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1. Introduction

Legislative district boundaries are drawn by political partisans under many electoral
systems (Bickerstaff, 2020). In the United States, the importance of districting has ac-
celerated with the rise of computer-assisted districting (Newkirk, 2017), together with
intense partisan efforts to gain and exploit control of the districting process. These
trends culminated in “The Great Gerrymander of 2012” (McGhee, 2020), where the
Republican party’s Redistricting Majority Project (REDMAP), having previously tar-
geted state-level elections that would give Republicans control of redistricting, aggress-
ively redistricted several states, including Michigan, Ohio, Pennsylvania, and Wiscon-
sin. The resulting districting plans are widely viewed as contributing to the outcome
of the 2012 general election, where Republican congressional candidates won a 33-seat
majority in the House of Representatives with 49.4% of the two-party vote (McGann,
Smith, Latner, and Keena, 2016). In light of these developments—along with the Su-
preme Court ruling in Rucho v. Common Cause (2019) that partisan gerrymanders
are not judiciable in federal court, and the continued prominence of gerrymandering
in the 2020 US redistricting cycle (Rakich and Mejia, 2022)—partisan gerrymandering
looks likely to remain an important feature of American politics for some time.

This paper studies the problem of a partisan gerrymanderer (the “designer”) who as-
signs voters to a large number of equipopulous districts so as to maximize his party’s
expected seat share.1 This problem approximates the one facing many partisan ger-
rymanderers in the United States. In particular, the constraint that districts must be
equipopulous is crucial and is strictly enforced by law.2 In practice, gerrymanderers
also face other significant constraints, such as the federal requirements that districts
are contiguous and do not discriminate on the basis of race, and various state-level re-
strictions, such as “compactness” requirements, requirements to respect political sub-
divisions such as county lines, requirements to represent racial or ethnic groups or
other communities of interest, and so on. While these complex additional constraints
are important in some cases, we believe that often they are not as binding as they
might seem, and also that they are more productively considered on a case-by-case

1Of course, studying this problem does not endorse gerrymandering, any more than studying mono-
polistic behavior endorses monopoly.
2In Karcher v. Daggett (1983), the Supreme Court rejected a districting plan in New Jersey with
less than a 1% deviation from population equality, finding that “there are no de minimus population
variations, which could practically be avoided, but which nonetheless meet the standard of Article I,
Section 2 [of the U.S. Constitution] without justification.”
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basis rather than as part of a general theoretical analysis.3 We therefore follow much
of the literature (discussed below) in focusing on the simpler problem with only the
equipopulation constraint.

When the designer has perfect information, it is well-known that the solution to this
problem is pack-and-crack: if the designer’s party is supported by a minority of voters
of size m < 1/2, he “packs” 1− 2m opposing voters in districts where he receives zero
votes, and “cracks” the remaining 2m voters in districts which he wins with 50% of the
vote.4 We instead consider the more general and realistic case where the designer must
allocate a variety of types of voters (or, more realistically, groups of voters such as
census blocks or precincts) under uncertainty. The goal of this paper is to characterize
optimal partisan gerrymandering in this setting, to compare optimal gerrymandering
with simple and realistic forms of packing-and-cracking, and to draw some implications
for broader legal and political economy issues.

In outline, our model and results are as follows. We assume that the designer faces
both aggregate, district-level uncertainty (how many votes his party will receive) and
idiosyncratic, voter-level uncertainty (which voters will vote for his party). Aggregate
uncertainty is parameterized by a one-dimensional aggregate shock, while voters are
parameterized by a one-dimensional type that determines a voter’s probability of voting
for the designer’s party for each value of the aggregate shock. We focus on the case
where the aggregate shock is unimodal and where moderate voters are “swingier” than
more extreme voters, in that their vote probabilities swing more with the aggregate
shock. In this case, we argue that a class of districting plans that we call pack-and-
pair—which generalize pack-and-crack—are typically optimal for the designer. Under
pack-and-pair districting, the designer creates weaker districts that are packed with a
single type of voter (which are analogous to the packed districts under pack-and-crack),
and stronger districts that contain two voter types (which are analogous to the cracked
districts under pack-and-crack).

3See Friedman and Holden (2008) for more discussion of these constraints. For example, contiguity is
not as severe a constraint as it might seem, because contiguous districts can have extremely irregular
shapes. The title of this paper, typeset in Gerry font (https://www.uglygerry.com/), contains many
examples of irregularly shaped districts.
4If the designer has majority support, he can win all the districts.
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We further show that the optimal form of pack-and-pair districting depends on the
relative amounts of aggregate and idiosyncratic uncertainty. When idiosyncratic un-
certainty dominates, it is optimal to pack opposing voters and pair more favorable
voters. This pack-opponents-and-pair plan (henceforth, POP) resembles traditional
packing-and-cracking. POP also resembles the “p-segregation” plan introduced by
Gul and Pesendorfer (2010), where opposing voters are segregated and more favor-
able voters are all pooled together, rather than being paired as they are under POP.
When instead aggregate uncertainty dominates, it is optimal to pack moderate voters
and pair extreme voters. This pack-moderates-and-pair plan (henceforth, PMP) was
proposed under the name “matching slices” by Friedman and Holden (2008) and was
applied to redistricting law by Cox and Holden (2011). The pack-and-pair class thus
nests the main districting plans proposed in the literature. Our primary theoretical
contribution is identifying this class and showing that the optimal plan within this
class is determined by the relative amounts of aggregate and idiosyncratic uncertainty.

A rough intuition for these results is that when idiosyncratic uncertainty dominates,
the probability that the designer wins a district is approximately determined by the
mean voter type in the district, as in probabilistic voting models with partisan taste
shocks (e.g., Hinich 1977, Lindbeck and Weibull 1993). With a unimodal aggregate
shock, the distribution of district means is then optimized by segregating opposing
voters and pooling more favorable voters, as in p-segregation. When instead aggregate
uncertainty dominates, the probability that the designer wins a district is approxim-
ately determined by the median voter type in the district, as in probabilistic voting
models with an uncertain median bliss point (e.g., Wittman 1983, Calvert 1985). The
distribution of district medians is then optimized by pairing above-population-median
and below-population-median voter types, as in matching slices. However, the optimal
plans we identify (POP and PMP) are somewhat more intricate than p-segregation
and the simple form of matching slices emphasized by Friedman and Holden (2008):
POP pairs favorable voters, rather than pooling them all together as in p-segregation;
and PMP segregates an interval of intermediate voter types, rather than pairing all
types as in the simplest form of matching slices.

As we discuss in Section 6, whether optimal districting takes the form of POP or PMP
has significant implications for several political and legal issues surrounding redistrict-
ing, including redistricting reform and intra- and inter-district political polarization
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(see also Cox and Holden 2011). It is therefore important to understand whether idio-
syncratic or aggregate uncertainty is larger in practice. We answer this question using
precinct-level returns from the 2016, 2018, and 2020 US House elections. The data
clearly show that idiosyncratic uncertainty is much larger than aggregate uncertainty.
Intuitively, this finding results from the simple observation that, in practice, most
precinct vote splits are much closer to 50-50 (the vote split under high idiosyncratic
uncertainty) than 100-0 or 0-100 (the vote splits under high aggregate uncertainty).5

We therefore expect that, in practice, optimal districting takes the form of POP. We
also note, however, that the optimal POP plan is close to p-segregation under our es-
timated parameters. Thus, simple p-segregation plans are likely approximately optimal
in practice. This finding can help explain why actual gerrymandering usually resembles
p-segregation—or an even simpler form of pack-and-crack, where unfavorable voters
are pooled rather than segregated—instead of a more complicated plan like POP.

Methodologically, we establish a formal connection between gerrymandering—partitioning
voters into districts—and information design—partitioning states of the world into sig-
nals. The partisan gerrymandering problem we study is mathematically equivalent to a
general Bayesian persuasion problem with a one-dimensional state, a one-dimensional
action for the receiver, and state-independent sender preferences. Most of our results
are novel in the context of this persuasion problem. This paper thus directly contrib-
utes to information design as well as gerrymandering; more importantly, we establish
a strong connection between these two topics.6

1.1. Related Literature. The most related prior papers on optimal partisan gerry-
mandering are Owen and Grofman (1988), Friedman and Holden (2008), and Gul and
Pesendorfer (2010). Owen and Grofman’s model is equivalent to the special case of
our model with two voter types. Gul and Pesendorfer consider competition between
two designers who each control districting in some area and aim to win a majority of
seats.7 A simplified version of their model with a single designer is equivalent to the
5This observation also implies that models with only two types of voters or precincts (e.g., Owen
and Grofman 1988) cannot closely approximate the problem facing actual gerrymanderers, who must
decide how to allocate many different types of precincts.
6Contemporaneous papers by Lagarde and Tomala (2021) and Gomberg, Pancs, and Sharma (2023)
also emphasize connections between gerrymandering and information design, albeit in less general
models. Lagarde and Tomala assume two voter types, as in Owen and Grofman (1988); Gomberg,
Pancs, and Sharma assume no aggregate uncertainty. The closest paper in the persuasion literature
is our companion paper, Kolotilin, Corrao, and Wolitzky (2023), which we discuss later on.
7Friedman and Holden (2020) study designer competition in the model of their 2008 paper.
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special case of our model where vote swings are linear in voter types, which we discuss
in Section 3.4. Friedman and Holden consider essentially the same model as we do (and
in particular allow non-linear swings), but their main results concern the special case
where aggregate uncertainty is much larger than idiosyncratic uncertainty. In contrast,
we do not restrict the relative amounts of aggregate and idiosyncratic uncertainty, and
we show empirically that the practically relevant case is that where idiosyncratic uncer-
tainty dominates (i.e., the opposite of the case emphasized by Friedman and Holden).

The broader literature on gerrymandering and redistricting addresses a wide range of
issues, including geographic constraints on gerrymandering (Sherstyuk, 1998; Shotts,
2001; Puppe and Tasnádi, 2009), gerrymandering with heterogeneous voter turnout
(Bouton, Genicot, Castanheira, and Stashko, 2023), socially optimal districting (Gil-
ligan and Matsusaka, 2006; Coate and Knight, 2007; Bracco, 2013), measuring district
compactness (Chambers and Miller, 2010; Fryer and Holden, 2011; Ely, 2022), the in-
teraction of redistricting and policy choices (Shotts, 2002; Besley and Preston, 2007),
measuring gerrymandering (Grofman and King, 2007; McGhee, 2014; Stephanopoulos
and McGhee, 2015; Duchin, 2018; Gomberg, Pancs, and Sharma, 2023), and assessing
the consequences of redistricting (among many: Gelman and King, 1994b; McCarty,
Poole, and Rosenthal, 2009; Hayes and McKee, 2009; Jeong and Shenoy, 2022). As
the partisan gerrymandering problem interacts with many of these issues, our analysis
may facilitate future research in these areas.

1.2. Outline. The paper is organized as follows: Section 2 presents the model. Sec-
tion 3 analyzes some benchmark cases. Section 4 contains our main theoretical and
numerical results. Section 5 contains our empirical results. Section 6 discusses policy
implications. Section 7 concludes. All proofs are deferred to the appendix.

2. Model

We consider a standard electoral model with one-dimensional voter types (paramet-
erizing a voter’s probability of voting for the designer’s party) and one-dimensional
aggregate uncertainty in each district-level race (parameterizing the designer’s aggreg-
ate vote share).

Voters and Vote Shares. There is a continuum of voters. Each voter has a type
s ∈ [s, s], which is observed by the designer.8 The population distribution of voter types
8In our empirical implementation, s will correspond to the precinct the voter lives in.
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is denoted by F . The aggregate shock is denoted by r ∈ R; its marginal distribution
in each district is denoted by G.9 We assume that F and G are sufficiently smooth
and that the corresponding densities f and g are strictly positive.10

The share of type-s voters who vote for the designer in a district where the aggregate
shock takes value r is deterministic and is denoted by v(s, r) ∈ [0, 1].11 The function
v(s, r) plays a key role in our analysis. We assume that v(s, r) is strictly increasing
in s and strictly decreasing in r. Thus, higher voter types are stronger supporters of
the designer (i.e., they vote for him with higher probability for every r), and higher
aggregate shocks are worse for the designer (i.e., they reduce the probability that each
voter type votes for him). The model thus lets different voter types “swing” by different
amounts in response to an aggregate shock, but it does assume that all types swing
in the same direction.12 We also impose the technical assumptions that v(s, r) is four-
times differentiable and satisfies limr→∞ v(s, r) = 0 and limr→−∞ v(s, r) = 1 for all
s.

An interpretation of the vote share function v(s, r) is that each voter is hit by an
idiosyncratic “taste shock” t ∈ R and votes for the designer if and only if

s− r − t ≥ 0.

With this interpretation, when the taste shock distribution is Q, we have

v(s, r) = Q(s− r) for all (s, r).

Mathematically, this “additive taste shock” case arises when the function v(s, r) is
translation-invariant: i.e., depends only on the difference s− r. In this case, the model
is parameterized by three distributions: F , G, and Q. However, scaling s, r, and t by
the same constant leaves the model unchanged, so we can normalize the variance of

9The correlation among district-level aggregate shocks is irrelevant for our theoretical analysis, so we
only describe the marginal distribution, G. However, we will empirically estimate the correlation.
10It suffices that distributions F , G, and Q (defined below) are four-times differentiable. We also
consider discrete distributions in some benchmark cases.
11In our empirical implementation, v(s, r) will correspond to the designer’s vote share in precinct s
given shock r.
12As the aggregate shock can differ across districts, the model allows political “realignments” where
different districts move in opposite directions, but it excludes realignments where different voter groups
within the same district do so.
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one of these three variables to 1. We will thus assume, without loss, that the variance
of t is 1.13

The designer thus faces two kinds of uncertainty: aggregate, district-level uncertainty
(captured by r) and idiosyncratic, voter-level uncertainty (captured by t, or more
generally by the extent to which v(s, r) lies away from the extremes of 0 and 1). Many
of our results will involve comparing the “amount” of each kind of uncertainty.

Districting Plans. The designer allocates voters among a continuum of equipopulous
districts based on their types s, and thus determines the distribution P of s in each
district.14 A district is characterized by the distribution P of voter types s it contains.
Thus, a districting plan—which specifies the measure of districts with each voter-type
distribution P—is a distribution H over distributions P of s, such that the population
distribution of s is given by F : that is, H ∈ ∆∆[s, s] and∫

P (s)dH(P ) = F (s) for all s.

For example, under uniform districting, where all districts are the same, H assigns
probability 1 to P = F . In the opposite extreme case of segregation, where each
district consists entirely of one type of voter, every distribution P in the support of H
takes the form P = δs for some s ∈ [s, s], where δs denotes the degenerate distribution
on voter type s.

Designer’s Problem. The designer wins a district iff he receives a majority of the
district vote. Thus, the designer wins a district with voter type distribution P (hence-
forth, “district P”) iff the district’s aggregate shock r satisfies

∫
v(s, r)dP (s) ≥ 1/2.

Since v(s, r) is decreasing in r, the designer wins district P iff

r ≤ r∗(P ) :=

{
r :

∫
v(s, r)dP (s) =

1

2

}
.

We say that a district P ′ is weaker than another district P if r∗(P ′) < r∗(P ). Since the
aggregate shock has the same distribution G in all districts, the designer wins weaker
districts with lower probability.
13Except in the benchmark case considered in Section 3.3, where Q is degenerate.
14Since districting plans in the US are drawn at the state level, our continuum model implicitly assumes
that each state contains a large number of districts. Obviously, this is a better approximation for
state legislative districts and for congressional districts in large states than it is for congressional
districts in small states. Introducing integer constraints on the number of districts, while interesting
and realistic, would substantially complicate the analysis and would risk obscuring our main insights.
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We assume that the designer maximizes his party’s expected seat share.15 Thus, the
designer’s problem is

max
H∈∆∆[s,s]

∫
G(r∗(P ))dH(P )

s.t.
∫

PdH(P ) = F.

This problem nests the partisan gerrymandering problems of Owen and Grofman
(1988), Friedman and Holden (2008), and (with a single designer) Gul and Pesen-
dorfer (2010).16 It is also equivalent to a Bayesian persuasion problem, where the
designer splits a prior distribution F into posterior distributions P , and obtains utility
G(r∗(P )) from inducing posterior P .17

3. Benchmark Cases

We first consider four benchmark cases:

(1) There is no uncertainty.

(2) There is idiosyncratic uncertainty but no aggregate uncertainty.

(3) There is aggregate uncertainty but no idiosyncratic uncertainty.

(4) Both kinds of uncertainty are present, but swings are linear in voter types.

These cases illustrate the key forces in the model and set up our main analysis. The
benchmark cases with only one kind of uncertainty are much more tractable than the
general case with both kinds, but they give a good indication of the form of optimal
districting plans when both kinds of uncertainty are present but one kind is much larger
than the other. We will see that this case is relevant in practice, where idiosyncratic
uncertainty is much larger than aggregate uncertainty. Similarly, the linear swing case

15See Section 7 and Kolotilin and Wolitzky (2020) for discussion of more general designer objectives.
16Gul and Pesendorfer (2010) consider a majoritarian objective with both state-level and district-
level aggregate shocks. However, after conditioning on the pivotal value of the state-level shock, their
problem becomes equivalent to maximizing expected seat share with only district-level shocks.
17Specifically, the designer’s problem is equivalent to the state-independent sender case of the persua-
sion problem studied in Kolotilin, Corrao, and Wolitzky (2023), which specializes the general Bayesian
persuasion problem of Kamenica and Gentzkow (2011) by assuming that the state and the receiver’s
action are one-dimensional, the receiver’s utility is supermodular and concave in his action, and the
sender’s utility is independent of the state and increasing in the receiver’s action. In the gerrymander-
ing context, state-independent sender preferences reflect the fact that the designer cares only about
how many districts he wins and not directly about the composition of these districts.
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is very tractable and is a good guide to the more realistic case where swings deviate
from linearity systematically but by a relatively small amount.

3.1. Perfect Information: Pack-and-Crack. With perfect information, optimal
gerrymandering takes a simple and well-known form.

Proposition 1. Assume there is no uncertainty: there exists r0 such that r = r0 with
certainty, and v(s, r0) = 1{s ≥ r0} for all s. Denote the fraction of the designer’s
supporters by m = 1− F (r0).

(1) If m ≥ 1/2, a districting plan is optimal iff it creates measure 1 of districts
where PrP (s ≥ r0) ≥ 1/2. Under such a plan, the designer wins all districts.

(2) If m < 1/2, a districting plan is optimal iff it creates measure 2m of “cracked”
districts where PrP (s ≥ r0) = PrP (s < r0) = 1/2 and measure 1 − 2m of
“packed” districts where PrP (s < r0) = 1. Under such a plan, the designer
wins the cracked districts.

Case (1) says that a designer with majority support wins all the districts (e.g., with
uniform districting). Case (2) says that a designer with minority support m < 1/2

wins 2m districts with 50% of the vote, and gets zero votes in the remaining 1 − 2m

districts. We call any optimal plan in case (2) pack-and-crack.

When m < 1/2 and voter types are continuous, there are many pack-and-crack plans.
For example, some types of supporters can be assigned to only a subset of cracked
districts, and some types of opponents can be assigned only to packed districts. This
seemingly pedantic point will become important once we introduce uncertainty, because
optimal plans under a small amount of uncertainty will approximate some but not all
pack-and-crack plans.

Figure 1 illustrates four pack-and-crack plans that play important roles in our ana-
lysis. Panel (a) is what we call traditional pack-and-crack: the strongest opposing
voters are pooled in one type of district, while the remaining voters (a mix of support-
ers and opponents) are pooled in another type of district. Panel (b) is the same, except
now each strong opposing type is segregated in a distinct, homogeneous district. We
call this plan pack-opponents-and-pool. This plan was previously studied by Gul and
Pesendorfer (2010), who called it “p-segregation.” Panel (c) is the same as Panel (b),
except now favorable voter types are matched in a negatively assortative manner to
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1− 2x0 x0 x0

pooling pooling

(a) traditional pack-and-crack

1− 2x0 x0 x0

segregation pooling

(b) pack-opponents-and-pool
(p-segregation)

1− 2x0 x0 x0

segregation pairing

(c) pack-opponents-and-pair (POP)
x0 1− 2x0 x0

pairing

(d) pack-moderates-and-pair (PMP)
(matching slices)

Figure 1. Four Varieties of Pack-and-Crack

Notes: In each panel, the horizontal axis is the interval of voter types,
s, where red voters are supporters and blue voters are opponents. The
designer wins red districts and loses blue ones. Solid shading indic-
ates pooling; curved lines connecting two voter types indicate pairing;
hatched shading indicates segregation.

form distinct districts. We call this plan pack-opponents-and-pair, or POP. This plan
plays a central role in our analysis, as we will see that it is optimal for realistic para-
meter values; however, we will also see that the simpler traditional pack-and-crack and
pack-opponents-and-pool plans are approximately optimal for the same parameters.

Finally, we call the plan in Panel (d)—where extreme voter types are matched in
a negatively assortative manner, and intermediate voter types are segregated—pack-
moderates-and-pair, or PMP. This plan was previously studied by Friedman and Holden
(2008), who called it “matching slices.”18 We also refer to the extreme form of PMP

18Friedman and Holden did not emphasize the possibility of segregating a non-trivial interval of
intermediate voter types under matching slices, but their results allow this possibility, and we will see
that this is actually the typical case.
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where the segregation region is degenerate, so that only a single voter type is segregated,
as negative assortative districting.

3.2. No Aggregate Uncertainty. We next consider the case with idiosyncratic un-
certainty but no aggregate uncertainty. As we will see, this case is fairly realistic, as
empirically idiosyncratic uncertainty is much larger than aggregate uncertainty.

Proposition 2. Assume there is no aggregate uncertainty: there exists r0 such that
r = r0 with certainty.

(1) If
∫
v(s, r0)dF (s) ≥ 1/2, a districting plan is optimal iff it creates measure 1

of districts where
∫
v(s, r0)dP (s) ≥ 1/2. Under such a plan, the designer wins

all districts.

(2) If
∫
v(s, r0)dF (s) < 1/2, let s∗ satisfy

∫ s

s∗
(v(s, r0)−1/2)dF (s) = 0. A districting

plan is optimal iff it creates measure 1−F (s∗) of cracked districts where PrP (s ≥
s∗) = 1 and

∫ s

s∗
v(s, r0)dP (s) = 1/2, and measure F (s∗) of packed districts where

PrP (s < s∗) = 1. Under such a plan, the designer wins the cracked districts.

In case (1), the designer wins all districts under uniform districting. In case (2), the
designer assigns all voter types s > s∗ to cracked districts that he wins with exactly
50% of the vote, and packs the remaining voters arbitrarily. The intuition is that the
designer wins a district iff the mean vote share v(s, r0) among voters in the district
exceeds 50%, so to win as many districts as possible the designer assigns only voter
types above s∗ to cracked districts. This plan approximates the pack-and-crack vote
share pattern as closely as possible, given the uncertainty facing the designer.

The optimal plans in Proposition 2 are the optimal perfect-information plans that pack
opponents (e.g., the plans in Figure 1(a)–(c)). So, pack-and-crack plans that pack
opponents can be optimal with idiosyncratic uncertainty but no aggregate uncertainty,
but plans that pack moderates (e.g., PMP) cannot. In Sections 4 and 5, we will see
that idiosyncratic uncertainty dominates aggregate uncertainty in practice. Hence, any
optimal plan in Proposition 2—for example, traditional pack-and-crack—will prove to
be approximately optimal for realistic parameters.

3.3. No Idiosyncratic Uncertainty. We now turn to the case with aggregate un-
certainty but no idiosyncratic uncertainty.
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Proposition 3. Assume there is no idiosyncratic uncertainty: v(s, r) = 1{s ≥ r} for
all (s, r). Denote the population median voter type by sm = F−1(1/2). A districting
plan H is optimal iff for H−almost every district P there exists a voter type sP ≥ sm

such that PrP (s = sP ) = PrP (s < sm) = 1/2. Under such a plan, the designer wins
district P iff r ≤ sP .

That is, for each voter type s above the population median, the designer creates a
district consisting of 50% voters with this type and 50% voters with below-median
types. Note that, for every realization of aggregate uncertainty r ∈ (s, s), the designer
wins some districts with exactly 50% of the vote and wins zero votes in all other
districts. This is precisely the pack-and-crack vote share pattern.

The intuition for Proposition 3 is easy to see with a finite number N of districts.
With no idiosyncratic uncertainty, the probability that the designer wins a district is
determined by its median voter type. The strongest district the designer can possibly
create is formed by combining the 1/(2N) highest voter types with any other voters:
that is, it is impossible to create a district where the median voter is above the 1 −
1/(2N) quantile of the population distribution. Similarly, it is impossible to create n

districts where the median voter is everywhere above the 1 − n/(2N) quantile. But,
by creating districts one at time by always combining the 1/(2N) highest remaining
voters with 1/(2N) below-median voters, the designer ensures that the median voter
in the nth strongest district is exactly the 1−n/(2N) quantile. So this plan is optimal.

The optimal plans in Proposition 3 are a subset of optimal perfect-information plans.
For example, the PMP plan in Figure 1(d) remains optimal when v(s, r) = 1{s ≥ r}
but r is not degenerate, while the plans in Figures 1(a)–(c) that pack opponents are
not optimal in this setting. This result is consistent with Friedman and Holden (2008),
who show that matching slices is optimal when idiosyncratic uncertainty is sufficiently
small, under some additional assumptions which we discuss in Section 4.1.19

3.4. Linear Swing. Our last benchmark case is when vote shares and swings are
linear in voter types. There are two equivalent ways to define this case. The simplest

19Note that in every optimal plan in Proposition 3, all voters with the highest type s are assigned to
the same district: in Friedman and Holden’s words, “one’s most ardent supporters should be grouped
together.” This is what Friedman and Holden mean when they write that “cracking is never optimal”
and summarize their findings as “sometimes pack, but never crack.”

12



definition is that vote shares v(s, r) are linear in s:

v(s, r) =
s− s

s− s
v(s, r) +

s− s

s− s
v(s, r) for all (s, r).

An alternative, equivalent definition is that vote swings are linear in s. To state this
definition, first define the swing of a voter type s when the aggregate shock changes
from r′ to r by

∆r,r′

s = v(s, r)− v(s, r′).

We then say that swings ∆r,r′
s are linear in s if

∆r,r′

s = ρ(s)∆r,r′

s + (1− ρ(s))∆r,r′

s for all (s, r, r′), where

ρ(s) =
v(s, r)− v(s, r)

v(s, r)− v(s, r)
=

v(s, r′)− v(s, r′)

v(s, r′)− v(s, r′)
.

It is easy to see that, up to a rescaling of s, vote shares are linear iff swings are linear.

The linear case nests the uniform swing case where ∆r,r′
s is independent of s (for

each r, r′), so the aggregate shock shifts the vote share equally for all voter types.
Political scientists often assume uniform swing to study how a given districting plan
would perform under different electoral outcomes.20 The linear case also nests the case
where voter types are binary (i.e., supp(F ) = {s, s}), as well as the no-aggregate-
uncertainty case considered in Section 3.2. However, the no-idiosyncratic-uncertainty
case considered in Section 3.3 cannot be linear, unless voter types are binary.

The key simplification afforded by linearity is that the threshold shock r∗(P ) for win-
ning a district P depends only on the district mean voter type x = EP [s]. Under
linearity, the designer thus effectively chooses a distribution H(x) of mean types x,
rather than a distribution H(P ) of distributions of types P . With this formulation, the
constraint

∫
PdH(P ) = F simplifies to the requirement that F is a mean-preserving

spread of H.21

Slightly abusing notation, the designer wins districts with mean voter type at least x

iff r ≤ r∗(x). The probability of this event is

U(x) := G(r∗(x)).

20See, e.g., Katz, King, and Rosenblatt (2020) for a discussion of this methodology.
21One way to see this is by analogy to statistics, where if a state s is distributed according to F then
there exists an experiment such that the distribution of posterior expectations of s is given by H iff
F is a mean-preserving spread of H (e.g., Blackwell, 1953; Kolotilin, 2018).
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We can view U as the distribution of a re-scaled aggregate shock z where the designer
wins a district with mean type x iff z ≤ x. The designer’s problem is now

max
H∈∆[s,s]

∫
U(x)dH(x)

s.t. F is a mean-preserving spread of H.

Clearly, uniform districting is optimal if U is concave, and segregation is optimal if
U is convex. However, a more realistic assumption is that U is strictly S-shaped, so
the marginal impact of replacing a less favorable voter with a more favorable one on
the probability of winning a district is first increasing and then decreasing. Formally,
this means that there is an inflection point xi ∈ [0, 1] such that U is strictly convex
on [0, xi] and strictly concave on [xi, 1]; equivalently, the re-scaled aggregate shock z

is unimodal.

We will see that U being S-shaped is closely related to the optimality of pack-opponents-
and-pool districting (i.e., p-segregation, see Figure 1(b)), where voter types below some
cutoff s∗ are segregated, and voter types above s∗ are pooled in districts with mean
voter type x∗ = EF [s|s ≥ s∗]. Under pack-opponents-and-pool districting with cutoff
s∗ and pool mean x∗ = EF [s|s ≥ s∗], the designer’s expected seat share is∫ s∗

s

U(x)dF (x) + U(x∗)(1− F (s∗)).

The best pack-opponents-and-pool plan is the one where s∗ is chosen to maximize
this expectation. When the optimal value of s∗ is interior, it is characterized by the
first-order condition

u(x∗)(x∗ − s∗) = U(x∗)− U(s∗).22

The intuition for this equation is that a marginal increase in s∗ increases the pool
mean, which increases the designer’s expected seat share by u(x∗)(1−F (s∗))dx∗/ds∗ =

u(x∗)(x∗ − s∗)f(s∗); but also decreases the mass of pooled voters, which decreases
the designer’s expected seat share by (U(x∗)− U(s∗))f(s∗). The first-order condition
equates the marginal benefit and marginal cost. See Figure 2.

A simple result is that pack-opponents-and-pool is optimal when U is strictly S-shaped.

22This equation is analogous to equation (12) of Gul and Pesendorfer (2010).
14



1

s s

U(s∗)

U(x∗)

s∗ x∗

U

segregation pooling

x

Figure 2. Optimal Pack-Opponents-and-Pool Districting

Proposition 4. In the linear case where U is strictly S-shaped, pack-opponents-and-
pool districting is optimal. Moreover, every optimal districting plan has the same
distribution of district means.

Intuitively, when U is S-shaped the designer is risk-loving in the pool mean x for
x ∈ [0, s∗] and is risk-averse in x “on average” for x ∈ [s∗, 1], so voters below s∗ are
segregated and voters above s∗ are pooled. Similar results were established by Gul and
Pesendorfer (2010) and, in the persuasion literature, Kolotilin (2018) and Kolotilin,
Mylovanov, and Zapechelnyuk (2022).

As aggregate uncertainty vanishes, the best pack-opponents-and-pool plan converges
to the plan characterized in Proposition 2 with segregated packed districts.23 Thus,
traditional pack-and-crack (where packed districts are pooled) and pack-opponents-
and-pool and POP (where packed districts are segregated) are all optimal without ag-
gregate uncertainty, but only the latter two plans remain optimal with a small amount
of aggregate uncertainty.24 Note that pack-opponents-and-pool and POP induce the
same distribution of district mean types, and hence may both be optimal even when the
optimal distribution of means is unique. However, the designer’s indifference among
23Note that as G converges to the step function 1{r ≥ r0}, U converges to the step function 1{x ≥ xi},
where xi is the solution to v(xi, r0) = 1/2. The first-order condition then reduces to the condition
that x∗ = xi, which yields the same condition for s∗ as in Proposition 2.
24Intuitively, the designer segregates packed districts to have a respectable chance of winning the
strongest of these districts.
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different ways of creating cracked districts with the same mean type is not robust to
introducing slightly non-linear swings, as we show in the next section.

Remark 1 (Means vs. Medians). An intuition for why packing opponents is op-
timal with linear swings and unimodal aggregate shocks (including in the no-aggregate-
uncertainty case), while packing moderates is optimal with no idiosyncratic uncer-
tainty, is that the designer targets a distribution of district means in the former case
and district medians in the latter case. Optimizing the distribution of district means
with unimodal aggregate uncertainty entails packing opponents and cracking moder-
ates and supporters among districts with the same mean type. Optimizing the distribu-
tion of district medians entails matching voter types above and below the population
median. Loosely speaking, whether packing opponents or moderates is optimal in
practice depends on whether reality is closer to the linear/mean-dependent case or the
no-idiosyncratic-uncertainty/median-dependent case.

The distinction between mean and median-dependence can be used to classify several
strands of related literature. In gerrymandering, Owen and Grofman (1988) and Gul
and Pesendorfer (2010) study the mean-dependent case, while Friedman and Holden
(2008) study an approximately median-depedent case. In electoral competition, prob-
abilisitic voting models with partisan taste shocks such as Hinich (1977) and Lindbeck
and Weibull (1993) are mean-dependent, while stochastic median voter models such as
Wittman (1983) and Calvert (1985) are median-dependent. In persuasion, Gentzkow
and Kamenica (2016), Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017), Kolotilin
(2018), Dworczak and Martini (2019), and Kleiner, Moldovanu, and Strack (2021)
study the mean-depedent case, while Kolotilin, Corrao, and Wolitzky (2023) study a
general case nesting both the mean and quantile (e.g., median)-dependent case, and
Yang and Zentefis (2023) study the quantile-dependent case.

4. General Analysis

We now consider the general case with both idiosyncratic and aggregate uncertainty
and non-linear swings. We first impose a natural curvature assumption on swings, and
show that it implies that optimal districting is “strictly single-dipped,” in that more
extreme voters are assigned to stronger districts. We then argue that optimal strictly
single-dipped districting plans typically take a “pack-and-pair” form, where weaker
districts are segregated and stronger districts consist of exactly two voter types. POP
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and PMP are leading examples of pack-and-pair plans. We next provide theoretical
and numerical results that delineate the parameter ranges where POP or PMP is
optimal. Here we find that POP is optimal when idiosyncratic uncertainty is much
larger than aggregate uncertainty, PMP is optimal when aggregate uncertainty is larger
than idiosyncratic uncertainty, and mixed versions of POP or PMP are optimal in
the intermediate range. Finally, we observe that when idiosyncratic uncertainty is
sufficiently dominant (as we will see is the case in practice), the optimal POP plan
closely resembles p-segregation, and both p-segregation and traditional pack-and-crack
districting are approximately optimal.

4.1. Swingy Moderates and Single-Dipped Districting. The linear swing case
considered in Section 3.4 is a natural benchmark, but it makes the counterfactual pre-
diction that the “swingiest” voters—those with the largest ∆r,r′

s —are “extremists” with
s ∈ {s, s}. In contrast, election forecasters (and, presumably, sophisticated gerryman-
derers) take into account that moderate voters are usually swingier than extremists. As
Nathaniel Rakich and Nate Silver put it when describing the “elasticity scores” in the
FiveThirtyEight.com forecasting model, “Voters at the extreme end of the spectrum—
those who have a close to a 0 percent or a 100 percent chance of voting for one of the
parties—don’t swing as much as those in the middle,” (Rakich and Silver, 2018). We
provide some evidence for this claim in Section 5.

The following assumption formalizes the idea that moderates are swingier than ex-
tremists.

Assumption 1 (Swingy Moderates). We have

∂2

∂s∂r
ln
(
∂v(s, r)

∂s

)
> 0 for all s, r. (1)

To see why Assumption 1 corresponds to moderates being swingy, note that integrating
(1) gives, for all s < s′ < s′′ and r < r′,

(v(s′′, r′)− v(s′, r′))(v(s′, r)− v(s, r)) > (v(s′′, r)− v(s′, r))(v(s′, r′)− v(s, r′)),

or equivalently

∆r,r′

s′ >
v(s′′, r)− v(s′, r)

v(s′′, r)− v(s, r)
∆r,r′

s +
v(s′, r)− v(s, r)

v(s′′, r)− v(s, r)
∆r,r′

s′′ for all s < s′ < s′′, r < r′. (2)
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Recall that the linear case is defined by having equality in (2). Thus, Assumption
1 says that, for any pair of aggregate shocks r < r′ and any triple of voter types
s < s′ < s′′, when the aggregate shock improves from r′ to r, type s′ voters swing
toward the designer more than type s and s′′ voters, relative to the linear case.

We mention an equivalent condition and an implication of Assumption 1.

Proposition 5. The following hold:

(1) In the additive taste shock case, Assumption 1 holds iff the density q of the taste
shock t is strictly log-concave:

d2

dt2
ln (q(t)) < 0 for all t.

(2) Assumption 1 implies that ∂v(s, r)/∂r is strictly single-dipped (i.e., decreasing
and then increasing) in s, for each r.

Many common distributions have strictly log-concave densities, including the normal,
logistic, and extreme value distributions (see, e.g., Table 1 in Bagnoli and Bergstrom
2005), so part 1 of the proposition shows that Assumption 1 is a standard property.
The property in part 2 of the proposition gives another sense in which moderates are
swingier than extremists. For example, for any s < s′ < s′′, this property implies that
(letting vr = ∂v/∂r) if vr(s, r) = vr(s

′′, r), then vr(s
′, r) < vr(s, r) = vr(s

′′, r) < 0

(recalling that vr < 0), so type s′ is swingier than types s and s′′.

We now show that Assumption 1 implies that every optimal districting plan is “strictly
single-dipped,” in that more extreme voters are assigned to stronger districts. Formally,
a districting plan H is strictly single-dipped if any district P ∈ supp(H) containing any
two voter types s < s′′ is stronger than any district P ′ ∈ supp(H) containing any
intervening voter type s′ ∈ (s, s′′), in that r∗(P ′) < r∗(P ).25 Note that if districting is
strictly single-dipped then each district contains at most two distinct voter types.

Proposition 6. Under Assumption 1, every optimal districting plan is strictly single-
dipped.

25Formally, we say that a district P “contains” a voter type s if s ∈ supp(P ).
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Similar results were established by Friedman and Holden (2008) and, in the persuasion
context, Kolotilin, Corrao, and Wolitzky (2023).26 To see the intuition, suppose a
districting plan creates two districts, 1 and 2, with the same threshold aggregate shock
r∗, but where District 1 contains moderates and District 2 contains a mix of left-wing
and right-wing extremists. With linear swings, the distribution of vote shares in the
two districts are identical. However, under Assumption 1, the vote share is swingier in
District 1 than in District 2. Thus, conditional on the aggregate shock being close to
r∗, a marginal voter is more likely to be pivotal in District 2 than in District 1. The
designer can then profitably exploit this asymmetry by re-allocating some unfavorable
voters to District 1 and re-allocating some favorable voters to District 2, thus weakening
the moderate District 1 and strengthening the extreme District 2. Breaking all ties in
favor of extreme disticts in this manner leads to strictly single-dipped districting.

Proposition 6 implies that, under Assumption 1, the designer should never pool more
than two voter types in the same district. Thus, among the plans in Figure 1, only
POP and PMP can be optimal under Assumption 1 (and, moreover, more extreme
paired districts under these plans must be stronger than more moderate districts). In
particular, while pack-opponents-and-pool is optimal with linear swings and unimodal
aggregate shocks, if moderates are even slightly swingier than extremists then the
designer is better-off splitting the pool into distinct districts each consisting of at most
two types such that more extreme districts are strictly stronger.

4.2. Pack-and-Pair Districting. Strict single-dippedness is an important property
of a districting plan, but many plans can be strictly single-dipped. This subsection
argues that, among strictly single-dipped plans, it is natural to focus on “pack-and-
pair” districting, where weaker districts are segregated and stronger districts consist
of exactly two voter types. Formally, a strictly single-dipped districting plan H is
pack-and-pair if δs ∈ supp(H) implies that any P ∈ supp(H) such that r∗(P ) < r∗(δs)

takes the form P = δs′ for some s′ < s.

For simplicity, for the remainder of the current section, we restrict attention to the
additive taste shock case, and assume that the taste shock density is strictly log-concave

26Assumption 1 is equivalent to Friedman and Holden’s “informative signal property.” Friedman
and Holden assume a finite number of districts, and also assume that the median and mode of Q
coincide. Kolotilin, Corrao, and Wolitzky (2023) give sufficient conditions for single-dippedness in a
more general model that allows state-dependent designer preferences.
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and symmetric about 0. The symmetry assumption has the convenient implication that
the threshold shock to win a packed district P = δs is just r∗(P ) = s.

We first show that any pack-and-pair plan H can be described in a simple way. First,
there exists a bifurcation point rb ∈ [s, s] such that a district P ∈ supp(H) is packed if
r∗(P ) ≤ rb and is paired if r∗(P ) > rb. The bifurcation point thus divides the packed
and paired districts. Second, the assignment of voters to paired districts is described
by a decreasing function s1 and an increasing function s2 where, for each paired district
P , the two voter types in district P are s1(r

∗(P )) and s2(r
∗(P )) > s1(r

∗(P )). Stronger
paired districts thus contain more extreme voters, as single-dippedness requires.

Proposition 7. For any pack-and-pair districting plan H, there exists a bifurcation
point rb ∈ [s, s], a decreasing function s1 : (r

b, s] → [s, rb), and an increasing function
s2 : (rb, s] → (rb, s] satisfying s1(r) < r < s2(r), such that for each P ∈ supp(H),
we have supp(P ) = {r∗(P )} if r∗(P ) ≤ rb and supp(P ) = {s1(r∗(P )), s2(r

∗(P ))} if
r∗(P ) > rb.

Examples of pack-and-pair districting include segregation, POP, PMP, and negative
assortative districting. Note that segregation and negative assortative districting rep-
resent the extreme pack-and-pair plans where all voter types are segregated and where
only a single type is segregated. We first give conditions under which these extreme
districting plans are optimal.

Proposition 8. Negative assortative districting is uniquely optimal if G is concave,
and segregation is uniquely optimal if G is “sufficiently convex,” in that there exists a
constant c > 0 such that segregation is uniquely optimal if g′(r)/g(r) ≥ c for all r.

The intuition for the concave case is as follows. First, any strictly single-dipped dis-
tricting plan that never segregates any two voter types is negative assortative. So, it
suffices to show that if G is concave (and the taste shock density is strictly log-concave
and symmetric), it is sub-optimal for the designer to segregate any two voter types
s < s′. To see this, suppose the designer pools a few type-s voters in with the type-s′

voters. The marginal effect of this change on the designer’s expected seat share among
type-s voters is

G(s′)−G(s),
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which is the increased probability of winning a type-s voter’s district when she moves
from the weak district δs to the strong district δs′ . On the other hand, the marginal
effect of this change on the designer’s expected seat share among type-s′ voters is

Q(s− s′)− 1
2

q(0)
g(s′).

This follows because the first term is the marginal effect on the threshold shock to win
the strong district, where this comes from using the implicit function theorem (and
Q(0) = 1/2) to calculate dr/dρ at ρ = 0 from the equation

ρQ(s− r) + (1− ρ)Q(s′ − r) =
1

2
,

and the second term is the density of the aggregate shock at r∗(δs′) = s′. Finally, the
sum of the two effects is positive, because

G(s′)−G(s)

g(s′)
≥ s′ − s >

1
2
−Q(s− s′)

q(0)
,

where the first inequality is by concavity of G, and the second inequality is by symmetry
and strict convexity of Q on (−∞, 0] (which follows from strict log-concavity of q).

The intuition for the case where G is sufficiently convex is that, for any two voter types
s and s′, we then have

G(s′)−G(s)

g(s′)
≤

Q(s′ − s)− 1
2

q(0)
,

which by a similar logic as above implies that it is optimal for the designer to separate
any two voter types rather than pooling them.

Proposition 8 expresses the intuition that concavity of G favors pooling (which, under
strict single-dippedness, takes the form of pairing types, rather than pooling intervals of
types), while convexity of G favors segregation. In the realistic case where G is strictly
S-shaped (i.e., the aggregate shock is unimodal), segregation and negative assortative
districting are both sub-optimal, unless the two parties are substantially asymmetric.27

Proposition 9. If G is strictly S-shaped with inflection point r∗(F ), then segregation
and negative assortative districting are both sub-optimal.
27Proposition 9 can be compared to Proposition 1 of Friedman and Holden (2008). Friedman and
Holden show that PMP (“matching slices”) is optimal when idiosyncratic uncertainty is sufficiently
small, but their discussion focuses on the extreme case of negative assortative districting, where only
a single voter type is segregated. Proposition 9 shows that this extreme case never arises when the
distribution of the aggregate shock is unimodal and the two parties are symmetric.
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The intuition is simple. By Proposition 8, the designer prefers pooling any two voter
types above the inflection point r∗(F ), so segregation is suboptimal. Moreover, for
any negative assortative districting, there exist nearby voter types that are paired in
a district P with r∗(P ) < r∗(F ), but the designer prefers segregating such types.

Since convexity of G favors segregation, concavity of G favors pairing, and it is natural
to assume that G is S-shaped (first convex, then concave), a natural conjecture is that
pack-and-pair districting (first segregation, then pairing) is optimal. We can verify
this conjecture numerically for an extremely wide range of parameters in the special
case where G and Q are both normal. The following proposition states this result, as
well as giving a general sufficient condition for pack-and-pair districting to be uniquely
optimal.

Proposition 10. If there do not exist s ≤ s < r < s′ ≤ s′′ ≤ s satisfying

G(r) + λ(r)
(
Q(s− r)− 1

2

)
≥ G(s) and

G(r) + λ(r)
(
Q(s− r)− 1

2

)
≥ G(s′′) + λ(s′′)

(
Q(s− s′′)− 1

2

)
,

(3)

where

λ(r) =
g(r)(Q(s′ − r))−Q(s− r))(

Q(s′ − r)− 1
2

)
q(s− r)−

(
Q(s− r)− 1

2

)
q(s′ − r)

and λ(s′′) =
g(s′′)

q(0)
,

then every optimal districting plan is pack-and-pair. Moreover, when Q is the standard
normal distribution and G is the centered normal distribution with standard deviation
γ−1, there do not exist γ ∈ {.1, .2, . . . , 99.9, 100} and s < r < s′ ≤ s′′ with s, r, s′, s′′ ∈
{−5,−4.9, . . . , 4.9, 5} that satisfy (3).

Condition (3) can be explained as follows. For any (strictly single-dipped) non-pack-
and-pair plan, there exist s < r < s′ ≤ s′′ such that voter types s < s′ are paired in a
district P with r∗(P ) = r ∈ (s, s′) and voter type s′′ is segregated. By a similar logic
to Proposition 8, if the first inequality in (3) fails, the designer prefers to segregate a
few type-s voters from district P ; and if the second inequality in (3) fails, the designer
prefers to move a few type-s voters from district P to district δs′′ . Thus, if there do not
exist s < r < s′ ≤ s′′ that satisfy (3), then any optimal plan must be pack-and-pair.

4.3. Should Opponents or Moderates be Packed? Having provided some argu-
ments for pack-and-pair districting, the last part of our analysis compares two key
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forms of pack-and-pair—POP and PMP—as well as mixed versions of these districting
plans. The mixed versions of POP and PMP that we will encounter fall into a class
of districting plans that we call “Y-districting.” Formally, a pack-and-pair plan H is
Y-districting if there exists a positive number ε > 0 such that

(1) For all r ∈ [rb − ε, rb + ε] (where rb is the bifurcation point), there exists
P ∈ supp(H) such that r∗(P ) = r.

(2) Districts P ∈ supp(H) with r∗(P ) ∈ [rb − ε, rb] are segregated (i.e., supp(P ) =

{r∗(P )}).

(3) Districts P ∈ supp(H) with r∗(P ) ∈ (rb, rb + ε] are paired (i.e., supp(P ) =

{s1(r∗(P )), s2(r
∗(P ))} for some s1(r

∗(P )) < s2(r
∗(P ))).

(4) The functions s1 and s2 describing the voter types in paired districts are twice
differentiable and satisfy limr↓rb s1(r) = limr↓rb s2(r).28

We will see that Y-districting encompasses a mixed version of POP, where there exists
ŝ ∈ (s, rb) such that voter types in [s, ŝ) are always segregated and types in (ŝ, rb) are
sometimes segregated and sometimes paired, as well as a mixed version of PMP, where
there exists ŝ ∈ (s, rb) such that types in [s, ŝ) are always paired and types in (ŝ, rb) are
sometimes segregated and sometimes paired. (In contrast, recall that under POP there
exists ŝ ∈ (s, rb) such that types in [s, ŝ) are always segregated and types in (ŝ, rb) are
always paired, while under PMP there exists ŝ ∈ (s, rb) such that types in [s, ŝ) are
always paired and types in (ŝ, rb) are always segregated.) We will give theoretical and
numerical results that indicate that POP is optimal when idiosyncratic uncertainty is
much larger than aggregate uncertainty, PMP is optimal when aggregate uncertainty
is larger than idiosyncratic uncertainty, and Y-districting (and, in particular, mixed
POP or mixed PMP) is optimal in the intermediate range.

We first discuss how POP, PMP, and Y-districting relate to the set of all pack-and-
pair plans. POP and PMP are both pure districting plans, in that each voter type s

is assigned to a single district P : formally, for each s ∈ [s, s], there exists a unique
P ∈ supp(H) such that s ∈ supp(P ). They are not the only pure districting plans:
for example, a pack-and-pair plan could segregate voter types below a cutoff s0 and
match slices (including with an intermediate segregation region) among voter types
above s0. However, POP and PMP are the simplest such plans, as they involve only
28The differentiability condition is used in the proof of Proposition 11. It may be possible to drop it.

23



a single non-degenerate interval of segregated voter types. We are not aware of any
parameters for which a more complex pure pack-and-pair plan is optimal.

In contrast, Y-districting plans are mixed, because voter types just below the bi-
furcation point are sometimes segregated and sometimes paired with higher types.
Somewhat surprisingly, we will see that such plans are uniquely optimal for a range of
parameters, even though voter types are continuous. While not every mixed pack-and-
pair plan is Y-districting, we will see that, at least numerically, optimal plans always
take one of the three forms we consider.

We would like to have general necessary and sufficient conditions for the optimality
of POP, PMP, and Y-districting. Unfortunately, this seems very challenging, because
the form of optimal districting is driven by global constraints that are difficult to ana-
lyze. We instead present a seemingly modest result, which is that if Y-districting is
optimal, then the ratio of idiosyncratic uncertainty to aggregate uncertainty must fall
in an intermediate range. However, numerically it appears that this result actually
characterizes when all three forms of districting are optimal: at least in the case where
aggregate and idiosyncratic shocks are both normally distributed, our necessary con-
ditions for optimality of Y-districting are also approximately sufficient, and when the
ratio of idiosyncratic uncertainty to aggregate uncertainty is below (resp., above) the
range where Y-districting is optimal, then PMP (resp., POP) is optimal.

To compare the amounts of aggregate and idiosyncratic uncertainty, the distributions G
and Q should have the same shape. We therefore assume that there exists a parameter
γ > 0 such that G(r) = Q(γr) for all r. The parameter γ thus meaures the ratio of
the standard deviation of the idiosyncratic shocks (which is normalized to 1) to that
of the aggregate shock (which equals γ−1). The following is our key result.

Proposition 11. If Y-districting is optimal, then rb = 0 and γ ∈ (1,
√
1 +

√
3 ≈ 1.65].

The proof of Proposition 11 proceeds by deriving three necessary conditions for optimal
Y-districting to involve a bifurcation point at r (which are based on linear programming
duality), and showing that these conditions imply that the bifurcation point must co-
incide with the inflection point, and the ratio of idiosyncratic to aggregate uncertainty
must lie in an intermediate range. The first condition (equation (13) in Appendix B)
says that it is optimal to pair voter types just below and just above r. The second con-
dition (equation (14)) says that it is optimal to segregate types just below r. The third
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condition (equation (15)) says that the proportions of favorable and unfavorable voters
in each district P with r∗(P ) = r′ just above r actually generate the desired cutoff r′.
Intuitively, for it to be optimal to pair nearby voter types around r, G must be weakly
concave at r; and for it to be optimal to segregate voter types just below r, G must
be weakly convex at r. Hence, bifurcation can occur only at the inflection point of G,
which by symmetry equals 0. Moreover, if we take parameters where Y-districting is
optimal and increase aggregate uncertainty, it eventually becomes optimal to always
segregate voter types just below 0 rather than pairing them with higher voter types,
at which point optimal districting becomes PMP (with a bifurcation point below 0).
On the other hand, if we take parameters where Y-districting is optimal and decrease
aggregate uncertainty, it eventually becomes optimal to always pair voter types just
below 0 with higher voter types rather than segregating them, at which point optimal
districting becomes POP (with a bifurcation point above 0). We discuss the mechanics
of the transition from PMP to POP as γ increases below.

If we take for granted that the condition γ ∈ (1, 1.65) is sufficient as well as necessary
for Y-districting to be optimal, the above intuition suggests that:

(1) PMP is optimal when γ ≤ 1.

(2) Y-districting is optimal when γ ∈ (1, 1.65).

(3) POP is optimal when γ ≥ 1.65.

Figure 3 presents numerical solutions that verify this heuristic. In the figure, Q is
the standard normal distribution, G is the centered normal distribution with standard
deviation γ−1, and F is the uniform distribution on [−1, 1].29 Voter types are on
the x-axis, and the threshold shocks to win the districts to which each voter type is
assigned are on the y-axis. (Thus, packed districts lie on the 45◦ line, while paired
districts straddle the 45◦ line.) For mixed districting plans (i.e., Y-districting, the
middle row of the figure), the shading intensity indicates the probability that a voter
type is assigned to each district. We see that optimal districting takes exactly the
conjectured form: PMP is optimal for γ ∈ {0.2, 0.5, 1}, Y-districting is optimal for
γ ∈ {1.2, 1.4, 1.6}, and POP is optimal for γ ∈ {1.7, 3, 6}. The highest value of γ in

29More precisely, we approximate the designer’s problem by a finite-dimensional linear program and
then solve it using Gurobi Optimizer. Our approximation specifies that s is uniformly distributed
on {−1,−.99, . . . , .99, 1} and that the designer is constrained to create districts P satisfying r∗(P ) ∈
{−1,−.99, . . . , .99, 1}.
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the figure, γ = 6, is the value closest to our empirical estimates. When γ = 6, POP
remains optimal but now closely resembles p-segregation. Thus, for what we will see
is the empirically relevant parameter range, p-segregation is approximately optimal.

We can give an intuition for how and why optimal districting transitions from PMP to
POP as γ increases, as illustrated in Figure 3. Along the way, we also mention some
additional features of optimal PMP and POP plans, as well as describing the transition
from mixed PMP to mixed POP within the Y-districting regime.

First, recall the extreme cases where γ is close to 0 (almost no idiosyncratic uncertainty)
and where γ is very large (almost no aggregate uncertainty). When γ is close to 0, PMP
is optimal; moreover, when F is symmetric about 0 as in Figure 3, almost all voters
are paired, so optimal districting is approximately negative assortative, which implies
that the bifurcation point is below 0 and the range of values of r∗(P ) across paired
districts P is large.30 When γ is very large, POP is optimal; moreover, p-segregation
is approximately optimal, which implies that the bifurcation point is above 0 and the
range of values of r∗(P ) across paired districts is very small.31 Now, when γ increases
from 0 toward 1, the range of r∗(P ) across paired districts decreases (as the range of
probable aggregate shocks decreases), and the proportion of packed districts increases.
When γ reaches 1, it becomes optimal to pack voters with s = 0, the inflection point
of G. Since it cannot be optimal to pack voters above the inflection point, once γ

crosses 1 it becomes optimal to pair voters with s just above 0 with a few slightly less
favorable voters. At this point, districting takes the form of mixed PMP.

As γ increases farther above 1, the range of r∗(P ) across paired districts continues to
decrease. This implies a flattening out of the right arm of the “Y”—i.e., an increase in
s′2—which increases the mass of favorable voters assigned to districts where r∗(P ) is
positive but small. To keep r∗(P ) small in these districts, this effect must be offset by
also assigning more unfavorable voters to these districts, which is achieved by assigning
more of the “mixed” unfavorable voters type to paired districts rather than packed
districts, while the range of unfavorable voter types assigned to each interval of mixed

30Another property of optimal PMP plans is that the left arm of the “Y” is infinitely steep at the
bifurcation point, i.e., limr↓rb s

′
1(r) = 0.

31Another property of optimal POP plans is that pairing at the bifurcation point is smooth, i.e.,
limr↓rb s

′
1(r) = −∞ and limr↓rb s

′
2(r) = ∞.
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γ = 0.2 γ = 0.5 γ = 1

γ = 1.2 γ = 1.4 γ = 1.6

γ = 1.7 γ = 3 γ = 6

Figure 3. Optimal Districting as γ Varies

Notes: The optimal districting plan is PMP for γ ∈ {0.2, 0.5, 1}, Y-
districting for γ ∈ {1.2, 1.4, 1.6} (and, specifically, mixed PMP for γ ∈
{1.2, 1.4} and mixed POP for γ = 1.6), and POP for γ ∈ {1.7, 3, 6}. Our
empirical estimates of γ in Section 5 are above 6 for 85% of US states.
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districts actually decreases—i.e., the left arm of the Y gets steeper.32 At some point,
the right arm of the Y becomes flatter than the left arm, so that the most extreme
left-wing voters have no right-wing voters to match with, at which point these voters
are segregated: this point marks the transition from mixed PMP to mixed POP, which
occurs at γ =

√
2 ≈ 1.41 in the uniform case illustrated in Figure 3.33 As γ increases

further, more and more mixed unfavorable voters are assigned to paired districts,
until all such voters are assigned to paired districts, at which point optimal districting
becomes POP, and the bifurcation point becomes positive. This occurs when γ ≈ 1.65.
Finally, as γ increases beyond 1.65, the range of r∗(P ) across paired districts continues
to decrease, and the optimal POP plan eventually approximates p-segregation.

Remark 2 (Approximate Optimality of Traditional Pack-and-Crack). For
what we will see is the empirically-relevant parameter range, the optimal POP plan
closely resembles p-segregation, and in fact both p-segregation and traditional pack-
and-crack districting are approximately optimal. Our central estimates for γ in Section
5 are above 6 for more than 85% of US states. Figure 3 shows that, for these parameters,
POP is optimal, and the optimal POP plan closely resembles p-segregation. Moreover,
for the parameters used in Figure 3 (where the standard deviation of s is fixed at
what we will see is a realistic level, while γ−1, the standard deviation of r, varies), we
have calculated that the designer’s expected seat share under the optimal districting
plan never exceeds his expected seat share under the optimal traditional pack-and-
crack plan by more than 1.4% for any value of γ, or by more than 0.1% for any
value of γ above 5.34 For example, when γ = 6 the optimal expected seat share
is approximately .7087, while the optimal traditional pack-and-crack plan gives an
expected seat share of approximately .7082.35 An intuition for this result is that in
practice aggregate uncertainty is small (relative to both idiosyncratic uncertainty and
32The proof of Proposition 11 shows that, for all sufficiently small positive r, |s′1(r)| is decreasing in
γ (i.e., the left arm gets steeper) and s′2(r) is increasing in γ (i.e., the right arm gets flatter).
33The transition point γ =

√
2 is defined as the unique value of γ at which limr↓0 |s′1(r)| = limr↓0 s

′
2(r).

The γ = 1.4 panel in the figure illustrates a point just before this transition occurs.
34Friedman and Holden (2008, p. 129) and Cox and Holden (2011 p. 571) present an example with
large aggregate uncertainty (γ = 1/

√
2 ≈ 0.71) and a large standard deviation of s (equal to 3, while

our empirical estimate of this parameter is 0.64), where the designer’s expected seat share is over
20% greater under matching slices than under traditional pack-and-crack. This shows that, when the
standard deviations of both r and s are (unrealistically) large, the advantage of optimal districting
over traditional pack-and-crack can be significantly larger than the 1.4% upper bound that we obtain
by varying the standard deviation of r while fixing the standard deviation of s at a realistic level.
35When γ = 2 (an unrealistic low value), the corresponding expected seat shares are .5392 and .5357.
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the range of voter/precinct types s), so the no-aggregate uncertainty case considered
in Section 3.2—where traditional pack-and-crack is exactly optimal—is fairly realistic.

5. Estimation

We have argued that the form of optimal districting depends on a comparison of the
amount of aggregate and idiosyncratic uncertainty facing the designer, and in particular
on the parameter γ introduced in the previous section (i.e., the ratio of idiosyncratic to
aggregate uncertainty, or equivalently the inverse standard deviation of the aggregate
shocks r, recalling that the the standard deviation of the idiosyncratic shocks t is
normalized to 1). We now estimate γ using precinct-level returns from recent US
House elections, while also providing empirical support for some of our key theoretical
assumptions. We first describe our data and empirical model, then present some simple
summary statistics and plots, and finally estimate γ.

5.1. Data and Empirical Model. Our data are the precinct-level returns for the
US House elections in 2016, 2018, and 2020, which were recently standardized and
made freely available by Baltz et al. (2022). For each precinct n and election t ∈
{2016, 2018, 2020}, we observe the total two-party vote knt and the share of the two-
party vote for the Republican candidate vnt.36 The data are a repeated cross-section
rather than a panel, because there is no general way to match precincts across elections
(for example, because precinct boundaries change frequently; Baltz et al. 2022, p. 6).
We drop all districts with an uncontested House race in any of 2016, 2018, or 2020
(which drops 25% of all districts).37 Moreover, for each election, we drop precincts
where there are fewer than 50 total votes (which drops .13% of all votes) or where the
Republican vote share is 0 or 1 (which drops an additional .015% of votes).
36A “precinct” is the smallest election-reporting unit in a state, which typically corresponds to a
geographic area where all voters vote at the same polling place. Maine and New Jersey report election
returns only at the township level, so for these states n indexes townships rather than precincts. Also,
for some elections where a nominally third-party candidate runs in place of an official Democratic
or Republican candidate, we manually re-label this candidate as a Democrat or Republican. For
example, in New York, we re-assign Working Families Party candidates as Democrats and re-assign
Conservative Party candidates as Republicans. Throughout, we focus on the two-party vote knt and
the Republican share of the two-party vote vnt, ignoring third parties.
37Keeping these districts would bias our estimate of γ, because the relevant vote shares are for con-
tested elections, and if these districts were contested their vote shares would be different from 0 or 1.
Keeping a district with one or two uncontested elections only for the elections where it is contested
would also bias our estimate of γ, by distorting the estimated swing across elections. Dropping uncon-
tested districts does likely bias our estimate of the voter type distribution F , as uncontested districts
are presumably more extreme; however, this bias is irrelevant for our main goal of estimating γ.
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To take the model to these data, we assume that s indexes precincts, so that v(s, r)

is the designer’s vote share in a type-s precinct at aggregate shock r. Formally, this
is equivalent to assuming that all voters in a precinct have the same type. (As we
clarify below, this does not mean that all voters in a precinct vote the same way.) We
also assume that precincts are relatively large (in the data, the mean precinct vote
count is 789 with standard deviation 1,399, after dropping precincts with fewer than
50 total votes or a 0 or 1 vote share), and idiosyncratic voter taste shocks are normally
distributed.38 By the law of large numbers, this implies that the designer’s vote share
in a precinct n with type sn in district d and election t is given by

v(sn, rdt) = Φ (sn − rdt) , (4)

where Φ is the standard normal cdf. To see this, recall that each voter in precinct
n votes for the designer’s party iff sn − rdt − τ ≥ 0, where τ is the voter’s normally
distributed idiosyncratic taste shock,39 and hence votes for the designer’s party with
probability Φ(sn−rdt). Applying the law of large numbers at the precinct level gives (4).

We emphasize that this empirical model does not allow precinct-level aggregate shocks:
the vote share v(sn, rdt) in precinct n in district d and election t is given by (4), which
is a deterministic function of the persistent precinct type sn and the district-level
aggregate shock in election t, rdt.

To interpret the assumption that all voters in a precinct have the same type, note
that a voter’s type and taste shock enter only through their difference sn − τ . For this
discussion, let us call this difference the voter’s “preference.” Our assumption is that
voter preferences in precinct sn are normally distributed with mean sn and variance
1. Also, while voter preferences must be independent across voters in each district to
justify (4), the correlation of each voter’s preference across elections is arbitrary. Thus,
voters in a precinct can differ in their persistent tastes for the parties as well as in their
election-specific tastes.

5.2. Descriptive Figures and Summary Statistics. We first present a histogram
(Figure 4(a)) showing the number of voters in the United States who live in a pre-
cinct with Republican vote share v, with bin breaks {0, .05, . . . , .95, 1}, averaging over
38Our estimates are not sensitive to assuming normality: because we will find that γ is very large, the
taste shock distribution is approximately uniform over the relevant range, so specifying any smooth
taste shock distribution leaves our estimates almost unchanged.
39We have switched notation for the taste shock from t to τ , since in this section t indexes elections.
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(a) Precinct Vote Shares (b) District Vote Swings

Figure 4. Distributions of Precinct Vote Shares and District Vote
Swings

elections t ∈ {2016, 2018, 2020}. The histogram shows that the distribution of vnt is
unimodal, with a large majority (74%) of the mass on v ∈ [.25, .75]. This pattern
has two simple, but important, implications for our model. First, the distribution of
voter/precinct types is far from bimodal: there is a continuum of types, with most mass
“toward the middle.” A designer choosing how to partition precincts into districts must
thus decide how to allocate a continuum of types, as in our model.40 Second, idiosyn-
cratic uncertainty appears to be large relative to aggregate uncertainty. To see this,
note that if idiosyncratic uncertainty were extremely large, Figure 4(a) would show
a degenerate distribution at v = 1/2, while if aggregate uncertainty were extremely
large, it would show a bimodal distribution with all mass at 0 and 1. The former case
is a better approximation, as the actual distribution in Figure 4(a) is unimodal, with
74% of the mass on v ∈ [.25, .75]. While we will quantitatively estimate γ in the next
subsection, this observation already suggests what we will find, which is that γ is much
greater than 1.

40In practice, the smallest “districtable unit” is not a precinct but a census block, which is the smallest
geographic unit for which the US Census tabulates complete data. However, the number of voters
in a precinct or a census block are roughly similar (typically around 1,000, albeit with fairly wide
variation), so we believe there is little loss in proceeding as if designers partition precincts rather than
census blocks.

31



Next we present another histogram (Figure 4(b)), which shows the number of (district,
election) pairs where the district-wide Republican vote share deviated from its mean
over the three elections we consider by x, with bin breaks {−.25,−.225, . . . , .225, .25}.41

This histogram gives another way of showing that aggregate shocks are small: the
distribution is centrally unimodal, and most of the mass (57%) is on x ∈ [−.025, .025].
In contrast, if aggregate shocks were large, we would again have a bimodal distribution
with all mass far from 0.

Finally, we consider the empirical distribution of vote shares vnt across precincts n

(weighted by the number of votes in each precinct), for each election t. This is shown in
Figure 5(a). The S-shaped curve for each election again indicates that most precincts
have vote shares relatively close to 1/2. The ordering of the curves (except for the
lowest-vote-share precincts, discussed below) reflects the fact that, among the 2016,
2018, and 2020 elections, 2018 was the best year for Democrats, 2016 was the best year
for Republicans, and 2020 was in the middle.

We can use these curves to assess the realism of our key assumption that moderates
are swingier than extremists (Assumption 1). Figure 5(b) transforms Figure 5(a) by
normalizing by the empirical vote-share distribution in 2020. Thus, in Figure 5(b) the
blue curve is the 45◦ line; the red curve is the 2016 Republican vote share for a precinct
with a given 2020 Republican vote share; and the green curve is the analogous curve
for 2018.42 Under our assumptions—including Assumption 1—the red curve should be
concave and everywhere above the blue curve, and the green curve should be convex and
everywhere below the blue curve, where these concavity/convexity properties reflect
Assumption 1. Figure 5 shows that this is not exactly true in our data, because the
green and red curves are “too low” for the left-most districts (a small minority of
districts, lying well into the lowest quartile of the vote-share distribution, as indicated
in the figure). We believe that this small deviation from Assumption 1 likely reflects an
unusually strong performance by Republicans in urban districts in 2020, largely due to
a well-documented shift in the Hispanic vote toward Republicans (e.g., Igielnik, Keeter,
and Hartig 2021, Kolko and Monkovic 2021). Such demographic-specific shocks are, of
course, outside our model, but could be explored in future work. Overall, we believe

41This histogram is compiled at the district level because precincts are not matched across elections.
42Technically, since we cannot match precincts across elections, the red curve is the 2016 Republican
vote share for a precinct at the same quantile of the vote share distribution as a precinct with a given
2020 Republic vote share, and similarly for the green curve.
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(a) CDF (b) Normalized CDF

Figure 5. CDF and Normalized CDF of Precinct Vote Shares in 2016,
2018, and 2020

Notes: The left panel displays the empirical cdf of the precinct vote
share in 2016, 2018, and 2020, which we denote by Jt(v) for t ∈
{2016, 2018, 2020}. The right panel displays the curves J−1

2016(J2020(v)),
J−1
2018(J2020(v)), and J−1

2020(J2020(v)) = v, as well as the first, second, and
third quantiles of J2020(v).

Figure 5 is well-explained by a combination of our assumptions (including Assumption
1) and an unexpected shift toward Republicans in urban areas in 2020.

5.3. Estimates for γ. We now estimate the key parameter γ under the assumption
that aggregate and idiosyncratic shocks are both normally distributed. Since district-
ing plans in the US are drawn at the state level, we estimate γ separately for each
US state.43 We assume that aggregate shocks are jointly normally distributed across
districts and independent across elections, so that the standard deviation of rdt is γ−1,
the correlation between rdt and rd′t is ρ for each d ̸= d′ and t, and the correlation
between rdt and rd′t′ is 0 for each d, d′, and t ̸= t′. Recall that our theoretical and
numerical results in Section 4.3 indicate that PMP is optimal if γ ≤ 1, Y-districting

43While our model assumes a large number of districts, we estimate γ for each state (including states
with only one congressional district) to give as complete estimates of this parameter as possible.
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is optimal if γ ∈ (1, 1.65), and POP is optimal if γ ≥ 1.65. Thus, a key question of
interest is which of these three regions contains our estimate of γ.

We estimate γ for each state by method of moments. Recall that vnt is the Republican
share of the two-party vote in precinct n and election t. Let wnt = Φ−1(vnt), the
corresponding quantile of the standard normal distribution. Let T = 3 denote the
number of elections, D the number of districts in the state, and Ndt the set of precincts
in district d and election t. Next, define

wdt =

∑
n∈Ndt

kntwnt∑
n∈Ndt

knt
and wd• =

∑
t wdt

T
.

That is, wdt is the average value of wnt over precincts in district d, weighted by the
number of votes in each precinct; and wd• is the average value of wdt over elections t.
It is then easy to show that an unbiased and consistent estimator of γ is given by

γ̂ = 1

/√∑
d,t(wdt − wd•)2

D(T − 1)
.

In the Online Appendix, we also construct a confidence interval for γ, as well as a
point estimator of the correlation among the district-level aggregate shocks, and point
estimators of the mean and standard deviation of the distribution of precinct types.

Figure 6 displays the results of this estimation. The figure shows the 90% confidence
interval for γ for each state. The confidence intervals are extremely wide, because we
only have data from three elections, i.e., T = 3. However, it is clear that the central
estimates for γ, as well as the lower bound of the 90% confidence interval for almost all
states, is well above the critical value of 1.65. The lowest estimate for γ for any state is
2.91 in Pennsylvania, the mean estimate for γ (weighted by the number of districts in
each state) is 9.15, and the corresponding estimate when we estimate γ for the US as
a whole is 7.21. These estimates are all far above the critical value of 1.65. Moreover,
even with T = 3, the lower endpoint of the 90% confidence interval is above 1.65 for all
available states except North Dakota (where the lower endpoint is 1.28). If we expand
our dataset to include the returns from the 2012 and 2014 elections (thus covering all
five congressional elections held under the 2010 districting plans), the lower endpoints
of the 90% confidence interval exceeds 1.65 for all states, including North Dakota.44

The data thus clearly indicate that γ is well above 1.65 in practice. Together with
44Precinct-level returns for 2012 and 2014 have been compiled by Ansolabehere, Palmer, and Lee
(2014) but are less complete and less standardized than the Baltz et al. (2022) data we use, which
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Figure 6. Point Estimates and 90% Confidence Intervals for γ by State

Notes: POP is optimal for γ ≥ 1.65. The point estimate for γ for the
entire US is 7.21.

the results in Section 4.3, this provides strong evidence that optimal gerrymandering
is given by POP for realistic parameters.

Our estimates for γ are so high that not only is POP clearly optimal rather than
PMP, but the optimal POP plan is similar to p-segregation, and both p-segregation
and traditional pack-and-crack districting are approximately optimal. (Recall Figure
3, where POP is close to p-segregation when γ = 6.) This result can rationalize why
actual gerrymandered districting plans usually resemble p-segregation or traditional
pack-and-crack, rather than POP.

only cover 2016, 2018, and 2020. We have checked that all of our empirical results are robust to
including the 2012 and 2014 data.
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While it is not relevant for determining the qualitative form of optimal districting, we
can also estimate the distribution F of precinct types s and the correlation ρ among
the district-level aggregate shocks. At the country-level, the estimated mean of F is
very close to 0, and the estimated standard deviation of F is 0.64. These values are
similar to those in Figure 3. Note however that these estimates may be biased by
dropping uncontested elections (unlike our estimates of γ, which remain unbiased after
dropping any set of districts). Also, the correlation between our estimates of γ and
the standard deviation of F at the state level (weighted by the number of districts
in each state) is small (−.30), which is consistent with varying γ in G(r) := Q(γr)

for fixed Q and F as in Figure 3. In contrast, for an alternative normalization with
Q(t) := G(t/γ) for fixed G and F , the weighted correlation between our estimates of
γ and the standard deviation of F is large (.72), which would be inconsistent with
varying γ for fixed G and F . Finally, the estimated correlation ρ among the district-
level aggregate shocks (weighted by the number of districts in each state) is 0.37, and
the corresponding estimate when we estimate ρ for the US as a whole is 0.23. Since
these estimates are not close to either 0 or 1, estimating a simpler empirical model
where district-level shocks are either uncorrelated or perfectly correlated would yield
biased estimates of γ.

6. Discussion: Why Does the Form of Gerrymandering Matter?

Gerrymandering has been a major concern in American politics for many years and
has been tied to several important political and legal issues. In this section, we
briefly discuss potential implications of our results on the form of optimal partisan
gerrymandering—in particular, whether gerrymanderers optimally pack opponents or
moderates—for some of these broader issues. We focus on two areas: implications
for how regulations and restrictions on districting affect partisan representation, and
implications for how gerrymandering affects political competition and polarization.

6.1. Effects of Districting Restrictions on Partisan Representation. American
state and federal election laws have long recognized potential harms associated with
gerrymandering and have therefore restricted gerrymandering in various ways. At the
federal level, the key laws are the Equal Protection Clause of the Fourteenth Amend-
ment and the Voting Rights Act of 1965. These laws have been interpreted as not only
prohibitting adverse racial gerrymandering, but also as affirmatively requiring states to
create electoral districts where racial or ethnic minority voters form either a majority
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(a so-called “majority-minority district”) or a large enough minority so as to have a
strong opportunity to elect their candidate of choice, perhaps in coalition with some
majority voters (often called a “minority opportunity district”) (e.g., Canon 2022).
The creation of such districts played a significant role in increasing Black representa-
tion in state legislatures and the US Congress from the 1970’s onward, especially in the
South (Grofman and Handley 1991, Cox and Holden 2011). However, the overall par-
tisan impact of majority-minority and minority opportunity districts has long been a
hotly contested issue, with some observers arguing that these districts effectively pack
strong Democratic supporters and thus resemble a component of a Republican-optimal
districting plan. This issue came to a head following the 1994 Republican takeover of
the US House, which many journalists and political scientists blamed in part on the
creation of majority-minority districts in the 1990 redistricting cycle; however, other
observers have disputed this narrative (see, e.g., Cox and Holden 2011 and references
therein, Cameron, Epstein, and O’Halloran 1996, Washington 2012).

Following Cox and Holden (2011), we argue that whether a requirement to create
majority-minority or minority opportunity districts is likely to increase or decrease
overall Republican representation hinges to a large degree on whether optimal partisan
gerrymandering packs opponents or moderates. The convential view throughout the
1990’s (what Cox and Holden call the “pack-and-crack consensus”) was that optimal
gerrymandering packs opponents, and hence that a requirement to create majority-
minority districts that pack strong Democratic supporters may well increase overall
Republican representation.45 Based on the analysis of Friedman and Holden (2008),
Cox and Holden (2011) challenge this consensus by arguing that optimal districting is
given by PMP, and thus packs moderates rather than opponents. Since a PMP plan
does not create districts packed with strong Democratic supporters, Cox and Holden
argue that a requirement to create such districts precludes PMP and is therefore likely
to reduce overall Republican representation.

We agree with Cox and Holden that whether optimal districting packs opponents
or moderates is likely to be an important determinant of whether a requirement to
create majority-minority or minority opportunity districts increases or decreases overall
Republican representation. However, Cox and Holden’s argument that PMP is optimal
in practice rests on the implicit assumption that the low-idiosyncratic-uncertainty case
45Minority opportunity districts may or may not raise similar issues, depending on the share of strong
Democratic supporters in these districts (Lublin, Handley, Brunell, and Grofman, 2020).
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studied by Friedman and Holden (2008) is representative. For example, Cox and
Holden write, “In a world with diverse voter types, however, there is no plausible
distribution of African American voters that would make it optimal for Republican
redistricting authorities to create districts in which African Americans make up a
supermajority of voters. Within the model, packing one’s opponents is never the
optimal strategy,” (p. 574). Our results instead indicate that, empirically, idiosyncratic
uncertainty is much larger than aggregate uncertainty, and that in this case POP
is optimal (and traditional pack-and-crack districting is approximately optimal), so
Republicans do benefit from packing strong Democratic voters. Thus, by analyzing a
general model that allows diverse voter types but does not restrict the relative amounts
of idiosyncratic and aggregate uncertainty, we can let the data determine which form
of districting is optimal in practice, and we find that POP is optimal for realistic
parameters. Overall, our results support the traditional “pack-and-crack consensus”—
Republicans benefit from packing strong Democratic voters—over Cox and Holden’s
challenge based on the optimality of packing moderates for certain parameter values.

Of course, even if POP is optimal, so that packing strong Democratic voters in the
Republican-optimal manner benefits Republicans, whether a requirement to create
majority-minority or minority opportunity districts benefits Republicans in practice
is an empirical question. A requirement to create a large numbers of districts with
relatively small Democratic majorities can obviously hurt Republicans. Moreover, as
emphasized by Shotts (2001), any constraint on districting weakly hurts Republicans
in states where Republicans control districting. In general, analyzing partisan-optimal
unconstrained districting can complement empirical efforts to assess the impact of
districting restrictions, but obviously cannot substitute for such studies.

6.2. Effects of Gerrymandering on Political Competition and Polarization.
A second area of debate concerns the impact of gerrymandering on the intensity of
electoral competition (e.g., the fraction of “competitive” districts or the extent of in-
cumbency advantage) and political polarization. Popular discourse often blames ger-
rymandering for reducing competition and increasing polarization. While the schol-
arly literature is generally skeptical of the claim that gerrymandering plays a large
role in explaining overall secular trends in competition and polarization (e.g., Gelman
and King 1994a, Abramowitz, Alexander, and Gunning 2006, McCarty, Poole, and
Rosenthal 2009, Friedman and Holden 2009), some work does find such effects (e.g.,
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Cottrell 2019, Kenny, McCartan, Simko, Kuriwaki, and Imai 2022). Regardless of the
overall effects of gerrymandering on competition and polarization, the nature of these
effects likely depends on the form that gerrymandering takes. Roughly speaking, with
a right-wing designer, POP (as well as p-segregation and traditional pack-and-crack)
create a few strongly left-leaning districts and many slightly right-leaning districts,
with a “gap” between the left-leaning and right-leaning districts. Formally, under
POP, there is always a gap between the highest value of r∗(P ) for a district P in the
interval of segregated voter types and the lowest value of r∗(P ) for a district P in the
interval of paired types (see, e.g., the last three panels in Figure 3). POP also involves
relatively low polarization within each district, since the lowest voter types in cracked
districts are “moderates” rather than extreme left-wingers. In contrast, PMP creates
a continuum of districts ranging from left-leaning to right-leaning—formally, the set
{r : r = r∗(P ) for some P ∈ supp(H)} is an interval (see, e.g., the first three panels in
Figure 3)—with less extreme left-leaning districts than under POP. PMP also involves
greater within-district polarization than POP, at least in the sense that the maximum
range of voter types that are pooled together under PMP is greater than under POP
(since this range is as large as possible under PMP, but is strictly smaller under POP).

Our model does not encompass any endogenous political responses to districting, such
as effects of districting on which politicians run for office and on what platforms. With
this caveat in mind, we can draw some tentative implications of the above features of
POP (or p-segregation or traditional pack-and-crack) and PMP for political compet-
ition and polarization. First, the fact that the distribution of threshold shocks r∗(P )

has a gap under POP but not under PMP suggests that pack-and-crack plans may lead
to a more polarized legislature, where the packed districts elect left-wing representat-
ives, and the cracked districts elect right-leaning representatives. The possibility that
packing opponents can increase polarization in this manner is a long-standing political
and legal concern (see, e.g., Cox and Holden 2011, p. 595). Coate and Knight (2007),
Besley and Preston (2007), and Bracco (2013) develop models with this feature. In
contrast, PMP may lead to a less polarized legislature. Second, POP may lead to a
larger number of “uncompetitive,” far-left districts. Creating uncompetitive districts
is usually viewed as a socially undesirable feature of a districting plan, but see Buchler
(2005) and Brunell (2008) for opposing views. Finally, lower within-district polariz-
ation under POP may be socially desirable if voters benefit from being ideologically
close to their representative, as in Besley and Preston (2007) and Gomberg, Pancs,
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and Sharma (2023). These and other implications of optimal districting for political
processes and outcomes could be studied more fully in a model that endogenized addi-
tional aspects of political competition beyond districting. This is a promising direction
for future research.

7. Conclusion

This paper has developed a simple and general model of optimal partisan gerrymander-
ing. Our main message has four parts. First, pack-and-pair districting—a generaliz-
ation of traditional packing-and-cracking—is typically optimal for the gerrymanderer.
Second, the optimal form of pack-and-pair depends on the relative amounts of ag-
gregate and idiosyncratic uncertainty facing the gerrymanderer: opposing voters are
packed when idiosyncratic uncertainty dominates, while moderate voters are packed
when aggregate uncertainty dominates. Third, empirically, idiosyncratic uncertainty
dominates in practice, so we expect pack-opponents-and-pair (POP) districting to be
optimal. This finding also establishes that the relevant parameter range for future
research on gerrymandering (and electoral competition more generally) is that where
idiosyncratic uncertainty is much larger than aggregate uncertainty. Fourth, estim-
ated idiosyncratic uncertainty is so large that the optimal POP plan closely resembles
a simpler pack-opponents-and-pool plan, where more favorable voters are all pooled
together, rather than being paired as they are under POP; moreover, traditional pack-
and-crack districting, where less favorable voters are also all pooled together, rather
than being segregated, is also approximately optimal. This final observation can ra-
tionalize the use of traditional pack-and-crack districting plans in practice.

Methodologically, we develop and exploit a tight connection between gerrymandering
and information design. We show that a general model of partisan gerrymandering
is equivalent to a general Bayesian persuasion problem where the state of the world
and the receiver’s action are both one-dimensional and the sender’s preferences are
state-independent. This common framework nests the important prior contributions
of Owen and Grofman (1988), Friedman and Holden (2008), and Gul and Pesendorfer
(2010), and facilitates a more general and realistic analysis that allows diverse voter
types and non-linear vote swings without restricting the relative amounts of aggregate
and idiosyncratic uncertainty.
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We hope our model can inform future research on various aspects of redistricting. We
mention a few directions for future research.

First, we have assumed that the designer maximizes his party’s expected seat share. It
may be more realistic to assume that the designer’s utility is non-linear in his party’s
seat share, for example because he puts a premium on winning a majority of seats. We
examined this case in an earlier version of the current paper (Kolotilin and Wolitzky,
2020). While non-linear designer utility introduces some new complications, it also
reinforces the main message of the current paper, in that if the designer’s utility is
S-shaped in his party’s seat share (as in the case with a premium on winning a ma-
jority), then pack-opponents-and-pool is strictly optimal even with linear swing and
uniform aggregate shocks (whereas a designer with linear utility is indifferent among
all districting plans in this case).46

Second, we have assumed that all voters always vote, or at least always vote at the
same rate (as is equivalent). It would be interesting to incorporate heterogeneous
turnout in the analysis. A recent contribution by Bouton, Genicot, Castanheira, and
Stashko (2023) considers voters with a binary partisan type (as in Owen and Grof-
man 1988), uniformly distributed aggregate shocks, and a continuous “turnout type,”
which captures fixed turnout heterogeneity across voters. It would be interesting to ex-
plore mutual generalizations of our models that allow more general forms of aggregate
uncertainty as well as heterogeneous turnout.

Third, a robust prediction of our analysis is that there should be greater within-district
polarization in districts that are more favorable for the designer’s party. It would be
interesting to test this prediction empirically.

Further questions include, what does the model imply for political competition and
the resulting policy choices? What are the model’s comparative statics—for example,
what factors determine the proportion of packed and cracked districts?47 What does
the model imply about how gerrymandering should be measured and regulated? A
better understanding of the form of optimal partisan gerrymandering can contribute
to the study of these questions and related ones.

46However, this analysis assumes that aggregate shocks are perfectly correlated across districts. Com-
bining non-linear designer utility and heterogeneous district shocks adds another layer of complexity.
47Kolotilin and Wolitzky (2020) analyze comparative statics with binary voter types.
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Online Appendix: Proofs
Given the equivalence between our model and a class of Bayesian persuasion problems
described in Section 2, Propositions 1, 2, 4, and 6 follow from prior results in the
persuasion literature. For these results, we give references to the literature as well as
(mostly) self-contained proofs, for completeness. In contrast, Propositions 3, 5, and
7–11 are new to both the persuasion and gerrymandering literatures. We give complete
proofs of these results.

Appendix A. Proofs for Section 3

Proof of Proposition 1. This result is standard (see, e.g., Figure 1 in Owen and Grof-
man 1988). Case (1) is trivial, as the designer wins all districts if he creates measure 1

of districts satisfying PrP (s ≥ r0) ≥ 1/2 and loses a positive measure of districts other-
wise. For case (2), note that since the designer wins a district P iff PrP (s ≥ r0) ≥ 1/2,
a districting plan can be described by a distribution H over x = PrP (s ≥ r0). The
designer’s utility for any feasible H is∫

1
{
x ≥ 1

2

}
dH(x) ≤

∫
2xdH(x) = 2m, (5)

where the inequality holds because 1{x ≥ 1/2} ≤ 2x for all x ∈ [0, 1], and the equality
holds because

∫
xdH(x) = m for any feasible H, by the law of iterated expectations.

Thus, any plan that creates measure 2m of cracked districts satisfying PrP (s ≥ r0) =

1/2 and measure 1 − 2m of packed districts satisfying PrP (s < r0) = 1 is optimal.
Moreover, any other plan creates a positive measure of districts with PrP (s ≥ r0) /∈
{0, 1/2} (i.e., supp(H) ⊈ {0, 1/2}), so that the inequality in (5) is strict, because
1{x ≥ 1/2} = 2x iff x ∈ {0, 1/2}. So any such plan is suboptimal. □

Proof of Proposition 2. The proposition can be obtained using the proofs of Lemmas
1 and C1 in Kolotilin (2015). Case (1) is trivial, as the designer wins all districts if
he creates measure 1 of districts satisfying

∫
v(s, r0)dP (s) ≥ 1/2 and loses a positive

measure of districts otherwise. For case (2), note that since v(s, r0) is differentiable
and strictly increasing in s, we can redefine s as v(s, r0), so that the redefined s

has a full-support density on [s, s], with 0 ≤ s < s ≤ 1. Assume that s > 1/2,
as otherwise the result is trivial. Since EF [s] < 1/2, there is a unique s∗ ∈ (s, s)
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satisfying EF [s|s ≥ s∗] = 1/2. Define

U(x) =

0, x < s∗,

x−s∗

1−2s∗
, x ≥ s∗.

Since the designer wins a district P iff EP [s] ≥ 1/2, his expected seat share under a
plan H is∫

1
{
EP [s] ≥ 1

2

}
dH(P ) ≤

∫
U(EP [s])dH(P ) ≤

∫∫
U(s)dP (s)dH(P )

=

∫
U(s)dF (s) =

∫ s

s∗

s− s∗

1− 2s∗
dF (s) = 1− F (s∗),

(6)

where the first inequality holds because 1{x ≥ 1/2} ≤ U(x) for all x, the second
inequality holds because U is convex, the first equality holds because

∫
PdH(P ) = F ,

and the last equality holds because EF [s|s ≥ s∗] = 1/2. Thus, a plan H is optimal
iff for all P ∈ supp(H) we have: (i) EP [s] ≤ s∗ or EP [s] = 1/2 (as otherwise the first
inequality in (6) is strict), and (ii) supp(P ) ⊂ [s, s∗] if EP [s] < s∗ and supp(P ) ⊂ [s∗, s]

if EP [s] = 1/2 (as otherwise the second inequality in (6) is strict). This means that H
contains measure F (s∗) of districts P where PrP (s < s∗) = 1 and measure 1 − F (s∗)

of districts P where PrP (s ≥ s∗) = 1 and EP [s] = 1/2. □

Proof of Proposition 3. For a districting plan H, define H as H(r) = PrH(r∗(P ) ≤ r)

for all r. The designer thus wins measure 1 − H(r−) of districts when the realized
aggregate shock is r. For each realization r, the designer wins a district P iff it
contains at least measure 1/2 voters with types s ≥ r (i.e., PrP (s ≥ r) ≥ 1/2). Since
the population has measure 1 − F (r) voters with types s ≥ r, the designer wins at
most measure 2(1 − F (r)) districts, so 1 − H(r−) ≤ 2(1 − F (r)). Since the designer
can win at most measure 1 districts, any feasible H satisfies H(r−) ≥ H∗(r), where

H∗(r) =

0, if r ≤ sm,

1− 2(1− F (r)), if r > sm.

Thus, the designer’s expected seat share for any feasible H is∫
(1−H(r−)) dG(r) ≤

∫
(1−H∗(r)) dG(r),

with strict inequality if H(r−) > H∗(r) for some r (and thus on some interval (r, r′)
with r′ > r, by continuity of H∗ and monotonicity of H), because G(r) is strictly
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increasing in r. Thus, a districting plan H is optimal iff it induces H∗, which means
that H−almost every district P that the designer wins iff the aggregate shock is at
most r satisfies PrP (s = r) = PrP (s < sm) = 1/2. □

Proof of Proposition 4. The proposition follows from Theorem 1 in Kolotilin, Mylovanov,
and Zapechelnyuk (2022). The proof is similar to the proof of Proposition 2. The most
interesting case is where there is an interior cutoff s∗ and pool mean x∗ = EF [s ≥ s∗]

satisfying u(x∗)(x∗− s∗) = U(x∗)−U(s∗). As follows from Figure 2, such s∗ is unique.
Define

U(x) =

U(x), x < s∗,

U(x∗) + u(x∗)(x− x∗), x ≥ s∗.

The designer’s expected seat share under a plan H is∫
U(EP [s])dH(P ) ≤

∫
U(EP [s])dH(P ) ≤

∫∫
U(s)dP (s)dH(P )

=

∫
U(s)dF (s) =

∫ s∗

0

U(x)dF (x) + U(x∗)(1− F (s∗)),

(7)

where the first inequality holds by U ≤ U , the second inequality holds by convexity
of U , the first equality holds by

∫
PdH(P ) = F , and the second equality holds by the

definition of s∗, x∗, and U . Thus, a plan H is optimal iff for all P ∈ supp(H) we have:
(i) EP [s] ≤ s∗ or EP [s] = x∗ (as otherwise the first inequality in (7) is strict), and (ii)
P = δEP [s] if EP [s] < s∗ and supp(P ) ⊂ [s∗, s] if EP [s] = x∗ (as otherwise the second
inequality in (7) is strict). This implies that the distribution of district means induced
by pack-opponents-and-pool districting with cutoff s∗ is uniquely optimal. □

Appendix B. Proofs for Section 4

We start with a lemma that distills some key results from Kolotilin, Corrao, and
Wolitzky (2023).

Lemma 1. There exists a bounded, measurable function λ : R → R such that, for any
optimal districting plan H, the following hold:

(1) For all P, P ′ ∈ supp(H) and all s ∈ supp(P ), we have

G(r∗(P )) + λ(r∗(P ))
(
v(s, r∗(P ))− 1

2

)
≥ G(r∗(P ′)) + λ(r∗(P ′))

(
v(s, r∗(P ′))− 1

2

)
.
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(2) For all P ∈ supp(H), we have

λ(r∗(P )) = − g(r∗(P ))∫ ∂v(s,r∗(P ))
∂r

dP (s)
.

(3) For any non-degenerate P ∈ supp(H), λ has a derivative λ′(r∗(P )) at r∗(P )

satisfying, for all s ∈ supp(P ),

g(r∗(P )) + λ(r∗(P ))
∂v(s, r∗(P ))

∂r
+ λ′(r∗(P ))

(
v(s, r∗(P ))− 1

2

)
= 0.

Intuitively, λ(r∗(P )) is the multiplier on the constraint
∫
v(s, r∗(P ))dP = 1

2
. Part 2

of the lemma says that λ(r∗(P )) equals the product of the designer’s marginal utility
of increasing r∗(P ) (which equals g(r∗(P ))) and the rate at which r∗(P ) increases as
the constraint

∫
v(s, r∗(P ))dP = 1

2
is relaxed (which equals −1/

∫ ∂v(s,r∗(P ))
∂r

dP (s) by
the implicit function theorem). Part 1 of the lemma says that the designer assigns a
type-s voter to a district P so as to maximize G(r∗(P )) + λ(r∗(P ))

(
v(s, r∗(P ))− 1

2

)
.

Part 3 says that the first-order condition of this maximization problem with respect
to r holds for all non-degenerate P ∈ supp(H) and all s ∈ supp(P ).

Proof. Any districting plan H induces a joint distribution πH of voter type s and the
threshold aggregate shock r below which the designer wins a district containing voter
type s. Specifically, denoting r = r∗(δs) and r = r∗(δs), H induces πH given by

πH(S,R) :=

∫
P :r∗(P )∈R

P (S)dH(P ) for all measurable S ⊂ [s, s] and R ⊂ [r, r].

Appendix B in Kolotilin, Corrao, and Wolitzky (2023) constructs a suitable bounded,
measurable function λ : [r, r] → R, and defines the set Γ as

Γ := {(s, r) ∈ [s, s]×[r, r] : sup
r̃∈[r,r]

{G(r̃)+λ(r̃)
(
v(s, r̃)− 1

2

)
} = G(r)+λ(r)

(
v(s, r)− 1

2

)
}.

Moreover, they define

RΓ := {r ∈ [r, r] : (s, r) ∈ Γ for some s ∈ [s, s]},

Γr := {s ∈ [s, s] : (s, r) ∈ Γ} for all r ∈ [r, r].

Part 1 of their Theorem 7 shows that the set Γ is compact and satisfies

minΓr ≤ s∗(r) ≤ maxΓr for all r ∈ RΓ, (8)
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where s∗(r) is defined by v(s∗(r), r) = 1/2. Moreover, the same result shows that

supp(πH) ⊂ Γ for each optimal H. (9)

Furthermore, Kolotilin, Corrao, and Wolitzky define the set Γ∗ ⊂ Γ such that

Γ∗
r =

{s∗(r)}, r ∈ RΓ and s∗(r) ∈ {minΓr,maxΓr},

Γr, otherwise,
for all r ∈ [r, r].

Part 2 of their Theorem 7 shows that, if Γ∗
r = {s∗(r)}, then

g(r) + λ(r)
∂v(s∗(r), r)

∂r
= 0, (10)

and if minΓ∗
r < s∗(r) < maxΓ∗

r, then λ has a derivative λ′(r) at r satisfying, for all
s ∈ Γ∗

r,
g(r) + λ(r)

∂v(s, r)

∂r
+ λ′(r)

(
v(s, r)− 1

2

)
= 0. (11)

Now, consider any optimal H. By (9), we have supp(P ) ⊂ Γr∗(P ) for all P ∈ supp(H).
By the definition of r∗(P ), we have

∫
v(s, r∗(P ))dP (s) = 1/2, so either supp(P ) =

{s∗(r∗(P ))} or min supp(P ) < s∗(r∗(P )) < max supp(P ). In both cases, we have
supp(P ) ⊂ Γ∗

r∗(P ), by (8) and the definition of Γ∗
r∗(P ). Thus, part 1 of the lemma

follows from the definition of Γ. In turn, part 2 follows from (10) when P is degenerate
and from integrating (11) over P when P is non-degenerate. Finally, part 3 follows
from (11). □

Proof of Proposition 5. Part 1 follows from (1) and v(s, r) = Q(s − r). For part 2,
notice that (1) is equivalent to

∂3v(s, r)

∂s2∂r

∂v(s, r)

∂s
>

∂2v(s, r)

∂s∂r

∂2v(s, r)

∂s2
for all s, r.

Thus, letting subscripts denote partial derivatives, vsr(s, r) = 0 implies vssr(s, r) > 0,
so vsr(s, r) = 0 implies vsr(s′, r) > 0 for all s′ > s, showing that vsr(s, r) satisfies strict
single crossing in s, and hence vr(s, r) is strictly quasi-convex in s. □

Proof of Proposition 6. The proposition follows from Theorem 3 in Kolotilin, Corrao,
and Wolitzky (2023) for the state-independent sender case, where V (a, θ) = V (a). We
illustrate the proof in the case where supp(F ) and supp(H) are finite. The general

50



proof has the same logic but involves additional technicalities, which can be handled
using Lemma 1. The proof rests on two lemmas.

Lemma 2. For any optimal H (with finite support), there do not exist P, P ′ ∈ supp(H)

such that P contains types s < s′′, P ′ contains a type s′ ∈ (s, s′′), and r∗(P ) < r∗(P ′).

Proof. Suppose for contradiction that such districts P and P ′ exist, and denote r∗(P ) =

r and r∗(P ′) = r′, with r < r′. Consider a perturbation that shifts mass ρ = (v(s′′, r)−
v(s′, r))ε of type-s voters and mass ρ′′ = (v(s′, r) − v(s, r))ε of type-s′′ voters from P

to P ′, and shifts an equal mass ρ′ = ρ+ ρ′′ = (v(s′′, r)− v(s, r))ε of type-s′ from P ′ to
P , for a sufficiently small ε > 0. Since v(s, r) is strictly increasing in s, these masses
are strictly positive and thus this perturbation is well-defined. Since the perturbation
does not change the mass of voters in P and P ′, to show that it strictly increases
the designer’s expected seat share, it suffices to show that r∗(P ) does not change and
r∗(P ′) strictly increases. First, r∗(P ) does not change because

∫
v(s, r)dP (s) does not

change, as
−v(s, r)ρ+ v(s′, r)ρ′ − v(s′′, r)ρ′′ = 0.

Second, r∗(P ′) strictly increases because
∫
v(s, r′)dP ′(s) strictly increases, as

v(s, r′)ρ− v(s′, r′)ρ′ + v(s′′, r′)ρ′′

= [(v(s′′, r′)− v(s′, r′))(v(s′, r)− v(s, r))− (v(s′′, r)− v(s′, r))(v(s′, r′)− v(s, r′))]ε

=

[∫ s′′

s′

∫ s′

s

∂v(s̃′, r′)

∂s

∂v(s̃, r)

∂s
ds̃ds̃′ −

∫ s′′

s′

∫ s′

s

∂v(s̃′, r)

∂s

∂v(s̃, r′)

∂s
ds̃ds̃′

]
ε

=

[∫ s′′

s′

∫ s′

s

(
∂v(s̃′, r′)

∂s

∂v(s̃, r)

∂s
− ∂v(s̃′, r)

∂s

∂v(s̃, r′)

∂s

)
ds̃ds̃′

]
ε > 0,

where the inequality holds because the integrand is strictly positive for r < r′ and
s̃ < s̃′ by Assumption 1. □

Lemma 3. For any optimal H (with finite support) and any P ∈ supp(H), we have
| supp(P )| ≤ 2.

Proof. Suppose for contradiction that there exists a district P ∈ supp(H) that contains
three types s < s′ < s′′. Denote r∗(P ) = r. Suppose we split district P into two
identical equal-sized districts P ′ and P ′′. Then consider a perturbation that shifts mass
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ρ = (v(s′′, r)− v(s′, r))ε of type-s voters and mass ρ′′ = (v(s′, r)− v(s, r))ε of type-s′′

voters from P ′ to P ′′, and shifts an equal mass ρ′ = ρ+ρ′′ = (v(s′′, r)−v(s, r))ε of type-
s′ voters from P ′′ to P ′, for a sufficiently small ε > 0. Notice that r∗(P ′′) = r∗(P ′) = r,
because

v(s, r)ρ− v(s′, r)ρ′ + v(s′′, r)ρ′′ = 0.

Now consider an additional perturbation that moves an infinitesimal mass dρ of type-s
voters from P ′′ to P ′ and moves the same mass dρ of type-s′′ voters from P ′ to P ′′. By
the implicit function theorem, r∗(P ′′) = r+ dr′′ + o(dr′′) and r∗(P ′) = r− dr′ + o(dr′),
where

dr′′ =
(v(s′′, r)− v(s, r))

−
∫ ∂v(s̃,r)

∂r
dP ′′(s̃)

dm and dr′ = −(v(s′′, r)− v(s, r))

−
∫ ∂v(s̃,r)

∂r
dP ′(s̃)

dm.

To show that this perturbation strictly increases the designer’s expected seat share, it
suffices to show that dr′′ > dr′, or equivalently −

∫ ∂v(s̃,r)
∂r

dP ′′(s̃) < −
∫ ∂v(s̃,r)

∂r
dP ′(s̃).

This holds because

−∂v(s, r)

∂r
ρ+

∂v(s′, r)

∂r
ρ′ − ∂v(s′′, r)

∂r
ρ′′

=
[
−∂v(s,r)

∂r
(v(s′′, r)− v(s′, r)) + ∂v(s′,r)

∂r
(v(s′′, r)− v(s, r))− ∂v(s′′,r)

∂r
(v(s′, r)− v(s, r))

]
ε

=
[(

∂v(s′,r)
∂r

− ∂v(s,r)
∂r

)
(v(s′′, r)− v(s′, r))−

(
∂v(s′′,r)

∂r
− ∂v(s′,r)

∂r

)
(v(s′, r)− v(s, r))

]
ε

=

[∫ s′

s

∂2v(s̃, r)

∂s∂r
ds̃

∫ s′′

s′

∂v(s̃′, r)

∂s
ds̃′ −

∫ s′′

s′

∂2v(s̃′, r)

∂s∂r
ds̃′

∫ s′

s

∂v(s̃, r)

∂s
ds̃

]
ε

<
∂2v(s′,r)
∂s∂r

∂v(s′,r)
∂s

[∫ s′

s

∂v(s̃, r)

∂s
ds̃

∫ s′′

s′

∂v(s̃′, r)

∂s
ds̃′ −

∫ s′′

s′

∂v(s̃′, r)

∂s
ds̃′

∫ s′

s

∂v(s̃, r)

∂s
ds̃

]
ε = 0,

where the inequality follows from Assumption 1, which implies that ∂ ln(∂v(s, r)/∂s)/∂r
is strictly increasing in s, and thus

∂2v(s̃,r)
∂s∂r

∂v(s̃,r)
∂s

<
∂2v(s′,r)
∂s∂r

∂v(s′,r)
∂s

<
∂2v(s̃′,r)
∂s∂r

∂v(s̃′,r)
∂s

for s̃ < s′ < s̃′. □

By Lemmas 2 and 3, to show that every optimal districting plan H (with finite support)
is single-dipped, it suffices to show that for any district P ∈ supp(H) consisting of voter
types s < s′′ and any district P ′ ∈ supp(H) containing a voter type s′ ∈ (s, s′′), we have
r∗(P ) ̸= r∗(P ′). But this follows because, if r∗(P ) = r∗(P ′), then merging districts P
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and P ′ into one district would also be optimal, but the merged district would contain
three voter types, contradicting Lemma 3. □

Proof of Proposition 7. Let H be a pack-and-pair districting plan. Since H is strictly
single-dipped, the support of each P ∈ supp(H) has at most two elements and thus
can be represented as {s1(r∗(P )), s2(r

∗(P ))} with s1(r
∗(P )) ≤ r∗(P ) ≤ s2(r

∗(P )).
Moreover, for each P, P ′ ∈ supp(H) with r∗(P ) < r∗(P ′), we have s2(r

∗(P )) ≤
s2(r

∗(P ′)), as otherwise we would have s2(r
∗(P ′)) ∈ (s1(r

∗(P )), s2(r
∗(P ))) contra-

dicting strict single-dippedness of H.

Assume that there exists P such that s1(r
∗(P )) < s2(r

∗(P )), as otherwise the propos-
ition obviously holds with rb = s. Define rb = inf{r∗(P̃ ) : P̃ ∈ supp(H), s1(r

∗(P̃ )) <

s2(r
∗(P̃ ))}, so that, for each P ∈ supp(H) with r∗(P ) < rb, we have supp(P ) =

{r∗(P )}. Since supp(H) is compact, there exists P b ∈ supp(H) with r∗(P b) = rb. It
follows that supp(P b) = {rb}, as otherwise (i.e., if s1(r∗(P b)) < rb < s2(r

∗(P b)) voter
types in (rb, s2(r

∗(P b)) (which have strictly positive mass since f is strictly positive
on [s, s]) cannot be segregated, as this would contradict strict single-dippedness of
H, and also cannot be paired with other types, as this would contradict either strict
single-dippedness of H or the definition of rb.

Finally, we show that, for each P, P ′ ∈ supp(H) with rb < r∗(P ) < r∗(P ′), we have
s1(r

∗(P )) ≥ s1(r
∗(P ′)). Suppose by contradiction that s1(r

∗(P )) < s1(r
∗(P ′)). Since

H is a strictly single-dipped pack-and-pair districting plan, by the definition of rb,
we have s1(r

∗(P )) < r∗(P ) < s2(r
∗(P )) ≤ s1(r

∗(P ′)) < r∗(P ′) < s2(r
∗(P ′)). Define

r† = inf{r∗(P̃ ) : P̃ ∈ supp(H), s1(r
∗(P ′)) ≤ s1(r

∗(P̃ )) < s2(r
∗(P̃ )) ≤ s2(r

∗(P ′))} ≥
s1(r

∗(P ′)). By the same argument as in the previous paragraph, we have δr† ∈ supp(H),
contradicting that H is pack-and-pair. □

The next lemma restates some results from Kolotilin, Corrao, and Wolitzky (2023),
which we use to prove Propositions 8 and 9.

Lemma 4. Consider the additive taste shock case where the taste shock density is
strictly log-concave and symmetric about 0.

(1) If for all s < r < s′, we have

G(r) <
Q(s′ − r)− 1

2

Q(s′ − r)−Q(s− r)
G(s) +

1
2
−Q(s− r)

Q(s′ − r)−Q(s− r)
G(s′),
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then the unique optimal plan is segregation.

(2) If for all s < s′ there exists r ∈ (s, s′) such that

G(r) >
Q(s′ − r)− 1

2

Q(s′ − r)−Q(s− r)
G(s) +

1
2
−Q(s− r)

Q(s′ − r)−Q(s− r)
G(s′),

then the unique optimal plan is negative assortative.

Proof. By the definition of r∗(P ), we have

r∗(ρδs + (1− ρ)δs′) = r ∈ (s, s′) ⇐⇒ ρ =
Q(s′ − r)− 1

2

Q(s′ − r)−Q(s− r)
∈ (0, 1).

Thus, part 1 says that, for any s < s′, the designer prefers to separate any district
P = ρδs + (1 − ρ)δs′ into districts δs and δs′ , and part 2 says that, for any s < s′,
the designer prefers to pool districts δs and δs′ into some district P = ρδs + (1− ρ)δs′ .
Consequently, parts 1 and 2 follow from Theorems 4 and 6 in Kolotilin, Corrao, and
Wolitzky (2023). □

Proof of Proposition 8. For part 1, by Lemma 4, negative assortative districting is
uniquely optimal if for all s < s′ there exists r ∈ (s, s′) such that

(G(r)−G(s))
(
Q(s′ − r)− 1

2

)
> (G(s′)−G(r))

(
1
2
−Q(s− r)

)
,

and thus, considering r ↑ s′, if for all s < s′, we have

(G(s′)−G(s))q(0) > g(s′)
(
1
2
−Q(s− s′)

)
,

which holds if G is concave, as shown in the main text.

For part 2, it suffices to show that there exists c > 0 such that, for all s ̸= r, we have

G(s)−G(r)

g(r)
>

Q(s− r)− 1
2

q(0)
.

Indeed, this inequality implies that for all s < r < s′, we have
G(r)−G(s)
1
2
−Q(s− r)

<
g(r)

q(0)
<

G(s′)−G(r)

Q(s′ − r)− 1
2

, (12)

and hence segregation is uniquely optimal by Lemma 4.
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Now, since g′(r)/g(r) ≥ c for all r, Gronwall’s inequality gives g(s)/g(r) ≥ ec(s−r) for
all s > r and g(s)/g(r) ≤ ec(s−r) for all s < r. Hence, for all s, r, we have

G(s)−G(r)

g(r)
=

∫ s

r

g(x)

g(r)
dx ≥

∫ s

r

ec(x−r)dx =
ec(s−r) − 1

c
.

Thus, it suffices to show that there exists c > 0 such that, for all s ̸= r, we have

ec(s−r) − 1

c
>

Q(s− r)− 1
2

q(0)
.

Note that both sides have the same values and the same derivatives at s = r. Moreover,
at s = r, the second derivative of the left-hand side, c > 0, is greater than the second
derivative of the right-hand side, q′(0)/q(0) = 0. Thus, the inequality holds in some
neighborhood s ∈ (r − ε, r). Setting c = q(0)/(1/2 −Q(−ε)) > 0 guarantees that the
inequality holds for all s ̸= r. Indeed, for s ≤ r − ε, we have

ec(s−r) − 1

c
> −1

c
=

Q(−ε)− 1
2

q(0)
≥

Q(s− r)− 1
2

q(0)
,

where the first inequality holds by ec(s−r) > 0 and the second holds by monotonicity
of Q. For s > r, we have

ec(s−r) − 1

c
> s− r >

Q(s− r)− 1
2

q(0)
,

where the first inequality holds by strict convexity of ecx in x and the second holds by
strict concavity of Q on [0,+∞). □

Proof of Proposition 9. Since density q is symmetric about 0 and density f is strictly
positive on [s, s], we have s < r∗(F ) < s. Since G is strictly S-shaped with inflection
point r∗(F ), it follows that G is concave on [r∗(F ), s]. Thus, by Proposition 8, neg-
ative assortative districting is uniquely optimal for types in [r∗(F ), s], showing that
segregation cannot be optimal.

Suppose for contradiction that negative assortative districting H is optimal. By Pro-
position 7, for each P ∈ supp(H) except for δrb , we have s1(r

∗(P )) < r∗(P ) <

s2(r
∗(P )), where s1 is decreasing and s2 is increasing. Note that rb < r∗(F ), because∫

Q(s− r∗(F ))dF (s) = 0 =

∫∫
Q(s− r∗(P ))dP (s)dH(P )

<

∫∫
Q(s− rb)dP (s)dH(P ) =

∫
Q(s− rb)dF (s),
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where the first two equalities hold by the definition of r∗(F ) and r∗(P ), the inequality
holds by r∗(P ) > rb for all P ∈ supp(H) except for δrb , and the last equality holds by∫
PdH(P ) = F . Since density f is strictly positive on [s, s], by the same argument as

in the proof of Proposition 7, we get limr↓rb s1(r) = limr↓rb s2(r) = rb. Thus, for any
ε > 0, there exists P ∈ supp(H) such that rb − ε < s1(r

∗(P )) < s2(r
∗(P )) < rb + ε,

and all types in [s1(r
∗(P )), s2(r

∗(P ))] are matched between themselves in a negatively
assortative manner. For small enough ε > 0 and all s < r < s′ in [s1(r

∗(P )), s2(r
∗(P ))],

we have
G(s)−G(r)

g(r)
>

Q(s− r)− 1
2

q(0)
,

where the inequality holds because both sides have the same values and the same
derivatives at s = r, while the second derivative of the left-hand side, g′(r)/g(r) > 0

(recall that rb is less than inflection point r∗(F ) of strictly S-shaped G), is greater than
the second derivative of the right-hand side, q′(0)/q(0) = 0. As follows from (12) in the
proof of Proposition 8, segregation is uniquely optimal for types in [s1(r

∗(P )), s2(r
∗(P ))],

showing that H cannot be optimal. □

Proof of Proposition 10. Suppose for contradiction that there exists an optimal non-
pack-and-crack plan H. By Proposition 6, H is strictly single-dipped. Consequently,
since H is not pack-and-crack, there exist s < r < s′ ≤ s′′ and P, P ′ ∈ supp(H) such
that r∗(P ) = r, supp(P ) = {s, s′}, and supp(P ′) = {s′′}. By Lemma 1, condition (3)
holds. Intuitively, (3) says that the designer prefers not to move a few type-s voters
from district P to districts δs and δs′′ .

We have numerically verified that (3) holds over the specified range of parameters.
The code is available on request. □

Proof of Proposition 11. By Lemma 1, λ has a derivative λ′(r) at each r ∈ (rb, rb + ε]

satisfying

g(r)− λ(r)q(s2(r)− r) + λ′(r)
(
Q(s2(r)− r)− 1

2

)
= 0,

g(r)− λ(r)q(s1(r)− r) + λ′(r)
(
Q(s1(r)− r)− 1

2

)
= 0.
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Solving for λ(r) and λ′(r) yields, for all r ∈ (rb, rb + ε],

λ(r) =
g(r)[Q(s2(r)− r)−Q(s1(r)− r)](

Q(s2(r)− r)− 1
2

)
q(s1(r)− r)−

(
Q(s1(r)− r)− 1

2

)
q(s2(r)− r)

,

λ′(r) =
g(r)[q(s2(r)− r)− q(s1(r)− r)](

Q(s2(r)− r)− 1
2

)
q(s1(r)− r)−

(
Q(s1(r)− r)− 1

2

)
q(s2(r)− r)

.

Since λ′ is the derivative of λ, we have dλ(r)/dr = λ′(r) for all r ∈ (rb, rb + ε].
Taking into account that s1 and s2 are twice differentiable and satisfy limr↓rb s1(r) =

limr↓rb s2(r) = rb, we can apply L’Hopital’s rule to evaluate dλ(r)/dr = λ′(r) in the
limit r ↓ rb to obtain

g′(rb)q(0)

(q(0))2
=

g(rb)q′(0)

(q(0))2
,

which implies that rb = 0, because G(r) = Q(γr) for all r and q′(r) = 0 iff r = 0.
Denote limr↓rb s

′
1(r) = 1 − β1 and limr↓rb s

′
2(r) = 1 + β2, where β1 ≥ 1 (because s1

is decreasing) and β2 ≥ 0 (because s2(r) > r). Differentiating dλ(r)/dr = λ′(r) with
respect to r and taking the limit r ↓ 0, we get

γq′′(0)(γ2 − β2β1)

q(0)
=

γq′′(0)(β2 − β1)

2q(0)
,

and hence
2γ2 = 2β2β1 + β2 − β1. (13)

Since, for small enough r > 0, type s1(r) is assigned to both district δs1(r) and district
P with r∗(P ) = r and supp(P ) = {s1(r), s2(r)}, we must have, by Lemma 1,

Q(γs1(r)) = Q(γr) + λ(r)
(
Q(s1(r)− r)− 1

2

)
.

In the limit r ↓ 0, the values and the derivatives up to order 2 of both sides always
coincide, while the third derivatives coincide iff

q′′(0)γ3(−β1 + 1)3 = q′′(0)γ3 − 3q′′(0)γ3β1 + 3q′′(0)γβ2β
2
1 − q′′(0)γβ3

1 ,

which simplifies to
−γ2β1 + 3γ2 = 3β2 − β1. (14)

Since, for small enough r > 0, type s1(r) is assigned to both district δs1(r) and district
P with r∗(P ) = r, while type s2(r) is assigned only to district P , we have

f(s1(r))s
′
1(r)

(
Q(s1(r)− r)− 1

2

)
≥ f(s2(r))s

′
2(r)

(
Q(s2(r)− r)− 1

2

)
.
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In the limit r ↓ 0, both sides are equal, and hence their derivatives must satisfy

−f(0)q(0)β1(1− β1) ≥ f(0)q(0)β2(β2 + 1),

which, given that β1 + β2 > 0, simplifies to

β1 ≥ β2 + 1. (15)

Equations (13) and (14) have two solutions (β1, β2) = (3γ2/(2(γ2 − 1)), γ2/2) and
(β1, β2) = (1, (2γ2 + 1)/3), unless γ2 = 1, in which case (13) and (14) have only one
solution (β1, β2) = (1, 1). The solution (β1, β2) = (1, (2γ2 + 1)/3) never satisfies (15)
and thus is discarded. Moreover, for the solution (β1, β2) = (3γ2/(2(γ2 − 1)), γ2/2),
condition β1 ≥ 1 yields γ > 1, and condition (15) yields γ ≤

√
1 +

√
3. Thus, for

Y-districting to be optimal, we must have γ ∈ (1,
√

1 +
√
3]. Finally, the statement in

Footnote 32 holds because

lim
r↓0

s′1(r) = 1− β1 = − (γ2 + 2)

2(γ2 − 1)
< 0 and lim

r↓0
s′2(r) = 1 + β2 = 1 +

γ2

2
> 0

are both strictly increasing in γ. □

Online Appendix: Estimators
In this section, we formally define our estimators and show that they satisfy standard
statistical properties. Fix a US state. We assume throughout that there is a large
number of voters, so that the vote share in a precinct n with type sn in district d and
election t with aggregate shock rdt is given by vnt = Φ(sn − rdt). Let µs and σ2

s be
the mean and variance of the distribution of precinct types, defined by µs = EF [s]

and σ2
s = V arF [s]. For convenience, we repeat some definitions from the main text.

Letting T denote the number of elections, D the number of districts, and Ndt the set
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of precincts in district d and election t, we define

wdt =

∑
n∈Ndt

kntwnt∑
n∈Ndt

knt
, wd• =

∑
t wdt

T
, w•t =

∑
d wdt

D
, w•• =

∑
d wd•

D
,

e2n =
1

DT

∑
d,t

∑
n∈Ndt

knt(wnt − w•t)
2∑

n∈Ndt
knt

,

e2d =

∑
d,t(wdt − wd•)

2

D(T − 1)
, e2 =

∑
t(w•t − w••)

2

T − 1
,

cov =

∑
t

∑
d

∑
d′>d(wdt − wd•)(wd′t − wd′•)

D(D−1)
2

(T − 1)
=

De2 − e2d
D − 1

,

where the last equality follows from

e2 =

∑
t

(∑
d

1
D
(w•t − w••)

)2
D(T − 1)

=
1

D

∑
d,t(wdt − wd•)

2

D(T − 1)
+

D − 1

D

∑
t

∑
d

∑
d′>d(wdt − wd•)(wd′t − wd′•)

D(D−1)
2

(T − 1)

=
1

D
e2d +

D − 1

D
cov.

To construct our estimators, we use the following proposition.

Proposition 12. In our empirical model,

Ee2d =
1

γ2
, Ecov =

ρ

γ2
, Ew•• = µs, and Ee2n = σ2

s +
D − 1

D

1− ρ

γ2
,

and
e2d

d
=

1

D(T − 1)γ2

[
(1− ρ)χ2

(D−1)(T−1) + (1 + (D − 1)ρ)χ2
T−1

]
,

where d
= denotes equality in distribution, and χ2

(D−1)(T−1) and χ2
T−1 denote independent

χ2 random variables with (D − 1)(T − 1) and T − 1 degrees of freedom, respectively.

Consider the following point estimators of γ, ρ, µs, and σs:

γ̂ = 1/
√

e2d, ρ̂ =
cov

e2d
, µ̂s = w••, and σ̂s =

√
e2n −

D − 1

D
(e2d − cov).

By Proposition 12, µ̂s, σ̂2
s , 1/γ̂2, and ρ̂/γ̂2 are unbiased estimators of µs, σ2

s , 1/γ2, and
ρ/γ2. Moreover, by the law of large numbers for D(T − 1) → ∞, we have that γ̂, ρ̂,
µ̂s, and σ̂s are consistent estimators of γ, ρ, µs, and σs
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Proposition 12 also gives us a confidence interval for γ. Specifically, let q be the quantile
function for (1− ρ̂)χ2

(D−1)(T−1) + (1+ (D− 1)ρ̂)χ2
T−1. Then, for any α ∈ (0, 1), a 1−α

confidence interval for γ is given by√
q(α/2)

D(T − 1)
γ̂ ≤ γ ≤

√
q(1− α/2)

D(T − 1)
γ̂.

Proof of Proposition 12. Denote

rd• =

∑
t rdt
T

, r•t =

∑
d rdt
D

, sdt =

∑
n∈Ndt

kntsn∑
n∈Ndt

knt
, s•t =

∑
d sdt
D

.

First, we have

Ew•• = E
1

DT

∑
d,t

∑
n∈Ndt

knt(sn − rdt)∑
n∈Ndt

knt
= E

1

DT

∑
d,t

∑
n∈Ndt

kntsn∑
n∈Ndt

knt
= E

∑
n kntsn∑
n knt

= µs,

where the first equality is by vnt = Φ(sn − rdt) and the definition of vnt and w••, the
second is by E[rdt] = 0, the third is by district equipopulation, and the fourth is by
the definition of µs. Second, we have

Ee2d = E
∑

d,t(
T−1
T

rdt − 1
T

∑
t′ ̸=t rdt′)

2

D(T − 1)
=

DT
[(

T−1
T

)2
+ T−1

T 2

]
1
γ2

D(T − 1)
=

1

γ2
,

where the first equality is by vnt = Φ(sn − rdt), the definition of wdt and wd•, and
rearrangement, the second is by V ar[rdt] = 1/γ2 and Cov[rdt, rdt′ ] = 0 for t ̸= t′, and
the third is by rearrangement. Third, we have

Ecov = E
∑

t

∑
d

∑
d′>d(rdt − rd•)(rd′t − rd′•)
D(D−1)

2
(T − 1)

=
ρ

γ2
,

where the first equality is again by vnt = Φ(sn − rdt) and the definition of wdt and wd•,
and the second is by Cov[rdt, rd′t] = ρ/γ2 for d ̸= d′, Cov[rdt, rd′t′ ] = 0 for t ̸= t′, and
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rearrangement. Fourth, we have

Ee2n = E
1

DT

∑
d,t

∑
n∈Ndt

knt(sn − s•t + rdt − r•t)
2∑

n∈Ndt
knt

= E
∑

n knt(sn − s•t)
2∑

n knt

+E
∑

d(rdt − r•t)
2

D
= σ2

s + E

∑
d

(
D−1
D

rdt − 1
D

∑
d′ ̸=d rd′t

)2

D

= σ2
s + E

∑
d

[(
D−1
D

)2
r2dt +

1
D2

∑
d′ ̸=d r

2
d′t −

2(D−1)
D2 rdtrd′t +

2
D2

∑
d′ ̸=d,d′′>d′ rd′trd′′t

]
D

= σ2
s +

[(
D − 1

D

)2

+
D − 1

D2
− 2(D − 1)

D2
ρ+

(D − 1)(D − 2)

D2
ρ

]
1

γ2

= σ2
s +

D − 1

D

1− ρ

γ2
,

where the first equality is by vnt = Φ(sn − rdt), the definition of wnt and w•t, and
rearrangement, the second is by independence across elections and district equipopula-
tion, the third is by the large number of voters and rearrangement of the second term,
the fourth is by quadratic expansion, the fifth is by E[r2dt] = 1/γ2 and E[rdtrd′t] = ρ/γ2

for d′ ̸= d, and the sixth is by rearrangement.

Finally, let r = (r11, . . . , r1T , . . . , rD1, . . . , rDT )
′. Then we can write∑

d,t

(rdt − rd•)
2 = r′Ar

where

A =



T−1
T

. . . − 1
T

. . . 0 . . . 0
... . . . ... . . . ... . . . ...

− 1
T

. . . T−1
T

. . . 0 . . . 0
... . . . ... . . . ... . . . ...
0 . . . 0 . . . T−1

T
. . . − 1

T
... . . . ... . . . ... . . . ...
0 . . . 0 . . . − 1

T
. . . T−1

T


.
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Note that

γ2E[rr′] = Σ =



1 . . . 0 . . . ρ . . . 0
... . . . ... . . . ... . . . ...
0 . . . 1 . . . 0 . . . ρ
... . . . ... . . . ... . . . ...
ρ . . . 0 . . . 1 . . . 0
... . . . ... . . . ... . . . ...
0 . . . ρ . . . 0 . . . 1


.

By the spectral theorem, there is an orthogonal matrix P (so that P ′P = P ′P = I)
and and a diagonal matrix Λ with positive diagonal elements λ1, . . . , λDT such that
Σ1/2AΣ1/2 = P ′ΛP . Define u = γ−1PΣ−1/2r (so that r = γΣ1/2P ′u). Then

γ2r′Ar = u′PΣ1/2AΣ1/2P ′u = u′PP ′ΛPP ′u = u′Λu =
DT∑
i=1

λiu
2
i

where u ∼ N(0, I), and λ1, . . . λDT are the roots of the characteristic equation

|Σ1/2AΣ1/2 − λI| = 0 ⇐⇒ |AΣ− λI| = 0.

Note that

AΣ =



T−1
T

. . . − 1
T

. . . ρT−1
T

. . . −ρ 1
T

... . . . ... . . . ... . . . ...
− 1

T
. . . T−1

T
. . . −ρ 1

T
. . . ρT−1

T
... . . . ... . . . ... . . . ...

ρT−1
T

. . . −ρ 1
T

. . . T−1
T

. . . − 1
T

... . . . ... . . . ... . . . ...
−ρ 1

T
. . . ρT−1

T
. . . − 1

T
. . . T−1

T


.

After some algebra, we obtain

|AΣ− λI| = (−1)DTλD(λ− 1 + ρ)(D−1)(T−1)(λ− 1− (D − 1)ρ)T−1,

showing that γ2r′Ar
d
= (1− ρ)χ2

(D−1)(T−1) + (1 + (D − 1)ρ)χ2
T−1, and hence

e2d =
r′Ar

D(T − 1)
d
=

1

D(T − 1)γ2

[
(1− ρ)χ2

(D−1)(T−1) + (1 + (D − 1)ρ)χ2
T−1

]
. □
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