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We study agents who are more likely to remember some experiences
than others but update beliefs as if the experiences they remember are
the only ones that occurred. To understand the long-run effects of selec-
tive memory, we propose selective-memory equilibrium. We show that if
the agent’s behavior converges, their limit strategy is a selective-memory
equilibrium, and we provide a sufficient condition for behavior to con-
verge. We use this equilibrium concept to explore the consequences of
several well-documented biases. We also show that there is a close con-
nection between selective-memory equilibria and the outcomes of mis-
specified learning.
I. Introduction
We provide a new conceptual framework for the study of agents who have
selective memory in that they are more likely to recall some events than
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others. We assume that selective memory is stochastic and exogenous and
allow the agent’s actions to influence what they observe.1 In most of the
paper, we also assume that agents are unaware of their selective memory,
so they update their beliefs as if the experiences they remember are the
only ones that occurred.2 These assumptions fit evidence from both ex-
perimental and real-world settings. Although our work is inspired by
the neuroscience and psychology literature on memory, we do not try to
develop a model that fully matches the memory formation and retrieval
process. Instead, we develop and motivate a solution concept that makes
it easy to obtain predictions about long-run actions and beliefs for any
given memory distortion.
Our focus is on selectivememory’s long-run implications.We show that

if an agent’s behavior converges, their beliefs concentrate on the memory-
weighted likelihood maximizers, that is, distributions that maximize the likeli-
hood of a distorted version of the true outcome distribution that gives
more weight to realizations that are more likely to be remembered. We
also provide conditions on the agent’s payoff function and the support
of their prior that imply that their behavior does converge. Whether or
not these conditions are satisfied, when behavior converges, it converges
to a selective-memory equilibrium, which is a strategy that myopically maximizes
their expected payoff against a probability distribution over these maximiz-
ers. If all experiences are recalled with the same probability, then memory
limitations have no long-run effect. However, if memory is selective and
agents aremore likely to remember some experiences than others, selective
memory can have a persistent effect. For example, an agent who is more
likely to recall when theyperformedwell in a task thanwhen theyperformed
poorly will underestimate the task’s difficulty and do it too often.
Our framework lets us analyze the long-run consequences of important

andwidely documented formsof selectivememory such aspleasant-memory
bias (Mischel, Ebbesen, and Zeiss 1976; Adler and Pansky 2020; Chew,
Huang, and Zhao 2020) and the related ego-boosting bias (Zimmermann
1 Memory has been informally described as stochastic since the early stages of the psy-
chology literature, as in James (1890), and recent evidence in neuroscience (e.g., Shadlen
and Shohamy 2016) and economics (e.g., Sial, Sydnor, and Taubinsky 2023) supports this
interpretation. Schacter (2008) and Kahana (2012) discuss evidence that some experi-
ences are recalled more often than others.

2 Reder (2014), Zimmermann (2020), and Gödker, Jiao, and Smeets (forthcoming) pro-
vide evidence of partial or complete unawareness ofmemory biases. Themain results extend
as stated to the case of an agent who is aware that they sometimes forget but is not aware that
their memory is selective, and who does not draw inference from their past actions.
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2020), cognitive dissonance (Elkin and Leippe 1986; Chammat et al. 2017;
Gödker, Jiao, and Smeets, forthcoming), associativeness (Thomson andTul-
ving 1970; Tulving and Schacter 1990; Enke, Schwerter, and Zimmermann
2022;Goetzmann,Watanabe, andWatanabe 2022), confirmatory bias (Has-
tie and Park 1986), and the relative memorability of extreme outcomes
(Cruciani et al. 2011). In contrast, earlier papers on selective memory each
studied a specific form of memory bias, and most considered only short-
run effects.
Under positive-memory bias, the agent is more likely to recall experi-

ences that induce a larger utility. For example, Zimmermann (2020) finds
that subjects who receivedpoor scores on an IQ test aremore likely to state
that they “cannot recall” their test results, even though that answer is pay-
off dominated in the experiment, and there were only three things for
subjects to recall. Gödker, Jiao, and Smeets (forthcoming) finds that inves-
tors aremore likely to remember positive returns of stocks they invested in
and that their selectivememory distorts both their beliefs and their future
investment decisions in the direction our model predicts.
We show that positive-memory bias can endogenously generate the

same long-run behavior as dogmatic overconfidence in a fixed learning
environment. However, we argue that the overconfidence that arises from
selective memory is more susceptible to external manipulation through
changes in the feedback provided to the agent. For example, coupling
negative feedback on one dimension with positive feedback on another
willmake thenegative feedbackbe recalledmore often, which leads to less
bias in long-run beliefs.3

Agents with associative memory are more likely to recall situations similar
to the current decision problem, for example, when they had a similar
mood. In general, this can lead the agent to underweight data relative to
its true informativeness. However, the simplest version of associativeness,
similarity weighting (Kahana 2012), does not alter the possible long-run
outcomes for a correctly specified agent because they learn the true conse-
quences of their on-path action.4

We also study extreme-experience bias, whichmakes experiences withmore
extreme payoffs more memorable. We show that moderate risk aversion
paired with this bias may explain the extreme risk aversion revealed by
the prices of safe and risky assets in financial markets. Moreover, if rarer
experiences are more easily recalled, the agent overweights small proba-
bilities as assumed in prospect theory.
3 This is suggested in the management literature by, e.g., Procházka, Ovcari, and Durinik
(2020).

4 Thus with similarity weighting, all selective-memory equilibria are unitary self-confirming
equilibria (Battigalli 1987; Fudenberg and Levine 1993a).
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Selective-memory equilibrium resembles Berk-Nash equilibrium (Es-
ponda and Pouzo 2016), which applies to agents with perfect memory
but a misspecified prior, as both require that the agent’s action is a best
reply to a distorted version of the true outcome distributions. Indeed,
we show that every uniformly strict Berk-Nash equilibrium (Fudenberg,
Lanzani, and Strack 2021) that is not supported by beliefs that assign
strictly positive probability to an impossible outcome is equivalent to a uni-
formly strict selective-memory equilibrium for some memory function
and a full-support prior. Moreover, every uniformly strict selective-memory
equilibrium is equivalent to a uniformly strict Berk-Nash equilibrium
with the appropriate prior support. However, this equivalence fails for
equilibria that are not uniformly strict.5 In addition, unlike Berk-Nash
equilibria, selective-memory equilibria generally do not reduce to self-
confirming equilibria when the agent is correctly specified because the
agent need not learn the consequence of the equilibrium action. Impor-
tantly, the form of misspecification that would lead to the same behavior
as a given form of selective memory depends on the environment. That is,
particular forms of misspecification and selective memory that coincide
under one information structure could lead to very different comparative
statics with respect to changes inwhat the agent observes. To illustrate this,
we show that combining positive and negative feedback has qualitatively
different effects on agents with ego-boosting memory than on dogmati-
cally overconfident agents.
Related theoretical work.—Mullainathan (2002) studies selective memory

where the probability of recalling an observation is the sum of a base rate,
an “associativeness” term that measures the experience’s similarity to the
current observation, and a “rehearsal” term that indicates whether the ex-
perience was recalled in the previous period. As we do, the paper assumes
that agents are naïve about their selectivememory. It also assumes that sig-
nals are Gaussian and are not influenced by the agent’s actions. Afrouzi
et al. (2020) also studies an agent forecasting the next realization of a first-
degree autoregressive (AR[1]) process. It assumes that the agent knows
the data-generating process and chooses which experiences to recall at
a cost. Bordalo et al. (2021) shows how memory depends on the relative
frequency of various characteristics and can be manipulated by making
some observations stand out more. None of these papers addresses our
question of determining the agent’s long-run beliefs and actions.
There is also a set of papers that study long-run behavior with selective

attention or recording, where whether an experience is recorded deter-
mines whether it will be recalled in every future period, as in the model
in appendix B.4 (app. B is available online). Compte and Postlewaite
5 A selective-memory equilibrium is uniformly strict if it is the unique best reply to all the
beliefs supported on the memory-weighted likelihood maximizers.
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(2004) considers a myopic agent with the choice between a safe action
with a known payoff and a risky action whose outcome distribution is un-
known. It assumes that taking the risky action is sometimes a dominant
strategy so that the agent will eventually take it infinitely often and that pe-
riods with good performance aremore likely to be recorded. This leads to
overconfidence, as in our section IV.A example. Schwartzstein (2014) stud-
ies the long-run beliefs of an agent whose attention is based on perceived
informational value. The agent recalls all of their observations but naively
does not realize that they did not pay attention to some relevant aspects of
what they observed. As with selectivememory andmisspecified beliefs, this
can lead the agent to make systematically biased forecasts. Relatedly,
Schweizer and de Vries (2022) assumes that for exogenous reasons, the
agent weights outcomes differently depending on how extreme they were
(compared to other outcomes) at the time they realized. This can lead to
probability distortions analogous to those of cumulative prospect theory or
selective memory with rare-experience bias (see sec. IV.C).
Wilson (2014) and Jehiel and Steiner (2020) study the optimal use of a

finite memory by an agent who receives a stream of exogenous signals un-
til they stop and take a single action. Battigalli and Generoso (2021) pro-
poses a formalism to separate assumptions on the players’ objective infor-
mation and memory in games. Bénabou and Tirole (2002) considers a
2-periodmodel where a time-inconsistent agent receives either a null signal
or a bad signal in the first period, and at a cost can change the probability
that the second-period self recalls the bad signal. The resulting gameneed
not have a unique equilibrium, but in some cases, it can lead to overcon-
fidence. Jehiel (2021) proposes amultiself-solution concept tomodel “for-
getful liars.” Further afield, Malmendier and Nagel (2016), Malmendier,
Pouzo, and Vanasco (2020), and Malmendier and Shen (2023) consider
models where agents weight events based on their age when the events
happened, and Nagel and Xu (2022) analyzes an asset-pricing model
where the representative agent has fading memory.
II. Setup
We study a sequence of choices made by a single agent. In every pe-
riod t ∈ N, the agent observes a signal s from the finite set S and then
chooses an action a from the finite set A. The realized signal s and the
chosen action a induce an objective probability distribution ps,a* ∈ Δ(Y )
over the finite set of possible outcomes Y.6 A pure strategy is a map j :
S → A, and the agent’s flow payoff is given by the utility function u :
S � A � Y →R.
6 We denote objective distributions with a superscript asterisk.
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We assume that the agent knows the fixed and i.i.d. (independent and
identically distributed) full-support distribution z ∈ Δ(S) over signals.7

They also know that themap from actions and signals to probability distri-
butions over outcomes is fixed and depends only on their current action
and the realized signal. However, they are uncertain about the outcome
distributions each signal-action pair induces. To model this uncertainty,
we suppose that the agent has a prior m over data-generating processes
p ∈ Δ(Y )S�A, where ps,a(y) denotes the probability of outcome y ∈ Y when
signal s is observed and action a is played. The support of m is Θ; its ele-
ments are the p’s the agent initially thinks are possible. Theprior is correctly
specified if its support contains the true data-generating process p* ∈ Θ; if
not, the prior is misspecified.
To simplify the exposition, we will assume throughout the paper that

selective-memory agents are correctly specified, but this is not essential; all
results except for proposition 1 are true as stated under the weaker as-
sumption that Bayesian updating is well-defined at every history that is
reachable with positive probability. We sometimes consider a prior with
full support, by which we mean that every possible data-generating process
is in the support of the agent’s prior, that is, Θ 5 Δ(Y )S�A.
Assumption 1 (Maintained assumption). The agent is correctly

specified.
Objective histories and recalled histories.—We assume that the agent always

recalls the signal they just observed. The agent’s memory of the outcomes
corresponding to past signal-action pairs is distorted by a collection of
signal-dependent memory functions ms0 : S � A � Y → ½0, 1�, where ms0(s,
a, y) specifies the probability with which the agent remembers a past real-
ization of the signal-action-outcome triplet (s, a, y) when they observe sig-
nal s0. We call these triplets experiences.
Let Ht 5 (S � A � Y )t denote the set of all histories of length t,

and H 5 [tHt the set of all histories. After objective history ht 5
(st, at, yt)

t
t51 and signal st11, the recalled periods Rt are a random subset

of f1, ::: , tg. Period t is remembered with probability mst11
(st, at, yt), inde-

pendently of which other periods are remembered, so the probability
that Rt ⊆f1, ::: , tg is remembered, given ht 5 (st, at, yt)

t
t51 and st11, is

P Rt j st, at, ytð Þtt51, st11½ � 5
Y
t∈Rt

mst11
st, at, ytð Þ

Y
t∈ 1,:::,tf g ∖ Rt

1 2 mst11
st, at, ytð Þð Þ :

For every objective history ht and set of recalled periods Rt, the recalled
history ht(Rt) ∈ HjRt j is the subsequence of recalled experiences listed in
the order they realized.8
7 This assumption lets us focus on our key points and can be substantially relaxed.
8 Appendix A1 gives a formal definition of recalled histories.
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Beliefs.—We assume that the agent recomputes their beliefs each pe-
riod based on all of their recollections, as opposed to simply updating
their period-t beliefs on the basis of their period-t observation, and that
the agent is unaware of their selective memory and naïvely updates their
beliefs as if the experiences they remember are the only ones that oc-
curred,9 so that the posterior probability of every (measurable) C ⊆Θ af-
ter recalled history ht 5 (st, at, yt)

t
t51 is

m C jhtð Þ 5

ð
C

Qt
t51pst ,at

ytð Þdm pð Þð
Θ

Qt
t51pst ,at

ytð Þdm pð Þ
: (1)

In appendix A3, we show that if agents recognize that their memory is
faulty but believe that it is not selective and do not make inferences
about unrecalled observations from their recalled past actions, the main
results extend as stated.10

Best responses and optimal policies.—Denote by BR(s,n) the actions that
maximize expected utility when signal s is observed and the agent’s be-
lief is n ∈ Δ(Θ):11

BR s, nð Þ 5 argmax
a∈A

ð
Θ
o
y∈Y
u s, a, yð Þps,a yð Þdn pð Þ:

A policy p :H → AS specifies a pure strategy for every recalled history.
We assume that the agent is myopic and uses an optimal policy, that is, a
map p :H → AS such that for every s ∈ S and recalled history ht ∈ H ,
p(ht)(s) ∈ BR(s, m( � jht)).12

Examples.—We illustrate our model with five commonly studied exam-
ples of memory bias. In this subsection, assumptions about the memory
function m hold for all s, s0 ∈ S , y,  y0 ∈ Y , and a ∈ A.
9 See, e.g., d’Acremont, Schultz, and Bossaerts (2013) for fMRI (functional magnetic
resonance imaging) evidence that agents access their accumulated evidence each period
when updating beliefs, and Reder (2014) for evidence that agents are often näive about
their selective memory and do not make inferences about their forgotten observations
from the actions they remember taking.

10 Appendix A3 maintains our assumption that the agent remembers an experience ei-
ther perfectly or not at all. We relax this in app. B.3, where the agent may remember some
but not all aspects of a past experience, such as one or two components of a multidimen-
sional outcome. That model assumes that the agent is not fully naïve, because remember-
ing that some experience occurred but not all of its details might lead the agent to ques-
tion their ability to perfectly recollect the past.

11 For every X ⊆Rk , Δ(X) denotes the set of Borel probability distributions on X en-
dowed with the topology of weak convergence.

12 Note that we restrict attention to deterministic optimal policies and do not allow the
agent to randomize over pure strategies.
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Example 1 (Utility-dependent memory). In some cases, the proba-
bility of remembering an experience depends on its associated utility, so
that ms0(s, a, y) 5 Φ(u(s, a, y)) for some Φ :R→½0, 1�. Agents who are
more likely to remember pleasant experiences correspond to monotone
increasing Φ; agents who are more likely to remember extremely high-
or low-utility realizations have Φ that is single dipped.13

Example 2 (Positive-memory bias). Positive-memory bias is the ten-
dency to overremember experiences that reflect positively on oneself,
such as a high test score (see Mischel, Ebbesen, and Zeiss 1976 for early
experimental evidence of positive-memory bias and Adler and Pansky
2020 for a survey). Tomodel this, we let one dimension y1 ∈ R of the out-
come y reflect the self-image consequences of the experience, and spec-
ify that ms0(s, a, y) 5 Φ(y1) for some increasing Φ :R→½0, 1�.
Example 3 (Cognitive dissonance and ex post regret). Cognitive dis-

sonance is a memory bias where the probability of recalling an experience
depends on how well the chosen alternative performed compared to the
counterfactual payoff the agent would have received under the ex post op-
timal choice (Elkin and Leippe 1986). This corresponds to ms0(s, a, y) 5
Φ(maxa 0∈Au(s, a 0, y) 2 u(s, a, y)) where Φ :R1 → ½0, 1� is decreasing. If
the outcome includes the payoff that would have been obtained with each
action, the probability of remembering an outcome is decreasing in what
Loomes and Sugden (1982) called “regret” (see Lanzani 2022 for the ver-
sionwithout a state space that formally corresponds to the casewehave here).
Example 4 (Associative memory and similarity weighting). To model

associative memory (Thomson and Tulving 1970), assume that

ms s, a, yð Þ > 0 and 
ms s, a, yð Þ
ms s

0, a, yð Þ >
ms0 s, a, yð Þ
ms0 s

0, a, yð Þ ,

so that a signal ismore likely to triggermemories of experiences where the
signal was the same. In general, signals represent the conditions under
which the choice ismade. For example, when in a particularmood, agents
tend to recall situations when they were in that mood before (Matt, Váz-
quez, and Campbell 1992;Mayer, McCormick, and Strong 1995), and pro-
fessional economic forecasters overweight periods with amacroeconomic
context similar to the current one, but only if they lived through them
(Goetzmann, Watanabe, and Watanabe 2022).14
13 Because agents never make choices before the signal realizations, there is no way to
pin down the relationship between the utilities of two experiences that differ in their signal
component. Therefore, both here and in example 3, the definitions of the biases should be
interpreted as saying that there are a u and a Φ such that the conditions are satisfied.

14 Jehiel (2018) studies investors who base their decisions only on the outcomes of proj-
ects that were implemented after the same signal and ignore periods when the signal was
different, and Bordalo, Gennaioli, and Shleifer (2020) shows how similarity weighting can
lead to the attribution and projection biases.
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A leading special case is similarity-weighted memory, where the probability
of recalling a past experience depends only on the context in which the
choice is taken: Here there is a metric d : S2 →R1, and ms0(s, a, y) 5
Φ(d(s, s0)) for some strictly decreasing function Φ :R1 →½0, 1�.
Example 5 (Confirmatory-memory bias). The agent has confirmatory-

memory bias (see Hastie and Park 1986 and Esponda, Vespa, and Yuksel
2023 for evidence of the relevance of memory for confirmation bias) if
they are more likely to remember experiences that the prior deems more
likely. Suppose that the agent has only two hypotheses, as in Lord, Ross,
and Lepper (1979) and Rabin and Schrag (1999), so that Θ 5 fp0, p1g,
with m(p0) > m(p1). Then, confirmatory-memory bias corresponds to

p0
s,a yð Þ
p1
s,a yð Þ ≥ >ð Þ p

0
s,a y0ð Þ
p1
s,a y0ð Þ ⇒ ms0 s, a, yð Þ ≥ >ð Þms0 s, a, y

0ð Þ:
III. Long-Run Outcomes
Let Pp denote the probability measure on the set (S � A � Y )N of se-
quences of experiences induced by the objective signal and outcome dis-
tributions z and p*, the agent’s memory m, and policy p.15

Definition 1. A strategy j is

(i) a limit strategy if there is an optimal policy p such that

Pp sup t : at ≠ j stð Þf g < ∞½ � > 0 or

(ii) a global attractor if for every optimal policy p

Pp sup t : at ≠ j stð Þf g < ∞½ � 5 1:
In words, strategy j is a limit strategy if there is positive probability that
it will be played in every period after some random but finite time, and it
is a global attractor if it is a limit with probability 1. This section gives
some general results about limit strategies.16 Section IV then discusses
the consequences of some specific memory biases.
A. Selective-Memory Equilibrium
To characterize the strategies that can arise as limit behavior, we define
for each strategy j and signal s0 the set of memory-weighted likelihood maxi-
mizers after s0:
15 This is the unique extension from the probabilities of the finite histories (S � A�
Y )t , t ∈ N.

16 Example 11 shows that limit strategies may not exist without further assumptions.
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Θm
s0 jð Þ ≔ argmax

p∈Θ
o
s∈S
z sð Þo

y∈Y
ms0 s, j sð Þ, yð Þps,j sð Þ* yð Þ log ps,j sð Þ yð Þ

 !
: (2)

These are the elements ofΘ thatmaximize the likelihood of thememory-
weighted outcome distribution induced by j. Note that only the relative
sizes of the weights m matter for determining Θm

s0 (j): if m̂(�) 5 lm(�) for
some l > 0, then m̂ and m have the same memory-weighted maximizers.
Assumption 2 (Maintained assumption). For every s0, s ∈ S , a ∈ A,

j ∈ AS , y ∈ Y , and p ∈ Θm
s0 (j), ps,a* (y) > 0 implies that ps,a(y) > 0.

This assumption requires that no data-generating process that is a best
memory-weighted fit to some strategy can be ruled out in finite time.17

Definition 2. A strategy j is

(i) a selective-memory equilibrium if for all s ∈ S there is ns ∈ Δ(Θm
s (j))

such that j(s) ∈ BR(s, ns), or
(ii) a uniformly strict selective-memory equilibrium if for all s ∈ S and all

n ∈ Δ(Θm
s (j)), fj(s)g 5 BR(s, n).
In a selective-memory equilibrium j, the action played after each sig-
nal s is a best reply to some belief over memory-weighted likelihood max-
imizers given j. The uniformly strict version adds the restriction that there
is the same unique best reply for each of thesemaximizers. Both concepts
allow the actions played in response to different signals to be justified by
different beliefs because which memories are triggered depends on the
current realization of the signal.
Theorem 1. Every limit strategy is a selective-memory equilibrium.
To prove the theorem, we fix a limit strategy j and suppose by contra-

diction that is not a selective-memory equilibrium. This means that j(s0)
is not a best reply to any belief inΘm

s0 (j) for some s0 ∈ S . If j(s0) is not a best
reply to any belief inΘ, it is never played in response to s0, so it cannot be a
limit strategy. If it is a best reply to some belief in Θ but not in Θm

s0 (j),
lemma A3 implies that there exists an experience with objective positive
probability under j that is recalled with positive probability. Lemma A4
then shows that since j is a limit strategy, for some time t, there is an action
sequence at such that if the agent plays at and then j afterward, there is
positive probability that the induced sequence of beliefs makes j optimal
at all periods t ≥ t 1 1.
Under a policy that converges to j, when there is an experience with

positive probability of being recalled, a variation of the Borel-Cantelli
17 The misspecified-learning literature usually makes the stronger assumption that the
true data-generating process and all the agent’s mental models are mutually absolutely
continuous. We relax this to allow the natural full-support prior on the action-independent
models in our overconfidence application.
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lemma (claim 1) implies that a.s. (almost surely) the recalled history is
long and that the associated empirical frequency after s0 converges to
the distribution given by ps0,j(s0)* . Thus, the strong law of large numbers im-
plies that a large recalled history is representative of the memory-based
outcome distribution. With this, we can extend Berk’s (1966) concentra-
tion result to the beliefs given the recalled experiences to show that distri-
butions that do not maximize the memory-weighted likelihood have van-
ishing posterior probability on a set of representative recalled histories
that has objective probability converging to 1. But then j must be a selective-
memory equilibrium, as otherwise, it could not be a best reply to these
beliefs concentrated on the maximizers.
Theorem 1 provides a learning foundation for some equilibrium con-

cepts that have been used in recent work. For example, Kőszegi, Loe-
wenstein, and Murooka (2021) proposes an equilibrium concept where
the agent is more likely to remember successes than failures if they are
in a goodmood, and the agent’s mood is determined by their self-esteem,
which is a function of the number of past successes they remember. This is
a case of our model where the agent’s mood is an action chosen to match
their perceived probability of succeeding at a task (i.e., their perceived
ability).Our equilibriumconcept then coincides withKőszegi, Loewenstein,
and Murooka’s (2021) “self-esteem personal equilibrium,” and theorem 1
shows that any long-run learning outcome must be such an equilibrium.
We also provide a foundation for Berk-Nash equilibriumbased on selec-

tive memory. For example, section IV.B shows that positive-memory bias
can lead to overconfidence. Overconfidence has been modeled as the re-
sult of exogenous misspecification; the fact that it can be endogenously
derived from a well-documented memory bias provides a microfounda-
tion for Berk-Nash equilibrium in this context. More generally, proposi-
tion 6 shows that anyBerk-Nash equilibriumcanbemicrofounded through
selective memory. Finally, section V.A shows that in our setting, the long-
run action of an agent with underinference (Phillips and Edwards 1966)
must be a selective-memory equilibrium.
B. Global Convergence to Equilibrium
We now give a sufficient condition for the agent’s strategy to globally con-
verge to a uniformly strict selective-memory equilibrium, which a fortiori
implies that such equilibria exist.18

Assumption 3 (Identification).

(i) For all (s, s0, a) ∈ S2 � A, oy∈Y ps,a* (y)ms0(s, a, y) > 0.
18 Fudenberg, Lanzani, and Strack (2024) show that the heterogeneous-belief version of
selective-memory equilibrium does exist.
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(ii) There is a p̂ ∈ Θ such that for every (s, s0, a) ∈ S2 � A,

argmax
p∈Θ

o
y∈Y
ms0 s, a, yð Þps,a* yð Þ log ps,a yð Þ

 !
5 p̂f g:
The substantial assumption here is assumption 3ii, which requires that
the best fit for the remembered distribution is independent of the agent’s
action. This assumption is always satisfied if the agent correctly believes
that their actions have no influence on the distribution of outcomes and
has the same memory function for each action, as in the examples in sec-
tion IV. Note that without an assumption along these lines, the data-
generating process that best explains the agent’s observations given one
action a1 could lead to a belief thatmakes another action a2 optimal, which
then, in turn, could lead to a belief that makes a1 optimal. Clearly, such cy-
cles would preclude global convergence; see example 11. Beyond that, the
assumption requires that for each (s, s0,a), there is an outcome with a pos-
itive probability of being remembered. Our next result considers closed
balls Bε(p̂) around the data-generating process p̂ of assumption 3ii, where
the distance used to define the ε balls is themaximumof the total variation
distance between their signal-action contingent distributions.19

Theorem 2.

(i) Under assumption 3, for every optimal strategy p and every ε > 0,

Pp lim
t →∞

m Bε p̂ð Þjht Rtð Þð Þ 5 1
h i

5 1:

(ii) If in addition BR(s, dp̂) is a singleton for all s, then ĵ is a global
attractor, where

ĵ sð Þ 5 BR s, dp̂
� �

   8 s ∈ S :

It is the unique selective-memory equilibrium, and it is uniformly
strict.
The proof starts by using a “mixingale law of large numbers” (see, e.g.,
Hall andHeyde 2014) to conclude that the outcome frequency converges
to the one predicted by the true data-generating process and the agent’s
actions. We then address the complication posed by the fact that memory
is stochastic, so even when the agent has played many times, their beliefs
can be very different fromone period to the next, unlike in learningmod-
els with perfect memory, preventing the use of classical martingale argu-
ments for beliefs (see, e.g., Battigalli et al. 2019).
19 Formally, Bε(p̂) 5 fq ∈ Δ(Y )A�S : maxs∈S ,a∈A k qs,a 2 p̂s,akTV ≤ εg.



3990 journal of political economy
We first use the Chernoff inequality to provide an upper bound on the
probability that the recalled empirical frequency significantly diverges
from thememory-distorted version of the actual empirical frequency. This
upper bound is then combined with the Borel-Cantelli lemma to show
that for every g ∈(0, 1), there exists a random but a.s. finite time after
which any signal-action pair with frequency at least g does not have a large
deviation from thememory-distorted empirical distributionof its induced
consequences and has recalled frequency bounded away from 0.
Assumption 3 implies that for every signal-action pair, model p̂ is the

unique model that best fits the memory-adjusted theoretical distribution.
Thus, because recalled memories are representative after signal-action
pairs that have positive frequency, and pairs with low frequency have neg-
ligible impact on beliefs, beliefs concentrate on p̂. When there is a unique
best reply to p̂, this implies that the agent’s behavior converges as well.
Remark 1. In our model, the set of recalled histories is not only sto-

chastic but nonmonotonic: the agent might remember a past event one
day and not another, which fits the evidence on memory retrieval (see,
e.g., Kahana 2012). Appendix B.4 analyzes the limit implications of an al-
ternative model where the memory function determines the probability
that an experience is recalled in the period just after it occurs. If it is
recalled, it is never forgotten; if not, it is never remembered. Because ex-
periences recalled at later dates include all those recalled earlier, in this
alternative model, the agent’s past actions do not convey additional in-
formation. As with the model we present here, any limit action must be
a selective-memory equilibrium.
IV. Specific Forms of Selective Memory

A. Similarity-Weighted Memory and Self-
Confirming Equilibrium
Definition 3. Strategy j is a (unitary) self-confirming equilibrium if for
all s ∈ S there is ns ∈ Δ(Θ) such that for all p ∈ suppns, ps,j(s) 5 ps,j(s)* and
j(s) ∈ BR(s, ns).
Unitary self-confirming equilibrium (Battigalli 1987; Fudenberg and

Levine 1993a) requires that the action played is a best response to a be-
lief that is correct on the equilibrium path but possibly incorrect about
off-path actions.20
20 Fudenberg and Kreps (1988) shows how such actions can be the long-run limit of my-
opic learning, and Fudenberg and Kreps (1995) shows that any long-run outcome with
purely myopic players and a single agent in each player role must be a unitary self-confirming
equilibrium. Fudenberg and Levine (1993b) shows that when there are many agents in each
player role, the long-run outcome must be a heterogeneous-beliefs self-confirming equilib-
rium, whether players are myopic or not.
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Proposition 1. For an agent with similarity-weighted memory (ex-
ample 4), a strategy is a selective-memory equilibrium if and only if it
is a self-confirming equilibrium.
More generally, this conclusion holds whenever ms0(s, a, y) does not de-

pend on a or y, as the true distribution is the best fit for every signal, so the
weight assigned to each signal does notmatter. However, similarity weight-
ing can change the set of selective-memory equilibria when the agent is
misspecified.21
B. Ego-Boosting Memory Bias and Overconfidence
It is well established that many people are more likely to recall situations
that reflect positively on themselves.22 This leads to a particular kind of
pleasant-memory bias: they aremore likely to remember experiences that
boost their self-assessment than those that reduce it.
Consider a situation where the agent observes i.i.d. outcomes yt ∈

Y ⊂ R that reveal information about an ego-relevant characteristic such
as IQ.There are no signals,A is endowedwith a linear order, and the agent
(correctly) believes that their action does not affect the realized outcome.
The next proposition shows that a larger bias leads to amore positive limit
belief and higher limit action. This provides a selective-memory founda-
tion for the positive correlation between an agent’s happiness and the in-
accuracy of their beliefs documented in Alloy and Abramson (1979).
Proposition 2. Suppose that m, m0, and p* are constant in a, that

m 0(a, y) 5 f (y)m(a, y) for some increasing function f, that u is super-
modular, and that Θ 5 Δ(Y ). The agent’s long-run belief with memory
m0 concentrates on a distribution of outcomes weakly higher in first-
order stochastic dominance than the distribution under the long-run be-
lief with memory m, and the limit action with memory m0 will be weakly
higher than the limit action with memory m.
Intuitively, because the prior assigns positive probability to all action-

independent outcome distributions, the memory-weighted likelihood
maximizer will be the outcome distribution that exactly matches what
the agent remembers. The agent’s selective memory makes this recalled
history more favorable than the true one, and because the agent’s utility
function is supermodular, their limit action is weakly higher than the ob-
jective optimum.
21 Also, even when there is a unique selective-memory equilibrium, and it is objectively op-
timal, the speed of convergence to the equilibriumcanbe influenced by similarity weighting.
This is similar to what happens with case-based decision theory (Gilboa and Schmeidler
2001) and kernel density estimation, where the optimal bandwidth trades off having enough
observations with relying too much on distant values.

22 See, e.g. Mischel, Ebbesen, and Zeiss (1976), Adler and Pansky (2020), Chew, Huang,
and Zhao (2020), and Zimmermann (2020).
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Example 6. Suppose that each period the agent takes an action
a ∈ f0, 1g, with u(a, y) 5 a(y 2 z), z ∈ (0, 1). Here y is the outcome of
an IQ test, which is either pass, y 5 1, or fail, y 5 0, so a 5 1 is optimal
if and only if the probability of passing the test exceeds z. The agent passes
the test with probability p*. They always recall passed tests, and they recall
failed tests with probability f:

m a, yð Þ 5
1  if  y 5 1,

f  if  y 5 0:

(

In the long run, the agent believes that the probability of passing an IQ
test is

p 5
p*

p*|{z}
Successes

1 1 2 p*ð Þ � f|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Failures

5 p* 1
p* 1 2 p*ð Þ 1 2 fð Þ
f 1 1 2 fð Þp* :

For example, if the true probability p* is .5, and the agent remembers
failing an IQ test with probability .8, in the long run, they believe that
they pass the test with probability 5/9. Consequently, they will behave
like an exogenously misspecified agent who dogmatically believes their
ability to pass is 5/9. Moreover, the difference between p and p* is mono-
tonic in the agent’s selectivity bias f.
This example relates to an experiment by Zimmermann (2020) in

which subjects took an IQ test and received three noisy observations of
how well they performed relative to other subjects. Zimmermann (2020)
finds that all subjects can recall the signals immediately after observing
them, but subjects who receivednegative feedback were less likely to recall
the feedback a month later than subjects who received positive feed-
back: subjects are roughly 20% more likely to state that they “cannot re-
call” the result of the IQ test if the feedbackwas negative, even though that
answer is payoff-dominated in the experiment and there were only three
things for subjects to try to recall.23 Thus, at least in this experiment, selec-
tive memory is a better explanation than selective attention for long-run
overconfidence.
Example 6 and proposition 2 also relate to the literature on overconfi-

dence and financial decision-making. Walters and Fernbach (2021) finds
that investors are 10% less likely to recall an investment that led to a loss
compared to an investment that led to a gain.Moreover, selectivememory
predicts overconfidence, and overconfidence is reduced when investors
23 Zimmermann (2020, 339) finds that “negative feedback is indeed recalled with signif-
icantly lower accuracy, compared to positive feedback.” Here lower accuracy means both
that the agents are more likely to report that they do not recall the experience and that
they misreport the experience.
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rely less on memory. In an incentivized experiment, Gödker, Jiao, and
Smeets (forthcoming) finds that subjects overremember good investment
outcomes andunderremember bad investment outcomes. In linewith the
prediction of proposition 2, this leads subjects to have overly optimistic
beliefs about their investments and reinvest in bad investments more of-
ten. Gervais andOdean (2001) studies a different bias: where traders over-
weight successful trades when learning about their ability, this can lead to
overconfidence in a similar way as selective memory.
Ego-boosting bias and misattribution.—We next show how an agent with

ego-boosting bias can misinterpret data about other aspects of the world.
Example 7. Suppose that, besides taking an IQ test, the agent works

on a project with a coworker. The outcome distributions (p, q) ∈ ½0, 1�2
and outcome (y1, y2) ∈ f0, 1g2 are two-dimensional, where the first com-
ponent denotes whether or not the agent passed an IQ test and the sec-
ond component denotes whether a group project succeeded. The agent
passes the IQ test with probability p*, and the project succeeds with prob-
ability ap*1(1 2 a)q*, where 1 2 a is the share of the work done by the
coworker. The agent always remembers experiences with positive IQ test
results and remembers experiences with negative test results with prob-
ability f ∈(0, 1). Thus, beliefs concentrate on

p 5 p* 1
p* 1 2 p*ð Þ

f= 1 2 fð Þ 1 p*
 and q 5 q*2

a

1 2 a

p* 1 2 p*ð Þ
f= 1 2 fð Þ 1 p*

:

The agent underestimates the coworker’s ability, and the underestima-
tion grows as memory becomes more selective.
To generalize this example, we consider a two-dimensional outcome

space Y 5 Z � Z ⊂ R2, where y1 corresponds to an ego-relevant charac-
teristic and is distributed according to p*. The second component y2
is drawn independently with probability ap*(y2)1(1 2 a)q*(y2) for some
a ∈(0, 1). The agent knows that the outcomes are independently drawn
each period according to these conditions, but does not know p* or
q*, and their prior belief assigns positive probability to each of these
distributions.24

Proposition 3. Ifm is constant in a and y2, increasing in y1, and there
is y ∈ Y with p*(y)m(y) > 0, then the agent’s long-run belief about p con-
centrates on a distribution p̂ that is weakly higher in first-order stochastic
dominance than p*, and the agent’s long-run belief about q concentrates
on a distribution that is weakly lower than q*.
“Perhaps the most robust finding in the psychology of judgment is

that people are overconfident” (DeBondt and Thaler 1995, 389). The
proposition provides an explanation for two commonly found forms of
24 Formally, Θ 5 fr ∈ Δ(Z � Z) : r(y1, y2) 5 p(y1)½ap(y2)1(1 2 a)q(y2)� for some p,  q ∈
Δ(Z)g.
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overconfidence: (i) overestimation of one’s own absolute level of perfor-
mance and (ii) overestimation of one’s performance relative to others
(see, e.g., Svenson 1981; Merkle andWeber 2011). For example, Gilovich
(2008) finds that 94% of college professors thought they were better than
their average colleague.25

Reinforcement through actions.—Actions can play an important role in
amplifying the misconceptions caused by selective memory. For example,
suppose that in example 7, the agent starts out with an unbiased belief
about their coworker’s ability and each period t chooses the fraction
1 2 at of work to delegate to them. Because here the memory-weighted
likelihood maximizers do depend on the agent’s action, theorem 2 does
not apply, but as in Heidhues, Kőszegi, and Strack’s (2018) analysis of ex-
ogenously overconfident agents, there is a global attractor: As the agent
overremembers their own successes, they become overconfident about
their own ability, and to explain the disappointingly low frequency of suc-
cesses in the group project, they became overly pessimistic about their co-
worker’s. The agent thus delegates less work to their coworker, whose abil-
ity then has a smaller effect on output. To explain the disappointingly low
output, the agent becomes even more pessimistic about the coworker’s
ability, leading to even less delegation in the unique limit strategy.
Changes to the informational environment.—More generally, section V.B

shows that the long-run belief induced by selective-memory equilibria
can be replicatedby exogenousmisspecification in any fixed environment,
and vice versa.However, selectivememory and exogenousmisspecification
can lead to very different predictions about the effect of changes in infor-
mation. Suppose, for example, that negative feedback is delivered along
with positive feedback about an unrelated trait of the agent. Combining
positive andnegative information in this waymakes a “feedback sandwich,”
which themanagement andpsychology literatures suggest strengthens the
effect of feedback.26 If the positive feedback makes the experiences with
failed IQ tests less unpleasant, an agent with positive-memory bias would
be more likely to remember them, so their long-run belief would move
closer to their actual ability, and they would be less biased about their co-
worker’s ability. In contrast, with exogenousmisspecification, positive feed-
back about an unrelated state would not affect the agent’s beliefs about
their own or their coworker’s ability.
25 Benoit and Dubra (2011) shows how this “I’m-better-than-average effect” can be
explained within a purely Bayesian framework; Benoit, Dubra, and Moore (2015) pro-
vides more direct evidence for relative overconfidence that rules out the purely ratio-
nal explanation.

26 Procházka, Ovcari, and Durinik (2020) describes an experiment where bundling neg-
ative feedback with positive feedback about an unrelated domain helps agents perform
better.
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C. Extreme-Experience Bias and Risk Attitudes
This section shows that for choices over lotteries, selective memory can
generate the same behavior as distorted risk attitudes. We again simplify
by supposing that there are no signals, and let the outcome y ∈ R be the
amount of money received by the agent, with u(s, a, y) 5 v(y) for some
increasing and concave v.
Extreme-experience bias.—Suppose that the agent chooses between a safe

action a 5 0 that induces outcome y0 and a risky lottery a 5 1 with ex-
pected value �y. We say that the agent has an extreme-experience bias if the
probability of remembering an experience m is an increasing function
of the distance of the outcome y from its expected value and does not de-
pend on s or a:

m s, a, yð Þ 5 h y 2 �yj jð Þ (3)

for some increasing h :R1 →½0, 1� . Our next result shows that the risky lot-
tery is a selective-memory equilibrium with extreme-experience bias only
if it is a selective-memory equilibrium with perfect memory. Moreover, ex-
ample 10 in appendix B shows that extreme-experience bias can shift the
long-run outcome from the lottery to the safe action. To state a result that
holds for all concave utility functions, we assume that the true distribution
of outcomes is symmetric.27

Proposition 4. Suppose that the distribution p1* is symmetric and
that the agent thinks all outcomedistributions arepossible under the risky
action.28 If choosing the lottery is not a self-confirming equilibrium, it is
not a selective-memory equilibrium with extreme-experience bias.
Because the agent overremembers extreme experiences, the environ-

ment seems riskier than it truly is, so in the long run, they do not take
the risky action if it would not be optimal for an agent without extreme-
experience bias. By making the tail realizations relatively more memora-
ble, extreme-experience bias makes a risk-averse agent act as if they were
evenmore risk averse. Thismay help explain why the risk aversion needed
to match the real-world investment choices is unrealistically high: the
agents can be attracted by safe alternatives because they are moderately
risk averse, and their memory exaggerates the riskiness of the uncertain
alternatives. For example, a single day when the stock market crashed
might be more easily remembered than many days of average returns,
leading to a biased perception of its riskiness. Indeed, the plausibility of
this channel is supported by several studies that show that higher working
27 Extreme-experience bias can have the opposite effect of encouraging risk-taking be-
havior when the true distribution is very asymmetric with a very low probability of a large
payoff.

28 That is, p1*(�y 1 c) 5 p1*(�y 2 c) for all c ∈ R, and Θ 5 fp ∈ Δ(Y )A : p0(y0) 5 1g.
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memory is associated, either directly or through a proxy measure of cog-
nitive ability, with lower risk aversion at both the intra- and interpersonal
levels (see, e.g., Cokely and Kelley 2009; Boyle et al. 2012; Benjamin,
Brown, and Shapiro 2013).
Rare-experience bias.—Similarly, some forms of selective memory are

equivalent to preferences that arise from distorting outcome probabili-
ties. Suppose that the agent is more likely to remember experiences that
happenmore rarely, that is, there is a decreasing function h :½0, 1�→ ½0, 1�
such that m(s, a, y) 5 h(p1*(y)). In this case, in the long run the agent be-
lieves that the outcome distribution for the risky action is

h p1* yð Þð Þ
oz∈Y h p1* zð Þð Þ :

They will thus act as if they distort probabilities, as in prospect theory
(Kahneman and Tversky 1979).29
V. Alternative Models
This section compares our selective memory model with underinference
and misspecification, which are two other ways to model similar effects.
A. Underinference
The phenomenon of underinference (Phillips and Edwards 1966) is dis-
tinct from selective memory but has similar long-run implications, as we
establish in proposition 5. Here agents remember (or are presented with)
a record of past observations, so memory is not an issue, and the agent’s
beliefs are a deterministic function of the sequence of observations. How-
ever, they underweight a given observation (s, a, y) when applying Bayes’s
rule. In particular, they use the deterministic updating rule

mU C j si, ai, yið Þti51ð Þ 5

ð
C

Qt
i51 psi ,ai

yið Þð Þm si ,ai ,yið Þdm pð Þð
Θ

Qt
i51 p 0

si ,ai
yið Þð Þm si ,ai ,yið Þdm p 0ð Þ

, (4)

for every measurable C ⊆Θ, where m(s, a, y) ∈ ½0, 1� is the underinfer-
ence distortion applied to experience (s, a, y).
29 We view this specification, where m depends on the theoretical frequency p*, as a con-
venient modeling shortcut for long-run outcome when instead m depends on the empiri-
cal outcome frequency.
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As with selective memory, this memory distortion leads beliefs to con-
centrate on thememory-weighted likelihoodmaximizers, and as the next
result shows, the underinference distortion maps directly to a selective-
memory function.30

Proposition 5. If j is a limit strategy with underinference distortion
m, it is a selective-memory equilibrium with memory function m.
A leading special case is uniform underinference, wherem(s, a, y) 5 c < 1

and the agent discounts all observations by the same amount. In this case,
propositions 1 and 5 imply that the limit strategy for a correctly specified
agent must be a (unitary) self-confirming equilibrium.31 It seems difficult
to distinguish selectivememory fromunderinference bias using data about
beliefs alone, and none of the data we have found includes information on
which histories the subjects recall (see Benjamin 2019 for a survey).
If signals are absent and actions are real-valued, theway actions respond

to outcomes can be used todistinguishunderinference and selectivemem-
ory. Under overconfidence, the realization of yt is sufficient to predict
whether at11 is more or less than at. Under selectivememory, the set of past
experiences retrieved at time t 1 1 may differ from those at time t, so in
general the previous period’s outcome and action are not sufficient to pre-
dict how actions change. Moreover, the action sequence features a sort of
regression to themean: after a particularly high action, the next action will
likely be lower.
In general, with an exogenous data-generating process, the agent’s be-

liefs will converge to the same limit with selective memory as with under-
inference, so their limit actionwill be the same. If the data-generating pro-
cess is endogenous, random memory realizations can induce switches in
actions, reducing the set of actions that can be long-run limits for a given
memory function. The following example illustrates this possibility.
Example 8. There are no signals, A 5 fa 0, a 00g, Y 5 f0, 1g, u(�, y) 5

y, and the agent knows that the probability of y 5 1 given action a0 is
some c ∈ (0, 1), that is, pa 0(1) 5 pa0*(1) 5 c for all p ∈ Θ. The agent does
not know the probability of outcome 1 under action a00. Their initial be-
lief is that it is larger than that of action a0, so BR(m) 5 a 00, although
there is p 0 ∈ Θ with pa 00 0(1) < c. The truth is that 1 > pa 00*(1) > c, so action
a00 is optimal, but if m is constant and strictly positive, both a0 and a00 are
selective-memory equilibria. In the underinference model, a0 is a limit
action for any such m, and if at 5 a 0, then at 5 a 0 for all t > t. Instead,
with the selective memory model, a0 is not a limit action because if a00

is played only a finite number of times, there is a positive probability
30 We identify the underinference distortion with the vector of memory functions that
do not depend on the current signal.

31 Frick, Iijima, and Ishii (2021) shows that uniform underinference leads to the same
speed of belief convergence as correct updating in a setting with a fixedoutcomedistribution.
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of forgetting all such experiences and only using the prior to choose the
action, which favors action a00.
More generally, selective memory does not generate as much long-run

inefficiency as underinference: Whenever the agent believes that the con-
sequences of different actions are independent, if the expected utility of a
selective-memory equilibrium a under the memory-weighted likelihood
maximizer is lower than the ex ante value of an alternative b, then a is
not a limit strategy.
B. Selective Memory and Misspecification
We now relate the long-run implications of selective memory to those of
misspecification in the sense of the statistics literature, where the truemodel
is not in the support Θ of the agent’s prior, and the agent remembers all
past observations. The case studied in the misspecification literature has
perfect memory, so there m 5 1 and Θs0

1(j) does not depend on s0, so
we simply write Θ1(j).
Definition 4. A strategy j is

(i) a Berk-Nash equilibrium if there exists n ∈ Δ(Θ1(j)) such that for
all s ∈ S , j(s) ∈ BR(s, n) or

(ii) a uniformly strict Berk-Nash equilibrium if for all n ∈ Δ(Θ1(j)) and
all s ∈ S , fj(s)g 5 BR(s, n).
Esponda and Pouzo (2016) shows that only Berk-Nash equilibria can be
the long-run outcomes ofmisspecified learning, andFudenberg, Lanzani,
and Strack (2021) shows that in “rich” environments only uniformly strict
Berk-Nash equilibria are stable long-run outcomes.
There is a close relationship between the uniformly strict versions of

Berk-Nash equilibrium and selective-memory equilibrium: For a given
prior support Θ, every uniformly strict Berk-Nash equilibrium is equiva-
lent to a selective-memory equilibrium with full-support prior for some
memory function, and every uniformly strict selective-memory equilib-
rium is equivalent to a Berk-Nash equilibrium for some support.
Definition 5. A Berk-Nash equilibrium j with support Θ and a

selective-memory equilibrium j0 with support ~Θ and memory function
m are belief equivalent if j 5 j0, and for all s ∈ S there exists a belief
n ∈ Δ(Θ1(j) \ ~Θm

s (j)) such that j(s) ∈ BR(s, n).
Two equilibria are belief equivalent if they prescribe the same strate-

gies and if behavior after each signal can be justified by the same belief.
Proposition 6.

(i) Every uniformly strict Berk-Nash equilibrium j where suppqs,a ⊆
suppp*s,a for all q ∈ Θ1(j), s ∈ S , and a ∈ A is belief equivalent to a
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selective-memory equilibrium with full support for some strictly
positive memory function.

(ii) Every uniformly strict selective-memory equilibrium with support
Θ is belief equivalent to a uniformly strict Berk-Nash equilibrium
for some Θ0.
The idea behind the first part of the proposition is that if we start from a
maximizer p with perfect memory but incomplete support, we can choose
a memory function that rescales the probability of each (s, a, y) by some
constant times ps,a(y)=ps,a* (y). This makes the recalled frequency equal
to p, so p is a weighted-memory likelihood maximizer, and j is the best
reply.32 Here, the absolute continuity requirement is needed because
selective memory cannot replicate misspecifications where likelihood-
maximizing models assign positive probability to an event that can never
be realized. To the best of our knowledge, all of the examples of misspeci-
fication studied in the literature satisfy this restriction. The second part of
the proposition is trivial: To construct a uniformly strict Berk-Nash equilib-
rium that leads to the same beliefs and behavior as in the selective-
memory equilibrium, we can endow the agent with a degenerate belief
that equals the belief in the specified selective-memory equilibrium.
Remark 2. As we prove in appendix B.2, the uniform-strictness con-

ditions of proposition 6 are needed:

1. There are Berk-Nash equilibria that are not belief equivalent to
any selective-memory equilibrium with full support and strictly
positive memory function.

2. There are selective-memory equilibria that are not belief equiva-
lent to any Berk-Nash equilibrium.
Moreover, selective-memory equilibria need not be objectively optimal
when the agent knows that the distribution of outcomes is independent
of their action (ps,a* 5 ps,a 0* and ps,a 5 ps,a0 for every p ∈ Θ, a,  a 0 ∈ A, s ∈ S).
To illustrate the equivalence result, consider a buyer who submits an of-

fer for a good in a double-blind two-sided auctionwhere theprice z is set at
the buyer’s bid, so the seller’s dominant strategy is to bid their value. Sup-
pose that the buyerhas an exogenously fixed conviction that the price sell-
ers ask is independent of the quality of the good they are selling. If the
buyer’s value of the good is x 1 v 1 ε where x ∈ X ⊆R is the value for
the seller, v ∈ V ⊆Rmeasures the gains from trade, and ε is a noise term,
then in the Berk-Nash equilibrium they submit a bid that is too low, as in
32 Every p00 that is outcome equivalent under j is also a maximizer, and this p00 may not
have been an element ofΘ. Because j need not be a best response to some of them, it need
not be a uniformly strict selective-memory equilibrium.
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Esponda (2008). Proposition 6 shows that memory distortions can, over
time, lead the agent to believe that value and bid are independent and
thus have the same long-run behavior and beliefs. This is obtained with
a memory function that gives more weight to experiences with a larger
gap between buyer’s values and ask prices.33

Persistence.—While agents undoubtedly are sometimes misspecified,
some recent papers have theoretically questioned how likely thesemisper-
ceptions are to persist and have proposed mechanisms by which agents
might realize that some model not in the support of their initial beliefs
better fits the data (Schwartzstein 2014; Fudenberg and Lanzani 2023;
He and Libgober 2023; Lanzani 2024). In contrast, an agent with a selec-
tive memory and a full-support prior will be able to explain their recollec-
tions with one of their conjecturedmodels and so have less reason to learn
of their errors.
VI. Discussion
Our equilibrium concept and results make it easy to predict the long-run
implications of arbitrary memory biases, which should be of broad use in
applied work. We illustrated our framework by showing that it explains
how overconfidence can arise from an ego-boosting memory bias and
why agents may underestimate their coworkers’ abilities even when they
are correctly specified. It also lets us explain the excessive levels of risk
aversion implied by asset choice as the result of moderate risk aversion
paired with an extreme-experience bias that leads agents to overestimate
the riskiness of the assets.
Distinguishing between models.—While proposition 6 implies that selec-

tive memory and misspecification will have similar long-run implications
in a fixed environment, section IV.B shows that the two models have dif-
ferent comparative statics with respect to changes in the environment.34

If we look at the correspondencesmapping a true data-generating process
into the sets of selective-memory equilibria anduniformly strict Berk-Nash
equilibria, our result says that for a fixed p* we can find anm thatmakes an
element of the image of the Berk-Nash correspondence at p* an element
of the selective-memory equilibrium correspondence at p*. But this prop-
erty of the correspondence is lost at a different ~p*, which can let us distin-
guish between the models. For example, the Berk-Nash equilibrium of a
degeneratemisspecifiedmodel has a constant graph, something selective
33 Specifically m(a, (x, v)) 5 k½ov 0∈V p*(x, v 0)ox 0∈X p*(x 0, v)�=p*(x, v) for sufficiently small
k > 0.

34 Selective memory can arguably be viewed as a form of misspecification, as the agent is
not aware of their memory limitations. From that perspective, our results show that the
classic misspecification studied in Bayesian statistics is closely related to a psychologically
founded form of misspecification.
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memory function cannot replicate for nontrivial utility andmemory func-
tions. More generally, empirical work might be able to distinguish be-
tween the twomodels based on how agents respond to changes in the true
data-generating process (for a concrete example in the context of over-
confidence, see the discussion at the end of sec. IV.B).
To distinguish between selective memory and underinference, one can

elicit the agent’s beliefs.35 Underinference predicts that the likelihood
ratio between two data-generating processes v and v0 always increases be-
tween period t 2 1 and t if the period t 2 1 outcome was more likely un-
der v. Selective memory allows for violations of this monotonicity, espe-
cially if at the beginning of period t a signal triggering experiences
favoring v0 is observed, while this signal is irrelevant with underinference.
A more direct way to distinguish selective memory from other sources of
mistaken inference, including misspecification, is to elicit both what the
agent remembers and what they believe, as in Huffman, Raymond, and
Shvets (2022) and Gödker, Jiao, and Smeets (forthcoming), where an im-
portant role formemory is observed. This allows one to estimate themem-
ory function and qualitatively distinguish among selective memory,
misspecification, and underinference.
Convergence to equilibria.—Theorem 2 gives sufficient conditions for

there to be a global attractor. Evenwhen no such strategy exists, one could
hope that there is probability 1 of converging to some limit strategy, with
which strategy occurs depending both on the agent’s prior and on the re-
alized outcomes. We hope to find sufficient conditions for that in future
work, along with (presumably weaker) conditions that ensure a positive
probability of converging to a limit strategy.
Partial naïveté.—We have assumed that agents treat the experiences they

remember as if these were the only ones that happened. Appendix A3 con-
siders agents who are partially aware of their memory limitations. To do
this, we assume that agents know calendar time and therefore how many
observations they have not remembered.36 For an agent who is aware of
their own forgetfulness but unaware that their memory is selective, the
selective-memory equilibria under partial and full naïveté coincide. At
the other extreme, if agents are fully aware of their memory function,
any action that is optimal for the true data-generating process is always a
selective-memory equilibrium.
Finite memory.—In our model, the number of recalled experiences con-

verges to infinity, as if the agent had perfect memory. In Fudenberg,
Lanzani, and Strack (2024), we modify the model to make the expected
35 However, see Danz, Vesterlund, and Wilson (2022) for practical challenges in belief
elicitation.

36 As example 9 in app. A3 shows, less naïve agents can take worse actions and get lower
payoffs.
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number of recalled periods bounded. Here the agent’s beliefs need not
converge to a deterministic limit even when the strategy is fixed, which
can make the limit behavior stochastic. Thus, instead of characterizing
the possible limit strategies, we show that if the frequency with which strat-
egies are used converges, the limit-strategy distribution is generated by a
best response to the distribution ofmemories it generates.We also use this
tomodel the effect of “rehearsal,”where an experience recalled in onepe-
riod is more likely to be recalled again.
Other possible extensions.—It would be relatively easy to extend our anal-

ysis to agents who “misremember” and access false memories as opposed
to simply forgetting things that happened. Amore substantive generaliza-
tion would be from an agent who believes that outcomes are i.i.d. to an
agent who believes that outcomes follow a Markov process. This would
let us capture the gambler’s fallacy (see Rabin and Vayanos 2010; He
2022) if an outcome is morememorable when it is different from the out-
come in the previous period.37 Or it might be much easier for agents to
recall whether an experience happened at all than whether it happened
five or six times; we could capture this by using a memory function that
is concave in the number of times an experience occurred. Another gen-
eralization would be to memory functions with recency bias, such as
ms0 ,t(st, at, yt) 5 ms0(st, at, yt)f (t 2 t) where f is a decreasing function. As
with associative memory, when the outcomes are exogenous and f is
bounded away from 0, this bias leads only to slower learning, but when
outcomes are endogenous, it can prevent the agent from locking on to
the optimal action.
Appendix A

Proofs of the Main Results and Partial Naïveté

A1. Preliminaries

For every t ∈ N, we first explicitly describe the map

Ht � 2 1,:::,tf g →H ,

ht 5 si , ai , yið Þti51, Rð Þ ↦ ht Rtð Þ
that transforms an objective history and a set of recalled periods into the recalled
history. Let n(k, Rt) 5 t if t is the kth-smallest number in Rt, that is, n(1, Rt) 5 t

if t is the first period that is recalled, n(2, Rt) 5 t if t is the second period that is
recalled, and so on. The recalled history is

ht Rtð Þ 5 sn k,Rtð Þ, an k,Rtð Þ, yn k,Rtð Þð Þ Rtj j
k51: (5)
37 This extension could make use of the analysis of belief concentration for misspecified
agents with Markov models developed in Fudenberg, Lanzani, and Strack (2023).
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Combining equations (1) and (5), we have that the posterior probability of
every measurable C ⊆Θ after objective history ht when the recalled periods are
Rt ≠ ∅ is ð

C

Q
t∈Rt

pst ,at
ytð Þdm pð Þð

Θ

Q
t∈Rt

pst ,at
ytð Þdm pð Þ

: (6)

We now state a few lemmas whose proofs are in appendix B. For every ht ∈ H
let f (ht) ∈ Δ(S � A � Y ) denote the empirical distribution over signals, actions,
and outcomes in ht 5 (si , ai , yi)

t
i51, and let

f̂ ht , Rtð Þ s, a, yð Þ 5 1

Rtj joi∈Rt

1 si ,ai ,yið Þf g s, a, yð Þ

denote the recalled empirical distribution in objective history ht when the re-
called periods are ∅ ≠ Rt . Also, for every g ∈ Δ(S � A � Y ) and p ∈ Δ(Y )S�A let

L gjjpð Þ 5 o
s,a,yð Þ∈S�A�Y

g s, a, yð Þ log ps,a yð Þð Þ

be the log likelihood of the distribution g with respect to data-generating pro-
cess p.

The next result shows that the posterior beliefs concentrate on the likelihood
maximizers given the recalled empirical distribution.

Lemma A1. For all Borel-measurable C ,  C 0 ⊆ Δ(Y )S�A, t ∈ N, ht ∈ Ht , and
Rt ⊆ f1, ::: , tg,

m C jht Rtð Þð Þ
1 2 m C 0jht Rtð Þð Þ ≥

m Cð Þ
1 2 m C 0ð Þ exp Rtj j 2sup

p∈Θ ∖ C 0
L f̂ ht , Rtð Þjjp� �

1 inf
p∈C

L f̂ ht , Rtð Þjjp� �" # !
:

Let Θm
s (j, ε) 5 fp ∈ Θ : ∃ q ∈ Θm

s (j), jjp 2 qjj∞ ≤ εg denote an ε ball around
the memory-weighted maximizers.

Lemma A2. If j is not a selective-memory equilibrium, there are s0 ∈ S and
ε,  C ∈ R11 such that for all n ∈ Δ(Θ),

n Θm
s 0 j, εð Þð Þ

1 2 n Θm
s 0 j, εð Þð Þ > C ⇒ j s 0ð Þ ∉ BR s 0, nð Þ:

If j is a uniformly strict selective-memory equilibrium, there are ε,  C ∈ R11 such

that for all s ∈ S and n ∈ Δ(Θ),

n Θm
s j, εð Þð Þ

m > C ⇒ j sð Þf g 5 BR s, nð Þ:

1 2 n Θs j, εð Þð Þ

The next lemma says that if an action is an undominated response to some
signal s0 but cannot be played as a response to s0 in any selective-memory equilib-
rium, then after signal s0 the agent must have a nonzero chance of remembering
at least one possible experience (s, a, y).
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Lemma A3. If j(s0) ∈ BR(s0, Δ(Θ)) ∖ BR(s0, Δ(Θm
s0 (j))), then there is (

�
s,
�
y) ∈

S � Y with p
�
s,j(

�
s)

* (
�
y) > 0 and

ms0

�
s, j

�
s

� �
,
�
y

� �
≕ ‘ > 0:

For any t ∈ N, j ∈ AS , and at ∈ At let p(at ,j) ∈ AH be the policy that prescribes
action at at period t ≤ t and action j(st) at all periods t > t, and let Pat ,j be the
probability distribution induced by p(at ,j). Throughout the appendix, we letRt de-
note the random variable corresponding to the subset of periods recalled after
(ht , st11), while we continue to use the nonbold version, Rt, for its realizations.

The next lemma shows that if j is a limit strategy, then for some time t, there is
an action sequence at such that if the agent plays at in the first t periods and then
j afterward, there is positive probability that the induced sequence of beliefs
makes j optimal at all periods t ≥ t 1 1.

Lemma A4. Let j ∈ AS . If for every t ∈ N, every at ∈ At , and every optimal
policy ~p, Pat ,j½j(st11) 5 ~p(ht(Rt))(st11) for all t ≥ t� 5 0, then j is not a limit
strategy.

Fix an arbitrary outcome
�
y. Let ns,a,t the number of times the signal-action pair

(s, a) ∈ S � A occurred in periods f1, ::: ,   tg and gs,a,t be the frequency of out-
comes that realized after signal s and action a until period t, that is,

gs,a,t yð Þ 5 1

ns,a,t
o
t

i51

1 s,a,yð Þf g si , ai , yið Þ,

with gs,a,t(y) 5 1f
�

yg(y) whenever ns,a,t 5 0. Similarly, let ñs,a,t be the number of
times the signal-action pair (s, a) is recalled in period t 1 1. Also, let fs,a,t be
the frequency of outcomes induced by signal s and action a that is recalled at pe-
riod t 1 1, with fs,a,t(y) 5 1f

�

yg(y) whenever ~ns,a,t 5 0.
For every (s0, s, a) ∈ S2 � A and ε > 0 and t ∈ N, let

Dt s
0, s, a, εð Þ 5 1 ε,1∞ð Þ

��� ~ns,a,t

ns,a,t

fs,a,t �ð Þ 2 ms0 s, a, �ð Þgs,a,t �ð Þ
���
∞

� �
be an indicator function that is 1 if at period t there is a deviation of more than ε
between the recalled empirical frequency given s, a and thems0-memory distorted
version of the true empirical frequency. The next lemma shows that it is impos-
sible to have infinitely many periods t where an action-signal pair with realized
frequency larger than g at t has this sort of deviation.

Lemma A5. For every p ∈ AH , (s0, s, a) ∈ S2 � A, and ε, g > 0,

Pp o
∞

t51

Dt s
0, s, a, εð Þ1 g,∞ð Þ

ns,a,t

t

� 	
1 s0ð Þ st11ð Þ < ∞


 �
5 1: (7)

A2. Proofs

A2.1. Proof of Theorem 1

Suppose toward a contradiction that j is a limit strategy under the optimal policy
p, but not a selective-memory equilibrium. By lemma A2 there are s0 ∈ S and
ε,  C ∈ R11 such that for all n ∈ Δ(Θ)



selective-memory equilibrium 4005
n Θm
s 0 j, εð Þð Þ

1 2 n Θm
s 0 j, εð Þð Þ > C ⇒ j s 0ð Þ ∉ BR s0, nð Þ, (8)

and in particular

j s0ð Þ ∉ BR s0, Δ Θm
s0 jð Þð Þð Þ: (9)

Fix this s0 throughout the rest of the proof.
If j(s0) ∉ BR(s 0, n) for all n ∈ Δ(Θ), we immediately reach a contradiction

by definition of optimal policy, since by Kolmogorov 0–1 law (see, e.g., theo-
rem 8.4.4 in Dudley 2018) signal s0 will realize infinitely many times Pp-a.s.

If j(s0) ∈ BR(s 0, Δ(Θ)), equation (9) and lemma A3 imply that there is an ex-
perience (

�
s,  j(

�
s),  

�
y) that has objective positive probability under j and is recalled

with positive probability ‘ under signal s0. Now fix an objective history ht 5
(st , at , yt) ∈ Ht that has positive probability under an optimal policy p, that is,
Pp½ht � > 0. We will show that if the agent plays j at every period after ht, Pat ,j -a.s.
the belief mt( � jht(Rt)) reaches a region where no optimal policy prescribes
j(s0) after signal s0, that is, j(s0) ∉ BR(s0, mt( � jht(Rt))). By lemma A4, this is
enough to obtain the desired conclusion.

By the strong law of large numbers, for every (s, a, y) ∈ S � A � Y ,

lim
t→∞

f htð Þ s, a, yð Þ 5
z sð Þps,a* yð Þ if  a 5 j sð Þ,

0 otherwise;
 Pat ,j–a:s: on the cylinder ht:

(

Let ~p(j, s0) ∈ Δ(S � A � Y ) be the induced distribution over remembered
experiences

~p j, s0ð Þ s, a, yð Þ 5
z sð Þms0 s, j sð Þ, yð Þps,j sð Þ* yð Þ

oŷ∈Y ,̂s∈Sz ŝð Þms 0 ŝ, j ŝð Þ, ŷð Þpŝ,j ŝð Þ* ŷð Þ if  a 5 j sð Þ,

0 otherwise:

8><
>:

For every 2 periods t0 > t and R 0
t0 ⊆f1, ::: , t0g, the probability of recalling R 0

t0 at
time t0 conditional on the objective history ht0 is independent of the recalled pe-
riods Rt at period t, that is, Pat ,j½Rt0 5 R 0

t0 , st011jht0 � 5 Pat ,j½Rt0 5 R 0
t0 , st011jht0 ,Rs 5

Rt�. The next claim shows that for every k ∈ N, Pat ,j-a.s. there is a t > t such that
st11 5 s0, and the number of periods recalled after ht, st11 is larger than k. It is a
variation of the Borel-Cantelli lemma based on conditional instead of uncondi-
tional probabilities.

To state the claim, for every t ∈ N, let Et denote the event that either or both of
jRt j ≤ k and st11 ≠ s0 hold.

Claim 1. For all t̂ ∈ N and k ∈ N, Pat ,j½\t≥t̂Et� 5 0.
Proof. For every t ∈ N and h 5 (si , ai , yi)

t
i51, let N (h) 5 ot

i511f(
�
s,j(

�
s),

�

y)g(si , ai , yi)
be the number of times (

�
s,  j(

�
s),  

�
y) occurs between periods 1 and t. For any

j ∈ N, we have
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Pat ,j \t∈ t̂,:::,t̂1jf gEt

� 
5
Ŷt1j

t5t̂

Pat ,j EtjE1, ::: , Et21ð Þ 5
Ŷt1j

t5t̂

o
h∈Ht

Pat ,j hð ÞPat ,j EtjE1, ::: , Et21, hð Þ

5
Ŷt1j

t5t̂

o
h∈Ht

Pat ,j hð Þ 1 2 Pat ,j Rtj j > k, st11 5 s0 ðjRt̂ ≤ k, ::: ,j jRt21 ≤ k, hj Þj �½ Þð

5
Ŷt1j

t5t̂

o
h∈Ht

Pat ,j hð Þ 1 2 Pat ,j½jRt > k, st11 5 s0j jhð �Þ

≤
Ŷt1j

t5t̂

ðPat ,j h ∈ Ht :N hð Þ ≤ kf gð Þ 1 o
h∈Ht :N hð Þ≥k11

Pat ,j hð Þ 1 2 Pat ,j Rtj j > k, st11 5 s0 hj �½ Þð Þ

≤
Ŷt1j

t5t̂

ðPat ,j h ∈ Ht :N hð Þ ≤ kf gð Þ 1 o
h∈Ht :N hð Þ≥k11

Pat ,j hð Þð1 2 ‘k11z s0ð ÞÞÞ

5
Ŷt1j

t5t̂

Pat ,j h ∈ Ht :N hð Þ ≤ kf gð Þ 1 1 2 Pat ,j h ∈ Ht :N hð Þ ≤ kf gð Þ½ � 1 2 ‘k11z s0ð Þ� � �

5
Ŷt1j

t5t̂

1 2 ‘k11z s0ð Þ 1 Pat ,j h ∈ Ht :N hð Þ ≤ kf gð Þ‘k11z s0ð Þ� �
,

where the second equality follows from the law of iterated expectations; the first
inequality follows because for every t ∈ ft̂, ::: , t̂ 1 jg,

o
h∈Ht :N hð Þ≤k

Pat ,j hð Þ ð1 2 Pat ,j Rtj j > k, st11 5 s0 hj �½ Þ ≤ o
h∈Ht :N hð Þ≤k

Pat ,j hð Þ;

and the second inequality follows from the fact that if signal s0 realizes and
(
�
s,  j(

�
s),  

�
y) appears at least k 1 1 times in the objective history, the probability

of recalling at least k 1 1 events is not smaller than ‘k11. Since 1 1 x ≤ ex for
all x ∈ R, the last term is smaller than

exp o
t̂1j

t5t̂

2 ‘k11z s0ð Þ 1 Pat ,j h ∈ Ht :N hð Þ ≤ kf gð Þ‘k11z s0ð Þ
� �

:

By definition, (
�
s,  j(

�
s),  

�
y) has objective positive probability under j, so there is t̂ ∈

N and b ∈(0, 1) such that for every t ≥ t̂,Pat ,j(fh ∈ Ht :N (h) ≤ kg) < b < 1. Thus,

lim
j →∞

Pat ,j \t∈ t̂,:::,t̂1jf gEt

� 
≤ lim

j →∞
exp o

t̂1j

t5t̂

2 ‘k11z s0ð Þ 1 Pat ,j h ∈ Ht :N hð Þ ≤ kf gð Þ‘k11z s0ð Þ
� �

5 0,

proving the claim: for all t̂ ∈ N and k ∈ N, Pat ,j½\t≥t̂Et� 5 0. QED
By the previous claim, for every k ∈ N11, Pat ,j-a.s.

∃ t > t :  st11 5 s 0 and  Rtj j > k: (10)

Claim 2. We have that

Pat ,j t : st11 5 s 0, k f̂ ht,Rtð Þ 2 ~p j, s0ð Þ k∞ > ε
� ��� �� 5 ∞
� 

5 0: (11)
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Proof. Let t ∈ N, ht ∈ Ht, and ε > 0. By the Chernoff inequality (see, e.g.,
Boucheron, Lugosi, and Massart 2013, 23–24),

Pat ,j

Rt

t
f̂ ht,Rtð Þ 2 ~p j, s0ð Þ

����
���� > εj ht, s

0ð Þ

 �

      ≤ 2 Yj j exp 2εt log 1=2 2
log 1=2 1 εð Þ 1 log 1=2 2 εð Þ

2


 �� �
:

Since

o
∞

k51

2 exp 2εk log 1=2 2 w εð Þ½ �ð Þ < ∞,

the result follows by the Borel-Cantelli lemma. QED
We show that n(Θm

s 0 (j,  ε))=½1 2 n(Θm
s0 (j,  ε))� > C on the histories where condi-

tions (10) and (11) are satisfied. Since they hold Pat ,j-a.s., the result follows by
(8).

Let ε0 ∈(0, ε) and k ∈ R11 be such that for all (s, a) ∈ S � A and p ∈ Θm
s0 (j, ε

0),
ps,a ≫ ps,a* ,

k

2
> sup

p 0∉Θm

s0 j,εð Þ
o
s∈S

z sð Þo
y∈Y

ps,j sð Þ* yð Þms0 s, j sð Þ, yð Þ log p 0
s,j sð Þ yð Þ

and

k < inf
p 0∈Θm

s0 j,ε0ð Þo
s∈S

z sð Þo
y∈Y

ps,j sð Þ* yð Þms0 s, j sð Þ, yð Þ log p 0
s,j sð Þ yð Þ,

where their existence is guaranteed by the continuity in p of thememory-weighted
log-likelihood and assumption 2. So, by lemma A1

 m Θm
s0 j, εð Þjht Rtð Þð Þ

1 2 m Θm
s0 j, εð Þjht Rtð Þð Þ ≥

m Θm
s0 j, ε

0ð Þjht Rtð Þð Þ
1 2 m Θm

s0 j, εð Þjht Rtð Þð Þ

≥
m Θm

s0 j, ε
0ð Þð Þ

1 2 m Θm
s0 j, εð Þð Þ exp Rtj j inf

p∈Θm

s0 j,ε0ð Þ
L f̂ ht, Rtð Þ k p� �

2 sup
p∉Θm

s0 j,εð Þ
L f̂ ht, Rtð Þ k p� � ! !

:

The last expression goes to1∞ as t→∞, since (i) jRtj→∞ by equation (10), and
(ii) by the definitions of k and ε0 as well as equation (11) we have

  lim
t→∞

inf
p∈Θm

s0 j,ε0ð Þo
s,a,yð Þ

f̂ ht, Rtð Þ s, a, yð Þ log ps,a yð Þð Þ

2 sup
p∉Θm

s0 j,εð Þ
o
s,a,yð Þ

f̂ ht, Rtð Þ s, a, yð Þ log ps,a yð Þð Þ

  5 inf
p∈Θm

s0 j,ε0ð Þo
s∈S

z sð Þo
y∈Y

ms0 s, j sð Þ, yð Þps,j sð Þ* yð Þ log ps,j sð Þ yð Þð Þ

  2 sup
p∉Θm

s0 j,εð Þ
o
s∈S

z sð Þo
y∈Y

ms0 s, j sð Þ, yð Þps,j sð Þ* yð Þ log ps,j sð Þ yð Þð Þ

  >
k

2
> 0:    QED
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A2.2. Proof of Theorem 2

First, we introduce some notation. Let

�
m ≔ min

ðs0 ,s,aÞ∈S2�A
o
y∈Y

ps,a* yð Þms0 s, a, yð Þ > 0,

and for every (s, s0, a, y) ∈ S2 � A � Y , let

�ps,a yjs 0ð Þ ≔ ms 0 s, a, yð Þps,a* yð Þ
oy0∈Yms0 s, a, y

0ð Þps,a* y0ð Þ
denote the memory-adjusted version of the data-generating process.

1. Part i. Now we will prove the first part of the theorem, namely that

Pp lim
t →∞

m Bε p̂ð Þjht Rtð Þð Þ 5 1
h i

5 1:

Thefirst step is to characterize thedistribution of outcomes given the realized

signals and actions. Consider the stochastic processes (X(ŝ,â ,̂y)
t )(ŝ,â ,̂y)∈S�A�Y , t∈N

defined by

X
ŝ,â ,̂yð Þ
t 5 1 ŷf g ytð Þ 2 pŝ,â* ŷð Þ� �

1 ŝ,âð Þf g st , atð Þ  8 t ∈ N:

These stochastic processes correspond to the deviation of the number of

times each y has appeared from their expected frequency given the signal

realized and action chosen. They are measurable with respect to the filtra-

tion (F t)t∈N generated by the stochastic process of histories (ht)t∈N. These

processes are not i.i.d., as previous outcome realizations affect current

period choices, but for each (s, a, y) ∈ S � A � Y , E½X(s,a,y)
t ∣F t21� 5 0.

Consequently, for each (s, a, y) ∈ S � A � Y , (X(s,a,y)
t )t∈N is a mixingale dif-

ference sequence, and from the strong law of large numbers for mixin-

gale sequences (see theorem 2.7 in Hall and Heyde 2014 for the version

that applies here), limn→∞(1=n)on
t51X

(s,a,y)
t 5 0, Pp-a.s. Recall that ns,a,t is

the number of periods before t in which the signal was s and the action a

was played, and gs,a,t is the empirical distribution over outcomes in these pe-

riods. Moreover,

1

no
n

t51

X
s,a,yð Þ
t 5

ns,a,t

n
gs,a,t yð Þ 2 ps,a* yð Þð Þ,

which implies that for every ε̂ > 0, g > 0, Pp-a.s.

lim sup
n→∞

1 g,∞½ �
ns,a,t

n

� 	
� 1 ε̂,∞½ Þ k gs,a,t 2 ps,a* k∞ð Þ

� 	
5 0: (12)

Recall that ñs,a,t is thenumber of times the signal-action pair (s, a) is recalled

at time t. By lemma A5, for every (s, s 0, a) ∈ S2 � A, ε̂ > 0, and g > 0,

Pp o
∞

t51

Dt s
0, s, a, ε̂ð Þ1 g,∞ð Þ

ns,a,t

t

� 	
1 s0ð Þ st11ð Þ < ∞


 �
5 1: (13)
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In the set identified by equation (13), which has Pp probability 1, for all
(s, a) ∈ S � A and every time subsequence (ti)i∈N where ns,a,ti=ti > g,�����

����� fs,a,ti �ð Þ 2 ms0 s, a, �ð Þgs,a,ti �ð Þ
oy0∈Yms0 s, a, y

0ð Þgs,a,ti y0ð Þ

�����
�����
∞

≤

�����
����� fs,a,ti �ð Þ 2 ~ns,a,ti

ns,a,ti

fs,a,ti �ð Þ
oy0∈Yms 0 s, a, y

0ð Þgs,a,ti y0ð Þ

�����
�����
∞

1

�����
����� ~ns,a,ti

ns,a,ti

fs,a,ti �ð Þ
oy0∈Yms0 s, a, y

0ð Þgs,a,ti y0ð Þ 2
ms0 s, a, �ð Þgs,a,ti �ð Þ

oy0∈Yms0 s, a, y
0ð Þgs,a,ti y0ð Þ

�����
�����
∞

≤
ns,a,ti

~ns,a,ti

2
1

oy0∈Yms0 s, a, y
0ð Þgs,a,ti y0ð Þ

�����
�����
�����
����� ~ns,a,ti

ns,a,ti

fs,a,ti �ð Þ
�����
�����
∞

1
1

oy0∈Yms0 s, a, y
0ð Þgs,a,ti y0ð Þ

�����
����� ~ns,a,ti

ns,a,ti

fs,a,ti �ð Þ 2 ms0 s, a, �ð Þgs,a,ti �ð Þ
�����
�����
∞

≤
1

oy0∈Y ~ns,a,tið Þ= ns,a,tið Þfs,a,ti �ð Þ
2

1

oy0∈Yms0 s, a, y
0ð Þgs,a,ti y0ð Þ

�����
�����

1
ε̂

oy0∈Yms0 s, a, y
0ð Þgs,a,ti y0ð Þ

≤
1

oy0∈Yms0 s, a, y
0ð Þgs,a,ti y0ð Þ 2 Yj jε 2

1

oy0∈Yms0 s, a, y
0ð Þgs,a,ti y0ð Þ

1
ε̂

oy0∈Yms0 s, a, y
0ð Þgs,a,ti y0ð Þ

5
Yj ĵε

oy0∈Yms0 s, a, y
0ð Þgs,a,ti y0ð Þ 2 Yj ĵε

� 	
oy0∈Yms0 s, a, y

0ð Þgs,a,ti y0ð Þ

1
ε̂

oy0∈Yms0 s, a, y
0ð Þgs,a,ti y0ð Þ :

Moreover, limi →∞oy0∈Yms0(s, a, y0)gs,a,ti(y
0) 5 oy0∈Yms0(s, a, y0)ps,a* (y0), so that the last

term in the display above converges to

Yj ĵε
oy0∈Yms0 s, a, y

0ð Þps,a* y0ð Þ 2 Yj ĵε
� 	

oy0∈Yms0 s, a, y
0ð Þps,a* y0ð Þ

1
ε̂

oy0∈Yms0 s, a, y
0ð Þps,a* y0ð Þ ;

by assumption 3i, this can be taken arbitrarily small by choosing sufficiently small ε̂.
Therefore, equation (13) implies that for every (s, s 0, a) ∈ S2 � A and g > 0,

Pp t :
ns,a,t

t
> g, st11 5 s0 and

�����
����� fs,a,t �ð Þ 2 ms0 s, a, �ð Þgs,a,t �ð Þ

oy0∈Yms0 s, a, y
0ð Þgs,a,t y0ð Þ

�����
�����
∞

> ε̂

�����
����� 5 ∞

" #
5 0 :

(14)
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Observe that under data-generating process q ∈ Θ, the log likelihood of any
history (si , ai , yi)

t
i51, t ≤ t that the agent might recall at time t can be rewrit-

ten as

o
t

i51

log qsi ,ai
yið Þ 5 o

s,að Þ∈S�A

~ns,a,to
y∈Y

fs,a,t yð Þ log qs,a yð Þ

5 o
s,að Þ∈S�A

~ns,a,t 2DKL fs,a,t , qs,að Þ 1o
y∈Y

fs,a,t yð Þ log fs,a,t yð Þ
 !

,

where DKL(q, q
0) denotes the Kullback-Leibler divergence between q, q 0 ∈ Δ(Y ).

Thus, for every ε > 0,

m Bε p̂ð Þj si , ai , yið Þti51ð Þ
1 2 m Bε p̂ð Þj si , ai , yið Þti51ð Þ 5

ð
Bε p̂ð Þ

exp 2o s,að Þ∈S�A~ns,a,tDKL fs,a,t , ps,að Þ
� 	

dm pð Þð
Θ ∖ Bε p̂ð Þ

exp 2o s,að Þ∈S�A~ns,a,tDKL fs,a,t , qs,að Þ
� 	

dm qð Þ
:

By assumption 3, p̂ maximizes the log likelihood and hence minimizes the di-
vergence from �p after every signal-action pair. Thus, because DKL is jointly lower
semicontinuous (see, e.g., lemma 1.4.3 in Dupuis and Ellis 2011), there is �ε > 0
such that for all (s0, s, a) ∈ S2 � A and q ∈ Θ ∖ Bε(p̂), DKL(�ps,a( � js0), qs,a) > �ε 1
DKL(�ps,a( � js0), p̂s,a).

By definition, �ps,a( � js0) ≫ fs,a,t at every t ∈ N such that st11 5 s 0. Thus, by equa-
tions (12) and (14), for every g > 0, Pp-a.s.,

lim inf
t →∞

1=tð Þ o
s,að Þ∈S�A

~ns,a,tDKL fs,a,t , qs,að Þ

≥ lim inf
t →∞

1=tð Þ o
s,að Þ∈S�A : ns,a,t=t≤g

~ns,a,tDKL fs,a,t , qs,að Þ

≥ lim inf
t →∞

1=tð Þ o
s,að Þ∈S�A : ns,a,t=t≤g

~ns,a,t �ε 1 DKL �ps,a �js0ð Þ, p̂s,að Þð Þ

(15)

for every q ∈ Θ ∖ Bε(p̂).
Conversely, by assumption 2, we can choose ε0 < ε small enough that if

k fs,a,t 2 �ps,a( � js 0)kTV ≤ ε0, and p ∈ Bε0(p̂) then

DKL fs,a,t , ps,að Þ ≤
�ε

2
1 DKL �ps,a �js 0ð Þ, p̂s,að Þ

and

K ≔ sup
s,s 0ð Þ∈S2,a∈A,p∈Bε0 p̂ð Þ,f ∈Δ Yð Þ : �ps,a �js0ð Þ≫f

DKL f , ps,að Þ < ∞:
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Therefore, for all b ∈(0, 1), Pp-a.s.

lim inf
t →∞

m Bε0 p̂ð Þjht Rtð Þð Þ
1 2 m Bε0 p̂ð Þjht Rtð Þð Þ 5 lim inf

t →∞

ð
Bε0 p̂ð Þ

exp 2os∈S ,a∈A~ns,a,tDKL fs,a,t , ps,að Þ� �
dm pð Þð

Θ ∖ Bε0 p̂ð Þ
exp 2os∈S ,a∈A~ns,a,tDKL fs,a,t , qs,að Þ� �

dm qð Þ

≥ lim inf
t →∞

ð
Bε0 p̂ð Þ

exp 2tbK 2os∈S ,a∈A : ~ns,a,t=t>
b

S�Aj j
~ns,a,tDKL fs,a,t , ps,að Þ

� 	
dm pð Þð

Θ ∖ Bε0 p̂ð Þ
exp 2os∈S ,a∈A : ~ns,a,t=t>

b
S�Aj j

~ns,a,tDKL fs,a,t , qs,að Þ
� 	

dm qð Þ

≥ lim
t →∞

m Bε0 p̂ð Þð Þ
1 2 m Bε0 p̂ð Þð Þ exp t 2bK 1 �

m

2
1 2 bð Þ �ε 2

�ε

2

� �
 �� �
,

where the last inequality follows from equations (13) and (15). For b small
enough that 2bK1(

�
m=2)(1 2 b)½ε 2 (ε=2)� > 0, the right-hand side goes to in-

finity as t goes to infinity, so the left-hand sidemust also diverge, which shows that
Pp½limt →∞m(Bε0(p̂)jht(Rt)) 5 1� 5 1. Since ε0 < ε, this proves the first part of the
theorem. In particular, for every ε > 0, the random variable T defined by

T ≔ sup t ∈ N : m Bε p̂ð Þjht Rtð Þð Þ < 1 2 εf g (16)

is Pp-a.s. finite.

2. Part ii. To prove the second part of the theorem, note that assumption 3ii

implies thatΘm
s (j) 5 fp̂g for all s ∈ S and j ∈ AS . Therefore, every selective-

memory equilibrium must prescribe a best reply to a Dirac belief on p̂

after every signal. Since there is a unique best response to p̂ for every sig-

nal s, ĵ is the unique selective-memory equilibrium, and it is uniformly

strict. By lemma A2, there is an ε such that ĵ(s) is the response to s for

any belief n that assigns probability at least 1 2 ε to Bε(p̂). Since by equa-

tion (16) Pp-a.s. there will be a finite time T (that can depend on the sam-

ple path) with m(Bε(p̂)jht(Rt)) > 1 2 ε for all t > T , the result follows.

QED
A2.3. Proof of Proposition 1

We show that for every signal s ∈ S , only data-generating processes p for which
ps,j(s) 5 ps,j(s)* are memory-weighted likelihood maximizers.

Fix ŝ ∈ S and suppose that p is such that pj(ŝ),̂s ≠ pj(ŝ),̂s* . By the Gibbs inequality,

o
y∈Y

ps,j sð Þ* yð Þ log ps,j sð Þ* yð Þ ≥ o
y∈Y

ps,j sð Þ* yð Þ log ps,j sð Þ yð Þ

for all s ∈ S , with strict inequality for s 5 ŝ. This, together with d(ŝ, ŝ) 5 0 and
Φ(0) > 0, implies that
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o
s∈S

z sð Þ o
y∈Y

mŝ s, j sð Þ, yð Þps,j sð Þ* yð Þ log ps,j sð Þ yð Þ

5 o
s∈S

z sð ÞΦ d s, ŝð Þð Þo
y∈Y

ps,j sð Þ* yð Þ log ps,j sð Þ yð Þ

< o
s∈S

z sð ÞΦ d s, ŝð Þð Þo
y∈Y

ps,j sð Þ* yð Þ log ps,j sð Þ* yð Þ

5 o
s∈S

z sð Þo
y∈Y

mŝ s, j sð Þ, yð Þps,j sð Þ* yð Þ log ps,j sð Þ* yð Þ,

proving that p ∉ Θm
ŝ (j). QED

A2.4. Proof of Proposition 2

If assumption 3i is not satisfied, that is, no objectively possible outcome has a
strictly positive probability of being remembered, beliefs remain constant over
time and thus trivially converge. Otherwise, by theorem 2, we also know that be-
liefs converge. We first derive the long-run belief for ~m ∈ fm,m 0g. Because the
memory function ~m and the probability distribution over outcomes p* are inde-
pendent of the agent’s action, this long-run belief is unique and independent of
a, so we suppress the dependence of p and ~m on a.

Because Θ 5 Δ(Y ), for every j the unique memory-weighted likelihood max-
imizers have the distribution

p ~m yð Þ 5 ~m yð Þp* yð Þ
oz∈Y ~m zð Þp* zð Þ ,

and by theorem 2 the beliefs concentrate on p ~m . Moreover, pm 0
(y) 5 w(y)pm(y),

where w(y) 5 f (y)(oz∈Ym(z)p*(z)=oz∈Ym 0(z)p*(z)) is nondecreasing, so z ↦
ox≤z(pm 0

(x) 2 pm(x)) 5 ox≤zpm(x)(w(x) 2 1) is quasiconvex. It equals 0 for z <
miny∈Y y and for z ≥ maxy∈Y y, so it is nonpositive for z ∈ ½miny∈Y y, maxy∈Y y�, and
pm

0
dominates pm in first-order stochastic dominance. Every limit action must

be optimal given p ~m for ~m ∈ fm,m 0g by theorem 1, so the agent’s action must
be weakly higher under m0 than under m. QED
A2.5. Proof of Proposition 3

From theorem 2, we know that beliefs converge. Because (y1, y2) are subjectively
independent conditional on the value of p, the learning problem decouples
across the two dimensions. By proposition 2, the long-run belief about p is weakly
higher than the true distribution p*. The probability with which an outcome is
remembered is independent of the second component, so the agent learns
ap*(y2)1(1 2 a)q*(y2). They infer q to be

q y2ð Þ 5 ap* y2ð Þ 1 1 2 að Þq* y2ð Þ 2 ap y2ð Þ
1 2 a

:

Thus, q 2 q* ; ½a=(1 2 a)�(p* 2 p), and as p is greater than p* in first-order sto-
chastic dominance, it follows that q is lower than q* in first-order stochastic dom-
inance. QED
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A2.6. Proof of Proposition 4

If a 5 1 is not a unitary self-confirming equilibrium, then the safe action a 5 0 is
preferred to the risky action a 5 1, so ∑y∈Y v(y)p1

*(y) < v(y0). Because the prior
assigns positive probability to all distributions induced by action a1 the unique
memory-weighted likelihood maximizer p̂ under action 1 is such that

p̂1 yð Þ ≔ p1* yð Þh y 2 �yj jð Þ
oz∈Y p1* zð Þh z 2 �yj jð Þ :

Therefore, if a 5 1 is a selective-memory equilibrium when m(y) 5 h(jy 2 �yj),
then v(y0) ≤ oy∈Y p̂1(y)v(y). We prove that this cannot be the case by showing that
the distribution p̂1 is second-order stochastically dominated by p1*. To see this, ob-
serve that as p1* is symmetric around �y and h(jy 2 �yj) is symmetric around �y it fol-
lows that p̂1 is symmetric around �y. As h is increasing it follows that p̂1 2 p1*

changes its sign from positive to negative and back to positive so oy≤zp1*(y) and
oy≤z p̂1(y) cross only once, at z 5 �y. And since v is concave, theorem 3 and foot-
note 19 of Machina and Pratt (1997) imply that

oy∈Y v yð Þp* yð Þ ≥ oy∈Y p1* yð Þh y 2 �yj jð Þv yð Þ
oy∈Y p1* yð Þh y 2 �yj jð Þ

and that the risky action cannot be a selective-memory equilibrium. QED

A2.7. Proof of Proposition 5

Suppose toward a contradiction that j is a limit strategy under the optimal policy
p but not a selective-memory equilibrium. Then by lemma A2 there are s0 ∈ S
and c,  C ∈ R11 such that if

n Θs0
m j, cð Þð Þ

1 2 n Θs0
m j, cð Þð Þ > C then j s0ð Þ ∉ BR s 0, nð Þ: (17)

Let ht 5(st , at , yt) be a history with positive probability under p. We show that if
the agent plays the strategy p(at ,j), then a.s. the underinference belief mU( � j
(st, at, yt)) is asymptotically in a region where no optimal policy prescribes j after
signal s0. Since a.s. signal s0 occurs infinitely many times, the same arguments as in
lemma A4 show that this implies the desired conclusion.

By the strong law of large numbers,

lim
t→∞

f htð Þ s, a, yð Þ 5
z sð Þps,a* yð Þ if  a 5 j sð Þ,

0 otherwise,
Pat ,j -a:s:

(
(18)

Next, we express the posterior as a function of the observed frequencies and
show that it concentrates on the memory-weighted likelihood maximizers, so
the result follows by equation (17). By assumption 2 and the continuity in p of
the memory-weighted log-likelihood we can choose k, c 0 ∈ R11 so that for all
(s, a) ∈ S � A and p ∈ Θm

s0 (j, c
0), ps,a ≫ ps,a* ,
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k=2 > sup
p 0∉Θm

s0 j,cð Þ
o
s∈S

z sð Þo
y∈Y

ps,j sð Þ* yð Þms0 s, j sð Þ, yð Þ log p 0
s,j sð Þ yð Þ

and

k < inf
p 0∈Θm

s0 j,c 0ð Þo
s∈S

z sð Þo
y∈Y

ps,j sð Þ* yð Þms0 s, j sð Þ, yð Þ log p 0
s,j sð Þ yð Þ:

By equation (18) and the definition of k and c0, a.s. on the cylinder ht we have

K ≔ lim
t →∞

inf
p 0∈Θm

s0 j,c 0ð Þo
s,a,yð Þ

f htð Þ s, a, yð Þm s, a, yð Þ log p 0
s,a yð Þ� �

2 lim
t →∞

sup
p 0∉Θm

s0 j,cð Þ
o
s,a,yð Þ

f htð Þ s, a, yð Þm s, a, yð Þ log p 0
s,a yð Þ� �

5 inf
p 0∈Θm

s0 j,c
0ð Þo
s∈S

z sð Þo
y∈Y

ms0 s, j sð Þ, yð Þps,j sð Þ* yð Þ log p 0
s,j sð Þ yð Þ

2 sup
p 0∉Θm

s0 j,cð Þ
o
s∈S

z sð Þo
y∈Y

ms0 s, j sð Þ, yð Þps,j sð Þ* yð Þ log p 0
s,j sð Þ yð Þ

> k=2 > 0:

By lemma A1,

m Θm
s0 j, cð Þjhtð Þ

1 2 m Θm
s0 j, cð Þjhtð Þ

≥
m Θm

s0 j, c
0ð Þð Þ exp 2supp 0∈Θm

s0 j,c 0ð Þ 2o s,a,yð Þtf htð Þ s, a, yð Þm s, a, yð Þ log p 0
s,a yð Þ� �� 	

12 m Θm
s0 j, c

0ð Þð Þð Þ exp 2inf p 0∉Θm

s0 j,cð Þ 2o s,a,yð Þtf htð Þ s, a, yð Þm s, a, yð Þ log p 0
s,a yð Þ� �� 	 ,

which goes to ∞ with t since K > 0. QED

A2.8. Proof of Proposition 6

To prove part i, let j be a uniformly strict Berk-Nash equilibrium, and let p0 be an
arbitrary element of Θ1(j). Since j is a uniformly strict Berk-Nash equilibrium,
for all s ∈ S , fj(s)g 5 BR(s, dp 0). Moreover, by the absolute continuity condition,
ps,j(s)* (y) 5 0 implies p 0

s,j(s)(y) 5 0, so38

K ≔ max s,a,yð Þ∈S�A�Y

p 0
s,a yð Þ

ps,a* yð Þ < ∞:

Define ~m as ~ms0(s, a, y) 5 p 0
s,a(y)=Kps,a* (y) if ps,a* (y) > 0 and ~ms0(s, a, y) 5 1=2 oth-

erwise. Then, for an agent with a full-support prior and memory function ~m the
memory-weighted likelihood maximizers for strategy j after signal s0 are the ele-
ments of
38 We use the convention that 0=0 5 0.
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argmax
p∈Δ Yð ÞS�A

o
s∈S

z sð Þo
y∈Y

~ms0 s, j sð Þ, yð Þps,j sð Þ* yð Þ log ps,j sð Þ yð Þ

5 argmax
p∈Δ Yð ÞS�A

o
s∈S

z sð Þo
y∈Y

p 0
s,j sð Þ yð Þ
K

log ps,j sð Þ yð Þ 5 argmax
p∈Δ Yð ÞS�A

o
s∈S

z sð Þo
y∈Y

p 0
s,j sð Þ yð Þ log ps,j sð Þ yð Þ:

Thus, p0 maximizes the memory-weighted likelihood for all s0 ∈ S , so j is a selective-
memory equilibrium with a full-support prior.

Part ii, the converse direction, is trivial: take Θ0 to be a singleton p such that for
all a ∈ A and s ∈ S , ps,a(y) 5 p 0

s,a(y) for some p 0 ∈ Θm
s (j). QED
A3. Partial Naïveté

So far, we have assumed that agents treat the experiences they remember as if
these were the only ones that happened. This section considers agents who
are at least partially aware of their memory limitations. We suppose throughout
this section that actions have no effect on the outcome distribution. We also as-
sume that the agent either does not remember their actions or believes that they
convey no information. Finally, we suppose that agents know the current period
and so know how many observations they have forgotten. If the agent believes
that they remember an occurrence of signal s ∈ S and outcome y ∈ Y with prob-
ability m̂(s, y) ∈(0, 1� instead of the true probability m(s, y), the subjective likeli-
hood of recalling the periods Rt after (ht, s

0) under data-generating process p is
proportional to

o
s∈S

z sð Þo
z∈Y

ps zð Þ 1 2 m̂s0 s, zð Þð Þ

 �t2 Rtj jY

i∈Rt

z sið Þpsi yið Þm̂s0 si , yið Þ,

where FRtF is the number of events the agent remembers. Thus, the subjective
log-likelihood equals

t2 Rtj jð Þ log o
s∈S

z sð Þo
z∈Y

ps zð Þ 12 m̂s 0 s, zð Þð Þ

 �

1 o
y∈Y ,s∈S ,t∈Rt

1 s,yð Þf g st, ytð Þ log ps yð Þm̂s0 s, yð Þð Þ:

(19)

Because the expected value of jRt j=t is oy∈Yos∈Sz(s)ps*(y)ms0(s, y), (19) suggests
the following generalization of the definition the memory-weighted likelihood
maximizers:

Θm,m̂
s0 jð Þ 5 argmax

p∈Θ
1 2o

s∈S
o
y∈Y

ms0 s, yð Þz sð Þps* yð Þ
 !

log 1 2o
s∈S
o
y∈Y

z sð Þps yð Þm̂s0 s, yð Þ
 !

1o
y∈Y
o
s∈S

ms0 s, yð Þz sð Þps* yð Þ log m̂s0 s, yð Þps yð Þð Þ:

Definition 6. A selective-memory equilibrium for a partially naïve agent is a strat-
egy j such that for every s ∈ S there exists a belief n ∈ Θm,m̂

s (j) with j(s) ∈ BR(s, n).
For an agent who is aware of their own forgetfulness but not aware that their

memory is selective, that is, who believes that their memory function m is con-
stant,Θm,m̂

s 5 Θm
s and the selective-memory equilibria of a partially and fully naïve
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agent coincide.39 This shows that what matters for our results is that the agent is
unaware that their memory is selective, not that they are unaware of their forget-
fulness. At the other extreme, if agents are fully aware of their memory function,
selective-memory equilibrium reduces to unitary self-confirming equilibrium be-
cause dp* ∈ Θm,m

s0 .
The next result, whose proof is omitted, follows by observing that for a partially

naïve agent, the posterior probability of C after an objective history (ht , st11) when
the recalled periods are Rt isð

C

�Q
t∈Rt

m̂st11
st, ytð Þpst ytð Þ

	
1 2os∈Soy∈Y z sð Þps yð Þm̂st11

s, yð Þ
� 	t2 Rtj j

dm pð Þð
Θ

�Q
t∈Rt

m̂st11
st, ytð Þpst ytð Þ

	
1 2os∈Soy∈Y z sð Þps yð Þm̂st11

s, yð Þ
� 	t2 Rtj j

dm pð Þ
,

and then using an argument analogous to the proof of theorem 1.
Proposition 7. When the agent is partially naïve, every limit strategy is a

selective-memory equilibrium.
Moreover, as with notions of partial naïveté in cursed equilibrium and quasi-

hyperbolic discounting, one can define a parametric notion of partial naïveté by
assuming that m̂s0(s, y) 5(1 2 a) 1 ams0(s, y). For a 5 0 the agent is fully naïve
and unaware of their memory limitations. For a 5 1 the agent is sophisticated
and understands their memory limitations, and so has correct long-run beliefs.

The next example shows that the amount of naïveté can have a nonmonotonic
effect when there are more than two actions.

Example 9. Suppose that the agent has three alternatives. They can either “do
nothing,” a 5 n with certain payoff of 0, do a quick job a 5 k with payoff 1 if the
job succeeds and21 otherwise, or do a careful and time-consuming job a 5 h at
cost 0.6 that yields 1 2 0:6 5 0:4 if the project succeeds and21.6 otherwise. The
probability of success in the quick job is some unknown p ∈ ½0, 1�, while the prob-
ability of success in the careful job is 2p for p ≤ 0:45 and 2p=11 1 9=11 otherwise.
The agent’s prior assigns positive probability to all p ∈ ½0, 1�, where p is a reflec-
tion of the agent’s ability.

The true probability is p* 5 0:2, so Ep* ½u(n, �)� > Ep* ½u(k, �)� > Ep* ½u(h, �)�.
Suppose that the agent has ego-boosting bias, in that they always recall successes
and recall failures with probability 0.03. Here welfare is nonmonotone in the
amount of partial naïveté of the agent. For a fully sophisticated agent, the
unique selective-memory equilibrium is the objectively optimal n, while a naïve
39 This is true in particular when the agent is fully naïve and m̂ is identically 1, even
though the maximand becomes ill-defined. To see why, note that when m̂s0(�) 5 ks0 for
some constants ks0 < 1, the maximand is

1 2o
s∈S
o
y∈Y

ms 0 s, yð Þz sð Þps* yð Þ
 !

log 1 2 ks0ð Þ 1o
y∈Y
o
s∈S

ms0 s, yð Þz sð Þps* yð Þ log ks0ð Þ

1o
y∈Y
o
s∈S

ms0 s, yð Þz sð Þps* yð Þ log ps yð Þð Þ:

The first terms do not depend on p, so Θm,m̂
s 0 5 Θm

s0 , and in particular complete naïveté is
reached in the limit where all ks0 → 1.
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agent has two selective-memory equilibria, n and k, with the latter sustained by the
incorrect belief that their ability is so high that k is better than h. However, if the
agent believes that they recall the failures with probability 0.12, playing the worst
action h is a selective-memory equilibrium because the agent ends up believing
that the probability of success is 0.5, which makes h the unique best reply.
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