxa∈A u(a�α) be a minmax strategy in the 2-
player game; to minmax player i in the N-player game, every player but i plays αmin.
Denote the set of feasible and individually rational payoffs by F∗ = {v ∈ F : vi ≥ u ∀i ∈ I}.
We assume F∗ has dimension N . This condition is generic: letting

ei = (
u
(
a0� a1

)
�
(
(1 −pj�i)u

(
a1� a1

)+pj�iu
(
a1� a0

))
j �=i

) ∈RN

be the payoff vector when player i plays a0 and all other players play a1, the vectors (ei)i∈I
are linearly independent for generic values of u(a0� a1), u(a1� a0), and u(a1� a1).9

In this setting, we establish the folk theorem:

THEOREM 1: For all v ∈ int(F∗), there exists δ̄ < 1 such that v ∈E(δ) for all δ > δ̄.

3. KEY IDEAS OF THE EQUILIBRIUM CONSTRUCTION

We provide a constructive proof of the folk theorem. The proof is deferred to the Ap-
pendix. Here we describe the key ideas of the construction.

3.1. Overall Structure of the Construction

We view the repeated game as an infinite sequence of finite blocks of periods. Players
follow automaton strategies. In each block, each player i ∈ I has two possible states—
denoted xi ∈ {G�B}, for “good” and “bad.” A player’s state in the current block, her
history in the current block, and private randomization jointly determine her state in the
next block. We specify each player i’s block strategy in state xi—denoted σi(xi)—and the

7In defining sequential equilibrium, the choice of topology on the sets of beliefs and strategies does not
matter for us—for concreteness, take it to be the product topology. This is another point of contrast with
the approaches in Deb (2020) and Deb and González-Díaz (2020), where choosing the product topology is
essential.

8The definition of the feasible payoff set accounts for anonymity. For example, if the stage game is the pris-
oner’s dilemma, the payoff vector corresponding to everyone cooperating with player 1 and defecting against
everyone else is not feasible.

9Full-dimensionality of F∗ and full-dimensionality of the underlying 2-player game are logically indepen-
dent. If the 2-player game is a pure coordination game (with payoff dimension 1), then F∗ has full dimension.

Conversely, with N = 4 and uniform matching, the 2-player game
a0 a1

a0 4�4 1�3
a1 3�1 0�0

has full dimension, but F∗

has dimension 1.
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FOLK THEOREM IN REPEATED GAMES 921

state transition rules so that two properties hold. First, for every realization of the other
players’ states x−i ∈ {G�B}N−1, both σi(G) and σi(B) are optimal strategies for player
i (i.e., the equilibrium is block belief-free, as in Hörner and Olszewski (2006)). Second,
player i is the “arbiter” of the payoff of player (i + 1) (mod N), in that i’s state deter-
mines i+1’s equilibrium continuation payoff: whenever i’s state is G (B), i+1’s expected
continuation payoff is higher (lower) than the target equilibrium payoff, so that i + 1’s
target payoff can be exactly attained by tuning i’s state transition rule. For example, if the
state profile at the start of a block is x = (B�B�G�G� � � � �G), so everyone except play-
ers 1 and 2 is in state G, then the strategy profile to be played in the block is one that
guarantees that expected continuation payoffs are low for players 2 and 3 and high for
everyone else. Full-dimensionality of the payoff set guarantees that such a strategy pro-
file exists. For instance, in the prisoner’s dilemma, such a profile might require players
2 and 3 to cooperate for 99% of the block, while everyone else cooperates for 95% of
the block. Note that, while i is responsible for choosing i + 1’s continuation payoff via
her state transition, she has no special role in delivering this payoff: once the state pro-
file x ∈ {G�B}N is chosen, all players are equally responsible for following the prescribed
equilibrium continuation.

Play within a block proceeds as follows. First, there is an “initial talk sub-block,” where
players communicate their states.10 This lets them coordinate on the block strategy profile
based on the state profile x ∈ {G�B}N . Then, players repeat the following “play-and-talk
sub-block” multiple times: they play actions that attain the target payoffs at state profile
x for many periods, and then communicate to see if anyone deviated. This is followed
by a “final talk sub-block,” where players communicate a summary of the entire block
history. Since all communication is executed via payoff-relevant actions, to attain the tar-
get payoffs the players must spend most of their time in the “play” phases: in particular,
they cannot take the time to communicate about every play period. Instead, when play-
ers communicate to identify deviations, player i chooses one period at random from the
preceding play phase and communicates this choice to the other players, who then share
their information about that period only. This information is used to check if player i+ 1
deviated in the chosen period. Since player i + 1 does not know in advance which period
his arbiter i will choose, this scheme can provide incentives for the entire play phase.

If deviations are detected as a result of the communication among players (described
in Section 3.2 below), then deviators are punished in two ways. First, if communication
reveals that player i + 1 deviated, then everyone switches to mutual minmaxing for the
rest of the current block (starting with the next play-and-talk sub-block). Second, at the
beginning of the next block, player i + 1’s arbiter (player i) adjusts her state transition
probability so as to reduce player i+ 1’s expected continuation payoff; and for each other
player j �= i + 1, player j’s arbiter (player j − 1) adjusts player j’s expected continuation
payoff to compensate her for any cost of punishing player i during the last block.11

An implication of this block structure is that each player’s continuation value is con-
trolled separately across blocks. Therefore, the challenge is providing incentives within
each block for correct on-path play and (especially) providing incentives for truthful com-
munication. This is unlike contagion equilibria, where all players’ payoffs are tied to-
gether, and so the key challenge is in providing incentives to carry out punishments.

10Recall that all communication is executed via actions.
11This basic idea of “rewarding the punishers” dates back to Fudenberg and Maskin (1986). As in that

paper, “rewards” compensate punishers for the cost of carrying out punishments, but a player may still be left
worse-off than she was before an opponent’s deviation.
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922 J. DEB, T. SUGAYA, AND A. WOLITZKY

3.2. How Communication Works

In our construction, players communicate by taking turns broadcasting information.
Which player’s turn it is to “talk” in each period is pre-determined.12 We explain how a
player sends a binary message m ∈ {0�1}. Longer messages are sent by binary expansion.

To send message 1, the sender plays a1 for T periods and then a0 for another T periods,
where T is a pre-determined large number. To send message 0, the order is reversed:
first a0 for T periods, then a1. The other players—the “receivers”—play only a0 with high
probability throughout the entire 2T -period interval. At the end of the interval, a receiver
who observed a1 during the first T periods only infers that the sender sent message 1.
A receiver who observed a1 during the last T periods only infers that the sender sent
message 0. A receiver who observed any other pattern—that is, observed a1 at least once
in each half-interval, or never observed a1 at all—receives a message of error.

This protocol has several desirable properties. First, if T is large, with high probabil-
ity the sender matches with each receiver at least once in each T -period half-interval, and
therefore the message transmits successfully when all players follow the protocol. Second,
a key obstacle to communication is that, since players are anonymous, a receiver may be
tempted to talk at the same time as the sender in an attempt to manipulate the message.
Our protocol makes such a manipulation very unlikely to succeed: no matter what a given
receiver does, every other receiver will either receive the correct message or receive er-
ror, so long as she meets the sender at least once in the half-interval where the sender
plays a1—a very high-probability event. Hence, to deter this attempted manipulation, it
suffices to punish all players whenever anyone receives error.

There are, however, two important challenges to implementing this simple scheme.
First, in the course of communication, a receiver might learn that a low-probability

realization of the matching process has occurred, at which point her expected gain from
manipulation can be much larger. For example, suppose a single receiver happens to see
a1 in all of the first T periods—this event is very unlikely, but it is not impossible. Since
only one receiver at a time sees a1, this receiver can infer that she is the only one to
have received the message successfully. This puts her at a large informational advantage
over the other players, and it is difficult to predict how she may exploit this advantage in
continuation play.

We address this receiver-learning problem by introducing jamming, a key innovation in
our proof. Specifically, at the beginning of each block, with small probability each player
is designated a jamming player for the block. (We defer the details of how this designa-
tion is determined.) Jamming players differ from regular players in that, when they are
receivers, with small probability they continually play a1 (which we refer to as jamming
communication) rather than a0. Clearly, communication is very unlikely to succeed when
a jamming player is present and jams communication—however, since jamming players
are rarely present (and rarely jam communication when they are present), this has a neg-
ligible effect on equilibrium payoffs. Moreover, even a slight possibility that communica-
tion may be jammed is enough to solve the receiver-learning problem: now, if a receiver
sees a1 repeatedly, she infers that with high probability a jamming player is present and
jammed communication, rather than inferring that a low-probability match realization
occurred. In the former case, it is very likely that all players inferred that communication
was jammed. Thus, the possibility of jamming greatly reduces the perceived informational
advantage of a receiver who repeatedly observes a1. The resulting gain from manipulation

12Here we rely on the implicit assumption that the players share a common sense of calendar time.
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FOLK THEOREM IN REPEATED GAMES 923

is small enough that it can be offset by a small loss in continuation payoff at the start of
the next block.

Second, when a receiver i receives error, the subsequent punishments must be incen-
tive compatible. How this is ensured depends on where in the block the error occurs.
If i receives error in the last communication phase in the block, she (costlessly) adjusts
her transition probability for the next block (putting on more weight on xi = B) so as to
reduce player i+ 1’s continuation payoff only. If instead i receives error at a time when
there are still some play-and-talk sub-blocks remaining, mutual minmaxing commences
at the start of the next sub-block, incentivized by the promise of compensation at the start
of the next block.

Thus, on equilibrium path, if there is no jamming and no low-probability match realiza-
tions occur, then there are no punishments within a block, and all required continuation
payoff adjustments are made across blocks. The structure of the different communication
phases within a block is described in more detail in Section 3.4.

3.3. How Identification Works

Another step in the proof is that, if player i’s opponents can successfully aggregate their
information regarding a particular period of play, this information suffices to perfectly
identify player i’s action and observation in that period. This step is straightforward. Since
matching occurs in pairs, the total number of players who observe the same action they
play (i.e., observe ωn = an) is always even. Therefore, if there exists a ∈ A such that the
number of i’s opponents for whom ωn = an = a is odd, then ωi = ai = a. If instead this
number is even for every a ∈ A, then ai �= ωi. (Otherwise, the total number of players
with ωn = an = ai would be odd.) In this case, there is one action a such that more of
i’s opponents observe ωn = a than play an = a, and there is another action ω such that
more of i’s opponents play an =ω than observe ωn =ω. This pair (a�ω) must then equal
(ai�ωi). Thus, if players −i can aggregate their information, they can perfectly monitor
player i.13

3.4. A Closer Look at the Communication Sub-Blocks

Next, we provide a little more detail on the “initial talk,” “play-and-talk,” and “final
talk” sub-blocks noted above. “Talk” proceeds via communication protocols: finite repeti-
tions of the stage game in which players communicate via actions. Our analysis consists of
stringing together analyses of different communication protocols. Since we verify incen-
tive compatibility essentially by backwards induction, we describe the protocols backwards
from the end of a block.

Figure 1 provides a schematic of play within a block. The final talk sub-block com-
prises four phases. In the last phase, for each i ∈ I, player i − 1 chooses one period t at
random from the previous periods in the block and communicates it to the other play-
ers, who then communicate their period-t information to player i− 1: intuitively, players
−i “talk about” player i’s play in period t. Player i − 1 then slightly adjusts her state
transition probability such that the effect of discounting in player i’s payoff is cancelled

13This perfect monitoring property is not necessary for our approach: in the working-paper version (Deb,
Sugaya, and Wolitzky (2018)), we extend our proof to almost-perfect monitoring within matches. Nonetheless,
perfect monitoring simplifies the proof while letting us focus on its most novel element: incentivizing truthful
communication.
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924 J. DEB, T. SUGAYA, AND A. WOLITZKY

FIGURE 1.—Schematic of play within a block.

out: when player i − 1 chooses period t, she increases player i’s continuation payoff by
(1 − δt−1)ûi(at)/Pr(t is chosen), where at is the period-t action profile identified from
communication. This makes player i indifferent about the timing of her actions within
a block. Hence, in all earlier phases, we may view the game as one without discounting,
which is a substantial simplification.

Recall that player i− 1’s state affects player i’s payoff only. Thus, in the last communi-
cation phase, players −i are indifferent to the outcome of communication, and are thus
willing to report truthfully. Moreover, even player i has only a very small potential gain
from manipulating communication when δ is large (once we fix the length of the block).
Since it is always possible to provide small incentives without sacrificing much efficiency,
we do not need to rely on jamming players in this phase, and a very simple communica-
tion protocol—the basic communication protocol, introduced in Section D.1 of the Ap-
pendix—is sufficient.

In the penultimate and third-to-last talk phases, players −i aggregate their information
from all previous talk phases in the block. Player i − 1 uses this information to adjust
her state transition. As we will see, the impact of this adjustment on player i’s payoff
can be large, so player i may have a strong incentive to manipulate the communication.
Hence, for this phase we need a communication protocol where there is no history at
which player i believes she can manipulate the outcome of communication to her benefit.
This requires the secure communication protocol, introduced in Section D.2, which relies
on jamming players.

In the first talk phase of the final talk sub-block, player i − 1 chooses one period tl at
random from each of the L main play sub-blocks and communicates it to the other players,
who then communicate their period-tl information to player i − 1. Players also confess

 14680262, 2020, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
16680 by M

assachusetts Institute of T
echnolo, W

iley O
nline L

ibrary on [04/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FOLK THEOREM IN REPEATED GAMES 925

whether they have deviated in the current block so far.14 Similarly, in the talk phases
of the play-and-talk sub-blocks, players communicate selected periods to monitor and
share information about the monitoring periods with the sub-block. Finally, talk phases
in the initial talk sub-block are used to determine jamming players for the block and to
coordinate on the state x ∈ {G�B}N . Communication in the initial sub-block and the play-
and-talk sub-blocks is especially challenging. This is because these phases affect not only
continuation payoffs at the end of the block but also continuation play within the block.
Thus, all players (not only the one “about whom the others are talking”) may have a strong
incentive to manipulate communication. We therefore need a protocol that no player can
profitably manipulate. We construct the verified communication protocol (introduced in
Section D.3) to have this property. The key additional feature of this protocol is that each
receiver communicates the message she received back to the sender. This lets the players
determine whether or not they all received the same message.15

3.5. Relation to the Private Monitoring Literature

Some readers may wish to understand how our construction relates to existing work
on repeated games with private monitoring. Our goal is to construct a block belief-free
equilibrium, as in Hörner and Olszewski (2006). To allow accurate communication under
random matching, we have players repeat actions and messages and apply a concentration
inequality (Lemma 3). In this sense, our construction joins the line of research combin-
ing belief-free equilibria and review strategies, following Matsushima (2004). The closest
papers in this literature are Yamamoto (2012) and Sugaya (2019).

Yamamoto showed how to combine belief-free equilibria and review strategies in gen-
eral repeated games. There are several important differences with our approach, but a
crucial one is that Yamamoto assumed conditional independence: player i’s signal and
player j’s signal are independent conditional on actions. Thus, i cannot learn j’s inference
from her own signals. In contrast, with random matching signals are not conditionally in-
dependent. This is the “receiver-learning problem” noted above, which we address via the
innovation of introducing jamming players.

Sugaya proved a general folk theorem by generalizing Yamamoto’s construction to
conditionally dependent monitoring. As in the current paper, mixed strategies are used
to control incentives after erroneous histories that arise with small ex ante equilibrium
probability. In particular, after observing such a history, a player believes this observa-
tion results from a rare realization of her opponents’ mixed strategies. By specifying her
continuation payoff to be constant after such erroneous realizations, the player is incen-
tivized to adhere to the same continuation play as after non-erroneous histories. However,
Sugaya’s construction assumes pairwise identifiability (i.e., each player can unilaterally
identify other players’ deviations). This makes communication straightforward, as when
player i “sends a message” to player j, player j can construct a statistic whose distribution
depends on player i’s message but is independent of unilateral deviations by players −i.
With anonymous random matching, pairwise identifiability is robustly violated.

14Confessions incentivize punishment during the main phases. Once a player observes an off-path history,
she expects that the deviator (whoever he is) will confess in the final sub-block, and her own arbiter will adjust
her continuation payoff accordingly. Meanwhile, the deviator is willing to confess because his confession is
used only to adjust his opponents’ continuation payoffs; in particular, his own punishment during the main
phase is already sunk. This is as in Hörner and Olszewski (2006).

15As indicated in Figure 1, we also use the verified communication protocol in the first talk phase of the final
talk sub-block.
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926 J. DEB, T. SUGAYA, AND A. WOLITZKY

4. EXTENSIONS

We have extended Theorem 1 to three more general environments: imperfect mon-
itoring within matches, non-pairwise matching, and non-i.i.d. matching. We summarize
these extensions here—formal statements and proofs may be found in the working-paper
version of this article.

Almost-perfect within-match monitoring: It is not surprising that we can allow almost-
perfect monitoring within a match, since we build on Hörner and Olszewski (2006), who
proved the folk theorem with almost-perfect monitoring. The required modifications to
our proof are relatively minor. First, we have jamming players mix over all actions, rather
than just a0 and a1. This makes players attribute unexpected observations to randomiza-
tion by jamming players rather than monitoring errors. Second, reward functions must be
adjusted to account for monitoring errors. Third, it is useful to introduce a small proba-
bility that the block is extended to include a final “long communication phase” on which
the required reward adjustments can be based. Here we do allow public randomization,
in contrast to both Theorem 1 and Hörner and Olszewski’s theorem. It is used to decide
when to extend the block by including a long communication phase.

Non-pairwise matching and random player-roles: The assumption that matching is pair-
wise is restrictive. For example, this requires that all players “play the game” the same
number of times, and thus rules out a distinction between frequent and infrequent partic-
ipants. The assumption that each player has the same “role” in each match is also restric-
tive. It rules out games where, each period, one player in each match has an opportunity
to do a favor for her partner, as in “monetary” models à la Kiyotaki and Wright (1989,
1993). Our approach can be extended to cover these settings, with some restrictions on
the structure of the game and the target payoff set. The required modifications to the
proof are again minor. For example, a player must now report her group size and player-
role (if applicable) in addition to her action and observation. Notably, with this additional
information, our identification argument generalizes to non-pairwise matching.

Non-i.i.d. matching: Our approach also extends to situations where (pairwise) matching
is determined by a Markov process with a full-support transition kernel that depends
on both the current match and the current action profile. This encompasses models
with endogenous match separation, such as finite population versions of Shapiro and
Stiglitz (1984), Datta (1996), Kranton (1996), Carmichael and MacLeod (1997), Eeck-
hout (2006), Fujiwara-Greve and Okuno-Fujiwara (2009), and Pȩski and Szentes (2013).
The proof now requires substantial modification. The basic idea is to use the fact that, for
large enough T , any two matches separated by T periods are almost independent. This
lets us preserve the block belief-free structure.

5. DISCUSSION

Multiple communities and player-roles: Our result can also be extended to allow multi-
ple communities, where each community has a fixed role. For example, in a stage-game
between a buyer and a seller, we can allow the case where each player is always either
a buyer or a seller, and also that where each player can play different roles in different
periods.

Cheap talk and public randomization: The folk theorem would be easy to prove if we
allowed public cheap talk communication. This would make detecting deviations straight-
forward, and then cooperation could be sustained by punishing deviations through mu-
tual minmaxing. Deb (2020) considered a setting with private (within-match) cheap talk
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FOLK THEOREM IN REPEATED GAMES 927

and showed that it is possible to partially detect deviations, and then applied the perfect
monitoring version of Hörner and Olszewski. On the other hand, allowing public random-
ization would not simplify our construction much.16

Incomplete information: A concern with contagion equilibria is that they are not ro-
bust to incomplete information, for instance the possibility of a few “commitment types”
who always defect. Our approach of considering a single N-player game and controlling
each player’s continuation payoff separately should be more robust to these considera-
tions. However, incomplete information can undermine our communication protocols.
Nonetheless, we conjecture that our approach combined with that in Fudenberg and Ya-
mamoto (2010) may yield a partial folk theorem for ex post equilibria in this setting.

Unknown population size: Another type of incomplete information is uncertainty about
the number of players in the game. Suppose there is an underlying population of M play-
ers, any (even) number of whom may be selected by Nature to play the anonymous ran-
dom matching game. We conjecture that our approach can be extended to this setting
by, as in the ex post equilibrium approach of Fudenberg and Yamamoto (2010), having
players keep track of a vector of continuation payoff profiles, one for each possible re-
alization of the population playing the game; and augmenting our construction with a
learning phase, where each player in the underlying population has a chance to report if
she is “present” in the game. However, since one player can always pretend to be a differ-
ent player (and will not be caught if the other player is not present), the extent to which
payoff asymmetries among the players can be supported will be more limited than in the
case with a known population.

Low discount factors: While block belief-free strategies let us establish a folk theorem,
they have the disadvantage of requiring a very high discount factor as a function of the
population size. In contrast, contagion strategies are remarkably effective (in the pris-
oner’s dilemma) even for fairly low δ.17 Nonetheless, following Hörner and Takahashi
(2016), it can be shown that the asymptotic rate of convergence of our equilibrium set to
F∗ is at least (1 − δ)−1/2 for generic stage games. Formalizing and investigating perfor-
mance criteria for low δ in general anonymous random matching games is an interesting
future direction.

APPENDIX: PROOF OF THEOREM 1

APPENDIX A: OVERVIEW OF THE PROOF AND NOTATION

Section B presents the block belief-free equilibrium conditions, which reduce the in-
finitely repeated game to a finitely repeated game with final-period reward functions.
Section C defines target payoffs and presents preliminary lemmas. Section D defines the
communication protocols. Section E provides an overview of the equilibrium strategies.
Sections F and G prove reduction lemmas to simplify the equilibrium conditions. We re-
duce the game to an undiscounted game with final-period reward functions, and show that
reward functions can exhibit some dependence on other players’ histories. Section H con-
structs the verified communication module, which augments the verified communication

16In the final talk phase of our construction, each player i randomly chooses a set of periods to monitor
and communicates this choice to her opponents. With public randomization, we could eliminate this phase by
letting Nature select these random periods.

17See the calculations in Ellison (1994).
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928 J. DEB, T. SUGAYA, AND A. WOLITZKY

TABLE I

GLOSSARY OF TERMINOLOGY DESCRIBING TIMING

Terminology Meaning

Block T ∗∗ periods, structured as in Section E.
Sub-Block There are L+ 2 sub-blocks in each block: an initial talk sub-block, a final talk sub-block

and L sub-blocks in between that comprise both play and talk. See Section E.
Phase A major component of a sub-block: either a complete play of a communication protocol,

or a set of periods where players take the targeted actions. See Section E.
Round A major component of the verified protocol. See Section D.3.
Interval 2T consecutive periods in the basic, secure, or verified protocol. See Section D.
Half-Interval T consecutive periods in the basic, secure, or verified protocol.
Period A single play of the game.

protocol defined in Section D with a reward function. Section I uses this module to fur-
ther simplify the equilibrium conditions: we show that it suffices to establish optimality of
a player’s strategy only at histories consistent with her opponents’ equilibrium strategies.
Section J completes the description of the equilibrium strategies. Section K constructs the
final reward function, which sums the rewards for main and non-main phases. Sections L
and M verify the equilibrium conditions. The Supplemental Material (Deb, Sugaya, and
Wolitzky (2020)) contains omitted proofs.

We use different terms to refer to sets of consecutive periods that are meaningful in
the construction. We define these in Table I, from the longest (a block) to the shortest (a
period).

We also collect in Tables II and III some additional notation that will be used repeatedly
in the proof.

We use standard asymptotic notation: “f (T)= O(g(T))” means “∃C > 0, ∃T̄ > 0: ∀T >
T̄ , |f (T)| ≤ Cg(T).”

APPENDIX B: BLOCK BELIEF-FREE STRUCTURE

We view the repeated game as an infinite sequence of T ∗∗-period blocks, with T ∗∗ to
be specified. At the beginning of each block, each player i selects a state xi ∈ {G�B}.
Given xi, player i plays a behavior strategy σ∗

i (xi) (her block strategy) within the block:
in every period t = 1� � � � � T ∗∗ of a block, σ∗

i (xi) specifies a mixed action as a function
of player i’s extended block history (Li� h

t−1
i ), where Li encodes the result of a private

TABLE II

GLOSSARY OF NOTATION FOR PAYOFFS

Notation Meaning

vi The target payoff.
vi(G) The lowest payoff when players coordinate on x with xi−1 =G (see (5)).
vi(B) The highest payoff when players coordinate on x with xi−1 = B (see (5)).
u The minmax payoff (see Section 2).
ū The greatest magnitude of any feasible payoff (see Section 2).
uG The smallest feasible payoff (see (55)).
uB The largest feasible payoff (see (55)).
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FOLK THEOREM IN REPEATED GAMES 929

TABLE III

GLOSSARY OF NOTATION FOR REWARD FUNCTIONS

Notation Meaning

πcancel
i (xi−1� a−i�ω−i) Reward to make player indifferent over actions with payoff vi(xi−1)

(see (7)).
πa

i (a−i�ω−i) Reward to give payoff 0 if ai = a and −1 otherwise (see (8)).
−1{aj�t �=a∗

j�t (h−j )} Reward to give payoff 0 if player follows verified protocol in checking
rounds, and give payoff −1 otherwise (see (42)).

πθ=E
i (xi−1� a−i�ω−i) Reward to make player indifferent over actions with payoff uxi−1 ,

while satisfying self-generation (see (56)).
π

vi
i (xi−1� a−i�ω−i) Reward to make player indifferent over actions with payoff vi(xi−1),

while satisfying self-generation if all players play ak(x) (see (56)).
π

vi
i (xi−1� a−i�ω−i|αmin) Reward to make player indifferent over actions with payoff vi(xi−1)

when opponents play αmin (see (56)).

randomization conducted by player i at the beginning of the block (described below), and
ht−1
i = (ai�τ�ωi�τ)

t−1
τ=1 ∈Ht−1

i . Denote player i’s strategy set in the T ∗∗-period game by Σi.
We require that player i’s state xi is determined by a transition probability ρi(·|x̃i� h̃

T ∗∗
i ) ∈

�({G�B}) that depends only on player i’s state in the previous block, x̃i, and her history
in the previous block, h̃T ∗∗

i . Moreover, we require that player i’s payoff at the beginning
of each block is determined solely by player (i − 1)’s state, xi−1 ∈ {G�B}, and denote it
by v∗

i (xi−1) ∈ R. Hence, player i’s continuation payoff at the end of a block is a function
only of player (i − 1)’s state and extended history. Denote this continuation payoff by
w∗

i (xi−1�h
T ∗∗
i−1).

We present conditions under which a given payoff vector v ∈ RN is attainable in a block
belief-free equilibrium. These are similar to the conditions in Hörner and Olszewski
(2006), with one significant difference: Hörner and Olszewski assumed monitoring has
full support, so in their model, Nash and sequential equilibrium coincide, and there is no
need to keep track of players’ beliefs. In contrast, our model does not have full support,
so we must introduce beliefs, verify Kreps–Wilson consistency, and—most subtly—ensure
that beliefs respect the block belief-free equilibrium structure, in that sequential rational-
ity is satisfied conditional on each possible state vector x−i ∈ {G�B}N−1. To do this, we
keep track of players’ beliefs conditional on each vector x−i ∈ {G�B}N−1. This approach
implicitly determines a complete, unconditional belief system, but since sequential ratio-
nality is always imposed conditional on x−i, these unconditional beliefs do not enter into
our analysis.

Formally, an ex post belief system β = (βi)i∈I consists of, for each player i ∈ I, oppos-
ing state vector x−i ∈ {G�B}N−1, period t ∈ {1� � � � �T ∗∗}, and block history ht−1

i ∈ Ht−1
i ,

a probability distribution βi(·|x−i� h
t−1
i ) ∈ 	(Ht−1

−i ). Together with a block strategy pro-
file (σi(xi))i∈I�xi∈{G�B}, an ex post belief system is consistent if there exists a sequence of
completely mixed block strategy profiles ((σk

i (xi))i∈I�xi∈{G�B})k∈N converging pointwise to
(σi(xi))i∈I�xi∈{G�B} such that, for each i ∈ I, x−i ∈ {G�B}N−1, t ∈ {1� � � � �T ∗∗}, and ht−1 ∈
Ht−1, we have β(ht−1

−i |x−i� h
t−1
i )= limk→∞ Pr(σ

k
j (xj))j �=i (ht−1

−i |x−i� h
t−1
i ).18

18With this definition, it is clear that, whenever an ex post belief system is consistent, the corresponding
unconditional belief system is consistent in the usual Kreps–Wilson sense.
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930 J. DEB, T. SUGAYA, AND A. WOLITZKY

We are now ready to present the equilibrium conditions. In what follows, Eσ [·] denotes
expectation with respect to strategy profile σ , and E(σ�β)[·|·] denotes conditional expecta-
tion with respect to assessment (strategy profile and beliefs) (σ�β).

For all v ∈ RN and δ < 1, if there exist T ∗∗ ∈ N, strategies (σ∗
i (xi))i∈I�xi∈{G�B}, con-

sistent ex post belief system β∗, values (v∗
i (xi−1))i∈I�xi−1∈{G�B}, and continuation payoffs

(w∗
i (xi−1�h

T ∗∗
i−1))i∈I�xi−1∈{G�B}�hT∗∗

i−1 ∈HT∗∗
i−1

such that the following conditions hold for all i ∈ I,
then we have v ∈ E(δ):

1. [Sequential Rationality] For all x ∈ {G�B}N and ht−1
i ∈ Ht−1

i ,19

σ∗
i (xi) ∈ argmax

σi∈Σi

E((σi�σ
∗−i(x−i))�β

∗)

[
(1 − δ)

T ∗∗∑
τ=1

δτ−1ûi(aτ)+ δT ∗∗
w∗

i

(
xi−1�h

T ∗∗
i−1

)|x−i� h
t−1
i

]
�

(Here, the sum
∑T ∗∗

τ=1 could alternatively be written as
∑T ∗∗

τ=t , since payoffs already in-
curred in ht−1

i are sunk. In addition, sequential rationality is imposed for every vector
x−i ∈ {G�B}N−1. This is the defining feature of a block belief-free construction.)

2. [Promise Keeping] For all x ∈ {G�B}N ,

v∗
i (xi−1)= Eσ∗(x)

[
(1 − δ)

T ∗∗∑
t=1

δt−1ûi(at)+ δT ∗∗
w∗

i

(
xi−1�h

T ∗∗
i−1

)]
�

3. [Self-Generation] For all xi−1 ∈ {G�B} and hT ∗∗
i−1 , we have w∗

i (xi−1�h
T ∗∗
i−1) ∈ [v∗

i (B)�
v∗
i (G)].
4. [Full Dimensionality] Player i− 1 can randomize her initial state to deliver player i’s

target payoff vi: v∗
i (B) < vi < v∗

i (G).
Defining π∗

i (xi−1�h
T ∗∗
i−1) := δT

∗∗
1−δ

(wi(xi−1�h
T ∗∗
i−1)−v∗

i (xi−1)), we rewrite the conditions below:
1. [Sequential Rationality] For all x ∈ {G�B}N and ht−1

i ∈ Ht−1
i ,

σ∗
i (xi) ∈ argmax

σi∈Σi

E((σi�σ
∗−i(x−i))�β

∗)

[
T ∗∗∑
τ=1

δτ−1ûi(aτ)+π∗
i

(
xi−1�h

T ∗∗
i−1

)|ht−1
i

]
� (1)

2. [Promise Keeping] For all x ∈ {G�B}N ,

v∗
i (xi−1)= Eσ∗(x)

[
1 − δ

1 − δT ∗∗

T ∗∗∑
t=1

δt−1ûi(at)+π∗
i

(
xi−1�h

T ∗∗
i−1

)]
� (2)

3. [Self-Generation] For all xi−1 ∈ {G�B} and hT ∗∗
i−1 ,

1 − δ

δT ∗∗ π∗
i

(
G�hT ∗∗

i−1

)≤ 0�
1 − δ

δT ∗∗ π∗
i

(
B�hT ∗∗

i−1

)≥ 0�∣∣∣∣1 − δ

δT ∗∗ π∗
i

(
xi−1�h

T ∗∗
i−1

)∣∣∣∣≤ v∗
i (G)− v∗

i (B)�

(3)

19Throughout, when we write “for all ht−1
i ∈ Ht−1

i ,” this should be understood as applying for all i ∈ I and
all t.
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FOLK THEOREM IN REPEATED GAMES 931

4. [Full Dimensionality]

v∗
i (B) < vi < v∗

i (G)� (4)

LEMMA 1—Hörner and Olszewski (2006): For all v ∈ RN and δ ∈ [0�1), if there exist
T ∗∗∈N, (σ∗

i (xi))i∈I�xi∈{G�B},β∗, (v∗
i (xi−1))i∈I�xi−1∈{G�B}, and (π∗

i (xi−1�h
T ∗∗
i−1))i∈I�xi−1∈{G�B}�hT∗∗

i−1 ∈HT∗∗
i−1

such that Conditions (1)–(4) are satisfied, then v ∈E(δ).

APPENDIX C: PRELIMINARIES

C.1. Target Payoff and Actions

Given v ∈ int(F∗), there exist payoff vectors (v̄i(xi−1))i∈I�xi−1∈{G�B} ∈ R2N such that
(v̄i(xi−1))i∈I ∈ int(F∗) ∀(xi−1)i∈I ∈ {G�B}N and u < v̄i(B) < vi < v̄i(G) ∀i ∈ I. Define

ε∗ := 1
10

min
i

min
{
v̄i(G)− vi� vi − v̄i(B)� v̄i(B)− u

}
�

We approximate (v̄i(xi−1))i∈I�xi−1∈{G�B} by sequences of action profiles: for ε∗ > 0 that we
have just fixed, there exist Kv ∈N and a sequence of action profiles (ak(x))Kv

k=1 ∈ ANKv ∀x ∈
{G�B}N such that, for all i ∈ I, we have | 1

Kv

∑Kv
k=1 ûi(ak(x)) − v̄i(xi−1)| < ε∗. Let ûi(x) =

1
Kv

∑Kv
k=1 ûi(ak(x)). Next, fix (vi(xi−1))i∈I�xi−1∈{G�B} ∈ R2N and sequences of action profiles

((ak(x))Kv
k=1)x∈{G�B}N ∈ A2NKv such that, for all i ∈ I,

vi(G)= min
x:xi−1=G

ûi(x)� vi(B)= max
x:xi−1=B

ûi(x) > u+ 9ε∗� and

vi(B)+ 9ε∗ < vi < vi(G)− 9ε∗�
(5)

Players will repeat the target action sequence (ak(x))Kv
k=1 over L “sub-blocks,” where

L :=
⌈

2ū
ε∗

⌉
(Kv + 1)� (6)

(Throughout, �·� denotes the “round-up” function.) For l > Kv, let al
i(x)= al (mod Kv)

i (x).20

C.2. Identification

We record the observation made in Section 3.3 that the profile (a−i�ω−i) of i’s op-
ponents’ actions and observations perfectly identifies player i’s action and observation,
(ai�ωi).

LEMMA 2: There exists a function ϕ : A−i × A−i → Ai × Ai such that, if (ai�ωi)i∈I is
feasible, then ϕ(a−i�ω−i)= (ai�ωi).

20Hörner and Olszewski (2006) and several subsequent papers presented their constructions assuming
Kv = 1. With random matching, this assumption is usually with loss. For example, in the prisoner’s dilemma,
to punish player 1 while keeping her opponents’ payoffs close to u(C�C), we must cycle through action pro-
files where player 1 and most of her opponents cooperate, while different subsets of her opponents take turns
defecting. We thus present our construction for arbitrary Kv.
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932 J. DEB, T. SUGAYA, AND A. WOLITZKY

By Lemma 2, for each xi−1, there exists a function πcancel
i (xi−1� a−i�ω−i) : AN−1 ×

AN−1 → [−2ū�2ū] such that, for each a ∈ AN , we have

ûi(a)+πcancel
i (xi−1� a−i�ω−i) = vi(xi−1)� (7)

Thus, the function πcancel
i (xi−1� a−i��ω−i) cancels player i’s instantaneous utility. Similarly,

for each a ∈ A, there exists πa
i (a−i�ω−i) : AN−1 × AN−1 → R such that, for each a ∈ AN ,

we have

πa
i (a−i�ω−i) =

{
0 if ai = a�

−1 if ai �= a�
(8)

Thus, the function πa
i (a−i��ω−i) punishes player i for deviating from a.

C.3. A Bound on the Probability of Matches

We repeatedly use the following exponential bound on the probability that a pair of
players fails to match even once during a set of T periods:

LEMMA 3: For any set of T periods T ∈ NT and any pair of distinct players i� j ∈ I, we have
Pr(μt(i) �= j ∀t ∈ T)≤ exp(−ε̄T ).

PROOF: Pr(μt(i) �= j ∀t ∈ T)≤ (1 − ε̄)T = exp(T log(1 − ε̄))≤ exp(−ε̄T ). Q.E.D.

Given a set of periods T, we say the realized matching process is erroneous over T if
there exists a pair of players who do not match with each other during T.

APPENDIX D: COMMUNICATION PROTOCOLS

A basic building block of the equilibrium strategy is a communication protocol: a strat-
egy profile for players to communicate via actions in a finitely repeated game. The de-
scription of a communication protocol does not include payoff functions and thus entails
no claims about incentive compatibility. After constructing the equilibrium strategy, we
will construct a reward function and then verify sequential rationality.

We view each protocol as a distinct, finitely repeated game. If T is the set of periods
comprising a protocol, a protocol history for player i is a vector hi = (ai�t�ωi�t)t∈T ∈ Hi.
Denote the set of protocol history profiles by H =∏

i∈I Hi.

D.1. Basic Communication Protocol

The basic protocol lets a player i ∈ I broadcast a message mi from a set Mi =
{1� � � � � |Mi|}. We call player i the sender and call the other players receivers. The protocol
takes 2Tb(Mi) periods, where b(Mi) := �log2 |Mi|�.21

Basic Communication Protocol for Player i to Send Message mi with Repetition T :22

• Divide the 2Tb(Mi) periods into b(Mi) intervals of 2T periods each.

21We sometimes abusively write b(|Mi|) for b(Mi).
22In what follows, instructions of the form “play action a in period t ” are to be read as unconditional on a

player’s past actions and observations. Thus, a communication protocol is formally a strategy profile, not just
a description of on-path play.
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FOLK THEOREM IN REPEATED GAMES 933

• For t ∈ {1� � � � � b(Mi)},
– If the tth digit of the binary expansion of mi − 1 is 0, player i plays a0 for the first

half of the tth interval (i.e., the first T periods in the interval) and plays a1 for the second
half of the tth interval (i.e., the last T periods in the interval).

– If the tth digit of the binary expansion of mi − 1 is 1, player i plays a1 for the first
half of the tth interval and plays a0 for the second half of the tth interval.

We call a set of T periods where player i takes a constant action a half-interval.
• Each player j �= i plays a0 throughout the protocol.
• At the end of the protocol, each player j �= i makes an inference mi(j) ∈ Mi ∪ {0} as

follows (based on history (aj�t�ωj�t)
2Tb(Mi)
t=1 ). If mi(j)= 0, we say j fails to infer a message:

– If, for some t ∈ {1� � � � � b(Mi)}, ωj�τ /∈ {a0� a1} for some period τ in the tth interval,
player j sets mi(j)= 0.

– If, for some t ∈ {1� � � � � b(Mi)}, ωj�τ �= a1 for every period τ in the tth interval, player
j sets mi(j)= 0.

– If, for some t ∈ {1� � � � � b(Mi)}, ωj�τ = ωj�τ′ = a1 for some period τ in the first half of
the tth interval and some τ′ in the second half of the tth interval, player j sets mi(j)= 0.

– Otherwise, player j constructs a number m̂ ∈ {0� � � � � b(Mi)− 1} as follows:
∗ If ωj�τ = a1 for some period τ in the first half of the tth interval and ωj�τ = a0 for

every period τ in the second half of the tth interval, player j sets the tth digit of the binary
expansion of m̂ equal to 1.

∗ If ωj�τ = a1 for some period τ in the second half of the tth interval and ωj�τ = a0

for every period τ in the first half of the tth interval, player j sets the tth digit of the binary
expansion of m̂ equal to 0.

– If m̂≤ |Mi|− 1, player j sets mi(j)= m̂+ 1. If m̂≥ |Mi| (which is possible if log2 |Mi|
is not an integer), player j sets mi(j)= 0.

When all players follow the protocol, mi(j) = mi if and only if player j matches with
player i at least once in every T -period half-interval where player i plays a1. Hence, by
Lemma 3,

Pr
(
mi(j)=mi

)≥ 1 − b(Mi)exp(−ε̄T ) ∀j �= i� (9)

Moreover, when all players follow the protocol, either j’s inference is correct or j fails to
infer a message: if mi(j) �= mi then mi(j)= 0.

D.2. Secure Communication Protocol

The secure protocol is a generalization of the basic protocol that lets player i send a
message so that it is harder for any receiver to manipulate. In addition to the parameters
(i, mi, and T ), the secure protocol takes as given a set of players Ijam ⊂ I \ {i}, called
jamming players.

Secure Communication Protocol for Player i to Send Message mi With Repetition T and
Jamming Players Ijam:

• Divide the 2Tb(Mi) periods of the protocol into b(Mi) intervals of 2T periods each.
• Player i behaves as in the basic communication protocol.
• Each player j /∈ Ijam ∪ {i} behaves as in the basic communication protocol (i.e., plays

a0).
• For each player j ∈ Ijam, in the first period of each T -period half-interval (i.e., in

periods t = kT + 1 for k ∈ {0�1� � � � �2b(Mi) − 1}), player j plays a0 with probability 1 −
exp(−T

1
2 ) and plays a1 with probability exp(−T

1
2 ). She then repeats the chosen action for

the remainder of the half-interval (i.e., plays aj�t = aj�kT+1 for t ∈ {kT + 2� � � � � (k+ 1)T }).
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934 J. DEB, T. SUGAYA, AND A. WOLITZKY

• At the end of the protocol, each player j �= i infers a message mi(j) ∈ Mi ∪ {0} as in
the basic communication protocol.

For j ∈ Ijam and k ∈ {0�1� � � � �2b(Mi) − 1}, if aj�kT+1 = a0 we say player j plays REG
(“regular”) in the kth half-interval, and if aj�(k−1)T+1 �= a0 we say player j plays JAM
(“jamming”) in the kth half-interval. Thus, player j plays REG and JAM with prob-
abilities 1 − exp(−T

1
2 ) and exp(−T

1
2 ) in each half-interval, independently across each

half-interval.
Denote the event that all jamming players play REG throughout the protocol by ALL-

REG. Conditional on ALLREG, all players behave identically in the secure and basic
protocols. In particular, conditional on ALLREG, inequality (9) holds and mi(j) �= 0 im-
plies mi(j)= mi ∀j �= i. Moreover,

Prσ
mi
(
mi(j)= mi ∀j �= i ∩ ALLREG

)≥ 1 −Nb(Mi)
(
exp(−ε̄T )+ 2 exp

(−T
1
2
))
� (10)

The key new property of the secure protocol is that, for each player j �= i with Ijam \{j} �=
∅ and every sequence of observations (ωj�t)

2Tb(Mi)
t=1 , either she believes with high probability

that communication was jammed, or she believes with high probability that, conditional
on the event that communication was not jammed, the message is likely to have transmit-
ted successfully. Intuitively, the former case arises when player j observes a1 frequently,
and the latter case arises when she observes a1 less frequently. To formalize this, let

η̄ := max
γ∈[0�1]

min
i�j�j′

{
γ log

pi�j +pj′�j

pi�j

+ (1 − γ) log
1 −pi�j −pj′�j

1 −pi�j

� ε̄(1 − γ)

}
> 0� (11)

and let γ̄ be the maximizer.

LEMMA 4: For any player j �= i with Ijam \ {j} �= ∅ and any sequence of observations
(ωj�t)

2Tb(Mi)
t=1 that arises with positive probability when players −j follow the secure protocol:

1. If ωj�t = a1 for at least γ̄T periods in some half-interval, then, for all (aj�t)
2Tb(Mi)
t=1 , we

have

Pr
(
ALLREG|(aj�t�ωj�t)

2Tb(Mi)
t=1

)≤ exp
(−η̄T + T

1
2
)
� (12)

2. If ωj�t = a1 for at most γ̄T periods in each half-interval, then:
(a) For all (aj�t)

2Tb(Mi)
t=1 , we have

Pr
(
mi

(
j′) ∈ {mi�0} ∀j′ /∈ {i� j}|(aj�t�ωj�t)

2Tb(Mi)
t=1 �ALLREG

)
≥ 1 −Nb(Mi)exp(−η̄T )� (13)

(b) If aj�t = a0 for all t ∈ {1� � � � �2Tb(Mi)}, we have

Pr
(
mi

(
j′)=mi ∀j′ /∈ {i� j}|(aj�t�ωj�t)

2Tb(Mi)
t=1 �ALLREG

)
≥ 1 −Nb(Mi)exp(−η̄T )� (14)

PROOF: Fix j �= i with Ijam \ {j} �= ∅. Suppose there is a half-interval S in which ωj�t = a1

for γ periods, with γ ≥ γ̄T . Fix a player j′ ∈ Ijam \{j}. Let j′ JAMS denote the event that, in
half-interval S, player j′ plays JAM and all other jamming players play REG. Let SREG
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FOLK THEOREM IN REPEATED GAMES 935

denote the event that all jamming players play REG in half-interval S. Let (aj�t�ωj�t)t∈S
denote the restriction of (aj�t�ωj�t)

2Tb(Mi)
t=1 to half-interval S. Then

Pr
(
(aj�t�ωj�t)t∈S|j′JAMS

)
Pr
(
(aj�t�ωj�t)t∈S|SREG

) =
(
pi�j +pj′�j

pi�j

)γ(1 −pi�j −pj′�j

1 −pi�j

)T−γ

≥ exp
((

γ̄ log
pi�j +pj′�j

pi�j

+ (1 − γ̄) log
1 −pi�j −pj′�j

1 −pi�j

)
T

)
�

which is no less than exp(η̄T ). Hence, by Bayes’s rule,

Pr
(
SREG|(aj�t�ωj�t)t∈S

) ≤
[

1 + Pr
(
j′JAMS

)
Pr
(
(aj�t�ωj�t)t∈S|j′JAMS

)
Pr(SREG)Pr

(
(aj�t�ωj�t)t∈S|ALLREG

)]−1

≤
[

1 + exp
(−T

1
2
) Pr

(
(aj�t�ωj�t)t∈S|j′JAMS

)
Pr
(
(aj�t�ωj�t)t∈S|ALLREG

)]−1

≤ [
1 + exp

(
η̄T − T

1
2
)]−1 ≤ exp

(−η̄T + T
1
2
)
�

Since the event that a jamming player plays JAM is independent across half-intervals and
the behavior of players −j is independent of their past actions and observations, we have

Pr
(
ALLREG|(aj�t�ωj�t)

2Tb(Mi)
t=1

)≤ Pr
(
SREG|(aj�t�ωj�t)

2Tb(Mi)
t=1

)= Pr
(
SREG|(aj�t�ωj�t)t∈S

)
�

Combining the inequalities yields (12).
Next, suppose ωj�t = a1 for at most γ̄T periods in every half-interval. Then, in each

half-interval where player i plays a1, player i matches with a player other than j in at least
(1 − γ̄)T0 periods. Suppose player j plays a0 throughout the protocol. For all j′ /∈ {i� j}, if
player i matches with player j′ at least once in each half-interval where player i plays a1,
and ALLREG occurs, then mi(j

′)=mi. Hence, by Lemma 3,

Pr
(
mi

(
j′)=mi|

(
a0�ωj�t

)2Tb(Mi)

t=1
�ALLREG

) ≥ 1 − b(Mi)exp
(−ε̄(1 − γ̄)T

)
≥ 1 − b(Mi)exp(−η̄T )�

Applying this bound repeatedly for each j′ �= i� j, we obtain

Pr
(
mi

(
j′)= mi ∀j′ /∈ {i� j}|(a0�ωj�t

)2Tb(Mi)

t=1
�ALLREG

)≥ 1 −Nb(Mi)exp(−η̄T )�

This establishes (14). Similarly—regardless of player j’s behavior—if player i matches
with player j′ �= i� j in some period in each half-interval where player i plays a1, then
mi(j

′) ∈ {mi�0}. (In particular, mi(j
′) = 0 if j ever matches with j′ while playing aj /∈

{a0� a1}, or if i and j match with j′ while playing a1 in different halves of the same interval,
and mi(j

′)=mi otherwise.) Hence, (13) also holds. Q.E.D.

D.3. Verified Communication Protocol

In the verified communication protocol, player i first broadcasts a message mi ∈ Mi in
2b(Mi) periods using the basic communication protocol (with T = 1). Then, each player
(including player i herself) sequentially broadcasts her actions and observations from
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936 J. DEB, T. SUGAYA, AND A. WOLITZKY

these 2b(Mi) periods using the secure communication protocol with repetition T (with
T to be specified). The verified protocol thus takes a total of T (Mi�T ) periods, where

T (Mi�T ) := 2b(Mi)+ 2b
(
A4b(Mi)

)
NT� (15)

Verified Communication Protocol for Player i to Send Message mi With Repetition T :
At the beginning of the verified protocol, each player j has two possible types, denoted

ζj ∈ {reg� jam}. A strategy in the protocol is thus a mapping from {reg� jam} and protocol
histories to actions. Let Ijam = {j : ζj = jam}. The protocol consists of N + 1 rounds.

• Message round
– Player i sends message mi ∈ Mi as in the basic communication protocol with T = 1.23

– Each player j �= i plays a0 throughout the round.
Let T(msg) denote the set of 2b(Mi) periods comprising the message round.
• j-checking round, for each j ∈ I. Each checking round consists of b(A4b(Mi)) intervals.

Each interval consists of 2T periods. Let T(j) denote the set of 2Tb(A4b(Mi)) periods
comprising the j-checking round.

– Player j sends message (aj�t�ωj�t)t∈T(msg) ∈ A4b(Mi) as in the basic protocol.
– Each player n /∈ Ijam ∪ {j} plays a0 throughout the round.
– In each half-interval, each player n ∈ Ijam \ {j} mixes between REG and JAM with

probabilities 1 − exp(−T
1
2 ) and exp(−T

1
2 ), as in the secure protocol.

– Each player n �= j infers message (aj�t(n)�ωj�t(n))t∈T(msg) ∈ A4b(Mi)∪{0} as in the basic
protocol.

• At the end of the protocol, each player n ∈ I creates a final inference mi(n) ∈ Mi ∪{0}
as follows:

– If (aj�t(n)�ωj�t(n))t∈T(msg) = 0 for some j �= n, then mi(n)= 0.
– Otherwise, if the vector (aj�t(n)�ωj�t(n))t∈T(msg)�j∈I is not feasible—that is, for some

j′ ∈ I and t ∈ T(msg), (aj′�t(n)�ωj′�t(n)) �= ϕ((aj�t(n)�ωj�t(n))j �=j′) (see Lemma 2 for the
definition of ϕ)—then mi(n)= 0.

– If (aj�t(n)�ωj�t(n))t∈T(msg)�j∈I is feasible and (ai�t(n))t∈T(msg) corresponds to the binary
expansion of some m̂i ∈ Mi, then mi(n)= m̂i.

– If (aj�t(n)�ωj�t(n))t∈T(msg)�j∈I is feasible but (ai�t(n))t∈T(msg) does not correspond to the
binary expansion of some m̂i ∈ Mi, then mi(n) is set equal to an arbitrary, pre-determined
element of Mi—for concreteness, let mi(n)= 1.

In the verified protocol, we call player i the initial sender, and we say player j ∈ I is a
sender in period t if t ∈ T(j) or [j = i and t ∈ T(msg)]. We say players coordinate on mi if
mi(n)=mi for all n ∈ I.

For each j ∈ I, say that player j is suspicious at protocol history hj , denoted susp(hj) =
1, if mi(j) = 0. Otherwise, susp(hj) = 0. Note that susp(hj) = 1 only if some player de-
viates, some jamming player plays JAM, or the realized matching process is erroneous
over some half-interval. We will derive some key properties of the function susp(·) in
Section H.

D.4. Jamming Coordination Protocol

Finally, we describe how players coordinate on the identities of the jamming players
Ijam ⊂ I.

23To make following the verified communication protocol sequentially rational, we will subsequently slightly
modify player i’s prescribed behavior after she herself deviates from the protocol. See Section H.
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FOLK THEOREM IN REPEATED GAMES 937

Jamming Coordination Protocol With Parameter T :
• In each of the two periods, each player i plays a1 with probability exp(−T

1
3 ) and

plays each a �= a1 with probability (1 − exp(−T
1
3 ))/(|A| − 1), independently across peri-

ods.
Given a protocol history hi, we define ζi(hi) = jam if ωi�t = a1 for some t ∈ {1�2}. That

is, a player becomes a jamming player if she observes a1 in either period.
Let Pi(hi) = Pr(ζj(hj) = jam ∀j �= i|hi). For every protocol history hi, the probabil-

ity that all players in I \ {i�μt(i)} play a1 in both periods t and μ1(i) �= μ2(i) is at least
ε̄exp(−(N − 2)T

1
3 ). Conditional on this event, the probability that ζj(hj) = jam ∀j �= i

is 1. Hence,

Pi(hi)≥ ε̄exp
(−(N − 2)T

1
3
)
� (16)

APPENDIX E: EQUILIBRIUM STRATEGIES: OVERVIEW

We now define the equilibrium block strategies, deferring some details to Section J.
The length of a block is parameterized by a number T0 ∈ N. We fix T0 sufficiently large
such that the following three inequalities hold:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2 + ū

ε̄min
{
ε∗�1

}300L2N4|A| log2 T0 ≤ (T0)
1
10 �

(T0)
4
(
exp

(−(T0)
1
6
)+ exp

(−ε̄T0 + 2(T0)
5
6
))≤ 1�

(T0)
4 exp

(−(T0)
1
3
)≤ ε∗

2
�

(17)

Below, we give a precise description of how play proceeds within a block (and an intuitive
description in parentheses).

1. Sub-block 0: This sub-block consists of the following 2 + 2N phases:
(a) Jamming coordination phase (0� jam): Players play the jamming coordination pro-

tocol for 2 periods. (“The players coordinate on who will be jamming players.”)
(b) Coordination phase (0� i) (repeat for each i = 1� � � � �N): Player i sends xi ∈ {G�B}

using the verified communication protocol with repetition T0. Since the message set
Mi = {G�B} has cardinality 2, this phase takes T (Mi�T ) = 2b(2) + 2b(A4b(2))NT0 ≈
4 + 16NT0 log2 |A| periods.24 (“The players coordinate on x.”)

(c) Contagion phase (0� i� con) (repeat for i = 1� � � � �N): Player i sends susp(hi) ∈
{0�1} using the verified protocol with repetition T0. This phase also takes ≈ 4 +
16NT0 log2 |A| periods. (“If any player is suspicious, her suspicion spreads.”)

2. Sub-block l = 1� � � � �L: This sub-block consists of the following 1 + 3N phases:
(a) Main phase (l�main): This phase takes (T0)

3 periods, and is described in Section J.
Roughly, if player i is not suspicious, she plays al

i(x(i)) in every period; otherwise, she
plays αmin in every period.

Let T(l�main) denote the set of (T0)
3 periods in main phase (l�main). At the end of

the phase, each player i selects a period ti(l) ∈ T(l�main), uniformly at random. (“Each
player selects a random period to monitor.”)

24Throughout this section, we use ≈ to indicate equality up to rounding up all log2 terms: formally, we write
f (x)≈ g(log2 y1� � � � � log2 ym) if g(log2 y1� � � � � log2 ym)≤ f (x)≤ g(�log2 y1�� � � � � �log2 ym�).
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938 J. DEB, T. SUGAYA, AND A. WOLITZKY

(b) Communication phase (l� i) (repeat for i = 1� � � � �N): Player i sends ti(l) ∈
T(l�main) using the verified protocol with repetition T0. Since the message set has car-
dinality |T(l�main)| = (T0)

3, this phase takes 2b((T0)
3) + 2b(A4b((T0)

3))NT0 ≈ 6 log2 T0 +
24NT0 log2 T0 log2 |A| periods. (“Players communicate selected monitoring periods.”)

(c) Communication phase (l� i� n) (repeat for i = 1� � � � �N and n = 1� � � � �N): Player
n sends (an�t�ωn�t) using the verified protocol with repetition T0, where t equals player
n’s inference of ti(l) in phase (l� i). Since the message set has cardinality |A|2, this phase
takes 2b(|A|2)+2b(A4b(|A|2))NT0 ≈ 4 log2 |A|+16NT0(log2 |A|)2 periods. (“Players share
information about the monitoring periods.”)

(d) Contagion phase (l� i� con) (repeat for i = 1� � � � �N): A repetition of phase
(0� i� con), but for the current histories hi. Again, this phase takes ≈ 4 + 16NT0 log2 |A|
periods. (“Suspicion spreads.”)

Let Li = (ti(l))
L
l=1 be the collection of random monitoring periods selected by player i.

Let T ∗ be the final period of the last contagion phase, phase (L�N� con). Let T∗ =
{1� � � � � T ∗} be the set of periods up to period T ∗. Let T′ be the set of non-main phase
periods up to period T ∗:

T′ = T∗ ∖ L⋃
l=1

T(l�main)� (18)

Given that T0 satisfies (17), it can be checked that |T′| ≤ (T0)
1�1.25 (In what follows, all

comparisons of numbers of periods involving T0 assume (17).)
Let χn ∈ {0�1} be a function of (xn�h

T ∗
n ), where χn = 1 if and only if there exists t ∈

{1� � � � � T ∗} such that an�t /∈ supp(σ∗
n(xn)|ht−1

n
) (i.e., player n deviated from σ∗

n(xn) in the
first T ∗ periods).

3. Final Talk Sub-block: This sub-block consists of the following 4N phases:
(a) Phase (final�1� i) (repeat for i = 1� � � � �N): Player i − 1 sends the list of periods

Li−1 ∈ {1� � � � � (T0)
3}L using the verified protocol with repetition T0. Next, sequentially,

each player n �= i� i − 1 sends the following two messages using the secure protocol with
repetition T0: (i) χn ∈ {0�1} (i.e., player n “confesses” if she deviated in the first T ∗ pe-
riods). (ii) (an�t�ωn�t)t∈Li(n), where Li(n) is player n’s inference of Li. (If Li(n) = 0, then
player n sends (an�t�ωn�t) = (a0� a0).) (“Players confess any deviations and re-send their
information about the monitoring periods.”26) Player i’s message set has cardinality (T0)

3L

and the message set of each player n �= i� i − 1 has cardinality 2A2L. Hence, the length of

25In particular,

T′(T0) = 2 + 2N
(
2b(2)+ 2b

(
A4b(2))NT0

)+L
(
N
(
2b
(
(T0)

3)+ 2b
(
A4b((T0)

3)
)
NT0

)
+N2(2b(|A|2)+ 2b

(
A4b(|A|2))NT0

)+N
(
2b(2)+ 2b

(
A4b(2))NT0

))
= 2 + 8N + 64

⌈
log2 |A|⌉N2T0 + 12LN�log2 T0� + 96

⌈
log2 |A|⌉LN2�log2 T0�T0

+ 8LN2⌈log2 |A|⌉+ 64
⌈

log2 |A|⌉2
LN3T0 + 4NL+ 32

⌈
log2 |A|⌉LN2T0

≤ (T0)
1�1 (by (17))�

Elsewhere in the proof, similar calculations show that (17) guarantees a sufficiently high value of T0. We omit
such calculations going forward.

26Confessing deviations and re-sending past messages play a similar role here as in Hörner and Olszewski
(2006) and Yamamoto (2012).
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FOLK THEOREM IN REPEATED GAMES 939

this phase is

T(final�1� i) = 2b
(
(T0)

3L
)+ 2b

(
A4b((T0)

3L)
)
NT0 + (N − 2)2b

(
2|A|2L

)
T0

≈ 6L log2 T0 + 24NT0L log2 T0 log2 |A| + 2(N − 2)LT0

(
1 + 2 log2 |A|)�

Let T1 be the final period of phase (final�1�N). Let T1 = {1� � � � �T1}. Let

T′′ = T1

∖ L⋃
l=1

T(l�main)� (19)

It can be checked that |T′′| ≤ (T0)
1�1. Let T(final�1� i) be the set of periods in phase

(final�1� i).
(b) Phase (final�2� i) (repeat for i = 1� � � � �N): Sequentially, each player n �= i� i − 1

sends xn and (an�t�ωn�t)t∈T′′ using the secure protocol with repetition T0. (“Players
share their non-main phase histories.”) The length of this phase is T(final�2) = (N −
2)2b(2A2T′′

)T0 ≈ 2(N − 2)T0 log2(2A
2T′′

). Let T2 be the final period of phase (final�2�N).
Let T2 = {1� � � � �T2}. It can be checked that T2 ≤L(T0)

3 + (T0)
2�1. Let T(final�2� i) be the

set of periods in phase (final�2� i).
(c) Phase (final�3� i) (repeat for i = 1� � � � �N): Sequentially, each player n �= i� i − 1

sends (an�t�ωn�t)t∈⋃j∈I T(final�2�j) using the basic protocol with repetition T0. (“Players share
their information about each other’s non-main phase histories.”) The length of this phase
is T(final�3) = (N − 2)2b(N × T(final�2))T0 ≈ 2(N − 2)T0 log2(N × T(final�2)). Let T3

be the final period of phase (final�3�N). It can be checked that T3 ≤ L(T0)
3 + (T0)

2�1.
(d) Phase (final�4� i) (repeat for i = 1� � � � �N): Player i − 1 selects a period ti−1 ∈

{1� � � � �T3}, uniformly at random. Player i − 1 sends the realization of ti−1 using the basic
protocol with repetition T0. Next, sequentially, each player n �= i−1� i sends her inference
ti−1(n) ∈ {0�1� � � � � T3} and (an�ti−1(n)�ωn�ti−1(n)) using the basic protocol with repetition T0.
(If ti−1(n) = 0, then n sends (an�ti−1(n)�ωn�ti−1(n)) = (a0� a0).) (“Each player monitors one
extra period to cancel the effects of discounting.”) The length of the phase is

T(final�4) = 2b(T3)T0 + (N − 2)2b
(
(T3 + 1)×A2

)
T0

≈ 2T0 log2(T3)+ (N − 2)2T0

(
log2(T3 + 1)+ 2 log2 |A|)�

Finally, we have T ∗∗ = T3 + T(final�4). It can be checked that T ∗∗ ≤ L(T0)
3 + (T0)

2�1.

APPENDIX F: REDUCTION LEMMAS: PHASES (final�3� i) AND (final�4� i)

F.1. Basic Communication Module

We analyze the equilibrium block strategies by backwards induction. Since the basic
communication protocol is used in the last phases (phases (final�3� i) and (final�4� i)), we
start by considering payoffs and reward functions for this protocol. We call the resulting
finitely repeated game the basic communication module.

For each player n ∈ I, payoff functions in the module take the form∑
t∈T

δt−1ûn(at)+πn(xn−1�hn−1)+wn(h)� (20)
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940 J. DEB, T. SUGAYA, AND A. WOLITZKY

where ûn is the stage-game payoff function; πn is a reward function that depends only on
player n − 1’s state and module history (where the state vector (xn)n∈I is taken as fixed
and commonly known); and wn is a continuation payoff function that depends on the entire
module history. We wish to construct a reward function such that, when viewed as a strat-
egy profile in this finitely repeated game, the basic protocol is a belief-free equilibrium.

DEFINITION 1: A strategy profile σ is a belief-free equilibrium (BFE) if, for each player
i and history hi, the continuation strategy σi|hi is a best response against σ−i|h−i

for every
opposing history profile h−i.

We say that the premise for basic communication with magnitude K is satisfied if the
following conditions hold:

1. Player i is indifferent about the result of communication: wi(h)= 0 for all h.
2. For all n �= i, the range of wn(h) is bounded by K: maxh�h̃ |wn(h)−wn(h̃)| ≤K.

LEMMA 5: For each i ∈ I, xi−1, Mi, T , δ ∈ [0�1], w, and K ≥ 2ū/ε̄ satisfying the premise
for basic communication with magnitude K, there exists a family of functions (πn(xi−1� ·) :
HT

n−1 → R)n∈I such that the following hold:
1. With payoff functions (20), the basic protocol is a BFE.
2. For each n ∈ I and mi ∈Mi, E[∑t∈T δ

t−1ûn(at)+πn(xn−1�hn−1)] = Tvn(xn−1).
3. For each n ∈ I and t ∈ T,

max
xn−1�hn−1�h̃n−1

∣∣πn(xn−1�hn−1)−πn(xn−1� h̃n−1)
∣∣≤ (

ū+ 2
ū+K

ε̄

)
T� (21)

The proof is relegated to the Supplemental Material (as are all other omitted proofs).
Here is a sketch: For each receiver n �= i, player n− 1 rewards player n every time she ob-
serves a0, which incentivizes player n to play a0 throughout the module. Although whether
player i (the sender) plays a0 or a1 also affects the probability that player n− 1 observes
a0 in a given period (since i and n − 1 may match), the expected number of rewards is
independent of mi because player i plays a0 and a1 with the same frequency for every mi.
In addition, whether player i plays a0 in the first or second half-interval affects player n’s
instantaneous utility through discounting, so we must adjust the rewards to cancel this
effect.

For player i, player i − 1 makes her indifferent between playing a0 and a1 in every
period. This is straightforward since player i− 1’s observations statistically identify player
i’s actions.

Note that Lemma 5 concerns the complete information game where the states and con-
tinuation payoff functions (xn�wn)n∈I are known. However, as the statement of the lemma
holds for each realization of (xn�wn)n∈I , the same argument applies for the incomplete in-
formation game where (xn�wn)n∈I is unknown but the premise for communication is sat-
isfied for each (xn�wn)n∈I . The same remark applies for Lemmas 8, 13, and 17 introduced
later.

F.2. Reduction Lemma 6: Undiscounted, Finitely Repeated Game

We show that the equilibrium conditions of Lemma 1 can be replaced by corresponding
undiscounted conditions:
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FOLK THEOREM IN REPEATED GAMES 941

1. [Sequential Rationality] For all x ∈ {G�B}N and ht−1
i ∈Ht−1

i ,

σ∗
i (xi) ∈ argmax

σi∈Σi

E((σi�σ
∗−i(x−i))�β

∗)

[
T3∑
τ=1

ûi(aτ)+π∗
i

(
xi−1�h

T3
i−1

)|x−i� h
t−1
i

]
� (22)

2. [Promise Keeping] For all x ∈ {G�B}N ,

vi(xi−1)= 1
T3

Eσ∗(x)

[
T3∑
τ=1

ûi(aτ)+π∗
i

(
xi−1�h

T3
i−1

)]
� (23)

3. [Self-Generation] For all xi−1 ∈ {G�B} and h
T3
i−1 ∈ H

T3
i−1,

sign(xi−1)π
∗
i

(
xi−1�h

T3
i−1

)≥ −7ε∗T3� (24)

where, for xi−1 ∈ {G�B}, define

sign(xi−1) :=
{

−1 if xi−1 =G�

1 if xi−1 = B�

Note that Condition (4) is omitted, as vi(xi−1) is fixed to satisfy it by (5). The third
inequality in (3) (which here would be | 1−δ

δT3
π∗

i (xi−1�h
T3
i−1)| ≤ vi(G)−vi(B)) is also omitted,

as we have fixed T3, π∗
i (xi−1�h

T3
i−1), and vi(G) > vi(B) (by (5)) and will take δ→ 1.

LEMMA 6: Suppose that, in the T3-period finitely repeated game, there exist strategies
(σ∗

i (xi))i�xi , consistent ex post belief system β∗, and reward functions (π∗
i (xi−1�h

T3
i−1))i�xi−1�h

T3
i−1

such that Conditions (22)–(24) are satisfied. Then there exists δ̄ < 1 such that v ∈E(δ) for all
δ > δ̄.

The proof shows that, for any strategies (σ∗
i (xi))i�xi in the T3-period game satisfying

the conditions of the lemma, the T ∗∗-period game that results from concatenating these
strategies with the phase (final�4� i)i∈I strategies described in Section E (in which players
share information about a random past period) satisfies the equilibrium conditions of
Lemma 1. To prove this, we augment the reward functions from the T3-period game by
giving each player a small reward if the newly monitored period reveals that she took
an action yielding a higher payoff later in the block, so as to leave her indifferent to the
timing of her actions within the first T3 periods. Condition (22) then ensures sequential
rationality for the first T3 periods. Moreover, as δ → 1, the size of the new reward goes
to 0. Hence, Lemma 5 guarantees the existence of a reward function that incentivizes
players to follow the basic communication protocol in the last T ∗∗ − T3 periods. Finally,
since (T ∗∗ − T3)/T3 is small, communication takes a short enough time that Conditions
(23) and (24) imply Conditions (2) and (3), given the slack in (5).

F.3. Lemma 7: Letting Rewards Depend on h−i

Next, consider phase (final�3� i), during which players n �= i� i − 1 send messages
(an�t�ωn�t)t∈⋃j T(final�2�j) using the basic communication protocol. Player i − 1 then uses her
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942 J. DEB, T. SUGAYA, AND A. WOLITZKY

history in phase (final�3� i) to compute player i’s reward for phase (final�2� j)j∈I so that,
at the end of phase (final�2�N), player i’s expected reward is equal to∑

j �=i

∑
T(final�2�j)

πcancel
i (xi−1� a−i�t�ω−i�t)

+
∑

t∈T(final�2�i)

(
πcancel

i (xi−1� a−i�t�ω−i�t)+πa0

i (a−i�t �ω−i�t)
)
� (25)

Given Conditions (7) and (8), player i’s expected payoff in phases ((final�2� j))j∈I equals∑
t∈T(final�2�i)

vi(xi−1)−
∑

t∈T(final�2�i)

1ai�t �=a0 � (26)

Note that player i has a strict incentive to play a0 during phase (final�2� i). Based on this
construction, we further reduce the conditions for Lemma 6:

1. [Sequential Rationality] For all x ∈ {G�B}N and ht−1
i ∈ Ht−1

i ,

σ∗
i (xi) ∈ argmax

σi∈Σi

E((σi�σ
∗−i(x−i))�β

∗)

[
T1∑
τ=1

ûi(aτ)+
∑

t∈T(final�2�i)

vi(xi−1)−
∑

t∈T(final�2�i)

1ai�t �=a0

+π∗
i

(
xi−1�h

T2
i−1

)|x−i� h
t−1
i

]
� (27)

2. [Promise Keeping] For all x ∈ {G�B}N ,

vi(xi−1) = 1
T2

Eσ∗(x)

[
T1∑
τ=1

ûi(aτ)+
∑

t∈T(final�2�i)

vi(xi−1)

−
∑

t∈T(final�2�i)

1ai�t �=a0 +π∗
i

(
xi−1�h

T2
i−1

)]
� (28)

3. [Self-Generation] For all xi−1 ∈ {G�B} and h
T2
i−1 ∈ H

T2
i−1,

sign(xi−1)π
∗
i

(
xi−1�h

T2
i−1

)≥ −6ε∗T2� (29)

Note that the slack in the self-generation constraint has been reduced to 6ε∗T2, com-
pared to 7ε∗T3 in Condition (24). This is because some slack is “used up” when replacing
π∗

i (xi−1�h
T1
i−1) with (25) and π∗

i (x−i� h
T2
i−1).

LEMMA 7: Suppose that, in the T2-period finitely repeated game, there exist strategies
(σ∗

i (xi))i�xi , consistent ex post belief system β∗, and reward functions (π∗
i (xi−1�h

T2
i−1))i�xi−1�h

T2
i−1

such that Conditions (27)–(29) are satisfied. Then there exists δ̄ < 1 such that v ∈E(δ) for all
δ > δ̄.

The proof shows that, for any strategies (σ∗
i (xi))i�xi in the T2-period game satisfying the

conditions of the lemma, the T3-period game that results from concatenating these strate-
gies with the phase (final�3� i)i∈I strategies described in Section E satisfies the equilibrium
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FOLK THEOREM IN REPEATED GAMES 943

conditions of Lemma 6. Since the phase (final�3� i)i∈I strategies are used only to compute
the rewards πcancel

i and πa0

i , and these rewards are of order ū, Lemma 5 with K of order ū
guarantees the existence of a reward function that incentivizes players to follow the basic
communication protocol in the last T3 − T2 periods.

APPENDIX G: REDUCTION LEMMA: PHASE (final�2� i)

G.1. Secure Communication Module

In phase (final�2� i), the secure protocol is used. We consider payoffs and reward func-
tions for this protocol. The resulting finitely repeated game is the secure communication
module.

We need only consider the case where Ijam is a singleton. Fix the sender i and another
player i∗ with i �= i∗� i∗ − 1. Let Ijam = {i∗ − 1}. Intuitively, we consider a situation where
player i must communicate a message mi to player i∗ − 1, but player i∗ may gain if player
i∗ − 1 infers some m′

i �=mi, while other players are indifferent.
For each n ∈ I, payoff functions in the secure communication module are given by

−1{n=i∗}
∑
t∈T

1{an�t �=a0} +wn(h)� (30)

for some function wn : HT → R. Let (σ
mi
i �σ−i)mi∈Mi

denote the strategy profile in the
secure protocol. Note that only the sender’s strategy depends on mi. We will give con-
ditions on (wn)n∈I under which (σ

mi
i �σ−i)mi∈Mi

is an “i∗-quasi-belief-free equilibrium” of
the resulting finitely repeated game. Intuitively, this means that the strategy of each player
n �= i∗ is sequentially rational for every opposing history profile, and player i∗’s strategy is
sequentially rational for some consistent belief system. In addition, sequential rationality
for player i∗ is imposed ex post with respect to mi. This ensures that the module remains
incentive compatible when viewed as one part of the infinitely repeated game.

DEFINITION 2: A family of strategy profiles (σmi
i �σ−i)mi∈Mi

is an i∗-quasi-belief-free equi-
librium (i∗-QBFE) if (i) for each player n �= i∗ and history hn, the continuation strategy
σn|hn is a best response against σ−n|h−n for every opposing history profile h−n and every
possible message mi, and (ii) for player i∗, there exists a sequence of families of com-
pletely mixed strategy profiles ((σmi�k

i �σk
−i)mi∈Mi

)∞
k=1 and a corresponding family of belief

systems β(h−i∗ |mi�hi∗) (where β(h−i∗ |mi�hi∗) is the limit of conditional probabilities de-
rived from ((σ

mi�k
i �σk

−i))
∞
k=1) such that, for each mi and ht−1

i∗ ,

σi∗ ∈ argmax
σ̃i∗∈Σi∗

−
∑
t∈T

1{ai∗�t �=a0} +E(σ̃i∗ �σ
mi
−i∗ )

[
wi∗(h)|mi�h

t−1
i∗
]
�

where the expectation is taken with respect to β(ht−1
−i∗ |mi�h

t−1
i∗ ).

We say that the premise for secure communication for player i∗ with magnitude K is satis-
fied if the following conditions hold:

1. All players but player i∗ are indifferent about the result of communication: wn(h) =
0 for all h and n �= i∗.
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944 J. DEB, T. SUGAYA, AND A. WOLITZKY

2. If player i∗ − 1 deviates from σi∗−1 or ALLREG does not occur,27 then wi∗(h) = 0
for all h.

3. If player i∗ − 1 follows σi∗−1 and ALLREG occurs, then the following conditions
hold:

(a) If mi(i
∗ − 1) ∈ Mi ∪ {0} is the same at protocol histories h and h̃, then wi∗(h) =

wi∗(h̃). Under this condition, we abuse notation and write wi∗(h)=wi∗(mi(i
∗ − 1)).

(b) The range of wi∗(mi(i
∗ − 1)) is bounded by K:

max
mi�m̃i∈Mi∪{0}

∣∣wi∗(mi)−wi∗(m̃i)
∣∣≤K� (31)

(c) wi∗(0)≤wi∗(mi(i
∗ − 1)) for all mi(i

∗ − 1) ∈Mi.
We now specify player i∗’s beliefs. In particular, we specify that, after any off-path ob-

servation, she assigns probability 1 to the event that player i∗ − 1 deviated (and hence, if
the above premise holds, wi∗(h) = 0). This belief is clearly consistent: for concreteness,
define ((σ

mi�k
i �σk

−i)mi∈Mi
)∞
k=1 by letting player i∗ −1 tremble uniformly over all actions with

probability k−1 at each history, and letting every other player tremble uniformly over all
actions with probability k−k at each history.

LEMMA 8: For each i∗ ∈ I, i ∈ I \ {i∗ − 1� i∗}, Mi, w, and K satisfying the premise for
secure communication for player i∗ with magnitude K, if

b(Mi)K exp
(−η̄T + T

1
2
)≤ 1� (32)

then with payoff functions (30) the secure communication protocol, together with the above
belief system for player i∗, is an i∗-QBFE.

PROOF: By construction, players other than i∗ are indifferent over all actions through-
out the module. For player i∗, fix a period t ∈ T and history (ai∗�τ�ωi∗�τ)τ∈T�τ≤t−1. Suppose
ωi∗�τ ∈ {a0� a1} for each τ ≤ t−1. By the same argument as for Lemma 4, for every possible
continuation history (ai∗�τ�ωi∗�τ)τ∈T�τ≥t , with probability at least

1 − b(Mi)exp
(−η̄T + T

1
2
)

(33)

conditional on (ai∗�τ�ωi∗�τ)τ∈T, either ALLREG does not occur or [mi(i
∗ − 1) ∈ {mi�0},

and mi(i
∗ − 1) = mi if ai∗�τ = a0 for all τ ∈ T]. Moreover, if (ωi∗�τ)τ∈T is such that

[mi(i
∗ − 1) ∈ {mi�0}, and mi(i

∗ − 1) = mi if ai∗�τ = a0 for all τ ∈ T], then by defini-
tion of mi(i

∗ − 1), we have mi(i
∗ − 1) = mi if and only if player i∗ takes a0 when-

ever she meets player i∗ − 1 in a half-interval where player i takes a0. Hence, since
wi∗(0) ≤ wi∗(mi(i

∗ − 1)) for all mi(i
∗ − 1) ∈ Mi, taking ai∗�τ = a0 for each τ ≥ t maxi-

mizes wi∗(h) with probability at least (33). Given this, conditions (31) and (32) imply that
the reward term −1{ai∗�t �=a0} in payoff (30) outweighs any possible benefit to player i∗ from
playing a �= a0 in an attempt to manipulate mi(i

∗ − 1). If instead ωi∗�τ /∈ {a0� a1} for some
τ ≤ t−1, then by construction of the belief system player i∗ believes wi∗(h)= 0 with prob-
ability 1. Hence, player i∗ maximizes the reward term −1{ai∗�τ �=a0} in payoff (30), so playing
a0 as prescribed is optimal. Q.E.D.

27Player i∗ − 1 follows σi∗−1 if, for each τ, her action ai∗−1�τ is in the support of σi∗−1 given
(ai∗−1�t �ωi∗−1�t )t≤τ−1. Since i∗ − 1 �= i, the support is independent of mi . Player i∗ − 1 deviates from σi∗−1 if
she does not follow σi∗−1.
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FOLK THEOREM IN REPEATED GAMES 945

G.2. Reduction Lemma 9: Letting Rewards Depend on Other Players’ Non-Main
Phase Histories

We now use phases ((final�2� n))n∈I to further simplify equilibrium conditions. Player
i − 1 uses the result of this communication to construct the reward function so that the
expected reward at the end of phase (final�1�N) is the same as if player i − 1 knew
the histories of players −(i − 1� i) for all non-main phase periods. We write the reward
function as πi(x−i� h

T ∗
i−1�h

T′′
−i ), where T′′ is the set of non-main phase periods, from (19).

We wish to replace π∗
i (xi−1�h

T2
i−1) with π∗

i (x−i� h
T ∗
i−1�h

T′′
−i ) in Conditions (27)–(29), yielding

the following:
1. [Range Restriction] The range of the reward function is bounded by 8ūT1:

sup
x−i�h

T∗
i−1�h

T′′
−i

∣∣π∗
i

(
x−i� h

T ∗
i−1�h

T
′′

−i

)∣∣≤ 8ūT1� (34)

2. [Sequential Rationality] For all x ∈ {G�B}N and ht−1
i ∈Ht−1

i ,

σ∗
i (xi) ∈ argmax

σi∈Σi

E((σi�σ
∗−i(x−i))�β

∗)

[
T1∑
τ=1

ûi(aτ)+π∗
i

(
x−i� h

T ∗
i−1�h

T
′′

−i

)|ht−1
i

]
� (35)

3. [Promise Keeping] For all x ∈ {G�B}N ,

vi(xi−1)= 1
T1

Eσ∗(x)

[
T1∑
t=1

ûi(at)+π∗
i

(
x−i� h

T ∗
i−1�h

T′′
−i

)]
� (36)

4. [Self-Generation] For all x−i, hT ∗
i−1, and hT

′′
−i ,

sign(xi−1)π
∗
i

(
x−i� h

T ∗
i−1�h

T
′′

−i

)≥ −5ε∗T1� (37)

LEMMA 9: Suppose that, in the T1-period finitely repeated game, there exist strate-
gies (σ∗

i (xi))i�xi , consistent ex post belief system β∗, and reward functions (π∗
i (x−i� h

T ∗
i−1�

hT′′
−i ))i�x−i�h

T∗
i−1�h

T′′
−i

such that Conditions (34)–(37) are satisfied. Then there exists δ̄ < 1 such

that v ∈E(δ) for all δ > δ̄.

APPENDIX H: VERIFIED COMMUNICATION MODULE

In phase (final�1� i) and earlier communication phases, the verified communication
protocol is used. We now establish some key properties of this protocol, and then augment
it with payoffs and reward functions. The resulting verified communication module is the
most complicated of our modules.

Let σ∗�mi = (σ
∗�mi
i � σ∗

−i) denote the prescribed protocol strategy profile when player i
sends message mi. For each j� j′ ∈ I, player j’s equilibrium strategy in the j′-checking
round is determined by (aj�t�ωj�t)t∈T(msg) and ζj ∈ {reg� jam} (independently of mi). We
say player j follows σ∗

j in the j′-checking round if, for each τ ∈ T(j′), her action aj�τ is
in the support of σ∗

j given (aj�t�ωj�t)t∈T(msg), ζj ∈ {reg� jam}, and (aj�t�ωj�t)t∈T(j′)�t≤τ−1. Let
H<j′ denote the set of protocol history profiles at the beginning of T(j′) that arise with
positive probability under some strategy profile σ . Given h<j′ ∈H<j′ , let HT(j′)

j |h<j′ denote
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946 J. DEB, T. SUGAYA, AND A. WOLITZKY

the set of protocol history profiles during T(j′) that are reached from h<j′ with positive
probability under some strategy profile (σj�σ

∗
−j) with σj ∈ Σj (i.e., when players −j follow

the protocol).

H.1. Regular and Erroneous Opponents’ Histories

We classify each of player j’s opponents’ history profiles as regular or erroneous,
θj(h−j� ζ) ∈ {R�E}. Roughly, a profile of player j’s opponents’ histories h−j is “erroneous”
if it arises whenever some jamming player plays JAM or the realized matching process is
erroneous.

This classification—which will affect player j’s reward function—depends on players
−j’s protocol history h−j and the type profile ζ = (ζn)n∈I . By Lemma 9, player j’s reward
function can depend on her opponents’ non-main phase histories. As verified communica-
tion protocol histories and jamming coordination protocol histories (which will determine
ζ) are non-main phase histories, player j’s reward function can depend on h−j and ζ.

For j� j′ ∈ I, we first define θj(h−j� ζ� j
′)= E (“j’s opponents’ histories in the j′-checking

round are erroneous”) if and only if one or more of the following four conditions holds:
1. ζj = jam.
2. There exists n ∈ Ijam \ {j� j′} who plays JAM in some half-interval in T(j′).
3. [Condition FAIL] j �= j′ and there exist a half-interval S in T(j′) and a player n �= j′

such that player j′ plays a1 throughout S but ωn�t = a0 for all t ∈ S. (Whether this event
occurs is determined by h−j , as Lemma 2 implies that hj is uniquely determined by h−j .)

4. [Condition FAILj′] j = j′, player j′ follows σ∗
j′ in the j′-checking round, and there

exist a half-interval S in T(j′) and a player n �= j′ such that player j′ plays a1 throughout S
but ωn�t = a0 for all t ∈ S. (Again, this event is determined by h−j , by Lemma 2.)

(Note that θj(h−j� ζ� j
′) depends on h−j only through h

T(j′)
−j and h

T(msg)
−j , the latter because

whether player j′ follows σ∗
j′ in the j′-checking round (in [Condition FAILj′]) depends on

(aj′�t �ωj′�t)t∈T(msg).)
We define θj(h−j� ζ) = E if and only if either θj(h−j� ζ� j

′) = E for some j′ ∈ I or some
player j′ �= j deviates from σ∗

j′ in any checking round. Otherwise, define θj(h−j� ζ) =R. In
addition, for each j′ ∈ I, let JAMj′�−j denote the event that there exists n ∈ Ijam \{j� j′} who
plays JAM in some half-interval in T(j′). Let REGj′�−j denote the complementary event.

LEMMA 10: For each player j ∈ I, each type profile ζ ∈ {reg� jam}N , and each history
profile h<j′ ∈ H<j′ :

1. If all players follow σ∗ in the j′-checking round, then Pr(θj(h−j� ζ� j
′) = E|h<j′� ζ) is

the same for every h<j′ ∈ H<j′ .
2. σ∗

j′ ∈ argmaxσj′ ∈ΣT

j′
Pr(σj′ �σ

∗
−j′ )(θj′(h−j′� ζ� j

′)= E|ζ�h<j′).
3. If all players follow σ∗ in the j′-checking round and (aj′�t(n)�ωj′�t(n))t∈T(msg) �=

(aj′�t �ωj′�t)t∈T(msg) for some n ∈ I, then (aj′�t(n)�ωj′�t(n))t∈T(msg) = 0 and θj(h−j� ζ� j
′)= E.

4. If player j′ follows σ∗
j′ in the j′-checking round, (aj′�t(n)�ωj′�t(n))t∈T(msg) �= (aj′�t �

ωj′�t)t∈T(msg) for some n ∈ I, and θj(h−j� ζ� j
′)= R, then (aj′�t(n)�ωj′�t(n))t∈T(msg) = 0.

5. If j �= j′, players −j follow σ∗
−j in the j′-checking round, and (aj′�t(j)�ωj′�t(j))t∈T(msg) �=

(aj′�t �ωj′�t)t∈T(msg), then θj(h−j� ζ� j
′)= E.

PROOF: 1. For any message (aj′�t �ωj′�t)t∈T(msg), player j′ plays a1 the same number of
times in each interval. Hence, the probability that FAIL (or FAILj′) holds is independent
of (aj′�t �ωj′�t)t∈T(msg).
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FOLK THEOREM IN REPEATED GAMES 947

2. If player j′ deviates from σ∗
j′ then FAILj′ does not hold. Moreover, Conditions 1 and

2 for θj(h−j� ζ� j
′) = E are independent of σj , and FAIL only applies when j �= j′. Hence,

the conclusion holds.
3. If j ∈ Ijam or a player in Ijam \ {j� j′} plays JAM in some half-interval, then

θj(h−j� ζ� j
′) =E by construction. If j /∈ Ijam and all players Ijam \ {j� j′} play REG in every

half-interval, then (aj′�t(n)�ωj′�t(n))t∈T(msg) �= (aj′�t�ωj′�t)t∈T(msg) only if player n does not
observe a1 in some half-interval where player j′ plays a1. Hence, (aj′�t(n)�ωj′�t(n))t∈T(msg) =
0 and FAIL or FAILj′ holds.

4. If θj(h−j� ζ� j
′)= R, then each n �= j′ observes a1 in each half-interval where player j′

plays a1. So, (aj′�t(n)�ωj′�t(n))t∈T(msg) �= (aj′�t �ωj′�t)t∈T(msg) implies (aj′�t(n)�ωj′�t(n))t∈T(msg) =
0.

5. When players −j follow σ∗
−j , (aj′�t(j)�ωj′�t(j))t∈T(msg) �= (aj′�t �ωj′�t)t∈T(msg) only if player

j does not observe a1 in some half-interval where player j′ plays a1. Hence, FAIL holds.
Q.E.D.

H.2. Statistical Properties of the Verified Protocol

LEMMA 11: Suppose that

2N(N − 1)b
(
A4b(Mi)

)
exp

(−T
1
2
)+N(N − 1)b

(
A4b(Mi)

)
exp(−ε̄T )≤ exp

(−T
1
3
)
� (38)

Then the following claims hold for every mi ∈ Mi and every type profile ζ ∈ {reg� jam}N :
1. For any j �= i and any σj ∈ ΣT

j , given strategy profile (σj�σ
∗�mi
−j ), either (i) mi(n) = mi

for all n ∈ I, (ii) susp(hn)= 1 for some n �= j, or (iii) θj(h−j� ζ)=E. Moreover, susp(hj)= 1
implies θj(h−j� ζ) =E.

2. For any σi ∈ ΣT

i , given (σi�σ
∗
−i), either (i) there exists m̂i ∈ Mi with mi(n) = m̂i for

all n ∈ I, (ii) susp(hn) = 1 for some n �= i, or (iii) θi(h−i� ζ) = E. Moreover, susp(hi) = 1
implies θi(h−i� ζ)=E.

3. Given σ∗�mi , for any j ∈ I, either (i) mi(n) = mi and susp(hn) = 0 for all n ∈ I, or (ii)
θj(h−j� ζ)= E.

4. Given σ∗�mi , with probability at least 1 − exp(−T
1
3 ), all the following events occur:

(i) mi(n) = mi for all n ∈ I, (ii) susp(hn) = 0 for all n ∈ I, and (iii) θn(h−n� ζ) = R for
all n /∈ Ijam.

5. For any mi�m
′
i ∈Mi and j ∈ I, Prσ

∗�mi
(θj(h−j� ζ) =R|ζ) = Prσ

∗�m′
i
(θj(h−j� ζ)= R|ζ).

The intuition is that θj(h−j� ζ) = E only if some player plays JAM or matching is erro-
neous, which is unlikely. Moreover, since the sender plays a1 with the same frequency for
all mi, the probability of this event is independent of mi.

The next lemma is analogous to Lemma 4. Unlike Lemmas 10 and 11, this lemma
involves conditions on players’ beliefs about the type profile (ζn)n∈I ∈ {reg� jam}N . To ex-
press these conditions, we assume each player n has a prior probability distribution over
(ζn)n∈I at the beginning of the protocol. Let Prn(·|·) denote conditional probability under
player n’s prior.

LEMMA 12: Fix any j ∈ I, j′ �= j, and h<j′ ∈ H<j′ . Suppose that, for all hT(j′)
j ∈ H

T(j′)
j |h<j′ ,

we have Prj(ζj′ = jam ∀j′ �= j|mi�h
<j′�h

T(j′)
j )≥ exp(−T

1
2 ). Then, for all hT(j′)

j ∈H
T(j′)
j |h<j′ , at

least one of the following two conditions holds:
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948 J. DEB, T. SUGAYA, AND A. WOLITZKY

1. We have

Prj
(
JAMj′�−j|mi�h

<j′�h
T(j′)
j

)≥ 1 − exp
(−η̄T + 2T

1
2
)
� (39)

2. The following two conditions hold:
(a) For all (aj�t)t∈T(j′),

Prj
((
aj′�t(n)�ωj′�t(n)

)
t∈T(msg)

∈ {
0� (aj′�t �ωj′�t)t∈T(msg)

} ∀n �= j|mi�h
<j′�h

T(j′)
j �REGj′�−j

)
≥ 1 −Nb

(|A|4b(Mi)
)

exp
(−η̄T + 2T

1
2
)
� (40)

(b) If aj�t = a0 for all t ∈ T(j′), then

Prj
((
aj′�t(n)�ωj′�t(n)

)
t∈T(msg)

= (aj′�t �ωj′�t)t∈T(msg) ∀n �= j|mi�h
<j′�h

T(j′)
j �REGj′�−j

)
≥ 1 −Nb

(|A|4b(Mi)
)

exp
(−η̄T + 2T

1
2
)
� (41)

PROOF: The same as Lemma 4, except that 2T
1
2 replaces T

1
2 in the inequality (12), as

now Ijam \ {j} is non-empty with probability at least exp(−T
1
2 ) rather than 1. Q.E.D.

H.3. Payoffs and Incentives

Throughout this subsubsection, fix m∗
i ∈ Mi and let σ∗ = σ∗�mi .

For each j ∈ I and t ∈ T(j), given (aj�t�ωj�t)t∈T(msg) identified from h−j by Lemma 2,
calculate the equilibrium action a∗

j�t(h−j). Suppose each player j’s payoff equals

−1{ζj=reg}
∑

t∈T\T(j)
1{aj�t �=a0} −

∑
t∈T(j)

1{aj�t �=a∗
j�t (h−j )} +wj(h�ζ)� (42)

(This is similar to (30), but now player j is rewarded for following the equilibrium strategy
a∗
j�t(h−j) in round T(j).)
We say that the premise for verified communication to send message m∗

i ∈ Mi with mag-
nitude K is satisfied if there exist (vEj )j∈I ∈ RN , and (v

mi
j )j∈I�mi∈Mi∪{0} ∈ RN such that, for all

j ∈ I and h ∈ H, the following conditions hold:
1. If θj(h−j� ζ)=E, then wj(h�ζ) = vEj .
2. If θj(h−j� ζ)=R and susp(hn)= 1 for some n �= j, then wj(h�ζ) = v0

j .
3. If θj(h−j� ζ) = R, susp(hn) = 0 for all n �= j, and ∃m̂i ∈ Mi such that mi(n) = m̂i for

all n ∈ I, then wj(h�ζ) = v
m̂i
j .

4. v0
j ≤ min{minmi∈Mi

v
mi
j � vEj }.

5. v
m∗
i

i ≥ v
m̂i
i for all m̂i ∈Mi ∪ {0}.

6. The range of wj(h�ζ) is bounded by K: K ≥ maxj∈I{max{vEj � (vmi
j )mi∈Mi

} − v0
j }.

The interpretation is that vEj is player j’s continuation payoff after erroneous oppos-
ing histories; v0

j is player j’s punishment payoff (which results if θj(h−j� ζ) = R and
susp(hn) = 1 for some n �= j); and v

mi
j is j’s continuation payoff after players coordinate

on message mi.
We modify player i’s strategy in the message round after she herself deviates as follows:

Recall that we define mi(n) = 1 if player n infers some (ai�t)t∈T(msg) not corresponding to
the binary expansion of any message. We can thus view the play of such (ai�t)t∈T(msg) as
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FOLK THEOREM IN REPEATED GAMES 949

sending message mi = 1. With this interpretation, for each ht−1
i , let Mi(h

t−1
i ) ⊂ Mi be the

(non-empty) set of messages m̃i such that (ai�τ)
t−1
τ=1 is consistent with the binary expansion

of m̃i; and let M∗
i (h

t−1
i ) = argmaxmi∈Mi(h

t−1
i ) v

mi
i be the elements that maximize v

mi
i . Given

ht−1
i , if m∗

i ∈ M∗
i (h

t−1
i ), player i plays ai�t corresponding to the binary expansion of m∗

i ;
otherwise, she plays ai�t corresponding to the binary expansion of some mi ∈M∗

i (h
t−1
i ).

Call a history σ-consistent if it is reached with positive probability under strategy pro-
file σ . Recall that H<j′ is the set of module history profiles at the beginning of T(j′) that
are σ-consistent for some σ ∈ Σ, and let HT(j′)

j |h<j′ be the set of module histories during
T(j′) that are (σj�σ

∗
−j)-consistent for some σj ∈ Σj given h<j′ . We assume that, for every

player j� j′ ∈ I, module strategy σj , h<j′ ∈ H<j′ , and hj ∈ H
T(j′)
j |h<j′ , player j believes that

all other players are jamming players with probability at least exp(−T
1
2 ):

Prj
(
n ∈ Ijam ∀n �= j|h<j′�hj

)≥ exp
(−T

1
2
)
� (43)

LEMMA 13: Suppose that T is sufficiently large such that

KNb
(
A4b(Mi)

)
exp

(−η̄T + 2T
1
2
)≤ 1� (44)

If the premise for verified communication with magnitude K and (43) hold for each j ∈ I,
then with payoff functions (42) the verified communication protocol is a sequential equilib-
rium. In addition, if there exists i∗ ∈ I \ {i} such that Ijam = I \ {i∗} and vEj = v

mi
j for all j �= i∗

and mi ∈ Mi ∪ 0, while for player i∗ the premise for verified communication and (43) hold,
then with payoff functions (42) the verified communication protocol is an i∗-QBFE.

Intuitively, if the prior probability that players jam is not too low, whenever player j
observes an erroneous history she believes that JAM is played and θj(h−j� ζ) = E. Oth-
erwise, she believes that all other players match with the sender at least once in each
half-interval. Hence, if she deviates and changes some player’s inference, this induces
susp(hn) = 1 and yields the punishment payoff v0

j . It will be useful to remember that all
the lemmas in this section hold if Conditions (38), (43), and (44) are satisfied.

APPENDIX I: REDUCTION LEMMAS: PHASE (final�1� i)

This section further simplifies Lemma 9, using phase (final�1� i)i∈I .

I.1. Reduction Lemma 14: Letting Rewards Depend on Other Players’ Main Phase Histories

Recall that, for each main phase l = 1� � � � �L, player i randomly selects a monitoring pe-
riod ti(l) ∈ T(l�main). We show that player i’s reward function in the T ∗-period repeated
game can be made to depend on players −i’s histories in periods in Li−1 = (ti(l))

L
l=1, that

is, on

h
Li−1
−i := (a−i�ti−1(l)�ω−i�ti−1(l))l=1�����L� (45)

Recall that T′ := {1� � � � � T ∗} \ ⋃L

l=1 T(l�main). The reward function takes the form
π∗

i (x−i� h
T

′
−i� h

Li−1
−i �χ−i), where χn ∈ {0�1} was defined in Section E.28 We wish to replace

28Relative to Lemma 9, the argument hLi−1
−i has been added to the reward function and the argument hT ∗

i−1

has been removed, as h
Li−1
−i contains enough information about player i − 1’s main phase history to provide

incentives for player i.
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950 J. DEB, T. SUGAYA, AND A. WOLITZKY

π∗
i (xi−1�h

T ∗
i−1�h

T′′
−i ) with π∗

i (x−i� h
T′
−i� h

Li−1
−i �χ−i) in Conditions (35)–(37). In the following

conditions, we also cancel the instantaneous utilities outside of the main phases (which
can be accomplished by using the reward function (7)):

1. [Range Restriction] The range of the reward function is bounded by 7ūT ∗:

max
x−i�h

T′
−i�h

Li−1
−i

∣∣π∗
i

(
x−i� h

T′
−i� h

Li−1
−i �χ−i

)∣∣≤ 7ūT ∗� (46)

2. [Sequential Rationality] For all x ∈ {G�B}N and ht−1
i ∈ Ht−1

i ,

σ∗
i (xi) ∈ argmax

σi∈Σi

E((σi�σ
∗−i(x−i))�β

∗)
[ ∑
t∈⋃L

l=1 T(l�main)

ûi(at)+π∗
i

(
x−i� h

T
′

−i� h
Li−1
−i �χ−i

)|ht−1
i

]
� (47)

3. [Promise Keeping] For all x ∈ {G�B}N ,

vi(xi−1)− 2ε∗ = 1
L(T0)

3E
σ∗(x)

[ ∑
t∈⋃L

l=1 T(l�main)

ûi(at)+π∗
i

(
x−i� h

T′
−i� h

Li−1
−i �χ−i

)]
� (48)

4. [Self-Generation] For all x−i, hT
′

−i, and h
Li−1
−i ,

sign(xi−1)π
∗
i

(
x−i� h

T
′

−i� h
Li−1
−i �χ−i

)≥ −2ε∗T ∗� (49)

LEMMA 14: Suppose that, in the T ∗-period repeated game, there exist strategies (σ∗
i (xi))i�xi ,

consistent ex post belief system β∗, and reward functions (π∗
i (x−i� h

T
′

−i� h
Li−1
−i �

χ−i))i�x−i�h
T′
−i�h

Li−1
−i �χ−i

such that Conditions (46)–(49) are satisfied. Then there exists δ̄ < 1

such that v ∈E(δ) for all δ > δ̄.

I.2. Reduction Lemma 15: “Ignoring” Other Players’ Deviations

We further simplify Lemma 14. Consider the following conditions:
1. [ti(l) Not Revealed Until End of Main Phase l] For all xi ∈ {G�B}, l ∈ {1� � � � �L},

t ∈ {1� � � � �T ∗}, (Li� h
t−1
i ), and (L̃i� h̃

t−1
i ), if t ≤ τ for some τ ∈ T(main(l)), ti(l̂) = t̃i(l̂) for

each l̂ = 1� � � � � l − 1, and ht−1
i = h̃t−1

i , then

σ∗
i (xi)|(Li�h

t−1
i ) = σ∗

i (xi)|(L̃i�h̃
t−1
i )� (50)

2. [Reward Bound]

sup
x−i�h

T′
−i�h

Li−1
−i

∣∣π∗
i

(
x−i� h

T′
−i� h

Li−1
−i

)∣∣≤ 5ūT ∗� (51)

3. [Incentive Compatibility] Let Hi(x−i) denote the set of histories that arise with
positive probability under some strategy profile (σi�σ

∗
−i(x−i)) with σi ∈ ΣT ∗

i . For all
x ∈ {G�B}N and ht−1

i ∈ Hi(x−i),

σ∗
i (xi) ∈ argmax

σi∈Σi

E(σi�σ
∗−i(x−i))

[ ∑
t∈⋃L

l=1 T(l�main)

ûi(at)+π∗
i

(
x−i� h

T′
−i� h

Li−1
−i

)|ht−1
i

]
� (52)

Note that we do not need to define “trembles” to define E[·|·] in (52).
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FOLK THEOREM IN REPEATED GAMES 951

4. [Promise Keeping] For all x ∈ {G�B}N ,

vi(G)− 2ε∗ ≤
vi(B)+ 2ε∗ ≥

}
1

L(T0)
3E

σ∗(x)
[ ∑
t∈⋃L

l=1 T(l�main)

ûi(at)+π∗
i

(
x−i� h

T
′

−i� h
Li−1
−i

)]
� (53)

5. [Self-Generation] The same as (49).

LEMMA 15: Suppose that, in the T ∗-period repeated game, there exist strategies (σ∗
i (xi))i�xi

and reward functions (π∗
i (x−i� h

T
′

−i� h
Li−1
−i ))

i�x−i�h
T′
−i�h

Li−1
−i

such that Conditions (49)–(53) are sat-

isfied. Then there exists δ̄ < 1 such that v ∈E(δ) for all δ > δ̄.

As in Lemma 14, players −i communicate their history profile in Li−1, χ−i. Since Li−1

is random and is not revealed until main phase l is over, by giving a reward based on the
history profile in Li−1, player i can be made indifferent over actions after another player
“confesses” that she deviated in or before main phase l.

APPENDIX J: EQUILIBRIUM STRATEGIES: REMAINING DETAILS

We now complete the construction of the equilibrium strategies (σ∗
i (xi))i∈I in sub-block

0� � � � �L. From now on, we abbreviate “the verified communication protocol with repe-
tition T0 ” to simply “the communication protocol.” Recall the different phases of each
sub-block defined in Section E. We let λ represent a generic phase. That is,

λ ∈ {
0 × ({jam} ∪ I ∪ (

I × {con}))}∪ {{1� � � � �L} × {main} ∪ I ∪ I2 ∪ (
I × {con})}�

In this notation, the first coordinate of λ is l throughout sub-block l ∈ {0� � � � �L}. The
second coordinate of λ is (i) jam for the jamming coordination phase (for l = 0), (ii) i ∈ I
for phase (l� i) (for l ≥ 0), (iii) (i� con) for phase (l� i� con) (for l ≥ 0), (iv) main for main
phase l (for l ≥ 1), or (v) (i� n) for phase (l� i� n) (for l ≥ 1).

For l ∈ {0� � � � �L} we write λ ≤ l (resp., λ < l) if the first coordinate of λ is ≤ l (resp.,
< l), and similarly for λ ≥ l and λ > l. Similarly, for two phases λ and λ′, we say λ ≤ λ′ if
and only if phase λ precedes or equals phase λ′.

Given λ, let hλ
i be player i’s history (ai�t�ωi�t)t∈T(λ) within phase λ. Let h<λ

i and h≤λ
i be

player i’s history at the beginning and the end of phase λ, respectively. Define h<λ, h≤λ,
h<λ

−i , and h≤λ
−i similarly. We now define equilibrium strategies in each phase.

J.1. Sub-Block 0

J.1.1. Jamming Coordination Phase

At the beginning of the block, player i randomly selects a period ti(l) ∈ T(main(l)) for
each l = 1� � � � �L. This is encoded in Li as defined in Section I.1.

Then the jamming coordination protocol is played in phase (0� jam). Denote player i’s
protocol history by h

(0�jam)
i = (ai�t�ωi�t)

2
t=1. Recall from Section D.4 that ζi(h

(0�jam)
i ) = jam

if ωi�t = a1 for some t ∈ {1�2}; otherwise, ζi(h
(0�jam)
i ) = reg. In subsequent communication

protocols, let i ∈ Ijam if and only if ζi(h
(0�jam)
i )= jam.
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952 J. DEB, T. SUGAYA, AND A. WOLITZKY

J.1.2. Initial Communication Phase

For each i ∈ I, in phase (0� i), player i sends xi by the communication protocol. As a
result, for each j ∈ I, player j’s history h(0�i)

j in phase (0� i) determines an inference xi(j) ∈
{G�B�0} and a realization susp(h(0�i)

j ) ∈ {0�1}. After phase (0� i) is concluded for all i ∈ I,
the history of each player j ∈ I determines an inferred state profile x(j) = (xi(j))i∈I ∈
{G�B�0}N . Further, for i ∈ I, given h≤(0�i), let

ID
(
h≤(0�i)

) := {
j ∈ I : susp

(
hλ
j

)= 1 for some phase λ ≤ (0� i)
}

be the set of players who reach suspicious histories by the end of the phase (0� i).29

J.1.3. Contagion Phase 0

For each i ∈ I, in phase (0� i� con), player i communicates whether her history is sus-
picious. In particular, given ID(h<(0�1�con)) (which equals ID(h≤(0�N))), in phase (0� i� con)
player i sends m(0�i�con)

i = 1 if i ∈ ID(h<(0�i�con)) and m(0�i�con)
i = 0 otherwise. For each j ∈ I,

player j’s history h(0�i�con)
j determines an inference m(0�i�con)

i (j) ∈ {0�1} and a realization
susp(h(0�i�con)

j ) ∈ {0�1}. For the history h≤(0�i�con) at the end of phase (0� i� con), let

ID
(
h≤(0�i�con)

) := ID
(
h<(0�i�con)

)∪ {
j ∈ I :m(0�i�con)

i (j)= 1 or susp
(
h(0�i�con)
j

)= 1
}
� (54)

J.2. Sub-Block l

For l = 1� � � � �L, strategies in sub-block l depend on the variables ID(h<(l�main)) ⊂ I.
We have already defined ID(h<(l�main)) for l = 1. As we will see, the outcome of sub-
block l together with ID(h<(l�main)) determines ID(h<(l+1�main)). This inductively determines
ID(h<(l�main)) for each l.

J.2.1. Main Phase l

If i ∈ ID(h<(l�main)), player i plays αmin in every period. If i /∈ ID(h<(l�main)), then xj(i) ∈
{G�B} for all j ∈ I, and hence the action profile al(x(i)) is well-defined. In this case, in
every period player i plays al

i(x(i)), the ith component of action profile al(x(i)). Given a
history profile h≤(l�main) at the end of main phase l, let ID(h≤(l�main)) = ID(h<(l�main)). That
is, ID remains constant in main phase l.

J.2.2. Communication Phase l, Part 1

For each i ∈ I, player i − 1 sends the number ti−1(l) by the communication protocol in
phase (l� i). For each j ∈ I, player j’s history h(l�i)

j in phase (l� i) determines ti−1(l)(j) ∈
T(l�main)∪ {0} and susp(h(l�i)

j ) ∈ {0�1}.
J.2.3. Communication Phase l, Part 2

For each i ∈ I and n ∈ I, player i sends the message (ai�tn−1(l)(i)�ωi�tn−1(l)(i)) by the com-
munication protocol in phase (l� i� n). (If tn−1(l)(i) = 0, she sends (ai�tn−1(l)(i)�ωi�tn−1(l)(i)) =
(a0� a0).) For each j ∈ I, player j’s history h(l�i�n)

j in phase (l� i� n) determines an inference
(ai�tn−1(l)(j)�ωi�tn−1(l)(j)) ∈A2 ∪ {0} and a realization susp(h(l�i�n)

j ) ∈ {0�1}.

29If λ = (0� jam), define susp(hλ
j ) = 0.
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FOLK THEOREM IN REPEATED GAMES 953

After phase (l� i� n) has concluded for each i ∈ I and n ∈ I, the history of each player j ∈
I determines an inferred vector of outcomes (ai�tn−1(l)(j)�ωi�tn−1(l)(j))i∈I ∈∏

i∈I(A
2 ∪ {0}).

Players identify deviations as follows: Given n ∈ I, x ∈ {G�B}N , and (a�ω) ∈ A2N , let
devl

n(x�a�ω) = 1 denote the event that either (an�ωn) �= ϕ(a−n�ω−n) (Lemma 2 im-
plies (an�ωn) is infeasible given players −n’s history) or an �= al

n(x). In addition, let
devl

n(x(i)�atn−1(l)(i)�ωtn−1(l)(i))= 1 if x(i) /∈ {G�B}N or (atn−1(l)(i)�ωtn−1(l)(i)) /∈A2N . Thus,
devl

n(x(i)�atn−1(l)(i)�ωtn−1(l)(i)) = 1 means that the outcome of the communication in
phases (l� j� n)j∈I implies that either player n deviated in the main phase, some player
deviated in the communication phase, or the players failed to coordinate on some mes-
sage.

Let h be a history at the end of phase (l� i) or (l� i� n). Let ID(h) be the set of players
who infer susp = 1 or dev = 1 by the end of the phase; that is, for phase (l� i), we define

ID(h) := ID
(
h≤(l�main)

)∪
{
j ∈ I : max

λ≤(l�i)
susp

(
hλ
j

)= 1
}
�

and for phase (l� i� n), the set ID(h) is defined as

ID
(
h≤(l�main)

)∪
{
j ∈ I : max

{
maxλ≤(l�i�n) susp

(
hλ
j

)
�

max(l�N�n′)≤(l�i�n) devl
n′
(
x(j)�atn′−1(l)

(j)�ωtn′−1(l)
(j)

)}= 1

}
�

J.2.4. Contagion Phase l

For each i ∈ I, in phase (l� i� con), player i sends whether i ∈ ID(h<(l�i�con)), as in phase
(0� i� con). We define ID(h≤(l�i�con)) as in phase (0� i� con).

Finally, for a general h, let ID−i(h−i) = ID(h) \ {i}. Note that ID−i is a function of players
−i’s histories only, since whether j ∈ ID(h) is determined by hj .

APPENDIX K: REWARD FUNCTION

This section constructs the reward function (ignoring for the moment the jamming co-
ordination phase, which is addressed in Lemma 19).

K.1. Statistics Used to Construct the Reward Functions

We first define some statistics, (θi)i∈I . For phase (0� jam), since Lemma 2 implies
that h

(0�jam)
−i uniquely identifies h

(0�jam)
i , we can equally view (ζn)n∈I as a function of

h
(0�jam)
−i , denoted by ζ(h

(0�jam)
−j ). Let θi(h

(0�jam)
−j ) = R if ζi(h

(0�jam)
−i ) = reg and θi(h

(0�jam)
−j ) = E

if ζi(h
(0�jam)
−i ) = jam. By Lemma 14, player i’s reward function can be conditioned on

ζ(h
(0�jam)
−j ) and θi(h

(0�jam)
−j ).

For non-main phases λ > (0� jam), players follow the verified communication module.
Define θj(h

λ
−j� ζ(h

(0�jam)
−j )) ∈ {E�R} as in Section H.1. Given the history h≤λ at the end of

phase λ, define θj(h
≤λ
−j )=E if there exists a phase λ′ ≤ λ such that θj(h

λ′
−j� ζ(h

(0�jam)
−j ))=E.

(If λ = (0� jam), define θj(h
λ
−j� ζ(h

jam
−j ))= θi(h

(0�jam)
−j ).) Otherwise, define θj(h

≤λ
−j )=R.

For main phase (l�main), let θj(h
≤(l�main)
−j )= θj(h

<(l�main)
−j ). That is, θj remains constant.

We make some immediate observations. For each player i ∈ I, regardless of her strat-
egy, either all her opponents successfully infer the state x, or they all become suspicious,
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954 J. DEB, T. SUGAYA, AND A. WOLITZKY

or θi(h−i)= E. In addition, if some player became suspicious in one sub-block, then either
everyone becomes suspicious or θi(h−i) = E in the next sub-block. Finally, a deviation by
player i from ai(x(i)) in period ti−1(l) is detected for sure.

LEMMA 16: For any i ∈ I, x ∈ {G�B}, σi ∈ Σi, l ∈ {1� � � � �L}, l ≤ λ < l + 1, and
(σi�σ

∗
−i(x−i))-consistent history h<λ at the beginning of phase λ, the following claims hold:

1. Either (i) x(n) = x(i − 1) ∀n ∈ I with xj(n) = xj for each j �= i, (ii) ID−i(h
<λ
−i ) = I \ {i},

or (iii) θi(h
<λ
−i )=E.

2. If ID−i(h
<(l̃�main)
−i ) �= ∅ for some l̃ ≤ l − 1, then either ID−i(h

<λ
−i )= I \ {i} or θi(h

<λ
−i )= E.

3. If ai�ti−1(l) �= ai(x(i)), then either ID−i(h
<(l+1�main)
−i )= I \ {i} or θi(h

<(l+1�main)
−i )=E.

PROOF: Claims 1 and 2: By Claims 1 and 2 of Lemma 11, either (i) x(n)= x̂ ∈ {G�B}N
∀n ∈ I with x̂j = xj for each j �= i, (ii) suspn(h

(0�j)
n ) = 1 for some n �= i and j ∈ I, or

(iii) θi(h
(0�j)
−i � ζ(h

(0�jam)
−i )) = E for some j ∈ I. By the same claim applied to the contagion

phase, if ID−i(h
<(l̃�main)
−i ) �= ∅ for some l̃ ≤ l − 1, then ID−i(h−i) = I \ {i} or θi(h−i) = E at the

end of contagion phase l̃.
Claim 3: Suppose ai�ti−1(l) �= ai(x(i)). By Claim 1, either ai�ti−1(l) �= ai(x(i − 1)),

ID−i(h
<(l�main)
−i ) = I \ {i}, or θi(h

<(l�main)
−i ) = E. If ai�ti−1(l) �= ai(x(i − 1)), then by Claim 1

of Lemma 11, at the beginning of contagion phase l, either (i) devl
i(x(i − 1)�ati−1(l)(i −

1)�ωti−1(l)(i − 1)) = 1, (ii) suspn(h
λ̃
n) = 1 for some n �= i and λ̃ ∈ (l� i) ∪ {(l� n′� i)}n′∈I , or

(iii) θi(h−i) = E. Since the former two conditions imply ID−i(h−i) �= {∅} at the beginning
of contagion phase l, we have ID−i(h

<(l+1�main)
−i ) = I \ {i} or θi(h

<(l+1�main)
−i ) = E as a result of

contagion phase l by Claim 1 of Lemma 11. Q.E.D.

K.2. Construction of the Reward Function

Let uG = min(a�a′)∈A2 u(a�a′) and uB = max(a�a′)∈A2 u(a�a′). By (5), for all i ∈ I, we have

max
{
vi(G)�uB

}− min
{
uG�vi(B)

}≤ 2ū� (55)

Recall that, by Lemma 2, the history (a−i�ω−i) perfectly identifies a. So, we define
πθ=E

i (xi−1� a−i�ω−i)= uxi−1 −ûi(a), π
vi
i (xi−1� a−i�ω−i)= vi(xi−1)−ûi(a), and π

vi
i (xi−1� a−i�

ω−i|αmin)= vi(xi−1)− u(ai�α
min). Given this, for each a ∈ AN , we have

E
[
ûi(a)+πcancel

i (xi−1� a−i�ω−i)|a
]= uxi−1�

E
[
ûi(a)+π

vi
i (xi−1� a−i�ω−i)|a

]= vi(xi−1)�

E
[
ûi(a)+π

vi
i (xi−1� a−i�ω−i|αmin)|ai�α

min
−i

]= vi(xi−1)�

(56)

Moreover, since uxi−1 and vi(xi−1) are feasible payoffs,

sign(xi−1)π
θ=E
i (xi−1� a−i�ω−i)≥ 0�

max
xi−1�a−i�ω−i

max
{∣∣πθ=E

i (xi−1� a−i�ω−i)
∣∣� ∣∣πvi

i (xi−1� a−i�ω−i)
∣∣�∣∣πvi

i (xi−1� a−i�ω−i|αmin)
∣∣}≤ 2ū�

(57)
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FOLK THEOREM IN REPEATED GAMES 955

Moreover, letting ϕA(a−i�ω−i) be the unique action ai ∈ A such that ϕ(a−i�ω−i) =
(ai�ωi) for some ωi ∈ A, we have, by (5),

sign(xi−1)
1
Kv

Kv∑
k=1

π
vi
i

(
ak

−i(x)�ω−i�k

)
≥ 0 if ϕA

(
ak

−i(x)�ω−i�k

)= ak
i (x) ∀k ∈ {1� � � � �Kv}�

2ū≥ π
vi
i

(
xi−1� a−i�ω−i|αmin

)
≥ 0 for all (xi−1� a−i�ω−i)�

(58)

The reward function is the sum of rewards for the main phases, πmain
i , and rewards for

the communication and contagion phases, πnon-main
i . Define

πnon-main
i

(
hT

′
−i

)= 1{ζi(h(0�jam)
−i )=reg}

∑
t∈T′

πi�t

(
hT

′
−i

) ∈ [−∣∣T′∣∣� ∣∣T′∣∣]� (59)

where πi�t(h
T

′
−i) is the reward for the verified communication module in (42). Next, define

πmain
i

(
x−i� h

T
′

−i� h
Li−1
−i

)=
L∑
l=1

πmain
i

(
l� x−i� h

T
′

−i� h
Li−1
−i

)
�

where, for each l, we define

πmain
i

(
l� x−i� h

T
′

−i� h
Li−1
−i

)
=

∑
t∈T(main(l))

1{ti−1(l)=t}(T0)
3
(
1{θi(h<(l�main)

−i )=E}π
θ=E
i (xi−1� a−i�t�ω−i�t)

+ 1{θi(h<(l�main)
−i )=R}1{ID−i(h

<(l�main)
−i ) �=I\{i}}π

vi
i (xi−1� a−i�t�ω−i�t)

+ 1{θi(h<(l�main)
−i )=R}1{ID−i(h

<(l�main)
−i )=I\{i}}π

vi
i

(
xi−1� a−i�t�ω−i�t|αmin

)
− 1{θi(h<(l�main)

−i )=R}1{ID−i(h
<(l�main)
−i ) �=∅}1{xi−1=G}2ū

)
� (60)

In total, the reward function following the jamming coordination phase is defined as

π≥3
i

(
x−i� h

T
′

−i� h
Li−1
−i

)= πmain
i

(
x−i� h

T
′

−i� h
Li−1
−i

)+πnon-main
i

(
hT

′
−i

)
�

Note that we have ∣∣π≥3
i

(
x−i� h

T
′

−i� h
Li−1
−i

)∣∣≤ 4ūL(T0)
3 + ∣∣T′∣∣≤ 4ūT ∗� (61)

APPENDIX L: REDUCTION LEMMA: PHASE (0� jam)

L.1. Jamming Coordination Module

We consider payoffs and rewards for the jamming coordination protocol. For each i ∈ I,
payoff functions take the form

2∑
t=1

π indiff
i�t (h−i)+wi(h)� (62)
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956 J. DEB, T. SUGAYA, AND A. WOLITZKY

Again, as in (30), we ignore player i’s instantaneous payoffs.
We say that the premise for jamming coordination with magnitude K is satisfied if there

exist K ≥ 1 and (vi(Ijam))Ijam⊂I ∈R2N satisfying the following conditions:
1. wi(h)= vi(Ijam) for every history h such that Ijam = {n ∈ I : ζn(hn)= jam}.
2. vi(Ijam)= vi(Ĩjam) for all Ijam and Ĩjam such that i ∈ Ijam ∩ Ĩjam.
3. For Ijam such that i /∈ Ijam, the range of vi(Ijam) is at most K:

max
i∈I�Ijam�Ĩjam:i/∈Ijam�i/∈Ĩjam

∣∣vi(Ijam)− vi(Ĩjam)
∣∣≤ K� (63)

LEMMA 17: Take (wi(h))i∈I and K such that the premise for jamming coordination with
magnitude K is satisfied. There exists a function (π indiff

i�t (h−i))t∈{1�2} such that (i) we have
maxh−i

|∑2
t=1 π

indiff
i�t (h−i)| ≤ 2K and (ii) with payoffs (62), the jamming coordination protocol

is a sequential equilibrium.

L.2. Equilibrium Condition: Final Statement

The main remaining step in the proof is verifying the equilibrium conditions given each
history in the jamming coordination phase. It suffices to establish incentive compatibility
and promise keeping, as self-generation is addressed in the proof of Lemma 19.

LEMMA 18: For all i ∈ I, all x ∈ {G�B}N , and all jamming coordination phase histories
h
(0�jam)
i , we have:
1. [Incentive Compatibility] For each t ≥ 3 and ht−1

i ∈Hi(x−i),

σ∗
i (xi) ∈ argmax

σi∈Σi

E(σi�σ
∗−i(x−i))

[ ∑
t∈⋃L

l=1 T(l�main)

ûi(at)+π≥3
i

(
x−i� h

T
′

−i� h
Li−1
−i

)|h(0�jam)
i � ht−1

i

]
� (64)

2. [Promise Keeping after ζi(h
(0�jam)
−i ) = reg] If ζi(h

(0�jam)
−i )= reg and

vi
(
x−i�Ijam \ {i}) := 1

L(T0)
3E

σ∗(x)
[ ∑
t∈⋃L

l=1 T(l�main)

ûi(at)+π≥3
i

(
x−i� h

T′
−i� h

Li−1
−i

)|Ijam

]
� (65)

then, for all Ijam \ {i}� ˜Ijam \ {i} ⊂ I \ {i}, we have

vi
(
x−i�Ijam \ {i}){≥ vi(xi−1)− ε∗ if xi−1 =G�

≤ vi(xi−1)+ ε∗ if xi−1 = B�
and (66)

∣∣vi(x−i�Ijam \ {i})− vi
(
x−i� ˜Ijam \ {i})∣∣≤N#half exp

(−(T0)
1
2
)
2ūT ∗� (67)

where #half = 2Nb(A4b(2)) + 2Nb(A4b(2)) + L(2Nb(A4b((T0)
3)) + 2N2b(A4b(|A|2)) + 2N2 ×

b(A4b(2))) is the number of half-intervals in sub-blocks from 0 to L.

The theorem now follows easily from Lemmas 15, 17, and 18.

LEMMA 19: Suppose Lemma 18 holds. Then there exists δ̄ < 1 such that v ∈E(δ) for all
δ > δ̄.
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FOLK THEOREM IN REPEATED GAMES 957

PROOF: By definition of σ∗(x) in Section J, (50) holds. Hence, putting together Lem-
mas 6–15, it suffices to construct reward functions π∗

i that, together with σ∗(x), satisfy
equations (49) and (51)–(53). We first construct the reward for the jamming coordina-
tion phase, denoted π indiff

i (x−i� h
(0�jam)
−i ), using Lemma 17. So, we verify the premise for

jamming coordination.
The probability that any jamming player other than i plays JAM during sub-blocks

0� � � � �L is at most N#half exp(−(T0)
1
2 ). (i) The range of π≥3

i is at most 4ūT ∗ (by (61)),
(ii) once a jamming player takes a jamming strategy, the reward is bounded by 2ūT ∗, and
(iii) per-period payoffs are bounded by [−ū� ū]. Hence, we have

max
i∈I�Ijam�Ĩjam:i/∈Ijam�i/∈Ĩjam

∣∣vi(Ijam)− vi(Ĩjam)
∣∣≤ N#half exp

(−(T0)
1
2
)
6ūT ∗�

Hence, by Lemma 17, there exists π indiff
i (x−i� h

(0�jam)
−i ) such that the jamming coordination

protocol is incentive compatible and

max
x−i�h

(0�jam)
−i

∣∣π indiff
i

(
x−i� h

(0�jam)
−i

)∣∣≤ N#half exp
(−(T0)

1
2
)
12ūT ∗� (68)

We now define the total reward function as πi(x−i� h
T

′
−i� h

Li−1
−i ) = π indiff

i (x−i� h
(0�jam)
−i ) +

π≥3
i (x−i� h

T
′

−i� h
Li−1
−i ). It remains to verify (49)–(53).

First, the bound (51) follows from (61) and (68), since (17) implies that #half ≤ (T0)
0�1

and (T0)
0�1 exp(−(T0)

1
2 )12ūT ∗ ≤ ε∗T ∗.

Note that, by the construction of πi�t(h
T

′
−i) in (42), for all x ∈ {G�B}N and hT

′
−i, we have

sign(xi−1)π
non-main
i

(
hT

′
−i

)≥ −∣∣T′∣∣� (69)

To derive a similar equation for πmain
i , if θi(h

<(l�main)
−i ) = E, then (57) implies that

πmain
i is non-positive if xi−1 = G and non-negative if xi−1 = B. If θi(h

<(l�main)
−i ) = R and

ID−i(h
<(l�main)
−i )= I \ {i}, then the same conclusion holds by (58).

We now show that, in all other cases, we have sign(xi−1)π
main
i (l� x−i� h

T′
−i� h

Li−1
−i ) < 0 in

at most (1 + Kv) sub-blocks. To see this, note that if ID−i(h
<(l�main)
−i ) �= ∅, then Lemma 16

implies that, as a result of contagion phase l + 1, either ID−i(h
<(l+1�main)
−i ) = I \ {i} or

θi(h
<(l+1�main)
−i ) = E (regardless of player i’s behavior). If both θi(h

<(l�main)
−i ) = R and

ID−i(h
<(l�main)
−i )= ∅, then Lemma 16 implies that, for each n ∈ I, we have x(n)= x̂ for some

x̂ ∈ {G�B}N with x̂i−1 = xi−1. Hence, by (58), we have sign(xi−1)
1
Kv

∑Kv

k=1 π
vi
i (xi−1� a−i�ti−1(l)�

ω−i�ti−1(l)) ≥ 0 as long as al
i(x(i − 1)) = ϕA(a−i�ti−1(l)�ω−i�ti−1(l)) = ai�ti−1(l). Moreover, if

ai�ti−1(l) �= al
i(x(i − 1)), then Lemma 16 implies that either ID−i(h

<(l+1�main)
−i ) = I \ {i} or

θi(h
<(l+1�main)
−i )=E.

It follows that there exists a subset L ⊂ {1� � � � �L} with |L| ≥ L − (Kv + 1) such that∑
l∈L sign(xi−1)π

main
i (l� x−i� h

T′
−i� h

Li−1
−i ) ≥ 0. Since π

vi
i (·|αmin) and π

vi
i (·) are bounded by

(57), we have

sign(xi−1)π
main
i

(
x−i� h

T′
−i� h

Li−1
−i

)≥ −2ū(1 +Kv)(T0)
3

≥by (6) −ε∗L(T0)
3 ∀x−i� h

T
′

−i� h
Li−1
−i � (70)
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958 J. DEB, T. SUGAYA, AND A. WOLITZKY

Now, by (68), (69), and (70), for all xi−1, hT′
−i, h

Li−1
−i , we have

sign(xi−1)
(
π indiff

i

(
x−i� h

(0�jam)
−i

)+π≥3
i

(
x−i� h

T′
−i� h

Li−1
−i

))
≥ −N#half exp

(−(T0)
1
2
)
12ūT ∗ − ∣∣T′∣∣− ε∗L(T0)

3�

By (17), #half ≤ (T0)
0�1 and N(T0)

0�1 exp(−(T0)
1
2 )12ūT ∗ + |T′| + ε∗L(T0)

3 ≤ 2ε∗T ∗. Com-
bining these inequalities yields (49).

Next, Lemma 18 implies that there is no profitable deviation from σ∗
i (xi) after the

jamming coordination phase. Given this, Lemma 17 implies that there is also no profitable
deviation from σ∗

i (xi) during the jamming coordination phase. Hence, (52) holds.
Finally, since (i) Ijam �= ∅ with probability no more than 1 − (1 − exp(−(T0)

1
3 ))2N ,

(ii) π≥3
i (x−i� h

T
′

−i� h
Li−1
−i ) is bounded by 4ūT ∗, (iii) once a jamming player takes a jam-

ming strategy, the reward is bounded by 2ūT ∗, and (iv)
∑

t∈⋃L
l=1 T(l�main) ûi(at) is bounded

by 2ūL(T0)
3, the total payoff satisfies

Eσ∗(x)
[ ∑
t∈⋃L

l=1 T(l�main)

ûi(at)+πi

(
x−i� h

T
′

−i� h
Li−1
−i

)]− vi(x−i�∅)

≤ (
1 − (

1 − exp
(−(T0)

1
3
))2N)

6ūT ∗�

Since (17) implies (1 − (1 − exp(−(T0)
1
3 ))2N)6ūT ∗ ≤ ε∗L(T0)

3, this inequality together
with (66) implies (53). Q.E.D.

APPENDIX M: PROOF OF LEMMA 18

M.1. Notation

In this section, for any strategy σi and history h, we assume h to be (σi�σ
∗
−i(x−i))-

consistent.
For l ∈ {0� � � � �L} and l ≤ λ < l + 1, let L≤λ := (tn(l̃))n∈I�l̃≤l be the randomizations

that have been realized in phase λ. Similarly, let L<λ := (tn(l̃))n∈I�l̃≤l if l < λ and L<λ :=
(tn(l̃))n∈I�l̃<l if λ = (l�main). For each λ, at the end of phase λ, if player i knew L≤λ and
h≤λ, she could attain a continuation payoff of

wi

(
x−i�L

≤λ�h≤λ
) := max

σi∈Σi

E(σi�σ
∗−i(x−i))

[
L∑

l̃=l+1

∑
t∈T(l̃�main)

ûi(at)+
L∑

l̃=l+1

πmain
i (l̃� x−i� h

T
′

−i� h
Li−1
−i )

+ 1{ζi(h(0�jam)
−i )=reg}

∑
t∈T′:t�λ

πi�t(h
T

′
−i)|L≤λ�h≤λ

]
� (71)

where t � λ means period t follows or is within phase λ. On the other hand, let
vi(x�L

≤λ�h≤λ) denote player i’s continuation payoff from strategy σ∗
i (xi). We will show

that, for any phase λ and history (L≤λ�h≤λ), wi(x−i�L
≤λ�h≤λ)= vi(x�L

≤λ�h≤λ).

M.2. Equilibrium Properties

First, we show that there is no instantaneous deviation gain from σ∗
i (xi):

 14680262, 2020, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
16680 by M

assachusetts Institute of T
echnolo, W

iley O
nline L

ibrary on [04/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FOLK THEOREM IN REPEATED GAMES 959

LEMMA 20: For any i ∈ I, x ∈ {G�B}N , σi ∈ Σi, l ∈ {1� � � � �L}, L<(l�main), and history
h<(l�main) at the beginning of phase (l�main),

max
σi∈Σi

E(σi�σ
∗−i(x−i))

[ ∑
t∈T(l�main)

ûi(at)+πmain
i (l� x−i� h

T′
−i� h

Li−1
−i )

+ 1{ζi(h(0�jam)
−i )=reg}

∑
t∈T′:t in sub-block l

πi�t(h
T′
−i)|L<(l�main)� h<(l�main)

]

= Eσ∗(x)
[ ∑
t∈T(l�main)

ûi(at)+πmain
i

(
l� x−i� h

T
′

−i� h
Li−1
−i

)|L<(l�main)� h<(l�main)

]

=
{
(T0)

3
(
vi(xi−1)− 1{xi−1=G}1{ID−i(h

<(l�main)
−i ) �=∅}2ū

)
if θi

(
h<(l�main)

−i

)=R�

(T0)
3uxi−1 if θi

(
h<(l�main)

−i

)=E�

PROOF: Playing σ∗
i (xi) yields the highest value of πi�t(h

T
′

−i): 0. Hence, we focus on∑
t∈T(l�main) ûi(at) and πmain

i . If θi(h
<(l�main)
−i )=R, then, by (60), the reward function satisfies

πmain
i

(
l� x−i� h

T′
−i� h

Li−1
−i

)
= (T0)

3 ×
{
π

vi
i (xi−1� a−i�t�ω−i�t)− 1{xi−1=G}1{ID−i(h

<(l�main)
−i ) �=∅}2ū if ID−i

(
h<(l�main)

−i

) �= I \ {i}�
π

vi
i

(
xi−1�t� a−i�t �ω−i�t|αmin

)− 1{xi−1=G}2ū if ID−i

(
h<(l�main)

−i

)= I \ {i}�

for t = ti−1(l) (and 0 for other t’s). For each t ∈ T(main(l)) and ai�t , the random variable
ti−1(l) equals t with probability (T0)

−3 (recall that L<(l�main) does not include ti−1(l) and
the condition (50) holds), and players −i play a−i(x(i − 1)) when ID−i(h

<(l�main)
−i ) = ∅ (by

Lemma 16) and play αmin when ID−i(h
<(l�main)
−i ) = I \ {i}. Hence, the per-period expected

payoff is vi(xi−1)− 1{xi−1=G}1{ID−i(h
<(l�main)
−i ) �=∅}2ū, by (56). If instead θi(h

<(l�main)
−i )= E, then the

result follows from (56) and (60). Q.E.D.

Second, for each phase λ, if i ∈ ID(hλ), then ID−i(h
<λ
−i ) �= ∅ or θi(h

<λ
−i ) =E.

LEMMA 21: For any i ∈ I, λ, and history h<λ at the beginning of phase λ, if i ∈ ID(h<λ),
then ID−i(h

<λ
−i ) �= ∅ or θi(h

<λ
−i )= E.

PROOF: By definition, i ∈ ID(h<λ) only if suspi(hi) = 1 or devl
n(x(i)�atn−1(l)(i)�

ωtn−1(l)(i)) = 1 for some n ∈ I as the result of communication phases preceding λ. We
show that both these cases imply ID−i(h

<λ
−i ) �= ∅ or θi(h

<λ
−i ) = E. In each communication

phase, by Claims 1 and 2 of Lemma 11, if suspi(hi) = 1, then θi(h
<λ
−i ) = E for each subse-

quent phase. In addition, we have, either all players infer the same message, suspn(hn)= 1
for some n �= i, or θi(h−i) = E. If devl

n(x(i)�atn−1(l)(i)�ωtn−1(l)(i)) = 1 for some n ∈ I, then
each of these three cases implies either ID−i(h

<λ
−i ) �= ∅ or θi(h

<λ
−i )=E. Q.E.D.

Third, the distribution of θi(h−i) is independent of the history in previous phases, and
θi(h−i)= E is rare.
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960 J. DEB, T. SUGAYA, AND A. WOLITZKY

LEMMA 22: For any i ∈ I, λ, and l ≥ λ, there exists p(Ijam \ {i}�λ�θi(h
≤λ
−i )� l) such that,

for any x ∈ {G�B}N , L≤λ, and history h≤λ at the end of phase λ, we have

Prσ
∗(x)(θi

(
h<(l�main)

−i

)=E|L≤λ�h≤λ
)= pi

(
Ijam \ {i}�λ�θi

(
h≤λ

−i

)
� l
)
�

Moreover, for θi(h
≤λ
−i )= R, we have pi(Ijam \ {i}�λ�θi(h

≤λ
−i )� l)≤ exp(−(T0)

1
3 ).

PROOF: By Claim 5 of Lemma 11, the distribution of θi in each communication
phase is determined by Ijam \ {i}, independent of the message sent. In addition, since
θi(h

≤λ
−i ) = R implies ζi(h

(0�jam)
−i ) = reg, in each communication phase the probability

of θi(h−i� ζi(h
(0�jam)
−i )) = E is at most #half(exp(−(T0)

1
2 ) + exp(−ε̄T0)) (by Claim 4 of

Lemma 11). By (17), this probability is less than exp(−(T0)
1
3 ). Q.E.D.

M.3. Verification of Promise Keeping and Incentive Compatibility

In equilibrium, by Lemma 20, for each λ with l ≤ λ < l + 1, L≤λ, and h≤λ, we have

vi
(
x�L≤λ�h≤λ

)
=

∑
l̃≥l+1

(T0)
3
{
pi

(
Ijam \ {i}�λ�θi

(
h≤λ

−i

)
� l̃
)
uxi−1

+ (
1 −pi

(
Ijam \ {i}�λ�θi

(
h≤λ

−i

)
� l̃
))(

vi(xi−1)− 1{xi−1=G}1{ID−i(h
<(l̃�main)
−i ) �=∅}2ū

)}
� (72)

By Claim 3 of Lemma 11, the event ID−i(h
<λ
−i ) �= ∅ implies θi(h

λ
−i) = E on path. Since

(17) implies #half ≤ (T0)
0�1 and (T0)

0�1 exp(−(T0)
1
3 )3ū ≤ ε∗L(T0)

3, with λ = (0� jam), by
Lemma 22, we have (65)–(67). It remains to verify (64). This involves verifying the
premise for verified communication, which requires a lower bound on the probability
of JAM:

LEMMA 23: For any i ∈ I, x−i ∈ {G�B}N−1, L, σi ∈ Σi, ht
i , and history h3:t from period 3

to t, we have

Pr
(
ζj
(
h
(0�jam)
j

)= jam ∀j �= i|L�h3:t � ht
i

)≥ exp
(−(T0)

1
2
)
� (73)

PROOF: By iterated expectations, it suffices to prove the lemma for t = T ∗. For any
jamming coordination phase history h

(0�jam)
i , let pi(h

(0�jam)
i ) denote the conditional proba-

bility that each player j �= i observes a1 during the jamming coordination phase. By (16),
we have pi(h

(0�jam)
i ) ≥ ε̄exp(−(N − 2)T

1
3 ). It remains to account for updating from h3:t

between periods 3 and T ∗ (recall that the jamming coordination phase ends in period 2).
Suppose player i could perfectly observe whether her opponents play REG or JAM

in every half-interval. (Note that the other information in (L�h3:t) does not update the
probability of ζj(h

(0�jam)
j ).) Then Pr(ζj(h

(0�jam)
j ) = jam ∀j �= i|hT ∗

i ) would be minimized
when REG is always played. As the probability that REG is always played is at least
1 −N#half exp(−T

1
2 ) (conditional on any realization of (ζj(h

(0�jam)
j ))j∈I), we have

Prσ
∗−i(x−i)

(
ζj
(
h
(0�jam)
j

)= jam ∀j �= i|hT ∗
i

)
≥ ε̄exp

(−(N − 2)(T0)
1
3
)(

1 −N#half exp
(
(T0)

− 1
2
))

ε̄exp
(−(N − 2)(T0)

1
3
)(

1 −N#half exp
(
(T0)

− 1
2
))+ 1

≥by (17) exp
(−(T0)

1
2
)
�
Q.E.D.
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It will also be useful to simplify equation (72). By Lemma 22, there exists a payoff
vi(x�Ijam \ {i}�λ�θi(h

≤λ
−i )�D) (where D stands for “Deviation is Detected”) such that, for

each h<λ
−i with ID−i(h

<λ
−i ) �= ∅, we have vi(x�L

≤λ�h≤λ) = vi(x�Ijam \ {i}�λ�θi(h
≤λ
−i )�D); and

for each h<λ
−i with ID−i(h

<λ
−i )= ∅, we have (since vi(G)− 2ū≤ uG and vi(B)≤ uB by (55))

vi
(
x�L≤λ�h≤λ

)≥ vi
(
x�Ijam \ {i}�λ�θi

(
h≤λ

−i

)
�D

)
� (74)

In addition, on the equilibrium path, either ID−i(h
<(l�main)
−i ) = ∅ or θi(h

<(l�main)
−i ) = E.

Hence, for each λ with l ≤ λ < l + 1, L≤λ, and h≤λ, on-path payoffs are given by

vi
(
x�L≤λ�h≤λ

) = vi
(
x�Ijam \ {i}�λ�θi

(
h≤λ

−i

)
�N

)
:=

∑
l̃≥l+1

(T0)
3
{
pi

(
Ijam \ {i}�λ�θi

(
h≤λ

−i

)
� l̃
)
uxi−1

+ (
1 −pi(Ijam \ {i}�λ�θi

(
h≤λ

−i

)
� l̃)

)
vi(xi−1)

}
�

M.3.1. Proof of (64) (Incentive Compatibility)

The proof is by induction. For λ ≥ L, vi(x�L≤λ�h≤λ) = wi(x−i�L
≤λ�h≤λ) = 0, since

there is no main phase following λ and playing σ∗
i (xi) yields πi�t(h

T′
−i) = 0. Given this

observation, it suffices to establish the following claim:
Inductive hypothesis: For each x, λ, L<λ, and h<λ, if the equilibrium continuation pay-

off given (L≤λ�h≤λ) equals vi(x�L
≤λ�h≤λ), then σ∗

i (xi) is sequentially rational given
(x�L<λ�h<λ).

If θi(h
<λ
−i ) = E, then the claim follows from Lemma 20 and the fact that θi(h

<λ
−i ) = E

implies θi(h
<(l�main)
−i )=E for all l ≥ λ. So assume θi(h

<λ
−i )=R.

For communication phase λ, we use vEi , (v
mi
i )mi∈Mi

, and v0
i as in Section H. By

Lemma 23, we have (43). Moreover, in what follows, (17) implies (38) and (44) with
relevant continuation payoffs. Hence, we focus on proving the premise. Note that (74)
implies, for each x, L≤λ, h≤λ, vi(x�L≤λ�h≤λ)≥ v0

i = vi(x�Ijam \ {i}�λ�R�D).
Contagion phase (l� i� con): For the equilibrium message mi (equal to 0 if i /∈ ID(h<λ)

and 1 if i ∈ ID(h<λ)) and the alternative message m̂i ∈ {0�1} \ {mi}, we have
• v

mi
i ≥ v

m̂i
i = v0

i if ID−i(h
<λ
−i )= ∅ and i /∈ ID(h<λ) (by (74)),

• v
mi
i = v

m̂i
i = v0

i if ID−i(h
<λ
−i ) �= ∅ or i ∈ ID(h<λ), and

• K ≤ 2ū (as uxi−1 and vi(xi−1) are feasible payoffs),
since the event {θi(h

<λ
−i ) = R and i ∈ ID(h<λ) } implies ID−i(h

<λ
−i ) �= ∅ by Lemma 21.

Given vEi = uxi−1 , the premise holds. Hence, σ∗
i (xi) is sequentially rational.

Contagion phase (l� j� con) with j �= i: Since v
mj

i ≥ v0
i for all mj ∈Mj by (74), the premise

holds.
Communication phase (l� i� n) with n �= i: In phases (l� n) and (l� j� n) with j < i,

Claim 1 of Lemma 11 implies that either players coordinate on both tn(l − 1) and
(aj�tn(l−1)�ωj�tn(l−1))j , or we have ID−i(h

<λ
−i ) �= ∅ (given θi(h

<λ
−i ) = R). By the inductive hy-

pothesis, players will follow σ∗(x) in later phases, and therefore, by Claim 4 of Lemma 11,
either players coordinate on (aj�tn(l−1)�ωj�tn(l−1))j>i or θi(h

<(l+1�main)
−i ) = E. If θi(h

λ
−i) = E in

some later phase, then player i’s payoff is independent of the message in the current
phase. If θi(h

λ
−i) = R in all later phases, we have θi(h

<(l+1�main)
−i ) = R. Given this event, for

each message m̂i �= (ai�tn(l−1)(i)�ωi�tn(l−1)(i)), coordinating on m̂i induces devn = 1. Hence,
v
mi
i ≥ v

m̂i
i = v0

i . Since vEi = uxi−1 , the premise holds.
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Communication phase (l� j� n) with j �= i: The same as phase (l� j� con).
Communication phase (l� i): If ID−i(h

<λ
−i ) �= ∅, then v

mi
i = v0

i for each mi ∈ Mi, so the
premise holds. So assume ID−i(h

<λ
−i )= ∅.

Suppose first that ai�ti−1(l) = al
i(x(i)). Given ID−i(h

<λ
−i ) = ∅ and θi(h

<λ
−i )= R, by Claim 1 of

Lemma 11, players coordinated on tj(l− 1) with j − 1 < i. Since players will follow σ∗(x)
in later phases, Claim 4 of Lemma 11 implies that either players coordinate on the true
message or θi(h

<(l+1�main)
−i ) = E in later sub-phases. Hence, for any t ∈ T(l�main), as long

as ti(l−1)(n) = t for each n ∈ I, we have ID−i(h
<(l+1�main)
−i )= ∅ or θi(h

<(l+1�main)
−i )= E. There-

fore, for each message mi, the continuation payoff is vmi
i = vi(x�Ijam \ {i}�λ+ 1�R�N) ≥

v0
i = vi(x�Ijam \ {i}�λ+ 1�R�D), so the premise holds.
Suppose instead ai�ti−1(l) �= al

i(x(i)). Then Lemma 16 implies that ID−i(h
<(l+1�main)
−i ) �= ∅

or θi(h
<(l+1�main)
−i ) = E, regardless of player i’s behavior. Hence, for each message mi, the

continuation payoff is vmi
i = v0

i . Again, the premise holds.
Communication phase (l� j) with j �= i: The same as phase (l� j� con).
Main phase: If ID−i(h

<(l�main)
−i ) �= ∅, then the continuation payoff is independent of player

i’s main phase behavior, so Lemma 20 implies the result. If ID−i(h
<λ
−i )= ∅, then Lemma 20

ensures there is no instantaneous deviation gain. It remains to show that the continuation
payoff decreases if player i deviates. Given history profile (L≤λ�h≤λ) at the end of main
phase l, by Lemma 16, the probability that ID−i(h

<(l+1�main)
−i ) �= ∅ is determined by and in-

creasing in |{t∈T(main(l)):ai�t �=ali(x(i))}|
(T0)

3 . Since the distribution of θi(h
<(l+1�main)
−i ) is independent of

i’s behavior in main phase l by Lemma 22, continuation payoff is maximized by playing
ai�t = al

i(x(i)) for each t.
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